CLINICAL EXPERIENCE WITH PROTON BEAMS
by
Stig Sténson

At Uppsala the work with fast protons in radiobiology and experimental radiotherapy could start in 1956 when the external 185 MeV proton beam was extracted from the Uppsala synchrocyclotron. (Fig. 1) At that time the radiophysical properties of high energy protons were well known in principle both theoretically and practically due to the early work at Berkeley. Inspired by that research we decided to explore in more detail the possible values of proton beams in radiotherapy and brain surgery. In the present context I limit myself to the theme radiotherapy referring to earlier papers for references to the surgical applications.

In 1956-1959 we investigated the effects of high energy protons on rabbit skin, on small intestines and rectal mucosa of rat and on V x 2-carcinoma. The ability of protons to induce chromosome aberrations was studied in broad bean roots. The induced changes were

* To be presented for the Symposium on pion and proton radiotherapy at the National Accelerator Laboratory, Batavia, Illinois on December 4, 1971.
grossly and microscopically comparable to those created by numerically
equivalent doses of roentgen rays. These investigations were made to
test the hypothesis that protons which show ionization patterns typi-
cal for low LET-radiations, create the same changes in tissue as gamma
radiation. As expected the gross and microscopical changes induced by
high energy protons did not differ from the changes induced by X-rays.
The results of our studies also indicated that the RBE of high energy
protons with a LET of about 0.5 keV/micron was 0.7-0.8 as compared to
X-rays, (Table I) i.e. they were almost equivalent to cobalt gamma ra-
diation. The estimated RBE values are in good conformity with the values
found by others (Table II). The RBE of Bragg-
peak-protons (LET 30-50 keV/micron) was also studied and values of 3 -8 were found in a narrow zone at the end of the range of penetration.

After this initial study we started to irradiate human carcinomas
in 1957. The patients of the first three series
had uterine or ovarian carcinomas and most of them had earlier received
radiation therapy or been operated upon. The proton irradiation was
given palliatively and for practical reasons in one sitting. The
greatest diameter of the beam was 14 cm and the depth of penetration
in tissue could be varied at will up to 23 cm. The Bragg peak, which
is too narrow for practical use in tumour therapy was transformed into
plateaux of variable length by means of filters. By varying the
range of protons in the body during irradiation it was possible to de-
liver an almost uniform dose to the tumour-involved tissue. Ridge fil-
ters are now normally used for this transformation of the Bragg peak.
The situation shown in Fig. 2 is typical for all therapeutical procedures considered in patients with genital carcinomas.

The first series included ten cases of microscopically verified recurrences of earlier irradiated genital carcinomas. The main aim of the investigation was to study the effects of protons on healthy and malignant tissues. Six of the patients had squamous cell carcinomas and four adenocarcinomas. Irradiation was given in single doses of 3000 rad over a perineal field. The results of the animal experiments had indicated that this very simple type of treatment could be tolerated. In all cases the irradiated tumour mass decreased grossly after irradiation and histological examination showed regressive changes in the malignant cells. These early results in a very inhomogeneous material did not permit any conclusions but for the general observation that the reaction of the normal tissues was comparatively slight. No acute reaction such as fever, nausea or fatigue due to the treatment was observed. All the patients had erythema of the irradiated skin two weeks after irradiation and seven of them a moist skin reaction which healed within 5 - 6 weeks leaving a pigmentation of the kind sometimes seen after X-ray treatment. No patient showed any urinary symptoms but all had rectal reactions, transient tenesmus and diarrhoea. A recto-vaginal fistula was found at autopsy in two cases. This complication may be explained as an effect of superimposition of protons and the earlier X-rays.

The second series included five cases with cervical adenocarcinomas or squamous cell carcinomas. These patients had not received
earlier radiation therapy. A single dose of 2500–3000 rad protons was given to four very advanced cases. These patients all died within six months from wide-spread cancer. The reactions of the healthy and malignant tissues were the same as in the first series. At autopsy a rectal perforation was found in one patient and microscopic examination revealed cancer growth in the walls of the fistula which may have caused the perforation. One of these patients received a single dose of 3000 rad for a stage II cervical carcinoma of squamous cell type. This woman is alive and apparently cured 9 years after treatment without any permanent reaction from the skin, bladder or the intestine. At gynaecological examination this year only some fibrosis of the para-cervical tissues was found and a slight pigmentation is present in the irritated skin.

A third series of patients was now given fractionated treatment. Six patients got 500 rad twice a week up to a total dose of 4000–6000 rad for advanced genital carcinomas which earlier had been X-irradiated. In most cases a small volume containing node-metastases on the pelvic wall was treated. In one case all tissues in the abdomen caudal from the umbilicus were irradiated. The tumours all decreased in size after treatment and microscopic examination showed regressive changes or no cancer cells. As expected, the reactions of the skin after fractionation were less marked than after single irradiation. The treatment was also in these cases palliative and the patients all died from their carcinomas within 2 years.

