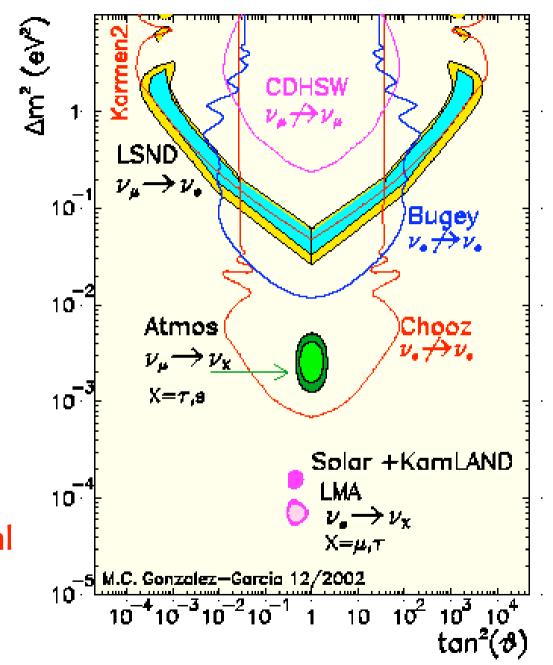
Paris, 19 June '04

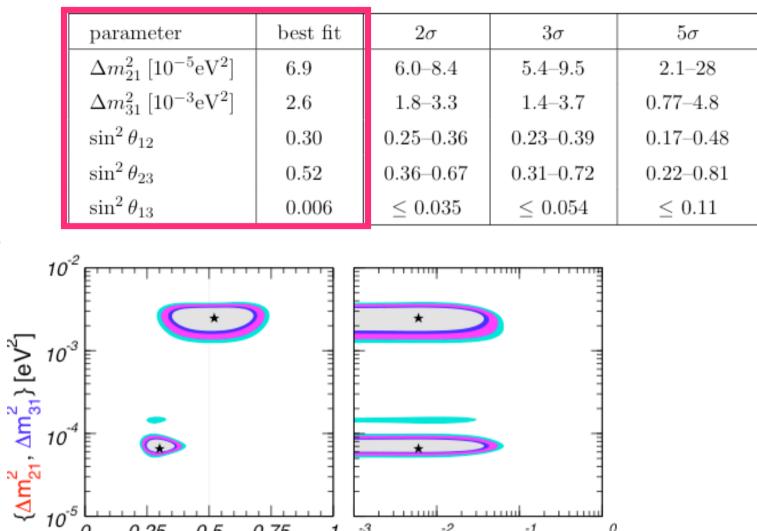
Neutrino 2004: concluding talk


G. Altarelli CERN

- Top Highlights at Neutrino '04
- Main lessons from neutrinos in recent years
- Impact on particle physics & cosmology

Solid evidence for solar and atmosph. v oscillations (+LSND unclear)

 Δm^2 values fixed: $\Delta m^2_{atm} \sim 2.5 \ 10^{-3} \ eV^2$, $\Delta m^2_{sol} \sim 8 \ 10^{-5} \ eV^2$ $(\Delta m^2_{LSND} \sim 1 \ eV^2)$


mixing angles: θ_{12} (solar) large θ_{23} (atm) large, ~ maximal θ_{13} (CHOOZ) small

Before Nu'04

Maltoni et al '04

Large vmixings: different from quarks! At first a surprise

¹10⁻³

G. Altarelli

10⁻⁵

0

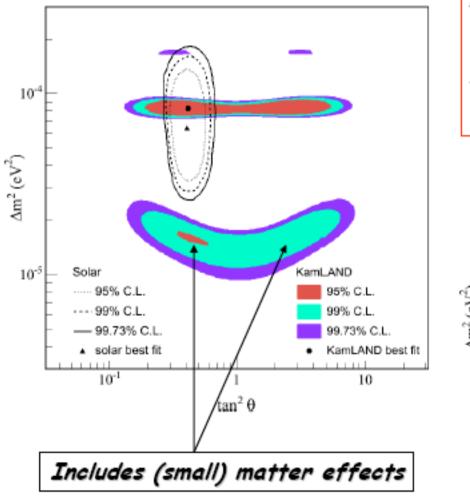
0.25

0.5

0.75


 $sin^2 \theta_{13}$ $\{\sin^2\theta_{12}, \sin^2\theta_{23}\}$ compatible with maximal but not necessarily or likely so

