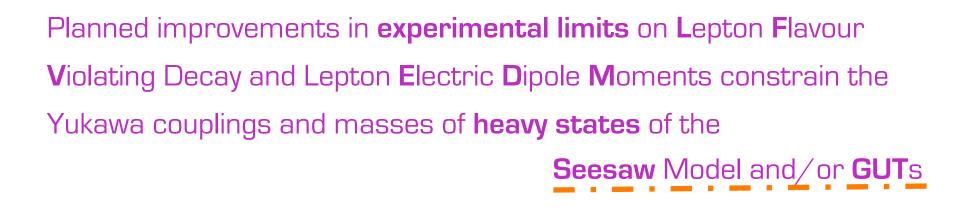
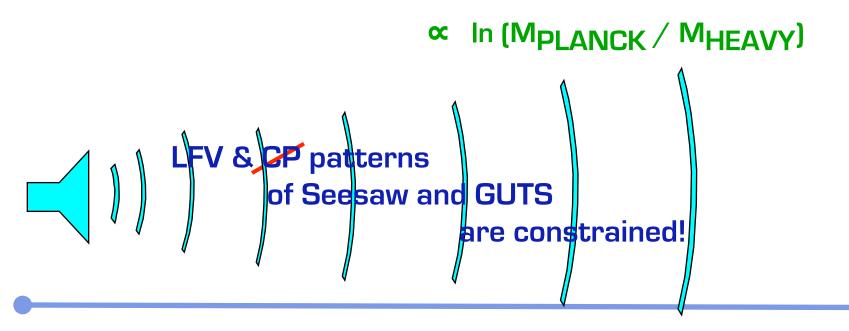
Lepton Flavour & CP Violations in Charged Lepton Transitions


Neutrino 2004, Paris


- Leptonic physical observables and limits on New Physics scales
- Limits on LFV & CPV in SUSY scalar masses
- Impact on Seesaw and GUT models

INTRODUCTION

- Neutrino oscillations require LFV in the effective neutrino mass matrix
- Seesaw Leptogenesis requires phases in the couplings of the heavy neutrinos
- The impact of these important LFV&CPV in the charged lepton sector is experimentally irrelevant in the minimal framework: SM \oplus Seesaw, because of GIM like factors $(\Delta m_v^2 / M_W^2)$.
- The observation of LFV in $\mu \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$, or CPV in lepton electric dipole moments would be signals of New Physics beyond SM \oplus Seesaw.
- Conversely, the present experiments constrain and will strongly constrain New Physics around and above the TeV region to produce LFV&CPV inhibition mechanisms. E.g., SUSY.
- Some tests provide already relevant constraints on radiative corrections involving new LFV&CPV couplings.

from their **quantum corrections** to the Slepton mass matrix

N.B. - These constraints are complementary to those from neutrino oscillations and leptogenesis (seesaw) and proton decays

OBSERVABLE	PRESENT LIMITS	PROSPECTS	S.M.PREDICTION
$\begin{array}{c} \mathbf{CLFV} \\ \tau \rightarrow \mu \gamma \\ \mu \rightarrow \mathbf{e} \gamma \end{array}$	<i>B.R.</i> 10 ⁻⁶ 10 ⁻¹¹	10 ⁻⁸ (?) 10 ⁻¹⁴ PSI	< 10 ⁻⁴⁸ < 10 ⁻⁴⁸
EDM	<u>e.cm</u> ,		
d _e	10 ⁻²⁷	10-29	< 10 ⁻³⁸
dµ	10 ⁻¹⁸	10-24 BNL 10-26 KEK	<10 ⁻³⁵

