Lorentz Invariance Violation： theory and phenomenology

Bo－Qiang Ma（马岶强）
Peking University（北京大学）

Nov．20，2009，Melbourne，Australia CosPA 2009

Outline

- Motivation
- Theories: SME, A new theory SMS
- Phenomena: neutrinos, GZK cutoff, time-lag of photons
- Summary

LV-Window of Quantum Gravity

- Quantum Gravity

String theory and canonical quantum gravity (QG):
Both expect the typical quantum gravity scale is $M_{\text {Planck }}$, which is far unattainable from accelerators.

- Relic probe to QG
\triangleright Quantum decoherence and state collapse
\triangleright Cosmological variations of couplings
\triangleright Extra-dimension, TeV-Black Holes
\triangleright QG imprint on Cosmological perturbations
\triangleright Violation of some sacred Symmetries, e.g. Lorentz and CPT
symmetry

Space-time Symmetry

Space-time symmetry: Lorentz symmetry vs Galileo symmetry

- Poincare algebra

$$
\begin{align*}
& i\left[J^{\mu \nu}, J^{\rho \sigma}\right]=\eta^{\nu \rho} J^{\mu \sigma}-\eta^{\mu \rho} J^{\nu \sigma}+\eta^{\mu \sigma} J^{\nu \rho}-\eta^{\nu \sigma} J^{\mu \rho} \\
& i\left[P^{\mu}, J^{\rho \sigma}\right]=\eta^{\mu \rho} P^{\sigma}-\eta^{\mu \sigma} P^{\rho} \\
& {\left[P^{\mu}, P^{\nu}\right]=0,} \tag{1}
\end{align*}
$$

i.e.

$$
\begin{align*}
& {\left[J^{i}, J^{j}\right]=i \epsilon^{i j k} J^{k}} \\
& \left.\left[J^{i}, P^{j}\right]=i \epsilon^{i j k}, K^{j}\right]=i \epsilon^{i j k} K^{k} \\
& \text { other commutators }=0
\end{align*} \quad\left[P^{i}, K^{j}\right]=i \delta^{i j} H \quad\left[\begin{array}{ll}
j \tag{2}\\
& {\left[H, K^{i}\right]=i P^{i j k}} \\
\text { oth }
\end{array}\right.
$$

- Galileo algebra

$$
\begin{array}{lll}
{\left[J^{i}, J^{j}\right]=i \epsilon^{i j k} J^{k}} & {\left[J^{i}, K^{j}\right]=i \epsilon^{i j k} K^{k}} & {\left[K^{i}, K^{j}\right]=0} \\
{\left[J^{i}, P^{j}\right]=i \epsilon^{i j k} P^{k}} & {\left[P^{i}, K^{j}\right]=i \delta^{i j} M} & {\left[W, K^{i}\right]=i P^{i}} \\
\text { other commutators }=0, \tag{3}
\end{array}
$$

Where $H=M+W, W=\frac{1}{2} M \vec{v}^{2}$

Pioneers' study of Lorentz symmetry violation

The early discussion on the effects of Lorentz violation

- Dirac's æther and nonlinear electrodynamics P.A.M. Dirac, Nature 168, 906 (1951).
- Goldstone boson associated to Spontaneous Lorentz symmetry breaking(SLSB)
\triangleright Bjorken's earlier attempts: Photon as Goldstone boson associated to SLSB. J.D. Bjorken, Ann.Phys. 24, 174 (1963).
DIs Graviton also a Goldstone boson?
P.R. Phillips, Phys. Rev. 146, 966 (1966)... .
- An universal length scale
T.G. Pavlopoulos, Phys. Rev. 159, 1106 (1967)
- Nielsen's renomalization group calculation of the beta-function for a non-covariant pure Yang-Mills theory
H.B. Nielsen and M. Ninomiya, Nucl. Phys. B 141, 153 (1978). ...

Why Lorentz violation?

