Robust Constraints on Dark Matter Annihilation

Thomas Jacques

2009-11-19 CosPA 2009, Melbourne

Indirect Detection

- ✦ Have we seen DM annihilation?
 - ✦ EGRET excess, WMAP haze, 511 keV line, positron excess
 - But there are other explanations, and it's difficult to prove the excess is caused by DM annihilation

Indirect Detection

✦ Have we seen DM annihilation?

- ✦ EGRET excess, WMAP haze, 511 keV line, positron excess
- But there are other explanations, and it's difficult to prove the excess is caused by DM annihilation
- Great way to test a model: Work out the flux signal, compare with data
- Difficult to prove a model using indirect detection

Indirect Detection

✦ Have we seen DM annihilation?

- ✦ EGRET excess, WMAP haze, 511 keV line, positron excess
- But there are other explanations, and it's difficult to prove the excess is caused by DM annihilation
- Great way to test a model: Work out the flux signal, compare with data
- Difficult to prove a model using indirect detection
- Can we deduce something about DM, in a model independent way, from it's annihilation flux?
 - Total flux of SM particles is an upper limit on the flux from DM annihilation
 - Use this to place upper limits on a fundamental property of DM, the self-annihilation cross section

Thomas Jacques - CosPA 2009

Thermal Relic DM

- For thermal relic DM, annihilation rate controls abundance at freeze-out
- $\Omega_{DM} \sim 0.3$ corresponds to $\langle \sigma_{AV} \rangle \sim 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$

• But this isn't a hard constraint on $\langle \sigma_A v \rangle$

Thomas Jacques - CosPA 2009

Annihilation flux from a nearby source:

Thomas Jacques - CosPA 2009

Annihilation flux from a nearby source:

 $\frac{d\Phi}{dE} = \frac{1}{2} \langle \sigma_A v \rangle \operatorname{Br} \int_0^R \frac{\rho(s)^2}{4\pi m^2} d\ell \frac{dN}{dE}$

Flux in some direction depends on:

Thomas Jacques - CosPA 2009

Annihilation flux from a nearby source:

 $\frac{
ho(s)^2}{4\pi m^2}c$ $d\Phi$ $\langle \sigma_A v \rangle \mathrm{Br}$ $\frac{-}{2}$

Flux in some direction depends on:

Cross section,

Thomas Jacques - CosPA 2009

2009.II.I9

4

Annihilation flux from a nearby source:

 $\int \frac{\rho(s)^2}{4\pi m^2}$ $d\Phi$ $\frac{1}{2}\langle\sigma_A v\rangle \mathrm{Br}$

Flux in some direction depends on:

Cross section,

Integral along the line of sight of the DM density squared,

Thomas Jacques - CosPA 2009

 $\int \frac{\rho(s)^2}{4\pi m^2} ds$

Annihilation flux from a nearby source:

 $\frac{1}{2}\langle\sigma_A v\rangle \mathrm{Br}$

Flux in some direction depends on:

Cross section,

 $d\Phi$

Integral along the line of sight of the DM density squared, The spectrum per annihilation Thomas Jacques - CosPA 2009

Annihilation flux from a nearby source:

Constraining Annihilation

 Total flux of standard model particles provides an upper limit on the flux from DM annihilation

$$\frac{d\Phi}{dE} = \frac{\langle \sigma_A v \rangle \operatorname{Br} \mathcal{J}_{\Delta\Omega}}{2} \frac{1}{J_0} \frac{1}{4\pi m_{\chi}^2} \frac{dN}{dE}$$

Use this to find upper limit on the cross section to a particular final state

Model independent, robust

Assumptions

♦ WIMP DM

- Annihilates to SM particles
- Dirac vs Majorana introduces factor of 2: negligible
- DM density profile

Density profiles

- Minimize uncertainty by looking at large angular regions
- Focus on conservative Kravtsov profile, but show results for other profiles

Observation Regions

✦ Galactic Center

- Our main flux source; lots of data
- ✦ M31 (Andromeda)
 - ▶ Relatively weak upper limits on $\langle \sigma_A v \rangle$
- Cosmic Annihilation
 - Diffuse flux from extragalactic DM annihilation
- Use data from a number of detectors
- Cover broad range of energies

- ♦ Photon line
 - 'Smoking Gun'
 - Common final state, even if small branching ratio
 - Don't know branching ratio:
 We constrain this channel only

from Mack, Jacques, Beacom, Bell, Yuksel; Phys.Rev.D78:063542 (2008) Thomas Jacques - CosPA 2009 2009.11.19

yy Bound

- Very conservative analysis
- Results more general than they appear: We integrate the signal over a large energy bin, so results are valid for an annihilation spectrum as wide as our analysis bin (0.4 in log₁₀ E)
- At worst, our limit would be increased by a factor of several for a broad annihilation spectrum (except for INTEGRAL/HEGRA)

Thomas Jacques - CosPA 2009

Neutrino Bound

+ Look at $\chi\chi \to \nu\bar{\nu}$

Sets bound on total cross section: Don't need branching ratio

 Any other final state produces gamma rays, which are much more detectable, and will set a stronger upper limit

- So upper limit on $\langle \sigma_A v \rangle \times Br$ sets upper limit on $\langle \sigma_A v \rangle$
- Use diffuse atmospheric neutrino background as the upper limit on the signal
- Cosmic annihilation

Beacom, Bell, & Mack, Phys. Rev. Lett. 99, 231301, 2007.

Thomas Jacques - CosPA 2009

Yuksel, Horiuchi, Beacom, & Ando, PRD 76, 123506, 2007.

Neutrino Bound

Constraints

 Using Br(γγ) = 10⁻⁴, find a limit on the total cross section

Thomas Jacques - CosPA 2009

from N. Bell & T. Jacques; Phys.Rev.D79:043507 (2008)

Thomas Jacques - CosPA 2009

from N. Bell & T. Jacques; Phys.Rev.D79:043507 (2008)

Thomas Jacques - CosPA 2009

from N. Bell & T. Jacques; Phys.Rev.D79:043507 (2008)

Thomas Jacques - CosPA 2009

Thomas Jacques - CosPA 2009

Internal Brem Spectrum Similar to analysis for gamma-gamma case 100 ✦ Different spectrum $^{2} dN_{\gamma} / dE [GeV annihilation]$ $\frac{d\Phi_{\gamma}}{dE} = \frac{\langle \sigma_A v \rangle}{2} \frac{\mathcal{J}_{\Delta\Omega}}{\mathcal{J}_0} \frac{1}{4\pi m_{\gamma}^2} \frac{dN_{\gamma}}{dE}$ $\frac{dN_{\gamma}}{dE} = \frac{1}{\sigma_{\rm tot}} \frac{d\sigma_{\rm IB}}{dE_{\gamma}}$ $s=4m\chi^2$ $s'=4m_{\chi}(m_{\chi}-E)$ 100 1000 E [GeV] $\frac{d\sigma_{\rm IB}}{dE} = \sigma_{\rm tot} \times \frac{\alpha}{E\pi} \left[\ln \left(\frac{s'}{m^2} \right) - 1 \right] \left[1 + \left(\frac{s'}{s} \right)^2 \right]$

Beacom, Bell, Bertone, Phys.Rev.Lett.94:171301 (2005)

Thomas Jacques - CosPA 2009

Constraints

Thomas Jacques - CosPA 2009

Summary

- We have placed model independent constraints on the Dark Matter annihilation cross section to various final states
- Examined $\gamma\gamma$, $\nu\bar{\nu}$, e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$
- γγ constraints valid for moderately broad annihilation spectra
- Extremely conservative analysis