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General Remarks

• A vast subject and a very active field
• Multi-messengers:

photons (radio, IR, visible, X- and γ-rays)
protons and nuclei
neutrinos
a new comer: gravitational waves

• The Universe looks very different with different probes
• However: important to observe the same events

• Very selective review  (focus on interplay)
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Outline

• UHE Cosmic Rays
• γ-ray Bursts
• Investigating Dark Matter with γ-rays
• GW signals : the next galactic SN                    

(a generic case)
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UHE Cosmic Rays

• Energy spectrum extends to ∼ 1020 eV
• Shoulder ∼ 5. 1019 eV
• Big questions:

- Where are the accelerators ? How do they work?
- Is the GZK cutoff seen ?

AGASA, Fly’s Eye,
Yakutsk, HiRes
Problem: energy scale

proton interactions with CMB photons
energy loss distance much reduced

10 Mpc 1020 eV
1 Gpc 0.5 1020 eV

evidence for GZK? (Bahcall-Waxman 03)

Auger expt should settle this point
expect ∼ 30 evts/yr above 1020 eV

Corrected (B-W)
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GRB : Facts and Interpretation

• Short variable γ-ray bursts     0.01 − 100 s     0.1 − 1 MeV
• Isotropic distribution (BATSE)
• X-ray afterglow (BeppoSAX)   ⇒ optical and radio afterglows
• Beautiful exemple of multi-wavelength approach (same messenger!)

⇒ Sources at cosmological distances
⇒ Enormous energy release  ∼ 1053 erg     + beaming

• Strong support for fireball model (review Piran 00)
- energy source: accretion on a newly formed compact object
- relativistic plasma jet flow
- electron acceleration by shocks
- γ-rays from synchrotron radiation
- afterglows when jet impacts on surrounding medium 
- still many open questions
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GRB : Connections
• can UHE Cosmic Rays be explained by GRB’s ?     

- relativistic plasma jet can also accelerate protons to ∼1020 eV
- constraints on jet similar for p acceleration and γ emission (although indep.)
- energy generation rates similar

• HE neutrinos are expected
- accelerated p interact with fireball photons and produce pions
- νµ from charged  π ⇒ νµ , ντ on Earth         ∼ Eν

−2

- expect 20 evts/yr in a 1 km3 detector up to 1016 eV (Waxman-Bahcall 01)
- correlated in time and direction with GRB

• central engine also emits GW (compact object, relativistic motion)
- scenarios to get BH+accretion disk : NS-NS, NS-BH mergers, failed SN
- ‘canonical’ GW sources (inspiral → merger, collapse)
- LIGO-Virgo only sensitive to 30 Mpc, advanced LIGO-Virgo to 400 Mpc
- BH ringdown has a distinct signature (normal modes, damped sine GW) 

Waxman 95, Pietri 95
Milgrom-Usov 95
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γ-ray signatures of Dark Matter  (1)
Extragalactic γ-ray background and heavy DM

Space Telescopes:   EGRET → GLAST
30 MeV − 10 GeV

extragalactic component difficult to determine
(isotropy not enough, need model of Galactic   
background, not firmly establihed) Strong 04

superposition of all unresolved sources (AGN)

? could the HE component result from self-
annihilating DM particles (such as SUSY LSP)
Elsässer-Mannheim 04 : possibly substantial
contribution if mass = 0.5 − 1 TeV, very
sensitive to the DM distribution in the Universe

more conventional models work (Strong 04a)
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γ-ray signatures of Dark Matter  (2)
TeV photons from the Galactic center and heavy DM

1
2

3

5

MX (GeV)

Atmospheric Cerenkov Telescopes: 200 GeV − 10 TeV
Whipple, CAT, HEGRA, VERITAS, CANGAROO II, 
HESS, MAGIC…

Spectrum from Galactic center: inconsistency between
CANGAROO and VERITAS     (quid est veritas?)
Center (106 M BH) or nearby sources ?
complex region
complementary informations
from X-rays and radio

Hooper 04: self-annihilating heavy DM
X X → hadrons,  π0 →γγ lines from X X →γγ, γZ ?