- Quantum Gravity (QG)?
> spacetime foam [Ellis et al.'08, PLB]
$>$ loop gravity [Alfaro et al.'00, PRL]
$>$ torsion in general gravity [Yan'83, TP]
> vacuum condensate of antisymmetric tensor fields in string theory [Kostelecky \& Samuel'89 \& '91, PRL]
> double special relativity [Amelino-Camelia'02, Nature \& '02 IJMPD]

Various theories on Lorenz violation

Effective Field Theory

Standard Model Extension
an explicitly introduction of condensation of background tensor field
$\mathcal{L}_{L V} \sim \frac{\lambda}{M_{\text {Planck }}^{k}}<T>\bar{\psi} \Gamma(i \partial)^{k} \psi$
D. Colladay and V.A. Kostelecký, Phys. Rev. D 58, 116002 (1998).

Dynamical critical exponent of space and time scaling
$t \rightarrow \lambda^{z} t, \quad \vec{r} \rightarrow \lambda \vec{r}$
Lorentz symmetry emergent at low energies as $z \rightarrow 1$
P. Horava, Phys. Rev. D 79, 084008 (2009); JHEP 020, 0903 (2009).

Non EFT
Double Special Relativity with two universal invariants:
photon limiting velocity c,
Planck length scale $l_{\text {Planck }}=1.616 * 10^{-33} \mathrm{~cm}$
Stringy space time foam model

Effective Field Theory

- The total Lagrangian

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\delta \mathcal{L}, \tag{4}
\end{equation*}
$$

where $\delta \mathcal{L}$ denotes tiny LV parts.

- take QED as example

$$
\begin{equation*}
\delta \mathcal{L}_{\mathrm{QED}}=\delta \mathcal{L}_{\text {photon }}+\delta \mathcal{L}_{\text {electron }} \tag{5}
\end{equation*}
$$

where

$$
\begin{array}{r}
\delta \mathcal{L}_{\text {photon }} \supset-\frac{1}{4}\left(k_{F}\right)_{\kappa \lambda \mu \nu} F^{\kappa \lambda} F^{\mu \nu}+\frac{1}{2}\left(k_{A F}\right)_{\kappa} \epsilon^{\kappa \lambda \mu \nu} A_{\lambda} F_{\mu \nu} \\
\delta \mathcal{L}_{\text {electron }} \supset \frac{1}{2} i \bar{\psi}\left(\widetilde{c}^{(\nu \mu)} \gamma_{\nu}+\widetilde{d}^{\nu} \gamma_{5} \gamma_{\nu}+\frac{1}{2} \widetilde{g}^{\lambda \nu \mu} \sigma_{\lambda \nu}\right) \stackrel{\leftrightarrow}{D}_{\mu} \psi \\
-\bar{\psi}\left(\widetilde{b}_{\mu} \gamma_{5} \gamma^{\mu}+\frac{1}{2} \widetilde{H}_{\mu \nu} \sigma^{\mu \nu}\right) \psi \tag{7}
\end{array}
$$

Effective Field Theory

SME

- Lorentz violation-conflict with covariance?

$$
\begin{gathered}
\bar{\psi}(x)\left(a^{\nu} \gamma_{\nu}\right) \psi(x) \rightarrow\left[U \bar{\psi}(x) U^{-1}\right]\left(\left[U a^{\nu} U^{-1}\right]\left[U \gamma_{\nu} U^{-1}\right]\right)\left[U \psi(x) U^{-1}\right] \\
=\left[\bar{\psi}(\Lambda x) S^{-1}\right]\left(a^{\nu}\left[\Lambda_{\nu}^{\rho} \gamma_{\rho}\right]\right)[S \psi(\Lambda x)]=\bar{\psi}(\Lambda x)\left(a^{\nu} \Lambda_{\nu}^{\rho} \gamma_{\rho}\right) \psi(\Lambda x)
\end{gathered}
$$

So Lorentz violation can be incorporated in a covariant form

Lorentz invariance breaks;
But Lorentz covariance works.
So we call it Lorentz invariance violation (LV or LIV)

