Multi-messenger Astronomy

A. Davier Neutrino 200 Paris 11-16 June 2004

General Remarks

- A vast subject and a very active field
- Multi-messengers:

photons (radio, IR, visible, X- and γ-rays)
protons and nuclei
neutrinos

a new comer: gravitational waves

- The Universe looks very different with different probes
- However: important to observe the same events
- Very selective review (focus on interplay)

Outline

- UHE Cosmic Rays
- γ-ray Bursts
- Investigating Dark Matter with γ-rays
- GW signals : the next galactic SN (a generic case)

UHE Cosmic Rays

- Energy spectrum extends to $\sim 10^{20} \text{ eV}$
- Shoulder ~ 5. 10^{19} eV
- Big questions:

AGASA, Fly's Eye, Yakutsk, HiRes Problem: energy scale

- Where are the accelerators ? How do they work?
- Is the GZK cutoff seen ?

proton interactions with CMB photons energy loss distance much reduced 10 Mpc 10²⁰ eV 1 Gpc 0.5 10²⁰ eV

evidence for GZK? (Bahcall-Waxman 03)

Auger expt should settle this point expect ~ 30 evts/yr above 10^{20} eV

GRB : Facts and Interpretation

- Short variable γ -ray bursts 0.01 100 s 0.1 1 MeV
- Isotropic distribution (BATSE)
- X-ray afterglow (BeppoSAX) \Rightarrow optical and radio afterglows
- Beautiful exemple of multi-wavelength approach (same messenger!)
 ⇒ Sources at cosmological distances
 ⇒ Enormous energy release ~ 10⁵³ erg + beaming
- Strong support for fireball model (review Piran 00)

- energy source: accretion on a newly formed compact object
- relativistic plasma jet flow
- electron acceleration by shocks
- γ -rays from synchrotron radiation
- afterglows when jet impacts on surrounding medium
- still many open questions

GRB : Connections

• can UHE Cosmic Rays be explained by GRB's ? Waxman 95, Pietri 95

- relativistic plasma jet can also accelerate protons to $\sim 10^{20}$ eV Milgrom-Usov 95
- constraints on jet similar for p acceleration and γ emission (although indep.)
- energy generation rates similar
- HE neutrinos are expected
 - accelerated p interact with fireball photons and produce pions
 - v_{μ} from charged $\pi \implies v_{\mu}$, v_{τ} on Earth $\sim E_{v}^{-2}$
 - expect 20 evts/yr in a 1 km3 detector up to 10¹⁶ eV (Waxman-Bahcall 01)
 - correlated in time and direction with GRB

• central engine also emits GW (compact object, relativistic motion)

- scenarios to get BH+accretion disk : NS-NS, NS-BH mergers, failed SN
- 'canonical' GW sources (inspiral \rightarrow merger, collapse)
- LIGO-Virgo only sensitive to 30 Mpc, advanced LIGO-Virgo to 400 Mpc
- BH ringdown has a distinct signature (normal modes, damped sine GW)

γ -ray signatures of Dark Matter (1) Extragalactic γ -ray background and heavy DM

Space Telescopes: EGRET \rightarrow GLAST 30 MeV - 10 GeV

extragalactic component difficult to determine (isotropy not enough, need model of Galactic background, not firmly establihed) Strong 04 superposition of all unresolved sources (AGN)

? could the HE component result from selfannihilating DM particles (such as SUSY LSP) Elsässer-Mannheim 04 : possibly substantial contribution if mass = 0.5 - 1 TeV, very sensitive to the DM distribution in the Universe

more conventional models work (Strong 04a)

γ-ray signatures of Dark Matter (2) TeV photons from the Galactic center and heavy DM

Atmospheric Cerenkov Telescopes: 200 GeV – 10 TeV Whipple, CAT, HEGRA, VERITAS, CANGAROO II, HESS, MAGIC...

Spectrum from Galactic center: inconsistency between CANGAROO and VERITAS (quid est veritas?)

Center (10⁶ M_{\odot} BH) or nearby sources ?

complex region complementary informations from X-rays and radio

Hooper 04: self-annihilating heavy DM

 $X X \rightarrow hadrons, \pi^0 \rightarrow \gamma\gamma$ lines from $X X \rightarrow \gamma\gamma, \gamma Z$?

- need large cross sections and high densities
 - very cuspy halo or spike at Galactic center
 - M_X : 1 TeV or 5 TeV? waiting for HESS data
 - different interpretations (SN remnants, X-ray binaries,...)

