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ABSTRACT 

The thermal and electrical behaviour of the current buses in the chimney of 
the D0 solenoid during upset conditions is modeled to guide the selection of 
trip levels for magnet protection circuits which discharge the magnet if abnormal 
conditions are detected. 

DESCRlPTION OF THE CHIMNEY BUSES 

DC current is carried to the solenoid from the control dewar via superconducting buses in 
the system service chimney. The vacuum-insulated chimney is nearly 14 meters long and it 
also carries supply and return lines for two-phase helium and nitrogen required to refrigerate 
the magnet during normal operation. 

Each current bus in the chimney was fabricated by soft-soldering together two magnet 
conductors in parallel. The positive and negative buses are mechanically clamped together 
separated by a layer of dielectric insulation; the same clamping system mechanically and 
thermally anchors the pair to the helium supply pipe in the chimney. 

In Figures 1 - 4 are shown details of the chimney. Figure 1 shows the narrow cross 
section ("obround") portion which is routed between the ends of the central (CC) and end 
(EC) calorimeters. The narrow available gap between the CC and EC constrained the shape 
of the chimney in this region. 

Figure 2 shows a typical (round) cross section in the portion of the chimney which leaves 
the CC-EC interface and makes its way to the control dewar. The bolted aluminum clamps 
which fasten the buses to the helium pipe are typically 10 cm long axially and are spaced 6 
cm apart along the bus. 

Figure 3 details a "field joint" region in the chimney. There are two such field joints in 
the chimney - one where the round chimney joins to the end of the obround segment near 
the calorimeters and the other near the control dewar. The field joints permit the chimney to 
be disassembled for system shipment. At the field joints the current buses are lapped along 
a length of 30 cm and soft-soldered together. The joined buses are clamped to each other 
separated by a thick dielectric pad. The clamps are insulated electrically from the buses by 
a wrapping of kapton/glass-epoxy approximately 0.3 mm thick, but are fastened directly to 
the cooling tube by bolts which press the clamp halves together. 
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Figure 1: Cross Section of the Obround Chimney. Element 3 is the current bus pair and 
element 4 is the helium supply pipe. Element 8 denotes one of the clamps which fastens the 
bus pair together and to the helium pipe. Element 5 is the helium return pipe and elements 
6 and 7 the supply and return nitrogen pipes. 
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Figure 2: Cross Section of the Round Chimney. Elements 17 and 18 are bumpers which 
provide assurance that the nitrogen shield operating at 80 K does not contact the 300 K 
vacuum jacket of the chimney. Element 20 details a typical bolt in a typical al uminum clamp 
which fastens the buses to the helium cooling pipe. 
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Figure 3: Chimney Detail at Field Joint. Element 10 is the special clamp required at the 
field joint. The inset details the dielectric separator (element 31) and bus insulation (element 
28) between buses in regions away from the field joints. 

Figure 4 details the axial spacing of the clamps which fasten together the positive and 
negative buses and which attach the bus pair to the helium cooling tube. The outer bound
aries in the drawing represent the chimney vacuum vessel. Just inside the vacuum vessel are 
shown the nitrogen shield piping lines, and within these the helium piping, current buses 
and clamps. The clamps are nominally 100 mm long and spaced 60 mm from one another 
axially along the helium piping. Special clamps are used when required for support of the 
internal piping or to limit the nominal axial gaps between clamps to 6 em. 

It should be noted that at the bends in the chimney the clamps are omitted. Thus there 
is a length of about 350 mm or less of bus which is not clamped to the helium cooling pipe at 
the four bends. The buses in these segments are therefore not directly cooled by the clamps 
but rely on conduction cooling axially along the bus away from the bends to the straight 
sections were cooling clamps are provided. 