A new theory of Lorentz violation

- a replacement of the common derivative operators by covariant co-derivative ones

$$
\partial^{\alpha} \rightarrow M^{\alpha \beta} \partial_{\beta}, \quad D^{\alpha} \rightarrow M^{\alpha \beta} D_{\beta},
$$

- The effective minimal Standard Model

$$
\begin{aligned}
\mathcal{L}_{S M} & =\mathcal{L}_{G}+\mathcal{L}_{F}+\mathcal{L}_{H G}+\mathcal{L}_{H F}, \\
\mathcal{L}_{G} & =-\frac{1}{4} F^{a \alpha \beta} F_{\alpha \beta}^{a}, \\
\mathcal{L}_{F} & =i \bar{\psi} \gamma^{\alpha} D_{\alpha} \psi, \\
\mathcal{L}_{H G} & =\left(D^{\alpha} \phi\right)^{\dagger} D_{\alpha} \phi+V(\phi),
\end{aligned}
$$

- A new standard model with supplement terms

$$
\begin{aligned}
\mathcal{L}_{S M S} & =\mathcal{L}_{S M}+\mathcal{L}_{L V} \\
\mathcal{L}_{L V} & =\mathcal{L}_{G V}+\mathcal{L}_{F V}+\mathcal{L}_{H F V}
\end{aligned}
$$

Zhou Lingli and B.-Q. Ma, Preprint

Consequences of Lorentz violation

- Could provide explanation of neutrino oscillation without neutrino mass
S.Yang and B.-Q.Ma, IJMPA (09), arXiv:0910.0897
Z.Xiao and B.-Q.Ma, IJMPA24(09)1539
- Modified dispersion relation could increase threshold energy of photo-induced meson production of the proton: an increase of GZK cutoff energy
Z.Xiao and B.-Q.Ma, IJMPA24(09)1539
- Modified dispersion relation may cause time lag of photons with different energies when they propagate in space from far-away astro-objects
Z.Xiao and B.-Q.Ma, arXiv:0909.4927
L.Shao, Z.Xiao and B.-Q.Ma, arXiv:0911.2276

Lorentz violation in three-family neutrino oscillations

The general equation for neutrino oscillation probabilities
> The Lagrangian density for neutrino sector

$$
\begin{equation*}
L=\frac{1}{2} i \bar{v}_{A} \gamma^{\mu} \vec{\partial}_{\mu} v_{B} \delta_{A B}+\frac{1}{2} i c_{A B}^{\mu \nu} \bar{v}_{A} \gamma^{\mu} \vec{\partial}^{\nu} v_{B}-a_{A B}^{\mu} \bar{v}_{A} \gamma^{\mu} v_{B} \tag{3.1}
\end{equation*}
$$

$>$ From eq.(3.1), we figure out the Hamiltonian density

$$
\begin{equation*}
H=\left(-i \bar{v}_{A} \vec{\gamma} \cdot \nabla \delta_{A B}-i c_{A B}^{\mu i} \bar{v}_{A} \gamma^{\mu} \cdot \nabla_{i}\right) v_{B}+a_{A B}^{\mu} \bar{v}_{A} \gamma_{\mu} \nu_{B} \tag{3.2}
\end{equation*}
$$

> Transforming the description into quantum mechanics

$$
\begin{equation*}
\hat{H}=-i \gamma^{0} \vec{\gamma} \cdot \nabla \delta_{A B}-i c_{A B}^{\mu i} \gamma^{0} \gamma^{\mu} \cdot \nabla_{i}+a_{A B}^{\mu} \gamma^{0} \gamma_{\mu} \tag{3.3}
\end{equation*}
$$