10⁻¹


10⁰

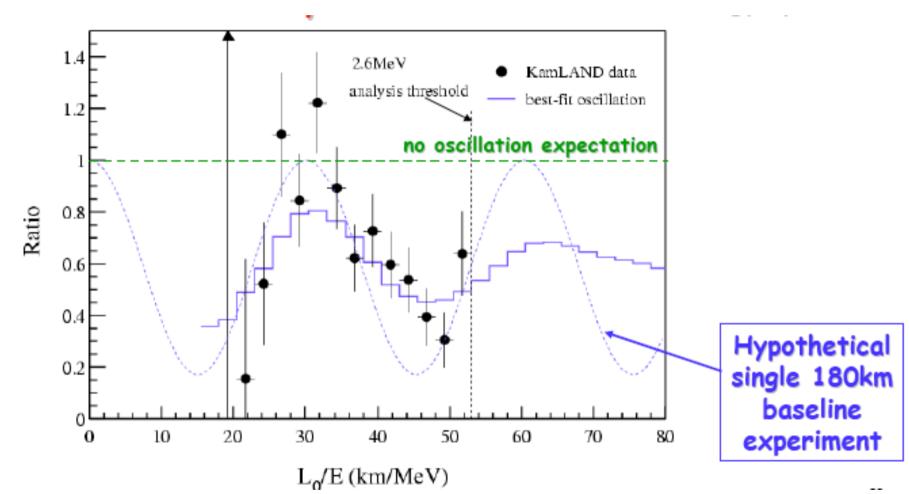
10⁻²

Recently great progress on $\Delta m_{12}^2!$

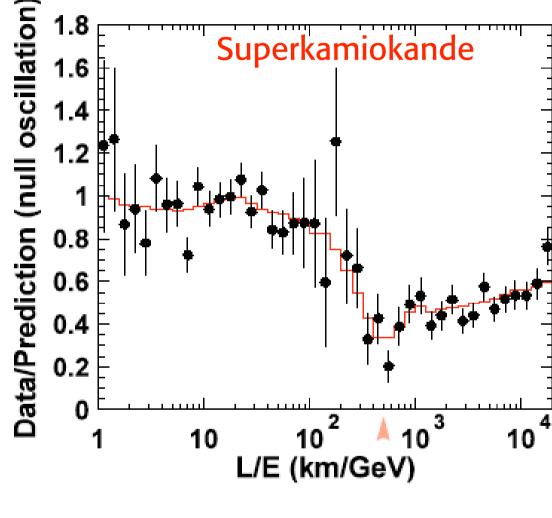
KamLAND brings Δv_{solar} down to earth!GrattaCombined solar v - KamLAND 2-flavor analysis

$$\Delta m_{12}^2 = 8.2 + 0.6 \times 10^{-5} eV^2$$

$$\tan^2 \theta_{12} = 0.40 + 0.09 - 0.07$$

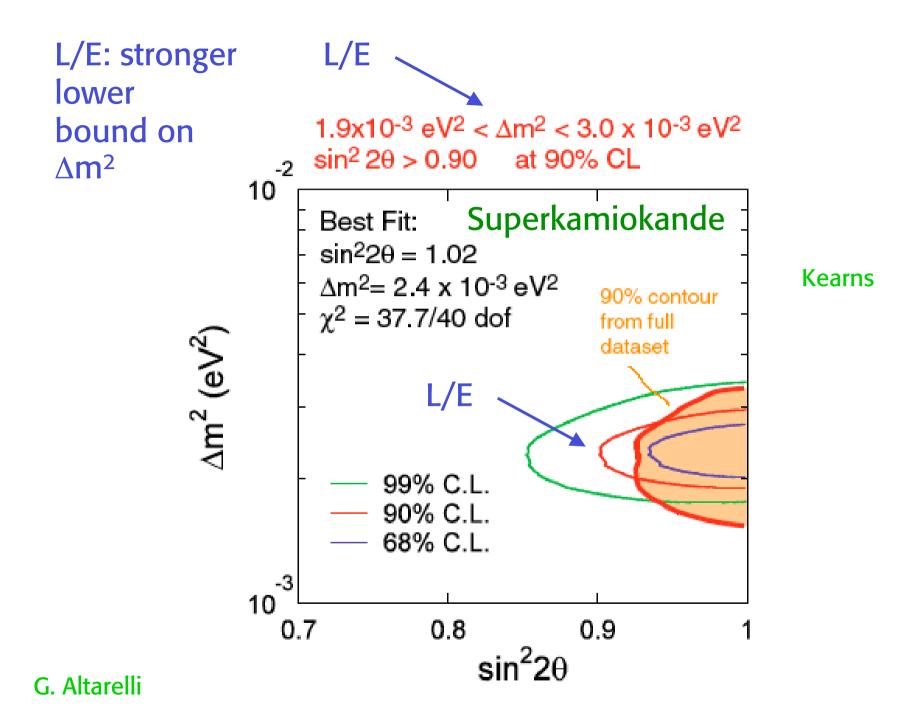

Goswami

- KamLAND has tremendous sensitivity to Δm^2_{21}
- Does not constrain θ_{12} much better than the current set of solar experiments

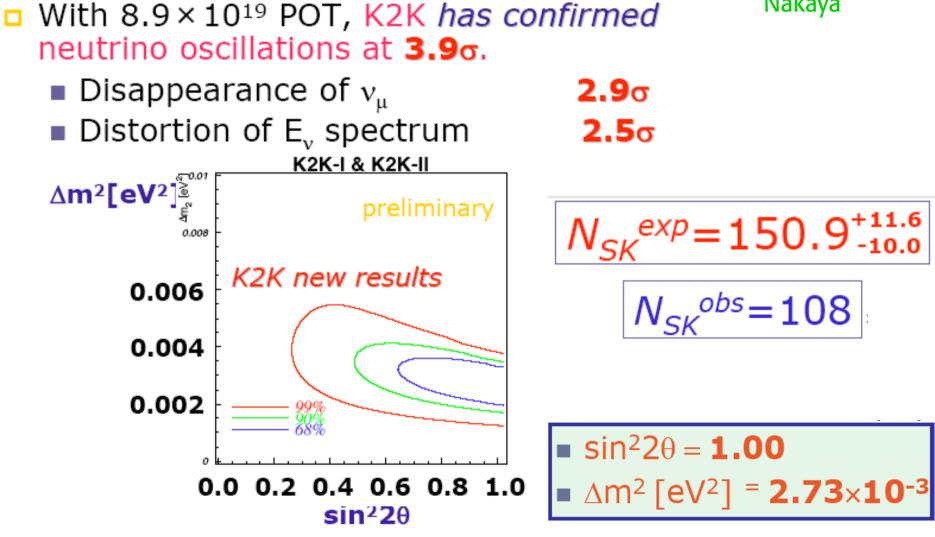

Data set	Range* of	spread in
used	$\Delta m^2_{21} \times 10^{-5}~{\rm eV}^2$	Δm^2_{21}
only sol	3.2 - 14.9	65%
sol+162 Ty KL	5.2 - 9.8	31%
sol+ 766.3 Ty KL	7.3 - 9.4	13%
future sol+1.3 kTy KL	6.7 - 7.8	8%
* 99% C.L.		