2 NORMAL BUS OPERATION 

The helium supply pipe (15 mm ID) in the chimney contains subcooled liquid (vapor fraction 
0%) at 4.7 K or less. Ignoring enhanced heat transfer effects from the pipe to the helium 
due to flow conditions in the pipe, nucleate boiling heat fluxes to stagnant two-phase helium 
are at least as high as 0.2 Wjcm2 at the pipe wall inner surface, enabling the helium to 
absorb 1 Wjcm of pipe length with minimum temperature elevation ( 0.1 K or Jess) of the 
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Figure 4: Axial Distribution of bus clamps in the chimney. 

pipe. Because the clamp system covers only 60% of the pipe length this corresponds to at 
least 0.6 WIem of cooling available to the bus in the straight sections. 

If the two buses were completely non-superconducting the current flowing in the alu
minum stabilizer in the buses would generate ohmic heating of 0.22 WIem of bus length. 
(The bus geometrical and electrical parameters required to develop this number are provided 
in the sections below). Because this is much less than the cooling power provided by the 
clamp and pipe system, it is expected that if the buses were ever driven normal for any 
reason they would rapidly recool and return to the superconducting state. 

At least in the straight sections they would therefore exhibit the familiar behaviour of 
"cryostability", i.e. they are so well cooled they cannot quench unless they experience a 
major cryogenic upset which drastically reduces the cooling in the helium pipe. 

Note that at such a heating rate the corresponding temperature elevation of the buses 
above the helium cooling pipe due to the finite thermal conductivity of the electrical insu
lation on the buses and that of the aluminum clamp itself is about 2.3 K. Since the helium 
temperature in the pipe is always less than 4.7 K this yields a maximum temperature in 
the normally-conducting bus of 7 K. This is less than the transition temperature of the 
superconductor in the bus (everywhere else greater than the value of 8.4 K near the nozzle 
where the magnetic field approaches 2 T). 

Since there is less cooling available to the buses at the bends this expectation would 
be modified at these locations. In section 4 below it is shown that if only axial cooling is 
available to the bus then any normal region shorter than about 400 mm will not propagate 
but will recover and disappear. This observation provides reassurance that the buses in the 
bends will not operate in the non-superconducting state as long as cooling is maintained. Of 
course, this same calculation further reinforces the expectation that the buses in the straight 
sections are absolutely stable as long as proper cooling is maintained. 
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3 WORST-CASE BUS THERMAL RUNAWAY 

As was shown above only a drastic loss of cooling can lead to conditions in which the buses 
become vulnerable to being driven normal and subsequently operating in the ohmic regime. 

Nevertheless an estimate of how long such heating might continue before the bus is 
damaged provides insight into how quickly such a situation must be detected and the magnet 
discharged. 

Assuming no heat is conducted away from a resistive segment of the bus, the Joule 
heating in the segment for a time dt increases the temperature in the segment an amount 
dfJ: 

Here J is the current density in the bus, p its electrical resistivity, A the cross-sectional 
area of the bus, L the length of the resistive segment, and Cp its specific heat per unit 
volume. Collecting the temperature-dependent terms and integrating we have 

for a finite heating time T and final temperature 8. Here the lower limit c to the temperature 
integral is the transition temperature of the superconductor and this may be set to 0 without 
introducing serious error in the integral. We note that the length of the normal section does 
not appear in the final enthalpy relation. 

The magnet conductor consists of an 18-strand superconducting cable embedded in a 
matrix of high-purity aluminum. Two grades of conductor, Gland G2, are used in the mag
net, each utilizing the same superconducting cable but having different amounts of aluminum 
stabilizer added. Each chimney bus is made from one each of the two conductor grades. and 
the cross-sectional area of aluminum in the two is 78.2 and 58.8 mm2 respectively. The 
superconducting cable constitutes a cross-sectional area of 10.2 mm2 in each conductor so 
the total aluminum area in the bus is 117 mm2 • At the nominal operating current of the 
magnet, 4825 A, the current density in the aluminum is J = 4.12 X 107 A/m2. 