The general equation for neutrino oscillation probabilities

> Up to now, we have not detected right-handed neutrinos or left-handed anti-neutrinos, so we choose the basis vector as

$$
\begin{equation*}
\binom{u_{L}(p)}{v_{R}(p)} \tag{3.4}
\end{equation*}
$$

> We could get the dynaminal equation for neutrinos

$$
\begin{equation*}
\left(i \frac{\partial}{\partial t}-H_{A B}\right)\binom{a_{B}}{b_{B}}=0 \tag{3.5}
\end{equation*}
$$

> The Hamiltonian matrix for neutrino given

$$
H_{A B}=\left(\begin{array}{cc}
|p| \delta_{A B}+c_{A B}^{\mu j} \frac{p_{\mu} p_{j}}{|p|}+\frac{a_{A B}^{\mu} p_{\mu}}{|p|} & 0 \tag{3.6}\\
& 0
\end{array}|p| \delta_{A B}+c_{A B}^{\mu j} \frac{p_{\mu} p_{j}}{|p|}+\frac{a_{A B}^{\mu} p_{\mu}}{|p|}\right)
$$

The general equation for neutrino oscillation probabilities

$>$ Diagonalizing $H_{A B}$ to get the energy spectrum for neutrinos

$$
\begin{equation*}
\mathrm{E}=U^{+} H U \tag{3.7}
\end{equation*}
$$

$>$ The relationship between energy eignstates v_{i} and flavor eigenstates v_{α}

$$
\begin{equation*}
\left|v_{\alpha}\right\rangle=\sum_{i} U_{\alpha i}^{*}\left|v_{i}\right\rangle \tag{3.8}
\end{equation*}
$$

> The general equation for neutrino oscillation

$$
\begin{array}{r}
P\left(v_{\alpha} \rightarrow v_{\beta}\right)=\delta_{\alpha \beta}-4 \sum_{i>j} \operatorname{Re}\left[\left(U^{+}\right)_{i \alpha}^{*}\left(U^{+}\right)_{i \beta}\left(U^{+}\right)_{j \alpha}^{*}\left(U^{+}\right)_{j \beta}\right] \sin ^{2}\left[\frac{\Delta E_{i j}}{2} t\right] \\
+2 \sum_{i>j} \operatorname{Im}\left[\left(U^{+}\right)_{i \alpha}^{*}\left(U^{+}\right)_{i \beta}\left(U^{+}\right)_{j \alpha}^{*}\left(U^{+}\right)_{j \beta}\right] \sin \left[\Delta E_{i j} t\right] \tag{3.9}
\end{array}
$$

Neutrino oscillation for Lorentz violation:

$>$ We carried out Lorentz violation contribution to neutrino oscillation by the effective field theory for LV and give out the equations of neutrino oscillation probabilities.
> In our model, neutrino oscillations do not have drastic oscillation at low energy and oscillations still exist at high energy.
> Neutrinos may have small mass and both LV and the conventional oscillation mechanisms contribute to neutrino oscillation.

$$
\begin{aligned}
& \text { S. Yang and B.-Q.Ma, IJMPA (09), arXiv:0910.0897 } \\
& \text { Z.Xiao and B.-Q.Ma, IJMPA24(09)1539 }
\end{aligned}
$$

LV from cosmological VHE photon emissions

Z.Xiao and B.-Q.Ma, arXiv:0909.4927
L.Shao, Z.Xiao and B.-Q.Ma, arXiv:0911.2276

Modified photon dispersion relation from LV

$$
\begin{gathered}
v(E)=c_{0}\left(1-\xi \frac{E}{M_{\mathrm{P}} c^{2}}-\zeta \frac{E^{2}}{M_{\mathrm{P}}^{2} c^{4}}\right) \\
\sqrt{\hbar c / G} \simeq 1.22 \times 10^{19} \mathrm{GeV} / \mathrm{c}^{2}
\end{gathered}
$$

For reviews, see, e.g.,
Jacobson et al.'06, Ann. Phys. Kostelecky \& Mewes'09, PRD Mattingly'05, Living Rev. Rel. Amelino-Camelia \& Smonlin'09, PRD

Gammy-ray Bursts (GRBs)

