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Inconel Vertical Supports

Introduction

A substantial section of the Central Calorimeter flexible support
system are the Inconel Vertical Support Plates. These plates are designed
to support the Central Calorimeter's weight, withstand the necessary
thermal contraction, and position the Central Calorimeter accurately. A
top view of the Central Calorimeter (CC) shows the plate arrangement.

Figure 1

The box represents the calorimeter and the angled lines represent the
position of the inconel plates. FTL is the force exerted along the Tength of
the CC due to thermal contraction, FTD is the force exerted in the
diametral direction of the CC due to thermal contraction, and FTT is the
vector sum of the two. The plates were chosen in this orentation to best
withstand the CC's thermal movement. Other than the thermal contraction
constraint, the plates must satisfy two others. First, the plates must fit
into a twelve inch Schedule 40 tube, which is nothing more than the outer
shell of the flexible support. Secondly, the length of these plates must be
kept under fifteen inches for cost purposes. Drawing number
3740.210-MD-222269 Rev. C (Figure 3) shows the final design that
satisfies all conditions noted above.

Thermal Contraction

Since liquid argon is at @a much lower temperature (90K) than the
ambient temperature (295K), thermat contraction in the radial and axial
directions will occur in the CC when the liquid argon is present. From
drawing number 3740.220-ME-222256 Rev. G, the outer radius of the inner
vessel 1S 96.75 inches. From this, the circumference is calculated to be
607.898 inches.
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Inconel Vertical Supports

For a change In lengtn AL (From Rererence 2)

AL=etL
Wwhere,;

ey= I By dT = Unit thermal contraction between initial and final
temperatures

= Linear coefficient of thermal expansion

L= Length of the calorimeter

T= Temperature

From Table 7-6 of Reference 2, using 304 Stainless Steel as an
approximation;

AL/L=.00291

The diagrams below show the change in length in both the axial and radial
direction
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Inconel Vertical Supports

Applying the above formula for the change in length to the circumference
of the calorimeter;

AC= etC= 1.769 iInches

From geometry, the change in radius is calculated
AR= AC/(2%) = 0.28154 inches

Figure 4 shows that the length between supports is 47.81 inches in the
axial direction, and that the angle at which the supports are located

relative to the center of the calorimeter s 49.47°. Since the apparatus is
essentially fixed in the center, each side of the calorimeter experiences

only one half of the total contraction. From this and figure 2, AS= 0.0696
inches and AL= 0.214 inches. The resultant of these movements will be
the total thermal contraction the plates experience. Therefore ALT=
(AS2+AL2)!/2= 0,225 inches.

Element Constants

Central Calorimeter weights are given in Reference 3 as follows:

EM MOQUIC ..ottt 21.49 Tons
Fine Hadronic MOAUIe.........c.coovviieeeeeeeeeeeev e, 14297 Tons
CUIEET COUTSE: PIOEBIITR.......ocon 05555505k nstiss, 555 s 5 e 128.30 Tons
INNET Cry0oStat....... 19.39 Tons
ATGON oo 29.15Tons
OB AT e s 341.17 Tons

The load per support is then 85.2975 Tons= 170,585 pounds

Material constants for Inconel 718 from Reference 5 are as follows:

Minimum Yield Strength= 150,000 psi
Minimum Ultimate Strength= 180,000 psi
Minimum Modulus of Elasticity= 29.8 x 100 psi
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Inconel Vertical Supports

Design Equations

Since thermal contraction occurs in both the radial and axial
directions, two seperate forces will be exerted on the Inconel plates. One
force will try to crush and buckle the plates while the other will try to
bend them (This 1s assuming that the deflection of the cradle and the force
1t exerts are eliviated by the self-lubricating bearing and the G-10
support disc, respectively). The AISC code (Reference 4) has an equation
that if satisfied, the plates will be safe. The equation is as follows:

fﬂ,FD + Cmfb/( 1 'fﬂ/FE)Fb <10

where;
fa= Computed axial stress

F4= Axial compressive stress permitted

Cry= Constraint coefficient = 0.85 (Reference 4)
fb= Computed bending stress

Fe=Euler stress divided by a factor of safety
Fi,= bending stress permitted

o= P/A
where;

P=Load per support per number of plates in support
A= Area of support plate (width*thickness)

Fe=12n2E/(23(KL/r)2)

where,

E= Modulus of Elasticity

L= Length of Plate

r=Radius of gyration (Reference 3 Table 1 Case A for rectangles
r=0.2886* Thickness)

K= End Coefficient (Reference 4 Section 1.8 K=1.2)
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Inconel Vertical Supports
Fb is computed from the formulas in Reference 3 Table 10 Case 1B

Mmax=(W/K) tan(kL/2)

=(W/kP) (2tan(kL/2)-KL)
S=Fp=Mc/I

F,=(6Py tan(kL/2))/(2tan(kL/2)-k1)bt?

Ymax

where,

W= Lateral load (thermal force)

k= (P/EI)!"2

P= Compressive load (weight)

L= Length of plate

I=Moment of inertia (Rectangle 1=bt3/12
b= wWidth of plate

t= Thickness of plate

y= Thermal contraction

fp=0.75 F,

where;
0.75 Fy comes from Reference 4 section 1.5.1.4.3
Fy=Minimum yield strength

The formulas mentioned above are combined in a fortran program that will
determine ideal plate length that satisfies all design parameters
(Appendix 1).