KamLAND "L"/E distribution: direct look at oscillations

Gratta



Atmospheric neutrinos: SuperKamiokande L/E analysis Kearns


oscillation dip seen at ~500 km/GeV

G. Altarelli

Important progress by K2K (bringing Δv_{atm} down to earth)

Nakaya

Bounds on $\sin^2 \theta_{13}$

Recently Δm^2_{atm} went down. As a consequence the upper bound on sin² θ_{13} is weaker

SK L/E results tend to improve the bound

 3σ Bounds ($\Delta\chi^2=9$)

Goswami

- Assuming the Δm^2_{32} range from SK+K2K analysis

$$\begin{split} & \sin^2 \theta_{13} < 0.096 & ({\sf CHOOZ+ATM+K2K}) \\ & \sin^2 \theta_{13} < 0.077 & ({\sf Sol+CHOOZ+ATM+K2K}) \\ & \sin^2 \theta_{13} < 0.074 & ({\sf all data}) \end{split}$$

Bandyopadhyay et al., 2003

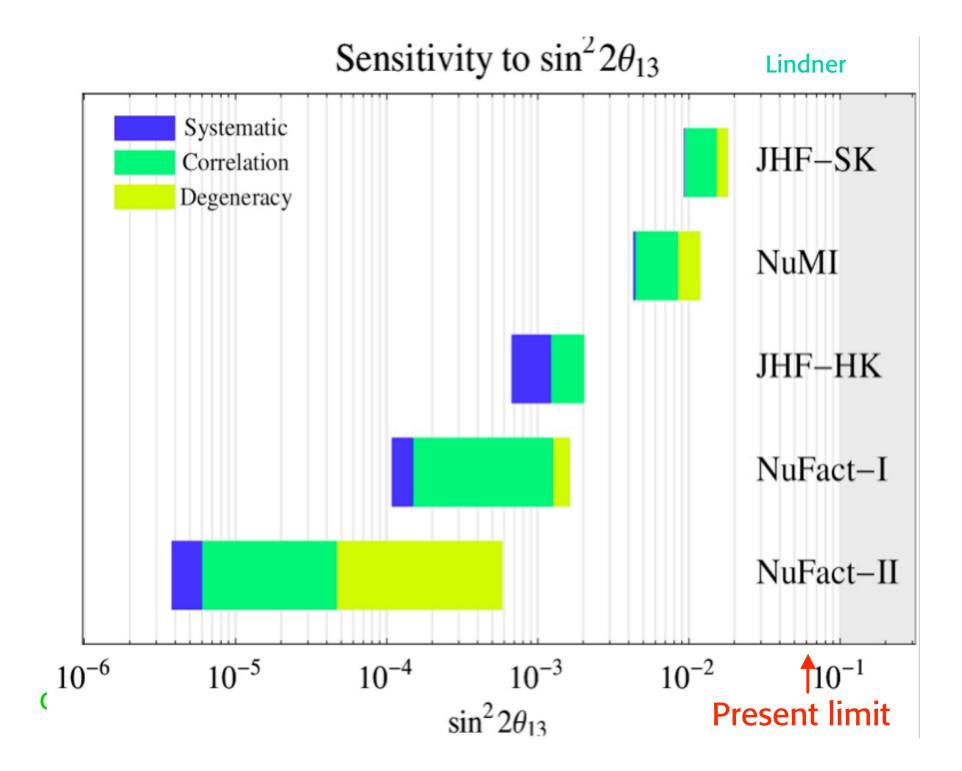
Assuming the SK zenith analysis

 $\sin^2 \theta_{13} < 0.067$ (all data)

Fogli et al., 2003

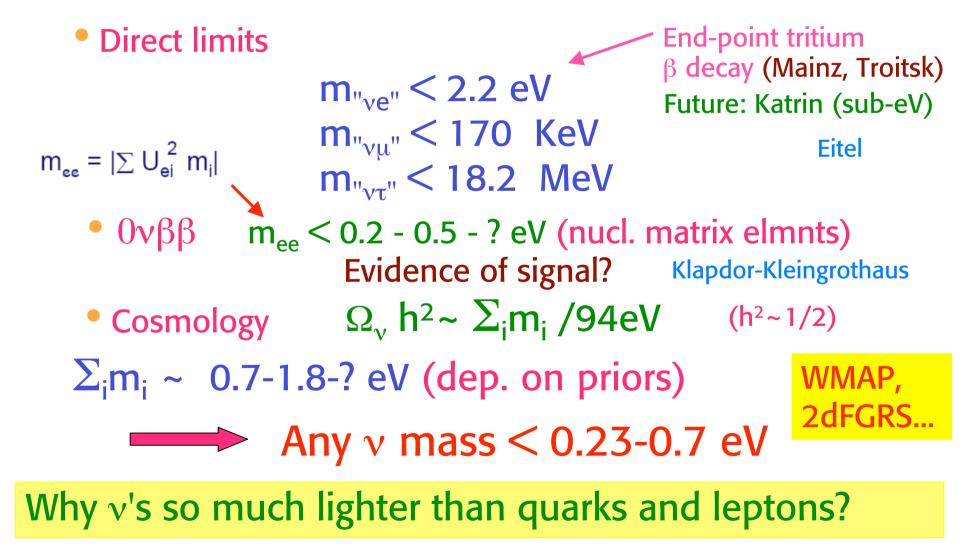
Assuming SK L/E analysis

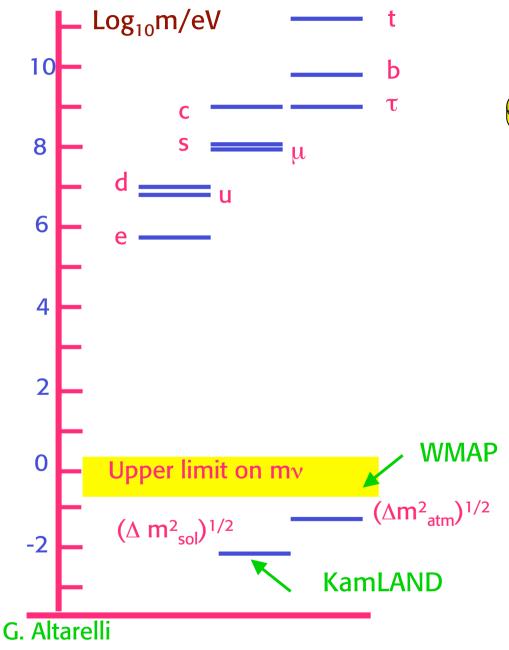
 $\sin^2 \theta_{13} < 0.05$ (all data)


