Status of Double Chooz

D. Reyna Argonne National Lab

Multinational Collaboration

- France
 - Detector Mechanics
 - Digitization/DAQ
 - Near and Far Laboratory Infrastructure
 - Technical Coordination and detector integration
- Germany
 - Scintillators
 - Purification and fluid handling systems
 - Inner muon veto
 - Level 1 trigger System
- England
 - PMT Concentrators
 - Laser Calibration

- Italy
 - Scintillator development at INFN-LNGS with Russians
- Spain
 - Inner detector Photo detection and mechanics
- Russia
 - Simulation and Calibration
 - Scintillator Development
- USA
 - Inner PMTs
 - Front End Electronics
 - Calibration system
 - Slow control system
 - Outer Muon Veto system

119 Authors from 26 Institutions on the Proposal hep-ex/0606025 D. Reyna (ANL)

The Site

The Detector

JBLE

Scintillator

- One of the main limiting factors in CHOOZ and Palo Verde
- 4 year development of new Gd doped scintillator compounds at Heidelberg and LNGS
 - 2 viable options have been developed and each has been demonstrated to be stable for more than 400 days
- Best choice is now in transition to industrial production
 - Confidentiality agreement
 - First sublimation tests on 50 g scale finished
 - Sublimation of about 400 g finished last week
 - MPIK synthesis to produce ~80 liters of scintillator
 - Industrial Production of 700 g (synthesis + sublimation) started (will produce 150 liters of scintillator)
 - For Double Chooz a total of 100 kg (2 detectors) needed
- Heidelberg is constructing a building for storage and purification of all scintillators for both detectors
- Second choice scintillator was tested in 1/5 scale prototype

echnical Validation with 1/5 scale prototype

- Technical Goals
 - Validate design of acrylic vessels
 - Validate mechanical solutions
 - Validate detector integration
 - Final check of material compatibility
 - Define control procedures for acrylics
 - Define interfaces for liquid handling
 - Prepare filling procedure
- Additional Benefits
 - Test run for the assembly in the real detector
 - Finalize the definition of interfaces
 - Finalize the assignment of responsibilities

A Learning Experience

- Some technical solutions for the acrylic mechanics need revisions
- Tightness of the filling system is not trivial
- Interfaces are difficult

15 June 2006

Testing and Prototypes

De-Magnetization

15 June 2006

Mass Measurement

Front End Electronics

Engineering Work Acrylic Stress Analysis

PMT Concentrators

Shielding Steel

IBLE

Laboratory Layout

15 June 2006

Installation Procedures

BLE

Detailed Schedule for Far Detector Assembly

N°	Responsible	Ext.	Task			2006 2007		2008	2009
				ASONDJFM	AMJ	JASOND	J F M A M J J A S O N D	JFMAMJJASOND	JFMAMJJASON
12			FAR LABORATORY infrastrure	BORATORY infrastru	ure 📭		01/06/07		
13	APC		Chooz demantelement	Chooz demantelem		28/06/06			
14	CEA / APC		Studies of the needed updates	of the needed upda		1	03/01/07		
15	HEID./MUNICH		Studies of the tubbing	Studies of the tubb	bing 🗧		03/01/07		
16			PRR			PRR 🗙 12/10			
18	CEA / APC		Update of the lab.	Update of the	e lab				
19	CEA / APC		ICPE file			ICPE file 🔌			
20			FAR DETECTOR (FD)				CTOR (FD)		
21	APC	Х	Shielding assembling_FD				embling_FD		
22	APC		Electro Shielding assembling_FD			1	ng assembling_FD 🛚 21/09/0		
23	APC	Х	Veto mechanic assembling_FD				nic assembling_FD 🖾 19/1		
24	TUBINGEN		Veto detector assembling_FD				tector assembling_FD 🛚 02/		
25	CEA	Х	Buffer vessels assembling_FD				vessels assembling_FD 🔤 3		
26	USA		PMTs modules assembling & tests_FD			1 1 1 1 1 1 1 1 1 1 1 1	es assembling & tests_FD 🚾		
27	CEA		Acrylics vessels assembling_FD			Асту	lics vessels assembling_FD		
28	CEA		Cleaning acrylics vessels_FD				Cleaning acrylics vessels	Γ	
29	CEA		Integration of systems of calibration_FD			Integra	tion of systems of calibration		
30	HEID./MUNICH		Tubbing installation_FD				and the second	ion_FD 🖾 02/05/08	
31	HEID./MUNICH		Filling_FD					illing_FD 🛛 16/05/08	
32	APC		Closing of the detector _FD				- 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 1 1	tector _FD 🛛 30/05/08	
33			Outer veto assembling _FD					mbling _FD 🚧 27/06/08	
34			Commissioning of far detector_FD				Commissioning of far d	letector_FD	

15 June 2006

Detector Integration

Glove box for calibration

Acquisition

JBLE

Close Contact with EDF

• FAR site

- Recieved authorization to use the building near the neutrino lab to house liquid tanks
- Activity started last week in the lab to dismantle the old tank and update infrastructure
- Could start building a new detector in Summer 2007
- NEAR site
 - EDF provided first civil engineering study in January. Overburden = 90m.w.e.
 - Further development of design by the fall → have a precise cost (±20%) to gather funding from local authorities
 - Final designs to be completed in 2007
 - Lab ready in 3 years: 2009

