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THE BEAM AND THE BUCKET

- A Handbook for the Analysis of Longitudinal Motion -

S. Ohnuma

January 22, 1986

This handbook is intended primarily for pecple working in the
accelerator control rooms. "Convenience" is the only criterion
observed in compiling this note. All materials are available in
various sources but not everything is in one place; hence this
enterprise. Errors of any sort you find should be promptly commu-
nicated to me.



List of Fregquently Occuring Symbols

¢ a
¢S

nd £ = moczy =
_ 2 -
and ES = moc YS
¢ -3 AE =E-E
= 2nf . = 2uhf (f =
rf rev rev
= ME/w ¢ = (R/hc){ep)(ap/p) 3

transition gamma**

*kx

A2 - nl)

sin(¢,)

revolution

total bunch length in radians

rf phase and energy of a-partic]e*
rf phase and energy of the synchronous particle

frequency); h = harmonic number’

27R = machine circumference”

P

particle momentum

peak rf accelerating voltage (per turn)
5.446
18.7 - 18.75 Main Ring and Tevatron

Booster (design value)

synchrotron oscillation frequency

and ¢2) = two limiting values of ¢ for a rf bucket

* _
At ¢ = 0, the rf voltage is zero and rising.

is

%%

*kk

different;

weak focusing machine
linac

sector-focused cyclotron
(Yt‘varies with y)

Below transition
Above transition

Booster
h = 84
84

]OOOXTTT§

=
E
I

The convention used for linacs

¢ = 0 when the rf voltage is at its maximum value.

Y >
Y <Yy (since vy » )

Y =Y (hence the name "isochronous")
n<0, cos(¢s) >0
n >0, cos(¢.) <0 n-cos{o.) < 0
Main Ring Tevatron
1113 1113
1000 1000



1. Hamiltonian and equations of motion

H{q,y;t) = %Ayz + Bleos(g.*ta) + q-sinleg) - cos(¢ )7
The last term, cos(¢s), is added to make H = 0 at the origin, gq=y=0.
Note:  (ap/p) = (hc/R)é%—»y ('y is in eV-s, cp is in eV)

Az (hc/R)z(n/ES) and B = (eV/2nh) (1)

dg/dt = A-y , dy/dt 'B{sin(¢5+q) - sin(¢s)}

2. Stationary Bucket ( T = sin(¢s) = (0, ¢ = 0 or m)
bucket area = H’:-(B/|.ﬂ\|)1/2 in (q,y) phase space, eV-s (2)
L
bucket height (=max. y) = = 2-(B/]A])*, eV-s (3)
max. Ap/p = * 2-(B/|A|)%(hc/R)é%- (3a)

From now on, we consider the case below transition only. Above transition,

all phases should be regarded as (m - ¢). Instead of n, we use |n|. With
this convention,

two limiting phases of bucket: ¢y < ¢s < ¢2 3 by =T - ¢

3. Moving Bucket ( T'.= sin(¢s) #0)

bucket area in (q,y) phase space =(stationary bucket area)x ofT)

= ]5.(;3,/!,L\1)1’2 x a(I'), eV-s (4)

1

bucket height = (stationary bucket height)x g{T)

1

+ 2-(B/|A])? x B(T), inev-s (5)
" 2-(B/[AI)%(hc/R)é%-x B(T) (5a)

max. y

I

max. Ap/p



a(l') and B(T)

If you need better-than-1% accuracy, see

C. Bovet, et al,, A SELECTION OF FORMULAE AND DATA USEFUL
FOR THE DESIGN OF A.G. SYNCHROTRONS,

CERN/MPS-S1/Int. DL/70/4, 23 April, 1970

0<Tg0.3 al?) = (1.-1)(1.~ 1.1695T + 1.386572)
3<T< .6 a(T) = (1.-T)(1.- 0.8644T + 0.3831T%)
6<T g .85 o{T) = (1.-T)(1.- 0.6328T - 0.00107%)
r= .8 .87 .88 .89 .90 .92 .94 .96 .98

a{l)= .0627 .0570 .0515 .0461 .0409 .0308 .0214 .0129 .00539

0¢ T g .65 &(r) = 1. - 0.7703F - 0.1227r%
65'< I' ¢ .85 8(r) = 1. - 0.6940T - 0.2406r°
r- .8 .87 .88 .89 .90 .92 .94 .96 .98

g(T)= .223 .21t .199 .18 .173.- .146 .118 .0869 .0517

¢, in degrees (Remember ¢y =T - ¢S)

