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Summary

• Motivation

• Kinetic model structure and basic equations.

• Application to test problems and comparison with MD results

• Concluding remarks
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Motivation

+ The traditional approach to gas-surface interaction modeling is based on
phenomenological scattering kernels in the form (Maxwell, Cercignani-Lampis...)

(v ◦ n)f(r,v|t) =
∫

v1◦n<0

Kw(v1 → v)|v1 ◦ n|f(r,v1|t) dv1 v ◦ n > 0 (1)

• Advantages: theoretical and computational simplicity

• Disadvantages: they contain a few free parametes (typically accommodation
coefficients). Their relationships with fundamental interaction properties
(intermolecular potentials) can be determined with great difficulty. More often they
are fitted to match experimental results, but tuning has to be repeated if physical
conditions change.

+ Modeling gas-surface interaction by solving the microscopic dynamics of wall and gas
atoms/molecules is possible by Molecular Dynamics (MD) techniques.

• Advantages: model is based on fundamental interaction properties.

• Disadvantages: only numerical approach is possible; computationally expensive
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A Kinetic Model ?

+ Computational efforts can be reduced by hybrid simulation methods in which DSMC
is used to describe collisions in the gas phase whereas MD use is limited to describe
interactions among wall atoms/molecules and interactions between wall and gas
atoms/molecules [Yamamoto (2006), Nedea et al. (2006)].

• For rarefied gas flows hybrid methods are still quite demanding in terms of
computational resources.

+ An alternative approach to fluid-wall interaction can be based on the use of a kinetic
equation which describes “collisions” between fluid and wall atoms/molecules.

• Advantages: based on fundamental interaction properties, solved by DSMC (no hybrid
method is necessary), approximate solutions possible.

• Disadvantages: complex mathematical structure, numerical treatment necessary.
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+ The idea is not new

1. Cercignani (1988) has shown that Cercignani-Lampis model can be derived by
modeling the motion of gas molecules adsorbed into the solid matrix by a
Fokker-Planck equation.

2. More recently, Pozhar and Gubbins (1991,1993) have proposed a rather general
kinetic formulation of non-uniform dense fluids in which the fluid-wall interaction is
described by a collision integral.

+ However

1. The Fokker-Planck equation does not take into account non-local effects of
molecular interaction which play a very important role in the vicinity of the solid
boundary.

2. Non-local effects are correctly included in the treatment described by Pozhar and
Gubbins, but wall molecules are given an infinite mass thus limiting the model
capabilities in predicting the correct momentum and energy exchanges between the
wall and the fluid phase.
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Kinetic Model Structure and Basic Equations

• We consider a monatomic gas whose atoms have mass m1

• The gas phase interacts with walls whose atoms have mass m2

• It is assumed that atoms in the gas and solid phases interact pairwise through a
potential φ12(ρ) in the form

φ12(ρ) =





+∞ ρ < σ12

−φ12

(
ρ
σ12

)−γ12
ρ ≥ σ12

(2)

• φ12(ρ) depends only on the distance ρ between the centers of two interacting atoms
and it results from the superposition of a repulsive hard sphere potential and a soft
tail.

• The hard sphere diameter is defined as σ12 = σ1+σ2
2 , being σ1 and σ2 the hard sphere

diameters of gas and wall atoms, respectively.

• The behavior of the soft potential tail is determined by the right limit of φ12(ρ) at
ρ = σ12, −φ12, and by the value of the positive exponent γ12.
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Neglecting atomic interactions in the gas phase, the following equation holds

∂f1
∂t

+ v1 ◦ ∇r1f1 = ∇v1 ◦
[∫

ρ>σ12

k̂
dφ12

dρ
f12(r1,v1, r2,v2|t) dr2 dv2

]
+

σ2
12

∫ [
f12(r1,v

∗
1, r1 + σ12k̂,v

∗
2|t)− f12(r1,v1, r1 − σ12k̂,v2|t)

]
(vr ◦ k̂)+ dv2 d

2k̂

(3)

• f1(r1,v1|t) denotes the one-particle distribution function of velocities v1 of gas atoms
at spatial location r1 at time t.

