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• ~1400 m3 vacuum vessel 
volume, neutral beam, cryostat 
and service vacuum system [1].

• 8 Cryopumps backed by large 
roughing pump system [2]       
(P. Ladd, 2001, C. Day, IAEA 
2004, D. Murdoch IVC2007, …)

• Plasma contains ~2 bar-L 
equivalent gas

• Tritium compatibility of all 
systems from day one

• Operational 2016

ITER – Worlds Largest Fusion Experimental Reactor

ITER Highlights
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ITER has up to 15 MA of Plasma Current
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• ITER is a tokamak with a plasma current of 15 MA.

• MHD instabilities can cause plasma to become unstable and 
collide against chamber.  (This is called a disruption)

• Plasma current is dissipated in ~30 ms in a disruption causing 
thermal and structural design challenges [3].

– Structural problems can be handled by careful design

– Thermal excursion of first wall can lead to damage

• Runaway electrons can be generated by Coulomb-collisions 
during the current decay phase of the disruption

– ITER could have up to 10 MA of RE current in MeV range of 
energies

– Component melting and water leaks are possible [4]

What is a Disruption?
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D. Whyte, EPS 2006

Example of a 1 MA Disruption on Alcator C-Mod

• Unmitigated 1 MA disruption in C-Mod 
with 3ms current quench [5]
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• Large increase of plasma density during disruption can lower the plasmas 
temperature and thus mitigate effects of thermal damage 

• Particles must penetrate into the current channel during the current quench 
to prevent runaway electron formation

• Methods to increase the density are:

– Gas injection:  Large burst of gas from a fast valve 

– Pellet injection:  Solid pellets accelerated by gas

– Liquid jet: Cryogenic liquid forced through a nozzle

• The ITER current quench time scale is estimated to be 30-35 ms [1].

• See the example in the following slide showing faster current quench with 
gas jet mitigation in C-Mod [5].

How is a Disruption Mitigated ?
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D. Whyte, EPS 2006

Example of Disruption Mitigation on Alcator C-Mod

• Comparison of unmitigated disruption 
with Ar gas jet mitigation showing faster 
current quench. [5]
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How is a Disruption Mitigated ?

46.5°
High Pressure
Reservoir

Fast Valve

Ballast Volume

Gate Valve

Jet Tube

20 cm

• High flow-rate fast valves 
with up to 106 Pa-m3/s 
(104 bar-L/s) flow rates 
for 2 ms produce gas jet 
into plasma [6].

• Impurity or large D2
pellets (3cm) can also be 
used.

Jumbo Valve – 106 Pa-m3/s

Medusa Valve – 3x105 Pa-m3/s

70 bar
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How is a Disruption Mitigated ?

46.5°
High Pressure
Reservoir

Fast Valve

Ballast Volume

Gate Valve

Jet Tube

20 cm

• High flow-rate fast valves 
with up to 106 Pa-m3/s 
(104 bar-L/s) flow rates 
for 2 ms produce gas jet 
into plasma.

• Impurity or large D2
pellets can also be used.

Jumbo Valve – 106 Pa-m3/s

Medusa Valve – 3x105 Pa-m3/s

70 bar



LRB  IUVSTA07   10

• Table based on avalanche growth model by Rosenbluth-Putvinski [7] and a 
plasma current of 15 MA and 35 ms current decay time [8].

• Higher Z than Ar is not useful because of slower sound speed and is more 
likely to generate runaway electrons.  (R. Granetz, C-Mod, APS2006 [9])

• Assimilation of gas is at best 10% in present experiments, so as much as 
10x more may be needed if the avalanche model is correct.

• Pellet sizes of 30 mm for D2 and 2.5 mm for Ar would provide the needed 
number of electrons.

How Many Particles are Needed in ITER ?
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• A large “golf ball size”
pellet made with D2 or 
some combination of D2
and Ne or other impurity 
is a possible option to 
mitigate disruptions in 
ITER.