Fogli, Lisi, Marrone, Palazo, 2004

• SK zenith+K2K+solar+reactor analysis

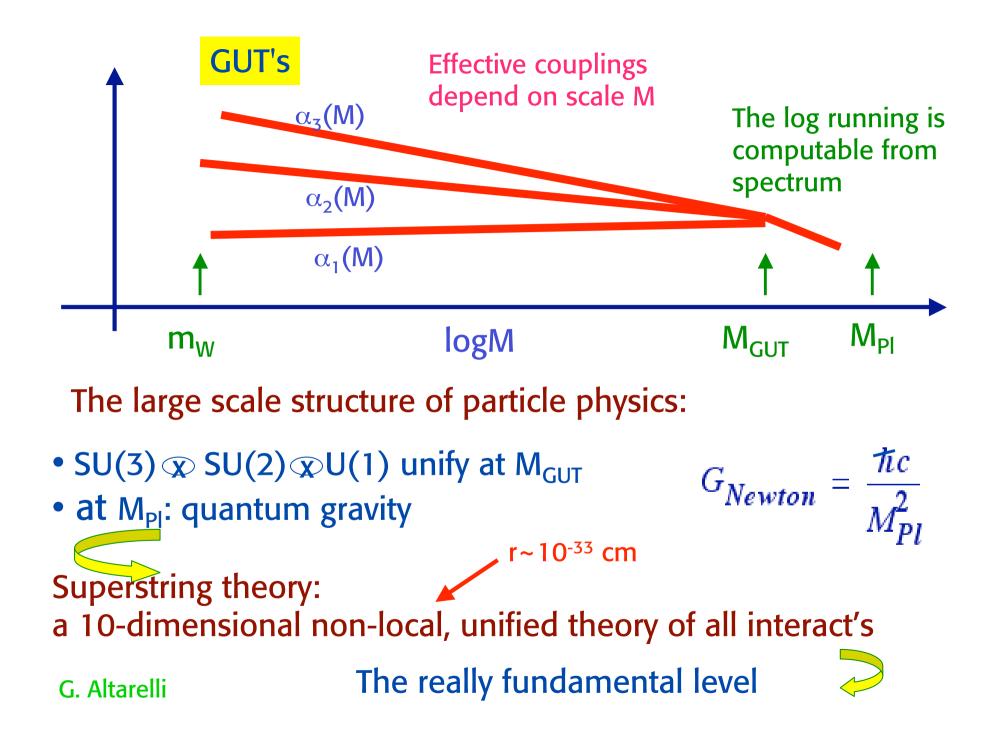
 $\sin^2 \theta_{13} < 0.061$ (all data)


G. Altarelli


Maltoni et al,2004

v oscillations measure Δm^2 . What is m^2 ?

 $\Delta m_{atm}^2 \sim 2.5 \ 10^{-3} \ eV^2$; $\Delta m_{sun}^2 \sim 8 \ 10^{-5} \ eV^2$



Neutrino masses are really special! $m_t/(\Delta m_{atm}^2)^{1/2} \sim 10^{12}$ Massless v's? • no v_R L conserved Small v masses? • v_{R} very heavy L not conserved A very natural and appealing explanation:

v's are nearly massless because they are Majorana particles and get masses through L non conserving interactions suppressed by a large scale $M \sim M_{GUT}$

m _v ~	$\frac{m^2}{M} \qquad m \sim m_t \sim v \sim 200 \text{ GeV}$ M: scale of L non cons.	
Note:	$m_v \sim (\Delta m_{atm}^2)^{1/2} \sim 0.05 \text{ eV}$	
	$m \sim v \sim 200 \text{ GeV}$	
	M ~ 10 ¹⁵ GeV	

Neutrino masses are a probe of physics at M_{GUT} !

By now GUT's are part of our culture in particle physics

• Unity of forces: $G \supset SU(3) \otimes SU(2) \otimes U(1)$ unification of couplings

- Unity of quarks and leptons different "directions" in G
- Family Q-numbers

e.g. in SO(10) a whole family in 16

• Charge quantisation: $Q_d = -1/3 - 1/N_{colour}$

• B and L non conservation

->p-decay, baryogenesis, v masses

• • • • •

Most of us believe that Grand Unification must be a feature of the final theory!

Conceptual problems of the SM

Most clearly: • No

- No quantum gravity ($M_{Pl} \sim 10^{19} \text{ GeV}$)
- But a direct extrapolation of the SM leads directly to GUT's (M_{GUT} ~ 10¹⁶ GeV)

- suggests unification with gravity as in superstring theories
- poses the problem of the relation m_w vs M_{GUT}- M_{Pl}

Can the SM be valid up to M_{GUT} - M_{PI} ?? The hierarchy problem

Not only it looks very unlikely, but the new physics must be near the weak scale!