The integral over temperature has been calculated [1] for a variety of metallic conductors 
and from these calculations we find that for a choice of final temperature 8 = 300 K. the 
current integral is about 6 x 1016 As/m2 for high purity aluminum having RRR = 500 (Figure 
5). 

Inserting this value in the enthalpy integral above, the corresponding time is 

T = 6 x lOl6 /(4.12 X 107)2 = 35.3 sec. 

Thus if a segment of the bus becomes normal for any reason the full bus current must 
flow 35 seconds before the bus reaches 300 K, assuming there is no cooling available to the 
bus. 
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Figure 5: Enthalpyjresistivity integrals for various metallic conductors, from Reference 1. 

MINIMUM PROPAGATING ZONE (MPZ) 

In the foregoing there is no information about how much or little of the bus might be expected 
to heat resistively after a segment has gone normal. By taking into account cooling (2] it can 
be shown that a given normal zone will either grow or collapse depending on its size. The 
amount of heat generated in a normal zone depends on the length of the zone; considering 
heat conduction away from the zone only in the axial direction, such heat may be sufficient 
to raise additional nearby portions of the conductor above the critical temperature. This 
effectively lengthens the resistive zone and increases the joule heating. The original normal:' 
wne was larger than the MPZ. 

Alternatively, the heating may be insufficient to drive additional conductor normal. The 
normal zone decreases in length and finally collapses altogether. The original normal region 
was smaller than the MPZ. 

Schematically the MPZ condition is given by: 
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Since the segment L has T 2: Tc it is resistive and joule heating is produced in it. 
Equating this heat production with the axial conduction away from L at both ends of the 
segment, 

or, 
L = {2k(Oc - 00)/(J2p)} 1/2. 

Since RRR 2: 500 for the high-purity aluminum in the buses in the chimney, 

p :5 2.7 X 10-6 /500 = 5.4 x 10-9 Ohm em. 

The magnetic field on the superconductor in the buses is greatest near the magnet where 
it does not exceed 2 T, so the critical temperature is always greater than 

Oc(B) = Oc(O) {l. - B/Bc2(Ono. 59 

using Lubell's [3] formula for commercial NbTi. The magnet nominal temperature does not 
exceed 5 K during chargeup so 00 = 5K is conservative in the chimney. With Bc2 = 14.5 T 
and Oc(O) = 9.2 K, Oc(ZT) = 8.4 K. 

From the Wiedemann-Franz Law, the resistivity and thermal conductivity of the alu
minum are related: 

LoO = k(O)p( 0), 

where Lo = 5.4 X 10-8 Wn/m. With the value of p given above the Wiedemann-Franz 
relation gives k(5K) = 2.3 x 103 W/mK. Hence 

L = {2 x 23 x (8.4 - 5.0)/(4.3 x 103 )2(5.4 x 1O-9} 1/2 

= 39.5 em 

Away from the nozzle the field on the superconductor in the buses does not exceed that 
of the self-field of the conductors, about 0.3 T. This increases the critical temperature to 
about 9 K so that L increases to about 43 cm. 
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Note that the heat required to create an MPZ is quite small on the order of 3.5 
milliJoules. The magnetic force between the positive and negative buses is about 758 N/m 
(repulsive). If one bus moved inelastically due to this force, sufficient energy to create an 
MPZ in the bus would be released after a displacement of only 10 microns. 

5 VOLTAGE DROP ON A NORMAL SEGMENT 

The shortest segment of a bus that can remain normal is about 40 cm. The voltage drop on 
such a segment is 

.a.V(5K) = 4825 x pLQ/A = 4825 x 5.4 x 10-9 40/1.17 = 0.9mV. 

Such a voltage drop would not be easy to detect unambiguously in an environment that 
is likely to be somewhat noisy. 

If the normal segment did not collapse but instead continued to heat until its temperature 
reached 100 K, the RRR of the aluminum will have decreased to about 5 so that the voltage 
drop is 100 times larger than at 5 K: 

llV(looK) = 90mV. 

