
a Fermi National Accelerator Laboratory

TM-1707

Table of Tables - A Database Design Tool for SYBASE

Bruce C. Brown, Karen Coulter, Henry D. Glass, Richard Glosson, Raymond W. Hanft,
David J. Harding, Kelley Trombly-Freytag, Dana G. C. Walbridge and David B. Wallis

Fermi National Accelerator Laboratory
P.O. Box 500

Batavia, Illinois 60510

Michael E. Allen
SSC Laboratory

Dallas, Texas 75237

January 4,199l

c Operated by Universities Research Association Inc. under contract with the United States Department of Energy

TM-1707

TABLEOFTABLES-ADATABASEDESIGN
TOOLFORSYBASE

Bruce C. Brown, Karen Coulter, Henry D. Glass,
Richard Glosson, Raymond W. Ha&, David J. Harding,

Kelley Trombly-Freytag, Dana G. C. Walbridge, David B. Wallis
Fermi National Accelerator Labomtory l

P.O. Bo2 500
Batatria, Illinois 60510

Michael E. Allen
SSC Labomtot-$

2550 Beckleymeade Avenue
Dallas, TX 75237

January 4,199l

Abstract
The ‘Table of ‘Ibbles’ application system captures in a ret of SYBASE

tabla the bade design specification for a database ncbema. Specifh-
tion of tablea, columns (inchding the related dehlts and rules for the
stored values) and keys ia provided. Tbe feature which makes this ap-
plication specihally useful for SYBASE ia the ability to antomatically
generate SYBASE triggers. A description field i provided for each
database object. Based on the data stored, SQL scripta for creating
complete schema inclnding the tablea, their defaults and znllla, their
indew, and their SYBASE triggsrs, M written by TOT. Insert, np
date and delete triggem are generated ihom TOT to gnarmtn ink&y
of data relatiolu when table, are connected by single column foreign
keys. Tbe appliestion L written in SYBASE’a APT-SQL and inchden
a forrm based data entry system. Using the features of TOT we can

‘Operated by the Univedtiu Rcseuch Association under contract with the U. S.
Department of Energy

1

create a complete database schema for which the data integrity speci-
fied by our design is guaranteed by the SYBASE triggers generated by
TOT.

1 Introduction

To provide a systematic tool for defining and creating SYBASE database
schemas, we have created an application - Table of Tables (TOT)‘. With it
we create and document database schema for a variety of SYBASE” applica-
tions. TOT supports both the usual features of a relational model database
and many SYBASE-specific extensions. Existing computer assisted software
engineering tools provide no SYBASE-specific features and in addition are
costly and contain featurea not directly applicable to the SYBASE applica-
tions we choose to develop.

A relational database B&ma consists of a set of (usually related) multi-
column tables. Values to be stored in columns can be limited by use of Rules
and Defaults (see Appendix G). A key is a column or set of columns whose
contents are guaranteed to be unique among all rows in a table. SYBASE
recognizes three types of keys: primary keys, common keys and foreign keys.
To this we add (from the literature on Relational Databases) the concept of
an alternate key. A primary key is the column or set of columns which serves
as the principle unique specifier for the table. We choose to implement this
for most of OUT tables using a special column consisting of a serial number.
This is sufficient for making the row unique for retrieval, but since the serial
number contains no data, we want something other than the serial number
to uniquely define the row. That combination which uniquely defines the
data in the row we call an alternate key. To facilitate joining information
from different tables, SYBASE maintains a table which lists the keys shared
between two tables - the common keys. A foreign key is a column or set
of columns in a table which can only assume values of an existing primary
key in another table. In Appendix F the support for keys within TOT is
discussed more fully.

TOT consists of three parts:

‘Table of Tables (TOT) user interface application was deaigncd and implemented by
Richard Glosson. This application in&da the data entry application and the automatic
gemrstion of SQL code, r&h uses SYBASE to create tables, keys, indexes, triggers,
datatypes, rules and dchh.

‘SYEZASE, APT-SQL, APT-Execute, APT Workbench, Transact-SQL and Data Work-
bench arc registered tradcmarh of Sybare, Inc.

2

1. A schema for describing a SYBASE relational database schema. (The
information is stored in a set of related SYBASE tables.)

2. A data entry application to assist in filling the tables defined for TOT

3. Application code which allows

l TOT to create SQL scripts which can be executed to create the
database system which has been described in TOT tables

l TOT to create datatypes which have been defined in the TOT
schema

Complete prescriptions for a large class of SYBASE database schema can
be captured in TOT and the required database can be created using SQL
scripts output by TOT. When required, the scripts written by TOT can be
modified with additional trigger3 or other SQL code. The complete data
integrity features provided by SYBASE through its trigger mechanisms was
a major factor in our choice of the SYBASE database management system.
By developing TOT as an application specific to our needs, we can take full
advantage of these features. They make it possible to preserve data integrity
while using only a general tool (such as the SYBASE Data Workbench) for a
large variety of database entry requirements, thus avoiding creation of some
special data entry applications.

The feature missing from Table of Tables iti a graphic display of table
design. We have chosen to provide graphic descriptions manually, utilis-
ing a graphic representation suggested in the text A Visud Introduction lo

S&5(1]. We adapted it to capture additional features we fad useM in oar
specific design. While our graphic representation could be drawn using any
convenient graphical drawing package, we have used the IDRAW package
which is part of the Interviews[Z][3] system, a public domain product avail-
able for UNIX machines. The capture of these visual descriptions is thus a
manual operation uncoupled from the TOT application itself.

‘SYBASE provides the stored praccdure mechanism to store SQL procedurea within
the database i&If for execution by the databme sener. A lkigger ir a special stored
procedure designed to provide intepity by tying its execution to an insertion, update or
deletion of a data row.

3

2 TOT Database Schema

In Fig 1 we illustrate the TOT schema ’ devised to store a description of
a general database schema within SYBASE. A complete description of the
TOT tables is included in Appendix B. It consists of a SYBASE report of
OUT captured description of TOT stored in TOT. The dataowners, tables,
columns, column-defaults, columnrules and foreignkeys tables capture the
description of a database schema.

The datatypes, datatypexules, and datatype-defaults tables allow the
specification of application specific datatypes in terms of the SYBASE data-
types. For example, we define a serial number type (sntype) to be integer.
This allows us to indicate its use by its name now, and in the future we could
implement a dXerent serial number scheme and need to make very limited
changes in the contents of the TOT descriptions of OUT database schema.

Use of the overall hierarchical scheme available for grouping SYBASE
database information (database, owner, table) is limited by the ability to
share datatype definitions and to make joins and triggers across databases.
In addition, some SYBASE administration is easier with a single database.
A self-consistent back-up is only guaranteed at the database level. We have
therefore chosen to store all the data for a project in a single SYBASE
database. We desire to provide some structure to a database other than
the user names that are typically associated with tables. We do that by
establishing “dataowners”, special “users” in the system which own a group
of related tables. A single person has responsibiity for each dataowner
account. For example, TOT could label the dataowner of the TOT tables.
Separate portions of the project with different datammers will have their
SYBASE entities stored and accessed using that dataowner information.

The columns of the dataowners table are the dataownername, descrip-
tion (why is this data stored separately), responsible-person (an individ-
ual who assumes responsibility for this portion of the schema being imple-
mented) and entry-date.

The tables table lists the dataowner, tablename, and description along
with a responsible-person, and entry-date. The tablename is to be unique
across the entire database, independent of
dataownername. The columns table provides a complete description of the
columns in all tables. The columnname, tablename, and the data type

‘As discussed previody, it is drawn using the IDRAW package which captures it as II
postscript I& ready for printing.

