MSW Oscillations - LMA and Subdominant Effects

Alexander Friedland

Theoretical Division, T-8 Los Alamos National Lab

Neutrino 2006, Santa Fe

June 15

Outline

- Standard LMA solution: basic features
- Subdominant effects: status and prospects
 - ✤ 3-v oscillations (briefly)
 - * Searching for non-standard v interactions
 - Searching for v magnetic moments
- Solar neutrinos must be considered together with atmospheric, reactor, and v beam experiments + astrophysics/colliders
 ♦ Precision neutrino physics → important mode of searching for new physics
- By no means exhaustive; not considered here
 - effects of density fluctuations (negligible)
 - ✤ sterile neutrinos
 - \clubsuit neutrino couplings to hypothetical light scalars
 - * ...

How does LMA work?

- ⁸B survival probability is ~30%, approx. flat in E_v + day/night is small
- ☆ GALLIUM experiments see about 54% of the SSM prediction → survival probability must be higher for low energy *pp* neutrinos

- $P_{ee}^{AD} = \cos^2\theta_{\odot}\cos^2\theta + \sin^2\theta_{\odot}\sin^2\theta$
- Two limits: • Matter dominates $\Delta m^2/2E < 2^{1/2}G_F N_{\odot} \Rightarrow \theta_{\odot} \rightarrow \pi/2$ $\Rightarrow P_{ee} \rightarrow sin^2\theta$ • Vacuum dominates $\Delta m^2/2E > 2^{1/2}G_F N_{\odot} \Rightarrow \theta_{\odot} \rightarrow \theta$ $\Rightarrow P_{ee} \rightarrow cos^4\theta + sin^4\theta = 1 - (sin^2 2\theta)/2 \ge 1/2$ averaged vacuum oscillations

Designing LMA

Fine-tune \Delta m² such that the transition between the regimes occurs at the intermediate solar energies \Delta m² \cap G_FN_{\overline\$} (10⁶eV) \cap a few \times 10⁻⁵ eV²

Remarkably, checks with KamLAND reactor v osc.!

Designing the whole spectrum

★ Tune solar splitting to matter potential in solar center
★ $\Delta m^2 \sim G_F N_{\odot}$ (10⁶eV) ~ a few × 10⁻⁵ eV²

make mixing angle large, so that could be checked with reactor antineutrinos (basically oscillations in vacuum)

The 2nd splitting should be discoverable with atmospheric neutrinos:

* set vacuum oscillation length for typical $E_{atm} \sim 10^9 \text{ GeV}$ to be $\sim 10^3 \text{ km} \rightarrow \Delta m_{atm}^2 \sim 10^{-3} \text{ eV}^2$

make mixing angle large (basically oscillations in vacuum)

• Make θ_{13} small, so as not to confuse people

 \bullet two-neutrino analysis for both solar and atmospheric neutrinos

Neutrino 2006, 6/15/2006

Subdominant effect II: novel neutrino NC interactions

Idea is as old as matter effects in neutrino oscillations
 (L. Wolfenstein, PRD 17, 2369 (1978))

PHYSICAL REVIEW D

VOLUME 17, NUMBER 9

1 MAY 1978

Neutrino oscillations in matter

L. Wolfenstein

Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 (Received 6 October 1977; revised manuscript received 5 December 1977)

The effect of coherent forward scattering must be taken into account when considering the oscillations of neutrinos traveling through matter. In particular, for the case of massless neutrinos for which vacuum oscillations cannot occur, oscillations can occur in matter if the neutral current has an off-diagonal piece connecting different neutrino types. Applications discussed are solar neutrinos and a proposed experiment involving transmission of neutrinos through 1000 km of rock.

✤ J. W. F. Valle, Phys. Lett. B199, 432 (1987)

✤ E. Roulet, Phys.Rev. D44 935, (1991)

M.M. Guzzo, A. Masiero, S.T. Petcov, Phys.Lett. B260, 154 (1991)

✤ … and many, many others

Neutrino 2006, 6/15/2006

Some neutrino interactions are very poorly known to this day!