• A reliable single stage gas 
gun can accelerate the 
pellet to 1 km/s speed.
(Alternatively a 460 cc 
driver with T. Woods)

ITER Pellet Disruption Mitigation Scheme
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• A large “golf ball size”
pellet made with D2 or 
some combination of D2
and Ne or other impurity 
is a possible option to 
mitigate disruptions in 
ITER.

• A reliable single stage gas 
gun can accelerate the 
pellet to 1 km/s speed.

• 10 mm pellets have been 
produced easily and 
larger sizes are possible.

• Pellets can be shattered 
to minimize risk of 
damage to inner wall.  

ITER Pellet Disruption Mitigation Scheme

10 mm 
pellet 

10 mm 
pellet
purposely 
shattered 
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ITER Fuel Cycle Block Diagram

Disruption
Mitigation
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ITER Fuel Cycle Block Diagram

Disruption
Mitigation  (2x)

Systems affected by DM
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• Gas type must be compatible with pumping system and avoid 
activation from fusion neutrons

• Cryopumps for the torus and neutral beams may regenerate 
and allow pumped impurities back into torus

• Roughing Pumps must be able to handle the additional load 
in a timely fashion

• Neutral Beam Injectors (NBI) must be switched off when DMS 
is actuated and gate valves closed (several seconds).

• Tritium Plant must be able to process the extra DMS exhaust 
gas in a timely fashion

ITER – Vacuum Issues for Disruption Mitigation
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ITER Torus Pumping System

Foreline Valve 
BoxForeline

Ring Manifold

Roughing Pump Sets
Leak Detectors

Tritium Exhaust 
Processing 

• Cartoon (not to scale) of the torus pumping system showing the 
cryopumps and divertor ring and foreline manifold connection to the 
roughing pumps.
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ITER Roughing Pump System

Roots Blowers + Screw Pump

• Roots blowers are used as the first two stages in all the pump train options 
that are under consideration.

• One attractive option uses a screw pump to back the roots pumps.

• Pumping speed of 5000 m3/h is possible with this configuration

From FzK presentation 2003
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Pumpdown Time Scale After DM

• ITERVAC [9] calculation (C. Day)  shows pumpdown time when 
cryopumps regenerated of 150 sec.

• Crude VACSIM calculation shows time scale if 10x gas is 
introduced to be > 10 minutes.  More detailed ITERVAC simulation
is needed to for accurate pumpdown time.

Cryopump
Crossover
Pressure

10x DM 
Requirement

Torus

Time (s)

0 200 400 600 800
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Cryopump Regeneration After DM

• Disruption mitigation is unlikely to cause torus cryopumps to 
regenerate spontaneously.  Valves can be throttled and pumps 
regenerated naturally after pumpdown. 

• NBI cryopumps will likely regenerate since valves are totally open 
and take seconds to close. If normal cryogenic flow is available
then pumps can resume operation in ~20 minutes. 

Cryopump
Crossover
Pressure

Cryopump
Regeneration
Pressure

ITER Torus Cryopump
Design- FzKarsruhe

10x DM 
Requirement

Time (s)

0 200 400 600 800
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• Disruption mitigation is an important subsystem for ITER machine
protection, but hopefully will be used infrequently

– High reliability and redundancy are needed

• Technology to both detect disruptions and mitigate them in ITER are under 
development

• DM will introduce large amount of particles (gas or pellet) into the torus
from 2 upper ports during the current decay in a few ms.  

• Cryopumps for the neutral beams will likely regenerate, but probably not 
the torus cryopumps (4 that are pumping during disruption).

• Roughing pumps can handle the gas in a timely fashion – probably less 
than 20 minutes to get back into operational state.

• NBI systems can recover as soon as cryopumps are cooled down which 
takes ~20 minutes.

• Tritium Plant must be able to process the gas in a timely fashion 

– Capable only of 150 Pa-m3/s, so could be ~2 hours for 10X gas load

Summary
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