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Abstract 

A scaling rule is presented for use in solving 

hadron shielding problems when the answer for geometrically 

related configurations is known. Extensions to non-hadron 

shielding are indicated. 

Introduction 

When shielding decisions must be made on very short 

notice, an educated guess based on available material' 

often becomes necessary. This note concerns a simple guiding 

rule which may be helpful for this purpose. In certain 

instances this rule is nearly exact and therefore useful even 

when the design of a shield proceeds at a more leisurely 

pace. For most applications the approximations involved 

will necessarily be rather crude and will not offer an 

effective alternative to specific calculations. The 

emphasis of this note is on estimating hadron dose rates. 

Other applications are briefly discussed. 

The physical bases of the rule are: (1) in the high- 

energy region (1 10 GeV) the characteristics of particle- 

nucleus interactions are not very sensitive to nuclear size, 

(2) shielding calcuations combine effects of many generations 

of the internuclear cascade which tends to further reduce 

nuclear size dependence, (3) above 50-100 MeV the collision 
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length of the cascading particles is roughly independent 

of energy and (4) elastic scattering and ionization losses 

are of lesser importance than particle production in 

determining the general characteristics of high energy 

hadron cascades. 

Homogeneous Targets 

The first principle involved is most easily seen 

by considering the archetypical geometry of CASIM2 as 

well as other 'hadron cascade codes, i.e. that of a very 

large homogeneous cylinder into which a pencil beam of 

energetic protons is introduced. Assume that such a 

calculation has been performed for a given material and that 

it is now desired to study an identical situation for the 

same material but in this case having only half the density 

(e.g. liquid vs solid phase). The beam energy must be 

essentially the same in both cases. Because the collision 

length varies inversely with density all distances in the 

second case are twice that of the first and since the collision 

length is the only parameter which differs between the 

calculations it follows that: 

S2b,~,x) = (1/8)SlbW,y/2,x/2) (1) 

where Sl, S2 denote star densities for the heavier and 

lighter material and the factor (l/8) comes about because 

space has three dimensions. 

The quantity usually of most interest is the dose rate. 

In regions where the cascade is well developed dose rate 

is proportional to flux or number of particles per unit 

area, 4, incident on the human body or on a detector: 
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Di(X,Y,Z) = KQi(X,Y,Z) (i=l 2) 

The flux, in turn, is related to star density via the 

collision length, Ai of the shielding materi'al 

+i(x,Y,z) = xisi(x3Y3z) (i=1,2) 

In the previous example X2 = 2X1, and it follows 

D~(x,Y~z) = (‘/4)Di (X/2,Y/2,Z/2) 

TM-883 
1100.000 

(2) 

(3) 

that 

(4) 

Note that except for some reservations about eq. (2) every- 

thing is exact even if the example is somewhat contrived. 

There is some practical use for the above in deriving 

results for soil from calculations for concrete and vice 

versa. Since their composition is nearly identical the 

"stretching factor" is the ratio of their densities, i.e. 

about 1.2. Thus 

Dc(x,~,z) = (l/l .440, (xc/l .LY,/l .Lz,/ 1.2) (5) 

where DS, DC are dose rates in homogeneous soil and concrete 

respectively. 

If one deals with two materials of differing composi- 

tion then eq. (4) generalizes to 

D2(x3~,z) = (9/h2)2Dl (~lx/~2,~ly/h2,xlz/h2) (6) 

It is obvious that the Xi refer to distance and not to mass 

per unit area. This is the case throughout this note. Since 

the Xi will always appear as quotients either collision 

lengths (including elastic processes) or absorpotion lengths 

may be used, given the approximate nature of the procedure. 
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More Complicated Geometries 

Another typical CASIM geometry is that of a target- 
in-a-cave. Assume it is desired, while holding target 

material as well as target and inside cave dimensions 

constant, to study the effects of substituting different 

materials in the walls of the cave. Clearly the uniform 

stretching arguments no longer apply. Some insight 

is provided by drawing rays representing extended trajec- 

tories of particles produced in the target. Except for 

backscattering into the cave one can argue as before since 

uniform stretching holds inside the walls. This is 

illustrated in Fig. 1 using again a stretching factor of 

two. However, the rule is to be applied ray by ray and 

the information needed for this is not available in Ref. 1 

or in a regular CASIM run. For 'any given location in the 

stretched version it is possible to derive an approximate 

star density only if for all rays which contribute signif- 

icantly application of eq. (6) involves roughly the same 

location in the reference calculation. The success may 

depend strongly on position as illustrated in Fig. 1 with 

the help of a few selected rays. It is clear that one would 

likely succeed better in estimating the dose rate at loca- 

tion E than at A. For a more quantitative treatment one 

needs to take into consideration the contribution of each 

ray was well as the density of rays, i.e. energy and angular 

distribution of the particles produced in the target. However, 

to arrive at a definite algorithm it is perhaps better to 

be guided by a yet more general (and realistic) geometry. 