For the low energy theory: the "little hierarchy" problem: e.g. the top loop (the most pressing): $m_h^2 = m_{bare}^2 + \delta m_h^2$ $\delta m_{h|top}^2 = \frac{3G_F}{\sqrt{2}\pi^2} m_t^2 \Lambda^2 \sim (0.3\Lambda)^2$ h h This hierarchy problem demands $\Lambda \sim o(1 \text{TeV})$ new physics near the weak scale Λ : scale of new physics beyond the SM • $\Lambda >> m_7$: the SM is so good at LEP • $\Lambda \sim$ few times $G_{F}^{-1/2} \sim o(1 \text{ TeV})$ for a natural explanation of m_b or m_w Barbieri, Strumia ^{*}The LEP Paradox: m_h light, new physics must be so close but its effects are not directly visible

Examples:

 SUSY
 Supersymmetry: boson-fermion symm. exact (unrealistic): cancellation of δμ² approximate (possible): Λ ~ m_{SUSY}-m_{ord} →

The most widely accepted

top loop

 $\Lambda \sim m_{stop}$

- The Higgs is a $\overline{\psi}\psi$ condensate. No fund. scalars. But needs new very strong binding force: $\Lambda_{new} \sim 10^3 \Lambda_{QCD}$ (technicolor). Strongly disfavoured by LEP
- Large extra spacetime dimensions that bring M_{Pl} down to o(1TeV)

Elegant and exciting. Rich potentiality. Does it work?

• Models where extra symmetries allow m_h only at 2 loops and non pert. regime starts at $\Lambda \sim 10$ TeV "Little Higgs" models. Tension with EW precision tests

SUSY fits with GUT's

From $\alpha_{QED}(m_Z)$, $sin^2\theta_W$ measured at LEP predict $\alpha_s(m_Z)$ for unification (assuming desert)

EXP: $\alpha_s(m_Z)=0.119\pm0.003$ Present world average •Coupling unification: Precise matching of gauge couplings at M_{GUT} fails in SM and is well compatible in SUSY

Non SUSY GUT's $\alpha_s(m_z)=0.073\pm0.002$

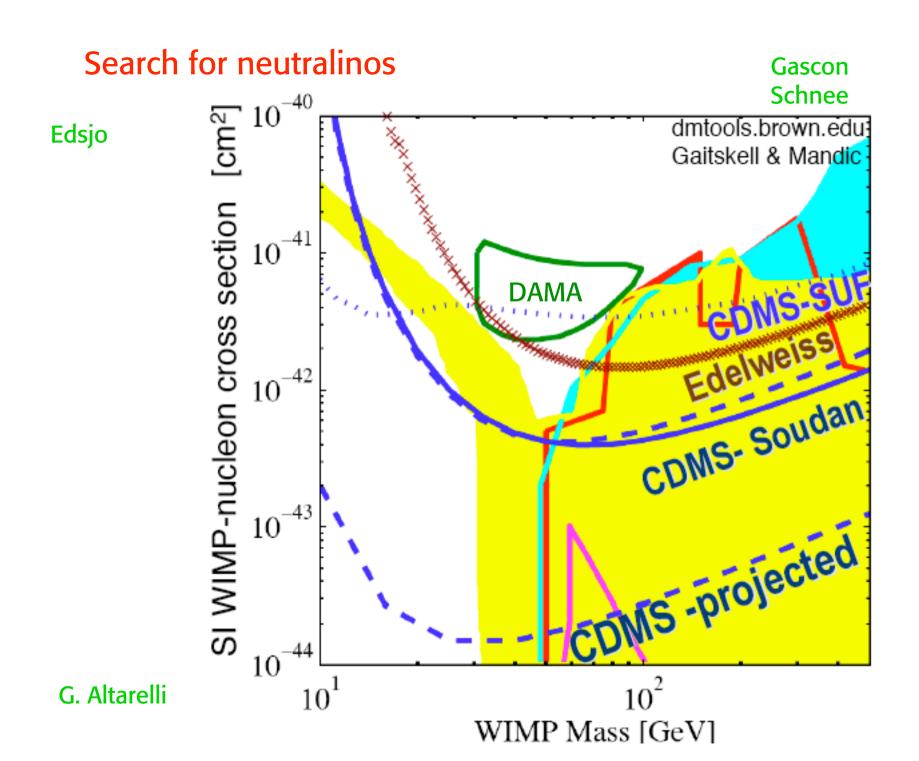
SUSY GUT's $\alpha_{s}(m_{Z}) = 0.130 \pm 0.010$

> Langacker, Polonski Dominant error: thresholds near M_{GUT}

- Proton decay: Far too fast without SUSY
- $M_{GUT} \sim 10^{15} \text{GeV non SUSY} \rightarrow 10^{16} \text{GeV SUSY}$
- Dominant decay: Higgsino exchange

While GUT's and SUSY very well match, (best phenomenological hint for SUSY!) in technicolor , large extra dimensions, little higgs etc., there is no ground for GUT's

Turner/Lahav



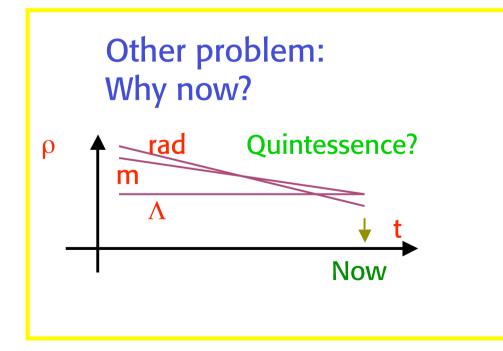
Most of the Universe is not made up of atoms: $\Omega_{tot} \sim 1$, $\Omega_{b} \sim 0.044$, $\Omega_{m} \sim 0.27$ Most is Dark Matter and Dark Energy

Most Dark Matter is Cold (non relativistic at freeze out) Significant Hot Dark matter is disfavoured Neutrinos are not much cosmo-relevant: $\Omega_v < 0.015$ (WMAP)

SUSY has excellent DM candidates: Neutralinos (--> LHC) Also Axions are still viable (in a small mass window m~10⁻⁵ eV) Van Bibber

Identification of Dark Matter is of a task of enormous importance for particle physics and cosmology

Neutrino masses point to M_{GUT}, well fit into the SUSY-GUT's picture:


indeed add considerable support to this idea.