4

Tde of Tabla
3 Jmurf 1990

u bit
5 d&o-- : :*zg 2

,” “,“’ -- --‘pss’

.” zxz -- --(3o’ ma-

mote: Th. COlYll *L*l._nmr I. Of ryp nusLri”g rnish I, “*rch.r,lol homvw, IL 1, rwul*.d CD h uniw. “ILie” 26 chac.SUIS.

Figure 1: Database Schema for TOT

(and length if needed) are required.s We store whether the column is part
of the primary key, part of the alternate key, and whether NULL is allowed.

The column order provides a default order for ad hoc queries (as well
as the column order for multicolumnkeys). TOT requires the designer to
specify the column order. It is left to the database designer to make these
sequential and meaningful. The TOT application does not assign them or
require them to be sequential. An ordered list of columns will be provided
based on the values in the column order field. Duplicate values will assume
an order which is not guaranteed by the design.

In addition to the minimum information required to define the schema,
we include information on the unit of measure for the column and a label
which can be used in place of the column name for labeling a report. It is
our intention to utilize SI Units (System International), but that restriction
must be implemented through the contents one builds into the units column
rather than through the design of TOT itself.

The column-defaults table allows one to specify a default value for a
column as prescribed in the SYBASE documentation. Similarly, the col-
umn-rules table provides for capture of SYBASE rules. Since Rules and
Defaults can be bound to user defined datatypes as well as to columns,
TOT provides for the capture of datatypedes and datatype-defaults.s For
a complete description of the columns table, see Appendix B. See Ap-
pendix G for a discussion of defaults and rules.

To enforce referential integrity for a database schema in SYBASE one
can create triggers based on foreign keys. TOT’s foreignkeys table pro-
vides a place to specify foreign keys when the key is a single column. The
current TOT requires that the dataowner, tablename, and column~ame
must be specified for both the primary and foreign key (primarydata-
owner, primaryfablename, primaryxolumname, foreigndataowner, for-
eign-tablename, and foreignxolumn-e)‘. From this information TOT
writes insert and update triggers which guarantee that a row may not be

‘Dataomu in also included, a relic of the days before we required table names to be
unique within the &tab=, instead of only requiring uniqueness within the dataowner.

‘The aamu of the rules and defaults must be unique in the database so TOT
enforcn uniqnenas for columundes and datstypender and for columadcfaults and
datatyprdefmlts.

‘The redundsncia am arombination of biatoricsl a&fact and accommodation of cod-
ing ewe. The dataowners are not needed if the tablem,mes are required to be unique in
the database. The p rimuy column name is not needed since we follow the unml relational
rqdmment that a foreign key point to I prime.ry key, and thue t only omz primary key
for my table.

6

added or changed unless the value of each foreign key matches a value in the
primary key of the corresponding table. The delete triggers cm the primary
keys are written which guarantee that they will not be deleted while rows of
other tables point to them as a foreign key. Note that more than one foreign
key in a table is allowed to point to the primary key of another tables.

By utilizing a serial numbers as the primary key in most tables, and
by utiliziig that for most of our foreign keys, the foreignkey table of TOT
satisfies more than 95% of our requirements for triggers in an absolutely
straightforward fashion.

The SQL Permissions model *hi&is incorporated within TOT is a
simple one based on a set of groups. The initial implementation of TOT
simply provides that various permissions (INSERT, UPDATE, DELETE) be
granted for various predefined SYBASE groups. The permissions granted
are the same for all tables and the APT-SQL code which defines the SQL
script-writing section of TOT has this structure coded into it (hard-coded).

The indexing scheme for a database may have substantial complications
to provide suitably responsive behavior for both insert and query. TOT pro-
vides only a “natural” start on the complete index scheme. Indices for tables
created by TOT are, by default, created for primary, alternate and foreign
keys. Additional or alternative indices can be created by the Database Ad-
ministrator. By default, the SQL code created by TOT will provide

1. A clustered, unique index on the primary key

2. A unique index on the alternate key

3. An index (non-unique, non-clustered) on the foreign key

‘An alternate foreign key possibility which could also be e&y coded allows tl foreign
key with an arbitrary mumher of c&mm but with only one foreign key from (I given table
allowed to point at any one primru y table. Our aystana require multiple foreign keys to
the same p &nary and oux reliance on serial numbers minimha the need for multi-column
foreign keys. Support for both multi-column for+ keys and multiple occurrences in
a single table is straight-forward but sufiiciently tedious that it was decided to defer
implunentstion.

‘The aestion of serial numbus for MTF SYBASE datsbslu in handled by c. serial
number generator implemented (u a SYBASE stored proccdurc, allowing the application
programs to avoid consideration of this problem. These serial numben are unique within
the &tab-, not just within a spcdlc table.

Figure 2: The Top Level Menu for the TOT Application

3 TOT Data Entry Application

Utilizing APT Workbench from SYBASE”, we have built applications based
on the tables described in the previous section to capture database designs.
In this section we will bridy describe the functionality of that system. A
step by step description of its use is available in Appendix D.

Figure 2 illustrates the screen view of the TOT main menu. From here
we can choose to view or enter information into the dataowners, tables,
columns or datatypes tables using a standard SYBASE type of display. Fea-
tures for FINDing and SCROLLING assist in manipulating the displays to
view entered or stored data. ,From each of these displays, we can either
return to the main menu or move down the natural hierarchy to the next
table, carryiq along the environment of what we have just specified. One
reaches the columns-defaults and columns-rules and foreignkeys table dis-
plays from the columns display. Siily, we reach the datatype-defaults
and datatppelnles via the datatype display.

“APT WmLbemh is. 4GL with a sum mmipdation lq.uage that iaterkm with
the databue.

8

4 Writing Table Definition SQL from TOT

The SQL-writing portion of TOT can be invoked for any tables that have
been entered into the cohums form, regardless of whether they have been
saved yet. When the information needed for the specification of a system
of tables is defined by entering data for dataowners, tables, columns and
their keys, one can invoke the SQL-writing (BUILD) portion of TOT to
provide SQL script files in your current working directory. These scripts
can be executed to create tables and triggers. The created files contain

SQL commands in ASCII so they can be viewed (or modified) with a text
editor.**

BUILD co mmanda are provided by TOT to create the output SQL
scripts. The SQL to create a single table (including keys and indices) is
provided by one BUILD co mmand. The triggers scripts which apply to this
table are created with an additional two BUILD co mmands. Datatypes are
created by SYBASE directly from a CBEATE co mmand. Some applications
may require additional SQL code for complete definition of the relationships
specified by the designer. A detailed description of the code produced by
TOT for creating table definitions and triggers from the information stored
by TOT is contained in Appendix E. Examin ation of that information will
allow one to understand the details of the relationship between the table
entries and the SQL code generated.

A few guidelines are useful to describe how one employs TOT output
and maintains a complete set of database descriptions. We emphasize that
SYBASE allows flexibility for defining triggers which maintain data integrity
with a complexity far greater than is provided in TOT. Thus in addition to
the fdes provided which contain SQL for creating tables, their keys, and trig-
gers relating tables, one might write more complex trigger code which could
then be incorporated with the TOT output in order to create a complete
trigger system.

Although the BUILD portions of TOT are available to all users and
reading the code generated may darify some design issues for users, we
believe that a single Database Admi+strator should usually execute all of
the scripts output by TOT. The trigger scripts, in particular, affect the
entire database and must be carefully integrated.

“The variant of SQL which i. created b SYBASE Transact-SQL. Thi, is the SYBASE
implementation of the SQL standard nith enhancemats, to be distkguished from the
APT-SQL version. One can execute lkwact-SQL acript~ using the SYBASE isql
spplication.

