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I. INTRODUCTION 

We used ESME’ to simulate transition crossing in the Main Ring (MR). For the 

simulations, we followed the MR 29 cycle used currently for $i production with a 

flat top of 120 GeV. In Sect. II, some inputs are discussed. In Sect. III, we present 

simulations with space charge turned off so that the effect of nonlinearity can be 

studied independently. When space charge is turned on in Sect. IV, we are faced with 

the problem of statistical errors due to binning, an analysis of which is given in the 

Appendices. Finally in Sects. V and VI, the results of simulations with space charge 

are presented and compared with the experimental measurements. 

II. SOME INPUTS 

1. Rf voltage and acceleration 

The typical rf high voltage curve in Fig. 1 w&s reproduced s,s accurately as possible 

by breaking it down into many segments. The rf phase w&s chosen automatically by 

following the acceleration curve in Fig. 1. 

2. Initial bunch area and number per bunch 

Since the longitudinal emittance (bunch area) at injection in the MR depends 

strongly on the intensity of the beam, i.e., the number of booster-turn injection from 

the linac, actual measurements were made and the results are compiled in Table I. 

The numbers in this table were used CLS input to ESME for the initial bunch emittance 

and the number of particles per bunch in order to simulate the performance of the 

MR as closely ZLS possible. 

*Operated by the Universities Research Association, Inc., under contract with the U.S. Depart- 
ment of Energy. 
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Bunch Area No. of Booster No. Particle per Bunch 

Turns E‘ (eV-s) (XlO’O) 

2 0.09 0.9 

3 0.10 1.3 

4 0.12 1.6 

5 0.16 1.8 

Table I: Bunch area and number per bunch for different booster cycles. 

3. Nonlinear phase-slip 

The phase-slip parameter 71 is defined as 

(2.1) 

where the momentum compaction factor ap is not a constant. At momentum p, it 

can be expanded about the synchronous momentum po as 

a,(p)=a;+a~b+af62+ .‘. , (2.2) 

where 
&=P--PO - . 

PO 
(2.3) 

Here, 

-XT = - 
&i 

(2.4) 

is the transition gamma of the synchronous particle, and cur with i = 1, 2, . 

are called the nonlinear coefficients of the momentum compaction factor. In these 

simulations, only the lowest nonlinear coefficient a? is included. The aQ defined in 

Eq. (2.2) (the same in ESME) are different from the nonlinear coefficients ai in the 

power-series expansion of orbit length defined originally by Johnsen.” In fact, the 

lowest- and first-order coefficients+ are related by 

fActually a< is called crz in Johnsen’s paper. 
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a: = cQ(1 + 2cy: - 010) . (2.5) 

Without turning on any sextupoles to correct for the natural chromaticity, ai N 1. 

For the MR, a0 = 0.002844 corresponding to yT = 18.75. In the actual MR 29 cy- 

cle, natural chromaticity is mostly corrected and CL: z 0. Thus a? z q. In our 

simulations, we took CY~ = 3.0 x 10-s. 

4. Space charge 

The longitudinal space charge can be included in ESME by a longitudinal space- 

charge impedance 
.L i &g 
- - 2pr2 ’ 71 (2.6) 

where 20 = 377 R is the free-space impedance and the geometric factor g is 

g=1+21nb 
a (2.7) 

with b and a denoting, respectively, the radius of the beam pipe and the radius of the 

beam. In the simulations with space charge, g = 6.5 was used. 

The transverse space-charge force wilI lower the betatron tune and therefore the 

transition 7 of those particles near the axial center of the bunch by a larger amount 

than those particles at the transverse edge. Thus, particles near the center will 

cross transition at an earlier time than those at the edge. This effect, known as 

the UmstZtter’s effect,3 is very similar to the Johnsen’s nonlinear effect,’ with the 

exception that it is intensity dependent. Following the estimation performed in Ref. 4, 

assuming a transverse beam half-width and half-height of 5 mm, a y= depression of 

A% N 0.025 is obtained. With + N lOO/sec, some particles at the center of the bunch 

will cross transition at a time AT = A-y,/+, N 0.25 ms earlier. Since this time is 

much less than the nonadiabatic time T. = 2.97 ms for the MR and UmstZtter’s effect 

is not presently incorporated in ESME, transverse space charge has not been included 

in our simulations. 