Experimental limits on LFV & CPV

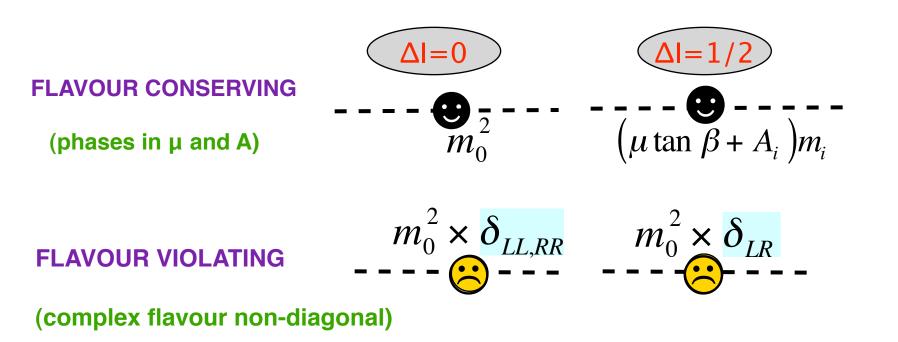
MAGNETIC MOMENTS, LFV & CPV

LIMITS ON NP CONTRIBUTIONS TO LFV AND CPV

Experiment	M ² _{NP} (TeV ²)	Prospects	Naive Scaling
(g-2) _e	> [∇] ee [№] /1000		m2 / m2
(g-2) _µ	>Γ ^{NP} /20		θ μ
μ → e γ	$>\Gamma_{\mu e}^{NP} \times 20$	× 30	~ / m
τ → μ Υ	>Γ _{τμ} ^{NP} /40	× 10 (?)	- m _μ / m _τ
d _e	$>$ Im $\Gamma_{ee}^{NP} \times 70$	× 100	m. / m
d _µ	$>$ Im $\Gamma_{\mu\mu}^{NP}$ $\times 10^{-5}$	×10 ⁶ (!)	m _e / m _μ

New Physics across the TeV barrier ⇒ new flavour and CP violations

Present (future) **experiments** constrain (will strongly constrain) contributions from NP around the TEV scale: **LFV & CPV** ones are much **more restricted** than the flavour and CP conserving ones.

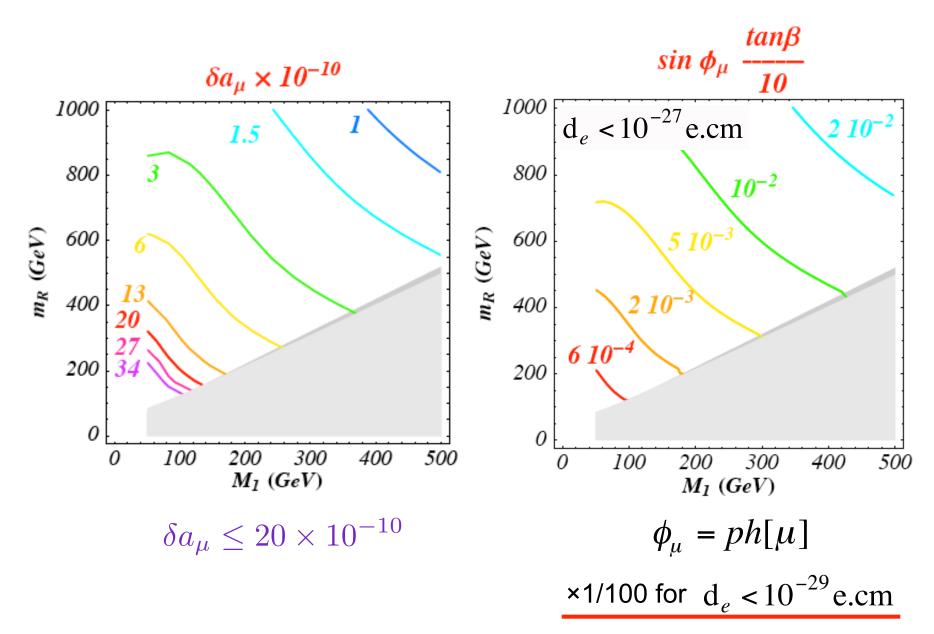

 \Rightarrow A generic NP flavour and CP problem to be controlled both at tree and quantum levels

SUSY is (one of) the best candidate(s) for a NP framework but it has many effective sources of low energy LFV & CPV, in particular in the **slepton/squark mass matrices** \Rightarrow contributions to LFV and EDM \Rightarrow strong constraints on SUSY breaking parameters (e.g., mSUGRA).

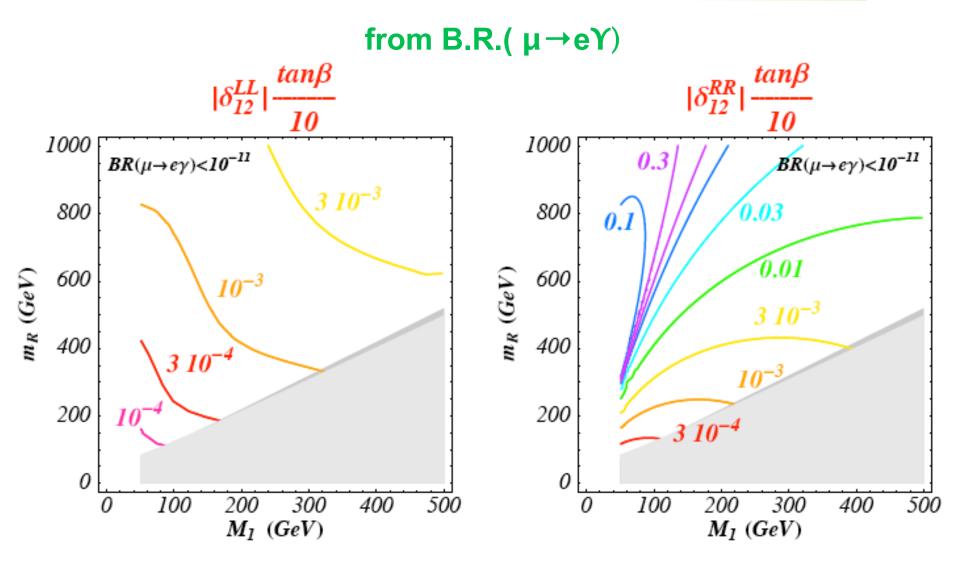
SEESAW theories and **GUT**'s contain LFV & CPV in their couplings that radiatively correct the low energy effective SUSY breaking parameters and are potentially measureable in LFV decays and EDMs.

