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Abstract

The next-generation Deep Underground Neutrino Experiment’s liquid argon
detector represents an opportunity to probe previously unexplored parameter
space for beyond-Standard Model processes. One such process is baryon
number violating neutron-antineutron oscillation, the observation of which
would have profound implications on our understanding of the origin of the
matter-antimatter asymmetry in the universe, and provide strong hints as to
the nature of neutrino mass.

A GENIE n − n̄ oscillation event generator was developed and officially
released, taking into account various nuclear effects and final state interac-
tions. Previous searches for the process are summarised, as are the sources
of antiproton scattering used to derive n− n̄ branching ratios.

The viability of machine learning image processing techniques to iden-
tify simulated signal n− n̄ events and reject potential atmospheric neutrino
backgrounds in DUNE is explored. Images are produced using simulated
n− n̄ and atmospheric neutrino events in DUNE, and a convolutional neural
network is trained to distinguish the two. The network’s ability to accept
signal and reject background corresponds to a free n−n̄ lifetime sensitivity of
1.6× 109 s at 90% confidence level, a factor of 5 improvement on the current
limit from Super-Kamiokande.

These machine learning techniques are applied to data from the on-surface
MicroBooNE detector, and the network is found to be highly sensitive to
differences between data and Monte Carlo (MC) simulations. Recommen-
dations are made for further studies into the use of such techniques, and
potential avenues for overcoming challenges in data-MC disagreement are
presented.
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1 Introduction

The conservation of baryon number B in the Standard Model of particle
physics is an accidental symmetry. It is not required by any fundamental
laws, and its removal does not break the Standard Model in any considerable
manner. Furthermore, the removal of this symmetry provides fresh avenues
for the appearance of new physics, and new opportunities to search for such
new physics experimentally.

There is much precedent for the oscillation of neutral particles. The oscil-
lation of flavoured neutral mesons such as the K0 into their own antiparticles
is a matter of record, as is the flavour oscillation of neutrinos . Permitting
non-conservation of B opens up a new type of neutral particle oscillation:
n− n̄ oscillation, the oscillation of a neutron into an antineutron [7].

In the Standard Model of particle physics, both lepton number L and
baryon number B are independently conserved. Many beyond Standard
Model (BSM) theories — for instance, those that predict the decay of the
proton — allow for L and B to be violated independently, but preserve their
combination B − L as a symmetry, allowing the proton to decay into a lep-
tonic final state [8]. However, motivations exist to move beyond even this
model, to models that discard such conservations altogether and allow B and
L conservation to be violated without any such concessions.

The rise in use of liquid argon time projection chambers (LArTPCs)
presents new opportunities for experimental searches for n − n̄ oscillation.
The future Deep Underground Neutrino Experiment (DUNE) [9] offers the
promise of a high-resolution detector, shielded from backgrounds due to its
extreme depth, capable of sensitivity beyond current limits due to its large
mass.
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16 Chapter 1: Introduction

This thesis describes work carried out to quantify the prospects for push-
ing the boundaries of parameter space in terms of n− n̄ oscillation lifetime.
It provides a brief summary of the theory and phenomenology of n − n̄ os-
cillation, and summarises previous experimental measurements — both past
searches for n− n̄ oscillation, and also a review of the antiproton scattering
data from which n− n̄ oscillation branching ratios are derived. It then sum-
marises the development of a GENIE event generator to simulate the n− n̄

oscillation process, accounting for various nuclear effects and final state in-
teractions.

Finally, the implementation of a novel event selection technique for n −
n̄ oscillation searches is presented, in the form of a convolutional neural
network (CNN). Following a brief summary of CNN operating principles,
a study to classify LArTPC events using CNNs is described. The network
is used to distinguish simulations of n − n̄ signal events and atmospheric
neutrino backgrounds; the performance of the network is discussed, and its
resolving power is described in terms of a 90% confidence level free n −
n̄ lifetime sensitivity in DUNE. This is the first n − n̄ lifetime sensitivity
calculation carried out for DUNE. Finally, a preliminary search for n − n̄

oscillation using data from the on-surface MicroBooNE detector is presented,
and challenges in overcoming data-MC disagreements for CNNs as an analysis
tool are discussed.



2 Theory

The signature of n − n̄ oscillation itself is independent of the gauge theo-
ries which allow the process to occur. This is in contrast to, for instance,
proton decay, in which different models predict different final states, leading
to a wide variety of model-dependent topologies; no such variation between
models exists for n− n̄ oscillation. Consequently, the phenomenology of the
process and the theories that predict it can be discussed independently.

This chapter summarises the phenomenology behind this process in sev-
eral contexts: in a field-free vacuum, a magnetic field, and bound in a nucleus.
For the latter, it also summarises the calculation of a nuclear suppression
factor, and describes some of the beyond the Standard Model theories that
predict this process.

2.1 Phenomenology

At the basic level, we can construct an effective Hamiltonian Heff to describe
neutron-antineutron oscillation [7, 10]. The off-diagonal transition matrix
elements are real and described as

〈n|Heff |n〉 = 〈n|Heff |n〉 ≡ δm , (2.1)

where |n〉 and |n〉 are eigenstates for the neutron and antineutron, respec-
tively, and δm is a small but non-zero quantity that allows transition between
the two.

The diagonal matrix elements have a complex component and are written

17



18 Chapter 2: Theory

〈n|Heff |n〉 =M11, 〈n̄|Heff |n̄〉 =M22 , (2.2)

where M11 and M22 are a general form for the diagonal matrix elements.
The imaginary component of the diagonal matrix elements is Im(Mjj) =

−iλ/2 for j = 1, 2, where λ = τ−1
n = 1/880 s−1, the inverse of the mean free

neutron lifetime τn. The full effective Hamiltonian in the (n, n̄) basis is

M =

(
M11 δm

δm M22

)
. (2.3)

At this point, we also define the difference between the two mass states
as

∆M ≡M11 −M22 . (2.4)

To obtain the energy eigenvalues, we must diagonalise the Hamiltonian
matrix in Equation 2.3 [11]. First, we separate this matrix into two compo-
nents,

M =

(
1
2
(M11 +M22) 0

0 1
2
(M11 +M22)

)
+

(
∆M
2

δm

δm −∆M
2

)
. (2.5)

This is more succinctly expressed as

M =
1

2
(M11 +M22)I +

1

2
∆MK , (2.6)

where I is a 2× 2 identity operator and K is an operator defined as

K =

(
1 2δm

∆M
2δm
∆M

−1

)
. (2.7)

The K operator has its own eigenvalues κ1,2, defined as

K |n1,2〉 = κ1,2 |n1,2〉 . (2.8)

The energy eigenvalues can then be described in terms of the κ eigenval-
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ues,

E1,2 =
1

2
(M11 +M22) +

1

2
∆Mκ1,2 . (2.9)

We then introduce an angle θ, defined as

tan(2θ) =
2δm

∆M
. (2.10)

By substituting Equation 2.10 into Equation 2.7, we can now express K
as

K =

(
1 tan(2θ)

tan(2θ) −1

)
. (2.11)

We now find the eigenvalues of K by writing out the characteristic equa-
tion

Det [K − κI] = κ2 − 1− tan2(2θ) = 0 . (2.12)

Solving this equation yields the eigenvalues of K,

κ1,2 = ±
√

1 + tan2(2θ) = ±

√
1 +

(
2δm

∆M

)2

= ±
√

(∆M)2 + 4(δm)2

∆M
.

(2.13)
We can then substitute Equation 2.13 into Equation 2.9 to provide the

energy eigenvalues

E1,2 =
1

2

[
M11 +M22 ±

√
(∆M)2 + 4(δm)2

]
, (2.14)

with the energy difference between the two states

∆E = E1 − E2 =
√

(∆M)2 + 4(δm)2 . (2.15)

The oscillation probability of a purely neutron state as a function of time
is written as
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P (n(t) = n̄) = | 〈n̄|n(t)〉 |2 = sin2(2θ) sin2[(∆E)t/2]e−λt

=

[
(δm)2

(∆M/2)2 + (δm)2

]
sin2

[√
(∆M/2)2 + (δm2)t

]
e−λt .

(2.16)

We can consider ∆M to be a term that generalises any differences in
interactions between neutrons and antineutrons — as will be shown in the
following sections, this difference can arise in vastly different ways depending
on the circumstances.

There is a difference in scale between the off-diagonal mixing term δm

and the mass difference ∆M . The existing upper bound on δm is on the
order of 10−29 MeV [7], approximately 32 orders of magnitude smaller than
the neutron mass. Therefore for any experimental environment, δm can be
assumed to be orders of magnitude smaller than ∆M , and thus ∆E ≈ ∆M .
This allows Equation 2.16 to be simplified to

P (n(t) = n̄) =

(
2δm

∆E

)2

sin2

(
∆E · t

2

)
e−λt . (2.17)

2.1.1 Neutron-antineutron oscillation in field-free vac-
uum

In a vacuum, free of any ambient magnetic fields or potentials, the energy
expectation values are

M11 =M22 = mn −
iλ

2
, (2.18)

and so the mass difference ∆M = 0.
The values M11 and M22 from Equation 2.18 are substituted into the

general form of the matrix from Equation 2.3 to produce the free matrix

Mf =

(
mn − iλ/2 δm

δm mn − iλ/2

)
. (2.19)
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As before, in the general case, diagonalising this matrix provides the mass
eigenstates

|n±〉 =
1√
2
(|n〉 ± |n̄〉) . (2.20)

The energy eigenvalues in this situation are

E1,2 = (mn ± δm)− iλ

2
. (2.21)

In this case there is maximal mixing, with θ = π/4, as defined in Equa-
tion 2.10. Since the quasi-free case corresponds to the case where ∆E ·t� 1,
the small-angle approximation can be used to simplify the oscillation proba-
bility in Equation 2.17 to

P (n(t) = n̄) ≈
(

t

τnn̄

)2

e−λt , (2.22)

where τnn̄ is the free n− n̄ oscillation lifetime,

τnn =
1

δm
. (2.23)

Section 3.2 in the following chapter describes experimental searches for
n− n̄ oscillation using neutron beams in such quasi-free conditions.

2.1.2 Neutron-antineutron oscillation in magnetic fields

In environments where neutrons experience a constant magnetic field ~B, the
opposite signs of the neutron and antineutron magnetic dipole moments µn,n̄

introduce a new term into the effective Hamiltonian matrix, compared to the
free Hamiltonian in Equation 2.19. The resulting matrix is

MB =

(
mn − ~µn · ~B − iλ/2 δm

δm mn + ~µn · ~B − iλ/2

)
. (2.24)

The difference between the two diagonal mass terms, previously defined
in Equation 2.4, is then



22 Chapter 2: Theory

|∆M | = 2~µn · ~B . (2.25)

The energy eigenvalues can be described by substituting M11, M22 and
∆M into the general form in Equation 2.14, to give

E1,2 = mn ±
√
(~µn · ~B)2 + (δm)2 − iλ

2
. (2.26)

For free neutrons, the presence of a magnetic field suppresses the rate
at which n − n̄ oscillation occurs. If the magnetic field is sufficiently small,
and free neutron time of flight is much smaller than the decay lifetime of
the neutron, the n − n̄ oscillation probability is independent of magnetic
field. Experimental searches using neutron beams must use magnetic shield-
ing to counteract any ambient magnetic fields, and prevent any associated
suppression of n− n̄ oscillation.

2.1.3 Neutron-antineutron oscillation in the nucleus

Experimental searches for bound n− n̄ oscillation are the focus of the work
discussed in this thesis. For neutrons bound inside the nucleus, the mecha-
nism of n − n̄ oscillation is entirely different to the field-free and magnetic
field cases.

The effective masses of the neutron and antineutron are modified by the
potentials they experience — the neutron potential is real, Vn = VnR, but
the antineutron potential has an imaginary component, associated with its
ability to annihilate with other nucleons, and is written Vn̄ = Vn̄R − iVn̄I.