III. SIMULATIONS WITHOUT SPACE CHARGE 

The simulation of the MR 29 cycle was first performed with space charge turned 

off and with a: = 3.0 x 10-s. No other impedances were imposed. The effect of 
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transition crossing is therefore intensity independent and only the effect of nonlinear- 

ity is important. By nonlinearity, we mean a nonzero dynamic nonlinear coefficient 

a< and a nonzero (actually 1.5) kinematic coefficient in Eq. (3.1) below, which imply 

that particles with different momenta cross transition at different times. The spread 

in crossing time is called the nonlinear tine,s and is defined as 

where +, is the rate of change of y at transition and Apip, is the fractional half-spread 

of momentum. 

We performed the simulations with five thousand macro-particles per bunch at 

different initial bunch emittances. No particle loss was observed across transition 

when the initial bunch emittance was below cL = 0.18 eV-set, which corresponded 

to 5 booster-turn injection. We started to see a loss of 1.5% when the initial bunch 

emittance reached cL = 0.24 eV-sec. The growth in bunch area as a function of initial 

bunch emittance is shown in Fig. Z(a) and the particle loss at transition as a function 

of initial emittance is shown in Fig. 2(b). For pure nonlinear effect,s the fractional 

increase in bunch emittance is proportional to the square root of the initial bunch 

emittance. 01 

(3.2) 

We see that the results in Fig. 2(a) a g ree with such a dependency. We also see from 

Fig. 2(b) that the number of particles lost across transition increases rapidly with the 

initial bunch emittance. This is a typical consequence of the nonlinear effect, because 

a bigger eL implies a larger momentum spread in the beam and therefore a bigger 

nonlinear time. 

IV. PROBLEMS ASSOCIATED WITH SPACE-CHARGE 

SIMULATION 

The actual performance of the MR was simulated. As a result, the emittance and 

particles per bunch in Table I was followed with space charge turned on. 

The first thing observed was a blowup of bunch emittance and a loss of particles 

even before transition. For example, for 5 booster-turn injection, the bunch emittance 
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grew by a factor of about three from 0.164 eV-set to 0.483 eV-set as shown in Fig. 3(a), 

accompanied by a particle loss of 7.7% before transition in the simulation as shown 

in Fig. 3(b). The total particle loss was 20.5%. However, the bunch emittance did 

not grow further across transition, in contradiction to Eq. (3.2) if nonlinearity were 

the dominating effect. Closer study of the simulation revealed that the growth had 

been limited by the bucket area which shrunk to a minimum of 0.49 eV-set only after 

transition. As a result, we saw a big particle loss instead. Note that bucket area is the 

actual area of the bucket, whereas bunch emittance is defined here as 6rr multiplied 

by the product of the rms bunch length and rms energy spread of the bunch. In this 

simulation, Nt = 2000 macro-particles were tracked, Nb = 512 bins were used for a rf 

wavelength, and af” = 1.0 x 10e3 was assumed. 

The growth of bunch area and particle loss before transition were in fact unphys- 

ical. There are two possible reasons for this artifact. They are the unmatched bunch 

shape and the incorrect binning. 

1. Unmatched bunch shape 

In ESME, we populate a bunch according to a certain form of distribution and a 

certain bunch emittance to fit the rf bucket without the consideration of space charge. 

As space charge is turned on in the tracking, the rf potential will be altered. The 

initial bunch will no longer fit the space-charge modified bucket. It tumbles inside 

the bucket and results in a growth of bunch emittance. If the bunch is big enough 

to start with, the space-charge loaded bucket may not be big enough to hold it, and 

particle loss will occur. 

There have been many different proposals and ideas of how to eliminate these 

artificial effects due to the sudden turn on of space charge. The best suggestion, of 

course, is to turn on space charge adiabatically (increasing it in many turns). Then 

the bunch emittance must be conserved. However, this option is not available in 

ESME at the moment. Another method is to start with a smaller emittance and 

hope that the emittance would blowup to the desired value before transition after 

turning on space charge suddenly. This method is pretty difficult, because it is hard 

to know what emittance to start with. 