9

5 Using TOT

5.1 New Applications and Data Entry

The appendices contain specific instructions for TOT. We will describe here
the general pattern for use.

Suppose we wish to add a new SYBASE-based application involving
several new tables and several existing tables which have been previously
captured iu TOT. We begin by decidiug to create a new dataowner category
or use au existing one. We add any new datatypes specific to our applica-
tion. Then we enter the table names and descriptions into the tables table.
For each table we complete the columns table and the foreign keys table if
required. We enter any needed rules aud defaults.

With the data captured, we may then.proceed to build the SQL code
which wilI create the new tables with their associated keys. We will also
build insert and update trigger code for each table, based in part on the
foreign key information. When we seek to create the new delete triggers, au
additional complication must be noted. New delete triggers should now be
created for all tables related to the new tables through a foreign key’e. In
particular, if a columu in one of the new tables has a foreign key pointing
to a table described previously, we would want to be sure to update the
triggers associated with deletion from that previous table. As part of the
‘Fkey And Insert Trigger Code’ option which creates the foreign keys for
the new table, TOT will automatically create the delete trigger code for all
of the associated primary tables to which the foreign keys poinP.

Let us specify the steps required to build a table from its TOT definition.

1. Use TOT procedure to create scripts to build table defiuition.

2. Use TOT procedure to create foreign keys and create insert and update
trigger code.

3. Use TOT procedure to create delete trigger code.

4. For &~y features of this database schema which are not specified in
TOT but can be supported in SYBASE, edit the required additional
code into the trigger (or BUILDTABLE) scripts.

“This version of TOT doa not include update trigger moditication for the foreign key.
Instead, by default, the update trigger forbida the modification of the primary key.

“II we have added extra code to the delete triggers of these tables, we need to add
those changea to the SQL script files created by TOT before executing them, so aa not to
lcse those changes.

10

5. If this is not a new application, save the data stored in existing versions
of the table.

6. Create the new or revised tables by executing the SQL BUILDTABLE
files.

7. Exercising due care for the existing tables, execute the scripts which
create the trigger code.

8. If ~necessary, restore previously saved data into the newly created
W&&8.

If we observe these simple rules, it is straightforward to ask SYBASE to
produce and execute all required SQL code and have a complete new set of
tables.

5.2 Changing Table Definitions

A few additional steps may be required when we have designed and brought
into use a set of tables and then discover a requirement to revise those tables.
We cm capture the new design in TOT, but we must be aware that it will
affect OIU ability, to recreate the current situation. It is likely to be desirable
to retain the SQL code that allowed us to create the present set of tables
and triggers, do we first make an archival copy of that code. A standard
code mana@ment system is an appropriate vehicle. We then modify the
TOT description, create new SQL for deli&g the database and proceed as
above, again preserving a copy of the critical SQL files. Depending upon the
complexity of the TOT descriptions, we may wish to preserve a record of
them, also, to avoid data entry errors ifwe want to reverse a TOT description
change. I

To preserve existing data stored in the table, we can extract the contents
of the table using, for example, a bulk copy. Then, we use the SQL script for
deleting and recreating the table. Fiiy we can bulk copy in the previous
contents. For simple tables when no columns have been added, such a
procedure ii efficient and straightforward. SubstantialIy more complicated
efforts may be required in cases where large numba of foreign keys carry us
back perhaps several steps through a database. In this case, the procedure
described might be sufficient but there are potential modii?cations for which
additional trigger generation code will be required in place of the simple
bulk copy before we can reinsert the data in the database.

11

6 Summary

Users of the SYBASE database may capture nearly complete descriptions
of the database schema using the TOT application. They may wish to
supplement the information they store in TOT with perhaps some additional
trigger information for those triggers which go beyond the model supported
in TOT and with modification of the indexes to optimize performance.

Complete prescription as well as documentation of the design is available
from the reports stored in SYBASE. SQL code output in the TOT applica-
tion can be used directly to build tables, triggers and keys for the desired
SCh~.

A Appendix: Versions Status of TOT

This document describes TOT version 1.0 released in January 1991. It
was developed initially under SYBASE Release 4.0 and updated to run un-
der SYBASE Release 4.0.1, both running under SunOS Ver 4.03 on a Sun
SPARC platform.

B Appendix: Complete reports of the TOT de-
scriptioh of it database schema.

The following pages contain reports created from data stored in the columns
table to describe the Various TOT tables. This is followed by a table which
describes the foreign keys required by the TOT schema. Most of these cannot
be described by the TOT foreign keys table since they involve multicolumn
keys.

12

-Y := .-L
Tc”” -
-c-e
i
:,“I:
222

z
24
: E
+ :

;I !
: e’ 2’ E :z :
!$ 2
:CL* .E. 227 OS0

J
i

t : : -,
. 0 !
J 1

BI 2 5
.z :

%
ia*
4:s

8 s

8 .-I

m 8

?d

E
:
t>

j!

2
z t
,! :
5 .’
s i
0 -

8 a

m m

8 8

5 2
11

4 $

q :

t
: ::
2 3
s .’ - -
8 z
* In

P a

8 -

8 8

iId

2
J
3:

j t
:

I
:

3 L’
4 :
a! b
r’ 3
: z
0 .M

13

8 P s

- .4 *

s m s

w

“ii

i ! f c c

4 I e
.! g’ 4
z;:
J “4
(Y Lo .

0 :B .2.
x P 01
-c”
7
z:i
2s

z
u”
3 L 4 I

I 5
: P
g’ i a
?iu”

LLD z* 27
go

a :
. Fi 2;
3 ”

8 2 5
R :
p $$ P ‘1Ico

0

8

0

ii

e
2

z
:
I ‘;
2
2
ii
!2

14

P

m

P

1

0
z

3
3’
E
3
;
c
2 I.
L.r

::

$ 3
$5

% 3 ‘j 4 :

t 5 :
k 3 L’ !
.’ 4 : ‘:
s ,!bT
i s 3 ::

544

ip .3.
; :- &A
-(cm
2
EFS: s2 1

:
5:
3 t
2 t

s i!
a

iii
I ‘; g i

j t
Ek” 20,
e”

t :
: :
. b ;; 3
3:

m 8

ii

E”
3

i $
;
3 i
2 :

I
3 :
G Y’
Y!;
:: .
s : 0

. -

i
E
9
c
,”
3
s3

s (D

m s

s s

idi!

2 i

fi

::
3

a “’
2;
3 :
2 4

cd A

(D a

s .I

s m

H

2
3

i,

;I

; I
/ :

2 .’
e -
s :

. -

s s

s a

m a

ii

: :

li

!,
:

23

3 .’

4:

N (0

a 8

s -

a *

H

0
3
i L
; f
3 t
4 :

3
4 x
Au”
2 3
s 3
t r(

I
B L’

?

2
t j

E ; 2’
$

03<
- CL t z 5’
c b 2 -0
E g P$ f
40 t s 28

8 s

- s.4

s B

H

: 2

i q

z I
t =,
.’ f
0’
3
,I “I
0 :

‘5’5
;E

N 0

%
2 t

l! 5

9t
: ..%
0 mco

15

r:= .-I
-2”
-I-.-
?
E,“j 22 1

2i :,
3
p’ E :

: L’
?
t t 3

: 0’
4 l d e’

:: 2

kt

E:‘
-‘y

Z”

:
:4 I

. -P

x !

3,”

B

2 s

a :

:: sse
0 G::S

8 0 m
(D P .d
8 P (D

i i$
P 3

5
l

2:
jr

z :
5 a
0 3 :
2 “I L’ $?
: ,! :
I s 3 P s z
P c .I

: z 3

2 3
: : i
t . ‘;
$ I 3 : s

5 :
r

g .’
“, z 3
‘; jz::
: g$$
4 ;:a

* :

16

:,
j/
L

c
0. 7’ a.1

hi
t:
2:

!