• f12(r1,v1, r2,v2|t) is the distribution function of pairs formed by one gas atom,
having position r1 and velocity v1, and one wall atom located at r2 with velocity v2.

• The first integral at r.h.s of Eq. (3) represents the soft tail contribution to the rate of
change of f1, being ρ = ‖r2 − r1‖ and k̂ the unit vector r1−r2

ρ .

• The contribution of hard collisions is given by the second integral where v∗1 and v∗2 are
the post-collisional velocity vectors in a hard sphere impact, vr is the relative velocity
v2 − v1. The integral over k̂ is limited to the hemisphere where the condition
vr ◦ k̂ > 0 holds.
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+ Within the limits of the assumptions described above, Eq.(3) is exact but not closed,
since it also involves the pair distribution function f12(r1,v1, r2,v2|t).

• Closure is obtained by the following assumptions on pair correlations:

1. The first term at r.h.s of Eq. (3) gives the the total force exterted by wall atoms on
gas atoms when the interatomic distance is larger than σ12. Since spatial
correlations are expected to decay rapidly, it is not unreasonable to ignore
correlations completely by writing

f12(r1,v1, r2,v2|t) = f1(r1,v1|t)f2(r2,v2|t) (4)

2. In the hard sphere collision integral, short range correlations are taken into account
but, following Enskog, they are assumed to be velocity independent. Accordingly,
the pair distribution function at contact is written as:

f12(r1,v1, r1 − σ12k̂,v2|t) = χ12(r1, r1 − σ12k̂)f1(r1,v1|t)f2(r1 − σ12k̂),v2|t) (5)

In Eq. (5), χ12(r1, r1 − σ12) is the pair correlation function at contact, which takes
spatial correlation and excluded volume effects into account[Enskog (1921)].
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+ A rigourous derivation of χ12 would be difficult, therefore:

• it is assumed that excluded volume effects are determined solely by wall molecules
through their number density n2(r2).

• The specific form of χ12(n2) is taken from an approximate expression for the contact
value of the pair correlation function of a single component hard sphere gas in uniform
equilibrium:

χ12(n2) =
1
2

2− η2
(1− η2)3

, η2 =
π

6
n2σ

3
2 (6)

where η2 is the reduced density (or volume fraction) in the solid phase.

• The expression given above is easily derived from the approximate equation of state of
a hard sphere gas proposed by Carnahan and Starling (1969).

• Although Eq. (6) provides a very accurate approximation of the contact value of the
uniform equilibrium pair correlation function in a single component hard sphere gas,
its use in the present context is highly questionable.
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+ No explicit assumption is made about the interaction among wall atoms.

• It is assumed that walls are in a prescribed state of equilibrium which is not altered by
the interaction with the gas phase.

• Hence, the velocity distribution function f2 will take the following form

f2(r2,v2) =
n2(r2)

[2πR2T2(r2)]3/2
exp

{
− [v2 − u2(r2)]2

2R2T2(r2)

}
(7)

being n2(r2), T2(r2) and u2(r2) the wall atoms number density, temperature and
mean velocity, respectively. The gas constant R2 is defined as kB

m2
, where kB is the

Boltzmann constant.

Substituting the expressions in Eqs. (4,5) into Eq.(3) leads to following linear
integro-differential equation for f1:

∂f1
∂t

+ v1 ◦ ∇r1f1 +
F 12

m1
◦ ∇v1f1 = σ2

12

∫ {
χ12

[
n2(r1 + σ12k̂)

]
f1(r1,v

∗
1|t)f2(r1 + σ12k̂,v

∗
2|t)−

χ12

[
n2(r1 − σ12k̂)

]
f1(r1,v1|t)f2(r1 − σ12k̂,v2|t)

}
(vr ◦ k̂)+ dv2 d

2k̂ (8)

F 12(r1) = −
∫

ρ>σ12

r1 − r2

ρ

dφ12

dρ
n2(r2) dr2 (9)
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Test Problems

P1 Heat transport in a collisionless gas confined between two parallel plates kept at
different temperatures.