? - need large cross sections and high densities
- very cuspy halo or spike at Galactic center
- MX :   1 TeV or 5 TeV ?      waiting for HESS data
- different interpretations (SN remnants, X-ray binaries,…)
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γ-ray signatures of Dark Matter  (3) 
511 keV line from the Galactic bulge and light DM

Clear observation by SPI/INTEGRAL of a signal from e+e−

annihilation at rest in an angular range compatible with the 
galactic bulge, inconsistent with a single point source

What is the source of positrons ?
‘standard’ explanation:   SN Ia with β+ radioactivity of 
produced nuclei, but rate appears to be too small (Schanne 04)

Cassé 04, Fayet 04 : light DM particles
ϕ spin ½ or 0      m ϕ ∼ O(1 MeV) 
coupled to a light vector boson U
mU ∼ 1− 100 MeV (lower range favoured) 
ϕ ϕ → U  → e+ e−

astrophysical tests proposed
severely constrained by particle physics

U lifetime (s)

mU (MeV)             95% limits

EXCLUDED
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Gravity Wave Detectors
GW : quadrupolar deformation of space-time metrics

amplitude   h = ∆L / L     ⇒ interferometric detection well suited
Large interferometric antennas coming into operation: 
TAMA (Japan), LIGO-Hanford/Livingston (US),
GEO (Germany-UK), Virgo (France-Italy)

LIGO close to nominal sensitivity
Science runs started
S1  (Sept 2002)
S2  (Feb 2003)
S3  (Jan 2004)

Virgo completed and being 
commissioned
data taking in 2005
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Chronology of stellar collapse 

• Core collapse            p  e− → n νe neutronization
• supernuclear densities: ‘ν sphere inside core (ν trapped)
• Shock wave bounce propagating from deep inside core

⇒ GW burst within a few ms
within < 1 ms shock wave passes through ν sphere

 ⇒ initial νe burst (flash) a few ms
• High T       e+ e− → νi  νi all ν types  ( e , µ , τ )

shock turns on release of νe and νi  νi pairs
⇒ main  ν burst 1-10 s long

• Accretion and explosion  (ν heating of shocked envelope)
⇒ optical signal delayed by a few hrs
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Simulation of neutrino burst
• Model-independent properties

99% of initial binding energy into ν‘s         (1−2 % in early flash)
about 3 1053 erg released             <E ν> =  10 − 20 MeV

• Detailed numerical simulations
Mayle, Wilson, Barrows, Mezzacappa, Janka, …..

core bounce
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Neutrino detection

best operating detectors are water Cerenkov :

SuperK (32 kt)      SNO(1 kt heavy water)

• SuperK e± detection
ν  e− → ν  e− directional Ee flat   0 → Eν

 νe p  → e+ n            non directional Ee = Eν − 1.77 MeV

• SNO e± and neutron (delayed) detection
 νe d  → e− p  p       non directional Ee = Eν − 1.44 MeV
 νe d  → e+ n  n                                                  4.03
 νi d  → νi p  n               unique
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Neutrino event rate  (SN at 10 kpc)

SuperK SNO             LVD

νe 91                        132                     3

νe 4300                       442             135                

νµ , ντ (40)                       207                    (7)

νe flash 12                            9                   0.4           

all                     4430                        781         146                
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Supernova GW detection                         

Virgo-LIGO       1/3                       2/3

• Sky maps averaged over GW 
source polarization angle

• 2 LIGO interferometers mostly parallel
• Virgo nearly orthogonal to LIGO

(1) Expected amplitude (simulations Zwerger-Müller 97)               LIGO-Virgo

dmean ∼ 30 kpc threshold SNR = 5 ⇒ detection limited to our Galaxy

(2) Antenna patterns
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The next Galactic SN : 
GW-ν coincidence strategy (1)

• ν detectors
- several running detectors covering the Galaxy with an efficiency of 100%
- false alarm rate negligible if at least 2 in coincidence
- direction to ≈ 5 o        ( best precision from delayed optical observation)
- SNEWS network :  alarm to astronomers + GW detectors within 30’

• GW interferometers
- relatively low threshold barely covers Galaxy, but false rate too high

(assuming gaussian stationary noise, not realistic, so even worse)
- not suitable for sending alarms
- very important to react on ν alarms (discovery of GW from SN collapse)
- at least 2 antennas with complementary beam patterns needed for sky 

coverage, at least 3 to perform coincidences at reasonable efficiency

Arnaud 03
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GW-ν coincidence strategy (2)
loose coincidence strategy: correlate GW signals in several

antennas without directional information (time window ±
50 ms, maximum time delay between antennas)

tight coincidence strategy: knowing source direction (from 
 ν or optical), time window can be reduced to ≈ 10 ms

coherent analysis : knowing source direction, outputs of all 
interferometers can be summed with weights ∝ beam 
pattern functions, only one threshold on sum, tight 
coincidence applied with neutrinos 

Two goals:
- claim the discovery of GW emission in the SN collapse : 

require 10-4 accidental coincidence probability in 10 ms window

- study GW signal in coincidence with neutrinos : 10-2 enough
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GW-ν coincidence strategy (3)
LIGO – Virgo network Arnaud 03