Parameterize additional contributions due to heavy scalar/vector exchange as

 $L^{NSI} = -2\sqrt{2}G_F(\bar{\nu}_{\alpha}\gamma_{\rho}\nu_{\beta})(\epsilon^{f\tilde{f}L}_{\alpha\beta}\bar{f}_L\gamma^{\rho}\tilde{f}_L + \epsilon^{f\tilde{f}R}_{\alpha\beta}\bar{f}_R\gamma^{\rho}\tilde{f}_R) + h.c.$

* Well established only for the μ -neutrino $\epsilon_{e\mu} \lesssim 10^{-3}$, $\epsilon_{\mu\mu} \lesssim 10^{-3} - 10^{-2}$

poorly known for the e-neutrino and especially for the τ-neutrino

 $\begin{array}{l} -0.4 < \epsilon_{ee}^{uuR} < 0.7, \ |\epsilon_{\tau e}^{uu}| < 0.5, \ |\epsilon_{\tau e}^{dd}| < 0.5, \\ |\epsilon_{\tau \tau}^{uuR}| < 3 \quad \text{S. Davidson et al, JHEP 0303, 011 (2003)} \end{array}$

Neutrino 2006, 6/15/2006

Bounds from charged leptons don't necessarily apply

In addition to the SU(2)-preserving operators

$$\frac{1}{M^2}LLq_Rq_R \to \frac{1}{M^2}(\bar{q}_R\gamma^\mu q_R)(\bar{\nu}\gamma_\mu\nu)$$

there could be large potential contributions from SU(2) breaking operators*, e.g.,

$$rac{1}{M^4}ar{q}_R(H^\dagger\sigma^a L)(ar{L}\sigma^a H)q_R
ightarrowrac{v^2}{M^4}(ar{q}_R\gamma^\mu q_R)(ar{
u}\gamma_\mu
u)$$

*charge lepton operators would be induced at one loop

✤ Berezhiani & Rossi, Phys.Lett.B535, 207 (2002)

✤ Davidson, Peña-Garay, Rius, Santamaria, JHEP 0303, 011 (2003)

Important if new physics is close to EW scale

Need a " v_{τ} beam"!

Both solar and atmospheric neutrinos partially oscillate into the tau-neutrino state

- In the standard case, the oscillation parameters are quite well known by now
- > Neutrino beams (K2K, MINOS) also produce v_{τ} by oscillations
- * Look for anomalies in the NC event rate caused by ν_{τ} (detection effect)
- Modified interactions of ν_τ with matter may make the oscillation pattern incompatible with the data (propagation effect)

Flavor-changing NSI: effects on solar neutrino energy spectrum

 Transition from the "vacuum regime" (low E_v) to the matter dominated regime (high E_v) deviates from the canonical MSW prediction

 ϵ per quark $\sim 10^{\text{--}1}$ of the SM

$$\epsilon_{e\tau} \equiv \sum_{f \equiv u,d,e} \epsilon_{e\tau}^{J} n_{f} / n_{e}$$
$$\epsilon_{e\tau}^{f} \equiv \epsilon_{e\tau}^{fL} + \epsilon_{\alpha\beta}^{fR}$$

Neutrino 2006, 6/15/2006

Flavor-changing NSI: effects on solar neutrino energy spectrum

- Survival probability at SNO could show more or less energy dependence, depending on the sign (phase) of the NSI!
- Low-energy bin at SNO/SK critical!

$$\epsilon_{\alpha\beta} \equiv \sum_{f=u,d,e} \epsilon^{f}_{\alpha\beta} n_{f}/n_{e}$$
$$\epsilon^{f}_{\alpha\beta} \equiv \epsilon^{fL}_{\alpha\beta} + \epsilon^{fR}_{\alpha\beta}$$

More radical effects on solar v's

Friedland, Lunardini, Peña-Garay, Phys. Lett. B594, 347 (2004);