Technicolor, Little Higgs, Extra dim....: nearby cut-off. Problem of suppressing

$$O_5 = \mathbf{v}_L^T \frac{\lambda}{M} \mathbf{v}_L H H$$

Another big plus of neutrinos is the elegant picture of baryogenesis thru leptogenesis , (after LEP has disfavoured BG at the weak scale) Buchmuller **Baryogenesis** A most attractive possibility: BG via Leptogenesis near the GUT scale $T \sim 10^{12\pm3}$ GeV (after inflation) Buchmuller, Yanagida, Plumacher, Ellis, Lola, Only survives if $\Delta(B-L)$ is not 0 Giudice et al, Fujii et al (otherwise is washed out at T_{ew} by instantons) Main candidate: decay of lightest v_{R} (M~10¹² GeV) L non conserv. in v_R out-of-equilibrium decay: B-L excess survives at T_{ew} and gives the obs. B asymm. Quantitative studies confirm that the range of m_i from v oscill's is perfectly compatible with BG via (thermal) LG In particular the bound **Close to WMAP** $m_i < 10^{-1} eV$ was derived Can be somewhat relaxed for Buchmuller, Di Bari, Plumacher degenerate v's. Giudice et al

The scale of the cosmological constant is a big mystery. $\Omega_{\Lambda} \sim 0.65 \longrightarrow \rho_{\Lambda} \sim (2 \ 10^{-3} \ eV)^4 \sim (0.1 \ mm)^{-4}$ In Quantum Field Theory: $\rho_{\Lambda} \sim (\Lambda_{cutoff})^4$ Similar to m_v !? If $\Lambda_{cutoff} \sim M_{Pl} \longrightarrow \rho_{\Lambda} \sim 10^{123} \ \rho_{obs}$ Exact SUSY would solve the problem: $\rho_{\Lambda} = 0$ But SUSY is broken: $\rho_{\Lambda} \sim (\Lambda_{SUSY})^4 \sim 10^{59} \ \rho_{obs}$ It is interesting that the correct order is $(\rho_{\Lambda})^{1/4} \sim (\Lambda_{FW})^2/M_{Pl}$

The scale of vacuum energy poses a large naturalness problem!

So far no clear way out:

- A modification of gravity at 0.1mm? (large extra dim.)
- Leak of vac. energy to other universes (wormholes)?
- Anthropic principle: just right for galaxy formation (Weinberg)

Perhaps naturality irrelevant also for Higgs: Arkani-Hamed, Dimopoulos; Giudice, Romanino '04

Split SUSY: a fine tuned light Higgs + light gauginos and higgsinos. all other s-partners heavy preserves coupling unification and dark matter

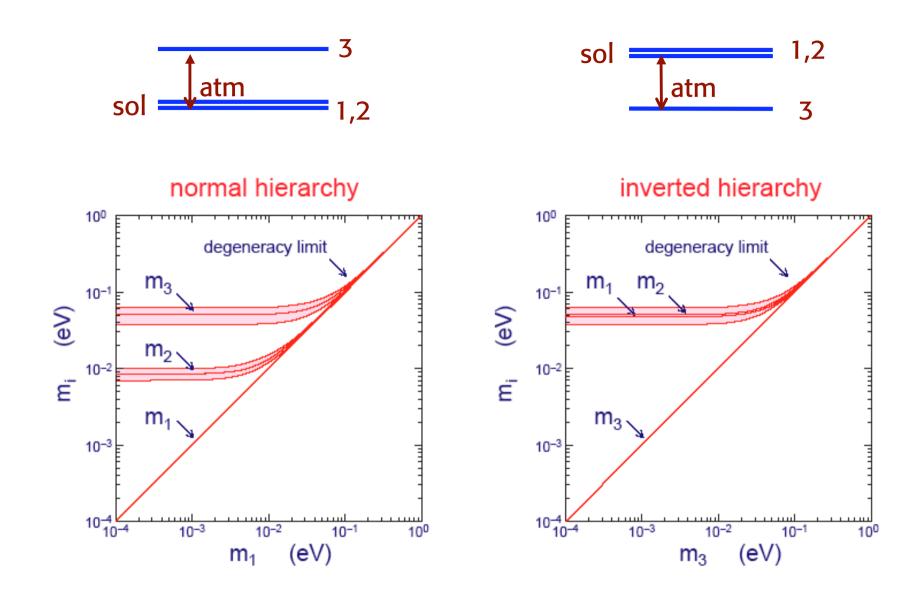
Or simply a two-scale non-SUSY GUT with axions as DM G. Altarelli For ν masses all that would remain fine

