Kerma Transmission for Various Materials for a
\(p(66\text{MeV})\text{Be}(49\text{MeV}) \) Neutron Beam*

M. Awschalom, A. Hrejsa, I Rosenberg

Kerma transmission measurements were made in several
materials commonly used at the Fermilab Cancer Therapy
Facility\(^{(1)}\) where patients are regularly treated with a
\(p(66\text{MeV})\text{Be}(49\text{MeV}) \) neutron beam.

The measurements were made in a poor man's narrow beam
geometry. The beam had a nominal cross-section of \(6 \times 6 \text{ cm}^2 \)
at 190 cm from the target. The samples were located starting
at the exit port of the collimator 110 cm from the target.
The detector was a 1 cc TE wall-air filled ionization chamber
inside a 9 mm thick build-up cap for a total wall thickness
of 14 mm, namely, the depth of \(D_{\text{max}} \) for A-150 TE plastic\(^{(2)}\).
This detector was located 190 cm or more from the target on
the beam axis.

The materials tested were: polyethylene, polyethylene
concrete\(^{(3)a} \), Lipowitz low melting alloy\(^{(4)} \) (50%Bi, 21.7%Pb,
13.3%Sn, 10.0%Cd, by weight), lead, steel and tungsten.

The results are given in Figures 1 and 2, where the
fraction transmitted is plotted versus thicknesses in cm and
g/cm\(^2\), respectively.

The macroscopic removal cross section may be defined in
units of \text{cm}^{-1} or \text{(g/cm}^2\) by the following expressions,
\[
\Sigma = \rho N \bar{\sigma} A^{-1} \quad [\text{cm}^{-1}], \quad \text{and}
\]
\[
\Sigma = N \bar{\sigma} A^{-1} \quad [\text{cm}^2/\text{g}],
\]
where \(N \) = Avogadro's number, \(A \) = atomic mass, \(\rho \) = density in g/cm\(^3\).

*This work is partly funded by NCI Grant # 5PO1 CA18081

\(^a\)Polyethylene concrete is a mix of 50% Portland Concrete, 30%
water, and 20% polyethylene granules by weight. After hydration of
the concrete, the water content will drop to 20% by weight. Then
the composition will be 55% cement, 20% water, and 25% polyethylene
by weight.
REFERENCES

I.C.

0.1

y' 0.05

-.---.---.---.---

Lipowitz

A Lead

+ Steel

l Tungsten

0 Polyethylene-Concrete

0 Polyethylene

cm of Absorber

Kerma Fraction Transmitted

0.5

0.1

0.05

0.01

0 10 20
INTRODUCTION. During the design and construction of the Fermilab Neutron Therapy Facility (NTF) (Co76,Aw79) it was not possible to measure the dose attenuation properties of various shielding materials considered for use. Furthermore, no data were available for the highly penetrating \(p(66)\text{Be}(49) \) neutron beam being planned. (The preceding notation indicates that 66 MeV protons lose only 49 MeV in the Be-target, unless they undergo nuclear scattering). Thus, the design of the shielding and collimation system for the beam was based on Monte-Carlo calculations performed by R. G. Alsmiller (A175) using a
transport code and nuclear interaction models described elsewhere (A174). The neutron energy spectrum was calculated by A. Van Ginneken (Va73) using published data for (p,n) reactions in thin Li and Be targets. These calculations resulted in the original design (Aw78): a combination of steel, Benelex and polyethylene-loaded concrete in a collimation system with a total thickness of 110 cm. This system proved to be adequate for shielding considerations, but its length, combined with a SAD of 153.2 cm (Aw78), placed too many restrictions on patient rotation and set-up. While designing a new system with shorter collimators and a longer 190 cm SAD (Aw79, Ro81), measurements were made of the kerma fraction transmitted through several materials actually used or considered for shielding, collimation or blocking. This note presents some of the results of these measurements.