- the most energetic astrophysical process except the Big Bang
- 2 types [Piran’05, Rev. Mod. Phys.]
> long GRBs: duration > 2 s; collapses of massive rapidly rotating stars
> short GRBs: duration < 2 s ; coalescence of two neutron stars or a neutron star and a black hole
- use GRBs to test LV [Amelino-Camelia et al.'98, Nature]

Time lag by LV effect

- expansion universe [Jacob \& Piran'08, JCAP]

$$
\Delta t_{\mathrm{LV}}=\frac{1+n}{2 H_{0}}\left(\frac{E_{\mathrm{h}}^{n}-E_{\mathrm{l}}^{n}}{M_{\mathrm{QG}}^{n} c^{2 n}}\right) \int_{0}^{z} \frac{\left(1+z^{\prime}\right)^{n} \mathrm{~d} z^{\prime}}{h\left(z^{\prime}\right)}
$$

$$
M_{\mathrm{QG}, \mathrm{~L}}=|\xi|^{-1} M_{\mathrm{P}} \text { and } M_{\mathrm{QG}, \mathrm{Q}}=|\zeta|^{-1 / 2} M_{\mathrm{P}}
$$

$$
\begin{gathered}
h(z)=\sqrt{\Omega_{\Lambda}+\Omega_{\mathrm{M}}(1+z)^{3}} \\
H_{0} \simeq 71 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} \\
\Omega_{\Lambda} \simeq 0.73 \Omega_{\mathrm{M}} \simeq 0.27
\end{gathered}
$$

Fermi instruments

trigger photons ~ 0.1 MeV

Lag determinations

GRB080916C -- Abdo et al.'09, Science

Four Fermi observations

the arrival of the highest energy photon to GBM trigger

GRBs	z	$E(\mathrm{GeV})$	$\Delta t_{\mathrm{obs}}(\mathrm{s})$	$M_{\mathrm{QG}, \mathrm{L}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	$M_{\mathrm{QG}, \mathrm{Q}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$
$080916 \mathrm{C}[19]$	$4.35[21]$	13.22	16.54	1.5×10^{18}	9.7×10^{9}
090510 [20]	$0.903[22]$	31	0.829	1.7×10^{19}	3.4×10^{10}
090902B [23]	$1.822[24]$	33.4	82	3.7×10^{17}	5.9×10^{9}
090926A [25]	$2.1062[26]$	19.6	26	7.8×10^{17}	6.8×10^{9}
				Δ	
				$\Delta t_{\mathrm{Obs}}=\Delta t_{\mathrm{LV}}$	

$$
\begin{aligned}
& M_{\mathrm{QG}, \mathrm{~L}} \sim(4.9 \pm 8.1) \times 10^{18} \mathrm{GeV} \\
& M_{\mathrm{QG}, \mathrm{Q}} \sim(1.4 \pm 1.3) \times 10^{10} \mathrm{GeV}
\end{aligned}
$$

Separation of astrophysical time lags from LV delay

- imperfect knowledge of radiation mechanism of GRBs
- a survey of GRBs at different redshifts
> the time lag induced by LV accumulates with propagation distance
> the intrinsic source induced time lag is likely to be a distance independent quantity
- A robust survey [Ellis et al.'06 \& 08, Astropart. Phys.]

$$
\begin{gathered}
\Delta t_{\mathrm{LV}}=\frac{1+n}{2 H_{0}}\left(\frac{E_{\mathrm{h}}^{n}-E_{\mathrm{R}}^{n}}{M_{\mathrm{QG}} c^{2 n}}\right) \int_{0}^{z} \frac{\left(1+z^{\prime}\right)^{n} \mathrm{~d} z^{\prime}}{h\left(z^{\prime}\right)} \\
\Delta t_{\mathrm{obs}}=\Delta t_{\mathrm{LV}}+\Delta t_{\mathrm{in}}(1+z)
\end{gathered}
$$