P2 Couette flow in a collisionless gas

to obtain

• Profiles of macroscopic quantities

• Shapes of velocity distribution function

• Accommodation coefficients for :

1. kinetic energy and normal momentum (from problem P1)

2. tangential momentum accommodation coefficient (from problem P2)
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1D Equation for Test Problems

• In both problems listed above a collisionless gas fills the gap between two parallel
infinite plates represented by the following density profile:

n2(z1) =





nw |z1| > Lz

0 |z1| ≤ Lz
(10)

nw being the constant value of the number density of wall atoms.

• The equilibrium velocity distribution function of wall atoms is given by the following
expressions

f2(z1,v2) =





nw

(2πR2TL) exp
[
− v2

2
2R2TL

]
z1 ≤ −Lz

nw

(2πR2TR) exp
[
− v2

2
2R2TR

]
z1 ≥ Lz

Heat Trasport

f2(z1,v2) =





nw

(2πR2TL) exp
[
− (v2−uLx̂)2

2R2TL

]
z1 ≤ −Lz

nw

(2πR2TR) exp
[
−v2+uLx̂)2

2R2TL

]
z1 ≥ Lz

Couette Flow
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• In the simple one-dimensional geometry considered here, the force field F 12 reduces to
the component F (12)

z (z1) normal to the plates.

F (12)
z (z1) = 2πφ12

[
σγ1212

∫

|z1−z2|>σ12

(z2 − z1)n2(z2)
|z1 − z2|γ12 dz2 +

∫

|z1−z2|≤σ12

(z2 − z1)n2(z2) dz2

]

(11)

• Since walls cannot produce spatial gradients of fluid properties along x1 or y1
directions, the following one-dimensional form of Eq. (8) can be used to study the
problem:

∂f1
∂t

+ v1z
∂f1
∂z1

+
F

(12)
z (z1)
m1

∂f1
∂v1z

= C12(f2, f1) (12)

C12(f2, f1) = σ2
12

∫
{χ12 [n2(z1 + σ12kz)] f2(z1 + σ12kz,v

∗
2)f1(z1,v

∗
1|t)−

χ12 [n2(z1 − σ12kz)] f2(z1 − σ12kz,v2)f(z1,v1|t)} (vr ◦ k̂)+dv2d
2k̂ (13)
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Numerical Method

+ Eq. (12) has been solved numerically by a variant of a DSMC scheme for the
non-linear Enskog and Enskog-Vlasov kinetic equation [Frezzotti (1997)].

• Steady solutions of Eq. (12) are sought as long time limit of unsteady solutions.

• Each simulation is started by filling the gap between the walls uniformly with Np
particles whose velocities are distributed according with a Maxwellian having
temperature TL and bulk velocity equal to zero.

• After the onset of steady flow conditions, particle properties are sampled and time
averaged to obtain the macroscopic quantities of interest as well as the distribution
function.

+ It should be observed that the existence of steady solutions is not obvious because, in
general, gas atoms can diffuse through the solid under the action of random
collisions.However,the equation of balance of linear momentum shows that the
non-local structure of C12(f2, f1) produces a net force where n2 profile is not uniform.

• The force generated by hard sphere collisions repels atoms approaching the walls. The
intensity of repulsion is proportional to nwχ12(nw) and it becomes strong enough to
confine the fluid within the gap, when nw has the typical values of a solid substance.
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Comparison with MD results

• The results obtained from the numerical solution of Eq. 12 have been compared to the
results of MD studies of test problems (1) and (2).

• Numerical data have been collected from the following investigations of rare gases (Xe
and Ar) flows in contact with metal plates (Pt):

1. K. Yamamoto and K. Yamashita,Analysis of the Couette flow based on the molecular
dynamics study for gas-wall interaction, Rarefied Gas Dynamics 20 (1997).

2. K. Yamamoto, Slightly rarefied gas flow over a smooth platinum surface, Rarefied Gas
Dynamics 22 (2001)

3. K. Yamamoto and H. Takeuchi and T. Hyakutake,Effect of wall characteristics on the
behaviors of reflected gas molecules in a thermal problem, Rarefied Gas Dynamics 23
(2003).

4. Bing-Yang Cao et al. Temperature dependence of the tangential momentum
accommodation coefficient for gases, Applied Physics Letters 86, 091905 (2005).
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Warnings!

