MODELS OF NEUTRINO MASSES AND MIXINGS

Ferruccio Feruglio

- Neutrino 2004 Paris, June 2004
- How many light neutrinos ?
 Why m_v << m_f charged fermion ?
 Which spectrum is favoured by theory ?
 Which is the most probable range of U_{e3} ?

HOW MANY LIGHT ν ?

3 active neutrinos

 $N = 2.984 \pm 0.009$ (invisible Z width)

$$(m_t, m_H) = (174.3, 115) \text{ GeV}$$

- □ all experiments but LSND explained by 3 V_a LSND → 3 V_a + [at least] 1 V_s
- \Box inclusion of V_{s} worsens the fits ♦ solar: $V_{\rho} \rightarrow \sin \theta_{s} V_{s} + \dots$ $\sin^{2} \theta_{s} < 0.1 \quad (1\sigma)$ [Bahcall&Pena-Garay 2003] $V_{\mu} \rightarrow V_{\tau}$ favoured over $V_{\mu} \rightarrow V_s$ stm: - zenith angle dependence of high-energy V_{μ} [SK,MACRO] 3σ (no matter effects for V_{c}) - no NC interactions for \mathcal{V}_{S} [SK] - τ -like CC events [SK] 2σ 2+2 and 3+1 fits have a poor quality [Cirelli,Marandella,Strumia,Vissani 2004] $\sum m_{\nu} < 1.4 \text{ eV} (95\% \text{ CL})$ for $3v_a + 1v_s$ □ WMAP + LSS [Hannestad&Raffelt 2004 Crotty, Lesgourgues, Pastor 2004] \Box from now on: 3 light ν assumed LSND soon checked by MiniBooNE (1st event September 2002) no room for LSND with 3 V_a (CPT violation disfavoured by now) [Pakvasa&Valle] 0301061]

WHY $m_v << m_f$?

L is exactly conserved

[smallest ratio is 1/100 for charged fermions in same gen.]

theoretical prejudices

 \Box requires $\frac{y_{v_e}}{y_e} < 10^{-6}$

- global symmetries are broken by quantum gravity
- B/L violated in all attempts to unify fundamental interactions
- B/L broken by anomalies already in the SM

Dvali, March-Russell, Barbieri, Creminelli, Strumia]

large ED: standard Yukawa couplings to a singlet fermion ν who lives in the bulk

$$\mathcal{L}_{Yuk} = \frac{y_{\nu} \mathbf{v}}{\sqrt{2}} \left(\frac{M_D}{M_P}\right) \mathbf{v}_a(x) \mathbf{v}_s^{(0)}(x)$$

 $\nu_s(x,y) = \frac{\nu_s^{(0)}(x)}{\sqrt{V_\delta}} + \dots$

[Dienes, Dudas, Gherghetta, Arkani-Hamed, Dimopoulos,

no experimental hints from oscillations $v_s^{(n)}$ effects subdominant, if present dimension 5, L-violating operators not sufficiently suppressed by $M_D \approx 1 \,\mathrm{TeV}$

alternative models: warped compactifications, L gauged in the bulk,... not fully realistic in their minimal realization [Grossman&Neubert'99 Gherghetta 0312392]

L is not conserved

ABSOLUTE SPECTRUM

Degenerate spectrum

Converging evidence that this is only possible below the eV scale

 $m_{\nu_e} < 2.2 \text{ eV}$ (95% CL) tritium β-decay $m_{\nu} < 0.9 h \text{ eV}$ (90% CL) $0_{\nu\beta\beta}$ decay $\sum m_{\nu} < (0.69 \div 1.01) \text{ eV}$ (95% CL)

WMAP +LSS depending on priors

leptogenesis from out-of-equilibrium CP-violating decay of heavy ν^c prefers: [not an absolute bound: 1eV is still possible if v are degenerate] [Hambye, Lin, Notari, Papucci, Strumia 0312203]

 $m_i < (0.12 \div 0.15) \,\mathrm{eV}$

[Buchmuller, Di Bari, Plumacher 0401240 Giudice, Notari, Raidal Riotto, Strumia 2003]

□ Hints for $m_i \approx 0.2 \div 0.6$ eV? $0\nu\beta\beta$ of ⁷⁶Ge HM by Klapdor-K. et al. 2004