γ-ray signatures of Dark Matter (3) 511 keV line from the Galactic bulge and light DM

Clear observation by SPI/INTEGRAL of a signal from e⁺e⁻ annihilation at rest in an angular range compatible with the galactic bulge, inconsistent with a single point source

What is the source of positrons?

'standard' explanation: SN Ia with β^+ radioactivity of produced nuclei, but rate appears to be too small (Schanne 04)

Cassé 04, Fayet 04 : light DM particles φ spin $\frac{1}{2}$ or 0 m $_{\varphi} \sim O(1 \text{ MeV})$ coupled to a light vector boson U m_U $\sim 1-100 \text{ MeV}$ (lower range favoured) $\varphi \varphi \rightarrow U \rightarrow e^+ e^$ astrophysical tests proposed severely constrained by particle physics

M. Davier

Paris 11-16 June 2004

Gravity Wave Detectors

GW : quadrupolar deformation of space-time metrics

amplitude $h = \Delta L / L \implies$ interferometric detection well suited

Large interferometric antennas coming into operation: TAMA (Japan), LIGO-Hanford/Livingston (US), GEO (Germany-UK), Virgo (France-Italy)

Chronology of stellar collapse

- Core collapse $p e^- \rightarrow n \nu_e$ neutronization
- supernuclear densities: 'v sphere inside core (v trapped)
- Shock wave bounce propagating from deep inside core
 ⇒ GW burst within a few ms
 within < 1 ms shock wave passes through v sphere
 ⇒ initial v_e burst (flash) a few ms
- High T $e^+ e^- \rightarrow v_i \overline{v_i}$ all v types (e, μ , τ) shock turns on release of v_e and $v_i v_i$ pairs
 - \Rightarrow main v burst 1-10 s long
- Accretion and explosion (v heating of shocked envelope)
 ⇒ optical signal delayed by a few hrs

Simulation of neutrino burst

• Model-independent properties

99% of initial binding energy into v's (1-2% in early flash)about 3 10⁵³ erg released $\langle E_v \rangle = 10 - 20 \text{ MeV}$

• Detailed numerical simulations

Mayle, Wilson, Barrows, Mezzacappa, Janka,

Neutrino detection

best operating detectors are water Cerenkov : SuperK (32 kt) SNO(1 kt heavy water)

- **SuperK** e± detection
 - $v e^- \rightarrow v e^-$ directional E_e flat $0 \rightarrow E_v$ $\overline{v_e} p \rightarrow e^+ n$ non directional $E_e = E_v - 1.77$ MeV
- SNO e^{\pm} and neutron (delayed) detection $v_e \ d \rightarrow e^- p p$ non directional $E_e = E_v - 1.44 \text{ MeV}$ $\overline{v_e} \ d \rightarrow e^+ n n$ 4.03 $v_i \ d \rightarrow v_i p n$ unique

Neutrino event rate (SN at 10 kpc)

	SuperK	SNO	LVD
v _e	91	132	3
\overline{v}_{e}	4300	442	135
ν_{μ}, ν_{τ}	(40)	207	(7)
ν_e flash	12	9	0.4
all	4430	781	146

Supernova GW detection

(1) Expected amplitude (simulations Zwerger-Müller 97) LIGO-Virgo

 $d_{mean} \sim 30 \text{ kpc}$ threshold SNR = 5

(2) Antenna patterns

- Sky maps averaged over GW source polarization angle
- 2 LIGO interferometers mostly parallel
- Virgo nearly orthogonal to LIGO

 \Rightarrow detection limited to our Galaxy

I. Davier Neutrino 2004 Paris 11-16 June 2004

The next Galactic SN : GW-v coincidence strategy (1)

• v detectors

Arnaud 03

- several running detectors covering the Galaxy with an efficiency of 100%
- false alarm rate negligible if at least 2 in coincidence
- direction to $\approx 5^{\circ}$ (best precision from delayed optical observation)
- SNEWS network : alarm to astronomers + GW detectors within 30'

• GW interferometers

- relatively low threshold barely covers Galaxy, but false rate too high (assuming gaussian stationary noise, not realistic, so even worse)
- not suitable for sending alarms
- very important to react on v alarms (discovery of GW from SN collapse)
- at least 2 antennas with complementary beam patterns needed for sky coverage, at least 3 to perform coincidences at reasonable efficiency

GW-v coincidence strategy (2)

loose coincidence strategy: correlate GW signals in **several** antennas without directional information (time window \pm 50 ms, maximum time delay between antennas)

tight coincidence strategy: knowing source direction (from v or optical), time window can be reduced to ≈ 10 ms
coherent analysis : knowing source direction, outputs of all interferometers can be summed with weights ∞ beam pattern functions, only one threshold on sum, tight coincidence applied with neutrinos