At this time we felt a certain confidence in our technique and the equivalence of the protons to gamma radiation from biological point of
view seemed fairly well established. From now on treatment was therefore planned in accord with normal clinical practice. The further work was concentrated on cases in which the geometrical advantages of the proton-dose-distribution could be exploited to maximum advantage. Graffman and Jung for example, gave fractionated total doses of 2000 - 5000 rad to 10 patients with nasopharyngeal malignancies of different histologic types. Only the primary lesion was irradiated, local metastases were treated with X-rays or surgery. The proton irradiation was performed with two opposing, circular fields centered on the tumour region. The tumour dose was given in fractions of 1000 - 1500 rad, twice a week, alternatively from the left and from the right side. The beam penetrated to a depth of 2.5 cm beyond the midline of the skull and the two fields overlapped in a 5 cm wide zone around the midline. In this zone the dose was 3 times that at the skin. Seven of the patients had already at irradiation distant metastases and died from their disease. Three patients however had no sign of metastases at irradiation and two of them are living symptomfree more than 5 years after treatment. During the last 2 years another series of 10 patients with nasopharyngeal carcinomas has been treated exclusively with protons. The irradiated volume has been larger but otherwise the treatment has been similar. The primary results are encouraging and no untoward side-effects were seen.

During the last two years a number of patients with various types of carcinomas in the head-and-neck region have been treated with comparatively large proton fields. The doses have been 5000 - 6000 rad given in 5 - 6 fractions over that many weeks. No other form of treatment
is given. The results are reported good but studies have not proceeded long enough.

Graffman and Jung \(^{33} \) have also treated 7 patients with brain tumours, astrocytomas grade III-IV with doses of 3900 - 5200 rad over 4 to 8 weeks. A single field technique was used and the treatment was given postoperatively. The border of the tumour being marked with silver clips for orientation. One patient is alive more than 5 years after treatment. Beside epilation of the irradiated area no side-effects were seen.

As seen, the number of patients treated in the different series at Uppsala is small, and the material diverse. Any decision as to the therapeutic value of the treatment has to be based on a much larger material preferably studied under the conditions of a clinical trial permitting statistical analysis. There is thus a strong need for evaluating the role of protons in the development of modern radiotherapy but still we can base our considerations on the physical properties of the beam, which allows uniform and selected treatment of the carcinomas permitting at the same time the smallest possible radiation dose in the surrounding healthy tissues. This situation has been the dream of radiotherapists since the beginning of radiotherapy.

At present we feel that the properties of the proton beam are of special value for radiation therapy in 3 regions:

1) the head-and-neck region where the eyes and the spinal chord must be avoided at irradiation.

2) the mediastinum where carcinomas of the oesophagus, for example,
can be treated with therapeutic doses while the integral dose can be kept low as well as protection of the spinal cord.

3) the pelvic region where for example malignancies of the bladder and the uterus can be treated with high doses without damaging the radiosensitive mucous membrane of the rectum.

It seems now worth while to scrutinize further practical aspects of large scale use of protons or other light ions in clinical practice. Within a larger group of experts from various fields, including accelerator technology and hospital organization, we are presently trying this approach. One important pre-requisite is beam-splitting so as to deliver, simultaneously, several beams of varying directions, vertically, oblique and horizontally. A lay-out for proton therapy in a larger hospital is being worked out.

ACKNOWLEDGEMENTS

This paper is a review of collaborative research. The author acknowledges particularly the inclusion of previously unpublished information provided by Drs. S. Graffman and B. Jung.

The study was supported by the Swedish Cancer Society and the Swedish Medical Research Council.
REFERENCES

17. Naeslund, J., Sténson, S. and Larsson, B.: Results of proton
irradiation of V x 2 carcinoma in the uterus of rabbits.

18. Larsson, B. and Khilman, B.: Chromosome aberrations following
irradiation with high-energy protons and their secondary rad-
iation. A study of dose distribution and biological efficiency
2 (1960), 8.

19. Warshaw, S. and Oldfield, D.: Pretherapeutic studies with the
Chicago synchrocyclotron. Am. J. Roentgenol. Rad. Therapy and
Nuclear Med. 78 (1957), 876.

Efficacité biologique relative des protons de 157 MeV.

21. Kurlyandskaya, E., Avrunina, Ponomareva, V., Federova, V.,
Yanovskaya, B. and Yarmonenko, S.: Relative biological effective-
SSSR 142 (1962), 702.

22. Dalrymple, G., Lindsay, I., Ghidoni, J., Hall, J., Mitchell, J.,
Kundel, H. and Morgan, J.: Some effects of 138 MeV protons on
primates. Radiation Res. 28 (1966), 471.

23. Dalrymple, G., Lindsay, I., Hall, J., Mitchell, J., Ghidoni, J.,
Kundel, H. and Morgan, J.: The relative biological effectiveness
of 138 MeV protons as compared to Co\(^{60}\) gamma radiation. Radiation
Res. 28 (1966), 489.