Guzzo, de Holanda, Peres, Phys.Lett. B591, 1 (2004);

Miranda, Tortola, Valle, hep-ph/0406280 Neutrino 2006, 6/15/2006 Alex Friedland, LANL

Survival probability for LMA-0

Phys. Lett. B594, 347 (2004)

Atmospheric neutrino oscillations and new interactions

- The same flavor-changing neutrino interactions can be probed with atmospheric neutrinos!
- Large NSI cannot be excluded by present data;
 ε_{ee}, ε_{eτ}, ε_{ττ} NSI parameters correlated in a certain way
- The key is to do a full 3generation analysis

A.F., C. Lunardini, M. Maltoni, Phys. Rev. D70, 111301 (2004);

A.F., C. Lunardini, Phys. Rev. D72, 053009 (2005)

Neutrino 2006, 6/15/2006

Effect of NSI on the oscillation fit

* The best-fit region shifts to smaller θ and larger Δm^2 :

MINOS, $v_{\mu} \rightarrow v_{\tau} mode$

↔ ν_µ → ν_τ mode:measure "true"vacuum parameters∴ 25*10²⁰ protops on

25*10²⁰ protons on target

Either discover new physics, or place best constraints

hep-ph/0606101

Neutrino 2006, 6/15/2006

MINOS, $v_{\mu} \rightarrow v_{e} \mod e$

- $\stackrel{\bigstar}{ } \nu_{\mu} \rightarrow \nu_{e} \text{ mode: direct} \\ \text{conversion due to} \\ \text{new flavor changing} \\ \text{interactions} \\ \end{cases}$
- 25*10²⁰ protons on target: shrinks currently allowed parameter space by a factor of 2
- θ₁₃ or New
 interactions?

hep-ph/0606101

Neutrino 2006, 6/15/2006

Subdominant effect III: magnetic (transition) moment

✤ Again, as an alternative to oscillations, a very old idea

- ✤ A. Cisneros, Astrophys. Space Sci. 10, 87 (1971).
- Renaissance in mid-1980's, to explain Homestake time variation
 - M. B. Voloshin, M. I. Vysotsky, L. B. Okun, Zh. Eksp. Teor. Fiz. 91, 446 (1986) [Sov. Phys. JETP64, 446 (1986)].
 - ◆ E. Kh. Akhmedov, Phys. Lett. B 213, 64 (1988).
 - ✤ C. Lim & W. Marciano, Phys. Rev. D 37, 1368 (1988).
 - ✤ … and many others
- As late as 2002 (before KamLAND) could still fit all solar data with this mechanism (spin-flavor flip in the radiative zone)
 A E & A Gruzinov, Astropart Phys. 19, 575 (2003)

Neutrino magnetic moment: basics

Effective low-energy operator

 $\mathcal{L}_{EM} = -\frac{1}{2} \mu_{ab} (\nu^{\alpha})_a (\sigma^{\mu\nu})_{\alpha}{}^{\beta} (\nu_{\beta})_b F_{\mu\nu} + \text{h.c.}$ = $i \mu_{ab} (\tilde{\chi})_a \vec{\sigma} (\nu)_b (\vec{E} + i\vec{B}) + \text{h.c.}$ \bigstar Dim / when SU(2)×U(1) structure restored

 $[O_B]_{ab} = g'(\overline{\ell^c}_a \epsilon H) \sigma^{\mu\nu} (H \epsilon P_L \ell_b) B_{\mu\nu},$

 $[O_W]_{ab} = ig\varepsilon_{mnp}(\overline{\ell^c}_a\epsilon\tau^m P_L\ell_b)(H\epsilon\tau^n H)W^p_{\mu\nu}$

Majorana neutrino: flavor-diagonal moments vanish identically (spinors anticommute); flavor-changing (transition) moments are allowed

