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Introduction

Neutrino interactions around 1GeV region
Charged current quasi-elastic scattering (CCQE) v +n— u +p

Neutral current elastic scattering vt N—=v +N
Single t,m,K resonance productions v+ N—= 1+ N + 1 (1K)
Coherent pion productions vitX—=>1+X +n
Deep inelastic scattering v+ N—= 1+ N+ mn (.K)
T Cross-sections AL (I : lepton, N,N’ : nucleon, m : integer)
12 | Total (NC+CC)

S To study neutrino interactions,
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Importance of neutrino interaction studies

*To search for the v, appearance in the v oscillation experiments,
n¥ productions will be one of the major backgrounds.

Asymmetric n° decay event looks like v, appearance signal.
(Energetic y looks like
e from v, charged current interaction.)

*Charged Current Quasi-Elastic scattering (v,+ n — p + p)
IS very useful to measure the neutrino energy spectrum.

However, © interacts in nucleus.

Because of this, some of the single © production events
looks like CC quasi-elastic events.

It is important to understand
the neutrino induced = productions
and =« interactions in nucleus.




Study of neutral current single =° production
at K2K
(with water Cherenkov detector)
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The K2K near detectors

E, ~1GeV
Almost pure v, beam (~98%)

It is possible to investigate
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various neutrino interactions 6
with the K2K near detectors. 4+
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NC n® measurements in 1kt detector
Neutral current single n° production
v+N=v+N+r

Observable in 1kt : 0
(Cherenkov threshold of proton > 1GeV/c)

2 vs from ni¥ are identified as 2 electron like rings
—> reconstruct invariant mass
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NC n0 measurements in 1kt detector

1kt water Cherenkov detector

high efficiency in finding low energy =°

n¥ sample selection criteria
2 e-like rings

reconstructed mass 85~215MeV/c?

— | detection efficiency of 0 ~49% Tﬁ/multin
86% from NC interactions :

NC coherent n°©
10%

Contamination from charged current NC resonant =

—> low momentum p (Pu < 200MeV/c)
can not be identified.

Pions generated in Oxygen interacts with nucleons.

(Inelastic scatterings, charge exchange and absorption in Oxygen
are considered in Monte-Carlo simulation program)



NC n0 measurements in 1kt detector

momentum and direction of =®
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There still remains interactions

other than the neutral current n° production

Estimate the efficiency and the purity
by using Monte-Carlo simulation.



NC n0 measurements in 1kt detector

Background subtraction (shaded area in Fig. a)

Efficiency correction (Use detection efficiency curve)
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NC n0 measurements in 1kt detector

Cross-section of NC =° production
Use single ring u-like events as a reference.

K2K Data set : 3.2x10%° POT

25t fiducial ( r<2m, -2m<z<0m) 25t fiducial ( r<2m, -2m<z<0m)

2 ring FC events, both e-like Fully contained p-like events
M, =85—215 MeV/c? and Partially contained events
(3.61+0.07+0.36)x10° events  (5.65+0.03+0.26)x10%events
Major sources of the systematic error Major source of the systematic error
DIS model dependence (5.6%) vertex reconstruction (4%)

NC/CC o uncertainty (3.2%)
Ring counting (5.4%)
Particle 1D(4.2%)

n%u ratio @ <Ev>~1.3GeV
—p 0.064+0.001(stat.)+0.007(sys.)

(Prediction from our Monte-Carlo simulation : 0.065)
S. Nakayama et al. PLB619(2005) 255-

*)Flux averaged charged current total cross-section
(used in Monte-Carlo simulation program)
1.1 x 10-38cm?



Study of charged current coherent © production
at K2K
(with SciBar detector)



The SciBar detector

Installed in the summer 2003 .., .
* Full Active tracking detector gy irudeq MlEStstatatatetots

Extruded scintillator scintillator
with WLS fiber readout (15t)
Cell size :2.5x 1.3 x300cm3
Light yield :7~20p.e. /MIP/cm

(2 MeV) _
Multi-anode
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reconstruct vertex
{identify the interaction PMT @\4 Chlﬁ I =
» High efficiency L
even for the short tracks i f.,' g
« Can detect ISR RS y
low momentum protons shlihibid Bl
down to ~350 MeV/c. Wave-length =\ e ghioctor
* PID (p/=) shifting fiber = ==
& momentum measurement - |
by dE/dx.




Some distributions from K2K

In K2K, number of forward going particles
was smaller than expected.
If we assume quasi-elastic scattering and reconstruct g2,

deficits were observed in the small g2 region.
Reconstructed g2 distributions from SciBar

ltrack | &% CCQE 0% .. from p /6, assuming
o CCn CCQE kinematics
2 rec . . 2
o Mutin D =2ES(E,mp,C086,) —m,
= | NC Fre _ mnEﬂ—mflIZ
75 1 1.25 " m,-E,+p,cos0,

2track
non-QE-like

2track

0 02505075 1 125 0 0.250.50.75 1 1.25
92.. (GeVic)® 92, (GeVic)’
Disagreement of single = production or coherent © production?




