Multinational Collaboration

- **France**
 - Detector Mechanics
 - Digitization/DAQ
 - Near and Far Laboratory Infrastructure
 - Technical Coordination and detector integration

- **Germany**
 - Scintillators
 - Purification and fluid handling systems
 - Inner muon veto
 - Level 1 trigger System

- **England**
 - PMT Concentrators
 - Laser Calibration

- **Italy**
 - Scintillator development at INFN-LNGS with Russians

- **Spain**
 - Inner detector Photo detection and mechanics

- **Russia**
 - Simulation and Calibration
 - Scintillator Development

- **USA**
 - Inner PMTs
 - Front End Electronics
 - Calibration system
 - Slow control system
 - Outer Muon Veto system

119 Authors from 26 Institutions on the Proposal
hep-ex/0606025

15 June 2006
D. Reyna (ANL)
The Site
The Detector

TARGET: (th = 2.3 m)
- Acrylic vessel (th = 8 mm)
- 10.3 m³ LS doped with 0.1% Gd

GAMMA CATCHER: (th. = 0.55 m)
- Acrylic vessel (th = 12 mm)
- 22.6 m³ LS (identical to target)

Buffer: (th. = 1.05 m)
- Stainless steel vessel (th = 3 mm)
- 114.2 m³ mineral oil
- ~534 PMTs (8 inches)

Inner VETO: (t = 0.5 m)
- Steel vessel (th = 10 mm)
- ~80 m³ LS
- ~70 PMTs

SHIELDING (th. = 170 mm)
- Steel

OTHER SYSTEMS
- Outer Muon Veto System
- Calibration Systems
- Glove Boxes

15 June 2006
D. Reyna (ANL)
Scintillator

- One of the main limiting factors in CHOOZ and Palo Verde
- 4 year development of new Gd doped scintillator compounds at Heidelberg and LNGS
 - 2 viable options have been developed and each has been demonstrated to be stable for more than 400 days
- Best choice is now in transition to industrial production
 - Confidentiality agreement
 - First sublimation tests on 50 g scale finished
 - Sublimation of about 400 g finished last week
 - MPIK synthesis to produce ~80 liters of scintillator
 - Industrial Production of 700 g (synthesis + sublimation) started (will produce 150 liters of scintillator)
 - For Double Chooz a total of 100 kg (2 detectors) needed
- Heidelberg is constructing a building for storage and purification of all scintillators for both detectors
- Second choice scintillator was tested in 1/5 scale prototype
Technical Validation with 1/5 scale prototype

- **Technical Goals**
 - Validate design of acrylic vessels
 - Validate mechanical solutions
 - Validate detector integration
 - Final check of material compatibility
 - Define control procedures for acrylis
 - Define interfaces for liquid handling
 - Prepare filling procedure

- **Additional Benefits**
 - Test run for the assembly in the real detector
 - Finalize the definition of interfaces
 - Finalize the assignment of responsibilities
A Learning Experience

- Some technical solutions for the acrylic mechanics need revisions
- Tightness of the filling system is not trivial
- Interfaces are difficult

15 June 2006

D. Reyna (ANL)
Testing and Prototypes

- PMT Uniformity
- HV Splitter
- Outer Veto
- De-Magnetization
- Mass Measurement
- Front End Electronics
- PMT Mounts

15 June 2006
D. Reyna (ANL)
Engineering Work

Acrylic Stress Analysis

Shielding Steel

Laboratory Layout

PMT Concentrators
Installation Procedures
Detailed Schedule for Far Detector Assembly