&
f:
2, ,

I
I
I
I
t
I
I
I
i

g[
;I 2 I’

I
I
I

zj
fii

t

I I
I
1
I

ii
-I,
3 I,

I
I
I
I
I
I
I

!!I
y

I t
c’ z :t
6 .’
30
3

3
333 ;
--- === ::: 3::

i:
;TG 2 4 LE’: :::. *e. ,e.

: ;t

j Ifi

‘, ;;
,

a K
tfz

3 $;zz ;;;
0 << ===

TOT
3 3 ‘5’;; LLL ;;‘T CLL

J “” g 8:s ““U 3 4 2:: &z

‘5
;j 5 J C. 3 r’; -of 2.--g
?2.
2” t;,:t
.t gpz
52 OCL
. . 0-i -3:
1. f”2.k
z; f$v;;
5; ‘-.c”- mc 3’ ;g pi%
32 3::“’
.?I . ..z.i
5. ffSSZ II I I
02 . I 02 x = ..:s c’ 2

:iss t P
231 a 1
slg h ik
B

17

C Appendix: TOT triggers not stored in TOT.

The TOT data schema contains the following triggers which are not specified
by the defluitiou of TOT stored within the TOT database.

The insert and update triggers are identical for all of the triggers used
by TOT. This is because of the similarity of the actions in au insertion and
au update.

C.l Dataowners triggers

c.1.1 Dataowners Insert and Update Trigger

IF the dataowner being added or updated already exists in the ‘dataowrr
ers’ table

rollback the transaction

ELSE

set the entry date to today’s date for the record to be updated

c.1.2 Dataowners Delete Trigger

IF there is au entry in the ‘tables’ table that is using the dataowner
that is to be deleted

Give the message “This dataowuer is in use”

Rollback the transaction

C.2 Tables triggers

c.2.1 Tables Insert and Update Trigger

IF the llrst 26 characters of the table name being inserted matches the
first 26 characters of any existing table name,

Give the message “A table by this name already exists”

Rollback the transaction

ELSE IF the dataowner specified for this record does not exist

Give the message “No dataowner by this name exists”

Rollback the transaction

18

ELSE

set the entry date to today’s date for the record to be updated

c.2.2 Tables Delete Trigger

IF there is an entry in the ‘columns’ table using the table to be deleted

Give the message “A table by this name has columns”

Rollback the transaction

ELSE IF there is an entry in the ‘foreignkeys’ table using the table to
be deleted

Give the message UA table by this name has foreign keys”

Rollback the transaction

ELSE IF there is an entry in the ‘group-permissions’ table using the
table to be deleted

Give the message “A table by this name has permissions”

Rollback the transaction

Comment: the group-permissions table is part of our application. It is
coupled to TOT to help insure database integrity. This aspect of TOT is
not documented elsewhere in the TOT documentation.

C.3 Columns triggers

CA1 Columna Insert and Update Trigger

IF the dataowner/table/colu name combination being inserted al-
ready exists

Give the message “A column by this name already exists”

Rollback the transaction

ELSE IF’ the dataovmer/table combination specified for this record
does not exist in the ‘tables’ table

Give the message “No table by this name exists”

Rollback the transaction

19

ELSE

Set the entry date to today’s date for the record to be updated

IF the column label field is null

Make the label the same as the column name

CA.2 Columns Delete Trigger

IF there is an entry in the ‘columnrules’ table using the column to be
deleted

OR there is an entry in the ‘column_defaults’ table using the column
to be deleted

OR there is an entry in the ‘foreignkeys’ table using the column to be
deleted

Give the message “A column by this name is in use”

Rollback the transaction

C.4 Column-Rules triggers

c.4.1 Column_ILulsa Insert and Update Trigger

IF the columnxule name is already in the ‘datatypexules’ or ‘col-
unuuules’ table

Give the message “A role by this name already exists”

Rollback the transaction

ELSE IF the dataowner/table/column name combination specified for
the rule does not exist in the ‘colums’ table

Give the message “There is no column by this name”

Rollback the transaction

ELSE

set the entry date to today’s date for the record to be updated

C.4.2 ColumnRules Delete Trigger

No delete trigger

20

C.5 ColumnDefaults triggers

CA.1 Column-Defaults Insert and Update Trigger

IF the column-default name is already in the ‘datatype-defaults’ or
‘columndefaults’ table

Give the message “A default by this name already exists”

Rollback the transaction

ELSE IF the dataowner/table/column name combination specified for
the default does not exist in the ‘columns’ table

Give the message “There is no column by this name”

Rollback the transaction

ELSE

set the entry date to today’s date for the record to be updated

C.5.2 ColumnDefaults Delete Trigger

No delete trigger

C.6 Foreignkeys triggers

CA.1 Foreignkeys Insert and Update Trigger

IF the transaction has more than one ro@

Give message “Multiple row transactions not allowed for for-
eignkeya”

Rollback the transaction

Do not allow any input fields to be null except entry-date

ELSE IF the dataowmr/table/col- name combination specified for
the foreign key already exists in the ‘foreignkey’ table

Give message “This column already is a foreign key”

Rollback the transaction

“Multiple rows will not occur with the data entry portion of TOT or Data Workbench,
but could be created (and must be avoided here) u&g isql cm the SQL form in DWB.

21

ELSE IF the dataowmer/table name combination specified for the for-
eign key does not exist

Give message “This table does not exist”

Rollback the transaction

ELSE IF the dataowner/table/col- name combination specified for
the foreign key does not exist in the ‘columns’ table

Give the message “There is no column by this name”

Rollback the transaction

ELSE IF the dataowner/table/col- name combination specified for
the primary key does not exist in the ‘columns’ table

Give the message “There is no column by this name”

Rollback the transaction

ELSE IF the primary key column specified is not noted as a primary
key in the Lcol-s’ table

Give the message “The primary key specified is not a primary
key”

Rollback the transaction

ELSE IF the da&types for the foreign key and primary key are not
the same

OR (the lengths of the datatypes for primary and foreign keys are not

equal

AND the lengths of the datatypes are not both I&)

Give the message “Datatypes of foreign and primary col-
names do not match”

Rollback the transaction

ELSE

Set the entry date to today’s date for the record to be updated

22

CA2 Foreignkeys Delete Trigger

No delete trigger

C.7 Datatypes triggers

c.7.1 Datatypes Insert and Update Trigger

IF the datatype name is already in the ‘datatypes’ table

Give the message “A datatype by this name already exists”

Rollback the transaction

ELSE

set the entry date to today’s date for the record to be updated

c.7.2 Datatypes Delete Trigger

IF there is an entry in the ‘columns’ table using the datatype to be
deleted

OR there is an entry in the ‘datatypemdes’ table using the datatype
to be deleted

OR there is an entry in the ‘datatype-defaults’ table using the data-
type to be deleted

Give the message “This datatype is in use”

Rollback the transaction

C.8 DatatypeRules triggers

CA.1 DatatypeRides Insert and Update Trigger

IF the datatypende name is already in the ‘datatypedes’ or ‘col-
umuules’ table

Give the message “A rule by this name already exists”

Rollback the transaction

ELSE IF the datatype specified for the rule does not exist in the
‘datatypes’ table

23

Give the message “There is no datatype by this name”

Rollback the transaction

ELSE

set the entry date to today’s date for the record to be updated

CA.2 Datatype-Rules Delete Trigger

No delete trigger

C.0 DatatypeDefaults triggers

c.o.1 Datatype-Defaults Insert end Update Trigger

IF the datatypedefault name is already in the ‘datatype-defaults’ or
‘col-defaults’ table

Give the message “A default by this name already exists”

Rollback the transaction

ELSE IF the datatype specified for the default does not exist in the
‘datatypes’ table

Give the message “There is no datatype by this name”

Rollback the transaction

ELSE

set the entry date to today’s date for the record to be updated

c.9.2 DatatypeDetkults Delete Trigger

No delete trigger

D Appendix: Instructions for use of the TOT
data entry application

Before TOT can be run, several environmental conditions must be met. The
user must have :

1. permission to use TOT

24

2. a login on the Sybase server

3. a login on the TOT database

4. permission to use the TOT database

l A user who is planning on adding or updating data in TOT must
have insert/update permission in the database. Select permission
is required for reading.

l A user who wishes to use the code generation portion of TOT
must have write permission to the directory from which TOT is
invoked.