We can use these potentials to define effective masses for the bound neu-
tron and antineutron,

mn,eff = mn + Vn, mn̄,eff = mn + Vn̄ . (2.27)

These effective masses can then be used to construct an effective Hamil-
tonian matrix for n− n̄ oscillations in matter,
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Mm =

(
mn,eff δm

δm mn̄,eff

)
. (2.28)

The potentials VnR, Vn̄R and Vn̄I are all O(100) MeV, and so n− n̄ mixing
is heavily suppressed [7]. The mixing angle θ is defined as

tan(2θ) =
2δm

|mn,eff −mn̄,eff|
=

2δm√
(VnR − Vn̄R)2 + V 2

n̄I
� 1 . (2.29)

Diagonalising Mm provides the energy eigenvalues

E1,2 =
1

2

[
mn,eff +mn̄,eff ±

√
(mn,eff −mn̄,eff)2 + 4(δm)2

]
. (2.30)

Focusing on the first mass eigenstate, and substituting in the effective
mass terms from Equation 2.27, we obtain

E1 ≈ mn + Vn − i
(δm)2Vn̄I

(VnR − Vn̄R)2 + V 2
n̄I
. (2.31)

The imaginary component of this expression is responsible for generating
the nuclear instability due to nucleon-antinucleon annihilation. The rate of
this particular process, in which the neutron spontaneously oscillates and
subsequently annihilates to produce pions, is

Γm =
1

τm
=

2(δm)2|Vn̄I|
(VnR − Vn̄R)2 + V 2

n̄I
. (2.32)

Due to large differences in neutron and antineutron energy states and
long lifetimes, we can make the opposite assumption to the quasi-free case
in Equation 2.22 — that ∆E · t � 1. We assume that the sin2 term in
Equation 2.17 averages to 1/2, and the oscillation probability is reduced to

P (n(t) = n̄) ≈ 1

2

(
2δm

∆E

)2

e−λt . (2.33)
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2.2 Bound to free lifetime conversion

Friedman and Gal perform in-depth calculations of the suppression of n− n̄

oscillation [12]. They parameterise the oscillation of the free neutron by split-
ting the degenerate mass states into two eigenstates m± δm. In the nuclear
medium, this splitting is entirely suppressed, but is replaced by two distinct
widths — one for the nuclear disappearance lifetime of an antineutron, and
one for the lifetime of a bound neutron, described as

Γm ≈
(
4δm

Γn̄

)
δm , (2.34)

where Γm is the nuclear disappearance width per nucleon and Γn̄ ≈ 320 MeV
is the annihilation width of n̄ inside the nucleus [12]. Taking into account the
different nuclear potentials Vn and Vn̄, they use a closure approximation [13]
to refine Equation 2.34 to

Γclosure
m ≈ Γn̄

(δm)2

〈Vn̄I〉2 + 〈Vn̄R − VnR〉
. (2.35)

Here 〈Vn̄I〉 = Γn̄/2 is an average of the imaginary part of the n̄ nuclear
potential.

The relationship between the free n − n̄ oscillation lifetime τnn̄ and the
n− n̄ oscillation lifetime of a neutron inside the nucleus Tm is

τnn̄ ≈ 2

√
~Tm

Γn̄

. (2.36)

Using the single particle shell model, we can write the single particle
wavefunctions for the neutron uν`j(r) and antineutron wν`j(r) in the nucleus,

− ~2

2µ
u

′′

ν`j(r) +
~`(`+ 1)

2µr2
uν`j(r) − VnR(r) uν`j(r)

− Eν`j uν`j(r) + δm wν`j(r) = 0 , (2.37)
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− ~2

2µ
w

′′

ν`j(r) +
~`(`+ 1)

2µr2
wν`j(r) − [Vn̄R(r) − iVn̄I(r)] wν`j(r)

− Eν`j wν`j(r) + δm uν`j(r) = 0 , (2.38)

where the νlj subscripts refer to the quantum numbers for a given single-
particle state, −VnR(r) and −(Vn̄R(r) − iVn̄I(r)) are the nuclear potentials
experienced by neutrons and antineutrons, respectively, and µ is the effective
mass of a single nucleon. The wavefunctions uν`j(r) and wν`j(r) are constant
inside the nucleus and decay with r outside.

The energy values in Equations 2.37 and 2.38 are defined as

Eνlj = Bνlj +
iΓνlj

2
, (2.39)

where the real component Bνlj is the binding energy for a given νlj single-
particle state, and the imaginary component Γνlj is the disappearance width.

Multiplying Equation 2.37 by u∗ν`j(r), and its complex conjugate by
uν`j(r), and then subtracting them, we arrive at the expression

iΓνlj|uνlj(r)|2 + δm(wνlj(r)u
∗
νlj(r)− w∗

νlj(r)uνlj(r)) = 0 , (2.40)

where Equation 2.39 has been substituted for Eνlj, and w∗
νlj(r) is the complex

conjugate of the antineutron single particle wavefunction wνlj(r).
By using the identity that for any complex vector v,

Im(v) =
1

2i
(v − v∗) , (2.41)

we can remove radial dependence by integrating Equation 2.40 over r from
0 → ∞, at which point it becomes

Γν`j = −
2 δm

∫
Im(wν`j(r) u

∗
ν`j(r)) dr∫

|uν`j(r)|2 dr
. (2.42)

Using the condition that at t = 0 the initial state is purely neutrons, with



26 Chapter 2: Theory

no antineutron component, we can assume that |w/u| = O(δm/B), where
B represents the binding energy (ie. Γn̄). Using Equation 2.42, we then
conclude that Γν`j is of order (δm)2/Γn̄, and neglect the Γn̄ term in Equa-
tion 2.39 which is of order δm/B2. The δm and Eνlj terms in Equations 2.37
and 2.38 reduced to a term representing the neutron single-particle binding
energy, Bν`j. The solutions uν`j are real functions, and Equation 2.42 de-
scribes the relationship between two negligible terms which we neglect. We
then use these assumptions to rewrite the radial wave equations as

− ~2

2µ
u

′′

ν`j(r) +
~2`(`+ 1)

2µr2
uν`j(r) − VnR(r) uν`j(r)

+ B
(n)
ν`j uν`j(r) = 0 . (2.43)

The antineutron radial wave equation is now written with a reduced wave-
function vν`j(r) = wν`j/δm,

− ~2

2µ
v

′′

ν`j(r) +
~2`(`+ 1)

2µr2
vν`j(r) − [Vn̄R(r) − iVn̄I(r)] vν`j(r)

+ B
(n)
ν`j vν`j(r) + vν`j(r) = 0 . (2.44)

By applying the same method to Equations 2.43 and 2.44 as was used to
obtain Equation 2.42, we obtain

−2 (δm)2
∫

Im(vν`j(r) u
∗
ν`j(r)) dr = 2 (δm)2

∫
Vn̄I(r) | vν`j(r) |2 dr . (2.45)

We can then substitute the right hand side of Equation 2.45 into Equa-
tion 2.42, to obtain



2.2 Bound to free lifetime conversion 27

Γν`j =
2 (δm)2

∫
Vn̄I(r) | vν`j(r) |2 dr∫
u2ν`j(r) dr

= −
2 (δm)2

∫
uν`j(r) Im(vν`j(r)) dr∫
u2ν`j(r) dr

. (2.46)

The averaged disappearance width per neutron is

Γm =
1

N

∑
nν`jΓν`j , (2.47)

where nν`j is the number of neutrons in each ν`j single particle state, and
N =

∑
nν`j is the total number of neutrons in the nucleus. The bound n− n̄

oscillation width Γm is then related to the free n− n̄ oscillation lifetime τn−n̄

via a conversion factor R, defined as

R =
~

Γm τ 2nn̄
, (2.48)

where R has units of inverse time.
The nuclear disappearance lifetime Tm is

Tm = R τ 2nn̄ . (2.49)

To relate the bound n − n̄ oscillation lifetime to the equivalent lifetime
of a free neutron, theoretical conversion parameters are calculated by find-
ing numerical solutions to the above equations. Since the nuclear potential
experienced by the neutron and antineutron varies for different nuclei, this
conversion factor must be calculated independently for each nuclear isotope.

These calculations of nuclear conversion factor are reproduced from [12];
their calculation of this conversion factor was carried out for 16O and 56Fe,
but not directly for 40Ar. However, in private communication the authors of
this paper estimate that the 40Ar could be assumed to be the same as the
56Fe value — R = 0.666× 1023 s−1 — with an additional 10% uncertainty on
top of the existing 30% uncertainty.
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2.3 Baryon number violation

In the Standard Model, quarks have a baryon number B of 1/3, and baryons
have B = 1; their antiparticles correspondingly have B = −1/3 and B = −1.
The transition of a neutron into an antineutron involves the simultaneous
transition of six quarks into antiquarks. Baryon number is B = 1 in the
initial state and B = −1 in the final state, a change of |∆B| = 2.

In the Standard Model Lagrangian, baryon number is conserved, but it is
a so-called “accidental symmetry” — it is conserved, but this conservation is
not associated with any continuous global symmetry in the Standard Model.
It is therefore possible to construct Grand Unified Theories (GUTs) which
permit the non-conservation of baryon number.

The principal motivation for searching for baryon number violation is
the search for the source of the universe’s matter-antimatter asymmetry, via
a process called baryogenesis. This process was first proposed by Andrei
Sakharov in 1967 [14], who also suggests the three conditions necessary for
baryogenesis to occur:

• Baryon number violation

• C and CP violation

• Interactions outside of thermal equilibrium

Baryon number violation is therefore a vital component for explaining
the matter-antimatter asymmetry of the universe through baryogenesis. The
possibility of n− n̄ oscillations was first suggested not long afterwards, in a
paper by V. A. Kuzmin [15]. Experimental observation of n − n̄ oscillation
would constitute definitive proof of B non-conservation, and have serious
implications for our understanding of the origin of the universe.

The left-right symmetric extention to the Standard Model has the gauge
group SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L, introducing B − L as a gauge
symmetry of the U(1)B−L group [7]. Such models can give rise to proton
decay, which permits non-zero ∆B and ∆L but leaves their combination
∆(B − L) unchanged.
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The electric charge can be expressed as

Q = I3L + I3R +
B − L

2
, (2.50)

where I3L and I3R are the left and right handed isospins [16]. At distance
scales below the electroweak scale, I3L = 0 and so

∆I3R = −∆
B − L

2
, (2.51)

suggesting the possibility of spontaneously broken B − L by units of 2.

Figure 2.1: A diagram for n − n̄ oscillation in a G422 left-right symmetric
partial unification model (from [7]).

Furthermore, the B − L symmetry and colour symmetry can be com-
bined to form the group G422 = SU(4)⊗ SU(2)L ⊗ SU(2)R, as in the partial
unification model proposed by Mohapatra and Marshak [16]. This model
unifies the quarks and leptons into the fields ψ : (2, 1, 4) and ψc : (2, 1, 4);
the Higgs fields are φ1 : (2, 2, 1) and φ15 : (2, 2, 15) for fermions, and addi-
tional fields ∆c : (1, 3, 10) and ∆c : (1, 3, 10) for the spontaneous breaking of
B − L symmetry. A diagram for n− n̄ oscillation in such a model is shown
in Figure 2.1.

The spontaneous breaking of B − L can give rise to Majorana neutrinos
and the ∆L = 2 neutrinoless double β decay process, and also allows ∆B = 2
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processes, giving rise to n− n̄ oscillations. Due to this relationship between
the violation of B and L, observation of n− n̄ oscillation would also provide
strong hints as to the nature of neutrino mass [7].



3 Measurement History

As discussed in Chapter 2, n − n̄ oscillation manifests differently under dif-
ferent circumstances: the lifetime of free neutrons oscillating in a magnetic
field is vastly different from bound neutrons oscillating inside a nucleus. This
enables searches using different experimental setups — namely, searches in
free neutron beams and in large-mass detectors.

Due to the scale of theory-derived conversion factors between free and
bound lifetime limits, both experimental approaches offer competitive sen-
sitivity despite vastly differing techniques. The following sections describe
all n − n̄ lifetime experimental searches to date (summarised in Table 3.1),
and all limits discussed are lower limits at 90% confidence level. The current
best limit on the lifetime of free n − n̄ oscillation is 2.7 × 108 s, set by the
Super-Kamiokande experiment in 2015 [1], converted from a bound lifetime
using a factor derived from theory.

3.1 Free neutron searches

One approach to measuring n−n̄ oscillations is observing a beam of quasi-free
neutrons focused on a target and searching for nucleon-antinucleon annihila-
tions, as such topologies would be indicative of a neutron oscillating into an
antineutron during flight. This experimental technique was first proposed in
1980 [13], and carried out several times over the following two decades.

The first experiments to search for neutron-antineutron oscillation in free
neutron beams were based at the 57 MW Reactor at the Institut Laue-
Langevin (ILL), which provided an intense source of slow neutrons. Two
ILL searches were published with beams of quasi-free neutrons: the first was

31
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published in 1985, setting a lifetime limit of 106 s [17], and the second in
1994, with an improved limit of 8.6× 107 s [18].

Both experiments use largely identical experimental approaches: neu-
trons are cooled to a temperature of 25 K, and sent through a drift vessel
where they can propagate for t ≈ 0.1 s. This vessel is separated out into an
oscillation region, an annihilation region and a beam dump. Due to the sig-
nificant effect of even infinitesimal magnetic fields on oscillation probability
(as discussed in greater detail in Section 2.1.2), the oscillation region is pro-
tected by a µ-metal shield to cancel out the Earth’s magnetic field and any
other residual ambient magnetic fields. The annihilation region contains a
carbon foil target and is surrounded by a detector consisting of three compo-
nents: a vertex detector, a scintillation counter hodoscope and a calorimeter.
A diagram of the experimental setup is provided in Figure 3.1.