Fortunately, the mismatch is not big. If we assume an rms bunch length of ~4 = 
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r/9 rf rad, for a 5-turn beam intensity of No = 1.8 x 1O’O per bunch, the maximum 

space-charge potential per turn is only 

28.8 keV 
E gzo No e--l’= 

at injection -y = 9.5 , 
SC 

= e2hzw --= 
“2pylfi 0; 

{ 
(4.1) 

7.45 keV at transition 7 = 18.75 , 

where h = 1113 is the rf harmonic and wo/2n N 47.7 kHz is the revolution frequency. 

A Gaussian bunch has been assumed. This amounts to only N 3% (- 0.7%) of a 

1 MV rf. 

2. Incorrect binning 

In ESME, after each turn, the voltage seen by a particle is computed by convolut- 

ing the bunch spectrum with the coupling impedance. To obtain the bunch spectrum, 

the rf wavelength is divided into Nb equal bins and a fast Fourier transform is per- 

formed. As is shown in Appendix A, the statistical rms error in the space-charge 

voltage is 

AE SC = eahlw gzo -.?k 
‘2pr?2& (4.2) 

This “cubic rule” was first derived by Wei.s It is clear that a small bin number Nb is 

crucial in reducing the error of computation. However, we do not want to sacrifice the 

high-frequency details of the simulations. With a beam pipe radius of 3.5 cm, we need 

at least 61.7 waves in a rf wavelength in order to cover up to the first propagating TM 

wave. In a fast Fourier transform of Nb bins, we can only obtain up to Nb/2 waves 

because the other Nb/2 higher frequency components are just a repetition of the lower 

frequency components. For this reason, the smallest number of bins used can only be 

Nb = 128. If we track Nt = 5000 macro-particles, the fractional error per turn is still 

67%. Further increase in the number of macro-particles increases the computer time 

by very much. Nevertheless, as shown in ,Fig. 4(a) and (b), the fractional growth in 

bunch emittance before transition has drastically reduced to 1.1% with no particle 

loss. 

In ESME, we can introduce space-charge MSC times per particle revolution by 

changing the input parameter MSC. This can also help in reducing the space-charge 

statistical error by a factor of JiM”;-d if th e errors in successive applications of space 

charge are random. The analysis is given in Appendix B. We find that this is indeed 
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the case for a larger number of bins. For example, the tracking results with Nb = 256 

and MSC = 10 are very similar to the results with Nb = 128 and MSC = 1. In both 

cases, Nt = 5000. However, changing MSC from 10 to 50 in the NS = 256 case does 

not improve the result by very much. This is because the redistribution of particles 

in the bins is not big enough when the application of space-charge is too frequent, 

and the errors of successive applications are no longer random. This is especially true 

when the bin number is small. For example, with Nb = 128, the fractional growth of 

bunch emittance before transition is 0.3% when Nt = 40000 and MSC = 1. However, 

we see the a larger growth of 0.83% instead when Nt = 5000 and MSC= 10. The 

results of the latter simulation are shown in Fig. 5(a) and (b). For N+ = 5000 and 

Na = 128, we find from Figs. 4 and 5 that the improvement in growth before transition 

is minimal when we increase MSC from 1 to 10. An analysis of the randomness of 

error is presented in Appendix C. 

V. RESULTS OF SIMULATIONS WITH SPACE CHARGE 

These simulations were all performed with Nt = 5000, Nb = 128, MSC = 10, and 

cy; = 3.0 x 10m3. We preferred MSC = 10 because this would lead to a smoother ap- 

plication of the space-charge force, although it would not help much in the reduction 

of statistical errors. The result for the change in bunch emittance through transition 

as a function of initial bunch emittance is shown in Figs. 6. Note that in the sim- 

ulations with space charge, a different value of initiaI bunch emittance corresponds 

to a different intensity according to Table 1. Comparing Figs. 2(a) and 6, we can 

see the extra growth of bunch emittance due to space-charge mismatch, although the 

effect is not big. The data in Fig. 6 tend to have the 6 behavior, although different 

points correspond to different bunch intensities. We do not see any particle loss across 

transition because the largest initial bunch emittance was only eL = 0.16 eV-set cor- 

responding to the 5-turn intensity. When space charge is turned off in Fig. 2(b), we 

also see no particle loss at and below this initial bunch emittance. We may conclude 

that microwave growth due to space charge was small in the simulations and the 

dominating mechanism is nonlinear effect. 