It is assumed that the user is familiar with the comman ds used in the APT
forms management system for moving through a form, invoking menu items,
moving through fields on the form and exiting forms. See the Sybase “APT
Workbench” manual for instructions.

D.l TABLE OF TABLES FORM

The operational structure of TOT has the following hierarchy:

1. Dataowners

2. Tables

3. Columm

. Colomns

l Defaults

l Rules

l Foreign Keys

l Build Code

4. Datatypes

D.2 DATAOWNERS FORM

The dataowners form contains the following menu items and sub-menu
items:

1. Find

25

l By Example - searches the database for data matching what has
been input by the user on the form. The first matching record
found is displayed on the form. If the fields that are input do not
correspond to any existing data, you are told so.

l Next - finds the next instance of the data that match the fields
on which you ran Find+By Example. If there are no more data
that match this example, you are told so. If you select the Next
option without previously selecting any of the Find options, all
records for that table will be found.

l Previous - finds the previous instance of the data that match the
fields on which you ran Fiid+By Example. If you have already
backed up to the first instance that matches, you are told so.

You can also find by example using relational operators and wildcard
characters. Youmay only do this on character fields, because the other
datatypes do not accept relational operators and wildcard characters
as input.

2. DoIt

l Add - allows the user to add new rows to the database. This op-
tion assumes that key fields are unique. If you try to add a row in
which the primary keys already exist in the TOT database, an er-
ror message appears and the add transactionis rolled backed. See
the “Modify” explanation for advice on handling this situation.

l Modify _ modifies existing rows. Modify only allows changes to
non-key field values. To det ermine which are the key field, see
Figure 1 or Appendix B . If you change a key field and then pick
Modify, an error message appears. If you want to change a key
field value, delete the current one and add a new row. In order to
use Modify, you must first fill the form using Fiid=+By Example.

l Delete - deletes the row showing on the screen from the database.
Idle Add and Modify, Delete uses key field information. It checks
the key fields to determine which rows to delete. If the key fields
are the same as an existing row, then the row is deleted, whether
or not the non-key fields are the same as the existing row.

3. Clear -just clears the form. It has no effect on the database tables.

26

4. Tables - calls the Tables Form and automatically fills in the dataown-
ersname field.

5. Special Features

o While your cursor is positioned on the dataownername field, you
may press CTRL-v (values key toggle). This will display a win-
dow with a list of valid dataommname’s. The Display window
may be too small to show the entire list. Use down-arrow key to
see if further entries exist. Select a dataownername by position-
ing the cursor on it and pressing return will highlight it. Since
this is a toggle, you must press CTRL-v again to put the selected
dataowner-e in the dataownername field.

o You do not have to enter a date in the entry-date field, the current
date and time will automatically be put in for you when the row
is Added or Modified. This will be true of any form in the TOT
application where there is an entry-date ficdd.

o The last line on this form (and many of the other forms in TOT),
is just an informational line. The number displayed after ‘Rows
Found:’ prompt is the number of rows that matched the fields on
which you ran Fiid+By Example. The ‘Current Row:’ number
reflects the number of the row you are currently eqjoying. The
‘First Row in Buffer:’ number is the record number of the first
row still retained in the buffer.

D.3 TABLES FORM

The tables form contains the following menu items and sub-menu items:

1. Find - See the description of these options in the Dataowner section.

. By Example

l Next

. Previous

2. Do It - See the description of these options in the Dataowner section.

l Add - Since every table name must be unique within 26 charac-
ters across the entire database, no duplicate table names will be
allowed to be added.

27

. Modify

l Delete

3. Clear - See the description of this option in the Dataowner section.

4. Columns - calls the Columns Form and automatically fJIs in the data-
ownersname and the tablename fields.

5. Special Features

o While your cursor is positioned on the dataownername or ta-
ble-e fields, you may press CTIU-v (values key toggle). When
you press CTRLv while your positioned on the table-e field,
only the tables that are associated with the dataowner entered in
the dataownername field will be shown as valid tables.

o After moving out of the dataowmrname field, if the field is not
null, the data entered in that field is checked to see ifit actually
exists in the dataowners table.

o After moving out of the table-e field, if the field is not null,
the data entered in that field is checked to see lfit actually exists
in the tables table.

D.4 COLUMNS FORM

The columns form contains the following menu items and sub-menu items:

1. Find - Searches the database for data matching what has been input by
the user on the form. If the fields that are filled in do not correspond
to any existing data, you are told so.

2. Do It - See the description of these options in the Dataowner section.

. Add

. Modify

l Delete - Same as the description for Delete in the Dataowner
section, but due to the Column form showing several colurms
information, only the column that the cuTsor is positioned on
will be deleted.

3. Clear - See the description of these options in the Dataowner section.

28

4. Scroll - Move the cursor Down or Up a row on the form.

. Down

’ UP

5. More

. Defaults - calls the Column Defaults form.

l Rules - calls the Column Rules form.

l Foreign Keys - calls the Foreign Key form

l Build Table SQL Code

- Build Table From Database - Builds the SQL code for the ue-
ation of a table from the description stored in the database.
If the table contents entered on the form diifers from that de-
scribed by data stored in the columns table in the database,
you will be warned and asked if you would like to modify
the columns table entries with the information on the form
before creating the code.

- Build Table From Form - Builds the SQL code for the cre-
ation of a table from the information stored on the form. If
you have altered the data on the form, you will be given a
warning message informing you that the code created may
not be consistent with what is stored in the database and
then asked if you want to pr&xed.

6. Special Features

o While your cursor is positioned on the dataownername field, ta-
blename field or the datatype field, you may press CTRL-v (val-
ues key toggle) for a list of valid entries. When you press CTRL-v
while your positioned on the tablename field, only the tables that
are Bssociated with tiie dataowner entered in the dataownermme
field will be shown Ed valid tables.

o After moving out of the dataownername field, if the field is not
null, the data entered in that field is checked to see ifit actually
exists in the dataowners table.

o After moving out of the table-e field, if the field is not null,
the data entered in that field is checked to see ifit actually exists
in the tables table.

29

o After moving out of the datatype field, if the field is not null, the
data entered in that field is checked to see ifit is in the systype
system table. If it is 8 valid datatype, it is then checked to see
if 8 length is needed. If no length is needed then the typelength
field is skipped over.

o when the down arrow in the menu section is 8CtiV8ted, you may
select it to browse through the d8t8 at 8 faster pace than by using
the Scroll+Down option. The same is true for the up arrow.