EXPERIMENTAL METHODS. The measurements were made in air using an air-filled 1 cm3 spherical ionization chamber (EGXX) having walls and collector made of A-150 tissue equivalent plastic (Sm77). An A-150 build-up cap brought the total wall thickness to 14 mm, which is close to the depth of dose maximum for this material in the neutron beam under study (Aw78, Aw81). The integrating circuits for both this ion chamber and the monitor chambers were controlled by a microcomputer (Aw78). This system led to uncertainties in
precision of less than 0.5% of the readings. The charge collected was interpreted as being proportional to total kerma in A-150 TE plastic at that point in air.

Two beam geometries were used, within the limitation of the NTF layout. All materials were studied under a poor man's "narrow beam" conditions. The beam was first collimated to a field size of 6x6 cm2 at 190 cm from the target, completely covering the chamber. The samples were located starting at the exit end of the collimator, 110 cm from the target, and building in thickness toward the ion chamber. The chamber was located on the beam axis at 190 cm or more from the target. This geometry resembles the "narrow beam" layout described by Attix et al. (At76).

Lead and steel absorbers were also studied under what Attix et al. (At76) describe as "semi-broad beam" conditions. The beam was collimated to a field size of 19x19 cm2 at 153.2 cm from the target, the position of the ion chamber. The samples, having a 30x30 cm2 cross-section, were located starting at the chamber and building in thickness towards the source.
RESULTS. The materials tested were: polyethylene, polyethylene concrete (Aw78), Lipowitz low melting alloy (We70), lead, steel and tungsten.

The results for both narrow beam and broad beam geometries are given in Figs. 1 and 2, where the total kerma fractions transmitted are plotted versus thicknesses in cm and g cm$^{-2}$, respectively.

The "narrow beam" attenuation curve for steel was in fact extended to a transmission of 2.4×10^{-3} using 61 cm of Fe (480 g cm$^{-2}$). This level was taken as an upper limit to the room background. Corrections to the observed transmission levels were made using this upper limit, and they are shown with arrows in Figs. 1 and 2.

DISCUSSION. The initial (very small depth) macroscopic neutron removal cross-sections were calculated for comparison. They are defined in units of cm$^{-1}$ or cm2 g$^{-1}$ by the following expressions:

$$\Sigma = \rho \ N \ \bar{\sigma} \ A^{-1} \left[\text{cm}^{-1} \right]$$

$$\Sigma = \ N \ \bar{\sigma} \ A^{-1} \left[\text{cm}^2 \ g^{-1} \right]$$

where N is Avogadro's number, A is the atomic mass, ρ is the density in g cm$^{-3}$, and $\bar{\sigma}$ is the weighted average of the total cross-section in cm2. The weighted mean was calculated using:

$$\bar{\sigma} = \frac{1}{\Sigma} \int_{0}^{\infty} k(E) \ \phi(E) \ \sigma(E) \ dE$$
where

\[C = \int_{0}^{\infty} k(E) \phi(E) \, dE, \]

\(k(E) \) is the neutron kerma for A-150 TE plastic \((A177,Ca80)\), \(\sigma(E) \) is the neutron cross-section \((Hu58)\), and \(\phi(E) \) is the neutron energy spectrum. The kerma function is used in the weighing integrals because a kerma sensitive detector was used in the experiment. \(\phi(E) \) was taken as equal to \(\sqrt{E} \exp(-E/2.5) + \text{const.} \) up to 66 MeV, an approximation to the incident spectrum based on physical considerations and measurements reported by Waterman et al. \((Wa79)\) and Smathers et al. \((Sm76)\). Small changes at the low end of the energy spectrum do not affect \(\overline{C} \) significantly. The photon dose component of the open beam is less than 5% of the total dose \((Am77,Ku79)\). At small depths, calculations \((A174,A175)\) estimate a photon contribution of about 10% to the total dose. Hence, this component does not affect the estimate of the initial attenuation length of the total kerma significantly.

Table 1 compares the calculated attenuation lengths, \(\lambda = \Sigma^{-1} \) with those derived from the measurements using the initial slope of the narrow beam attenuation curves. The agreement between measurements and calculations is generally within 10%. This is considered satisfactory. Also, these macroscopic removal cross-sections are close in
value to those measured for a d(50)Be neutron beam by Smathers et al (Sm78).

