The next generation of Neutrino telescopes - ICECUBE
Design and Performance, Science Potential

Albrecht Karle
University of Wisconsin-Madison
karle@alizarin.physics.wisc.edu

Neutrino 2002
Munich
The IceCube Collaboration

Institutions: 11 US, 9 European institutions and 1 Japanese institution; ≈110 people

1. Bartol Research Institute, University of Delaware
2. BUGH Wuppertal, Germany
3. Universite Libre de Bruxelles, Brussels, Belgium
4. CTSPS, Clark-Atlanta University, Atlanta USA
5. DESY-Zeuthen, Zeuthen, Germany
6. Institute for Advanced Study, Princeton, USA
7. Dept. of Technology, Kalmar University, Kalmar, Sweden
8. Lawrence Berkeley National Laboratory, Berkeley, USA
9. Department of Physics, Southern University and A&M College, Baton Rouge, LA, USA
10. Dept. of Physics, UC Berkeley, USA
11. Institute of Physics, University of Mainz, Mainz, Germany
12. University of Mons-Hainaut, Mons, Belgium
13. Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
14. Dept. of Astronomy, Dept. of Physics, SSEC, University of Wisconsin, Madison, USA
15. Physics Department, University of Wisconsin, River Falls, USA
16. Division of High Energy Physics, Uppsala University, Uppsala, Sweden
17. Fysikum, Stockholm University, Stockholm, Sweden
18. University of Alabama
19. Vrije Universiteit Brussel, Brussel, Belgium
20. Chiba University, Japan
Outline of Talk

1. Overview
2. Muon neutrinos from:
 • a) diffuse sources
 • b) point sources
 • c) Gamma ray bursts
3. Electron Neutrinos: Cascades
4. Tau Neutrinos
5. The surface component: IceTop
6. Detector: Optical sensor
7. Summary
IceCube has been designed as a discovery instrument with improved:

- telescope area
- detection volume
- energy measurement of secondary muons and electromagnetic showers
- identification of neutrino flavor
- angular resolution
IceCube

• 80 Strings
• 4800 PMT
• Instrumented volume: 1 km3
 (1 Gt)
Project status

- Approved by the National Science Board
- Startup funding is allocated.
- Construction is in preparation (Drill, OM design, OM production, DAQ and test facilities).
- Construction start in 04/05; possibly a few initial strings in 03/04.
- Flavours and energy ranges

- Filled area: particle id, direction, energy
- Shaded area: energy only
- Detect neutrinos of all flavours at energies from 10^7 eV (SN) to 10^{20} eV
Neutrino sky as seen by AMANDA

Monte Carlo methods are verified on data.

Methods are not yet optimized and fully developed for high energies.
Signals and Background rejection

Backgrounds:
- Atmospheric neutrinos
- Cosmic ray muons (misreconstructed downgoing)

<table>
<thead>
<tr>
<th>Type of Neutrino source</th>
<th>Rejection method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Diffuse source (AGN, GRB, ..)</td>
<td>Up/Down: <1E-8 and energy*</td>
</tr>
<tr>
<td>2. Point Sources (AGN, WIMP)</td>
<td>&& Direction</td>
</tr>
<tr>
<td>3. Burstlike Point Sources (GRB or AGN with time structure)</td>
<td>&& Time Stamp (GRB: secs, AGN: h,d)</td>
</tr>
</tbody>
</table>

At very high energies (>≈PeV), the downgoing signals can be accepted
Track reconstruction in low noise environment

- Typical event: 30 - 100 PMT fired
- Track length: 0.5 - 1.5 km
- Flight time: ≈4 µsecs
- Accidental noise pulses: 10 p.e. / 5000 PMT/4µsec

AMANDA-II

10 TeV

1 km
Angular resolution < 1° (med)

- Resolution ≈ 0.8 deg (median)
- Improves slightly with energy
- Better near horizon: ≈0.7° (Sample more strings)

Search bin ≈ 1.0°
Solid angle: \(2\pi/6500\)
Effective area for muons

Geometric detector area = 1km²
Eff. area = $A_{\text{gen}} \times \left(\frac{N_{\text{det.}}}{N_{\text{gen}}}\right)$
Efficiency \approx effective area/km²

Muon energy is the energy at closest approach to the detector

$\log_{10}(E/\text{GeV})$

- Trigger: allows non contained events
- Quality cuts: for background rejection
- Point source selection: soft energy cut for atmos. neutrino rejection (Assumed spectrum: E^{-2}, time of exposure 1 year)
Effective areas are given after quality cuts (including up/down separation where needed).