Two goals:

- claim the discovery of GW emission in the SN collapse : require 10⁻⁴ accidental coincidence probability in 10 ms window
 - study GW signal in coincidence with neutrinos : 10⁻² enough

GW-v coincidence strategy (3)

LIGO – Virgo network

Arnaud 03

Detection Probability in Coherent Analysis

False Alarm rate in sampling bin (20 kHz)

Accidental coincidence in 10 ms

Efficiency (%)	10-4	10-2
Coincidence 2/3	55	66
OR 1/3	71	85
Coherent	80	91

\Rightarrow Coherent analysis provides best efficiency for SN GW confirmation

GW/neutrino timing

- SYST: GW peak time / bounce (0.1 ± 0.4) ms Zweiger-Muller 97
- SYST: v_e flash / bounce (3.5 ± 0.5) ms simulations
- STAT: GW peak time accuracy < 0.5 ms depends on filtering algorithm
- STAT: v_e flash accuracy = $\sigma_{\text{flash}} / \sqrt{N_{\text{events}}}$ with $\sigma_{\text{flash}} = (2.3 \pm 0.3) \text{ ms}$

Arnaud 02, 03

to reduce systematic uncertainty joint simulations needed

GW/neutrino delay

Pakvasa 72, Fargion 81, Arnaud 02

timing between the GW peak and the v_e flash

$$\Delta t_{v, GW} = \Delta t_{prop} + \Delta t_{v,bounce} + \Delta t_{GW, bounce}$$

$$\Delta t_{\text{prop}} = (L/2) (m_v/E_v)^2$$

= 5.2 ms (L/10 kpc) (m_v/1 eV)^2 (10 MeV/E_v)^2

- yields $\delta m_v^2 \propto \Delta t / L \approx \text{constant}$
- accuracy of ≈ 1 ms gives sensitivity to neutrino masses < 1 eV
- direct and absolute measurement
- if v_e mass obtained from other exp. to a precision < 0.5 eV, then GW/v_e timing provides unique information on bounce dynamics

Simulating the experiment

SN collapse at 10 kpc statistics x100 $m_v = 2 \text{ eV}$

Arnaud 02

Expected results

Paris 11-16 June 2004

Supernova physics (1)

neutrino detection : time and energy spectra for v_e and \overline{v}_e time spectrum for $v_{\mu,\tau}$ luminosity (distance)

GW detection : timing (bounce) amplitude

timing of neutrino pulses / bounce to better than 1 ms if v mass known or < 0.5 eV

learn about size of neutrinosphere (core opacity) and shock wave propagation velocity

Supernova physics (2)

an interesting possibility : inner core collapse + accretion from outer mantle \Rightarrow delayed Back Hole formation ≈ 0.5 s

abrupt cutoff in neutrino time spectrum ≈ 0.5 ms

could be used as a timing signal to observe late neutrinos, but mass sensitivity limited to 1.8 eV (Beacom 2000)

> to search for BH ringdown signal in GW antennas : could run with relatively low threshold thanks to excellent timing, matched filtering (damped sines)

observations of a sharp cutoff in the neutrino time spectrum and a synchronized GW ringdown signal would constitute a smoking gun evidence for BH

Conclusions (1)

- Complementary information on astrophysical phenomena is vital
- So far only used extensively with EM signals from radio to γ -rays (ex. GRBs)
- SN 1987a : extra-solar v signal for the first time
- Study of the most violent events (collapses, mergers) will benefit enormously from the availability of γ , UHE cosmic rays, v and GW detectors available and under construction
- Multiwavelength approach to cover a broad range of phenomena:

EM to-day's astrophysics

- v from 5 MeV to 1000 TeV
- GW Ligo-Virgo 10 Hz 10 kHz LISA 0.1 100 mHz
- Rates are small : need for large instruments
- Important to narrow the range of astrophysical interpretations

Conclusions (2)

- A single Galactic SN event seen in coincidence in GW and v detectors would bring unique information.
- Sky coverage requires OR-ing several antennas with complementary beam patterns.
- LIGO-Virgo network will be 80% efficient to discover GW emission by a SN seen by v detectors with an accidental coincidence probability of 10^{-4} .
- Precise GW/v timing can be achieved at better than 1 ms.
- Absolute neutrino masses can be investigated below the present lower limit of 2 eV down to 0.6 0.8 eV in a direct way.
- When v masses are known from other methods or found to be smaller than 0.5 eV, relative GW/v timing provides a new tool to investigate SN physics.
- If the SN eventually collapses into a BH, a GW/v coincidence analysis can prove the BH formation.