Detection Probability in Coherent Analysis
Accidental coincidence in 10 ms

Efficiency (%) 10-4 10-2

Coincidence 2/3            55                   66

OR 1/3                           71                   85

Coherent                        80                   91

⇒ Coherent analysis provides best 
efficiency for SN GW confirmation

False Alarm rate in sampling bin (20 kHz)
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GW/neutrino timing                             

• SYST: GW peak time / bounce      (0.1 ± 0.4) ms Zweiger-Muller 97
• SYST:  νe flash / bounce                  (3.5 ± 0.5) ms    simulations
• STAT:  GW peak time      accuracy < 0.5 ms depends on filtering algorithm          
• STAT:  νe flash        accuracy =  σflash / √ Nevents with σflash = (2.3 ± 0.3) ms

Arnaud 02, 03

to reduce systematic uncertainty
joint simulations needed
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GW/neutrino delay                              
Pakvasa 72, Fargion 81, Arnaud 02

timing between the GW peak and the νe flash

∆t ν, GW  =  ∆t prop  +   ∆t ν,bounce  + ∆t GW, bounce 

∆t prop =  (L / 2 ) (mν / Eν)2

=  5.2 ms  (L /10 kpc)  (mν /1 eV)2 (10 MeV /Eν)2

• yields  δmν
2 ∝ ∆t / L  ≈ constant

• accuracy of  ≈ 1 ms gives sensitivity to neutrino masses < 1 eV
• direct and absolute measurement
• if νe mass obtained from other exp. to a precision < 0.5 eV, then 

GW/νe timing provides unique information on bounce dynamics
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Simulating the experiment                     

mν = 0

mν = 2

SN collapse at 10 kpc
statistics x100

mν = 2 eV

Arnaud 02
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Expected results                    
• results take into account 

neutrino oscillations    (Dighe 00)

• relevant parameter:
νe survival probability Pe (θ13)

Arnaud 02

•methods (1,2) with Pe = 0.5
• method (4) when Pe = 0
• method (3) whatever Pe
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Supernova physics (1)                  

neutrino detection :      time and energy spectra for νe and νe
time spectrum for νµ,τ
luminosity (distance)

GW detection :             timing (bounce)
amplitude

timing of neutrino pulses / bounce to better than 1 ms
if  ν mass known or  < 0.5 eV

learn about size of neutrinosphere (core opacity) and shock wave     
propagation velocity
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Supernova physics (2)                  

an interesting possibility : inner core collapse + accretion from outer mantle
⇒ delayed Back Hole formation ≈ 0.5 s

abrupt cutoff in neutrino time spectrum  ≈ 0.5 ms

could be used as a timing signal
to observe late neutrinos, but mass sensitivity  limited to 1.8 eV

(Beacom 2000)

to search for BH ringdown signal in GW antennas : could run
with relatively low threshold thanks to excellent timing,
matched filtering (damped sines)

observations of a sharp cutoff in the neutrino time spectrum 
and a synchronized GW ringdown signal would constitute 
a smoking gun evidence for BH
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Conclusions (1)

• Complementary information on astrophysical phenomena is vital
• So far only used extensively with EM signals from radio to γ-rays  (ex. GRBs)
• SN 1987a : extra-solar ν signal for the first time
• Study of the most violent events (collapses, mergers) will benefit enormously 

from the availability of γ, UHE cosmic rays, ν and GW detectors available and 
under construction

• Multiwavelength approach to cover a broad range of phenomena:
EM    to-day’s astrophysics
ν from 5 MeV to 1000 TeV
GW Ligo-Virgo  10 Hz − 10 kHz           LISA  0.1 – 100 mHz

• Rates are small : need for large instruments                    
• Important to narrow the range of astrophysical interpretations
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Conclusions (2)

• A single Galactic SN event seen in coincidence in GW and ν detectors would 
bring unique information.

• Sky coverage requires OR-ing several antennas with complementary beam 
patterns.

• LIGO-Virgo network will be 80% efficient to discover GW emission by a SN 
seen by ν detectors with an accidental coincidence probability of 10-4 . 

• Precise GW/ν timing can be achieved at better than 1 ms.
• Absolute neutrino masses can be investigated below the present lower limit 

of 2 eV down to 0.6 – 0.8 eV in a direct way.
• When ν masses are known from other methods or found to be smaller than

0.5 eV, relative GW/ν timing provides a new tool to investigate SN physics.
• If the SN eventually collapses into a BH,  a GW/ν coincidence analysis can 

prove the BH formation.
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