Low energy Superbeams, Beta beams and the Neutrino Factory.

Leslie Camilleri CERN

Neutrino 2006 Santa Fe, 18th June 2006

What's needed next?

- > What is the value of θ_{13} ? Plans for several experiments using reactors, accelerators, etc...
- What is the mass the mass hierarchy ?
 Some of these experiments, especially if extended through the use of upgraded accelerators, could begin to address this.
- Any CP violation in the neutrino sector? A new neutrino facility (a neutrino factory or a beta-beam complex) would be the only way to address this problem.

Compare $v_{\mu} \leftrightarrow v_{e}$ to $\overline{v}_{\mu} \leftrightarrow \overline{v}_{e}$ oscillations At the Atmospheric $\Delta m^{2} = 2.5 \times 10^{-3} \text{ eV}^{2}$

CP violation, (and θ_{13} , mass hierarchy)

Outline of talk.

- > Low energy Superbeam (SPL at CERN). $E_v \sim 350 \text{ MeV}$
- > Beta-beams. $E_v \sim 500 \text{ MeV}$
- > Neutrino Factory. $E_v \sim 10 \text{ GeV}$
- R&D on targets (MERIT) and muon cooling (MICE, MUCOOL).

Acknowledgments

- Beta Beams: Mats Lindroos, Mauro Mezzetto, J-E. Campagne.
- Neutrino Factories.

Alain Blondel,

Talks based on April 2006 International Scoping Study meeting at RAL. Presentations by:

- Bob Palmer on machine
- Paul Soler on Detectors
- •Yori Nagashima on Physics

Superconducting Proton Linac: v_{μ} beam.

Classic accelerator v_{μ} beam. Intrinsic v_{e} component results in a background.

- Power : 4 MW
- ➢ Kin. Ener. : Up to 5 GeV.
- Shorten pulse length. (Reduce atmospheric v's contam.)
- Target: Liquid Mercury Jet to cope with stress due to high flux.
- Focusing: Horn and Reflector
- Detector: New lab in Fréjus tunnel
- (Safety gallery approved April 2006: opportunity)
- > Distance: 130km
- Neutrino energy to be at oscillation maximum for ∆m₂₃² = 2.5 x 10⁻³ eV² 260 MeV → 350 MeV more sensitive

Near detector also needed, as in all schemes.

MEMPHYS at Fréjus

Per shaft: 81,000 12" PMT's → 80 M€including electronics (65M\$) +80 M€for civil engineering. (65M\$)

Standard scenario: mix neutrino and antineutrino running

Beta beams

- Idea introduced by Piero Zucchelli.
- Accelerate radioactive ions decaying via β^+ (¹⁸Ne) or β^- (⁶He).
- Because of Lorentz boost, the decay electron neutrinos or antineutrinos will be focused forward into a narrow beam.
- Look for: Appearance of $\overline{\mathbf{v}_{\mu}}$ or \mathbf{v}_{μ} using CC interactions $\rightarrow \mu^+$ or μ^-
- Advantages:
- "Clean" beams with no intrinsic v_{μ} component.
- Energy of beam tunable through acceleration of ions.

Eurisol : Nuclear Physics facility using Radioactive Ions (ISOLDE type). Conceptual design study financed by European Union . Synergy with beta-beams Includes beta-beam studies

Study to be completed by 2010

δ sensitivity for γ = 60,100

 $E_v = (3 \text{ MeV}) \times \gamma = 200 - 500 \text{ MeV}$

M. Mezzetto SPSC Villars

2.9 x 10^{18} ⁶He ions and 1.2×10^{18} ¹⁸Ne ions per year decaying in straight sections

Optimize to higher energies

hep/ph/0503021 and M. Mezetto.

> Store ions separately.

> Optimize γ for a detector at Fréjus (130km). γ (60,100) $\rightarrow \gamma$ (100-120,100-120)

> Minimum δ for which CP violation can be observed at 3σ goes down to 15° .

SPL, βbeam (γ=100), **SPL**+βbeam comparisons

- Mass: Each detector: 440 ktons,
- Running time: SPL: 2 yrs v + 8 yrs \overline{v} . Beta-beam: 5 yrs + 5 yrs.
- Systematics: 2% 5%.

3σ discovery potential for sin² $2\theta_{13}$

Combining β beam and SPL, in same detector Improves sensitivity

J-E. Campagne et al hep/ph0603172 v1

Can the Mass Hierarchy be determined with SPL or β beams? hep-ph/0305152 hep-ph/0603172

Too short a baseline, but.....

Multi-GeV (2-10 GeV)Atmospheric neutrinos (ATM) going through the core of the Earth ($\cos \theta$: 0.4-1.0) are particularly affected by Matter effects And are therefore sensitive to the Mass hierarchy.

fraction of true δ_{CP} values

Makes up for small matter effects due to short baseline of β beams.

Neutrino Factory

Being studied in context of International (Really is!) Scoping Study Report by August 2006 \rightarrow Basis for Conceptual Design Study $\rightarrow 2010$

Store muons, look for $v_e \rightarrow v_{\mu}$ oscillations using v's from their decay

Need to measure μ charge \rightarrow Magnetic detector

Other channels:

- Platinum channel: $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ T violation.
- Silver channel: $v_e \rightarrow v_{\tau}$ Resolve ambiguities.

Simplified Neutrino Factory

Cooling

Longitudinal Cooling. → Phase rotation Neuffer scheme.
 Capture multibunches in very high freq. RF.
 Rotate with RF frequency decreasing along tunnel

• Transverse Cooling. Ionization. dE/dx + RF.