Moment of Inertia

Another fortran program was written to determine the moment of
inertia of the flexible support relative to a reference angle. The program
calculates the moment of Inertia in plane |- relative to the angle A of
figure 5.
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Inconel Vertical Supports
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Figure 5

In the ideal case. the plates will line perpendicular to the diagonal of the
calorimeter (ie. A= 90 degrees Figure 1). The program and its output are
in Appendix 3. The output shows that if the plates deviate only 3 degrees
from the ideal case, the moment of inertia, therefore the stiffness, will
increase by 200 %.

Force Due to Thermal Contraction

Since thermal contraction moves the top of the fiexible foot by
0.225 1nches, this will cause a force on the inconel plates From Appendix
3 and assuming a | degree misalignment, the moment of nertia of the foot
equals 0.734 in? The downward force exerted on each support 15
approximately 190,000 1bs. From Roark and Young, Table 10 case 1b

y=0.225=-(H/k W) (2tan(ki/2)-kl)

Where
H= Horizontal load
w=Vertical load=190,000 Ibs
k=(W/EN'/2=(190,000/33E6(0.734))}/2=0.08802
I=Effective length= 12 inches

Therefore

H=-0.225(0.08802)(190,000)/(2tan(1.056/2)-1.056)= 34,063.176 1bs.
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inconel Vertical Supports

Braze Material

wall Colmonoy Corp. in Detroit brazed the Inconel plates to the
stanchion with a process called NICRO-BRAZE. This process gives an
ultimate on the braze of 60 ksi. Appendix 4 shows that for this case a
factor of safety of S is present for shear of the braze material. Since the
plates are inserted into slots in the stanchion, the brazing does nothing
more than to secure the plates. Without the brazing, the structure still
would be safe under the compressive and bending loads.

Conclusion

Through many iterations, a final design (Figure 3) that satisfies the
criterion 1n this report was decided upon. Appendix Z shows a run o7 the
design program with the final design parameters set. From the output, a
length between twelve and thirteen inches would be 1deal. The only
varmation between the parameters in the program and the Tinal design s
the stepping of the Inconel plates width . The program generated that a
average width of 7.7 inches would be sufficient. The plates are stepped to
allow greater thermal movement, while keeping an average 7.7 inch thick
plate.

A model has been made and distructively tested (EN-87), while the
Tinal design will be load tested to the actual load.
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Design Program
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Lo l=THe CDOMEBINED 2TRESZ FACTOR (MUST BE LESS THAM 11
& ~BERFESLENLERMES
L rr~qu£1UH YLELD STREMGTH
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Design Program Output



A pperdix 2

LN T = SLENDERNESS RATIOD= COMBINE STRESS FACTOR=
1 2.9 o A G
o = 19.8 1&.048
£ 29 .7 7 =&31
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& =l g 2. 00g
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g 2F 8 1 <H3LE
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1ot @9 .1 1,062
11 109 .0 1.01%
12 118.9 1.003
15 128.3 1 1%
14 138.7 1.061
15 145.7 1.129
1& 158.6 1.227
17 168.5% 1.372
18 175.4 1.602
1% 183 MR N
pl 1v=2.2 4,337
21 208,11 SO00
e 218 .0 Ralele]
. % L
s 5 8 L0
PE, & 00
. e a7 30
BN e IR
it e o
7 iy D00
e 3 NI

According to AISC code (Reference 4), when the computed axial
stress divided by the Euler stress becomes greater than 1.00, the formulas
mentioned in this report become invalid. The program checks for this and
prints zero for the combined stress factor for these cases. -

AISC code states that the sienderness ratio (KL/r) should not exceed
200 for compressive members. For the design of Figure 3, the slenderness
ratio is approximately 123.



Appendix 3

Moment of Inertia Program and Output



PROGRAM FOOT A pp(nA S

DIMENSION D(7),AI(7),AIT(200)
DATA D/5.25,6.5,7.375,8.125,8.625,9.,9.125/
WRITE (3,10)
10 FORMAT (1H1,/////)

—  B=.42
DO 200 I=1,91
AIT(I)=0.
A=(I-1)*.01745
DO 100 J=1,7
SSIN=.5%(1.- COS (2*A))
SCOS=.5%(1.+ COS (2*A))
AI(J)=(B*D(J)* (B**2*SSIN+D(J)**2*SC0S))/12.
AIT(I)=AIT(I)+AI(J)

C WRITE (3,90) SSIN,SCOS,AI(J),AIT(I)

C 90 FORMAT ('SSIN,SCOS,AI,AIT= ', 4F7.4)

100 CONTINUE
AIT(I)=AIT(I)*2
K=I-1
WRITE (3,101) K,AIT(I)

101 FORMAT (10X, 'MOMENT OF INERTIA FOR FLEXIBLE FOOT AT ANGLE OF ',I3,
1' IS ',F7.3)

200 CONTINUE
STOP
END
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ApPpenaix 4

Braze Calculations
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