Figure 3.1: Diagram of experimental setup for the neutron-antineutron os-
cillation search conducted with a beam of free neutrons at the Institut Laue-
Langevin [18].

In addition to the ILL experiment, an additional search with free neutron
beams was carried out at the University of Pavia in 1990, using the 250 kW
Triga Mark II reactor [19]. This search used a similar experimental setup to
the ILL search, and set a lifetime limit of 4.9 × 105 s, observing zero signal
and zero background events.

ILL’s search is the most recent attempt to constrain the lifetime of n− n̄

oscillations using quasi-free neutron beams and still provides the most strin-
gent direct limit on free n − n̄ oscillation over twenty years later. However,
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there are prospects for this limit to be surpassed in the foreseeable future with
the upcoming European Spallation Source (ESS), a high-intensity pulsed
spallation neutron source set to come online in 2019 [20].

An experiment has been proposed, which would take advantage of this
neutron source to carry out another search for n− n̄ oscillation, making use
of newer technologies such as ellipsoidal reflectors that enhance the neutron
beam intensity at the target to improve sensitivity. The experimental pro-
posal claims a factor of ∼ 1000 improvement in sensitivity over the ILL limit
assuming a run time of 3-5 years at ESS [20], corresponding to a free lifetime
sensitivity at the ∼ 1010 s level.

3.2 Bound neutron searches

As discussed in Section 2.1.3, bound neutrons can also spontaneously oscillate
into antineutrons, but the lifetime is heavily suppressed in comparison to the
free lifetime. However, since very large detectors can contain many orders of
magnitude more neutrons than a quasi-free neutron beam, this suppressed
lifetime can be offset with a far greater number density, offering lifetime
limits competitive with quasi-free n− n̄ oscillation experiments.

Several experiments have searched for bound n−n̄ oscillations using large
detectors and set lifetime limits. These bound lifetime limits can be expressed
in terms of an equivalent free lifetime, using conversion factors derived from
theory as described in Section 2.2. Different conversion factors are applied
depending on the nucleus, as n − n̄ rate suppression is dependent on the
nuclear potential.

The first search for bound n− n̄ oscillation was carried out at the Home-
stake mine in 1983 [21], shortly before the first free search at ILL. A 300-ton
water Cherenkov detector was used to search for the process using neutrons
bound in 16O, setting a free-equivalent limit of 2× 107 s.

This limit was surpassed by the Irvine-Michigan-Brookhaven collabora-
tion in 1984 [22], which again used a water Cherenkov detector, with a much
larger fiducial mass of 3300 tons. A limit of 1.1 × 108 s was set by defining
an ‘isotropy angle’ that separated n − n̄ signal from atmospheric neutrino
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background according to directionality of Cherenkov light.
A third water Cherenkov measurement was made by the Kamiokande

collaboration in 1986 [23]. This measurement was carried out by identifying
events with Cherenkov rings from a central vertex, and making cuts on total
net momentum and invariant mass. A free-equivalent lifetime limit of 1.2×
108 s was set.

In 1990, the first non-Cherenkov bound n−n̄ oscillation search was carried
out in the Frèjus fine-grained tracker detector [24]. The Frèjus detector
was a 900-ton iron calorimeter, at a depth of 1.8 km underground. Instead
of Oxygen, this experiment used 56Fe as its target nucleus, and collected
data for a total of 1600 days. It measured an event rate consistent with
its atmospheric neutrino background prediction, and set a lifetime limit of
1.2× 108 s.

Over a decade later, the Soudan 2 collaboration set a new limit on the
n− n̄ oscillation lifetime [25], again with an iron tracking calorimeter. Using
a 770 ton fiducial mass detector at a depth of 700 m, with an exposure of
5.56 kt·yrs, a lifetime limit of 1.3× 108 s was set.

After another decade-long break, in 2015 the Super-Kamiokande collab-
oration performed a search for n − n̄ oscillation with a water Cherenkov
detector [1]. With a fiducial mass of 22.5 kt and an exposure of 1489 live-
days, a limit of 2.7× 108 s was set — a factor of two improvement over the
previous best limit. To date, this is the strictest limit set on the neutron
oscillation lifetime.

In 2017, the SNO collaboration published a search for n − n̄ oscillation
in their heavy water Cherenkov detector, considering D and 16O nuclei [26].
Their analysis yielded fewer events than expected — 23 events, a 1.6σ defi-
ciency compared to the expected background of 30.5 atmospheric neutrino
events — and set a limit of 1.23× 108 s on the free n− n̄ oscillation lifetime.
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Table 3.1: Chronological list of all searches for n−n̄ oscillation, and the limits
they set on the free lifetime of the process. For searches in bound nuclei,
the target nucleus and corresponding rate suppression factor (as defined in
Equation 2.49) are provided.

Experiment Year Type Nucleus R [1023s−1] τfree limit [s]
Homestake [21] 1983 Bound 16O 1.0 2× 107

IMB [22] 1984 Bound 16O 1.0 1.1× 108

ILL [17] 1985 Free — — 1.0× 106

Kamiokande [23] 1986 Bound 16O 1.0 1.2× 108

Triga Mk. II [19] 1989 Free — — 4.9× 105

Frèjus [24] 1990 Bound 56Fe 1.4 1.2× 108

ILL [18] 1994 Free — — 8.6× 107

Soudan 2 [25] 2002 Bound 56Fe 1.4 1.3× 108

Super-Kamiokande [1] 2015 Bound 16O 1.0 2.7× 108

SNO [26] 2017 Bound 2H/16O 0.25/1.0 1.2× 108

Table 3.2: Neutron-antineutron oscillation final state branching ratios, as
used in Super-Kamiokande’s 2015 search for n− n̄ oscillation [1]. Branching
ratios are provided independently for the n̄p and n̄n annihiliation processes,
so each column independently sums to 100%.

n̄p n̄n
Channel Branching ratio Channel Branching ratio
π+π0 1% π+π− 2%
π+2π0 8% 2π0 1.5%
π+3π0 10% π+π−π0 6.5%
2π+π−π0 22% π+π−2π0 11%
2π+π−2π0 36% π+π−3π0 28%
2π+π−2ω 16% 2π+2π− 7%
3π+2π−π0 7% 2π+2π−π0 24%

π+π−ω 10%
2π+2π−2π0 10%
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3.3 Antineutron annihilation branching ra-
tios

Unlike proton decay, in which individual branching ratios for the decay of the
proton represent distinct theoretical models, the branching ratios for n − n̄

oscillation are due to a single standard model process, the annihilation of
an antineutron with another nucleon. While the specific partial unification
model through which the process is produced will have an effect on the
rate, the topology of the event itself is model independent. Correspondingly,
the branching ratios for n − n̄ oscillation represent the process that occurs
after the oscillation itself — the annihilation of an antineutron with another
nucleon, a Standard Model process that can be measured experimentally.

Since n − n̄ oscillation is a process beyond the Standard Model that
has never been observed, its topology cannot be directly studied using real
data. However, since the topology is the annihilation of a nucleon and an
antinucleon at rest, measurements of such processes can be used to model
the n− n̄ oscillation topology.

Since antineutron scattering data is scarce and antiproton scattering data
is more common, we assume that n̄n annihilation final states will be identical
to those of p̄p annihilation and that n̄p annihilation final states are identical
to those of p̄n after accounting for charge conjugation. Using this assumption,
at-rest antiproton annihilation data can be used to extrapolate the branching
ratios for n− n̄ oscillation.

The branching ratios shown in Table 3.2 originate from the n − n̄ os-
cillation search published by the Super-Kamiokande experiment [1], derived
from antiproton annihilation data. We find it instructive to attempt to re-
produce these ratios from the original data, and to provide a reproduction
of the original data in an easily accessible format.

By following the references for these branching ratios, attempts have been
made to understand the source of these numbers. The full branching ratio
tables from all data sources referenced in the following sections have been
reproduced in Appendix A, along with a short description of each data set
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considered.
Chapter 5 describes the use of these branching ratios to develop an n −

n̄ event generator. However, this section details a subsequent attempt to
contextualise these branching ratios by comparing them to the data they are
derived from, and suggests avenues through which they can be refined.

3.3.1 Measurements of p̄p annihilation
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Figure 3.2: Branching ratios from antiproton annihilation data on hydrogen,
as shown in Tables A.2, A.3, A.5 and A.7. Branching ratios from different
experimental measurements are shown for each final state, as is the average
of these ratios. The Super-Kamiokande branching ratios are also shown for
comparison.

In Figure 3.2, the Super-Kamiokande branching ratios are directly com-
pared to the four data sets they are derived from. The average is taken
of these four data sets, and a comparison between the Super-Kamiokande
branching ratios and this average is shown in Table 3.3. These ratios do not
agree perfectly — for instance, the branching ratio for the π+π− channel is
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consistently larger by a factor of ∼ 6 in the Super-Kamiokande branching
ratios than in data. A similar effect can be observed for the π+π−ω channel,
which is ≈ 2.5 larger than data. The exact methods used to produce these
Super-Kamiokande ratios are unknown, and may consider effects not taken
into account in this comparison.

Table 3.3: Comparison between n̄p branching ratios used by Super-
Kamiokande and the average of branching ratios measured with antiproton
annihilation on hydrogen. n − n̄ branching ratios consider n̄p and n̄n anni-
hilation independently, so these branching ratios sum to 100%.

Channel Branching ratio [%] Ratio [SK/data]
SK Data average

nπ0 1.5 2.1 0.70
π+π− 2 0.3 5.8
π+π−π0 6.5 8.7 0.74
π+π−nπ0 39 33.2 1.2
2π+2π− 7 9.0 0.78
2π+2π−π0 24 25.8 0.93
2π+2π−nπ0 10 18.2 0.55
π+π−ω 10 4.2 2.4

The Super-Kamiokande branching ratios omit many high-multiplicity fi-
nal states. The full reproduced branching ratio tables from data, as shown
in Tables A.1, A.4 and A.6, contain many final states with 7 or more pions,
including 3π+3π− channels and channels containing up to 4π0. The branch-
ing ratios for these final states are small, but not negligible. It is possible
that these were omitted from the Super-Kamiokande analysis due to their
high multiplicity — the 2π+2π−3π0 channel, for instance, would produce 10
distinct Cherenkov rings, perhaps too many to efficiently reconstruct — but
these events could be more effectively reconstructed in a liquid argon time
projection chamber, and would be worthwhile to include.

3.3.2 Measurements of p̄n annihilation

In Figure 3.3 and Table 3.4, the Super-Kamiokande branching ratios are
directly compared to the data set from which they are derived. Unlike the
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Figure 3.3: Branching ratios from antiproton annihilation data on neutrons
in deuterium, as shown in Table 3.4. The Super-Kamiokande branching
ratios are also shown for comparison.

Table 3.4: A comparison between n̄p branching ratios used by Super-
Kamiokande and Bettini et al. antiproton annihilation data collected at
the CERN Proton Synchrotron [27]. Only channels for which both tables
have ratios available are considered; the full tables for each experiment are
provided in Tables 3.2 and A.8 respectively. n − n̄ branching ratios con-
sider n̄p and n̄n annihilation independently, so these branching ratios sum to
100%. In order to reflect the inversion of charge between n̄p and p̄n events,
the final states have been inverted with respect to Table A.8.

Channel Branching ratio [%] Ratio [SK/data]
SK Bettini et al.

π+nπ0 (n > 0) 19 16.4 1.2
π+π0 1 0.7 1.4
2π+π−nπ0 (n ≥ 0) 58 59.7 0.97
2π+π−π0 22 21.8 1.0
3π+2π−nπ0 7 23.4 0.30
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p̄p data, there is good agreement in branching ratios for all channels that can
be directly compared. However, the 2π+π−2ω channel is not accounted for
in annihilation data — as discussed in Section 5.3.1, this final state is often
forbidden during simulation due to lack of available energy. The branching
ratio for the 3π+2π−nπ0 final state is much larger in data, since the Super-
Kamiokande branching ratios omit final states with n > 1.

3.3.3 Crystal Barrel data and new branching ratios

The branching ratios used by Super-Kamiokande and discussed above were
derived from antiproton annihilation data at the Brookhaven AGS and the
CERN Proton Synchrotron. However, more recent recent antiproton anni-
hilation data is available, from which more accurate branching ratios and a
larger number of exclusive channels can be produced.

A recent PhD thesis [2] has produced an updated list of n − n̄ oscilla-
tion final states. It takes data from the Crystal Barrel spectrometer and
ASTERIX at LEAR, which have measured many antiproton annihilation
channels in greater detail [28–30].