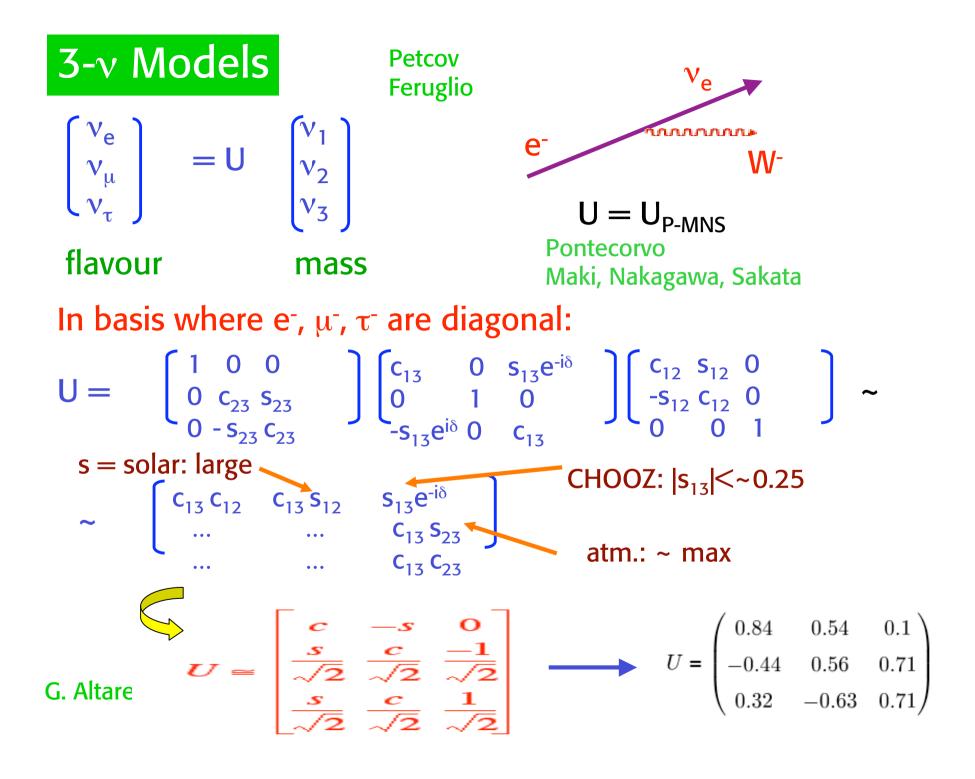
The current experimental situation is still unclear •LSND: true or false? •what is the absolute scale of v masses? •0νββ? ••• Different classes of models are possible: If LSND true $m^2 \sim 1-2eV^2$ •"3-1" sterile v(s)?? Strumia **LSND** CPT violat'n?? v_{sterile} We assume If LSND false 3 light v's are OK this case here Degenerate ($m^2 >> \Delta m^2$) $m^2 < o(1)eV^2$

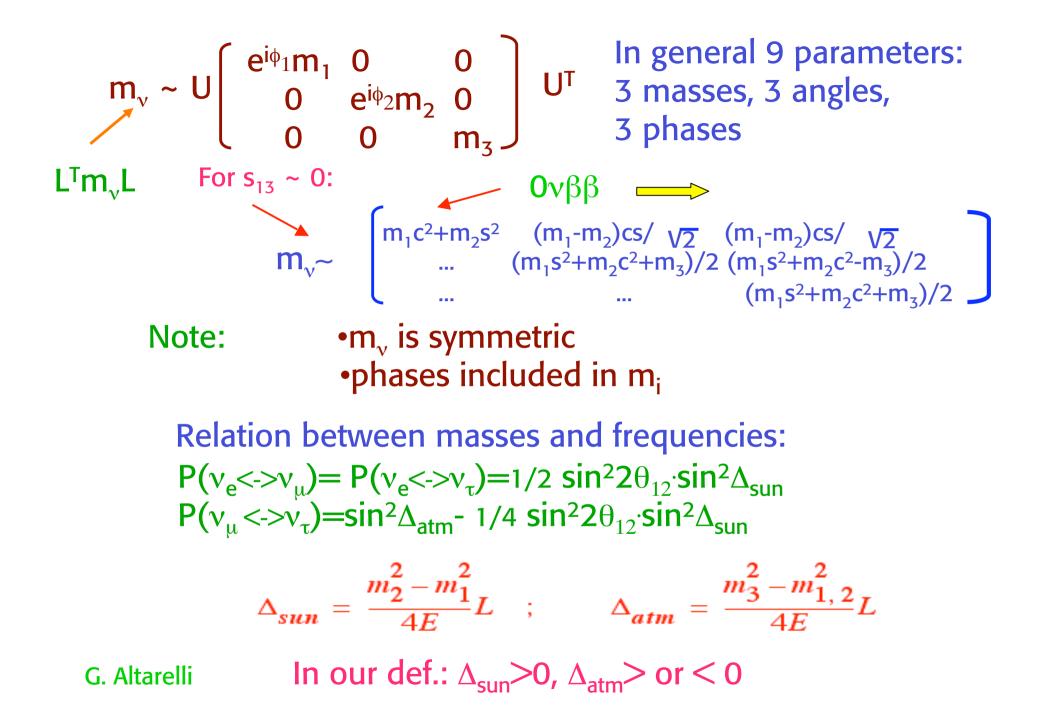
sol

SO

atm


atm


 $= m^2 \sim 10^{-3} eV^2$


 $m^2 \sim 10^{-3} eV^2$

Inverse hierarchy

Normal hierarchy

 $0\nu\beta\beta$ can establish L non conservation, Majorana n's and also tell degenerate, inverted or normal hierarchy

 $|m_{ee}| = c_{13}^{2} [m_{1}c_{12}^{2} + e^{i\alpha}m_{2}s_{12}^{2}] + m_{3}e^{i\beta}s_{13}^{2}$ $LA: \sim 0.3 - 1$ $Degenerate: \sim |m| |c_{12}^{2} + e^{i\alpha}s_{12}^{2}|$ $|m_{ee}| \sim |m| (0.3 - 1) < 0.23 - 1 eV$ $IH: \sim (\Delta m_{atm}^{2})^{1/2} |c_{12}^{2} + e^{i\alpha}s_{12}^{2}|$ $|m_{ee}| \sim (1.6 - 5) 10^{-2} eV$ IO^{-1}

NH:
$$\sim (\Delta m_{sol}^2)^{1/2} s_{12}^2 + (\Delta m_{atm}^2)^{1/2} e^{i\beta}$$

 $|m_{ee}| \sim (few) \ 10^{-3} eV$

Present exp. limit: m_{ee} < 0.3-0.5 eV (and a hint of signal?) K-K Future: NEMO3, CUORE, GENIUS, EXO...