Preliminary conclusions reached at April ISS meeting

Summary

- RF Frequency: Baseline is 201 MHz
- Phase Rotation: Baseline is Neuffer bunched beam rotation
- Phase Rotation: Baseline RMS bunch length pprox 2 ns
- Amount of Cooling: Baseline is 50 m
- Target: Baseline is Liquid Mercury instead of solid
- Pion Collection: 20 T Solenoid instead of horn -
- Repetition Rate: ≈ 50 (Hz)
- Proton bunch structure: pprox 4 bunches spaced by pprox16 μ sec
- Proton energy: 5-15 (GeV)
- Final acceleration: No decision yet
- Storage Ring: Choice is site dependent

 $10^{21} (\mu^+ + \mu^-)$ decays per year Half per straight section Allows simultaneous collection of μ^+ and μ^- . Bunches separated by 400 ns \rightarrow distinguish them through timing.

Storage Ring Geometry

Race Track

One ring can supply one detector With both signs stored in opposite directions and separated by timing gaps.

If **two** detectors are active at once in two directions need **two** rings.

• Triangle

One ring can supply same sign to two detectors at different locations using two arms of the triangle.

If **both** signs are needed at once need **two** rings, again separating the two signs by timing.

Baseline \rightarrow Mass hierarchy

Introducing matter effects, at the first oscillation maximum:

 $P(v_{\mu}-v_{e})_{mat} = [1 + (2E/E_{R})] P(v_{\mu}-v_{e})_{vac} + - \text{ depends on the mass hierarchy.}$ with $E_{R} = [12 \text{ GeV}][\Delta m_{32}^{2}/(2.5 \times 10^{-3})][2.8 \text{ gm.cm}^{-3}/\rho] \sim 12 \text{ GeV}$ Matter effects **grow** with energy.

The higher the energy, the longer the baseline needed to be at oscillation maximum.

- The difference between the two hierarchies grows with distance.
- At 7000 km the CP phase has no influence. (width of pink band shrinks to zero)

Magic distance Long distance: Must understand earth density to understand matter effects. Can probably estimate density to ~ 2%.

How many baselines?

2 baselines together resolve ambiguity

Usefulness of the silver channel: $V_e \rightarrow V_{\tau}$ S. Rigolin, hep-ph/0407009D. Autiero et al. hep-ph/0305185

 $v_e \rightarrow v_{\tau}$ and $v_e \rightarrow v_{\mu}$ channels have "opposite" sign CP violation.

Clones for 2 reactions are also at different positions.

Alternative to 2 baselines

Needs fine grained detector for τ secondary vertex or kink: DONUT/OPERA technology

DONUT/OPERA type target + Emulsion spectrometer

Must be placed in a magnet

Can measure momentum of muons and of some fraction of electrons Identify τ using topology à la OPERA

A Strawman Concept for a Nufact Magnetized Iron Tracker Detector To one APD pixel

- 1 cm Iron sheets magnetized à la MINOS alternating with
- Planes of triangular
 4cm x 6 cm PVC tubes à la MINERVA.
- Filled with liquid scintillator
- Read by looped WLS fibres connected to APD's à la NOvA

 $15.7 \, {\rm m}$

Giant Liquid Argon Charge Imaging Experiment

A 100 kton liquid Argon TPC detector

Impression was that magnet limited detector mass to 15 ktons.

A. Rubbia

Reach of beta-beams and v Factory

β-beams + SPL are more sensitive for $sin^2 2\theta_{13} > 0.01$. (needs confirmation: cuts used in analysis $E_{\mu} > 5$ GeV)

But below this value v factory is more sensitive.

Comparison of beta-beam and ν factory

Beta-beam advantages.

- Synergy with Eurisol + existing PS,SPS (if at CERN)
- > Clean v_e and \overline{v}_e beams.
- > No need for analyzing magnet.
- > Negligible matter effects.

Beta-beam disadvantages

≻Low energy:

Cross sections not so well known,

Fermi motion

Atmospheric neutrinos background

Silver channel energetically impossible

≻Need of SPL:

Improve sensitivity

Measure ν_{μ} cross-sections

Comparison of beta-beam and v factory II

Advantages of Neutrino Factory

- Ultimate reach
- > Presence of both v_{μ} and v_{e} in beam allows measurement of cross-sections in near detector
- Higher energies: better measured cross sections, no atmospheric neutrinos background

Disadvantages of Neutrino Factory.

- Fechnically more challenging
- > Matter effects must be well understood.
- > Need for a magnetic detector to separate signal from background

MERIT: Hg jet target tests at CERN PS

1cm diameter jet at small angle(40 mrad) to beam to maximize overlap: 2 inter. lengths.

Aims: Proof of principle.

Jet dispersal. Effect of field on jet flow and dispersal.

Scheduled to run in Spring 2007

Test performed in magnetic field (15T) To simulate actual conditions: π collection solenoid

Proton intensity: 2 x 10¹³ protons/pulse at 24 GeV

MICE: Muon cooling experiment at RAL

Prove the feasibility of ionization cooling. Strong synergy with MUCOOL.

Start Spring 2007. Complete by 2009.

Time line

2010: A critical year in many ways.

- Possible ILC decision.
- CLIC possibilities.
- LHC results.
- Decision on LHC upgrades.
- Eurisol siting. CERN ?
- Possible first measurement of θ₁₃: MINOS, Double CHOOZ
 It is essential to know which Neutrino Facility
 is favoured by that date.

Decision process and construction will take another 8-10years.

Its approval in this international context will be difficult. But it's definitely worth fighting for...!