These improved final states from [2] are reproduced in Table 3.5. These
new branching fractions are in good agreement with previous sets of an-
tiproton annihilation data summarised above, especially for channels such as
π+π−.
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Table 3.5: Updated n − n̄ oscillation final state branching ratios, as repro-
duced from [2] and originally derived from Crystal Barrel and ASTERIX
data [28–30]. n − n̄ branching ratios consider n̄p and n̄n annihilation inde-
pendently, so each column independently sums to 100%. Uncertainties on
branching fractions are not provided, but in original data sources they are
typically in the 10-20% [29,31].

n̄p n̄n
Channel Branching ratio Channel Branching ratio
2π0 0.06% π+π0 0.1%
3π0 0.8% π+2π0 0.7%
4π0 0.3% π+3π0 14.8%
5π0 1.0% π+4π0 1.4%
6π0 0.01% 2π+π− 2.0%
7π0 0.1% 2π+π−π0 17.0%
π+π− 0.3% 2π+π−2π0 10.8%
π+π−π0 1.6% 2π+π−3π0 30.1%
π+π−2π0 13.0% 3π+2π− 5.5%
π+π−3π0 11.2% 3π+2π−π0 2.3%
π+π−4π0 3.3%
π+π−5π0 1.4%
2π+2π− 6.0%
2π+2π−π0 13.5%
2π+2π−2π0 16.6%
2π+2π−3π0 0.6%
3π+3π− 2.2%
3π+3π−π0 2.0%
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4 Liquid Argon Time
Projection Chambers

Liquid argon time projection chambers are a relatively modern detector tech-
nology. The first neutrino experiment to utilise the technology was the Icarus
experiment [32], measuring a beam of neutrinos sent from CERN to the Gran
Sasso laboratory in Italy. Following the successful use of this technology to
measure neutrino interactions, the US neutrino community began to adopt
this technology, first with the Argoneut TPC [33] (later used as part of the
LArIAT test beam experiment [34]), and later with the larger MicroBooNE
experiment [35]. In the coming few years, MicroBooNE will be joined by
the SBND TPC and the refurbished Icarus detector to form an array of
short-baseline neutrino detectors [36] — and in the longer term, by the Deep
Underground Neutrino Experiment [9], which will be constructed over the
coming decade.

This chapter discusses the history of liquid argon detectors, summarises
the concepts and high-level workings of the LArTPC detector technology,
discusses particle interactions and signatures, and finally describes the cur-
rently operating MicroBooNE detector and the current nominal design for
the future DUNE detector.

4.1 LArTPC detector principles

LArTPCs are 3D stereoscopic high-resolution imaging detectors that measure
particle interactions by collecting ionisation electrons across a large volume
of liquid argon. When a charged particle propagates through liquid argon,
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Figure 4.1: A diagram demonstrating the basic operating principles of a
time projection chamber (from [35]). Charged particles produce ionisation
electrons as they propagate through the liquid argon; an induced electric
field then causes these electrons to drift to several planes of readout wires,
where they are collected as electronic signals.
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it leaves a train of ionisation electrons and positive ions as it travels and
also produces scintillation light. An electric field applied across the medium
causes ionisation electrons to drift. A series of wires can be used to collect
these electrons and measure their charge, as shown in Figure 4.1. Purifying
the argon reduces the rate at which electrons are captured by electronegative
impurities and therefore increases the proportion of electrons collected. Ad-
ditionally, photomultiplier tubes can be utilised to collect scintillation light.

These are the basic operating principles of a liquid argon time projection
chamber. A combination of electron and light collection systems, supported
by cryogenic and purification systems, allows for the precision detection of
charged particles and reconstruction of their tracks.

4.1.1 Time projection chamber

The TPC itself is cuboid in shape; one side of the cryostat contains an anode
plane assembly (APA), which comprises two or three planes of readout wires,
each oriented at a different angle to produce a different two-dimensional
image. Wire spacing is typically on the order of ∼ 3 mm, providing mm-
level spatial resolution. The first and last wire planes are positively and
negatively biased, respectively, at O(100) V, to ensure ionisation electrons
produce a signal on all wire planes before being collected.

The opposite side of the TPC comprises a flat metal cathode plane or
grid, held at a large negative voltage in order to induce the drift field that
causes ionisation electrons to drift towards the anode wires. The remaining
four sides of the TPC comprise a series of metal field shaping tubes that act
as a field cage. Each loop is connected to the others via variable resistors
and held at a different electrical potential, maintaining a uniform drift field
between the anode and cathode.

A typical value for the drift electric field strength is ≈ 500 V/cm. Given
the size of LArTPCs, this generally equates to a total negative potential of
O(10 − 100) kV on the cathode. The electric field strength must be chosen
to balance spatial resolution against energy resolution — the weaker the
drift field, the slower the drift of ionisation electrons, improving the spatial
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resolution in the dimension perpendicular to the anode plane. However,
ionisation electrons also recombine with impurities in the liquid argon with
a characteristic lifetime, and so a longer drift time results in worse energy
resolution.

Figure 4.2: Example of the signal induced on all three wire planes by ion-
isation electrons (from [37]). The x axis on the left figure shows distance
parallel to the collection plane, while the y axis shows distance from collec-
tion plane in cm. The lines in the left plot represent electric field lines. The
right plot shows an example of the waveforms produced on each wire plane:
a bipolar but largely positive signal on the first induction plane, as electrons
approach; a more evenly bipolar signal on the second induction plane, as the
electrons pass by; and a unipolar negative signal on the collection plane, as
the electrons are collected.

A bias voltage is applied across the three wire planes, causing electrons
to drift towards the furthest plane. As they pass intermediate planes, they
induce a current — first negative, as they approach, and then positive, as
they pass by — before being collected by the final, positively biased plane
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of wires. A TPC therefore generally comprises one or two ‘induction planes’
that produce bipolar waveforms, and a final ‘collection plane’ that produces
largely unipolar waveforms (as shown in Figure 4.2).

Each wire plane provides a different 2D representation of particle inter-
actions in the plane parallel to the APA. The location of deposited charge
along the spatial dimension perpendicular to the anode plane can be inferred
from electron drift time, if the t0 of the interaction is known.

Typically, the readout wires are connected to cold electronics: signal pro-
cessing electronics located within the cryostat in order to minimise electronic
noise. These electronics consist of ASICs connected to cold motherboards
that issue configuration commands to ASICs, as well as transfer the output.
These motherboards are connected to cold cables on the interior of the cryo-
stat, which are in turn connected to metal flanges that provide an interface
to the exterior of the cryostat, where warm cables carry data for downstream
DAQ processing.

4.1.2 Light detection

Particles traversing liquid argon produce light through scintillation and
Cherenkov radiation. Scintillation light is emitted isotropically by the ra-
diative decay of argon excimers, and liquid argon is a bright scintillator,
yielding around 24,000 photons per MeV at 500 V/cm drift field [35], with
a wavelength of 128 nm [38]. It is transparent to the scintillation light it
produces. The scintillation light has two components, with decay times of
6 ns and 1.6 µs, though the timescales of both components are far shorter
than the typical electron drift time.

Since scintillation light is prompt in comparison to electron drift times,
photon detection is used as a means of time-tagging events. Light detection
provides a t0 for particle interactions, which are used in conjunction with
drift time to determine the final spatial dimension of particle interactions.
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4.1.3 Cryogenics and argon purity

Since argon is gaseous at ambient temperatures, it must be continously cryo-
genically cooled to remain in its liquid state. Liquid argon detectors make
use of cryogenic systems to maintain an operating temperature of around
87 K, and must also minimise temperature gradient in order to achieve a
uniform electron drift velocity [35].

The survival probabilities of ionisation electrons and scintillation photons
(and therefore the detector’s ability to resolve charge and scintillation light)
are dependent on the purity of liquid argon. For ionisation electrons, the pri-
mary sources of electron capture are electronegative contaminants such as O2,
neutral molecules that attract ionisation electrons to form negative ions [39].
Nitrogen contamination must be minimised to prevent quenching and atten-
uation of scintillation photons [35]. Exact purity requirements depend on the
specific detector design; for instance, a longer drift volume requires a higher
electronegative purity to achieve the same energy resolution.

4.2 Particle signatures

The raw readout of a LArTPC is the charge on a wire, expressed in analogue-
to-digital conversion (ADC) counts over a range of discrete time ticks (typi-
cally 2 MHz digitisation frequency [35], leading to 0.5 µs precision in time).
Reconstruction techniques are used to process these raw waveforms, convert-
ing them into analysable information.

Several discrete stages of data processing are required in order to move
from raw waveforms to fully reconstructed particles. The first of these is
signal processing, which is performed on the raw waveform.

Signal processing is a reconstruction stage that accounts for the effects the
detector itself has on waveforms — corrections for electronics, drift field, elec-
tron diffusion and recombination. Typically, signal deconvolution is applied
to correct for these effects, resulting in a Gaussian wire signal — although
prolonged activity on a wire (O(ms)) is indicative of a track parallel with
the wire, in which case the Gaussian approximation is inaccurate and a fast
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Fourier transform method is used instead [40].

Figure 4.3: A track in a TPC (top) is detected as activity on wires, which
are characterised as hits. Hits are described using Gaussian distributions
— a simple signal (bottom) can be described using a single hit, while more
complex activity on a wire (centre) must be described using a series of hits
(from [40]). This figure shows a simulated track in the MicroBooNE TPC,
using two wires in the first induction plane.

After signal processing, hit reconstruction is applied. All activity on
the wire is described in terms of Gaussian distributions, as demonstrated in
Figure 4.3. Once the processed waveforms have been converted into hits,
object reconstruction can begin.

Pattern recognition is performed to cluster hits together and associate
them with objects. Tools such as Pandora [41] cluster hits independently
in each wire plane. These clusters are then matched across wire planes,
and refined using information from all planes, producing clusters of 2D hits
grouped over all three wire planes.

The wirecell method [42] takes a different approach — using medical
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imaging techniques, the waveforms in each plane are combined into 3D hits
inside the TPC, and these 3D hits are subsequently clustered into objects.

Once pattern recognition techniques have been applied, and hits have
been clustered into track-like and shower-like objects, high-level reconstruc-
tion is carried out. Track and shower objects are created, with the geometry
of a line and a cone respectively, and physics quantities such as specific energy
loss dE/dx are computed, and particle identification performed.

4.2.1 Charged leptons and mesons

Charged leptons and mesons — most commonly µ± leptons and π± mesons
— are identified by their long straight tracks inside LArTPCs. A muon will
typically decay via µ− → e−νeνµ, while charged pions typically decay to
muons. Typical energy thresholds in a LArTPC are ∼ 10 MeV [43].

The rate at which ionisation occurs is described by the Bethe Bloch equa-
tion,
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where c is the speed of light, z the particle’s charge, ε0 the vacuum permittiv-
ity, β = v/c, and n and I the medium’s electron density and mean excitation
potential respectively [39]. The density correction term that describes the
charged particle’s polarisation of the medium is omitted, as its effects are neg-
ligible in the particle energy regime typically observed in LArTPC neutrino
experiments.

Following an energy calibration to convert each hit’s ADC count into an
equivalent charge, the rate of energy deposition along a charged particle’s
trajectory can be measured, and a track’s particle type determined. For
instance, the PIDA technique [44] averages the quantity

Ai = dE/dxcalo,iR
0.42
i , (4.2)

where dE/dxcalo and R are the energy deposition and residual range for
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each point along a track’s trajectory, and the total score A is the average of
Ai over each trajectory point i. As shown in Figure 4.4, µs and πs are most
difficult to resolve, while K and p particles have a more distinct signature.

Figure 4.4: The PIDA score for Monte Carlo charged particles in a LArTPC,
as defined in Equation 4.2 (from [44]).

4.2.2 Nucleons

Protons are heavily ionising charged particles, and so proton tracks left in
a TPC are shorter and deposit more energy than their hadronic and lep-
tonic counterparts. The energy threshold for efficienctly reconstructing a
proton track is a kinetic energy of ≈ 20 MeV [45]. Since neutrons are neutral
particles, they cannot be directly detected in the TPC.



52 Chapter 4: Liquid Argon Time Projection Chambers

4.2.3 Electromagnetic showers

Although electromagnetic showers are cascades of both photons and e± par-
ticles, it is possible to identify the type of the initiating particle by studying
the dE/dx at the start of the shower.

For photons, the first step in showering is to convert into an electron-
positron pair. During the formation period for these particles, before they
are able to initiate a cascade, they both behave as minimum ionising particles
(MIPs). The energy loss at the start of the shower will be consistent with
two MIPs. By contrast, for EM showers initiated by an electron or positron
the energy loss at the start of the shower is consistent with a single MIP.
Electrons and photons can be distinguished by measuring dE/dx for the first
few cm of the shower, and determining whether it resembles one or two MIPs.

Automatically reconstructing EM showers in LArTPCs is not a trivial
problem. Unlike tracks, which are easy to identify from a pattern recognition
standpoint, showers are more complex. Although approximately conical in
shape, defining this cone can be challenging, and the decision of whether to
include hits at the edge of the cone can a large effect on shower direction.

Many techniques are in development to solve this problem — for instance,
one approach applies Gaussian blurring to hits in order to emphasise the
broadly conical shape of a shower [46], while another applies a principle
components analysis to clustered hits in order to achieve a similar goal. These
tools, and shower reconstruction as a whole, are still under development [47].