ACKNOWLEDGEMENTS. The assistance of Larry Grumboski and Brian Pientak is gratefully acknowledged. This work was funded partly by the National Cancer Institute, Grant No. 5PO1 CA18081.
REFERENCES

Al75 Alsmiller, R.G., 1975, Oak Ridge National Laboratory. (Private communication).

"Characterization of a p(66)Be(49) Neutron Therapy Beam:
II. Skin Sparing and Dose Transition Effects", To appear
in Med. Phys.

"Kerma Factors for Neutron Energies below 30 MeV."

Therapy Facility at the Fermi National Accelerator
Laboratory, Batavia, Illinois, a Preliminary Report",
Applied Radiology, 5, (6), 51.

EGXX EG&G Model IC-17, now made by Far West Technology,
Goleta, Calif., 93017.

National Laboratory internal report BNL-325, 2nd Ed.

Ku79 Kuchnir, F.T., Awschalom, M., Crumbowski, L.E. and
Sabau, M.N., "Determination of the Sensitivity of a
Mg-Ar Chamber to High Energy Neutrons by Use of Two
Independent Methods". Workshop on Ion Chambers for
Neutron Dosimetry. Rijswijk, NL.

"Characterization of a p(66)Be(49) Neutron Therapy Beam:
I. Central Axis Depth Dose and Off-axis Ratios". To

FIGURE AND TABLE CAPTIONS

Fig. 1. Kerma fraction transmitted through various materials for a p(66)Be(49) neutron beam. The abscissa is in cm of material. Arrows represent maximum corrections for room background.
Materials:
- polyethylene
- steel
- lead
- polyethylene-concrete
- Lipowitz alloy
- tungsten

Fig. 2. Kerma fraction transmitted through various materials for a p(66)Be(49) neutron beam. The abscissa is in g cm⁻² of material. Arrows represent maximum corrections for room background.
Materials:
- polyethylene
- steel
- lead
- polyethylene-concrete
- Lipowitz alloy
- tungsten

Table 1. Comparison of Measured and Calculated Attenuation Lengths.
<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>λ</th>
<th>ρ</th>
<th>σ</th>
<th>Σ (CALCULATED)</th>
<th>λ (g cm$^{-2}$)</th>
<th>λ (cm)</th>
<th>λ (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g cm$^{-3}$</td>
<td>barn</td>
<td>cm2 g$^{-1}$</td>
<td>cm$^{-1}$</td>
<td>Calc</td>
<td>Meas</td>
<td>Calc</td>
</tr>
<tr>
<td>polyethylene</td>
<td>10.43</td>
<td>0.91</td>
<td>1.11</td>
<td>.0954</td>
<td>.0869</td>
<td>10.5</td>
<td>11.2</td>
</tr>
<tr>
<td>concrete</td>
<td>32.26</td>
<td>1.59</td>
<td>2.33</td>
<td>.0512</td>
<td>.0814</td>
<td>19.5</td>
<td>20.3</td>
</tr>
<tr>
<td>steel</td>
<td>55.85</td>
<td>7.87</td>
<td>2.52</td>
<td>.0271</td>
<td>.214</td>
<td>36.8</td>
<td>38.5</td>
</tr>
<tr>
<td>Lipowitz alloy</td>
<td>186.8</td>
<td>9.39</td>
<td>4.79</td>
<td>.0158</td>
<td>.148</td>
<td>63.4</td>
<td>71.0</td>
</tr>
<tr>
<td>lead</td>
<td>207.2</td>
<td>11.35</td>
<td>4.99</td>
<td>.0145</td>
<td>.165</td>
<td>68.9</td>
<td>70.0</td>
</tr>
<tr>
<td>tungsten</td>
<td>183.8</td>
<td>19.3</td>
<td>4.75</td>
<td>.0156</td>
<td>.300</td>
<td>64.3</td>
<td>70.0</td>
</tr>
</tbody>
</table>