Atmospheric Neutrinos

Theory and experimental data of atmospheric neutrino production

Outline

- Historical introduction
- Atmospheric v beam for particle physics
 - Uncertainties in calculated neutrino fluxes
 - Relation to studies of neutrino oscillations
- Atmospheric v as foreground for astrophysical neutrinos
 - Extension to very low and very high energy
 - Background for diffuse, relic SNR neutrinos
 - Background for indirect searches for WIMPs
 - Background for neutrino telescopes

Historical context

Detection of atmospheric neutrinos

- Markov (1960) suggests Cherenkov light in deep lake or ocean to detect atmospheric v interactions for neutrino physics
- Greisen (1960) suggests water Cherenkov detector in deep mine as a neutrino telescope for extraterrestrial neutrinos
- First recorded events in deep mines with electronic detectors, 1965: CWI detector (Reines et al.); KGF detector (Menon, Miyake et al.)

Two methods for calculating atmospheric neutrinos:

- From muons to parent pions infer neutrinos (Markov & Zheleznykh, 1961; Perkins)
- From primaries to π , K and μ to neutrinos (Cowsik, 1965 and most later calculations)
- Essential features known since 1961: Markov & Zheleznykh, Zatsepin & Kuz'min
- Monte Carlo calculations follow second method

Stability of matter: search for proton decay, 1980's

- IMB & Kamioka -- water Cherenkov detectors
- KGF, NUSEX, Frejus, Soudan -- iron tracking calorimeters
- Principal background is interactions of atmospheric neutrinos
- Need to calculate flux of atmospheric neutrinos

v 2006 June 16, Santa Fe

Historical context (cont'd)

Atmospheric neutrino anomaly - 1986, 1988 ...

- IMB too few μ decays (from interactions of v_{μ}) 1986
- Kamioka μ -like / e-like ratio too small.
- Neutrino oscillations first explicitly suggested in 1988 Kamioka paper
- IMB stopping / through-going consistent with no oscillations (1992)
- Hint of pathlength dependence from Kamioka, Fukuda et al., 1994

Discovery of atmospheric neutrino oscillations by S-K e

- Super-K: "Evidence for neutrino oscillations" at Neutriino 98
- Subsequent increasingly detailed analyses from Super-K 1998...
- Confirming evidence from MACRO and Soudan
- Analyses based on **ratios** comparing to 1D calculations

Need for precise, complete, accurate, 3D calculations

- $\Theta \sim P_T / E$ is large for sub-GeV neutrinos
- Bending of muons in geomagnetic field important for ν from μ decay
- Complicated angular/energy dependence of primaries (AMS measurement)
- Use improved primary spectrum and hadroproduction information

v 2006 June 16, Santa Fe Tom Gaisser

 ν_{μ}

 v_{e}

 v_{μ}

р

(MZhG)ZK

 Basic features of neutrino flux calculated and known since 1961

Summary of Atmospheric Neutrino Calculations

Zatsepin, Kuz'min	SP JETP 14:1294(1961)	Mu		
Many calculations	~ 1965 ~1990	1D		
D.H. Perkins	Asp.Phys. 2: 249 (1994)	Mu		
Honda, Kajita, Kasahara, Midorikawa	PRD 52: 4985 (1995)	1D		FRITIOF
Agrawal, Gaisser, Lipari, Stanev	PRD 53: 1314 (1996)	1D		Target
Battistoni et al	Asp.Phys 12:315 (2000)	3D	В	FLUKA
	Asp.Phys 19:269 (2003)			
P. Lipari	Asp.Phys 14:171 (2000)	3D		
V. Plyaskin	PL B516:213 (2001) hep-ph/0303146	3D		GHEISHA
Tserkovnyak et al	Asp.Phys 18:449 (2003)	3D		CALOR-FRITIOF GFLUKA/GHEISHA
Wentz et al	PRD 67 073020 (2003)	3D		Corsika: DPMJET VENUS, UrQMD
Liu, Derome, Buénerd	PRD 67 073022 (2003)	3D		
Favier, Kossalsowski, Vialle	PRD 68 093006 (2003)	3D		GFLUKA
Barr, Gaisser, Lipari, Robbins, Stanev	PRD 70 023006 (2004)	3D	С	Target
Honda, Kajita, Kasahara, Midorikawa	PRD 64 053011 (2001)	3D		DPMJET
	PRD 70 043008 (2004)		А	