0<T< .45 ¢ = /5, (125.809 - 3.351T + 7.050r2) - 180°

45 T g .9 #y = /o, ( 25.761 - 1.784r + 3.7171¢) - 180°
Note! ¢, in degrees! I = sin(¢s)

9¢T ¢y = 2-00 (1. - 0.06571 + 0.06777%) - 90°

(Of course, for =1, 61 = ¢g = ¢y = 90°)



4. Beam in a Bucket; Stationary

201, - 22 a?) (6)

Beam Area = (Stationary Bucket Area)X(éi)A 7

"3
A = total bunch length in radians 5 4 radians

For large A, see Figs. 1 & 4,

Beam Height = (Stationary Bucket Height)x sin(a/4) (7)

This relation is exact for all values of A.

For a<<l, %+ (|A]/B)-y? = (8/2)° (@)
max. y =i%-A (B/IAl)%, eV-s (9)
max. Ap/p = * A(B/|A|)%(hc/a)é%- (9a)

synchrotron oscillation frequency ( I =0 only!)

fo = (1/2n)([A[B)* -
(2/m)K(a)

--- This is exact for any A! (10)

where K(aA) is the complete elliptic integral of the first kind,

K(a) = 750, - msinfe) i do 5 m = sin?(a/4) (11)

For A<<1, (2/m)K(A) =~ 1+ é%-AZ (Remember, A= total bunch length)
sg that : L 1 2

fS = (1/2n)(|Al B} (1. - EE'A ) (12)

Actually, this relation is surprisingly good up to A ~ 300°. See Fig. 3.



5.

Beam in a Moving Bucket

For a<<l, Al
A
R — )y = (8/2)° (13)
B cos(¢.)
S
max. y = i%rﬂ ( E—%%?L¢s)_)% , ev-s - (14)
1 B cos(¢s) » 1
max. Ap/p = *z A (-—-17rr——— )a(hC/R)EE' (14a)

For A not too small, use Fig. 1 for area and Fig. 2 for height:

Beam Area = (Stationary Bucket Area)x(é%JJcosi¢s)XA2 x(1. - KA) (15)

Beam Height = (Stationary Bucket Height)xj veos(g)x(1. - K,) (16
(A in radians!)
synchrotron oscillation frequency
1.
f = (172n){[A] B cos{9.)}* (1. - K 52) --- A in radians! (17)

The parameter K is shown in Fig. 3. We have already stated that
K =1/64 for T =0, see Eq. (12).



6. Beam in a Moving Bucket: Alternative Way

Some people may prefer this alternative way of estimating the beam
area and the beam height. The reference is the corresponding moving
bucket (instead of the stationary bucket used in Figs. 1 and 2).

= ; total bunch length 2
Beam Area = (Moving Bucket Area)x( fotal bucket 1ength) x Cp (18)
. - . . total bunch length
Beam Height = (Moving Bucket HE1ght)x(tota1 bckel Tength) xCH (19)

Cy o Fig. 4 Cy,:

H Fig. b

(This alternative has been suggested to me by Jim Crisp.)

7. Matching from one ring to the next

In transfering the bunch from Ring 1 to Ring 2, we should have

v cos(¢s)

hn

v cos(¢s)




Appendix I : Longitudinal Phase Space and the Particle Distribution™

There is no unique choice of two canonical variables to describe the
phase space. The most commoniy used ones are:

1. q=¢ - ¢S and y = (E - Es)/mrf

The unit of phase space area is then eV-s which is also the
unit for y since q 1is dimensionless,

2. q and (ap/mc) = (y8)(ap/p)

A1l quantities are dimensionless. CERN peoplie favored this
but they may prefere 1. above now.

