Atmospheric Neutrinos

Theory and experimental data of atmospheric neutrino production
Outline

• Historical introduction

• Atmospheric ν beam for particle physics
 – Uncertainties in calculated neutrino fluxes
 – Relation to studies of neutrino oscillations

• Atmospheric ν as foreground for astrophysical neutrinos
 – Extension to very low and very high energy
 • Background for diffuse, relic SNR neutrinos
 • Background for indirect searches for WIMPs
 • Background for neutrino telescopes
Historical context

Detection of atmospheric neutrinos

• Markov (1960) suggests Cherenkov light in deep lake or ocean to detect atmospheric ν interactions for neutrino physics
• Greisen (1960) suggests water Cherenkov detector in deep mine as a neutrino telescope for extraterrestrial neutrinos
• First recorded events in deep mines with electronic detectors, 1965: CWI detector (Reines et al.); KGF detector (Menon, Miyake et al.)

Two methods for calculating atmospheric neutrinos:

• From muons to parent pions infer neutrinos (Markov & Zheleznykh, 1961; Perkins)
• From primaries to π, K and μ to neutrinos (Cowsik, 1965 and most later calculations)
• Essential features known since 1961: Markov & Zheleznykh, Zatsepin & Kuz’min
• Monte Carlo calculations follow second method

Stability of matter: search for proton decay, 1980’s

• IMB & Kamioka -- water Cherenkov detectors
• KGF, NUSEX, Frejus, Soudan -- iron tracking calorimeters
• Principal background is interactions of atmospheric neutrinos
• Need to calculate flux of atmospheric neutrinos
Historical context (cont’d)

Atmospheric neutrino anomaly - 1986, 1988 …
- IMB too few μ decays (from interactions of ν_μ) 1986
- Kamioka μ-like / e-like ratio too small.
- Neutrino oscillations first explicitly suggested in 1988 Kamioka paper
- IMB stopping / through-going consistent with no oscillations (1992)
- Hint of pathlength dependence from Kamioka, Fukuda et al., 1994

Discovery of atmospheric neutrino oscillations by S-K
- Super-K: “Evidence for neutrino oscillations” at Neutriino 98
- Subsequent increasingly detailed analyses from Super-K 1998…
- Confirming evidence from MACRO and Soudan
- Analyses based on ratios comparing to 1D calculations

Need for precise, complete, accurate, 3D calculations
- $\Theta \sim P_T / E$ is large for sub-GeV neutrinos
- Bending of muons in geomagnetic field important for ν from μ decay
- Complicated angular/energy dependence of primaries (AMS measurement)
- Use improved primary spectrum and hadroproduction information

ν 2006 June 16, Santa Fe
(MZhg)ZK

- Basic features of neutrino flux calculated and known since 1961
<table>
<thead>
<tr>
<th>Name</th>
<th>Journal/Details</th>
<th>1D/3D</th>
<th>Target</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zatsepin, Kuz’min</td>
<td>SP JETP 14:1294 (1961)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many calculations</td>
<td>~ 1965 ---- ~1990</td>
<td>1D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrawal, Gaisser, Lipari, Stanev</td>
<td>PRD 53: 1314 (1996)</td>
<td>1D</td>
<td></td>
<td>Target</td>
</tr>
<tr>
<td>P. Lipari</td>
<td>Asp. Phys 14:171 (2000)</td>
<td>3D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. Plyaskin</td>
<td>PL B516:213 (2001)</td>
<td>3D</td>
<td></td>
<td>GHEISHA</td>
</tr>
<tr>
<td></td>
<td>hep-ph/0303146</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wentz et al</td>
<td>PRD 67 073020 (2003)</td>
<td>3D</td>
<td></td>
<td>Corsika: DPMJET VENUS, UrQMD</td>
</tr>
<tr>
<td>Liu, Derome, Buénerd</td>
<td>PRD 67 073022 (2003)</td>
<td>3D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favier, Kossalsowski, Vialle</td>
<td>PRD 68 093006 (2003)</td>
<td>3D</td>
<td></td>
<td>GFLUKA</td>
</tr>
<tr>
<td>Barr, Gaisser, Lipari, Robbins, Stanev</td>
<td>PRD 70 023006 (2004)</td>
<td>3D</td>
<td>C</td>
<td>Target</td>
</tr>
<tr>
<td>Honda, Kajita, Kasahara, Midorikawa</td>
<td>PRD 64 053011 (2001)</td>
<td>3D</td>
<td></td>
<td>DPMJET</td>
</tr>
<tr>
<td></td>
<td>PRD 70 043008 (2004)</td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>
Comparison of 3 calculations used by Super-K

Differences ~ 10%
(using similar primary spectra)
Classes of atmospheric ν events

- Contained (any direction)
- ν-induced μ (from below)

Graph

- dN/dE vs. E_{ν}, GeV
 - sub GeV
 - multi GeV
 - through-going muons
 - stopping muons

Equation

$$\nu_e \text{ (or ν_μ)}$$

ν^8
Super-K atmospheric neutrino data (hep-ex/0501064)

CC ν_e
- Sub-GeV e-like $P < 400$ MeV/c
- Sub-GeV μ-like $P < 400$ MeV/c
- Multi-GeV e-like
- Multi-GeV μ-like

CC ν_μ
- Sub-GeV e-like $P > 400$ MeV/c
- Sub-GeV μ-like $P > 400$ MeV/c
- Multi-GeV μ-like
- Multi-ring Sub-GeV μ-like
- Multi-ring Multi-GeV μ-like
- PC

1489day FC+PC data + 1646day upward going muon data
Super-K adjust atmospheric ν parameters in their fit

Atmospheric parameters only

Effective flux including shifts in neutrino cross sections, etc.
A priori analysis of uncertainties
Giles Barr et al., 2006