• Interaction potentials used in MD studies are not the same used to derive the kinetic
model

• Yamamoto adopted a Morse potentials in the form

φ(Xe−Pt)(ρ) = ε(Xe−Pt)
{
exp

[−2σ(Xe−Pt)(ρ− ρ0)
]− 2exp

[−σ(Xe−Pt)(ρ− ρ0)
]}
(14)

φ(Ar−Pt)(ρ) = ε(Ar−Pt)
{
exp

[−2σ(Ar−Pt)(ρ− ρ0)
]− 1

}2 (15)

• Interactions among wall atoms simulated through Lennard-Jones potential.

• Gas phase not collisionless Kn = 0.2− 10. DSMC scheme adopted to account for
atomic interactions in the gas. Small effects of Kn on accomodation coefficients.

• In Ref. [4] Lennard-Jones potential has been used to describe Ar − Pt interaction
(with a very different ε(Ar−Pt)). Walls simulated by arrays of non-interacting atoms,
individually tethered to fixed points by springs.

• Gas phase not collisionless. MD algorithm adopted to to account for atomic
interactions in the gas
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Model Computational Settings

If σ1, σ1/
√
R1Tw and m1 are adopted as units of lenght, time and mass, solutions of

Eq. (12) can be shown to depend on the following non-dimensional parameters:

ηw = πσ3
2nw

6 , φ12
kBTw

, γ12
σ2
σ1

, m2
m1

, TL

Tw
, TR

TL
, Sw = uw√

2R1Tw
.

Problem 1 - Heat Transport - Tw = 300◦K, γ12 = 6

System ηw
φ12
kBTw

σ2
σ1

m2
m1

TL

Tw

TR

TL
Sw

Xe− Pt 0.5, 0.7 1.4896, 1.064 1.0 1.486 1.0 1.2 - 4.0 0.0

Ar − Pt 0.5, 0.7 0.6286, 0.449 1.0 4.883 1.0 1.2 - 4.0 0.0

Problem 2 - Couette Flow A - Tw = 300◦K, γ12 = 6

Xe− Pt 0.5, 0.7 0.0, 1.4896, 1.064 1.0 1.486 1.0 1.0 0.1 - 2.5

Ar − Pt 0.5, 0.7 0.0, 0.6286, 0.449 1.0 4.883 1.0 1.0 0.1 - 0.5

Problem 2 - Couette Flow B - Tw = 300◦K, γ12 = 6

Ar − Pt 0.7 0.2158, 0.449 1.0 4.883 0.333 - 1.333 1.0 0.224
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Accommodation coefficients

+ The accommodation coefficient of the molecular property φ(v) has been
computed from the following general expression:

αψ =

∫
vz<0

ψ(v)|vz|f(v) dv − ∫
vz>0

ψ(v)|vz|f(v) dv∫
vz<0

ψ(v)|vz|f(v) dv − ∫
vz>0

ψ(v)|vz|fw(v) dv
(16)

+ The moments appearing in Eq. (16) have been computed by sampling gas
particles in the central slice of the computational domain where both the
short and long range interaction with walls are negligible
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-12 -10 -8 -6 -4 -2 0
z/σ1

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

F
z

(12)
(z)

n
2
(z)σ1

3, ηω=0.5
n

1
(z)/n

0
, ηω=0.5

u
x
/(R

1
T

w
)
1/2

, ηω=0.5
n

2
(z)/n

0
, ηω=0.7

n
1
(z)/n

0
, ηω=0.7

u
x
/(R

1
T

w
)
1/2

, ηω=0.7

Couette Flow - Xe-Pt 
m

2
/m

1
=1.486 , σ1=σ2, Sw

=0.5
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Conclusions

• A simple kinetic model of fluid-wall interaction has been developed along the
guidelines of the kinetic theory of dense fluids

• Model predictions for test problems are close to (or not far from) the results of MD
simulations.

• Future activity will concentrate on:

1. Extend the data base of MD simulations

2. Development of better models for pair correlations.

3. Coupling with DSMC simulations of gases and liquids [Frezzotti & Gibelli (2006)]

4. Extension to diatomic gas species.