The phase space areas defined in two ways are of course related to each other
but the relatijon is dependent on machine parameters,

area in (q, y) = 3.13 eV-s xRﬁm) x area in q, (y8)(4ap/p)

2.81 eV-s X(area)2 for Booster, Main Ring, Tevatron

For electron beams, people use bi-Gaussian distribution in two canonical
variables (q,y), or more generally,

olq.y) « e K@)

with the Hamiltonian H(q,y) of the motion. For proton bunches, it is more
common to use finite distributions. One such distribution called "elliptic"

p(q,y) a.\/yg(q) - ¥¥(a)

is

where y = yB(q) defines the boundary of the finite bunch in (q,y) space.
The local current density is

* This is essentially the same as Appendix B of EXP-111, November 28, 1983.



y
I{q) = /P dy ola.y) = yE(q)

_yB

An appealing feature of this distribution is discussed in TM-74§ in connection
with the longitudinal instabilities with Landau cavities. The simplest
specification of the bunch shape to be used for the distribution is

2
yB(q) = + (max.y){1 - 1—3532 ¥Y2 ; A = total bunch length
A

The normalized (to unity) distribution is

2(q)} =

MW

o(q,y) = §%- {yg(q) -y
m

where y_ = max.y and the emittance S = ﬂym(AIZ).

Appendix 11: Higher-Order Effects

On page 1, it is stated that the equation of motion for y is
simply dgq/dt = A-y . This is not exact. One should write

dq/dt = -h { w - ws)

where w is the angular frequency of a particte and wg that of the synchronous
particle. If the right-hand-side is expanded in (AE/E) and only the lowest-
order term is retained, we get Ay. Note that A is proportional ton so
that it vanishes at the transition. One must considerlthe next term in the
expansion near the transition where |n| is very small. For this, it is
convenient to use the parameter introduced by Johnsen,?

L(p) =L, {1+ aplep/p)(1+ GZ%?)}

where L(p) 1is the path length of a particle with the momentum p and LO = 2nR,



From the definition of transition energy, ay = 1/7§ where, strictly speaking,
Ty is for the synchronous particle. Johnsen pointed out that the proper time
of transition for a particle with momentum p different from P is

v {(t=0) 3

. - 3 bp
P R (=) B A Y

if the transition for the synchronous particle is at t = 0. The acceleration

rate is assumed tc be dES/dt = moczw'rs . The "ideal" machine should have
ay = -1.5 so that all particles cross the transition at the same time. Since
lAp/p]max is believed to be around (3m4)x10'3 at transition,

Booster Itpimax = (.04 ~ .08)msx(1.5+a,),

Main. Ring (.6 .B)mSX(1.5+a2)
If o, is different from -1.5, one must add a higher-order term in the
Hamiltonian H{q,y;t).

o= (heR)® =L PRl

Bs.Es
B o
-3 (52 2 N
Fr G Yy -2
t Tt

Since the higher-order term is important only near the transition where n= 0,
the last term in F can be dropped.

There is no easy way to calculate Qg for any given machine. One must know
the sextupole field since gy represents the second-order effect. Even in-:
the absence of nonlinear field, it is necessary to compute the off-momentum
closed orbit beyond the customary first-order approximatien in {ap/p).
The value of ¢y has been calculated by W. W. Lee for the booster with and
without sextupole component.?



- 10 -

He used the second-order TRANSPORT to find

n

oy 1.63 Yinear booster,
0.843 with the design value of sextupole component*

i

The calculation has been repeated with the step-by-step numerical integration
of the orbit in linear magnets and the result is in good agreement with Lee's

value,
oy (numerical integration, linear) = 1.619

The calculation with sextupole field is not so straightforward. There are
indications from various measurements that booster magnets are different from
the designed ones. Furthermore, correction sextupoles may not be entirely
negligible near transition. For these reasons, Qg with sextupole field has
been estimated using an approximate relation®

0'.2 = "'.[ - 250 - AE, (A.])
EO = horizontal chromaticity(CERN style) of the linear machine
= (AvH/vH) divided by (Ap/p),
AZ = change in £ due to sextupole field.

