New results from AMANDA

Kurt Woschnagg

University of California – Berkeley

for the AMANDA collaboration ► http://amanda.uci.edu

Neutrino 2004, Paris, June 14-19

TO TO THE TRANSPORTEMENT AND THE TO THE TRANSPORT

#

The AMANDA Collaboration

United States

Bartol Research Institute UC Berkeley UC Irvine Pennsylvania State UW Madison UW River Falls LBNL Berkeley

Europe

VUB-IIHE, Brussel ULB-IIHE, Bruxelles Université de Mons-Hainaut Imperial College, London DESY, Zeuthen Mainz Universität Wuppertal Universität Stockholms Universitet Uppsala Universitet Kalmar Universitet

South America

U. Simón Bolivar, Caracas

Antarctica

South Pole Station

~150 members

[not to scale]

and the second second

The Antarctic Muon and Neutrino Detector Array

Neutrino detection in polar ice

Longer absorption length \rightarrow larger effective volume

Detector medium: ice to meet you

Measurements:

in-situ light sources
atmospheric muons

Average optical ice parameters: $\begin{array}{c} \lambda_{abs} \sim 110 \text{ m} @ 400 \text{ nm} \\ \lambda_{sca} \sim 20 \text{ m} @ 400 \text{ nm} \end{array}$

AMANDA Physics Topics

Astrophysics / Cosmology / Particle Physics

Primary CR spectrum

- → atmospheric muons / neutrinos (also calibration of AMANDA)
- \rightarrow CR composition (with surface detector SPASE-2)

CR origin (acceleration sites: AGN, GRBs)

→ extra-terrestrial flux (diffuse / focused / punctual / transient) @ >TeV energies

Dark matter / exotic particles: neutralinos, magnetic monopoles, extra dim.

- → WIMP signature: excess from center of Sun/Earth
- \rightarrow topological defects: extra-terrestrial UHE diffuse flux

SN monitor of the Milky Way

 \rightarrow burst of low-energy neutrinos (global noise rate increase)

Reconstruction handles

	Up/Down	Energy	Source direction	Arrival time	Count rates
Atmospheric v	×				
Diffuse v, Cascades, UHE events	×	×			
Point sources: AGN, WIMPs	×	×	×		
GRB	×	×	×	×	
Supernovae					×

Collaboration Analysis Policy

'blindness'

= cuts are optimized on fraction of data or on a time-scrambled data set (except for SN searches which are based on detector noise rate monitoring)

AMANDA energy coverage

Energy range	Analysis	Production site(s)			
~MeV	SN	Supernovae			
GeV - TeV	Atmospheric v Dark matter	Atmosphere Earth, Sun			
TeV - PeV	Diffuse Cascades Point sources	AGN, GRB,			
PeV - EeV	UHE	AGN, TD,			
> EeV	EHE	?			
AMANDA-II 0° EeV PeV TeV $I80^{\circ}$ v_{μ} detection					

Atmospheric neutrinos

AMANDA test beam(s): atmospheric ν (and μ)

- Neural Network energy reconstruction
- Regularized unfolding

First spectrum > 1 TeV (up to 300 TeV) - matches lower-energy Frejus data

Includes 33% systematic uncertainty

Search for a diffuse ET neutrino flux (cascades)

4π coverage for cascades

2000 data sample (AMANDA-II) 197 days livetime 1.2·10⁹ events @ trigger level

Simulated background

- atmospheric μ (920 d)
- atmospheric $\boldsymbol{\nu}$

Event selection based on

- topology
- energy

Model rejection factor optimized for E⁻² signal

After optimized cuts:

 $N_{obs} = 1 \text{ event}$ $N_{atm \mu} = 0.90 \stackrel{+0.69}{_{-0.43}}$ $N_{atm \nu} = 0.06 \stackrel{+0.09}{_{-0.04}} \pm 25\%_{norm}$

Limit on a diffuse ET neutrino flux (cascades)

Sensitive to all three flavors

Assuming E⁻² signal spectrum

 $E^{2}\Phi_{all v}(E) < 8.6 \cdot 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ (flavor mixing $v_{e}:v_{\mu}:v_{\tau}=1:1:1$) 50 TeV < $E_{v} < 5$ PeV

Glashow resonance: $E^2 \Phi_{\overline{v}_e}(E = 6.3 \text{ PeV}) < 2 \cdot 10^{-6} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

paper submitted to Astropart. Phys.