SCALAR LEPTON MASS MATRICES

(standard notation)

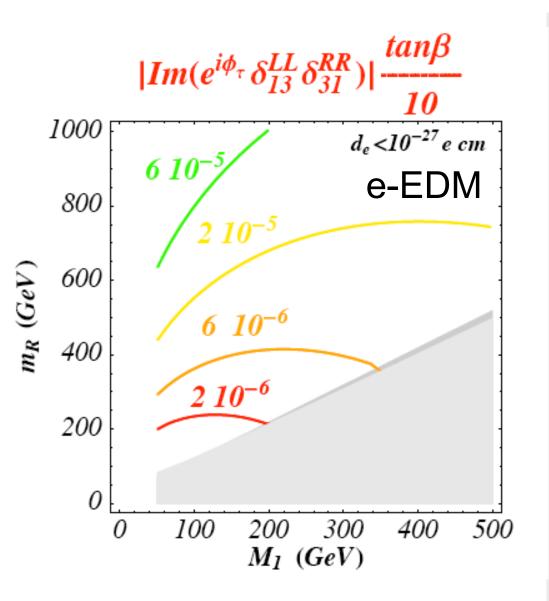


The limits on the δ matrix elements are obtained (not necessarily) by expanding the amplitudes in their products. E.g.: EDM \in Im $[(\mu \tan \beta + A_i) m_i + (\delta_{RR})_{ik} (\mu \tan \beta + A_k) m_k (\delta_{LL})_{ki} + ...]$


> lepton flavour conserving CP violation

lepton flavour violating CP violation

SUSY (MDM + "i"EDM) - flavour conserving



limits on LFV slepton masses

Planned experiments are expected to improve these limits by a factor of 30

flavour violating CP violation

Therefore: the LFV & CPV contributions from SUSY loops must be reduced by several orders of magnitude w.r.t. analogous radiative corrections flavour CP ß to conserving processes

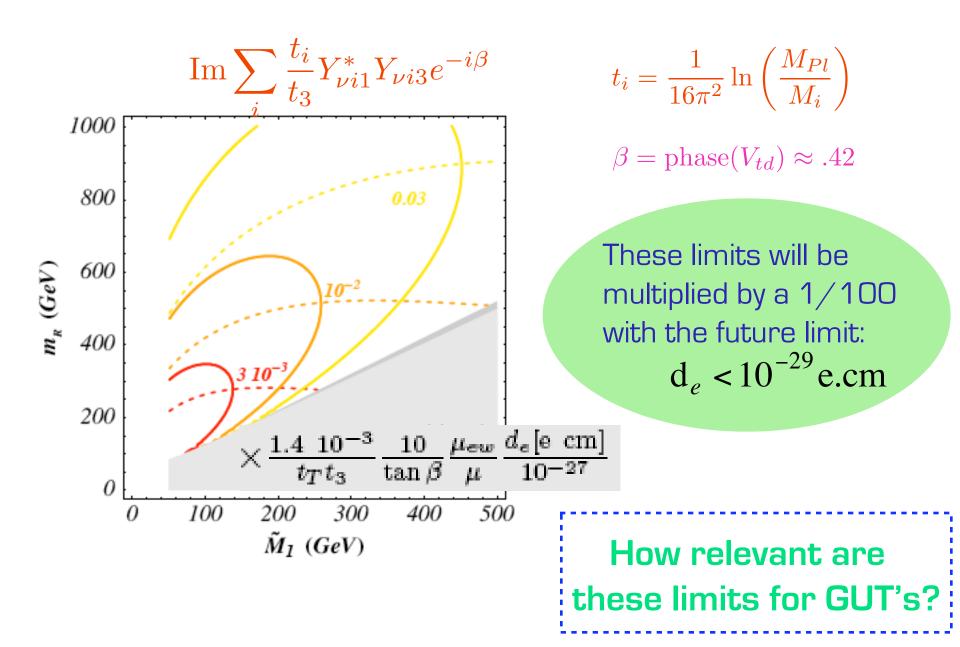
= SUSY FCNC & CP problems

LOOKING FOR FOOTPRINTS OF VERY HEAVY (DECOUPLED) STATES:

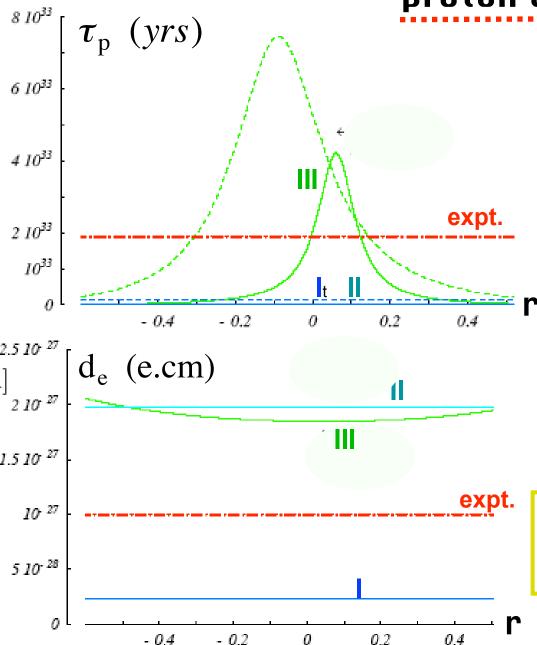
GUT COLOUR TRIPLETS SEESAW MAJORANA NEUTRINOS

PATTERN OF FLAVOUR AND CP VIOLATIONS IN THE <u>SLEPTON MASS MATRIX</u>

INDUCING LFV AND CPV THRU SUSY RADIATIVE CORRECTIONS:


SUSY mediated LFV & CP

FOOTPRINTS OF SEESAW & GUT HEAVY STATES IN THE SLEPTON MASS MATRICES


LFV & CP phases are radiatively generated from **heavy state** contributions to the RGE running until their **decoupling**. In 1st. order these loop contributions are like:

SEESAW HEAVY NEUTRINOS **GUT COLOUR TRIPETS** decouple @M_T decouple @ M_R $U = Y_u^{\dagger} \ln\left(\frac{M_{Pl}}{M_T}\right) Y_u$ $N = Y_{\nu}^{\dagger} \ln\left(\frac{M_{Pl}}{M_{Pl}}\right) Y_{\nu}$ Text (in SO(10) GUT: N = U) $\delta_{i\neq j}^{\mathrm{RR}} \propto U_{ij} \oplus \dots$ $\delta^{\mathrm{LL}}_{i\neq j} \propto N_{ii} \oplus ...$ LFV e.m. decays: **E.D.M** (flavour conserving A-term) \neq 0 iff strong hierarchy in M **E.D.M** (flavour violating): $\operatorname{Im} \left(\delta^{LL} m_{\ell} \delta^{RR} \right)_{ii} \sim O(1) \operatorname{Im} (U^* m_{\ell} N)_{ii}$

limits on seesaw couplings in SU(5)

limits on colour triplet masses:

proton decay vs. electron EDM

Model II: SO(10) (minimal) with $M_{T_1} = M_{T_2}$

Model III: SO(10) (pseudoDirac) with $M_{T_1} / M_{T_2} = \frac{(r-1)}{(r+1)}$

 $\tilde{M}_1 = 200 \,\text{GeV} \quad m_{e_R} = 400 \,\text{GeV}$ $\tan \beta = 3 \qquad M_T = 10^{17} \,\text{GeV}$

- Conclusion -

$d_e, d_\mu, \mu \rightarrow e\gamma$ experiments

- STRONGLY CONSTRAIN
- WILL SEVERELY CONSTRAIN SUSY GUT's and SEESAW's
- FROM LFV & CPV EFFECTS IN THE SCALAR
 LEPTON MASS MATRICES OF SUSY THEORIES

(ALTHOUGH ONE CANNOT EXCLUDE CONTRIBUTIONS BETWEEDIFFERENT PHASES) LEPTON EDM WILL PROVIDE RELEVANT BOUNDS ON HEAVY TRIPLET MASSES IN GUT'S

d_μ > (m_μ/m_e)d_e IS AN INTERESTING THEORETICAL CHALLENGE AND d_μ EXPERIMENTS ARE IMPROVING A LOT.