This relation is derived by retaining only the average terms in the Fourier
expansion of relevant quantities. The step-by-step integration of orbit
yields

£, = -1.3683 (Booster, linear)
so that -1 - 2&0
The chromaticity of the booster near the transition with the standard setting

of correction sextupole has been measured by C. Hojvat:

1.737 which should be compared with the exact value 1.619,

£= £+ bE =0.502
so that AZ = 1.87. From {(A.1),

a, = -1 - 2(-1.3683) - 1.87 = -0.13 .



-1 -

On the other hand, one might interpret (A.1) to mean a, = az(]inear) - AE,

According to this interpretation, we find

Oy = 1.619 - 1,87 = -0.25.

In either way, the value of oy for the booster seems to be far from the ideal

value, -1.5. To the best of my knowledge, &y of the main ring is unknown.

1.

o W
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ELLIPTIC DISTRIBUTION IN LONGITUDINAL PHASE SPACE
(Supplement to TM-1381,"THE BEAM AND THE BUCKET")

Summary

As an alternative to either the uniform distribution (which is not
really physical) or the Gaussian distribution (which is not finite),
a finite distribution called "elliptic" is proposed and its main proper-
ties are presented. With canonical variables (qE¢—¢5,ymAp/p), this
distribution takes the form

olasy) « /yg(q) s

where yB(q) defines the boundary of a finite bunch in (q,y) space. It is
assumed that the boundary is determined by the condition "Hamiltonian in
{q,y) = constant” so that the shape is in general ndt symmetric in phase.’
This report is intended as a supplemnt to the previous one, "The Beam and
the Bucket" and, as such, it is primarily for people working in the accele-
rator control rooms.



A certain degree of "awkwardness" exists when Gaussian distributions are
assumed in the longitudinal phase space for rf bunches of protons since the
bunches must be confined within finite bucket boundaries. This is especially
the case when the bunch occupies asubstantial fraction of the bucket area.

On the other hand, a uniform distribution within a finite bunch boundary can
hardly be regarded as physical. For many years, people at CERN (some of them,
at least) have been advocating a distribution called "elliptic" as something
not only convenient but realistic as well. For example, there is a beautiful
picture of the CERN Booster bunches in an article by Frank Sacherer, Proc.

of the IXth Int. Conf. on High Energy Accelerators, SLAC, 1974, p.347.

When a pair of canonical variables are* q = ¢ - b and y = (R/hc){cp){ap/p).
this distribution takes the form

o(q.y) = Yygla) - y*

where yB(q) is the boundary of a finite bunch. One particularly appealing
feature of this distribution is that the resulting local .current density is
proportional to yé(q):

g

I{q) « /' "dy oly.q) = yg{a)

-¥p

As a consequence, the effect of the beam-induced voltage (which arises from

a distributed wall inductance) can be treated in a simple and consistent manner.
(See, for example, S. Ohnuma, TM-749, "EXPECTED BUNCH LENGTH AND MOMENTUM
SPREAD OF THE BEAM IN THE MAIN RING WITH CEA CAVITIES", October 24, 1977.)

IT.
The Hamiltonian in (g,y) space is given in TM-1381, p. 2:

H(q.yst) = -5|AlyZ + Blcos(a.*a) + q-sin(og)} (1)

* Unless otherwise noted, all notations are identical to what I used in TM-1381.




where a constant term, cos(¢s), is dropped from the original expression.
Two parameters A and B are

A= (he/R)S(/E.) and B = (eV/2rh) (2)

Since we are considering the case below transition, n and A are negative.
The corresponding bucket and an example of bunch are shown on p. 3.