A simulation was also performed with cz: = -3/2 or Q: = -5.6 x 10e3 and 

initial bunch emittance 0.16 eV-sec. This implies that the nonlinear time in Eq. (3.1) 

vanishes. The only contributions to transition crossing are space charge and higher- 
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order nonlinearity. The fractional growth across transition was found to be 6%. On 

the other hand, we see from Fig. 2(a) that the growth was 15.5% if space charge 

was turned off but a? = 3.0 x 10-s was retained. This gives another indication that 

nonlinearity dominates over space charge. 

VI. COMPAFUSION WITH EXPERIMENT 

The simulation results for emittance growth across transition agree in general 

with the values observed in reality.’ However, particle losses were observed at 2 turn 

when the initial emittance was larger than 0.11 eV-sec. The disagreement may arise 

from the fact that the effect of the MR impedance other than space charge had 

not been included in the simulations. The effective impedance per harmonic of the 

space charge at transition is about 3.5 R according to Eq. (2.6). Although we do 

not know accurately the impedance per harmonic of the MR, we believe that it is 

at least 10 0. Of course, in the actual performance of the MR, there can also be 

other contributions such as noises, mismatch, etc, which had not been included in 

the simulations. As a result, we do not consider the above disagreement between 

simulations and experimental measurements an actual discrepancy. 
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APPENDIX A. STATISTICAL ERROR DUE TO BINNING 

At rf position 4, a particle receives an energy gain due to space charge per turn 

E = elh’w gzo aa se (A.11 

where X is the linear number density of the bunch per unit rf radian. The rf wavelength 

is divided equally into Nb bins. Let 7~i be the number of macro-particles in the ith 

bin at some turn. Then the bunch density there is 

(A.21 

where 

AI$=$ (A.3) 

is the bin size in rf radian. The last factor in Eq. (A.2) scales N,, the number of 

macro-particles tracked, to NO, the actual number of particles in the bunch. 

We first evaluate Es, for particles in the ith bin in the time domain. Following 

essentially Ref. 5, we obtain 

8a 7bi - ni-1 
8&= (A# $ ’ 

Since ni is statistical and is usually much bigger than 1, the rms error (or square root 

of variance) is 

A 2 = fiNbaN 

84 i 
4aaN* fi=$jg. (A.5) 

where Eq. (A.3) and (ni) = N*/N b h ave been used. This error is therefore large at 

injection when -y = 9.5 and decreases by almost four times near transition where 

-y = 18.75. 

For a Gaussian bunch the number density is 

A(#$) = +,-dw: , 
=c+ 

(A4 

where a+ is the rms bunch length in rf radian. The maximum of the gradient of X 

occurs at f$ = Cd, giving 
ax Nods 

qmu= diiF0~ * 
(A.7) 
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Thus, the fractional error per turn is 

eA - = 2,f,f (Fk)‘p$. 
ii”., 

At injection a+ z x/7 rf rad and gradually decreases to 0.082 rf rad at transition. 

The fractional error at transition therefore decreases to only - 4.5% of its value at 

injection. 

A higher-order differentiation formula can be used instead of Eq. (A.4). For 

example, if we use 
ax nit1 -G-1 
q= 2A4 ’ 

8X 37Zi - 4ni-1 + ni-2 

a&= 2A4, ’ 

ax -7bj+z + 4TLi+l - 37% 

iq= 2Ad ’ (A.91 

respectively, for the center, backward, and forward differences, the error will be re- 

duced by a factor of 2 in Eqs. (A.5) and (A.8). 