4.2.4 Reconstructing π0 mesons

At present, the greatest challenge for identifying n − n̄ events using tradi-
tional reconstruction methods is the identification of π0 → γγ decays. To
correctly identify and reconstruct the π0, we must first identify a pair of elec-
tromagnetic showers in the event, use their invariant mass to confirm that
the two showers did originate from a π0 and calculate the pion energy, using

Eπ0 =
√

2 E1E2 (1− cos θ12) , (4.3)
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where E1 and E2 are the energies of the two showers, and θ12 is the angle
between their directions.

The efficiency with which π0 decays are reconstructed in a LArTPC
strongly depends on the efficiency with which single showers are identified,
and their calorimetry, direction and spatial resolution determined. The an-
gular resolution of showers is of particular importance: mis-identifying the
angle of an electromagnetic shower by even a few degrees has a large impact
on the ability to correctly tag π0 particles.

A study to reconstruct π0 mesons from electromagnetic showers in the
ICARUS T600 detector [48] found the π0 mass resolution to be 27.3% (im-
proved to 16.1% by limiting the event sample to cleaner events). However,
this analysis was performed using only 212 events, and crucially, it was not
carried out using automated reconstruction — for each event analysed, the
hits were clustered into separate showers manually by analysers.

Since this approach is statistics-limiting, the ICARUS π0 mass resolution
is not representative of a generalised LArTPC’s ability to reconstruct π0

mesons. Studies in MicroBooNE using MC reco (as defined in Section 7.2.2)
indicate π0 mesons can be reconstructed with a purity (proportion of recon-
structed π0s that correspond to a true π0) of 82% and an efficiency (fraction
of true π0s that were correctly reconstructed) of 61.2% in the context of a
neutral current single-π0 cross-section measurement [49].

4.3 LArTPC detectors

4.3.1 History

Argon-based detectors were first proposed by Carlo Rubbia in 1964 [50], and
also by Willis & Radeka later in the same year [51], as a method of total
ionisation particle detection. They serve as a modern equivalent to bubble
chamber technology invented in the 1950s; the electronic intrumentation of
a LArTPC provides the opportunity for automated reconstruction and event
selection, greatly streamlining the process of data collection and analysis.

The first LArTPC to be constructed was the 3 ton ICARUS prototype,
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commissioned in 1991 [52]. Following its success, a much larger version, the
600 ton ICARUS T600 was commissioned in 2001 [53]. The first US-based
LArTPC was ArgoNeuT, first commissioned in 2008 [54].

4.3.2 The MicroBooNE detector

Figure 4.5: A schematic diagram demonstrating the cylindrical MicroBooNE
cryostat and the rectangular field cage within. The TPC is approximately
10 metres long, and approximately 2.5 metres tall and wide (from [35]).

MicroBooNE is an on-surface 87 ton active volume LArTPC based at
Fermilab in the United States. Its primary physics goals are to investigate
the MiniBooNE low energy excess [55] and perform neutrino-argon cross-
section measurements in the ∼ 1 GeV range, and it also serves as R&D for
the new generation of LArTPC experiments.
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Figure 4.6: A cross-sectional diagram showing the internal configuration of
the MicroBooNE detector. The x dimension is defined parallel to the electron
drift direction (from [35]).



56 Chapter 4: Liquid Argon Time Projection Chambers

4.3.2.1 Time projection chamber

The MicroBooNE TPC consists of a single cathode plane and a single APA,
with physical dimensions 10.4 × 2.7 × 2.3 m3; a schematic diagram is
shown in Figures 4.5 and 4.6. The cathode consists of 9 stainless steel sheets,
supported by a frame of cylindrical and square tubes on the outer edge. The
APA contains three wire planes: two induction planes of 2400 wires each, at
an angle of ±60° to the vertical, and a collection plane of 3456 vertical wires,
with a total of 8256 wires. Wires in the diagonal U and V planes are shorter
in length at either end of the TPC, due to the rectangular shape of the APA.

The operational drift voltage in MicroBooNE is 275 V/cm, with a nominal
overall drift high voltage of -70 kV on the cathode. The U, V and Y wire
planes are biased to -200 V, 0 V and +400 V respectively.

4.3.2.2 Light collection

Figure 4.7: A schematic of the light collection system in MicroBooNE, show-
ing both circular PMTs and light guide paddle PMTs (from [35]).

Light in MicroBooNE is collected using 32 photomultiplier tubes, each
coated with a wavelength-shifting plate that shifts 128 nm vacuum ultraviolet
scintillation light into the visible spectrum with a wavelength of 425±20 nm.
In addition, four light-guide PMTs were installed in MicroBooNE in order to
perform R&D for future LArTPCs. The locations of these PMTs within the
cryostat are shown in Figure 4.7.
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4.3.2.3 Purity monitoring

The purity of argon in MicroBooNE is measured using double-gridded ion
chambers [56]. Electrons are produced at a cathode via the photoelectric
effect using a UV laser, and drift to an anode where they are collected.
The purity of the liquid argon is measured by taking the ratio of the charge
liberated at the cathode to the charge collected at the anode,

QA/QC = e−t/τ , (4.4)

where τ is the electron lifetime in liquid argon.

4.3.3 The DUNE far detector

Figure 4.8: The full DUNE far detector with four 10kt underground modules,
in their expected configuration at SURF in Lead, SD (from [57]).

In contrast with MicroBooNE, the DUNE far detector is still in its design
phase, and has not yet been constructed. It will consist of four 10 kt modules,
at a depth of approximately 1.5 km underground at the Sanford Underground
Research Facility in Lead, SD [9].

Two reference designs are currently being considered: a single phase de-
sign that shares high-level design concepts with existing LArTPCs like Mi-
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Figure 4.9: The planned layout for alternating anode and cathode planes
in a single DUNE module (from [57]). The anode wire planes on each side
measures a single drift region, while the central anode wire plane measures
signals from drift regions on both sides.
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croBooNE, and a dual phase design that proposes several modifications to
the current LArTPC design standard [57]. The current nominal DUNE de-
sign assumes the DUNE 40 kt fiducial mass will consist of two 10 kt single
phase modules and two 10 kt dual phase modules. The work described in
this thesis assumes a single-phase geometry for the DUNE far detector, and
the following sections describe the current nominal single phase geometry,
which is used to produce simulations for the studies in Chapter 7.

4.3.3.1 Time projection chamber

The external dimensions of a DUNE single-phase 10 kt module will be 12 m
high, 14.5 m wide and 58 m long; the layout of the four modules is shown
in Figure 4.8. Due to limitations in the size of individual drift volumes
and APAs, each 10kt module will in turn consist of many TPC modules.
Although these modules are often referred to as 10 kt modules, due to the
10 kt fiducial mass used for neutrino analyses, the active mass of each module
is ≈ 12.1 kt [57]. Nucleon decay searches may be able to make use of this
larger mass to improve sensitivity.

Each drift volume is approximately 3.5 m in distance between anode and
cathode; each module will alternate between anode and cathode as demon-
strated in Figure 4.9, with a total of three APAs and four readout volumes
across the detector’s width. Two modules will be stacked vertically, and the
entire structure will be repeated 25 times along the beam direction, resulting
in 200 total drift volumes and 150 wire plane readout cells.

The DUNE far detector will have three wire planes; the two induction
planes will be angled ±35.7◦ from the vertical, with a final collection plane
oriented vertically. Unlike MicroBooNE, in which the diagonal wire planes
have short wires at each edge, DUNE’s diagonal wires will wrap around at
the edge of the APA, and so each induction wire will be instrumented on both
sides of the collection plane. This allows the central APA in the detector to
measure both drift volumes on either side using effectively fewer channels.
For interactions that cross the anode plane this introduces additional ambi-
guities, as electrons will drift and be collected on the anode wires from both
directions.
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4.3.3.2 Light collection

The design of the DUNE photon detection system has not yet been finalised.
According to the current reference design [57], the photon detection system
will be mounted as modules onto the APA frames, with a light-guide and 12
silicon photomultipliers. Each APA will have ten such modules attached at
regular intervals.



5 GENIE Event Generator

In order to determine DUNE’s ability to measure n− n̄ oscillation, it is vital
to have access to simulations of the process. Due to the lack of any readily
available simulations, an event generator was developed, as part of this thesis
work, as a standalone application within the GENIE simulation framework.

This chapter discusses the development of this event generator to simulate
the experimental signature of nucleus-bound n− n̄ oscillation. It summarises
techniques used to simulate the process and then presents some truth-level
topological studies, demonstrating the effects that simulation of various nu-
clear effects have on the final state. It also describes some approximations
made, and suggests potential extensions.

5.1 Simulation methods

The development of an n − n̄ event generator poses a specific set of chal-
lenges; since it is a beyond Standard Model process that has never been
observed, there is no data that can be used as a reference. Instead, we must
use available data that provides the closest approximation, and use physics
simulations to adapt this data as accurately as possible to a signal simulation.

The full n− n̄ interaction can be summarised as a series of stages:

• A neutron bound inside the nucleus, with Fermi momentum and bind-
ing energy, spontaneously oscillates into an antineutron.

• The antineutron annihilates with another nucleon, which also has Fermi
momentum and binding energy.

61



62 Chapter 5: GENIE Event Generator

• The products of this decay are produced inside the nucleus, according
to some prescribed branching ratios.

• These decay products propagate through the nucleus — reinteracting
with nucleons as they travel, or decaying — until they escape the nu-
cleus.

To accurately simulate this entire process, several different aspects of
nuclear modelling must be simulated. Since simulating these processes from
first principles would be time-consuming and needlessly complex, the event
generator framework GENIE is used, which provides the necessary physics
utilities.

GENIE (Generates Events for Neutrino Interaction Experiments) [58])
is primarily a neutrino interaction event generator. As such, its primary
function is to simulate the interaction between a neutrino and a nucleon
— accounting for neutrino flux, neutrino-nucleon interaction cross-sections,
final state branching ratios, intranuclear kinematics, and the intranuclear
transport of interaction by-products. Several of these utilities can be adapted
to be used to simulate n− n̄ oscillation, namely the nucleon kinematics and
intranuclear transport functions. This overlap extends beyond just n − n̄

oscillations: a standalone GENIE application for nucleon decay simulation
existed prior to the development of this n− n̄ event generator.

The n− n̄ oscillation generator was developed within a private repository
of GENIE v2.9.0, and in the later stages of development became a GENIE
incubator project. Upon completion, the generator was officially released in
GENIE v2.12.0 [59].

GENIE simulations use an object called the Event Record
(genie::EventRecord) to track the various stages of the interaction. This
event record is a list of particles, with information on each particle’s type,
energy, momentum and position, and at which stage of the interaction it
existed. The following few sections step through the simulation process in
sequence, beginning with the initial state nucleus prior to n − n̄ oscillation
and ending with final state particles leaving the nucleus.
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5.1.1 The initial state

The event generator is designed to take the initial state element and isotope
as a user input. This is specified using the Particle Data Group nuclear
code [60], expressed in the form ±10LZZZAAAI, where L is the total num-
ber of strange quarks, ZZZ the total number of protons, AAA the total
baryon number, and I the isomer level (where I = 0 corresponds to the
ground state). For instance, for an unexcited 40Ar nucleus, the nuclear PDG
code is 1000180400.

A restriction is placed on which nuclei can be provided as an initial state,
since it must be included in GENIE’s PDGLibrary. Since the event genera-
tor makes use of GENIE’s nuclear utilities, the user is limited to those nuclei
for which GENIE records this information. Once a valid nucleus is speci-
fied, this nucleus is added to the GENIE event record as the initial state
(kIStInitialState), completely at rest.

5.1.2 Simulating the oscillating neutron

Once the initial state nucleus has been selected, the next step is to simu-
late individual nucleons inside this nucleus. GENIE does not independently
simulate all nucleons inside the nucleus, and so an approximation must be
made. Calling GENIE’s function to provide a nucleon’s Fermi momentum
and binding energy does not account for any nucleons previously simulated.
Since this event generator explicitly simulates only two nucleons — the oscil-
lating neutron and the nucleon it annihilates with — this lack of correlation
is not an issue for medium and large sized nuclei. However, for very small
nuclei this approximation is insufficient, as it can introduce inconsistencies
in momentum conservation between individual nucleons and the nucleus as
a whole.

The oscillating neutron’s position inside the nucleus is selected at random
based on the density profile of nucleons within the nucleus, using GENIE’s
utils::nuclear::Density(r,A) function. For nuclei with a baryon number
of 20 or greater, GENIE models the nuclear density with a Woods-Saxon
distribution [61],
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ρ(r) =
ρ0

1 + e(r−R0)/a
, (5.1)

where r is depth inside the nucleus; R0 = r0A
1
3 is the nuclear radius, with

r0 = 1.4 fm in GENIE; ρ0 is usually nuclear density at r = 0, but in GENIE
is replaced with a normalisation constant to express nuclear density as a
probability distribution; and a is a distance describing the “surface thickness”
of the nucleus, set to a = 0.54 fm for 40Ar in GENIE.

