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Summary

Maxwell's equations with appropriate boundary
conditions are solved for a pulsed cylindrical
conductor. The results are applied to the 1lithium
lens used as an antiproton collector for the Fermilab
Sb collider. The magnetic field is expressed as a
function of radial distance and time. The time
corresponding to maximum linearity is calculated. A
method for measuring the current density at the
surface is discussed and the Joule heat produced per
pulse is calculated.

Introduction

Recently there has been some interest in using

the magnetic field inside a  current-carrying
cylindrical conductor to focus particle beams. ©
Applications include focusing targets and lithium

lenses. The calculations described in this report
were done in connection with the design of a lithium
lens to focus antiprotons  just downstream of the
production target for the pp collider at Fermilab.
However, many of the results are generally applicable
for any pulsed cylindrical conductor.

For the simple case of a cylindrical conductor of
radius r, carrying total current I with uniform
current density J the magnetic intensity H is given by

H(r) = H(r ) &
0 P°

However, for many applications, inciuding the 1lithium
lens to be used as the antiproton collector, the Joule
heating from direct current is prohibitively large.
To minimize heating, these devices are often pulsed
with a sine-like unipolar pulse whose width t/2 is
small compared to the time between pulses. For the
pulsed device an expression describing the magnetic
intensity H as a function of radial position -in the
conductor and time can be derived by solving Maxwell's
equations with appropriate boundary conditions. A
solution applicable to a pulsed lithium 1lens with
I = 1, singt for 0 < t < /w is given in Ref. 8. This
paper assumes the cylindrical conductor is a component
in an RLC c¢ireuit and has a pulse shape modified by a
damping factor e”*° where a = R/2L. The mathematical
description of the pulse form is I = I e %" sinwt for
0 < t < n/w where w = 21/T and I = O befween pulses.

The paper is presented in three parts. In Part A
an expression for H(r,t) is presented and the time
during the pulse corresponding to maximum linearity is
calculated. In Part B an expression for the current
density J_is derived and a method for measuring J_ at
the surface of the conductor is discussed. Part C
describes Joule  heating, including the radial
dependence of temperature and the total heat deposited
per pulse.
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A. Magnetic Field in a Pulsed Cylindrical Conductor

Assuming, that the cylinder is coaxial with the 2z
axis, that H has only an azimuthal ($) component and
that the magnitude of H depends only on r and ¢,
manipulation of Maxwell's equations leads to

3% 13 H _ _ 9H
NP T T ‘”

where H 1s the azimuthal component of ﬁ, G is the
conductivity and 4 is the permeability. The boundary
conditions are

H(r,0) = 0; H(O,t) = O
and

H(ro,t) = Ho Re {1e” Y%}

where ¥ = ¢ + iw and H is the maximum value of H for
an undamped pulse.9 A general solution to (1) is

H(r,t) = H Re %;—i—;— e Yt +§ ay d,(yr) e')‘ézt/cu
(2)
where 2
r ljrg 1

ay = -MHO -g; [(A2-oua)r?]248(r /8% J O\.r )
J o + 0 0 J o

and § 1is the skin depth. J;(Br) is a complex first
order Bessel function with B defined by
B% = opa + 21/8* and Ji{d,r) is a real first order
Bessel function. The proéucts A.r are roots of

J () =0, : Je -

For the antiproton collection lens, the operating
parameters!® will be 8/rg ~0.45 and o ~1300 sec™}. The
time dependence of the penetration of the field into
the lithium is shown in Fig. 1.

The time at which the . field 1is most linear
depends on 8/r and q. This time can be calculated as
follows.}! Defifle the quantity

(AH)?

[H(r,t) - G(t) r)?

as a measure of the deviation of the field from

linearity, with G(t) equal to the slope of the best
fit to a straight line. The expectation value of
(AH)? is
an ro
«wm® = —— [ [ am? rarap 3
2
0 0

The value of G corresponding to a minimum expectation
value is found by solving the equation
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Fig. 1. Magnetic intensity vs radius at several times
during the pulse. Hp; has units amp/meter and is the
value { H corresponding to I, in the expression

o
I=I¢e'a sinpt. For an undamped pulse it is the maximum
value of H at the surface of the cylinder.

3_ 2, .
at.;<(AH)>-0

The result is

2
3 1e’7t Jz(Bro) a; -xj t/ou
G = —;HoRe Tmﬁ-z)\—' Jo()\jl"o)e
ra 1 0 3 J

A measure of the goodness of fit to a straight line is
found by substituting this expression for G into (3)
and performing the integration. The time at which
<(AH)2> is minimum is the time at which the field is
most linear. Fig. 2 shows the time corresponding ¢to
maximum linearity vs S/ro.