31. Graffman, S., Jung, B., Nohrman, B. and Bergström, R.: Supplementary treatment of nasopharyngeal tumours with high energy pro-

RBE values for proton exposure

<table>
<thead>
<tr>
<th>Reference</th>
<th>Protons and reference radiation</th>
<th>Criterion</th>
<th>RBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sténson ^1^, 1958</td>
<td>40 MeV protons</td>
<td>Epilation, erythema 0.6-0.7 desquamation, necrosis, in rabbit skin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220 kV X-rays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sténson, 1959 (prel. report), 1969</td>
<td>185 MeV protons</td>
<td>Intestinal tract, rats. Weight changes and mortality.</td>
<td>0.77±0.18</td>
</tr>
<tr>
<td></td>
<td>220 kV X-rays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sténson, 1959 (prel. report), 1969</td>
<td>185 MeV protons</td>
<td>Rectal mucosa, rats 0.6-0.7 Histo-pathologic changes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220 kV X-rays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larsson and Kihlman, 1960</td>
<td>170 MeV protons</td>
<td>Broad bean root chromosome aberration.</td>
<td>0.70±0.05</td>
</tr>
<tr>
<td></td>
<td>180 kV X-rays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falkmer et coll., 1959</td>
<td>40 MeV protons</td>
<td>V x 2 carcinoma in Approx. 1 rabbit ears. Induced regression.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220 kV X-rays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Protons and reference radiation</td>
<td>Criterion</td>
<td>RBE</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Tobias et coll. 315 MeV protons 200 kV X-rays</td>
<td>Whole body, mice LD 50/30</td>
<td>Approx. 1</td>
<td></td>
</tr>
<tr>
<td>Warshaw and Oldfield 1957 Protons LET 2 keV/μm 250 kV X-rays</td>
<td>Whole body, mice Weight changes of thymus and spleen</td>
<td>1.7±0.2 2.1±0.1</td>
<td></td>
</tr>
<tr>
<td>Bonet-Maury et coll. 1960 157 MeV protons 250 kV X-rays</td>
<td>Whole body, mice LD 50/30</td>
<td>0.77±0.1</td>
<td></td>
</tr>
<tr>
<td>Kurlyandskaya et coll. 1962 660 MeV protons 180 kV X-rays</td>
<td>Whole body, mice LD 50/30</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>Dalrymple et coll. 1966 138 MeV protons 2 MeV X-rays</td>
<td>Whole body, macaca mulatta</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Dalrymple et coll. 1966 138 MeV protons 60Co</td>
<td>Whole body, mice LD 50/6 LD 50/30</td>
<td>1.06±0.05 0.97±0.04</td>
<td></td>
</tr>
<tr>
<td>Lindsay et coll. 1967 138 and 400 MeV protons 2 MeV X-rays</td>
<td>Whole body, macaca mulatta LD 50/30</td>
<td>1.04-1.09</td>
<td></td>
</tr>
<tr>
<td>Ashikikawa et coll. 1967 730 MeV protons 250 kV X-rays</td>
<td>Whole body, mice LD 50/30</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Irradiation for</td>
<td>Started in</td>
<td>Number of cases</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Falkmer et coll.</td>
<td>Genital carcinomas</td>
<td>1957</td>
<td>7</td>
</tr>
<tr>
<td>Lawrence et coll.</td>
<td>Breast cancer metastasis</td>
<td>1960</td>
<td>1</td>
</tr>
<tr>
<td>Kjellberg et coll.</td>
<td>Brain tumours</td>
<td>1961</td>
<td>3</td>
</tr>
<tr>
<td>Gottschalk et coll.</td>
<td>Brain tumours</td>
<td>1961</td>
<td>3</td>
</tr>
<tr>
<td>Fors et coll.</td>
<td>Genital carcinomas</td>
<td>1959</td>
<td>10</td>
</tr>
<tr>
<td>Graffman et coll.</td>
<td>Nasopharyngeal malignancies</td>
<td>1964</td>
<td>10</td>
</tr>
<tr>
<td>Graffman et coll.</td>
<td>Brain tumours</td>
<td>1964</td>
<td>7</td>
</tr>
<tr>
<td>Graffman et coll.</td>
<td>Nasopharyngeal malignancies</td>
<td>1968</td>
<td>10</td>
</tr>
</tbody>
</table>

Table III

Medical use of high-energy protons, deuterons and alpha particles in radiotherapy
Fig. 1. Arrangements for biological experiments and therapy with beams of high-energy protons at the University of Uppsala.
A) 230-cm synchrocyclotron. B) Strong-focusing magnets.
C) Ion chambers and beam 'shutter'. D) Beam-deviating magnets.
E) Magnetic sweeping coils for altering beam cross-section. F) Equipment for 'narrow beams'. G) Equipment for 'broad beams'.
Fig. 2. Section through the pelvis. Distribution of the dose absorbed by the tissue on irradiation with a beam of 12.3 cm diameter.