Similarly, nucleon Fermi momentum and binding energy are provided by
the genie::NuclearModelI class, an interface to whichever nuclear model
the user has enabled in GENIE’s configurable user physics options. By de-
fault, the Bodek-Ritchie Fermi gas model [62] is enabled in GENIE v2.12.0
— although other models are available, such as the local Fermi gas model
and the effective spectral function model [63]. The Bodek-Ritchie model is
used for all work discussed in this thesis.

The neutron that undergoes oscillation into an antineutron is added to the
GENIE event record as part of the stable decayed state (kIStDecayedState).
By this stage it has already oscillated into an antineutron, but due to GENIE
bookkeeping it must be added to the event record as a neutron. This has no
effect on later stages of simulation.

5.1.3 Simulating the annihilating nucleon

Once the oscillating neutron has been selected, the generator then considers
the nucleon with which the antineutron annihilates. The annihilation nucleon
is selected to be either a proton or a neutron, based on the proton-to-neutron
ratio of the initial state nucleus omitting the neutron that has oscillated. For
example, in 40Ar there is an 18/39 chance of annihilating with a proton and
a 21/39 chance of annihilating with a neutron.

The position of this second nucleon is assigned to be identical to the
oscillating neutron’s position. This is a simplifying approximation — a more
rigorous approach would be to simulate all nucleons in the nucleus according
to the nuclear density particle and select the closest candidate, then select the
annihilation vertex as a point equidistant between the two. However, since
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this would yield an annihilation vertex distribution similar to the oscillating
neutron’s position, the position of the second nucleon is approximated to be
identical to that of the oscillating neutron.

As with the oscillating neutron, the annihilation nucleon’s removal energy
and Fermi momentum are simulated using genie::NuclearModelI, and the
particle is added to the event record as part of the stable decayed state
(kIStDecayedState).

5.1.4 Simulating the remnant nucleus

With the initial nucleus and two interacting nucleons simulated, the next
step is to simulate the remnant nucleus. This remnant nucleus is assigned
the nuclear PDG code of the initial nucleus with the two interacting nucle-
ons subtracted, and its momentum and energy are chosen to conserve energy
and momentum with respect to the two annihilating nucleons. The rem-
nant nucleus is added to the event record as part of the stable final state
(kIStStableFinalState).

5.1.5 Simulating annihilation products

With the initial state nucleus, annihilating nucleons and remnant nucleus
simulated, the next step is to simulate annihilation products. The annihila-
tion vertex is approximated as the position of both annihilating nucleons.

A Monte Carlo method is used to select a final state based on the
branching ratios shown in Table 3.2, which originate from a recent Super-
Kamiokande n− n̄ search [1]. A particle object is then created for each of the
annihilation products listed in the chosen final state, with the corresponding
PDG code assigned.

The net momentum of the two-nucleon system is calculated, and then
the two annihilating nucleons are Lorentz boosted into this system’s rest
frame using ROOT’s TLorentzVector::Boost function. The total available
energy of the two particles in this frame is calculated, and then the ROOT
TGenPhaseSpace class is used to distribute this energy to the annihilation
products. This class performs a phase space decay, assigning each anni-
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hilation product with energy and momentum based on the total available
centre-of-mass energy. Finally, these decay particles are Lorentz boosted
back into the lab frame, and added to the event record as hadrons inside the
nucleus (kIStHadronInTheNucleus).

5.1.6 Final state interactions

Before hadrons produced during the nucleon-antineutron annihilation can be
detected, they must escape the nucleus in which n − n̄ oscillation occurred.
For heavy nuclei such as 40Ar, hadrons can travel up to 8 fm before escaping
the nucleus [61], and so the probability of reinteracting is high. Final state
interactions (FSI) have a large impact on the final state, and so simulating
this step is vital.

The transport of final state hadrons out of the nucleus is handled by a
subpackage of GENIE called INTRANUKE [58]. The branching fractions
and reinteraction probabilities in this model are tuned to bubble chamber
data on hydrogen and deuterium targets. It uses the free cross section to
estimate the likelihood of reinteraction, defining the mean free path as

λ(E, r) =
1

σhN,tot × ρ(r)
, (5.2)

where σhN,tot is the cross section and ρ(r) the nuclear density; in the model
used for this work, cross-sections are tuned to data primarily from bubble
chamber data on hydrogen and deuterium targets. It also accounts for the
formation time of hadrons, which manifests as a ‘free step’ at the start of a
hadron’s lifetime, in which it will not interact.

The default model, and the model used for this work, is hA IN-
TRANUKE [58]. Hadrons are propagated through the nucleus, until they
either reinteract or escape the nucleus. If they reinteract, the module uses
lookup tables from data to move immediately to simulated particles that exit
the nucleus, unlike the full hN cascade model that simulates the interaction
products and continues to propagate them through the nucleus. As a conse-
quence, the hA module is less computationally intensive, and is less sensitive
to uncertainties in the mean free path of pions in the nucleus.
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The INTRANUKE module selects hadrons generated in the nucleus, by
identifying all particles in the event record with status kIStHadronInTheNucleus.
It then performs hadron transport on all of these particles, simulates the par-
ticles that exit the nucleus, and adds these particles to the event record with
the status (kIStStableFinalState).

5.2 Simulation results

Figure 5.1 shows an example event display of an n− n̄ event simulated by the
GENIE event generator. This event was produced in GENIE and then run
through subsequent MicroBooNE simulation stages to produce this image.

In order to determine the impact of nuclear effects on n− n̄ final states,
several Monte Carlo samples were produced in varying configurations. The
n − n̄ event generator makes use of three nuclear utility functions provided
by GENIE:

• Binding energy

• Fermi momentum of the annihilating nucleons

• FSI that occur as hadrons exit the nucleus

Figures 5.2, 5.3, 5.4 and 5.5 demonstrate the effects of nuclear simulations
in GENIE. In each of these figures, a distribution produced using default
GENIE nuclear effects is compared to the same distribution with components
of the nuclear simulation disabled, as follows:

• FSI disabled, binding energy and Fermi momentum enabled

• FSI and binding energy disabled, Fermi momentum enabled

• FSI and Fermi momentum disabled, binding energy enabled

• FSI, Fermi momentum and binding energy disabled

• (FSI enabled, binding energy and Fermi momentum disabled)
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Figure 5.1: An example event display of a simulated n−n̄ event in the Micro-
BooNE detector. The event was simulated using the GENIE event generator,
and then propagated through the standard MicroBooNE simulation chain.
The event is nn̄ → π+π−3π0; the π+ is absorbed during final state interac-
tions, and the event contains a short proton track ejected during FSI. Six
electromagnetic showers emerge from the central vertex, as well as a long
track produced by a π− and a short track produced by a proton. The colour
scale represents charge deposited on wires, ranging from blue for low charge
deposition to red for high charge deposition.
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Figure 5.2: Event pion multiplicity for various configurations of nuclear simu-
lation. The nominal distribution, with all nuclear effects enabled, is provided
for reference in red in all subfigures. Since the binding energy and Fermi mo-
mentum of initial state nucleons do not affect multiplicity of pions in the final
state, all distributions except the nominal are identical except for statistical
fluctuations.
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Figure 5.3: Momentum of individual final state pions for various configura-
tions of nuclear simulation. The nominal distribution, with all nuclear effects
enabled, is provided for reference in red in all subfigures.
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Figure 5.4: Event invariant mass of particles exiting the nucleus for vari-
ous configurations of nuclear simulation. The nominal distribution, with all
nuclear effects enabled, is provided for reference in red in all subfigures.
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Figure 5.5: Absolute magnitude of momentum vector sum all particles exiting
the nucleus for various configurations of nuclear simulation. The nominal
distribution, with all nuclear effects enabled, is provided for reference in red
in all subfigures.
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Pion multiplicity in the final state (Figure 5.2) is heavily influenced by
FSI, and is not affected at all by Fermi momentum or binding energy. The
individual pion momentum distribution (Figure 5.3) is smeared towards lower
momenta by FSI, and shifted to the left by binding energy. A small peak
around 900 MeV in momentum is visible when Fermi momentum is disabled,
corresponding to the two-body final states in which each pion inherits half
of the invariant mass from the annihilation.

The invariant mass is calculated as

M =
√∑

E2
i − |

∑
~pi|2 , (5.3)

where the i index refers to pions in the final state, each of which has energy
Ei and momentum ~pi.

FSI smear the invariant mass (Figure 5.4) down from ∼ 2 GeV to lower
energies. A small peak is visible around the mass of a single pion, corre-
sponding to events where all but one pions are absorbed during FSI. As with
pion momentum, binding energy introduces a characteristic shift to lower in-
variant mass, and Fermi moemntum smears the distribution by ∼ 100 MeV.

The total event net momentum is defined as the absolute magnitude of
a vector sum of all final state pions. The total event net momentum distri-
bution (Figure 5.5) is smeared to higher momenta by both FSI and Fermi
momentum; the impact of Fermi momentum is more apparent in this distri-
bution than in individual pion momentum or invariant mass. Net momentum
is not affected by the simulation of binding energy.

5.2.1 Super-Kamiokande comparison

The n − n̄ analysis published by the Super-Kamiokande collaboration [1]
describes the tools used to simulate the process. For the signal simulation,
they use an event generator designed by the IMB collaboration to search for
n − n̄ oscillation in Oxygen. The pion multiplicities and momenta produced
by the GENIE event generator were compared to the Super-Kamiokande
simulation, as shown in Table 5.1, as were the branching ratios for various
FSI processes, as shown in Table 5.2.
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GENIE predicts a much lower final state pion multiplicity than Super-
Kamiokande’s event generator in 16O (Table 5.1), and as a result the av-
erage pion momentum is larger. This is due to GENIE’s simulation of fi-
nal state interactions predicting a higher probability of reinteraction. As
demonstrated in Table 5.2, GENIE predicts a 34% probability of a final
state particle escaping the nucleus without reinteracting, compared to 49%
in Super-Kamiokande.

Table 5.1: Comparison of pion multiplicities and momenta between between
Super-Kamiokande simulations in 16O and GENIE n− n̄ simulations in both
16O and 40Ar. The multiplicities and momenta quoted for Super-Kamiokande
come from [1]. A 100,000 event 16O sample was generated using the GENIE
event generator, to allow direct comparison with Super-Kamiokande values.
Also provided are the same values for a 1,000,000 event GENIE sample gen-
erated in 40Ar.

Super-K. GENIE (16O) GENIE (40Ar)
π multiplicity 3.5 2.37 2.94
π± multiplicity 2.2 1.57 1.96
π± mean mom. [MeV] 310 372 344
π± RMS mom. [MeV] 190 190 190

Table 5.2: Comparison of branching fractions for various FSI processes expe-
rienced by intermediate state pions between Super-Kamiokande and GENIE
n− n̄ event generators. The branching ratios quoted for Super-Kamiokande
come from [1], while the corresponding values for GENIE come from the
same 16O and 40Ar samples described in Table 5.1.

Super-K. GENIE (16O) GENIE (40Ar)
No FSI 49% 34.0% 15.6%
Absorption 24% 18.8% 24.0%
Nucleon interaction 3% 4.2% 5.3%
Scattering 24% 43.1% 55.1%
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5.3 Discussion

5.3.1 Branching ratio corrections

The annihilation branching ratios effectively used within the GENIE event
generator are not identical to the branching ratios published by previous
n− n̄ searches, shown in Table 3.2. These ratios are not explicitly modified,
but it is sometimes necessary to reselect a final state during simulation.

Reselecting the final state is necessary due to event kinematics in one final
state specifically — n̄p→ 2π+π−2ω. The branching ratios, which are derived
from the annihilation of ‘at-rest’ antiprotons on deuterium targets, claim this
final state occurs in 16% of n̄p annihilations. However, the total mass energy
of this final state is 1984 MeV, 106 MeV greater than the mass energy in the
initial state. For the 40Ar nucleus, it is highly unlikely that the centre-of-
mass energy available due to Fermi momentum of the two nucleons is large
enough to account for both the binding energy and this mass difference.

When there is not enough available energy to perform the annihilation
into this final state, the generator will select a different final state, using the
same branching ratios. As a consequence, this final state is very heavily sup-
pressed — the branching ratio falls from 16% to 0.003%, while the branching
ratios for all other final states are scaled up proportionally. The effective
branching ratios, including dynamic modifications due to event kinematics,
are presented in Table 5.3.

This discrepancy occurs because ‘at-rest’ antiproton annihilation data
is measured using low-energy antiprotons, which are not truly at rest. As
discussed in Section 3.3.1, the data sets from which branching ratios are
derived do not explicitly state their definition of ‘at-rest’, though in the
equivalent data sets for p̄n annihilation data, ‘at-rest’ is defined by antiproton
momenta as high as 250 MeV, sufficient to produce the final state in question.