Note that the detector is sensitive to downward going muons at energies above 1 PeV.
Point sources: event rates

Flux equal to current AMANDA limit
\[\frac{dN}{dE} = 10^{-6}E^{-2}/(\text{cm}^2 \text{ sec GeV}) \]

<table>
<thead>
<tr>
<th></th>
<th>Atmospheric Neutrinos</th>
<th>AGN* (E^{-2})</th>
<th>Sensitivity (E^{-2}/(cm^2 sec GeV))</th>
</tr>
</thead>
<tbody>
<tr>
<td>All sky/year (after quality cuts)</td>
<td>100,000</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Search bin/year</td>
<td>20</td>
<td>2300</td>
<td>-</td>
</tr>
<tr>
<td>1 year: Nch > 32</td>
<td>0.91</td>
<td>610</td>
<td>5.3 x 10^{-9}</td>
</tr>
<tr>
<td>3 year: Nch > 43 (7 TeV)</td>
<td>0.82</td>
<td>1370</td>
<td>2.3 x 10^{-9}</td>
</tr>
</tbody>
</table>
Compare to Mrk 501 gamma ray flux

Field of view:
Continuous
24 h x 2 π sr
(northern sky)

Sensitivity of 3 years of IceCube
Point source sensitivity

\[E^2(dN/dE) \text{ [GeV cm}^{-2}\text{s}^{-1}] \]

\[E_{\nu} \text{ (GeV)} \]

- AMANDA-II (3 yr)
- AMANDA-B10 ('97)
- 3C273
- Crab
- AGN Core
- IceCube
- Atm. \(\nu \)}
Search for diffuse ν-fluxes

Method:

1. Assume a diffuse neutrino flux (Hypothesis), e.g. the current AMANDA limit:
 \(\frac{dN}{dE} = 10^{-6}E^{-2}/(\text{cm}^2 \text{ sec GeV sr}) \)
 -> 11,500 events/year

2. The background is the atmospheric neutrino flux (after quality cuts): = 100,000 events/year

3. Apply energy cut.
Energy reconstruction

Small detectors: Muon energy is difficult to measure because of fluctuations in dE/dx.

IceCube: Integration over large sampling + scattering of light reduces the fluctuations in energy loss.

\[E_\mu = 10 \text{ TeV} \approx 90 \text{ hits} \]

\[E_\mu = 6 \text{ PeV} \approx 1000 \text{ hits} \]
Event rates before and after energy cut

Note:
- Neutrinos from Charm production included according to: Thunman, Ingelmann, Gondolo, Astropart. Phys. 5:309-332, 1996
• Optimize energy cut.
• Sensitivity of IceCube after 3 years of operation (90% c.l.):

$$\frac{dN}{dE} \leq 4.8 \times 10^{-9} \times E^{-2} \text{/(cm}^2 \text{ sec GeV)}$$
Example: Diffuse Fluxes - Predictions and Limits

from Mannheim & Learned, 2000

1. pp core AGN (Nellen)
2. pγ core AGN (Stecker & Salomon)
3. pγ „maximum model“ (Mannheim et al.)
4. pγ blazar jets (Mannheim)
5. pγ AGN (Rachen & Biermann)
6. pp AGN (Mannheim)
7. GRB (Waxman & Bahcall)
8. TD (Sigl)

IceCube
Macro
Baikal
Amanda
Sensitivity after 3 years
Look for excess of muons from the direction of the sun or the center of the earth.
WIMPs from the Sun with IceCube

- IceCube will significantly improve the sensitivity.
- Similar sensitivity to GENIUS, ...
Neutrinos from Gamma Ray Bursts

Reject background by:

- Energy (number of fired PMT)
- Angle (circular bin of 1° radius)
- Time (≈ 10 sec/GRB, coincident to known GRB, gamma ray signal, e.g. from satellite detector)
Neutrinos from Gamma Ray Bursts

For 1000 GRB observed:

- Expected signal: 11 upgoing muon events
- Expected background: 0.05 events

Essentially background free detector:
Only 200 GRB needed to detect standard fireball prediction (Waxman/Bahcall 99)
The length of the actual cascade, ≈ 10 m, is small compared to the spacing of sensors

$\Rightarrow \approx$ roughly spherical density distribution of light

$1 \text{ PeV} \approx 500$ m diameter

Local energy deposition = good energy resolution of neutrino energy

Cascade event

$\nu_e + N \rightarrow e^- + X$

Energy = 375 TeV
Event rates of cascades (ν_e)

Assumed flux: $\frac{dN}{dE} = 10^{-7}E^{-2}/(\text{cm}^2 \text{ sec GeV sr})$

Rates at trigger level
Effective volume after background rejection: 1 km3 for $E>30\text{TeV}$
Double Bang