Ultrarelativistic Majorana v undergoes spin-flavor precession in external magnetic fields Majorana neutrino transition moment:bounds (short version)* Direct bounds: $2\mu_{\epsilon\beta} < 0.9 \times 10^{-10} \mu_{B}$ $\mu_B \equiv e/(2m_e)$

reactor antineutrino scattering

NUMU experiment, Phys.Lett. B615, 153 (2005)

* Astrophysics $\mu \lesssim 3 \times 10^{-12} \mu_B$

★ red giant cooling via plasmon decay to vv
★ G. Raffelt, Phys. Rev. Lett. 64, 2856 (1990)

Magnetic moment and mass:naturalness considerations* Magn. mom. operator radiatively generates neutrino mass* While for Dirac neutrinos this leads to a naturalness bound

$\mu_ u \lesssim 10^{-14} \mu_B$

N. Bell, V. Cirigliano, M. Ramsey-Musolf, P. Vogel, M. Wise, Phys.Rev.Lett.95, 151802 (2005)

 for Majorana neutrinos the analogous bound is much weaker (because of the Voloshin symmetry, Voloshin 1987)

$\mu_ u \lesssim 10^{-10} \mu_B$

S. Davidson, M. Gorbahn, A. Santamaria, Phys.Lett.B626, 151 (2005)

Again, new physics scale required to be close to EW scale to be near the bound

Neutrino 2006, 6/15/2006

Searching for μ_v with solar v's at KamLAND

 \therefore KamLAND is VERY sensitive to anti- v_e from the Sun

◆ looks for events above 8.3 MeV where there are no reactor antineutrinos; excess over predicted background would indicate conversions of solar ⁸B neutrinos
 ◆ Current bound: ≤ 3 × 10⁻⁴ v_e → anti-v_e conversion

(KamLAND: Phys. Rev. Lett. 92, 071301 (2004))

Solar magnetic fields

radiative zone (r < 0.7 R_{SUN})

- possible primordial fields
- ❖ Strength constrained to be ≲ a few MG by oblateness, stability arguments (A.F., A. Gruzinov, Astrophys. J. 601, 570, 2004)

convective zone (r > 0.7 R_{SUN})

- ✤ fields generated by turbulence
- bounds on B from observations at the surface, turbulent equipartition, energy arguments (e.g, Y. Fan, Rev. Solar Phys. 1, 1 (2004))

Neutrino 2006, 6/15/2006

Radiative zone: quantitative analysis

- The effect could be large (order one!) for small mixing angles (resonance)
- For large mixing angles, including the experimentally measured oscillation parameters the effect is (as yet unobservably) small
- CAUTION: For large mixing angles resonance condition modified!

A.F., hep-ph/0505165

Neutrino 2006, 6/15/2006

Convective zone: neutrino in turbulent fields

 * "Turbulent" magnetic field resets oscillation phase \rightarrow random walk in the flavor space

- Kolmogorov turbulence: Miranda, Rashba, Rez, Valle, Phys.Rev.D70, 113002 (2004)
- Depending on the model for the magnetic field, get

$$P(\nu_e \to \bar{\nu}_e) \sim (10^{-5} - 10^{-4}) \left(\frac{\mu}{10^{-11}\mu_B}\right)^2$$

Sensitivity already competitive with laboratory experiments; may improve with the next KamLAND data release

Alex Friedland, LANL

A.F., hep-ph/0505165

Searching for new physics with neutrinos

- * New physics at \gtrsim M_{EW} could generate effective low-energy operators that modify
 - 1. v interactions with matter
 - 2. v interactions with EM fields
- Resulting subdominant effects could be detectable with precision measurements (SNO, Borexino, KamLAND, MINOS)
 - Solar, atmospheric, reactor and beams all probe NC interactions; combined analyses needed
 - ✤ If deviations from SM found, implications would be profound
 - Even if not, we will learn about neutrino properties
 - At present neutral current interactions of v_{τ} are basically unknown
- Solar neutrinos may reveal neutrino transition moment. Future KamLAND data on anti-v_e from the Sun very important!

Neutrino 2006, 6/15/2006