Problems with models of degenerate neutrinos

 see-saw relation untenable: fine-tuning between M and D sectors

$$m_{\nu} = m_D^T M^{-1} m_D$$

connection with charged fermion masses (e.g. from GUTs) is lost

 $m_i = m_i$ can be understood in some symmetry limit (e.g. S() ** where angles and (mass)² differences are completely undetermined

$$\frac{\Delta m_{sol}^2}{\Delta m_{atm}^2} << 1 \qquad \mathcal{P}_{13} << \mathcal{P}_{23} \approx \frac{\pi}{4}$$

specific realizations already ruled out or strongly disfavoured, e.g. Flavour Democracy [Fritzsch, Xing]

 $\sin^2 2\theta_{23} = \frac{8}{9} \approx 0.89 \iff \sin^2 2\theta_{23} > 0.9(0.84) \text{ at } 2\sigma(3\sigma)$

arise from symmetry breaking terms that require a special misalignment between charged leptons and neutrinos

> no general consensus on how to realize this

to avoid a full-fledged theory of breaking terms, we can assume anarchy in the neutrino sector [Hall, Murayama, Weiner 2000

De Gouvea, Murayama 0301050]

$$m_{v} = m \begin{pmatrix} O(1) & O(1) & O(1) \\ O(1) & O(1) & O(1) \\ O(1) & O(1) & O(1) \end{pmatrix}$$

$$\frac{\Delta m_{sol}^2}{\Delta m_{atm}^2} << 1$$

can be produced in part by the see-saw

 $\mathcal{Y}_{13} << \mathcal{Y}_{23}$

accidental

 $\vartheta_{23} \approx \frac{\pi}{4}$

fortuitous

Inverse Hierarchy

Let the best we have, at present, is

$$m_{\nu} = m \begin{pmatrix} 0 & a & b \\ a & 0 & 0 \\ b & 0 & 0 \end{pmatrix} + \dots$$

- corrections << |a|, |b|
 leading order determined by L_e − L_μ − L_τ
 either with or without see-saw
- compatible with GUT

□ leading order

$$|m_1| = |m_2| = \sqrt{|a|^2 + |b|^2}$$
 $m_3 = 0$
 $g_{13} = 0$ $\tan g_{23} = -\frac{b}{a}$ $g_{12} = 45^{\circ}$ it's out by 6σ
 $g_{12} = 33^{\circ} \pm 2^{\circ}$

□ turning SB terms on $1 - \tan^2 \vartheta_{12} \approx O\left(\frac{\Delta m_{sol}^2}{\Delta m_{atm}^2}\right)$ $0.36 \div 0.70 (3\sigma) >> 0.015 \div 0.07 (3\sigma)$ off by a factor > 10

difficulty common to many models \Rightarrow Flavour Democracy (deg. spectrum) \Rightarrow pseudoDirac structure in 12 sector $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ [exception: normal

hierarchy]

\square substantial contribution to \mathscr{G}_{12} from charged leptons needed

if, by analogy with the quark sector:

1.4^{1.4} excluded by ta $|v| \ll |u| \approx \theta_C \approx 0.22$ 1.2 ♦ $1 - \tan^2 \theta_{12} \approx 2\sqrt{2} \theta_C \approx 0.6$ 5 0.8 0.8 tan [right amount] [Raidal 0404046 Minakata, Smirnov 0405088] 0.6 0.6 0.4 0.4 $\left|U_{e3}\right| = \frac{(1 - \tan^2 \mathcal{G}_{12})}{4\cos \delta_{CP}}$ 0.2 0.2 0 0.4 0.2 0.6 0.8 $\tan^2 \mathcal{A}$