D.5 COLUMN DEFAULTS FORM

The columns defaults form contains the following menu items and sub-menu
items:

1. Find - See the description of these options in the D8t8OWIIer section.

. By Emmple

s Next

l Previous

2. Do It - See the description of these options in the Dataowner section.

. Add

. Modify

. Delete

3. Cleiu - See the description of this option in the Dat8owner section.

4. Sped8l Features

o While your cursor is positioned on the dataownername, tablename,
or coluxmumme fields, you rmty press CTRL-v (values key tog-
gle). When you press CTBLv while positioned on the tablename
field, only the tables that are associated with the dataowner en-
tered imthe dataownername field will be shown 8s valid tables.
When you press CTIU-v while positioned on the columnname
field, only those columns in the table entered in the tablename
field will be shown 8s valid columns.

o After moving out of the dataownername field, if the field is not
null, the data entered in that field is checked to see ifit actually
exists in the dataowners table.

30

o After moving out of the tablename field, if the field is not null,
the data entered in that field is checked to see ifit actually exists
in the tables table.

D.6 COLUMN RULES FORM

The columns rules form contains the following menu items and sub-menu
items:

1. Find - See the description of these options in the D8t8OWner section.

. By Example

. Next

l Previous

2. Do It - See the description of these options in the Dataowner section.

. Add

. Modify

. Delete

3. Clear - See the description of this option in the Dataowner section.

4. Special Peetures

o While your cursor is positioned on the dataowner-e, tablename,
or columnname fields, you may press CTBL-v (values key tog-
gle). When you press CTRL-v while positionedon the tablename
field, only the tables that are associated with the dataowner en-
tered in the dataownername field will be shown ar valid tables.
When you press CTRL-v while positioned on the columnname
field, only those columns in the table entered in the tablename
field will be shown 8~ valid columns.

o AtIer moving out of the d8taowner-e field, if the field is not
null, the data entered in that field is checked to see ifit actually
exists in the dataowners table.

o After moving out of the table-e field, if the field is not null,
the d8t8 entered in that field is checked to see ifit actually exists
in the tables table.

31

D.7 FOREIGN KEYS FORM

The foreign keys form contains the following menu items and sub-menu
items:

1. Find - See the description of these options in the DataOwner section.

. By Example

. Next

. Previous

2. Do It - See the description of these options in the Dataowner section.

. Add

. Modity

. Delete

3. Clear - See the description of this option in the Detaowner section,

4. Build Code - See the description of these options in the Tables of Table
section.

l Fkey And Insert Trigger Code - writes the code for creating for-
eignkeys and for creating the insert and update trigger.

l Build Delete Trigger Code - writes the code for creating the delete
trigger.

5. Special Features

o While your cursor is positioned on any field in this form except
entrydate, you may press CTRL-v (values key toggle). When
you press CTRL-v while positioned on the foreign-t8blen8me
or prim8ry~t8blea8me fields, only the tables that are associ-
8ted with the dst8owner entered in the foreigedataownername
or prinmrydataownername fields will be shown as valid tables.
When you press CTBL-v on either of the cohnrmname fields,
only the columns in the corresponding table will be shown 8s
v8lid columns.

o After moving out of the foreign-d8taownername or the
prinmryd8taowner-e fields, if the field is not null, the data
entered in that field is checked to see if it actually exists in the
d8tllowners table.

32

o After moving out of the foreign-tablename or the primary_ta-
blename fields, if the field is not null, the data entered in that
field is checked to see ifit actually exists in the tables table.

D.8 BUILD SQL CODE FORM

The build SQL code form contains the following menu items and sub-menu
items:

1. Create SQL Code

l Build Table SQL Code - writes the SQL code for the creation of
8 table.

l Fkey And Insert Trigger Code - writes the SQL code for cleating
foreignkeys and for creating the insert and update trigger.

l Build Delete Trigger Code - writes the SQL code for creating the
delete trigger.

8 Build All Of The Above - writes 8ll SQL code for creating tables,
foreignkeys and insert and update triggers , and delete triggers
with all scripts in one fde.

D.9 DATATYPES FORM

The d8t8@peS form contains the following menu items and sub-menu items:

1. Find - See the description of these options in the Datxwner section.

. By Example

. Next

l Previous

2. Do It - See the description of these options in the D8taowner section.

. Add

. Modify

l Delete

3. Clear - See the description of this option in the Dataowner section.

4. More

33

s Create Type - this option will a&ualIy create the datatype, which
can then be used in the columns table. If there were any defaults
or rules defined for that datatype, it will blind them to it.

. Defaults - calls the Datatype Defaults fem.

l Rules - calls the Datatype Rules form.

D.10 DATATYPE DEFAULTS FORM

The datatype defaults form contains the following menu items and sub-menu
items:

1. Find - See the description of these options in the Dataowner section.

s By Example

. Next

l Previous

2. Do It - See the description of these options in the Dataowner section.

. Add

. Modify

l Delete

3. Clear - See the description of this option in the Dataowner section.

4. Special Features

o While your cursor is positioned on the datatype field, you may
press CTBLv (values key toggle). This will display a window
with a list of valid datatypes.

D.ll DATATYPE RULES FORM

The datatype rules form contains the following menu items and sub-menu
items:

1. Fiid - See the description of these options in the Dataowner section.

l By Example

. Next

34

s Previous

2. Do It - See the description of these options in the Dataowner section.

. Add

. Modify

l Delete

3. Clear - See the description of this option in the Dataowner section.

4. Special Features

o While your cursor is positioned on the datatype field, you may
press CTBL-v (values key toggle). This will display a window
with a list of valid datatypes.

E Appendix: htructions for TOT Build Appli-
cations

E.l BUILDTABLE

The Buildtable procedure produces a SQL script for creating the table, the
primary key, the primary index, the alternate index (ifneeded) and the table
permissions.

* This procedure can be invoked when you select one of the following:

- ‘Build Table Sql Code’ item under the ‘Create Sql Code’ option
in the ‘BUILD SQL CODE’ form.

- ‘Build Table Sql Code’ item under the ‘More’ option in the
‘COLUMNS’ form. Under this item you are given the option of
either building the code based on what is stored in the database
or based on what is currently stored on the form. If you build
the code based on what is currently stored on the form, you will
be given a message warning you that the code created may no be
consisted with what is stored in the database.

* Output: u ‘dataownername’~‘tablename’.sql” - stored in the direc-
tory that TOT was invoked from.

* Actual Code:

35

1. The database name ‘mtfmsa’ is hardcoded. In a future release,
the current database name should be used.

2. Before a table is created, first drop the existing table. The syntax
for dropping a table is as follows:

DROP TABLE [[database.]owner.]tablename

3. Create table:

CREATE TABLE [[database.]owner.]tablename
(columnname datatype [NOT NULL 1 NULL]

1, co1 umname datatype [NOT NULL 1 NULL]]...)

To do this we create a dynamic string for each column row,
consisting of ‘columnname datatype[(typelength)] [NULL]‘. The
following rules are checked against each column’s information:

IF the field ‘typelength’is not null THEN append the typelength
to the dynamic string.

IF the bit field ‘nullallowed’ is set TBEN append NULL to
the dynamic string.

IF the bit field ‘part-of-primarykey’ is set THEN append
the column name to the dynamic string that is being built
for the primary key. The syntax of this dynamic string will
be shown later.

4. Create primary key:

EXECUTE sp-primarykey tablename, co11 [, ~012, 1x13,
COlS]

‘ml1 is the first column that makes up the primary key. The
primary key can consist of one to eight columns. Note: The
column order within the key is specified by the ‘column-order
field in the ‘columns’ table.

5. Grant permissions:

GBANT [SELECT 1 INSERT 1 DELETE 1 UPDATE] ON
tablename TO name&t

REVOKE [SELECT 1 INSERT I DELETE 1 UPDATE] ON
tablename FROM name.list

‘namelist’ can be either Sybase users name or groupname. At
present, SELECT is GRANTed to the public, INSERT is GRANTed
to the groups (administrator, developer, test= ger, measurer,

36

data-clerk), DELETE is GRANTed to the groups (administra-
tor and developer), and UPDATE is GRANTed to the groups
(administrator and developer).