The bucket extends from ¢ =¢, to ¢, (Eﬂ-¢s) and the beam from oy to ¢
The bucket boundary is specified by the relation

—5|A|y2 + B{cos(¢s+q)+F-q} - B{cos(¢R)+T-qR} (3)

where T = sin(¢s) and qp = ¢R -¢S. Similarly, the bunch boundary is

H

-%IAlyﬁ + Blcos(o +a) + T-q} = Blcos(¢y) + T-qyl

B{cos(¢,) + I'qy} (4)

1
2

}

It is convenient to use y = ([A|/2B)?-y instead of y so that the bunch

boundary is

72 = cos(ogta) + Trq - C (5)
with
C = cos(¢]) *Thqp = cos(¢2) + I, (6)

If the total number of particles in the bunch is Ng» the distribution is

1
2

2(9,q) = ngl2/m)-§ 155 - §% (7)

with » 92
D = sin(¢.+q) + %q” - Cq (8)

91

The Tocal current density is

1(q) = (ng/D)35(a) = (ng/D)icos(ostq) + T-q - C} (9)
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In particular, the maximum (local) current is”

I(g=0) = (np/D){cos(o.) - C} (10)

ITI.

We start with the assumption that the synchronous phase ¢s is known
so that the bucket length (¢R - ¢L) is also known. The upper part of p. 3
is meant to be a typical picture of a bunch one sees on a scope. If we can
tell where the baseline is {which is not easy most of .the time!}, we can
find the bunch Tength as well as various length corresponding to the relative
current density h. Remember that the current density (so that the parameter
h) is proporticnal to yg. It is easy to show that when the bunch length
{¢2 - ¢]) is much Tess than the bucket length (¢R - ¢L),

1
2

so(h) =(1 - h)™ x {bunch length), (11)
and the number of particles within the phase distance So(h) relative to the
total number Ny in the bunch is

f(h) = (1 + h/2)(1 - h)? (12)

As the bunch length increases, these relations must be modified by a factor
(1+k). Fig. 1 shows k as a function of (bunch length)/(bucket Tength)

when h = 0.5, solid curves for S4(h=0.5), Eq.(11), and dashed

1l
]
&3

urves for

c
fn(h=0.5), Fq.{12). One sees that the approximate relation for fn’ Eq.(12),

* The maximum longitudinal charge density (which is proportional to the maximum
current density) is an important guantity in the discussion of space-charge de-
tuning by the self field. It is interesting to note that, when the bunch shape
is symmetric (¢ _=0), the maximum density of the Gaussian distribution (nB//ZﬂoZ)
is very close t3 the maximum density of the elliptic distribution if ¢

is interpreted to be one-quarter of the total bunch Tength. For the Gaussian
distribution, 95% of the beam is contained within 1262.




is good with less than 5% error for T =sin(¢5)>0f1 and (bunch length}< 0.9x
(bucket length).

Iv.

It is often difficult to determine where the baseline is for a picture
such as the one on p. 3. Fig. 1 is then not so useful in practical situations.
The suggested procedures for such a case are as follows:

1) From the bunch shape, make a guess on where h is one-half. Based on
this guess, find $4(h=0.25), 8¢(h=0.5) and S¢(h=0.75). Fig. 2 shows the ratios
§6(h=0.25)/86(h=0.5) and &$(h=0.75)/8¢(h=0.5) as a function of 8¢{h=0.5).
1f the guessed values of &¢  for h=0.25, 0.5 and 0.75 are not consistent with
these curves, try another guess until the best consistency is obtained. Since
the distribution is unlikely to be exactly elliptic, this method may not always
yield a unique solution.

2) Since &¢'s for h=0.25, h=0.5 and h=0.75 are found {approximately),
find the corresponding bunch length from Fig. 3. When the bunch length is
comparable to the bucket Tength, 86(h=0.25) should be used instead of 8¢(h=.5)
or &¢(h=.75).

3) Finally, find how many particles are contained within each phase in-
terval &4(h) wusing Fig. 4.

4) From the bunch Tength, one can estimate the phase space area of the
bunch using, for example, Fig. 6 of TM-1381.
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