Normal Hierarchy

 \square Several viable mechanisms for $\,\mathcal{G}_{23}\, \mathrm{large}$

	• Q^e and Q^V ampli	GUT	quark mixing	
	but $\mathcal{G}_{23} \equiv \mathcal{G}_{23}^{\nu} - \mathcal{G}_{23}^{e} \approx O(1)$	O.K.	O.K.	
[1]	see-saw dominance of light V^c equally coupled to V_{μ} and V_{τ} [King]	O.K.	O.K.	
[2]	Iopsided structure of $m_{e} \text{ or/and } m_{D}^{V} : \overline{R} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & a & b \end{pmatrix} L$ [Albright, Barr Altarelli, E1	O.K.	large RH quark mixing in SU(5)	
🗆 t	ypical texture as e.g. from U(1) flav	our symmetry	[entries up to O(1) coefficients]	
	$m_{\nu} = m \begin{bmatrix} \varepsilon^2 & \varepsilon & \varepsilon \\ \varepsilon & 1 & 1 \end{bmatrix} \qquad \begin{array}{c} \vartheta_{13} \approx \varepsilon \\ \vartheta_{12} \text{ large} \end{array}$	$= m \begin{bmatrix} \varepsilon^2 & \varepsilon & \varepsilon \\ \varepsilon & 1 & 1 \end{bmatrix} \qquad \begin{array}{c} \vartheta_{13} \approx \varepsilon & \text{vanishes in the symmetry limit} \\ \vartheta_{12} & \text{large} \leftrightarrow \text{det}[23] \approx \varepsilon \end{array}$		
	$\left(\begin{array}{c c} \varepsilon & 1 & 1 \end{array} \right)$	accidentally (sen by a see-saw su	ni-anarchy=SA) opression as in [1]and	

[2]

□ No reason why U_{e3} should be tiny in realistic models

♦ inverse hierarchy from $L_e - L_\mu - L_\tau$ [barring cancellations] $|U_{e3}| \ge \frac{(1 - \tan^2 \theta_{12})}{4} ≈ (0.09 ÷ 0.18) [3\sigma]$

♦ normal hierarchy [1st order in $\sin \theta_{12}^e >> \sin \theta_{13}^e$]

$$\chi_{ub} \approx \lambda^{2} \ (\lambda \approx 0.22)$$

if we make a similar estimate in the quark sector

[estimates by allowing 3σ exp. and (factors $\frac{1}{2}$ and 2) th. uncertainties]

degenerate spectrum (examples)

-
$$\Delta m^2_{sol}$$
 and $~~U_{e3}~~{\rm determined}$ by RGE

- Flavour Democracy
- Anarchy

$$\approx \sqrt{\frac{\Delta m_{sol}^2}{2\Delta m_{atm}^2}} \approx (0.04 \div 0.4)$$
$$\approx \sqrt{2m_e/3m_\mu} \approx (0.03 \div 0.1)$$
$$\approx O(1)$$

 U_{e3} in models with U(1) flavour symmetry

Lepton Flavour Violation

[Lavignac, Masina, Savoy]

$$\frac{BR(\mu \to e\gamma) < 1.1 \times 10^{-11}}{\downarrow}$$

$$y_{j2}^* y_{j1} \log \left(\frac{\Lambda}{M_j}\right) \le O(1)$$

$$|y_{32}^* y_{31}| \le O(\lambda) \approx 0.22$$

in most of the plane $(m_{\tilde{l}}, M_1)$ up to (1 TeV, 500 GeV) at $\tan \beta = 10$ [mSUGRA, universal b.c. at Λ]

	5	1	$\frac{\mathcal{Y}_{32}\mathcal{Y}_{31}}{\mathcal{Y}_{31}}$
А	(0,0,0)	(0,0,0)	O(1)
SA	(1,0,0)	(2,1,0)	$O(\epsilon)$
Н	(2,0,0)	(1,-1,0)	Ο(ε)
IH	(1,-1,-1)	(-1,1,0)	$O(\epsilon^2)$

Most of plausible range for Ue3 explored in 10 yr from now

CONCLUSION

- small v masses: \downarrow at a scale $\Lambda \leq M_{GUT}$

- absolute spectrum

though an open experimental question, theoretically welcome (but not experimentally unavoidable) properties like GUTs, see-saw and relationship with other fermion masses favour a hierarchical spectrum, with normal hierarchy less constrained than the inverse one by current knowledge of $\tan^2 g_{12}$ and U_{e3}

- Ue3 not un-measurably small in most of models.
- Even though the hierarchies among observable quantities are less pronounced than in the quark sector, an expansion parameter close to $\lambda \approx 0.22$ largely helps in reproducing the relative smallness of r and U_{e3}