The present example will emerge as a special case. 
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Assume a proton beam strikes a beryllium target 

placed inside a magnet string surrounded by a cave with 

iron walls. Again, assume that such a case has been 

calculated and one wishes to estimate the effects of changing 

the walls to concrete. The situation suitably idealized 

and cast into cylindrically symmetric form is shown in 

Fig. 2. Specifically one seeks the dose rate at loc,ation 

A for the concrete case. 

Homogenizing and Stretching 

To introduce the second principle involved in the 

algorithm an "effective" collision length is introduced. 

This may be defined as the distance along a cascade 

trajectory between the point where the beam enters and 

location A divided by the number of collisions and suitably 

averaged over all such paths. For simplicity, instead of 

averaging over all trajectories the effective collision 

length is conveniently evaluated along one representative 

trajectory. In Fig. 2 some possible trajectories are 

shown. The one labelled E displays the typical random 

walk character of a cascade trajectory. The others, because 

they suffer only a few well placed interactions and because 

of the fortuitous character of the production angles, 

represent more stylized versions. These are however much 

easier to deal with geometrically. The idealization is 

extended to the radial direction where the entire trajectory 

projects onto a radius vector. If one were to pick a 

"typical" trajectory from among the stylized ones the path 

labelled cx would be excluded immediately. The others are 

more likely to occur but for sake of definiteness let the 

path y be selected. The effective collision length is 

then 
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A(x,Y,z) = lydsl(JydslX(x,y,z)) (7) 

where jy denotes the line integral along y which is taken 

with respect to distance, s, along the trajectory. Note 
that fl, in contrast with X, is a continuous function of 

location in the geometry. This function combines certain 

properties of the geometry, material composition and cascade 

development. 

In addition a direction-dependent effective collision 

length is introduced 

Ax(x,y,z) = iydxl(lyW~b,y,z)) (8) 

where the line integrals are now with respect to the x-axis. 

There are similar expressions for Ay, A,. 

For a stylized trajectory the line integrals 

appearing in eqs. (7) and (8) reduce to simple, easily 

evaluated algebraic expressions. 

For the purpose of formulating an algorithm the 

effective collision lengths may be viewed as a means to 

"homogenize" the geometry, albeit in anisotropic fashion. 

The assumption is made that the flux at any given point 

(x,y,z) in a given geometry equals the flux at the same 

location (x,y,z) in a homogenized shield characterized by 

constant effective collision lengths nx,flyYAz,n as 

given by eqs. (7) and (8). In symbols 

@P(X>YJ) = eLY,Z> (9) 

where @, 4 denote the fluxes outside the homogenized shield 

and problem geometry, respectively. Eq. (9) translates 
into a relation between star densities 

Sb,Y,Z > = b%m(X,Y,Z) (10) 
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where C is the star density in the homogenized shield 

and, as before, X is the collision length of the material 

at (x,y,z) in the problem geometry (i.e. concrete, in 

the example). There exists a set of relations corresponding 

to eqs. (7) - (11) which relate collision length, flux and 

star density of the reference geometry and its homogenized 

version. 

The connection between homogenized geometries is now 

readily made by introducing stretching factors, T., much like 

the ones which connect homogeneous targets. The basic 

difference is that for the general case the stretching factors 

are no longer isotropic 

TX = 'x"R,x (11) 

where RR,x is the effective collision length of the reference 

geometry with respect to x, taken along a trajectory 

corresponding to that of the problem geometry. There are 

similar definitions for -c ,T 
Y z' 

For brevity, the dependence 

on location is no longer explitely shown in eq. (11) and in 

most of the sequel. The stretching factors define a one- 

to-one correspondence between problem and reference geometry, 

e.g. 