5.3.2 Validating the phase space approximation

As discussed in Section 5.1.5, the process of dividing out energy produced
in the annihilation between final state particles is performed via a phase
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Table 5.3: Neutron-antineutron oscillation final state branching ratios gen-
erated by the GENIE event generator, including the dynamic scaling-down
of final states suppressed by event kinematics.

n̄+ p n̄+ n
π+π0 1.2% π+π− 2.0%
π+2π0 9.5% 2π0 1.5%
π+3π0 11.9% π+π−π0 6.5%
2π+π−π0 26.2% π+π−2π0 11.0%
2π+π−2π0 42.8% π+π−3π0 28.0%
2π+π−2ω 0.003% 2π+2π− 7.1%
3π+2π−π0 8.4% 2π+2π−π0 24.0%

π+π−ω 10.0%
2π+2π−2π0 10.0%

space approximation. This method does not model the underlying physics
of each final state, such as correlations in energy and direction of final state
products caused by intermediate states. Due to the high probability that final
state particles will reinteract before exiting the nucleus, resulting in a change
in energy and direction, absorption, and/or the production of new particles,
most small modifications to final state particle kinematics caused by detailed
modelling of intermediate states immediately after annihilation will be lost
by the time these particles exit the nucleus. Based on this assumption, the
phase space decay is taken to be an adequate method for distributing energy
and momentum among final state particles.

A study was performed to test the validity of this assumption, using
the final state n̄n → π+π−π0. Events were generated in GENIE without
final state interactions enabled, in order to compare directly with antiproton
annihilation data on deuterium. Although the GENIE generator performs
a phase space decay immediately from the two nucleons to the three-pion
final state, a review of antiproton annihilation data (from which annihilation
branching ratios are derived) instead claims that 55% of annihilations occur
via the intermediate state n̄n → πρ → 3π. The ‘dipion mass’ (invariant
mass of each two-pion combination) shows a peak at 770 MeV, the mass of
the ρ meson, which is not modelled at all by the phase space approximation
in GENIE. A comparison is shown in Figure 5.6.
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Modifications were made to the GENIE event generator to make the di-
pion mass distribution more closely resemble the data. In accordance with
antiproton scattering data [31], a phase space decay from the initial to final
state is performed 45% of the time. In the remainder of events, a phase space
decay is performed into the intermediate πρ final state, followed by a second
phase space decay when the ρ decays into two pions. Gaussian smearing is
applied to the modified GENIE distribution to account for detector uncer-
tainties, and is compared directly with data in Figure 5.6.
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Figure 5.6: Dipion mass distributions for the n̄n→ π+π−π0 final state. The
green distribution in both subfigures comes from antiproton-deuterium anni-
hilation data [31]. The blue distribution (a) is GENIE with a simple phase
space approximation, while the red distribution (b) is a modified version of
GENIE that accounts for the intermediate state with a ρ meson, with addi-
tional Gaussian smearing applied to pion momentum to account for detector
uncertainties in data.

Event samples from both the original and modified GENIE generators
are generated, and the dipion mass and pion momentum distributions of
final state particles are compared both before and after final state inter-
actions. The distributions before FSI are displayed in Figure 5.7, and the
corresponding distributions after FSI are displayed in Figure 5.8.

As shown in Figures 5.7 and 5.8, the considerable difference in dipion
mass distributions before FSI is drastically reduced with the addition of FSI.
The mass peak around 770 MeV, which appears as a large δ function in the
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dipion mass distribution in the modified generator before FSI, is reduced to
a small excess after FSI. The pion momentum distributions are very similar
both before and after FSI, since the intermediate state has a greater effect on
correlated pairs of pions than on any individual pion. Based on this study,
the phase space approximation without any modelling of intermediate states
is taken to be sufficiently accurate for 40Ar, given that any fine structure
modelled in intermediate states is lost in FSI regardless.

0.0 0.5 1.0 1.5 2.0
Dipion mass [GeV]

0

1

2

3

4

5

6

N
o.

pi
on

pa
ir

s
[n

or
m

ed
]

GENIE nnbar (modified)

GENIE nnbar (original)

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Momentum [GeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o.

pi
on

s
[n

or
m

ed
] GENIE nnbar (modified)

GENIE nnbar (original)

(b)

Figure 5.7: The dipion mass distribution (a) and pion momentum distribu-
tion (b) of both the original (single phase space decay) and modified (phase
space decay with intermediate state) GENIE event generators, before final
state particles have undergone final state interactions.

5.4 Conclusions

The GENIE neutron-antineutron oscillation module provides a simple, robust
method of simulating bound neutron-antineutron oscillation. The simulation
of this process is vital for any searches for neutron-antineutron oscillation in-
side a relatively heavy nucleus, and this module is the first open-source, pub-
licly available n− n̄ event generator. Due to the flexibility of the generator,
it facilitates not only the search for n− n̄ in DUNE, but in any mid-to-heavy
nucleus. Detailed modelling of intermediate states is shown to be unneces-
sary, at least for heavier nuclei, as all resulting features are washed out by
final state interactions.
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Figure 5.8: The dipion mass distribution (a) and pion momentum distribu-
tion (b) of both the original (single phase space decay) and modified (phase
space decay with intermediate state) GENIE event generators, after the final
state particles have propagated out of the nucleus and undergone final state
interactions.
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6 Convolutional Neural
Networks

Convolutional neural networks (CNNs) are an image processing tool that per-
form successive layers of convolutions on images in order to identify features
and associate these features with labels. The LeNet CNN architecture was
devised in 1998 as a tool for identifying handwritten characters [64], but the
potential applications are far more widespread. Recent advances in graphi-
cal processing greatly improve the speed at which CNNs train and classify
images, leading to their widespread adoption as a classification technique.

Since LArTPCs naturally produce high-resolution images as their output,
CNNs are a natural fit as an event classification and analysis tool. Recent
work by the MicroBooNE collaboration has demonstrated that CNNs are
effective both at single-particle identification and at neutrino event identifi-
cation [5], and provides analysis tools for performing CNN-based studies in
LArTPCs.

This chapter describes the operating principles of CNNs, and summarises
specific tools used. This serves as prelude to the following chapters, which
describe the use of CNNs within the context of n− n̄ oscillation searches in
LArTPCs.

6.1 CNN operating principles

Convolutional neural networks are a form of artificial neural network (ANN),
computational systems designed to mimic the connectivity of the human
brain. These systems are comprised of many individual, highly-connected

81



82 Chapter 6: Convolutional Neural Networks

Figure 6.1: A diagram of the basic architecture of a Feed-forward Neural
Network (from [65]). Neurons in the input layer take input parameters and
pass them to neurons in the hidden layer. These hidden neurons produce
linear combinations of the input values by applying learned weights to each
parameter, and passes these values to an output neuron which uses them to
make a decision.
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nodes (“neurons”) working together to process some input to produce a de-
sired output [65].

The simplest form of ANN is the “feed-forward neural network” (FNN),
a very basic example of which is shown in Figure 6.1. Inputs to the network
are used to initialise a layer of input neurons, connected in turn to a layer
of hidden neurons. Each of these hidden neurons applies learned weights to
inputs from previous layers to produce an output value. Depending on the
depth of the network, this hidden layer may be connected to one or more
subsequent hidden layers. The final hidden layer is in turn connected to
an output layer containing one or more neurons, which use the output of
previous connected layers to make a decision.

Such networks are trained by varying these weights inside the hidden
layers. The network will begin with random values for these parameters,
and then assess the corresponding output and iterate, optimising towards
the most desirable outcome. In supervised learning, the network associates
each input with a given label, and assesses its own performance by its ability
to infer this label from the output.

CNNs are a subcategory of ANNs designed for performing image pattern
recognition. Since any moderately-sized image is comprised of an array of
pixels with high dimensionality, a more traditional ANN approach quickly
becomes impractical due to the number of neurons required. CNN architec-
ture is specifically designed to deal with this issue.

6.2 Network layer types

The basic structure of a CNN is as follows (all layer types are described in
more detail below):

• Input: The input layer consists of an array containing pixelwise image
information.

• Convolution: Convolution layers convolve the input image in order
to identify features.
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• Rectified linear unit (ReLU): ReLU layers apply an elementwise
activation function to the previous layer, and are typically used imme-
diately after convolution layers.

• Pooling: Pooling layers perform downsampling on an activation map
in order to manage memory overhead.

• Fully connected: Fully connected layers use activation maps from
previous layers to learn non-linear combinations from previous layers.

• Output: Output layers compute a loss parameter or assign scores to
an image.

In a typical network architecture, one or several convolution layers are
performed in succession, followed by a ReLU layer and a pooling layer. This
pattern of convolutions followed by pooling is repeated several times, fol-
lowed by one or more fully connected layers, and then output layers. A brief
summary of the function of each of these layers is provided below.

6.2.1 Convolution layer

Figure 6.2: The calculation performed in a CNN convolution layer. A single
point on the output feature map is calculated by taking a small local region
of the image, multiplying each element by a filter designed to pick out a
specific image feature, and then taking a sum over all elements.
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A convolution layer convolves a local region of the input image with a
randomly generated filter. This filter is a rectangular multiplication matrix,
each element a weight that is varied and optimised during network training.
This filter is swept over small subsamples of the input image, multiplying each
local region by the filter to produce a single output value. The filter size
determines the size of this multiplication matrix, while the stride determines
how many pixels the filter steps over between applications. Each convolution
of the filter with a local image region produces a single output value, and the
repeated application of this filter leads to the production of an output image,
with each pixel value corresponding to an application of the convolution filter.
This output image is known as an activation map; an example is shown in
Figure 6.2.

Each convolution layer applies many different filters to produce an array
of activation maps, each associated with a different feature of the input im-
age. For subsequent convolution layers, each activation map is produced by
applying the filter simultaneously to all activation maps from the previous
layer.

Pixel values in activation maps for a given layer are calculated as

yi = θixi + bi , (6.1)

where i is used as an overall index for the layer, taking into account each
image label k, the image depth d, the number of filters l, and the number
of parameters associated with each filter n. xi is the pixel value for a local
region of the input image, and θi and bi are, respectively, the weight and bias
parameters which define the filters applied in a given convolution layer [66].

6.2.2 ReLU layer

Rectified Linear Unit (ReLU) layers modify an activation map by perform-
ing max(0, a) on each pixel a. Negative weights and biases in convolution
filters can lead to negative values in activation maps, which can interfere
destructively with positive activations in subsequent layers. For this reason,
all negative values are instead set to zero, achieving so-called sparse repre-
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sentations. This also assists in preventing the vanishing of weight gradients
when training with a gradient descent method, described in Section 6.3.4 [67].

6.2.3 Pooling layer

Figure 6.3: The downsampling performed in a CNN pooling layer. In this
example, the “max pool” approach is taken for a 2 × 2 filter size, in which
the largest pixel value of each 2 × 2 square is taken as a single pixel value,
downsampling the image by a factor 4.

In CNN terms, pooling refers to downsampling of an image array. When
pooling is performed, some local region of the image is reduced into a single
pixel value. All studies discussed in this thesis utilise a 2 × 2 “max pool”
approach is taken, in which each pixel in the downsampled image is the
maximum pixel value of each 2× 2 square in the original image.

In the network architecture used for these studies, the number of acti-
vation maps increases at deeper network layers. In order to constrain the
amount of memory required to perform these convolutions, pooling must be
used to reduce the size of each individual activation map.

6.2.4 Fully connected layer

After all convolution layers have been performed, a fully connected layer is
applied. This layer combines information from all activations in the previous
layer by applying learned matrix multiplications and biases to them, in the
same manner as a more traditional feed-forward neural network. It possesses
a separate set of weights and biases for each input image label, allowing it
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to independently learn features associated with different labels. Its number
of outputs is equal to the number of image labels provided.

6.3 Network training

6.3.1 Solver

In Caffe (discussed further in Section 6.4.1), network learning is handled by
a solver. The solver is responsible for optimising the network by improving
a loss parameter (defined below in Section 6.3.3). This is achieved by as-
sessing the network’s current performance, and constructing gradients with
respect to previous network iterations in order to choose network weights
that minimise the loss.

The solver is an additional layer surrounding the network itself — it se-
lects network weights, queries the network for the resulting loss and gradient,
and then iteratively uses these to improve the network. It also produces pe-
riodic snapshots of the network, both as a solverstate, which is used to
resume training, and as a caffemodel, which is used to construct a network
for image classification.

6.3.2 Classification

Events are classified by the network using a SoftmaxLayer that expresses
the network’s response to each input label as a probability. This probability
for each each classification label k is written

pk =
eak∑K
k′ e

ak′
, (6.2)

where ak are the outputs for each image label from the fully connected layer
of the network, K is the total number of image classification labels, and k′

is an additional index to indicate image label.
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6.3.3 Loss

During learning, the network improves by minimising a parameter called the
loss function, which abstracts the number of mistakes the network makes
during image classification. This parameter is calculated using the Caffe
layer SoftmaxWithLossLayer, and is derived from the softmax probability
defined in Equation 6.2 as

J = − 1

K

K∑
k

log(pk) , (6.3)

where again k is an index indicating image label and K is the total number
of image labels.