Charged current coherent © production
Coherent ©t production Resonance single w production

/
. v roton
Vv \

T

In the coherent ©t production,
the neutrino scatters off the nucleus with small energy transfer

and there is no nucleon in the final state.
The model used in the Monte-Carlo simulation

(Rein & Sehgal’'s model) has been checked in the higher energy region.

In the resonance n production,
proton or neutron exists in the final state.

Signature of charged current coherent © production
* a u and a «t* in the final state.
* No activity in the area of the vertex.




Charged current coherent = analysis
with the SciBar detector

* For CC quasi-elastic (CCQE) events,
expected direction of proton
can be derived from p, and ..

(Direction of v is well defined.)
 To identify CCQE events,
compare the observed direction of p
with expectation.
a) CCQE-like 16,70 pecteal <29°
b) CC non-QE like : [6,-6.,pccteql>29°

The SciBar detector CCQE Ci?]”g::?gt;
IS possible to find u, wt, p tracks. R —— o
Run 4939 Spill 19016 TRGID 1 Ijjl
How to identify type of interaction p; i
(2 track events) N, ;

0 20 40 60 80 100 120 140 160 180
Ab,(DEG.)



Charged current coherent = analysis

with the SciBar detector

Use dE/dx to identify particle type

(proton or pion/muon).

85% efficiency, 80% purity for protons

(estimated by Monte-Carlo simulation).

muon roton
(MRD track) %4 track QE)
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Charged current coherent = analysis

with the SciBar detector
Reconstructed g2 distributions (SciBar)
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Charged current coherent = analysis

* Vertex activity rejection
Cut by the energy deposit around the vertex.

2trk non-QE pion-like 2trk CC QE

e Data {a} a control sample.{h]
[] CCcoherent ¢
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B CCGE
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* Reconstructed g 2 cut

Data Select events with
CC Coherent pion qzrec < 01 O (GeV/C)2

CC1r,DIS,NC

ot # of events 113
=P | Efficiency 21.1%

Purity 47.1%
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Charged current coherent = analysis

In order to reduce the systematic uncertainties,
take ratio to the charged current total cross-section.

o(CC — Coh )
o(v,CC)

= ( 0.04 £0.29( stat. )*732 (syst. )) x102

And the upper limit of this cross-section ratio is obtained to be
o(CC — Coh r)
o(v,CC)

<0.60x 10° @ 90% CL

M. Hasegawa et al.,
Phys.Rev.Lett.95:252301,2005

~30% of Rein-Sehgal's model expectation

Major sources of systematic error
Uncertainty of
differential cross-section of resonant © production
and & interactions in carbon (from resonant = production)



Study of charged current single ©* production
at MiniBooNE



MiniBooNE beamline
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MiniBooNE detector

800 ton CH, detector
Signal region
1280 8inch PMTs

Signal Region

Veto Reglon

Veto region
240 8inch PMTs
A e _ Use Cherenkov light

& & & & & 2 aaa

and scintillation light

..C“
s in”

Typical wevent




Neutrino interactions at MiniBooNE

Monte-Carlo predicted v, flux
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Neutrino interactions at MiniBooNE

Dominant interactions Multi &
B 4%

Charged current NC mom8%
guasi-elastic scattering NC m°m3%
Charged & neutral current ~ CCn'm5%

single © production

CC QE
O 48%

CCnt
B 31%
To study single = production, 1%
CCQE events are used for the normalization. NCEL
(In order to reduce systematic uncertainties.)

=== This Analysis:
3.2x10%° protons on target

60k CCQE events (after selection cuts)
40k CC1n* events (after selection cuts)




Charged current Quasi-Elastic scattering (miniBooNE)

vy, n—>uwp * Neutrino-Induced Event Selection Cuts
e v \7e (Mainly timing and VETO cuts)
: « CC Selection Cut
Observed particles (Search for the delayed signal
- from decay electron)
H » < 3 sub-events
* decay electron (No invisible ©ts in an event)

. event topology

. Fraction of on- vs. off- ring light

- PMT hit timing

. Fraction of prompt vs. late light

. u-like energy loss

. given E, is track length consistent with u?
. 10 variable “Fisher discriminant”

DONs = i Result: 86% CCQE purity
ENAAN 20 %444 most of background from CC1r*
Typical p-event (due to © absorption in nucleus)




Charged current Quasi-Elastic scattering (MiniBooNE)

measured visible energy

v
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+ a little scintillation Iight
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Charged current Quasi-Elastic scattering (miniBooNE)

Using the obtained reconstructed energy and the direction of p,
energy of neutrino is calculated as follows:

2
o1 2M E, —m’
Y 2 2
2 M, ~E,+(E? ~m? Joost),

Energy distribution
used for the cross section measurement

- | [ | [ =0T
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_ 0.04 * -
. _ i - ]
o1 Tt ;Tt 0.02}- ] -
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Charged current single n* production (MiniBooNE)

wpm
L uwv, Observed particles
ey 2 e
R g » 2 decay electrons

(from uw and nt*)