'R xx 
= T-1 (12) 

and also appear in the Jacobian relating star densities of 

the homogenized geometries: 

c(x,y,z) = ~~l~;‘r;lCR(~~lX’~yly,~~lz) (13) 
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Alaorithm 

The basic formulation of the algorithm can be 

presented diagramatically as follows: 

REFERENCE GEOMETRY 
1 
i HOMOGENIZE 

v 
HOMOGENIZED REFERENCE GEOMETRY 

11 
STRETCH 

* 
HOMOGENIZED PROBLEM GEOMETRY 

0 
; HOMOGENIZE 

PROBLEM GEOMETRY 

The rules for the three steps involved are given by 

eqs. (9) and (13). By substitution the basic expressions 

of the algorithm are obtained 

S(X,y,Z) = (R/AR)(ARIh),r~lr;lr;lSR(r~lX,ryly,r;lZ) (14) 

from which 

D(x,Y,z) = (nlhR)~X1~yl~;lDR(rX1x,~~ly,~~lz) (15) 
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Note that the uncertainty in picking a typical tra- 

jectory enters only through ratios of effective collision 

lengths. This justifies the convenience of a stylized 

trajectory. 

It is perhaps worthwhile to apply this explicitely 

to the example of Fig. 2. For the radial coordinate eqs. 

(11) and (12) lead to 

9 r = r/rR = 'r"R,r 

with reference to Fig. 2 and the y trajectory. 

Ar(r,z) = rr,/hBe + (r3-r2)/XM + (r-r,+)/)jml - 

where Ar=hx=A 
Y 

, because of symmetry and AM is an 

averaged collision length for the magnet materials. There 

is a similar expression for AZ. 

Likewise, 

'R,r (rR,zR) = rRp 
- l/ XBe + (r3-r2)/ AM + trRmr4 

and it follows from eqs. (16) that 

(rR +,)/AR = br4)h 

and 

(zR -z,)/x, = (z-z,)/x 

By application of eqs. (19) and 

shown that 

n/n, = s/s 
R 

(16) 

(17) 

>/A, ?-l 08) 

(19) 

(20) 

20) it is easily 

(21) 
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where sVsR are the total length of the typical trajectory 

in problem and reference geometry, respectively. 

In this example, rR is readily found from eq. (19) 

since r4 is the tunnel radius, independent of the choice 

of typical trajectory. The value of z&, on the other hand, 
varies with this choice and it (or zR directly) must be 

evaluated e.g. by graphical means. The same is true for 

s and sR. The final result is then 

Dhz) = (s/sR)(rR/r)2(zR/?)DR(rR’zR) (22) 

This equation holds generally, with obvious extension to 

the non-cylindrically symmetric case. The same is not 

true for eqs. (17) - (20) which relate (rR,zR) to (r,z). 

It is obvious that results will be more reliable the 

closer problem and reference geometry are related. No 

scaling should be attempted between geometries so disparate 

as to make evaluation of the stretching factors questionable. 

It is clear that the procedure hinges strongly on the 

existence of a rather unambiguous typical trajectory and on 

one's ability to identify it. Where two or more such 

pathways are thought to compete the procedure would become 

at best more cumbersome. It is also clear that, since the 

typical trajectory will depend upon location, in those 

instances where eq. (22) must be evaluated many times the 

burden of this will quickly outpace that of recoding the 

geometry routine in CASIM. It is, however, possible 

to avoid computational labor by coding eq. (22) into CASIM 

and applying it to the results at the end of the Monte 

Carlo stage of the program. 
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Test Cases 

Sufficient experience with the algorithm needed to 

make general, quantitative statements about its reliability 

is lacking. This would be a difficult matter in any case 

in view of the diversity of applications, separation of the 

statistical component of the discrepancies, uncertainty 

of the representative trajectory, etc. Three tests have 

been run which offer a good indication as to the validity 

of the algorithm. 

The first case is the example of Fig. 2 discussed at 

some length, above. The beryllium target is 40 cm long and 

4 cm in radial extent. The magnet string is assumed to be 

of iron with 10 cm inner radius and 40 cm outer radius. 

The cave has an inner radius of 100 cm and outer radius of 

200 cm. The total length of the configuration is 1000 cm. 

Two calculations were performed one using iron (reference) 

and the other concrete (problem) as cave wall materials. 

To minimize statistical fluctuations the calculations were 

run with correlated random numbers 3. The ratios of results 

obtained from the calculation for the iron shield via scaling 

to those computed directly for concrete are shown in Table I 
at four depths and three radii. The results are quite close 

particularly since a large portion of the discrepancy is 

likely of a non-scaling origin. The average of all twelve 

predicted to observed star densities is 0.99. The standard 

deviation of the distribution of the ratios is 0.21. The 

principal source of error is expected from the fact that the 

finite volume bins which serve to estimate star density do not 

conform to the scaling rule, either in size or location, 

as would be desirable for this test. The results of Table I 

are based on interpolation between four neighboring bins 



TM-883 
1100.000 

- 12 - 

both for iron and concrete. The random inter-bin variations 

encountered in each case are at least as large as the 

discrepancies of the scaling test shown in Table I. 