6. Create a clustered index on the primary key:

- CREATE CLUSTERED INDEX snindex ON
‘dataownername’.‘table~ame’ (pkey)

‘pkey’ is the primary key for the table entered on the form. This
key is found querying the columns table to find the column(s)
that have the bit field ‘part-of-primary_key’ set for this table.
See above note regarding column order.

7. Create a unique nonclustered index on the alternate key:

- CREATE UNIQUE NONCLUSTERED INDEX alt_keyindex
ON ‘dataownername’.‘tablename’ (alt_key [, ah-key]...)

W&key’ is a single or multi-column key that uniquely identifies a
row in this table. By making this a UNIQUE index, we instruct
Sybase to check for duplicate rows, thus eliminating the need
for creating trigger code to do this. Column order in the key is
specified by the column-order field of the columns table as for the
primary key.

6. Add column rules, if needed. See Appendix E.4

9. Add column defaults, if needed. See Appendix E.5

E.2 BUILDFKEY

The Buildflcey procedure produces two SQL scripts. One script creates the
foreign keys and creates indices on those foreign keys and the other script
creates the insert and update trigger as one trigger. The trigger is created
to insure the integrity of the foreign keys. Also, for every distinct table
that a foreign key points to, a new delete trigger code will be generated
and appended to the ‘dataowner-e’-‘table-e’&zy.sql’ code that this
procedure creates.

* This procedure is invoked when you select one of the following:

- ‘Fkey And Insert Trigger Code’ itemunder the ‘Create Sql Code’
option in the ‘BUILD SQL CODE’ form.

- ‘Fkey And Insert Trigger Code’ item under the ‘More’ option in
the ‘FOREIGNKEYS’ form.

37

* output:
” ‘dataowmrname’~table-e’fkey.sql” and
” ‘dataownername’-%ablename’frig.sql”
- stored in the directory that TOT was invoked from. The code created
is based on the data that is stored in the database. This should be run
after you Fe done entering all of the information for the table that
has the foreign keys and the tables that the foreign keys point to.

* Actual Code: - u ‘dataownername’~tablename’-fkey.sql”

1. Since all of .our application tables are stored in the ‘mtfmsa’
database, our first step is to hardcode which database to use.

2. Before foreign keys are created, existing foreign keys between the
two tables are dropped. The syntax for dropping a foreign..key is
as follows:

- EXECUTE sp-dropkey foreign, foreign-tablename,
deptabname

‘foreignfablename’ is the name of the table that contains the
foreign key to be dropped.
‘deptabname’ is the name of the dependent table (in the form of
u ‘dataowner-e’.‘tablename’ “) that contains the column(s)
that the foreign key points to.

For each dependent table that this table’s foreign keys point to,
an EXECUTE sp-dropkey line is created.

3. EXECUTE ‘sp-foreignkey’ to add foreign key for each new one
required.

4. Create index:

- CREATEINDEX fk#index ON ‘dataownername’.‘tablename’
(fkey) ‘fkey’ is the foreign key for the table entered on the
form.

* Actual Code: - u ‘dataownername’~‘tablename’_trig.Sql”

1. Since all of our application tables are stored in the ‘mtfmsa’
database, our first step is to hardcode which database to use.

2. Before a trigger is created, first drop any existing trigger. The
syntax for dropping a trigger is as follows:

- DROP TRIGGER triggername

36

‘triggername’ is the name of the trigger.

3. Create trigger:

CREATE TBIGGER triggername ON table-e FOR IN-
SERT, UPDATE AS

BEGIN

END

‘trigger-e’ is the name of the trigger. The trigger -e has
the following format, “ ‘tablename’i”. Since trigger -es can
only be 30 characters or less, if necessary the ‘tablename’ is
trimmed to 26 characters.

* Body of trigger:

1. Declare variables.

2. Check to see if there were any rows entered.

3. If the primary key is of sntype and is not a foreign key, make sure
that it is not updated or inserted.

4. For each foreign key row, check to see if the primary key that the
foreign key is attached to exists. IF the primary key does not
exist THEN set the ‘problem’ Bag.

Since some foreign keys are allowed to be NULL, the following
rules are checked:

- IF’ there are any rows being inserted or updated with NULLS
for this field THEN ignore them.

- To allow for multi row inserts, only check the ones that are
not NULL. IF a primary key is not found for any of these
THEN rollback the whole transaction.

5. Check to see IF the ‘problem’ flag was set THEN print error
message and exit the trigger.

6. For each record inserted for which the primary key is a single
column of type sntype and for which the primary key is not a
foreign key to another table, generate a serial numberls.

“This ia done with a bmcd p~oecdvrc which as+m a generated serial nwnbu to the
record that haa a NULL primar YlCY.

39

E.3 BLDDELTRIG

The Blddeltrig procedure produces a SQL script which creates the delete
trigger. The trigger is created to ensure that no primary key value in this
table can be deleted if a foreign keys exist that points to it.

* This procedure is invoked when you select one of the following:

- ‘Build Delete Trigger Code’ item under the ‘Create Sql Code’
option in the ‘BUILD SQL CODE’ form.

- ‘Build Delete Trigger Code’ item under the ‘More’ option in the
‘FOREIGNKEYS’ form.

* Output:
“ ‘dataownername’_‘tablename’delfrig.sql”. - stored in the direc-
tory that TOT was invoked from. The code created is based on the
data that is stored in the database. This should be run, for the pri-
mary key table, every time that a new foreign key is created which
points to the primary key in this table.

* Actual Code:

1. Since all of our application tables are stored in the ‘mtfmsa’
database, our first step is to hardcode which database to use.

2. Before a trigger is created, the convention to use is to drop the
trigger flrst. The syntax for dropping a trigger is as follows:

- DROP TRIGGER triggername
‘trigger name’ is the name of the trigger.

- Create trigger:

* CREATE TRIGGER triggername ON tablename FOR
DELETE AS

t BEGIN

* .

* .

* .

* END

‘triggername’ is the name of the trigger. The trigger name
has the following format, ” ‘table-e’-d”. Since trigger
names can only be 30 characters or less, if necessary the
‘tablename’ is trimmed to 26 characters.

40

* Body of trigger:

1. Declare variables.

2. Check to see if any rows are to be deleted.

3. For each row being deleted, check each table which has a foreign
key pointing at (the primary key of) this table. IF there are
entries in any of them THEN print error message and roll back
this transaction.

E.4 ADD Column RULE

* This procedure is invoked as part of creating the code for building a
table.

* Output: ” ‘dataownername’-‘table-e’xrule.sql” - stored in the
directory that TOT was invoked from.

* Actual Code:

1. Before a rule is added to a column, one must drop the ruIe for
that column fist. Before dropping a rule one must u-bind all
references to it. The syntax for dropping a rule is:

- DROP RULE rulename

2. Create rule:

- CREATE RULE u ‘dataownermame’.‘ruleulename’ ”

3. Bid the rule to the column:

- EXECUTE sp_bindmle rule-e,
u ‘table-e’.‘colummme’ ” AS rule-text

E.5 ADD Column DEFAULT

* This procedure is invoked as part of creating the code for building a
table.

* output: ” ‘dataowmrmame’-‘tablename’xdefault.sql” - stored in the
directory that TOT was invoked from.

* Actual Code:

41

1. Before a default is added to a column, one must drop the default
for that column fist. Before dropping a default one must m-bind
all references to it. The syntax for dropping a default is:

DROP DEFAULT defaultname

2. Create default:

CREATE DEFAULT u ‘dataownername’.‘defaultname’ ”

3. Bind the default to the column:

- EXECUTE sphiiddefault defaultname,
” ‘tablename’.‘columnname’ n AS default-text

E.6 ADDTYPE

The Addtype procedure is different in that is does not produce a SQL script.
The adding of a datatype is processed as soon as you execute the ‘Create
type’ item.