2000 AMANDA-II limits ×10 better than same searches with AMANDA-B10
1997: Phys. Rev. D67 (2003)
1999: included in submitted AMANDA-II paper

Some AGN core production models excluded at 90% C.L. (dashed in figure)

Ultra High Energy neutrinos PeV - EeV

average all angles

10⁴

10 ³

10 ²

10

1

 $A_{\text{eff}}(\text{m}^2)$

neutrino effective area vs. energy

0≦cos(0)<0.2

$E_v > 10^{16} eV$

Earth opaque

 \rightarrow look up and close to horizon

Bright events (high $N_{channel}$) \rightarrow low atmospheric μ background

Long μ tracks (>10 km)

Limit for UHE neutrinos

PeV - EeV

AMANDA-II (2000): similar A_{eff}, gain in exposure time

Diffuse muon neutrino fluxes

Search for HE neutrino point sources

 A^{veff/cm^2}

 10^{5}

 10^{4}

 $\delta = 25^{\circ}$

 $\delta = 50^{\circ}$

δ=75

Need good pointing resolution $\rightarrow \nu_{\mu}$

Step 1: Select up-going events: Maximize ↑v & minimize ↓μ

Optimize cuts in each declination band

- assume E⁻² signal spectrum
- estimate BG from data in declination band

Combined 2000+2001 analysis

v effective area vs. energy

Year 2001

Search for HE neutrino point sources

below horizon: mostly atmospheric v

above horizon: mostly fake events

-90°

959 events

PRELIMINARY

h

Livetime 2000: 197 days 2001: 194 days 2000+2001: 959 events 465 below horizon

Step 2:

Search for clustering in Northern sky:

Grid search in rectangular sky bins

- bin size depends on declination
- shift grid 4 times to cover boundaries

24 h

No evidence for point sources with an E⁻² energy spectrum based on first 2 years of AMANDA-II data

Consistent with atmospheric v

Search for HE neutrino point sources

 \Rightarrow No excess in significance beyond randomly expected

Search for v_{μ} correlated with GRBs

-1 hour +1 hour I → 10 min → Blinded Window Background determined on-source/off-time Background determined on-source/off-time Time of GRB Low background (Start of T_{00}) analysis due to PRFI IMINARY space and time Year Detector **N**_{Bursts} N_{Obs} Event U.L. N_{BG. Pred} coincidence! 1997 **B-10** 78 (BT) 0.06 0 2.41 **GRB** catalogs: 94 (BT) 2.24 1998 **B-10** 0.20 0 **BATSE, IPN3 & GUSBAD** 1999 **B-10** 96 (BT) 0.20 0 2.24 A-II 44 (BT) 0/0 1.72/2.05 0.83/0.40 Analysis is blind: 2000 (2 analyses) finalized off-source (\pm 5 min) 97-00 B-10/A-II 1.29 312 (BT) 1.45 0 with MC simulated signal 2000 A-II 24 (BNT) 0.24 2.19 0 BG stability required within ± 1 hour 2000 A-II 46 (New) 0.60 1.88 0 2000 A-II 114 (All) 1.24 0 1.47 Muon effective area *(averaged over)* (BT = BATSE Triggered New = IPN & GUSBAD) BNT = BATSE Non-Triggered *zenith angle*) \approx 50,000 m² @ PeV

97-00 Flux Limit at Earth*: $E^2 \Phi_v \leq 4.10^{-8}$ GeV cm⁻² s⁻¹ sr⁻¹

~15× WB flux

*For 312 bursts w/ WB Broken Power-Law Spectrum (E_{break} = 100 TeV, Γ_{Bulk} = 300)

WIMP annihilations in the center of Earth

Look for vertically upgoing tracks

NN optimized (on 20% data) to - remove misreconstructed atm. µ

- suppress atmospheric $\boldsymbol{\nu}$
- maximize sensitivity to WIMP signal

Combine 3 years: 1997-99

Total livetime (80%): 422 days

No WIMP signal found

Limit for "hardest" channel:

$$xx \to \tau^+ \tau^- \to \nu_\mu \qquad M_x = 50 \text{ GeV}$$
$$xx \to W^+ W^- \to \nu_\mu \qquad M_x = 100-5000$$

WIMP annihilations in the Sun

WIMPs from Sun vs Earth:

- + larger mass \rightarrow deeper gravitational well
- + increased capture rate due to addition of spin-dependent processes
- further away

Sun is maximally 23° below horizon

Search with AMANDA-II possible thanks to improved reconstruction capabilities for horizontal tracks

Exclusion sensitivity from analyzing off-source bins

2001 data 0.39 years livetime

No WIMP signal found

AMANDA as supernova monitor

 Bursts of low-energy (MeV) v_e from SN
 ▶ simultaneous increase of all PMT count rates (~10s)

Since 2003: AMANDA supernova system includes all AMANDA-II channels

~MeV

Recent online analysis software upgrades

- can detect 90% of SN within 9.4 kpc
- less than 15 fakes/year

 \Rightarrow will contribute to

SuperNova Early Warning System (with Super-K, SNO, LVD, ...) later this year

coverage

B10: 70% of Galaxy A-II: 95% of Galaxy IceCube: up to LMC

Analysis of 200X data in progress

Hardware upgrade: waveform readout

Physics benefits: Improved energy resolution

UHE/EHE physics

Conclusion and Outlook

No extraterrestrial v signal observed...yet

- Limits (TeV-EeV) on diffuse ET neutrino flux
- First results from AMANDA-II published:
 point source search in 2000 data
- Combined analysis (2000-03) in progress
- Papers on 1997-2000+ data in progress
- Ice description mature
- Digitized waveform readout since 2003
- Will soon contribute to SNEWS

Next Generation: IceCube...(first strings in Jan 2005)