$\nu_\tau + N \rightarrow \tau^- + X$

$\nu_\tau + X (82\%)$

Regeneration makes Earth quasi transparent for high energy ν_τ; (Halzen, Salzberg 1998, …) Also enhanced muon flux due to Secondary μ, and ν_μ (Beacom et al., astro/ph 0111482)

$E \ll 1\text{PeV}$: Single cascade (2 cascades coincide)

$E \approx 1\text{PeV}$: Double bang

$E \gg 1\text{PeV}$: partially contained (reconstruct incoming tau track and cascade from decay)
ν_τ at $E>\text{PeV}$: Partially contained

- The incoming tau radiates little light.
- The energy of the second cascade can be measured with high precision.
- Signature: Relatively low energy loss incoming track: would be much brighter than the tau (compare to the PeV muon event shown before)

Result: high eff. Volume; Only second bang needs to be seen in Ice3

10-20 OM early hits measuring the incoming τ-track

Photoelectron density

Timing, realistic spacing
Shown is the expected photoelectron signal density of a tau event. The first ν_τ interaction is at $z=0$, the second one at ≈ 225 m. The diagram spans about 400 m x 800 m.
Capture Waveform information (MC)

- Complex waveforms provide additional information

Events / 10 nsec

0 - 4 μsec

E=10 PeV
Design parameters:

- Time resolution: $\leq 5 \text{ nsec}$ (system level)
- Dynamic range: 200 photoelectrons/15 nsec
- (Integrated dynamic range: > 2000 photoelectrons)
- Digitization depth: 4 μsec.
- Noise rate in situ: ≤ 500 Hz

For more information on the Digital Optical Module: see poster by R. Stokstad et al.
Coincident events

• Two functions
 – veto and calibration
 – cosmic-ray physics

• Energy range:
 – \(\sim 3 \times 10^{14} \) -- \(10^{18} \) eV
 – few to thousands of muons per event

• Measure:
 – Shower size at surface
 – High energy muon component in ice

• Large solid angle
 – One IceTop station per hole
 – \(\sim 0.5 \) sr for C-R physics with “contained” trajectories
 – Larger aperture as veto
Schematic of IceTop detector

- Two Ice Cherenkov tanks at top of each IceCube hole
 - Each 3.6 m²; local coincidence for muon vs. shower discrimination
 - Calibration with single muons @ ~1KHz per tank
- Integrated into IceCube
 - construction
 - trigger
 - data acquisition
- Heritage:
 - Haverah Park
 - Auger
Expectation for coincident events

• $\sim 10^9$ IceTop-IceCube coincidences/year
• Calibration beam for IceCube
• ~ 100/day with multi-TeV μ in IceCube
• Air shower physics to 10^{18} eV

Some numbers:
Shower energy
Number of muons / shower
Number of events / year

<table>
<thead>
<tr>
<th>E_{shower} log(E/eV)</th>
<th>Log(N_μ) (1500m)</th>
<th>Events/ year</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>20</td>
<td>5e7</td>
</tr>
<tr>
<td>16</td>
<td>130</td>
<td>5*105</td>
</tr>
<tr>
<td>17</td>
<td>700</td>
<td>5000</td>
</tr>
<tr>
<td>18</td>
<td>4000</td>
<td>50</td>
</tr>
</tbody>
</table>
SPASE - AMANDA: Energy resolution of air shower primary

Energy resolution of air shower primary for $1 < E/\text{PeV} < 10$:

$$\sigma_E \approx 7\% \log(E)$$

(Mass independent; based on MC)
Measuring mass and energy of cosmic ray primary particle

Unfolding energy and mass using SPASE and AMANDA
Supernova detection in IceCube

- $\nu_e + p \rightarrow n + e^+ (10-40 \text{ MeV})$
- Low PMT noise (<500Hz) increase due to the positrons
- AMANDA/IceCube records noise on the PMTs over 0.5 sec and summing up total rate over 10 sec intervals.
- Detectors to be connected to Supernova Early Warning System

AMANDA

SPASE-2

100 m

Grid

North

IceCube

Skiway

South Pole

Dome
Project status

• Approved by the National Science Board
• Startup funding is allocated.
• Construction is in preparation (Enhanced Hotwater Drill, OM design, OM production facilities, DAQ and test facilities).
• Construction start in 04/05; possibly a few initial strings in 03/04.
• Then 16 strings per season, increased rate may be possible.
Summary

- IceCube array allows
 - Very good event reconstruction (E, θ, ϕ).
 - High sensitivity to muon-, electron-, tau-neutrinos.
 - Particle identification over wide energy range.
- IceCube is a multipurpose detector covering a wide range of energies, signals, discovery potentials.
- Size and quality of information provides sensitivity in discovery range.
- Construction is in preparation.