The second case relates a multimedia geometry to a 

homogeneous target used as reference. The example of 

Fig. 2, slightly modified, serves again as the problem 

geometry. The only difference is that the target has been 

extended the full length of the configuration. Otherwise 

the scaling from a homogeneous target could not be readily 

made. The representative trajectory resembles the y-trajectory 

of Fig. 2 except that the initial leg now extends 42.5 cm 

(=hBe) instead of 20 cm (= half the target length). The 

rest of the procedure is the same as before. Results are 

shown in Table II. Not surprisingly the agreement here is 

poorer than for the first case. This is not only because 

scaling is less valid here but also because the use of 

correlated random number is less effective. The average 

of the set of ratios of Table II is 1.26 and the standard 

deviation is 0.56. For many applications this is still 

acceptable. 

The third case is entirely similar to the second except 

that the reference geometry is a homogeneous iron cylinder. 

Results are shown in Table III. They are comparable to 

the second case. The average and standard deviation of 

the ratios is 1.22 and 0.66, respectively. 

Comparing Tables II and III one learns in a round- 

about way something about scaling between homogeneous 

concrete and iron targets. From the strong correlation 

between corresponding entries in the tables it is clear 

that the scaling between the two homogeneous targets holds 

better than between disparate geometries (though this also 

reflects the differences in effectiveness of correlated random 

numbers). 
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Overall, the comparisons, though limited in scope, are 

quite gratifying. Aside from the expected correlations 

between Tables II and III there is no general trend 

discernible. A test of the sensitivity of these results 

to various choices of trajectories has not been attempted at 

this time. 

Other Applications 

The algorithm presented in this note has been 

explicitely formulated to calculate star densities and 

dose rates. There are obvious extensions to such problems 

as activation, detector response, etc. In general the rule 

cannot be applied to estimate energy deposition densities 

in hadron showers. Because of the electromagnetic component, 

such a calculation involves both the collision length and 

radiation length while the present procedure rests on the 

existence of a single scaling parameter. For the same 

reason care must be taken in estimating dose rates in regions 

where the electromagnetic component is important. However, the 

algorithm is valid for relating targets of identical composition 

but of different densities. Presumably scaling between 

materials close in atomic number will still yield fairly 

reliable results. 

The scaling rule could be applied to pure electromagnetic 

cascades using the radiation length (and effective radiation 

length, etc.) in lieu of the collision length. The rule 

would roughly amount to application of the so-called 

Approximation A, which neglects ionization losses of the 

shower electrons4. In general the rule would be of a very 

approximate character. In muon shielding collision losses 

are virtually always a dominant mode of energy transfer. This 

appears to rule out scaling rules of this type. 

I wish to thank M. Awschalom and L. Coulson for their 

comments. 
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Table Captions 

Table I. Ratio of star densities obtained by 

using the scaling rule and by direct calculation. 

The geometry of Fig. 2 is used with iron cave 

walls in the reference geometry and concrete 

in the problem geometry. The discrepancy 

is expected to contain a large component of non- 

scaling origin. 

Table II. Ratio of star densities obtained by using 

the scaling rule and by direct calculation. 

The geometry of Fig. 2 with the target length 

extending over the entire configuration is 

the problem geometry. The reference geometry 

is a homogeneous concrete cylinder. The 

discrepancy is expected to contain a large 

component of non-scaling origin. 

Table III. Ratio of star densities obtained by using 

the scaling rule and by direct calculation. 

The long-target geometry of Fig. 2 is the 

problem geometry'. The reference geometry 

is a homogeneous iron cylinder. The 

discrepancy is expected to contain a large 

component of non-scaling origin. 
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Figure Captions 

Fig. 1 

Fig. 2 

Target-in-a-cave geometry where only the 

material in the walls is being changed. The 

homogeneous scaling rules are applied inside 

the cave walls for various rays. It is expected 

that star densities vary more strongly among 

locations B, C, and D than among F, G, and H. 

This would make it more difficult to estimate 

the star density at A in the stretched version 

than at E. 

Beam line geometry with beam striking a target 

located in a magnet string placed in a cave. 

The change in material of the walls is studied. 

The paths a-~ represent trajectories of the inter- 

nuclear cascade which contribute to the star 

density at location A. 