We next pursue the problem in the frequency domain. This is usually necessary if 

we want to incorporate impedances other than space charge. A fast Fourier transform 

leads to a density spectrum of 

j, = kg (-$) (2) eim4jAd . 

The voltage gained per turn by a particle in the ith bin is proportional to 

21; = A& $ ~m-&je'mwi) 
t m--Ns j=l 

= -&~l~n,mSinmt4j - 4) 9 

which is in fact the same as --ax/&$ of Eq. (A.4). The variance of vi is 

Var(vj) = &~l~nlm2Sin244j -A) . 

(A.10) 

(A.11) 

(A.12) 
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The summation over m can be approximated by an integral to give 

1 ’ 
(A.13) 

rn=l 

Since there is no i= j term, (i-j) varies from 1 to Nb-1. The above sum is therefore 

- Nb3/6, and 

var(vi) = 2; . (A.14) 
t 

Finally, the fractional rms error is 

AVi - 
vi 

to be compared with Eq. (A.8). Note that the error in the frequency-domain compu- 

tation is larger than the error in the direct time-domain computation, although both 

of them follow a “cubic rule.” 

APPENDIX B. PROBLEM OF MSC 

If space charge is applied once per turn (MSC = l), the rms error per turn is AE., 
given by Eqs. (A.l) and (A.5). If we set MSC = M, space charge is applied M times 

per turn in the amount of l/M of E., at each application. The rms error for each 

application is therefore 
AEM = AEsc 

*e -. M P.1) 

If successive applications of space charge to particles in a bin were random, the total 

rms error per turn would accumulate to 

which is Jli? times smaller than when M = 1 

APPENDIX C. PROBLEM OF RANDOMNESS 

A particle makes a synchrotron oscillation in l/v. turns. Therefore, between two 

successive applications of space charge (MSC= M times per turn), the average rf 

angle through which the particle moves is given by 

Z&&~V* 
I%$= * . 
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In the above, we have assumed a bi-Gaussian distribution in the longitudinal phase 

space and all particles oscillate with the same synchrotron frequency. With Ns bins, 

number of macro-particles per bin in the Zuxh region is 

r N nb%--. 
fib Nb 

Outside the bunch region, number per bin is essentially zero. Thus, between two 

successive space-charge applications, the number of macro-particles moving out of or 

moving into a certain bin is 

snf nb@ 

=iqip cc.31 

where 2ir/Nb is the size of a bin in rf radian. Combining Eqs. (C.l) to (C.3), the total 

change of number of macro-particles in a bin is 

bnb = 6nb+ + bn; z 
2Jz;;Np. 

M ’ 

and the fractional change is 
_ ~ %t.v.Nb 6nb 

nb Jz;;M * 

At the beginning of the MR cycle, the bunch is rather long, having ~9 N s/7. 

The synchrotron tune is also rather large, V. N 0.012. Therefore, with Nt = 5000, the 

number of macro-particles moving into and out of a bin is 

301 
6nb N 

M=l, 

30 M=lO, ((33) 

independent of the number of bins. Of course, some of these particles that move out 

of the bin may not be inside the bin originally, but are transferred from neighboring 

bins. The percentage changes in particles per bin for bin number Nb = 512, 256, 

and 128 are given in Table II. We see that for Nb = 512, the particles in each bin 

are changed completely for M = 1 and mostly for M = 10. Therefore, we expect 

the space-charge error to reduce by fi when we vary MSC or M from 1 to 10. 

For Nb = 256, the particles are only partially altered with M = 10. Therefore, the 

reduction in error is less than m. For Nb = 128, only 11% of the particles move 

into and out of the bin when M = 10. As a result, we see very little reduction in 

space-charge error in the simulation when M is increased from 1 to 10. 
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Although the fractional change is proportional to v+v8 which decreases to zero 

at transition, as was pointed out in Appendix A, the fractional space-charge error 

decreases to only 4.5% of its value at injection. Therefore, it is sufficient to discuss 

the problem of randomness only near injection. 

Table II: Percentage particle change in a bin between two successive applications of 

space charge for different bin number Nb and MSC. 
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