

Mark Thomson University of Cambridge

This talk:

- Overview
- NuMI Beam
- MINOS Far and Near Detectors
- Physics Capabilities
- First Data
 - cosmic muons
 - atmospheric Vs

MINOS : Basic Idea

Measure ratio of neutrino energy spectrum in far detector (oscillated) to that in the near detector (unoscillated)

Partial cancellation of systematics

Neutrino 2004, June 17, Paris

Mark Thomson, Cambridge

MINOS Physics Goals

Demonstrate oscillation behaviour

- confirm flavour oscillations describe data
- provide high statistics discrimination against alternative models:

decoherence, v decay, extra dimensions, etc.

- **\star** Precise Measurement of Δm_{23}^2
 - ~10 %
- **Search for sub-dominant** $v_{\mu} \rightarrow v_{e}$ oscillations
 - first measurements of $\theta_{\textbf{13}}$?
- MINOS is the 1st large deep underground detector with a B-field
 - first direct measurements of ν vs $\overline{\nu}$ oscillations from atmospheric neutrino events

The NuMI beam

- 120 GeV protons extracted from the MAIN INJECTOR in a single turn (8.7µs)
- ★ 1.9 s cycle time
- ★ i.e. ∨ beam `on' for 8.7µs every 1.9 s
- *** 2.5x10¹³ protons/pulse**
- ★ 0.3 MW on target !
- ***** Initial intensity
 - 2.5x10²⁰ protons/year

FERMILAB #98-765D

Tunable beam

- Relative positions of the neutrino horns allow beam energy to be tuned. Act like a pair of (highly achromatic lenses)
- ★ Start with LE beam best for △m²~0.002 eV²

★Beam points 3.3° downwards

• Horn pulsed with 200 kA

METERS

 Toroidal Magnetic field B ~ I/r between inner and outer conducters

Mark Thomson, Cambridge

Neutrino 2004, June 17, Paris

Mark Thomson, Cambridge

Going underground

IF

8m octagonal steel & scintillator tracking calorimeter

- 2 sections, 15m each
- 5.4 kton total mass
- 55%/√E for hadrons
- 23%/ \sqrt{E} for electrons

Magnetized Iron (B~1.5T) 484 planes of scintillator

One Supermodule of the Far Detector... Two Supermodules total.

- *** Steel-Scintillator sandwich : SAMPLING CALORIMETER**
- **★** Each plane consists of a 2.54 cm steel +1 cm scintillator
- **★** Each scintillator plane divided into 192 x 4cm wide strips
- ***** Alternate planes have orthogonal strip orientations (U and V)

Scintillation light collected by WLS fibre glued into groove Readout by multi-pixel PMTs

MINOS FarDet during installation

Far Detector fully operational since July 2003

~ 1.5 T Magnetic Field

***** Charge separation

Momentum measurement

Single Hit Resolution : 2.5 ns

<u>Stopping muon</u> P_{range} = 3.86 GeV/c P_{curvature} = 4.03 GeV/c

MINOS Near Detector

- ★ 1 kton total mass
- Same basic design steel, scintillator, etc

★ <u>Some differences, e.g.</u>

Faster electronics

Partially instrumented:

282 planes of steel

153 planes of scintillator

(Rear part of detector only used to track muons)

+.....

Currently being installed at Fermilab

Test Beam

★Energy response is important – know L, need Ev

- hadronic energy from pulse height (σ_E/E ~ 55%/E^{1/2})
- $\mathbf{E}_{\mathbf{v}} = \mathbf{p}_{\mu} + \mathbf{E}_{had}$

Provides calibration information Test of MC simulation of low energy hadronic interactions

Neutrino 2004, June 17, Paris

MINOS Physics Sensitivity ★ Measurement of Δm² and sin²2θ

For $\Delta m^2 = 0.0025 \text{ eV}^2$, sin² 2 $\theta = 1.0$

Large improvement in precision !