B.  Current Density in a Pulsed Cylindrical Conductor

An expression for the current density may be
derived by taking the curl of the expression for
given in (2). The result is

. -A2t/0u

_ -yt BJo{(Br)

Jz(r,t) = Hoﬁe ie ——_Jl(Bro) + zaj)\jqo(/\jr)e
3

W)

Figure 3 shows Jz vs Wt for various valués of r/r .
The curve describing J_ at the surface of the
conductor vs wt is of particular interest because it
is related to the potential difference between two
points on the asurface of the conductor via the
equation V = fﬁ-d = p}JJ*dh where p is the electrical
resistivity of the conductor. Consider a line segment
of length L, parallel to the axis of the cylinder and
having as its endpoints two points on the surface of
the cylinder. The potential difference between these
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Fig. 2. The time during the pulse at which maximum

linearity occurs. The pulse lasts for a time interval
corresponding to 0 < wt < 180°,
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Fig. 3. Current density vs time at vafious
from the axis.

distances

points at time t is Lpd_(r ,t). Measurement of this
potential difference providgs a test of whether or not
the device is producing the expected field.!?

C. Joule Heating in a Pulsed Cylindrical Conductor

An expression for heating due to ohmic losses can
be found by evaluating the integral f3°E dtdv. This
will be done assuming constant resistivity during the
pulse and then a method for taking into account a

changing resistivity will be given. The radial
distribution of heat is given by
m/w . :
qn(r) =p { szt (5
Using 4 for Jz one obtains
2 27 2 2
- Eg_ B, (Br) 1 BJo(BP) -2am/w
qo(r) i Re ol ke (e -1)
yJ;l(Bro) 1iBe)
H J (Bry _aX,J (\,r) ~1 (a2 /ou) /w
+2 =2 Re|ip-2 T30 3 | (14 3 )
(o] Jx(Bro) 3 Y*lj /au
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The units for aq¢ are Joules/m® and the temperature

rise AT(r) can be calculated by dividing qo(r) by the
heat capacity ¢. The total heat generated per pulse
unlt 1length is found by integrating qo(r) over the
eross sectionzl area. The result of this integration
is

2 2 2
Hr Gr? (326r)
o Yo Y \J1 (Bro)

: BJO*(BFO)
i Im 3:;75;:7—

£

-TTA
Jo(Ajr )

a o’ l+e
J 3 BZ;XJZ Y+§/Uu

-2/ 4y

"
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Ho LU T o-20m/w_y
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urH +Ay/ou)/w
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+

These results were derived assuming a constant
resistivity. An. approximation which can be used to

take into account the temperature dependence of
registivity is The resistivity
can be parameterized by p = 0o (1 + DQ) where b is the
heat factor and Q the increase of heat content
relative to 0°C. In the solid phase Q = cAT., In the
case of lithium, one uses the slope of a p vs T curve
and the value ¢ = 2.0 x 10° Jm™3/°C to calculate
b = 2.4 x 10”° m®/J. If Q is the heat per unit volume
¢alculated above, then the "corrected® value is Q =
(exp(bQp)~1)/b. Figure Y4 shows the radial distribution
of heat that deposited during a single pulse of a

civen hv Knnenfel.
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Fig. 4. Heat per unit volume per pulse vs radius for
a lithium cylinder of radius 1 em. The AT scale was
calculated assuming ¢ = 2 x 10° Jm™3/%C.
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lithium cylinder with I_ = 750 kA. It includes the
correction for changiﬁg resistivity. For a 1 om
radius 15 em long cylinder and &8/ro = .45 the total
heat per pulse Q is 4570 Joules.

Some Conclusions

In order to understand the focusing properties as
well as the power and cooling requirements for
operating the antiproton collection lithium lens, it
is necessary to understand the penetration of a
magnetic field into a pulsed lithium cylinder.
Maximum linearity occurs after the current has peaked.
To achieve the required gradient at the time of
maximum linearity, <the peak current has to be scaled
accordingly. (For the collection 1lens, 670 kA peak
current is required if the current is to be 500 kA
when the field is most 1linear.) Joule |heating
increases in a nonlinear manner from a minimum along
the axis to a maximum at the surface of the cylinder.
It can be decreased by decreasing the pulse width, and
hence the skin depth & but this is done at the expense
of linearity.
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