Such a voltage drop would be easily detected. 
In fact a normal zone of any size larger than the MPZ length will not heat without 

increasing in length. Wilson [2] estimates the velocity with which the length of the segment 
increases: 

v ~ (J/Cp ) {LQBc/(Bc - BQ)}1/2. 

Since J = 4.12 X 101 A/m2 , and Cp = 3 x 103 J/m3K at 5 K, this yields v ::::: 3 m/s. 
Once a normal length of MPZ size occurs the entire length of the bus will be driven 

normal in a few seconds or less. The voltage drop signal will therefore grow even more 
rapidly than estimated above. 

Conversely, if a normal zone does not reach the MPZ threshold length it collapses in 100 
msec or less. 

6 QUENCHING THE NEIGHBORING BUS 

In the unlikely event the protection circuitry fails to react to the substantial voltage drop 
expected on a quenching bus, it is of some interest to see if the other bus is driven normal, 
thereby providing the opportunity for a redundant detection of the abnormal condition. 

The heat generated in the MPZ zone is J2pA L = 4.3 W. An amount of heat of this 
magnitude is therefore required to sustain an MPZ zone in the neighboring superconducting 
bus. In the foregoing -discussion of MPZ behaviour in a quenching bus. heat conduction 
across the insulation between the two buses was ignored. In fact such conduction will take 
place and will serve as a source of heating to the neighboring superconducting bus. 
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Since the insulation thickness between the buses is L\x = 1.3mm, the contact area 
between the two buses is L x w = 43 x 1.5 cm2 and for G-10 at 10 K, k = O.lW/mK, the 
temperature difference between the two buses required to sustain this amount of heating is 

L\() = QL\z/kA, 

= 4.3 x 1.3 x 10-3/0.1W x 1.5 x 43 

- 9K 

Clearly when a significant length of the quenching bus reaches 18 K or so an MPZ in the 
neighboring bus above 9 K will be generated. Thus it too will quench. 

THE TRANSITION BUSES 

The chimney buses are clamped to heavy copper transition buses below the subcooler helium 
vessel in the control dewar vacuum space. These copper buses in turn conduct the current 
into the subcooler vessel to the bottoms of the vapor cooled leads above the liquid level in 
the subcooler. The copper buses are themselves shorted by six superconducting Nh3Sn wires 
soldered into grooves in the buses. 

The copper buses are 16 mm in diameter and made of ETP (CDA 110) copper. with 
RRR ~ 100. If the buses were driven normal for any reason the ohmic heating in them 
would correspond to a surface heat flux of 0.049 W/cm2• The lower portions of the buses 
are always immersed in liquid helium in the subcooler so they are amply cryostable given 
this very small heat flux to the liquid. 

The upper portion (never more than 10 cm in length) that operates in cold helium gas -" 
must conduct its ohmic heat to its upper and lower cold ends always at 5 K or less. The 
omhic heat generated in this segment is about 2.5 W, implying that the warm central portion 
of the uncooled region reaches about 7.1 K since the thermal conductivity of the copper is 
about 6 W/cmK. The Nh3Sn at this temperature can carry at least a factor of 2.5 times 
the magnet operating current and remain in the superconducting state. 

The region in the vacuum space where the chimney buses are clamped to the bottoms 
of the copper buses generates about 9 milliwatts. This trivial amount of heat is readily 
conducted into the helium with negligible temperature rise. The heat generated at the top 
of the copper buses where they are soldered to the bottom of the vapor cooled leads is 
substantially greater - about 3 W. This heat is continuously removed by the cooling of the 
helium gas in the leads. 

As was done for the buses in the chimney, a thermal runaway calculation indicates that 
if liquid cooling were lost in the subcooler the copper transition buses would require nearly 
260 seconds to reach 300 K, using the curve for RRR = 100 copper of Figure 5. Clearly the 
loss of liquid in the subcooler vessel would trigger a magnet discharge long before the copper 
buses reached 300 K. 