Uncertainties in
\[p + A \rightarrow \pi \, (K) + X \]

Assume 9 (\(\pi \)) + 4(K) independent regions

<table>
<thead>
<tr>
<th>(E_i) (GeV)</th>
<th>Pions</th>
<th></th>
<th>Kaons</th>
</tr>
</thead>
<tbody>
<tr>
<td><8</td>
<td>10%</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>8–15</td>
<td>30%</td>
<td>10%</td>
<td>30%</td>
</tr>
<tr>
<td>15–30</td>
<td>30</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>30–500</td>
<td>30</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>>500</td>
<td>30</td>
<td>15%+Energy dep.</td>
<td>30%</td>
</tr>
</tbody>
</table>

Assumed uncertainties in phase space

<table>
<thead>
<tr>
<th>(E_i) (GeV)</th>
<th>Pions</th>
<th></th>
<th>Kaons</th>
</tr>
</thead>
<tbody>
<tr>
<td><8</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>8–15</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>15–30</td>
<td>G</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>30–500</td>
<td>H + I(Energy dep.)</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>>500</td>
<td>I</td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

Uncertainty in flux of \(\nu_\mu \) broken down by source (red: primary spectrum)

Tom Gaisser
Flavor ratio at production

- uncertainties \(\sim \) cancel in ratios (e.g. \(\nu_\mu/\nu_e \) differences < 1.5 %)
- \(r = \nu_\mu/\nu_e \) at production sets background for search for effects of solar & \(s_{13} \) mixing and the octant of \(\theta_{23} \) e.g.,
- \(N_e/N_e^{(0)} - 1 = P_2(r \cos^2 \theta_{23} - 1) \)
 - Peres & Smirnov, 2004
- \(\to 0 \) for \(r = 2, \theta_{23} = 45^\circ \)
- \(r_{\text{sub-GeV}} \sim 2.04 - 2.1 \)
- \(r \) larger for vertically upward

Near vertically up (\(\cos \theta < -0.5 \))

Neutrino flavor ratio (\(\nu_\mu/\nu_e \))

All directions
Analysis of uncertainties in ratios
Barr et al.

(a) $\nu_e / \bar{\nu}_e$
$E_\nu \, 0.3 - 3 \text{ GeV}$

(b) $\nu_e / \bar{\nu}_e$
$E_\nu \, 3 - 30 \text{ GeV}$
New measurements in progress

HARP
E910
NA49
MIPP

For example:
New results from NA49
p C → π⁺⁻ X at 158 GeV/c
hep-ex/0606028

Figure 18: Invariant cross section as a function of x_F at fixed p_T for a) π^+ and b) π^- produced in p+C collisions at 158 GeV/c
Atmospheric neutrinos as background for astrophysical neutinos

• Some examples
 – Diffuse neutrinos from relic supernovae
 • anti-ν_e, 20-50 MeV
 – Neutrinos from WIMP annihilation
 • 10 -1000 GeV
 • directional source (e.g. Sun) above atmospheric background
 – High energy neutrinos
 • Talk of Gary Hill Monday
Diffuse, relic supernova neutrinos

• Super-K limit is from $\bar{\nu}_e + p \rightarrow n + e^+$
• Neutron not detected in current Super-K
• Backgrounds:
 – atmospheric ν_e and $\bar{\nu}_e$
 – solar ν_e and reactor $\bar{\nu}_e$
 – atmospheric $\nu_\mu \rightarrow \mu$
 $(E_\mu < 50 \text{ MeV})$

Stopped μ below threshold
Improvement with tagged neutron

Prescribe gadolinium additive to detect neutrons and select anti-ν_e only

Beacom & Vagins, PRL 93 (2004) 171101
Calculations of anti-ν_e background
10-100 MeV

Note dependence on phase of solar cycle:

- 10 – 20% variation a signature of background, not of signal
- similar to response of neutron monitors

FLUKA 10-100 MeV

ν 2006 June 16, Santa Fe
Tom Gaisser
Variation with solar cycle

McMurdo, Antarctica, Neutron Monitor
Bartol Research Institute, University of Delaware
27-day Averages - data through April 2006

RP, May 2006
Indirect limits on WIMPs in Sun

From ν_μ-induced upward muons

$\sim 5 \times 10^{-15} \text{ cm}^{-2}\text{s}^{-1}$

- disfavored out by direct searches
Time signature of background

Flux of atmospheric ν_{μ}
- higher from near horizon
- lower from near vertical
- parent mesons more likely to decay in less dense atmosphere

→ Lowest from direction of sun at local midnight

→ Possible signature to enhance sensitivity of search for WIMPs

\[\nu \text{ 2006 June 16, } \text{Santa Fe} \]
Global view of atmospheric ν spectrum

Plot shows sum of neutrinos + antineutrinos

Possible E^{-2} diffuse astrophysical spectrum (WB bound / 2 for osc)

RPQM for prompt ν
Bugaev et al., PRD58 (1998) 054001
Slope = 2.7
Concluding comments

- Uncertainty in calculated ν fluxes at production ($0.1 < E_\nu < 10$ GeV)
 - Calculations differ by ~10%
 - $\nu_\mu/\nu_e \sim 2.1$ for sub-GeV; differences < 2%
 - a priori estimate: uncertainty in $\nu_\mu/\nu_e \sim 1$
 - HARP, E910, NA49, MIPP → further reductions?

- Properties of atmospheric ν distinguish signal from background:
 - Known secular and directional variations
 - Low content of $>\text{TeV} \ \nu_e, \nu_\tau$ compared to
 - Astrophysical $\nu_\mu: \nu_e: \nu_\tau \sim 1:1:1$