Comparison of 3 calculations used by Super-K

Differences ~ 10% (using similar primary spectra)

 \equiv dN/dln(E) (GeV (m² s sr)⁻¹ 250

350

Comparison of three neutrino flux calculations at Super-K

Average over all arrival directions

Classes of atmospheric v events

Santa Fe

Super-K atmospheric neutrino data (hep-ex/0501064)

Super-K adjust atmospheric v parameters in their fit

A priori analysis of uncertainties

Giles Barr et al., 2006

Uncertainty in flux of ν_{μ} broken down

000000

100

1000

11

by source (red: primary spectrum)

Uncertainties in $p + A \rightarrow \pi (K) + X$

Flavor ratio at production

- uncertainties ~cancel in ratios (e.g. v_{μ}/v_{e} differences < 1.5 %)
- $r = v_{\mu}/v_{e}$ at production sets background for search for effects of solar & s₁₃ mixing and the octant of θ_{23} e.g.,
- $N_e/N_e^{(0)} 1 = P_2(r \cos^2\theta_{23} 1)$ Peres & Smirnov, 2004
- \rightarrow 0 for r = 2, θ_{23} =45°
- r_{sub-GeV} ~2.04 2.1
- r larger for vertically upward

Analysis of uncertainties in ratios Barr et al.

v 2006 June 16, Santa Fe

New measurements in progress

HARP E910 NA49 MIPP

> For example: New results from NA49 p C $\rightarrow \pi^{+/-}$ X at 158 GeV/c hep-ex/0606028

Figure 18: Invariant cross section as a function of x_F at fixed p_T for a) π^+ and b) π^- produced in p+C collisions at 158 GeV/c

Atmospheric neutrinos as background for astrophysical neutinos

- Some examples
 - Diffuse neutrinos from relic supernovae
 - anti- v_e , 20-50 MeV
 - Neutrinos from WIMP annihilation
 - 10 -1000 GeV
 - directional source (e.g. Sun) above atmospheric background
 - High energy neutrinos
 - Talk of Gary Hill Monday

Diffuse, relic supernova neutrinos

- Super-K limit is from $\overline{v}_e + p \rightarrow n + e^+$
- Neutron not detected in current Super-K

Tom Gaisser

- Backgrounds:
 - -atmospheric ν_e and $\overline{\nu}_e$
 - solar ν_e and reactor $\overline{\nu}_e$
 - atmospheric $v_{\mu} \rightarrow \mu$ (E_µ < 50 MeV)

Stopped $\boldsymbol{\mu}$ below threshold

v 2006 June 16, Santa Fe

Improvement with tagged neutron

Beacom & Vagins, PRL 93 (2004) 171101

Prescribe gadolinium additive to detect neutrons and select anti- v_e only

Calculations of anti- ν_e background 10-100 MeV

Note dependence on phase of solar cycle:

- 10 20% variation a signature of background, not of signal
- similar to response of neutron monitors

FLUKA 10-100 MeV

Battistoni et al.(2004): http://www.mi.infn.it/~battist/neutrino.html

Variation with solar cycle

v 2006 June 16, Santa Fe

Indirect limits on WIMPs in Sun

Time signature of background

- Flux of atmospheric v_{μ}
- higher from near horizon
- lower from near vertical
- parent mesons more likely to decay in less dense atmosphere
- →Lowest from direction of sun at local midnight
- →Possible signature to enhance sensitivity of search for WIMPs

v 2006 June 16, Santa Fe

Global view of atmospheric v spectrum

Concluding comments

- Uncertainty in calculated v fluxes at production ($0.1 < E_v < 10$ GeV)
 - Calculations differ by ~10%
 - $v_{\mu}/v_{e} \sim 2.1$ for sub-GeV; differences < 2%
 - a priori estimate: uncertainty in v_{μ}/v_{e} ~ 1%
 - HARP, E910, NA49, MIPP \rightarrow further reductions?
- Properties of atmospheric v distinguish signal from background:
 - Known secular and directional variations
 - Low content of > TeV v_e , v_τ compared to
 - Astrophysical $v_{\mu}:v_{e}:v_{\tau} \sim 1:1:1$

v 2006 June 16, Santa Fe