<table>
<thead>
<tr>
<th>N°</th>
<th>Responsible</th>
<th>Ext</th>
<th>Task</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>APC</td>
<td></td>
<td>FAR LABORATORY infrastructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>APC</td>
<td></td>
<td>Chooz demantlement</td>
<td></td>
<td></td>
<td>01/06/07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>CEA/APC</td>
<td></td>
<td>Studies of the needed updates</td>
<td></td>
<td></td>
<td>03/01/07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>HEID./MUNICH</td>
<td></td>
<td>Studies of the tubing</td>
<td></td>
<td></td>
<td>03/01/07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>PRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>CEA/APC</td>
<td></td>
<td>Update of the lab.</td>
<td></td>
<td></td>
<td>01/06/07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>CEA/APC</td>
<td></td>
<td>ICPE file</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>APC</td>
<td>X</td>
<td>FAR DETECTOR (FD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>APC</td>
<td></td>
<td>Shielding assembling_FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25/07/08</td>
</tr>
<tr>
<td>22</td>
<td>APC</td>
<td></td>
<td>Electro Shielding assembling_FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21/08/07</td>
</tr>
<tr>
<td>23</td>
<td>APC</td>
<td>X</td>
<td>Veto mechanic assembling_FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19/10/07</td>
</tr>
<tr>
<td>24</td>
<td>TUBINGEN</td>
<td></td>
<td>Veto detector assembling_FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02/11/07</td>
</tr>
<tr>
<td>25</td>
<td>CEA</td>
<td>X</td>
<td>Buffer vessels assembling_FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30/11/07</td>
</tr>
<tr>
<td>26</td>
<td>USA</td>
<td></td>
<td>PMTs modules assembling & tests_FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29/12/07</td>
</tr>
<tr>
<td>27</td>
<td>CEA</td>
<td></td>
<td>Acrylics vessels assembling_FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22/02/08</td>
</tr>
<tr>
<td>28</td>
<td>CEA</td>
<td></td>
<td>Cleaning acrylics vessels_FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07/03/08</td>
</tr>
<tr>
<td>29</td>
<td>CEA</td>
<td></td>
<td>Integration of systems of calibration_FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04/04/08</td>
</tr>
<tr>
<td>30</td>
<td>HEID./MUNICH</td>
<td></td>
<td>Tubbing installation_FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02/05/08</td>
</tr>
<tr>
<td>31</td>
<td>HEID./MUNICH</td>
<td></td>
<td>Filling_FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16/05/08</td>
</tr>
<tr>
<td>32</td>
<td>APC</td>
<td></td>
<td>Closing of the detector_FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30/05/08</td>
</tr>
<tr>
<td>33</td>
<td>APC</td>
<td></td>
<td>Outer-veto assembling_FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27/06/08</td>
</tr>
<tr>
<td>34</td>
<td>APC</td>
<td></td>
<td>Commissioning of far detector_FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25/07/08</td>
</tr>
</tbody>
</table>

15 June 2006 D. Reyna (ANL)
Detector Integration

Starting date: 11/2006 (2 months)

- sub contractor on site
- Painting of inner surface
- APC studies
- Veto vessel
- White painted
- Side shielding
- E.M. shield?
Detector Integration

Starting date: 03/2007
(2 months)

Buffer vessel realize with 3 welded rings

(Cylinder transport in 6 half rings)
Welding of 2 half cylinders.

Rebuilding of piece of cylinders in the pit

sub contractor on site
Detector Integration

Starting date: 04/2007 (2 months)

Mounting of 534 buffer PMTs (vessel and lid)

Cleaning after mounting?

Acrylics feet mounting

Free area for preparation

Length of cables = 35 meters
Detector Integration

Rotation of the gamma catcher into the detector
Detector Integration

Insertion by translation of the target vessel into the gamma catcher
Starting date: 08/2007

Detector Integration

Tank for mass measurement of target liquid

- Closing of buffer vessel
- Closing of the veto vessel
- Filling up of the different vessels

How long?
Detector Integration

Integration of OUTER VETO

Glove box for calibration
• FAR site
 – Received authorization to use the building near the neutrino lab to house liquid tanks
 – Activity started last week in the lab to dismantle the old tank and update infrastructure
 – Could start building a new detector in Summer 2007

• NEAR site
 – EDF provided first civil engineering study in January. Overburden = 90m.w.e.
 – Further development of design by the fall → have a precise cost (±20%) to gather funding from local authorities
 – Final designs to be completed in 2007
 – Lab ready in 3 years: 2009
Systematic Errors

<table>
<thead>
<tr>
<th></th>
<th>Chooz</th>
<th>Double Chooz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor-induced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\nu) flux and (\sigma)</td>
<td>1.9 %</td>
<td><0.1 %</td>
</tr>
<tr>
<td>Reactor power</td>
<td>0.7 %</td>
<td><0.1 %</td>
</tr>
<tr>
<td>Energy per fission</td>
<td>0.6 %</td>
<td><0.1 %</td>
</tr>
<tr>
<td>Detector-induced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid angle</td>
<td>0.3 %</td>
<td><0.1 %</td>
</tr>
<tr>
<td>Volume</td>
<td>0.3 %</td>
<td>0.2 %</td>
</tr>
<tr>
<td>Density</td>
<td>0.3 %</td>
<td><0.1 %</td>
</tr>
<tr>
<td>H/C ratio & Gd concentration</td>
<td>1.2 %</td>
<td><0.1 %</td>
</tr>
<tr>
<td>Spatial effects</td>
<td>1.0 %</td>
<td><0.1 %</td>
</tr>
<tr>
<td>Live time</td>
<td>few %</td>
<td>0.25 %</td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 7 to 3 cuts</td>
<td>1.5 %</td>
<td>0.2 - 0.3 %</td>
</tr>
<tr>
<td>Total</td>
<td>2.7 %</td>
<td>< 0.6 %</td>
</tr>
</tbody>
</table>

- Two "identical" detectors, Low bkg
- Distance measured @ 10 cm + monitor core barycenter
- Same weight sensor for both det.
- Accurate T control (near/far)
- Same scintillator batch + Stability
- "identical" Target geometry & LS
- Measured with several methods

