GEONeutrinos Whole Earth GeoScience

R. S. Raghavan Virginia Tech

Neutrino 2006 Santa Fe NM June 15 2006

Geo Neutrino Science

-the immediate and larger context

Direct: Radioactivity and Heat flow in earth Influence on Earth's magnetism Context Evolution of the Earth Planetary structures and science Evolution of the Solar System

Solar System Neutrino Astronomy

Sun-SK

Earth--?

Neutrino Geophysics—New Science Now

TERRESTRIAL RADIOGENIC SOURCES

- 1) Radioactivity of U and Th (and others)
- 2) Fission Reactor ??
- 3) Man-made Power Reactors

Earth's Crust, Mantle Inner Core Surface

ALL ABOVE SOURCES EMIT ANTINEUTRINOS

ANTINEUTRINO SPECTROSCOPY CAN PROBE THE EARTH Just as neutrino spectroscopy has probed the Sun TECHNOLGY MATURE AND AVAILABLE PARASITIC MEASUREMENT IN DETECTORS FOR OTHER PHYSICS

Long Literature:Problem:G. Elders (1966)G. Marx (1969)Detection methods;Krauss et al Nature 310 191 (1964) and references theirinSpectroscopy & Specific Model Tests:Raghavan et al PRL 80 635 1998Rotschild et al Geophys . Res.Lett 25 1083 1998

Geo Neutrino Science

Snapshot of Developments and Outlook

- Scientific Motivation & Background Long Delineated
- Triumphal Success of the Solar Neutrino Experience
- March of Detector Technology
- Preliminary GeoNeutrino Detection at Kamland

- Interaction with Geoscience community and their enthusiastic support
- Highlight-- Hawaii Meeting on Neutrino Geoscience
- Marching orders for forging ahead

Inside the Earth-The Present View

Geophysical Models from

- Density profile (seismic data
- Field probes (10 km/ magma outflows)
- Geochemistry (field samples meteoric samples)

Bulk Silicate Earth Model Preliminary Reference Earth Model

Laboratory Experiments suggesting potassium-iron alloys in the core

> Geo Neutrino Mission Whole Earth Data on Radioactivity

Geo Neutrino Mission Goals

 Whole Earth Analytical Chemistry— U/Th ratio
 Whole Earth Data on distribution of terrestrial Radioactivity
 Whole earth distribution of terrestrial Heat Flow

Check present "Standard Earth Models"

• Discovery of non-standard features Fission Reactor in Core?

Table 4.1 Estimated concentrations of radioactive elements in different regions of the earth

Region	Total mass	Concentration		
	$[10^{21} \mathrm{kg}]$	U[ppb]	Th[ppb]	K[ppm]
Oceanic crust[7]	6	100	220	1250
Continental crust[8]	19	1400	5600	15600
Mantle	3985	13.6	53.0	165
BSE[9]	4010	20.3	79.5	240

Table 4.2 Radiogenic heat production rates in different regions of the earth

Region	U	Th	Κ	Total
	[TW]	[TW]	[TW]	[TW]
Oceanic crust	0.06	0.03	0.03	0.12
Continental crust	2.61	2.81	1.04	6.46
Mantle	5.32	5.57	2.30	13.19
BSE	7.99	8.42	3.37	19.78

Table 4.3 Crustal conductive heat dissipation rates

Region	Heat Dissipation Rate	Area	Global Heat
			Dissipation Rate
	$[{ m Wm^{-2}}]$	$[m^2]$	[TW]
Oceanic crust	$101 \pm 2.2 \times 10^{-3}$	$3.1 imes 10^{14}$	31.2 ± 0.7
Continental crust	$65 \pm 1.6 \times 10^{-3}$	$2.0 imes 10^{14}$	13.0 ± 0.3
Whole Earth	$87\pm2.0 imes10^{-3}$	$5.1 imes 10^{14}$	44.2 ± 1.0

Principal Origins of Geoneutrinos

- •The Continental Crust 4
- •The Oceanic Crust/Mantle 1
- •Core? >0?

Handles for sorting out

Geo graphical Location of detector Directionality of antineutrinos (separate surface crustal and deeper origins)

Source discrimination by geographical location of detector

¹⁷ Jun 2005 03:28:59 JST: CumulativeFlux-KamipkaAnd-Kavali, kino

Something rotten in the Core?

Fission Reactor at Center of the Earth ?

Herndon, PNAS 93 646 (1996) Hollenbachand Herndon PNAS 98 11085 2001

Controversial!

Proposed as Source of Energy of the Earth's Magnetic field Caution: Highly Controversial—not accepted by Geochemists
BASIC MODEL:
NiSi INNER CORE OF THE EARTH

•CHEMISTRY of NiSiFORMATION RESULTS IN HIGHLY CONCENTRATED CONDENSATE OF U/Th AT CENTER

•High 235/238 Isotopic Ratio 5gY AGO Starts Natural Fission Chain Reaction •FAST NEUTRON BREEDER REACTIONS Sustain fission to the present sta

•3-10 TW energy output at present-

•ONLY WAY TO DIRECTLY TEST MODEL-•DETECT FISSION ANTINEUTRINO SPECTRUM

What about Potassium—Why important

- 16% of the radiogenic heat is from ⁴⁰K (based upon models)
- largest flux!
- NEW----K may reside in the Earth's core [V. Rama Murthy)
- K/U ratio in chondrites > in the crust
- where is the potassium? do we really know how much there is?

Potassium Spectrum (Krauss et al 1984)

How to detect Potassium from the Earth

2 ideas after long search

Chen (Hawaii Mtg)

Hochmuth /TUM

Antineutrino Detection: Classic Reines-Cowan Reaction with Coincidene tag (The things these two have wrought!!)

P, CI, Gd

Threshold: 1.8 MeV \rightarrow U, Th visible: K is not

GeoNeutrino Model Predictions

Notable Features:

•U and Th can be separately Measured •Importance of background from Surface power reactors in the vicinity

Prediction vs Preliminary Result

No Geoneutrino Problem ! So far....

 $S = \Phi(TNU) \times 0.85(kT/TNU)$ Raghavan et al. (1998)Enomoto thesis (2005)U(ppm) = 0.01U(ppm) = 0.012 $\Phi(U) = 7.3 TNU^*$ $\Phi(U) = 8.1 TNU$ $\Phi(Th) = 1.9 TNU^*$ $\Phi(Th) = 2.2 TNU$ $\Phi(tot) = 9.2 TNU^*$ $\Phi(tot) = 10.3 TNU$ S = 7.9 per kT-yS = 8.8 per kT-y

S = 7.9 per kT-y (*Mantovani this workshop*) S ~ 8.5 per kT-y (*Lisi this workshop*)

* Corrected for oscillation

S. Dye (HI meeting)

What Next: International Neutrino Community Enthusiastic About launching vigorous GeoNeutrino Program

Scintillation Technology

Existing: BOREXINO SNO+: Continental Crust

Dedicated New (Typical ~1 kT) Hanahana (Hawaii): Objedtive: Oceanic/Mantle Sources DUSEL (Homestake, Henderson): Continental Crust "Geomanda": Very Large Scint: South Pole EARTH (Curcao/ Multilocation)

Parasitic New 50 -100 kT multipurpose Detectors LENA (Europe) HSD (US)

HANOHANA

EARTH

Geo Neurtrinos Science

The hour is at hand The means will be built

The triumph will return Know the Earth as well as the Sun