Event selection criteria
. Neutrino-Induced Event Selection Cuts

. CC Selection Cut (require decay electron)
. exactly 3 sub-events
. 2" 2 sub-events consistent with Michel e (20 < Noyr < 200)

Close Michel

Purity : 84%
Main Backgrounds
@ A multi = production

P and QE
Tc+
Far Michel Inclusive

+

K final states




Charged current single ©* production

measured visible energy

n
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reconstructed direction of p

Vv

Wt
D, n/<p n

Fraction of Events / 0.1 GeV

0.1

0.05

0

-1

Using Cherenkov light.
cos(0) =1 ~ low Q?

|__|Monte Carlo
e Data

PRELIMINARY

Monte Carlo error bars from: i
neutrino o,
light extinction,
& light scattering length e
uncertainties gl

8-
.F.+.¢.$
oo @o e

11_.+.+.+.+.+.4-.+.+.4'

-08 -06 04 -02 -0 02 04 06 038

)

Reconstructed cos(eu) after CC1n* Cuts



Charged current single n* production (MiniBooNE)
Neutrino Energy Reconstruction

Assume 2 body kinematics (as in CCQE) "z\/l
Assume A(1232) in final state W
(instead of a proton in CCQE) 0
P A
7.c+
EQE l 2M E m +‘mp %018:—‘ 1 1 T T 1 T T 1 T T 1 | T T ‘ L I_:
v (0] - ]
2M —E +\/ —m )cos@ ~ 016/ -
o B -8 B
E 0‘14:_ .~y [ |Monte Carlo _:
. g - e Data .
Energy resolution Fouz +  PRELIMINARY -~
~20% © 0.1 -
E E . Monte- Carlo error bars from: E
.g 0.08 :_ * ?i:llqtrg;c‘zin(,:tion, _:
L 0.06} & light .scrflttering length {
ooek -
0.025— T, —
Of_ | r._|rm | | F.*|.-.+O‘L.+.¢.+H_.+.+. _.E
0_ I \0‘5| L1 1 1 L1 1 \1‘5\ I 2 T — |2‘5| I _3

Reconstructed ESF (GeV) after CC1x* Cuts



CC single n* / CC Quasi Elastic cross-section ratio
(MiniBooNE)

efficiency corrected ¢ (CC n*)/ o(CC QE)
measured on CH,

1 (efficiency corrections from MC)
L2 PRELIMINARY E

_ current systematic errors
o8 Jﬁ( T 1 - light propagation in oil: ~20%

- v cross sections: ~15%
- energy scale: ~10%

mi— ‘|‘++ — - statistics: ~5%
ST -:

Y T T S first measurement of this
(CCPIP/CCQE) o vs. E, (GeV) cross section ratio on a
(J. Monroe, M. Wascko) nuclear target at low energy!

(Sam Zeller @ NO-VE workshop 2006)



CC single ©* production effective cross-section

(MiniBooNE)

» multiplying measured CC =*/QE ratio by QE o prediction

(oqe With M,=1.03 GeV, BBA non-dipole vector form factors)

« ~25% lower than prediction, but within errors
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(J. Monroe, M. Wascko)

/

* MC error band from external v data constraints
(Sam Zeller @ NO-VE workshop 2006)




Plausible Interpretation

* since MiniBooNE 15t meas
on nuclear target at these E's

(N

—

e at 1st glance, one might think
this is pointing to a potential
problem with nuclear corrs

&
o

BNL ﬁ

I _NUANCE\A

L e 20% uncertainty

o
o

alv,p —> wpn) (107 cm?)

bl
e

* but free nucleon c’s disagree!

£
o

* MC prediction splits difference | | "

E, (GeV)

 MiniBooNE results more consistent with ANL than BNL

- new data helping to decide between 2 disparate c meas
- once final, type of info that can feed back into open source MC

(Sam Zeller @ NO-VE workshop 2006)



Summary

K2K neutral current n° production cross-section measurement
n%u ratio @ <Ev>~1.3GeV
0.064+0.001(stat.)=0.007(sys.)

(Prediction from our Monte-Carlo simulation : 0.065)
S. Nakayama et al. PLB619(2005) 255-

K2K Charged current coherent n* production search

o (CC =Coh ) _460x 102 @ 90% CL
o(v,CC)

~30% of Rein-Sehgal's model expectation

MiniBooNE charged current single n* production
cross-section measurement

Ev from 0.5t0 1.4 GeV
~25% smaller than the Monte-Carlo expectation.

But still within error.
One of the old experiments gives similar result(?)



(Near) Future prospects

* New NC 1rt° results from MiniBooNE

Some results with improved n® ID were presented recently.
(cross-section was not presented..)
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L 100~ Dat % B % e Data % 0.3~ o Data =
> B a O L 3 MC 1o flux shape error | c r [ MC Io flux shape
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» SciBooNE (SciBar detector in the BooNE beamline)
IS expected to start soon.
Study interactions with both v and anti-v beams.
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	Plausible Interpretation