Systematic Errors

		Chooz	Double Chooz		
	ν flux and σ	1.9 %	<0.1 %		
Reactor-	Reactor power	0.7 %	<0.1 %	Two "identical" detectors,	
induced	Energy per fission	0.6 %	<0.1 %	Low bkg	
	Solid angle	0.3 %	<0.1 %	Distance measured @ 10 cm + monitor core barycenter	
	Volume	0.3 %	0.2 %	Same weight sensor for both det.	
Detector - induced	Density	0.3 %	<0.1 %	Accurate T control (near/far)	
	H/C ratio & Gd concentration	1.2 %	<0.1 %	Same scintillator batch + Stability	
	Spatial effects	1.0 %	<0.1 %	"identical" Target geometry & LS	
	Live time	few %	0.25 %	Measured with several methods	
Analysis	From 7 to 3 cuts	1.5 %	0.2 - 0.3 %		
	Total	2.7 %	< 0.6 %		

Studies of Systematic Effects

Systematic Pulls on χ^2 Analysis

15 June 2006

Study of Near Detector

Proposed Near Location

Analysis Includes Location of Spent Fuel Storage (~0.5% of signal)

Far location is optimal for $\Delta m^2 > 2.5 \times 10^{-3} \text{ eV}^2$

Background Summary

Detector	Site		Background					
			Accidental		Correlated			
			Materials	\mathbf{PMTs}	Fast n	μ -Capture	⁹ Li	
CHOOZ		Rate (d^{-1})					0.6 ± 0.4	
$(24 \ \nu/d)$		Rate (d^{-1})	0.42 ± 0.05		$1.01 \pm 0.04(stat) \pm 0.1(sys)$			
	Far	${ m bkg}/ u$	1.6%		4%			
		Systematics	ics 0.2%		0.4%			
Double Chooz		Rate (d^{-1})	1 ± 0.1	1 ± 0.1	0.15 ± 0.15	0.06 ± 0.03	1 ± 0.5	
$(69 \ \nu/d)$	Far	${ m bkg}/ u$	1.4%	1.4%	0.2%	0.1%	1.4%	
		Systematics	0.2%	0.2%	0.2%	0.05%	0.7%	
Double Chooz		Rate (d^{-1})	7.2 ± 1.0	7.2 ± 1.0	1.4 ± 1.4	0.42 ± 0.2	7.2 ± 3.6	
$(990 \ \nu/d)$	Near	${ m bkg}/ u$	0.7%	0.7%	0.14%	0.04%	0.7%	
		Systematics	0.1%	0.1%	0.2%	0.02%	0.4%	

15 June 2006

JBLE

- Systematic Errors
 - $-\sigma_{abs} = 2.0\%$
 - $-\sigma_{rel} = 0.6\%$
 - $-\sigma_{scale} = 0.5\%$

$$-\sigma_{shape} = 2.0\%$$

Energy Resolution

 $-\sigma_{\rm E} = 7\%$

- 1% uncorrelated binto-bin background subtraction error
- Oscillation Parameters

 Δm²₃₁ = 2.5 X 10⁻³ eV²
 sin²(2θ₁₃) = 0.08

15 June 2006

Funding

- France
 - Scientific approval by both DSM-DAPNIA and CNRS-IN2P3 since March 2004
 - Recently reviewed and approved for funding starting in 2006
- Germany
 - Currently funded through the Max Planck society with major increase in 2006
 - Universities groups are in the final approval process at the Deutsche Forschungsgemeinschaft (DFG)
- United States
 - Recommended by NuSAG and HEPAP
 - DOE-HEP has taken no action on the construction proposal (submitted in Oct. 2004) but has rejected a separate R&D request for 2006
 - Funding from NSF is being investigated
- Russia
 - Participation funded through Russian Foundation of Basic Research
- Spain
 - Just completed review.
 - Funding approval is expected in 1-2 weeks.
- England
 - Already funded for developmental work

French Press Release (this week):

Double previous contribution to avoid delay

15 June 2006

Expected Milestones

Limit @ 90% C.L. for $sin^2(2\theta)=0$ $\Delta m^2_{atm} = 2.5 \ 10^{-3} \ eV^2$ (with 20% uncertainty)

2007: assembly of far detector on site
2008: data taking with far detector

Start of Near lab building

2009: assembly of near detector
2010: data taking with 2 detectors

15 June 2006

Final Comments

- Double Chooz is ready to begin construction
 - Funding has been established
 - covering the shortfalls of the US-DOE
 - Expect to begin data in 2008
 - Should confirm previous limit within 6 months
- Double Chooz is also participating in an international effort on Nuclear Non-Proliferation
 - See also talk by M. Cribier
- More details in Poster Session V
 - Abs. 51: Physics Potential
 - Abs. 58: Scintillator Development
 - Abs. 63: Simulation Strategy
 - Abs. 64: Non-Proliferation Studies