* This procedure is invoked when you select the ‘Create Type’ item
under the ‘More’ option in the ‘DATATWES form. This directly
submits an EXECUTE sp-addtype to the server. For best results:

Add the current forminformation into the database before invok-
ing ‘Create Type’. Do this by selecting option 2, item ‘add’.

Clear the form. Select option 3.

Find the information from the database of the type you want to
add.

Enter the datatype on the form and select ‘By Example’ item
of option 1.

Create type. Select the ‘Create Type’ item under option 4.

* Output: none

* Actual Code:

1. Before a type is added, any existing definition must be dropped.
The syntax for dropping a datatype is as follows:

- EXECUTE sp-droptype datatype

2. Create datatype:

- EXECUTE spaddtype datatype, definition

42

‘definition’ is the physical or SQL Server-supplied type (char, int,
etc.) on which the user-defined datatype is based.

3. Add datatype rule, if needed. See Appendix E.7

4. Add datatype default, ifneeded. See Appendix E.8

E.7 ADD Datatype RULE

* This procedure is invoked as part of adding a user-defined datatype.
This directly submits DROP RULE, CILIATE RULE and EXECUTE
sp-bindrule for each datatype stored in the ‘datatypexules table.

* Output: none

* Actual Code:

1. Before a rule is added to a datatype, one must drop the rule for
that datatype fist. Before dropping a role one must on-bind all
references to it. The syntax for dropping a default is:

- DROP RULE rule-e

2. Create rule:

- CREATE RULE rulename

3. Bind the role to the datatype:

- EXECUTE sphiidmle rule-e, datatype, futureonly AS
role-text

‘futureonly’ prevents existing columns of a user-defined datatype
from inheriting the new rule.

E.8 ADD Datatype DEFAULT

* This procedure is invoked as part of adding a user-defined datatype.
This directly submits DROP DEFAULT, CREATE DEFAULT and
EXECUTE sphiiddefault for each datatype
stored in the ‘datatype-defaults’ table.

* Output: none

* Actual Code:

43

1. Before a default is added to a datatype, one must drop the default
for that datatype first. Before dropping a default one must on-
bind all references to it. The syntax for dropping a default is:

- DROP DEFAULT default-e

2. Create default:

- CREATE DEFAULT defaultname

3. Bind the default to the datatype:

- EXECUTE sphllddefault defaultname, datatype, future-
only AS defaultfext

‘futureonly’ prevents existing columns of a user-defined datatype
from inheriting the new rule.

F Appendix: Primary, Alternate and Foreign key
options available using TOT

The use of keys in a database schema allow one to specify one or more
co1umn.s within a table which must be unique among all rows entered in
that table. A primary key is the column or set of columns which serves as

the principle unique spetier for that table. In the case of tables where one
chooses to create a serial number which serves as the unique key, there must
be some data stored in other columns which specify uniquely the values
which are of interest in that row. This is id&lied as the alternate key.
when one wishes to maintain data integrity by demanding that a value
in a table be one which has previously been entered into another table, a
Foreign Key describes that relation. SYBASE maintains a foreignkeys table,
but that guarantees no relational integrity. To maintain integrity, one needs
SYBASE triggers.

TOT allows one to automatically generate the code for keys. Some
features of this are:

1. TOT requires a primary key. It can consist of one or more columns.
This is enforced in BUILDTABLE.

2. For a primary key with multiple columns, TOT will create the key
using ‘sp-primarykey’ with the order specified in the ‘column-order’
column. To utilize this as a foreign key, one will need to create trigger
code outside of TOT.

44

3. For a foreign key consisting of a single column, in addition to hav-
ing the foreign key declared automatically, INSERT, UPDATE and
DELETE triggers will be created to enforce referential integrity.

4. If the primary key is a serial number (datatype = sntype) then the
code will be written to cause that serial number to be automatically
generated by the insert trigger UNLESS that key is a foreign key to
another table. BUJLDFKEY will report an error if it writes serial
number generation code but there is no alternate key specified for
that table.

5. One may have tables in wbicb no alternate key is specified. No Rela-
tional Model rule requires more than one key in a table.

In Section 2 the indices which are created for each key are described.
Additional detailed information on triggers created by TOT is contained in
Appendix E

G Appendix: Defaults and Rules

Defaults and rules are two tools that Sybase offers the system designer for
guiding the use of a table. A default value is one that is put into a column
when a row is inserted without specifying a value for that column. A role
is a restriction of the values allowed to be inserted in a column.

A default is an expression composed of ‘constants and functions of con-
stants. See “Expressions” in the Sybase Co mmands Manual. Depending on
the data type of the column it might be an integer (-l), a datetime (get-
date()). or a character string (usermme()t‘did not put anything here’).
To use a default you must first create it, giving it a name. See “CBJXATE
DEFAULT” in the Sybase Comman ds Reference. The default can then be
bound to a specific column in a table. A default can also be bound to
a user-defined datatype. Any forther tables created thereafter using that
datatype will have that default bound to each column of that datatype. A
default may be bound to more than one datatype or default or bbth. See
“sphiidefault” in the Sybase Comman ds Reference.

A rule is a logical expression involving constants, functions, operators,
and at most one local variable. See “Expressions” in the Sybase Commands
Manual. If that expression does not evaluate to TRUE when a row is in-
serted, then the row is rejected. The value that you are attempting to insert
is substituted for the local variable when the expression is evaluated. For

45

example, you can require (@myinteger > 3)‘~ (@made-date < get-date()).
Rules must be created. See “CREATE RULE” in the SYBASE Commands
MamaL They can then be bound to either columns or user datatypes or
both, just as defaults can. See “sphiidrule” in the Sybase Comman ds Man-
ual.

To provide a more complicated default or rule you must use a trigger.
Right now we have no roles defined for the system. The only default we have
defined is for the datetime stamp. Our datetime datatype differs from the
system datetime datetimestamp only in having the default of the current
time.

In managing these entities one must be quite careful. If you change a
rule or default you must bid the new version to everything that has the old
binding.

H Appendix: Instructions for installation of TOT.

A complete package to install TOT requires a set of instructions plus the
following items:

1. Transact-SQL script to create a suitable set of default data types

2. Transact-SQL script to create the TOT tables

3. Transact-SQL scripts to create the TOT triggers

4. A script plus data i’iles to enter the TOT schema into the TOT tables
via bulk copy

5. Sybase APT-SQL code (forms and application code) for the TOT data
entry and TOT BUILD procedures.

If one also wishes to utilize the serial number system for which TOT can
generate atito-tic triggers, the above list should be augmented with

1. A script plus data liles to enter the Serials schema into the TOT tables
via bulk copy
OR

2. Transact-SQL code created by TOT to create these tables.

3. A Transact-SQL script for creating the Serial Generator stored proce-
dure.

46

An installation package for TOT is not available at this time.
TOT data entry and BUILD applications run under SYBASE APT-

Execute. To modify the APT-SQL code one needs APT-Workbench.

References

[l] J. Harvey Triible Jr and David Chappell. A Visual Introduction to
SQL. John Wiley and Sons, New York, 1989.

[z] Mark A. Linton, Paul R. Calder, and John M. Vlissides. Interviews:
A et+ graphical interface toolkit. Technical Report CSL-TR-88-358,
Stanford University, July 1988.

[3] John M. Vlissides and Mark A. Liiton. Applying object-oriented de-
sign to structured graphics. In Proceeding of the 1988 USENIX C++
Conference, pages 81-94, October 1988.

47