$M_{\mathrm{QG}, \mathrm{L}}=(2.2 \pm 0.2) \times 10^{17} \mathrm{GeV} / \mathrm{c}^{2}$ and $M_{\mathrm{QG}, \mathrm{Q}}=(5.4 \pm 0.2) \times 10^{9} \mathrm{GeV} / \mathrm{c}^{2}$

$$
M_{\mathrm{QG}, \mathrm{~L}}=(2.2 \pm 0.9) \times 10^{17} \mathrm{GeV} / \mathrm{c}^{2} \text { and } M_{\mathrm{QG}, \mathrm{Q}}=(5.3 \pm 0.8) \times 10^{9} \mathrm{GeV} / \mathrm{c}^{2}
$$

Active galactic nuclei (AGNs)

AGN is a compact region at the centre of a galaxy which has a much higher than normal luminosity over some or all of the electromagnetic spectrum [wikipediầ] AGNs vs GRBs [Ellis al. O9; P'LB] distance \& time structure energy of flares; rare \& unpredictable different types \& distinct intrinsic time lags?

$$
=
$$

A brief review on LV AGNs

- Markarian 421 - no time lag > 280 s between energy bands $<1 \mathrm{TeV}$ and $>2 \mathrm{TeV}$ [Biller et al.'99, PRL]

$$
M_{\mathrm{QG}, \mathrm{~L}}>4.9 \times 10^{16} \mathrm{GeV} / \mathrm{c}^{2} \text { and } M_{\mathrm{QG}, \mathrm{Q}}>1.5 \times 10^{10} \mathrm{GeV} / \mathrm{c}^{2}
$$

- Markarian 501-4 min lag for $\Delta \mathrm{E} \sim 2 \mathrm{TeV}$ [Albert et al.'08, PLB]

$$
M_{\mathrm{QG}, \mathrm{~L}} \sim 1.2 \times 10^{17} \mathrm{GeV} / \mathrm{c}^{2}
$$

- PKS 2155-304 - ~20 s lag for $\Delta \mathrm{E} \sim 1.0 \mathrm{TeV}$ \& $\Delta \mathrm{E}^{\wedge} 2$ ~ 2.0 TeV ^2 [Aharonian et al.'08, PRL]

$$
\begin{gathered}
M_{\mathrm{QG}, \mathrm{~L}} \sim 2.6 \times 10^{18} \mathrm{GeV} / \mathrm{c}^{2}, M_{\mathrm{QG}, \mathrm{Q}} \sim 9.1 \times 10^{10} \mathrm{GeV} / \mathrm{c}^{2} \\
\Delta t_{\mathrm{in}}=0
\end{gathered}
$$

Discussions

- GRBs vs AGNs
>AGNs data are inadequate to carry out a robust analysis
> a complementary probe: different observational method and distinct origins
> Fermi LAT: GRB 090323, GRB 090328, \& GRB 091003
- a set of VHE celestial events for LV hints or quantum gravity mass boundaries?
- disentangle astrophysical origins from LV effects?

Discussions

- negative intercepts

~-20 s for linear dependence $-6 s \sim-10 s$ for quadratic dependence

A brief summary:

- QG -> LV -> modified dispersion relation -> time lag -> high energy \& long distance -> astrophysics -> GRBs \& AGNs etc.
- We (re)analyse 4 Fermi LAT GRBs and review 3 AGNs -> surprising consistency
- A robust survey on GRBs of different redshifts to separate source effects -> how about AGNs?

$$
\begin{aligned}
& \sim 2 \times 10^{17} \mathrm{GeV} / \mathrm{c}^{2} \\
& \sim 5 \times 10^{9} \mathrm{GeV} / \mathrm{c}^{2}
\end{aligned}
$$

Summary

- New theory for Lorentz violation can be introduced.
- Lorentz violation can provide an alternative explanation for neutrino oscillation.
- Photon time-lag effect from Lorentz violation can be observed from GRBs, AGN, and Pulsars.
- Lorentz violation is being an active frontier both theoretically and experimentally.