Final sensitivity depends on <u>protons</u> on target

* Direct measurement of L/E dependence of v_{μ} flux * Powerful test of flavour oscillations vs. alternative models

Neutrino 2004, June 17, Paris

Mark Thomson, Cambridge

 * 3 σ discovery potential may significantly eat into current allowed region – exact reach depends on protons on target

* reasonable chance of making the first measurement of θ_{13} !

First beam in December 2004 <u>BUT</u> Already Have Data....

Moon Shadow

*Have recorded 10 M cosmic muons observed shadow of moon *Angular res. improved by selecting high momenta muons (less multiple scattering) /

Mark Thomson, Cambridge

ν induced upward μ

★Expect : 1 Event/6 Days ★Identified on basis of timing

$\boldsymbol{\nu}$ induced upward-going muons

- **★** Look for events coming from below horizon
- Require clear up/down resolution from timing
 - `Good track' > 2.0 m
 - >20 planes crossed

*****Calculate muon velocity from hit times: $\beta = v/c$

Upward μ Analysis: Data vs. MC

NUANCE generator:

- Bartol '96 flux
- MC normalised to data (assuming no oscillations)

Charge-tagging:

- Tag v/\overline{v} using muon charge
- Efficiency depends on:
 - muon momentum
 - track length
 - orientation wrt B-field
- Clean charge ID for approx. 50 % of events —

Understanding	systematics :	Work in progress
---------------	---------------	------------------

Mark Thomson, Cambridge

10	No oscillations	
16	$\sin^2 2\theta = 1$, $\Delta m^2 = 2.5 \times 10^{-3} (eV^2)$	
14		
12	1 .	
10		
8		
4-		
2	PRELIMINA	ARY
0 <u></u>	-0.9-0.8-0.7-0.6-0.5-0.4-0).3-0.2-0.1 -0
		$\cos\theta$

Data

Contained Events

★ MINOS Designed for Vs from FNAL – not atmospherics ★ Gaps between planes - potentially problematic

Have achieved rejection factor of ~ 1:10,000,000 !
 Efficiency ~ 75 % with 98 % purity

<u>CC v_{μ} EVENT SELECTION:</u>

- •Fiducial Volume: little activity within 50cm of detector edge
- •Reconstructed muon track track which crosses 8 planes
- •Cosmic muon rejection remove steep events
- Veto Shield no`in-time' Veto shield hit

Contained Event Selection

MINOS Preliminary

	DATA	MC V no osc.*	MC Cosmic backgnd.
Before VETO	88	39	63±6
VETOED	51	1	61±6
v selection	37	38±8	2

Measure cosmic μ bgd. from data using events solely rejected on basis of veto hit

Vetoed background agrees with MC expectation !

ν MC : Battistoni et al

* Does not include acceptance systematic uncertainties – work in progress

Event Distributions

MC normalised to data(no oscillations)

Cosmic background from data from no. of vetoed events

Mark Thomson, Cambridge

Charge Reconstruction

- ***** 6 \overline{v} events
- **★ 17** ∨ events
- *** 14 too short to ID** \bar{v} /v

 $\Rightarrow N\overline{v}/Nv = 0.35 \pm 0.17$

(expect 0.51±? if $\overline{\nu}/\nu$ oscillate with same parameters)

MINOS atmos v analysis underway ! just need more data.....

Neutrino 2004, June 17, Paris

Mark Thomson, Cambridge

Conclusions

NuMI beam installation progressing well ! expect first protons on target December 2004 !

MINOS Near Detector currently being installed/ commisioned at FermiLab

MINOS Far Detector taking physics quality data since mid-2003

Atmospheric Vs already being seen in the MINOS Far Detector

First direct observation of v/\overline{v} separated atmospheric neutrinos

Eagerly awaiting first beam physics data, expected early 2005 ! Exciting times for MINOS.

MINOS en France