It might be remarked that if the cold copper buses were for some reason not super
conducting the voltage drop on them would be only 4 m V. The quench detection system 
might not easily detect such a condition however harmless it might be. In this quite unlikely 
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and unphysical situation the extra helium boiloff due to the heating in one of them would 
be nearly 0.6 9/8. This condition would soon be noticed by the system operators since it 
represents nearly a doubling of the nominal boiloff rate. 

In fact after a loss helium in the subcooler leading to the quenching of the copper buses 
they would inevitably begin to heat. When they reach 200 K the volt~e drop on them 
would increase to 200 m V making detection of the upset unambiguous. 

8 BUS TEST DATA 

During the testing of the solenoid control dewar and chimney at the Toshiba factory in 
December, 1996, the abbreviated system was operated in a mode deliberately intended to 
cause the bus to quench. For the tests the buses in the chimney at the lower field joint were 
soldered together, and the piping routed back on itself at that point, and the entire joint 
region enclosed in a temporary vacuum-tight "boot". 

With the current at 4 750 A and conditions otherwise essentially stable elsewhere through
out the system, the helium supply dewar was valved off and the liquid helium in the chimney 
allowed to decrease. After approximately 20 minutes an abrupt increase in the summed volt
~ drop on the two buses in the chimney was observed by the Toshiba technicians and the 
power supply was turned off manually. 

All those present at the tests were surprised that the bus remained superconducting so 
long after helium flow was stopped. Because no automatic control system was in use at the 
time, it is likely the buses operated at full current after quench for at least a few seconds, as 
judged by the Fermilab engineer who witnessed the test. 

In any event, the bus was not dam~ed and it was seen to quench rapidly and presumably 
completely. Such a test was not repeated later after the magnet was added to the system. 
An alternate approach to the required test of quenching without a protection resistor was 
devised instead. It is likely however that in any such test the magnet would quench before 
the bus in the chimney since the magnet conductor experiences much higher m~netic fields 
than does the conductor in the chimney. 

During tests of the full system later at Toshiba it was not possible to observe whether 
or not the buses quenched during magnet quenches which were deliberately induced to fulfill 
the required test schedule. It may be possible to make these observations during system 
commissioning tests at Fermilab. 

9 CONCLUSIONS 

The current buses in the chimney are designed to operate safely without likelihood of loss of 
superconductivity as long as normal cooling conditions are maintained. Helium liquid level 
probes, helium flow instrumentation, and thermometry all are provided to certify that proper 
cooling conditions exist in the subcooler and chimney at all times. llising temperatures in 
any portion of the system, excessive voltage drops on the vapor cooled leads, or decreasing 
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liquid level in the subcooler or flow rate in the system, will each cause the fast discharge 
system to be triggered. 

Postulated failures of the helium flow system, somehow undetected by any and all of the 
aforementioned instrumentation, can in principal eventually lead to loss of superconductivity 
in the buses. Quenching in one bus will rapidly lead to quenching in the other. Potential 
taps on the buses and magnet coil halves connected to voltage-detection bridges external to 
the system provide at least dually redundant signals which will unambiguously trigger the 
magnet rapid discharge system. The conservative design of the bus system ensures that it 
will not be damaged during such incidents, however improbable they may be. 

The transition leads in the subcooler are equally conservatively designed, and would not 
be damaged if they were operated in a fully non-superconducting state for several minutes. 
The loss of liquid helium in the sub cooler required to cause this condition would imply 
that helium flow from the magnet had stopped, which in turn would imply that flow to the 
magnet had also stopped. The lack of flow into the sub cooler would result in insufficient flow 
to the vapor cooled leads. Any or all of these conditions would be detected, as would easily 
detected spurious voltages on the potential tap system, before damage to the transition leads 
occurred. 
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