15 June 2006

D. Reyna (ANL)
Studies of Systematic Effects

Systematic Pulls on χ^2 Analysis
Study of Near Detector

Analysis Includes Location of Spent Fuel Storage (~0.5% of signal)

Far location is optimal for $\Delta m^2 > 2.5 \times 10^{-3}$ eV2
Background Summary

<table>
<thead>
<tr>
<th>Detector</th>
<th>Site</th>
<th>Accidental Materials</th>
<th>PMTs</th>
<th>Correlated Fast n</th>
<th>μ-Capture</th>
<th>(^9\text{Li})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOOZ</td>
<td></td>
<td>Rate ((d^{-1}))</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.6 ± 0.4</td>
</tr>
<tr>
<td>(24 (\nu/d))</td>
<td></td>
<td>Rate ((d^{-1}))</td>
<td>0.42 ± 0.05</td>
<td>1.01 ± 0.04\textit{(stat)} ± 0.1\textit{(sys)}</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Far bkg/(\nu)</td>
<td>1.6%</td>
<td></td>
<td>0.2%</td>
<td>0.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systematics</td>
<td>0.2%</td>
<td></td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td>Double Chooz</td>
<td></td>
<td>Rate ((d^{-1}))</td>
<td>1 ± 0.1</td>
<td>1 ± 0.1</td>
<td>0.15 ± 0.15</td>
<td>0.06 ± 0.03</td>
</tr>
<tr>
<td>(69 (\nu/d))</td>
<td></td>
<td>Far bkg/(\nu)</td>
<td>1.4%</td>
<td>1.4%</td>
<td>0.2%</td>
<td>0.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systematics</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Double Chooz</td>
<td></td>
<td>Rate ((d^{-1}))</td>
<td>7.2 ± 1.0</td>
<td>7.2 ± 1.0</td>
<td>1.4 ± 1.4</td>
<td>0.42 ± 0.2</td>
</tr>
<tr>
<td>(990 (\nu/d))</td>
<td></td>
<td>Near bkg/(\nu)</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.14%</td>
<td>0.04%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systematics</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.2%</td>
<td>0.02%</td>
</tr>
</tbody>
</table>

![Fast neutron](image1)

![\(^9\text{Li}\)](image2)

![Accidentals](image3)
Possible Measurement

- **Systematic Errors**
 - $\sigma_{\text{abs}} = 2.0\%$
 - $\sigma_{\text{rel}} = 0.6\%$
 - $\sigma_{\text{scale}} = 0.5\%$
 - $\sigma_{\text{shape}} = 2.0\%$

- **Energy Resolution**
 - $\sigma_E = 7\%$

- **1% uncorrelated bin-to-bin background subtraction error**

- **Oscillation Parameters**
 - $\Delta m^2_{31} = 2.5 \times 10^{-3} \text{ eV}^2$
 - $\sin^2(2\theta_{13}) = 0.08$

![Double Chooz](image)
Funding

- **France**
 - Scientific approval by both DSM-DAPNIA and CNRS-IN2P3 since March 2004
 - Recently reviewed and approved for funding starting in 2006
- **Germany**
 - Currently funded through the Max Planck society with major increase in 2006
 - Universities groups are in the final approval process at the Deutsche Forschungsgemeinschaft (DFG)
- **United States**
 - Recommended by NuSAG and HEPAP
 - DOE-HEP has taken no action on the construction proposal (submitted in Oct. 2004) but has rejected a separate R&D request for 2006
 - Funding from NSF is being investigated
- **Russia**
 - Participation funded through Russian Foundation of Basic Research
- **Spain**
 - Just completed review.
 - Funding approval is expected in 1-2 weeks.
- **England**
 - Already funded for developmental work

French Press Release (this week):

Double previous contribution to avoid delay
Expected Milestones

Limit @ 90% C.L. for $\sin^2(2\theta)=0$

$\Delta m^2_{atm} = 2.5 \times 10^{-3} \text{ eV}^2$ (with 20% uncertainty)

- **2007**: assembly of far detector on site
- **2008**: data taking with far detector
 - Start of Near lab building
- **2009**: assembly of near detector
- **2010**: data taking with 2 detectors
Final Comments

- Double Chooz is ready to begin construction
 - Funding has been established
 - covering the shortfalls of the US-DOE
 - Expect to begin data in 2008
 - Should confirm previous limit within 6 months
- Double Chooz is also participating in an international effort on Nuclear Non-Proliferation
 - See also talk by M. Cribier
- More details in Poster Session V
 - Abs. 51: Physics Potential
 - Abs. 58: Scintillator Development
 - Abs. 63: Simulation Strategy
 - Abs. 64: Non-Proliferation Studies