

Status and Prospects of the NOvA Experiment

Peter Shanahan - Fermilab Neutrino 2006 June 17, 2006 - Santa Fe For the Collaboration

~150 Scientists from 28 Institutions

Some of us in International Falls, MN - May 2006

Argonne, Athens, Caltech, College de France, Fermilab, Harvard, Indiana, ITEP, Michigan State, Minnesota-Twin Cities, Minnesota-Duluth, Northern Illinois, Ohio, Ohio State, Oxford, Rutherford, Rio de Janeiro, South Carolina, SMU, Stanford, Texas, Texas A&M, Tufts, UCLA, Virginia, Washington, William and Mary

P. Shanahan - Fermilab

Introduction

- NOvA: NuMI Off-Axis v_e Appearance
- Study $\nu_{\mu} \rightarrow \nu_{e}$:
 - search for $\sin^2(2\theta_{13})$ with a sensitivity a factor of ~14 beyond current limits
 - sensitivity to Mass Hierarchy for a significant fraction of parameters,
 - search for effect of CP violating phase δ
- Two detectors with a 810 km baseline using the NuMI Neutrino Beam from Fermilab
- Near and Far Detectors optimized for v_e charged-current detection
- Located Off the Beam Axis for Background Suppression

Off-Axis Spectra

- Benefits of off-axis spectrum:
 - More flux near oscillation maximum
 - Reduction of High Energy Tail reduces NC Feed-down
 - Concentration of v_e from oscillation relative to intrinsic beam v_e (from 3-body K and µ decay)

Location

- Optimization: Maximize sensitivity to Mass Hierarchy
 - Maximize baseline within U.S.
 810 km from Fermilab
 - Optimize off-axis location: 12 km from beam axis
 - Ash River, MN

NuMI Beam

- NuMI Experiments:
 - MINOS Jeff Nelson's talk
 - NOvA
 - MINERvA Proposed high precision neutrino scattering experiment - Jorge Morfin's talk

Detector Requirements

- Large! 10's of kT
- Background suppression:
 - ~50:1 for v_{μ} CC (easy!) ~100:1 for NC
 - Maximize Hadronic/EM
 Separation → Low Z, Fine
 Sampling per Radiation
 Length
- Energy Resolution:
 - Small compared to width of signal peak
- Liquid Scintillator in PVC Structure

Interaction spectra at 810km, 12km off-axis. Oscillations: $\Delta m^2=2.5 \times 10^{-3} eV^2$, $\sin^2(2\theta_{13})=0.01$

P. Shanahan - Fermilab

Santa Fe, June 17, 2006

Scintillator and PVC

- PVC extrusions with 15% TiO₂
- 32 cells per extrusion
- Up to 12 extrusions per plane 6 cm 3.87 cm Sampling 0.15 X0 per plane

Basic unit: To 1 APD pixel Each cell read out by Wavelength shifting fiber - U shaped for high efficiency single-ended readout

Scintillator: Mineral Oil with 5% Pseudo-cumene

typical charged particle path

Plane of vertical cells

Plane of horizontal cells

P. Shanahan - Fermilab

Readout

- Wavelength shifting fibers into APDs
 - 0.8mm diameter, "U"-shaped for highly efficient single-sided readout
 - Alternate readout side in horizontal planes for more uniform coverage

Far Detector

25kT Total Mass Construction: (18.25 kT Scintillator) *Empty planes will be* erected and fastened, 111 m Detector supported in and then filled in situ. blocks of 31 planes 54 blocks = 1654planes total 3m overburden of 635136 cells excavated rock reduce cosmic 15.7 m backgrounds 0000 0000 **NOvA** Far **Detector** 15.7 m A Person Beam's view

Near Detector

Characterize intrinsic beam backgrounds

- Same segmentation and basic structure as Far Detector
- Sees beam as a line source Will take exposure in different positions to compensate

NOvA - Neutrino 2006

P Shanahan - Fermilab

Santa Fe, June 17, 2006

Prototype

IPND: Integration Prototype Near Detector Test scale production of all detector elements - Test beam, cross calibration, test cosmic rejection

- To be located on surface near MINOS Service Building

Low Energy

NOvA - Neutrino 2006

P. Shanahan - Fermilab

Santa Fe, June 17, 2006

CC/NC Identification

 v_e CC/ NC separation uses likelihood based on reconstructed parameters of the electron and the event:

shape, signal profiles, topology, etc.

Likelihood cut chosen to maximize Figure of Merit (FOM)= S/\sqrt{B}

History/Schedule

- April 2005: Fermilab PAC approval
- April 2006: DOE CD-1 recommendation
 - "Approve Preliminary Baseline Range"
 - Conceptual Design Report
- Upcoming Reviews:
 - Late 2006/Early 2007: Review for CD-2 ("Approve Performance baseline")/ Technical Design Report
 - by Oct 2007: Reviews for CD-3 ("Approve start of construction")
- Detector construction and running
 - Start Far Detector Assembly in late 2009- start data taking with first 5 kT in late 2010 complete in late 2011

Sensitivities

- Assumptions for the following plots:
 - 60x10²⁰ protons-on-target over 6 years with 25 kT detector: includes 1MW NuMI upgrade
 - Operations begin with 1st 5 kT and continue during construction
 - Equal v and \overline{v} running
- Plots made using...
 - Full simulation of flux, interactions, and detector response
 - Event selection based on reconstruction

Solution 3 Sensitivity to $sin^2(2\theta_{13}) \neq 0$

- Advantage to equal v/\overline{v} running:
 - More consistent reach in $\sin^2(2\theta_{13})$ vs. δ and mass hierarchy

P. Shanahan - Fermilab

Mass Hierarchy

Effect at a fixed L/E is proportional to baseline: unique reach for NOvA

95% CL Resolution of the Mass Hierarchy

P. Shanahan - Fermilab

Santa Fe, June 17, 2006

Dominant Mixing

Longer Term Future

• Liquid Argon TPC study:

Fermilab, Michigan State University, Tufts University, Princeton University, Yale University. UCLA, Texas A&M, York University (Canada)

<u>Modularized drift regions inside tank</u>

Bonnie Fleming

81% efficiency in blind handscan, with backgrounds less than 1/2 of intrinsic beam v_e

Bonnie Fleming

P. Shanahan - Fermilab

CP Violation

NOvA only: low precision information on phase δ

1 σ Contours for Starred Points

NOvA and LAr Upgrade: greatly improved sensivity to CP violation

Conclusions

- NOvA will have greatly increased sensitivity to $v_{\mu} \rightarrow v_{e}$ over current experiments
 - Fine grained, low Z detector
 - Off beam axis location
- Unique sensitivity to Mass Hierarchy
 - Matter effects: advantage of long baseline
- A key part of an "internationally coordinated, staged program" in neutrino physics.