Full dependence on min m_{μ} 90% CL (1 dof) m_{ee} Feruglio, Strumia, Vissan 10^{-1} $\Delta m_{21}^2 < 0$ m_{ee} ineV lisfavoured by cosmd og 10^{-2} $\Delta m_{28}^2 > 0$ 10^{-3} 10^{-4} 10^{-4} 10^{-3} 10^{-2} 10^{-1} lightest neutrino mass in eV lightest m_v (eV) Sarazin Fiorini Avignone

After KamLAND, SNO and WMAP not too much hierarchy is needed for v masses:

 $\Delta\chi^2$ 20 $r \sim \Delta m^2_{sol} / \Delta m^2_{atm} \sim 1/35$ ^{15 ب} ⊽X Precisely at 3σ : 0.018 < r < 0.053 3σ or 5 2σ $m_{heaviest} < 1 - 0.23 \text{ eV}$ $m_{next} > ~8 \ 10^{-3} \, eV$ 10-1 For a hierarchical spectrum: $\frac{m_2}{m_3} \approx \sqrt{r} \approx 0.2$ Comparable to: $\lambda_C \approx 0.22 \text{ or } \sqrt{\frac{m_{\mu}}{m_{\tau}}} \approx 0.24$ Suggests the same "hierarchy" parameters for q, l, v G. Altarelli e.g. θ_{13} not too small!

We stress again:

• Still large space for non maximal 23 mixing $3-\sigma$ interval $0.31 < \sin^2\theta_{23} < 0.72$ Maximal θ_{23} theoretically hard

• θ_{13} not necessarily too small probably accessible to exp.

 $sin\theta_{13} \sim 1/2 sin\theta_{13}$ not excluded!

• $r \sim \Delta m_{sol}^2 / \Delta m_{atm}^2 \sim 1/35$ $m_{heaviest} < 1 - 0.23 \text{ eV}$ Moderate mass hierarchy of order λ_{C}

Feruglio

- absolute spectrum

though an open experimental question, theoretically welcome (but not experimentally unavoidable) properties like GUTs, see-saw and relationship with other fermion masses favour a hierarchical spectrum, with normal hierarchy less constrained than the inverse one by current knowledge of $\tan^2 g_{12}$ and U_{e3}

- Ue3 not un-measurably small in most of models.

Goals of future experiments

- Confirm or reject LSND (In progress: MiniBoone) Brice
- Measure θ_{13} (MINOS, reactors) Thompson/Oberauer/Messier
- Detect v_{τ} in $v_{\mu} < -> v_{\tau}$ (In preparation: Opera, Icarus) Autiero Bueno
- How close to maximal is θ_{23} ?
- Determine sign Δm_{23}^2 (LBL, v factories)

Blondel/Tonazzo/Mezzetto

- Go after CP violation (LBL, v factories)
- Improve sensitivity to $0\nu\beta\beta$ (CUORE, GENIUS, EXO....)
- Cosmic neutrinos (Baikal, Amanda, Antares, Nestor, Nemo, Auger..)
- Lepton flavour violation (μ ->e γ ...), mag. mom. Aoki/Savoy/Wong DeGouvea
- p decay Jung/ Sulak G. Altarelli

Plenty of work/ projects for many years!

Long baseline osc. experiments

- 1st phase experiments (Now)
 - Confirmation of atm. v results
 - K2K(1999~)/MINOS(2005~)/ICARUS/OPERA(2006~)
- 2nd phase experiments (Now~10yrs)
 - Discovery of v_e appearance
 - Designed & Optimized aft. SK atm ν
 - ~MW beam w/ ~50kton detector
 - T2K-I (approved. 2009~)/NOvA (2009?~) / (C2GT)
- 3rd phase experiments(10~20yrs?)
 - **CP violation and mass hierarchy** thru $v_{\mu} \rightarrow v_{e}^{(-)} app^{(-)}$.
 - Typically Multi-MW beam & Mton detector

G. Altarell phase is critical step to go

Classification by G.Feldman @SB WS@BNL

Summary of ("super-beam") LBL experiments

	<i>E_p</i> (GeV)	Power (MW)	Beam	< <i>E</i> > (GeV)	L (km)	M _{det} (kt)	ν _μ CC (/yr)	v _e @peak	
K2K	12	0.005	WB	1.3	250	22.5	~50	~1%	h
MINOS(LE)	120	0.4	WB	3.5	730	5.4	~2,500	1.2%	> 1
CNGS	400	0.3	WB	18	732	~2	~5,000	0.8%	Ų
T2K-I	50	0.75	OA	0.7	295	22.5	~3,000	0.2%	Π
NOvA	120	0.4	OA	~2	810?	50	~4,600	0.3%	≻ "
C2GT	400	0.3	OA	0.8	~1200	1,000?	~5,000	0.2%	Į
T2K-II	50	4	OA	0.7	295	~500	~360,000	0.2%	N
NOvA+PD	120	2	OA	~2	810?	50?	~23,000	0.3%	
BNL-Hs	28	1	WB/OA	~1	2540	~500	~13,000		≻ ⊪
SPL-Frejus	2.2	4	WB	0.32	130	~500	~18,000	0.4%	
FeHo G. Altarelli	8/120	"4"	WB/OA	1~3	1290	~500	~50,000		V

Running, constructing or approved experiments

Beyond the immediate future:

Japan has a well defined roadmap, J-PARC on its way, funding etc for ν physics in '09

In Europe and the US many ambitious ideas, schemes, sites,.... but no convergence and, most important, no much funding so far.

I really hope this situation will soon improve

Last, not least:

As a last speaker, in behalf of all the partecipants, I would like to thank the Organisers for this perfect Conference.

College de France is a great, confortable, centrally located facility and Paris is one of the most attractive cities in the world!