6.3.4 Gradient descent

The optimisation of network performance is achieved using a technique called
gradient descent. As discussed in the previous section, the loss function,
computed from network weights, is a scalar value abstracting mistakes made
by the network, and must be minimised in order to optimise network per-
formance. In order for the network to effectively learn, it must be able to
use successive iterations to construct a loss gradient, and use this to infer a
direction in which to improve. Gradient descent is performed by the network
solver during training [68].

With each successive iteration of the network, denoted by an integer index
t, the network parameters θi — ie. the weights and biases which comprise the
filters in each convolution layer — are updated according to the expression

θt+1,i = θt,i − η · ∇θJ(θt,i) , (6.4)

where η is the configurable network learning rate (described in more detail
in Section 6.3.5), and ∇θJ(θt,i is the gradient of the loss with respect to the
parameters of the network, more succinctly defined as

gt,i = ∇θtJ(θt,i) . (6.5)
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For each successive iteration, each network weight is modified according
to its previous value and the gradient,

θt+1,i = θt − η · gt,i . (6.6)

Various techniques for gradient descent exist — one such method is called
Adagrad, in which the learning rate is allowed to vary for each weight,

θt+1,i = θt,i −
η√

Gt,ii + ε
gt,i . (6.7)

Here Gt,ii is a diagonal matrix, where each element is the sum of the
squares of all gradients preceding the current iteration. This serves to reduce
the learning rate for weights with a steep gradient, while allowing weights
with a more shallow gradient to vary more freely. The ε term is a small
smoothing term, included to avoid division by zero. From this point forward,
θ will be considered to be a vector, and so i subscripts will be dropped.

The gradient descent technique RMSProp improves on Adagrad by replac-
ing the gradient sum with an updating average, reducing memory overhead.
The updating average is computed as

E[g2]t,i = δE[g2]t−1,i + (1− δ)g2t,i , (6.8)

where δ is a configurable parameter, the rms_decay, typically set to a value
of 0.99. This updating average E[g2]t,i is calculated using the average from
the previous iteration E[g2]t−1,i and the square of the gradients from the
current iteration g2t,i. For ease, we now define the corresponding change in
weight,

∆θt,i = − η√
E[g2]t,i + ε

gt,i , (6.9)

allowing the network weights for each iteration to be expressed simply as

θt+1,i = θt,i +∆θt,i . (6.10)
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6.3.5 Learning rate

The learning rate is a network parameter that describes how much the net-
work weights are allowed to vary between successive iterations. Since training
a network involves converging on a preferred region of parameter space, the
learning rate is reduced as the number of iterations increases, taking smaller
steps in parameter space as we approach the optimal network model.

In Caffe, several different types of learning rate policy are defined,
which describe whether the learning rate is constant or changing over time.
The policy used in these studies is inv, which defines the learning rate as

α = αbase(1 + γniter)
−k , (6.11)

where αbase is the configurable base learning rate, niter is the number of train-
ing network iterations, and γ and k are additional configurable parameters.
The learning rate is equal to the base learning rate initially, and gradually
decrease as the network trains.

6.4 Tools

This section discusses the specific tools used in the studies described in this
thesis: the CNN framework and network architecture, as well as the LArCV
framework for storing and interfacing data.

6.4.1 Caffe

The Caffe CNN framework was used for these studies [4]. Caffe is written
in C++ and includes Python bindings. Various layer types are implemented
as C++ classes, allowing the architecture of a network to be defined using a
text-based configuration file written in Google’s Protocol Buffer format [69].
Each layer of the network is configured by specifying the layer type, the layers
connected above and below, and any configurable parameters associated with
the chosen layer type. A modified version of Caffe was used, allowing for
image inputs to be provided in LArCV format.
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6.4.2 VGG16 network architecture

For this study, the VGG16 network architecture was used. This network
is very deep, with 14 weighted layers — the fully network architecture is
shown in Table 6.1. This network architecture was selected based on previous
MicroBooNE studies to find effective LArTPC network architectures. The
number and dimensionality of fully connected layers has been drastically
reduced, to reflect the difference in purpose — the VGG16 networks are
designed for a broad range of classes, while for these studies only two classes
of physics event are considered.

6.4.3 LArCV

LArCV is a tool developed by MicroBooNE collaborators at Nevis Labs
and MIT, designed for storing and interfacing images from LArTPCs with
CNNs [70]. It uses the ROOT data format to save events in an eventwise
manner, allowing various data types to be stored for each event.

For the purposes of these studies, only two data products are used: the
ROI and Image2D classes. In this context, the ROI class is used only to label
each event as containing either a signal or background image. The three
images associated with the three LArTPC wire planes are stored as Image2D
objects, and LArCV offers utilities such as image downsampling and zero-
padding which are useful for preparing CNN inputs.
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Table 6.1: VGG16 network architecture used for the studies described in this
thesis, containing only a single fully connected layer. Each convolution layer
uses a size of 3× 3 for all its filters, and the number of filters increases with
depth.

Network layer Kernel size No. filters
Input (RGB image)

Convolution 3× 3 64
Convolution 3× 3 64
Max pool 2× 2

Convolution 3× 3 128
Convolution 3× 3 128
Max pool 2× 2

Convolution 3× 3 256
Convolution 3× 3 256
Convolution 3× 3 256
Max pool 2× 2

Convolution 3× 3 512
Convolution 3× 3 512
Convolution 3× 3 512
Max pool 2× 2

Convolution 3× 3 512
Convolution 3× 3 512
Convolution 3× 3 512
Max pool 2× 2

Fully connected (2)
Softmax



7 n − n̄ Oscillation Search in
DUNE

A convolutional neural network (CNN) approach was utilised to determine
its effectiveness as a tool for selecting rare events in LArTPCs. A CNN
was trained on high-statistics simulation samples of labelled signal (n − n̄)
and background (atmospheric neutrino) events. Once trained, the CNN was
then tested with independent signal and background simulation samples,
classifying them with a score from 0 (background-like) to 1 (signal-like).
Since a search for n−n̄ oscillation is a counting experiment, we classify events
using a trained CNN and select any which pass a certain score threshold.

This chapter describes a study performed in Monte Carlo for the DUNE
far detector (assuming single phase, described in more detail in Chapter 4),
to determine the effectiveness of a CNN at distinguishing signal n− n̄ events
from atmospheric neutrino backgrounds. It summarises the methods used
in producing simulations and performing CNN training, and then analysing
the network’s performance by investigating event topologies. Finally, the
network’s performance is analysed in the context of signal selection efficiency
and background rejection rate, and the propagation of these to an equivalent
DUNE sensitivity to the lifetime of free n− n̄ oscillation.

7.1 Atmospheric neutrino backgrounds

Due to DUNE’s extreme depth of 1.5 km [9], the rate at which charged
particles produced by cosmic ray interactions in the atmosphere will interact
in the detector will be minimal. Furthermore, charged particles produced
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external to the detector can be identified as crossing the detector boundary.
As in all previous searches for n − n̄ oscillation with bound neutrons, the
largest expected source of background in DUNE is atmospheric neutrinos. In
order to perform studies to separate signal from background, high-statistics
samples of atmospheric neutrino simulations were produced.

Atmospheric neutrinos were produced using version 6.24.00 of the LAr-
Soft simulation framework [3], using an implementation of the GENIE atmo-
spheric neutrino event generator [58]. The atmospheric neutrino fluxes used
were Honda 2015 for the DUNE far detector site at SURF [71]. Honda flux
tables do not include the effects of neutrino oscillations, and are separated
out into bins in energy and zenith angle θz, defined such that cos θz = 1 for
downward-propagating neutrinos. The flux dependence on zenith angle is
shown in Figure 7.1, as is the zenith angle dependence of the corresponding
GENIE event rates.
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Figure 7.1: The Honda atmospheric neutrino flux as a function of cosine
zenith angle, integrated over azimuthal angle and neutrino energy (a), and
the total neutrino event rate in GENIE using this flux as a function of co-
sine zenith angle (b). Both distributions share a similar shape, but the
GENIE event rate also includes the effect of energy-dependent neutrino cross-
sections.
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7.1.1 Neutrino interactions

The flux of atmospheric neutrinos (shown in Figure 7.2) spans a broad neu-
trino energy range, over which a variety of different types of interaction can
occur, as shown in Figure 7.3. In order to properly model backgrounds for
this search, all of these processes must be simulated. This section discusses
the different types of neutrino interaction considered and their simulation
methods in GENIE.
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Figure 7.2: Honda atmospheric neutrino fluxes as a function of neutrino
energy.

7.1.1.1 Elastic and quasielastic scattering

In the 0.1-1 GeV energy region, elastic and quasielastic neutrino interactions
dominate. The final state of the initial interaction itself (shown in Figure 7.4)
is a clean topology; in charged current interactions, the final state contains



96 Chapter 7: n− n̄ Oscillation Search in DUNE

(a) (b)

Figure 7.3: Total charged current cross-sections for (a) neutrinos and (b)
antineutrinos. These figures originate from [72], which provides a compre-
hensive summary of all data sources used.
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Figure 7.4: Feynman diagrams for (a) charged current quasielastic and (b)
neutral current elastic neutrino scattering processes [73].
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a lepton and a nucleon, while for neutral current events the neutrino escapes
without detection, and only a nucleon is observed. Final state interactions
can produce variations in final state, adding pions and nucleons as interaction
byproducts reinteract.

Charged current quasielastic scattering cross-sections are modelled in
GENIE using an implementation of the Llewelyn-Smith model [74]. In this
model, the cross section is parameterised as a function of several scalar and
vector form factors — of these, two have been measured using electron scat-
tering, and one is constrained using partially conserved axial current. The
remaining axial form factor is assumed to have dipole shape,

FA(Q
2) =

gA(
1 + Q2

M2
A

)2 , (7.1)

where gA is an effective axial coupling constant measured in nuclear beta
decay [72], and MA is an axial mass term for which GENIE’s default value of
0.99 GeV/c2 is used for this work. An additional cross-section suppression is
applied for larger nuclei by requiring that the exiting nucleon’s momentum
is greater than the Fermi momentum for that nucleus [58].

Neutral current elastic cross-sections are modelled in GENIE with an im-
plementation of the Ahrens model [75]. This model is similar to the Llewelyn-
Smith model discussed above, but uses a different form for the axial form
factor,

GA(Q
2) =

1

2

gA(
1 + Q2

M2
A

)2 (1 + η) , (7.2)

where η is an adjustable parameter to account for isoscalar contributions to
the axial form factor [58]. The same suppression for larger nuclei is performed
as for the Llewelyn-Smith model.

7.1.1.2 Resonant production

Once there is enough energy available in the centre-of-mass frame, a neutrino
interaction can excite the struck nucleon to produce a baryonic resonance.
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The de-excitation of this resonance then produces additional final state
particles. For instance, the charged current process νµn → µ−∆++(1232)

is followed by the decay ∆++ → pπ+, leading to a total final state of
νµn→ µ−pπ+.

In the lowest-energy resonance region, dominated by ∆ baryon res-
onances, final states will typically contain a single additonal pion. At
higher energies, final states can contain multiple pions, kaons or other fi-
nal states [72].

The cross-section of resonant neutrino events is modelled in GENIE
using the Rein-Sehgal model [76], using a resonance axial mass mres

A =

1.12 GeV/c2 [58].

7.1.1.3 Deep inelastic scattering

In the few-GeV neutrino energy region, inelastic scattering interactions begin
to occur [72]. Rather than interacting with a nucleon, the neutrino interacts
with a single quark inside a nucleon; the quark is ejected from the nucleon,
and produces a hadronic shower due to quark confinement. Above 10 GeV,
deep inelastic scattering (DIS) events dominate, and higher-multiplicity final
states are common. Since the neutrino can scatter from either a valence or
sea quark, these events are capable of producing final states containing more
exotic particles. Neutral current DIS events are expected to be the dominant
background to n−n̄ oscillation, as they can produce events with high energies
and multiplicities without a final state lepton.

In GENIE, DIS cross-sections are calculated using effective leading order
calculations made by Bodek and Yang [77]. They add a scaling factor and Q2

corrections to GRV98 parton distribution functions [78] in order to calculate
neutrino DIS cross-sections.

7.1.1.4 Coherent pion production

Neutrinos can also interact coherently with the entire nucleus, producing a
pion via either charged (νA → lπ+A) or neutral (νA → νπ0A) currents.
Coherent interactions occur at very low Q2, producing a forward-going pion
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and a nucleus that recoils with low energy without breaking up.
Coherent pion production is modelled in GENIE with a Rein-Sehgal

model [79], using an axial mass of mA = 1.0 GeV [58].

7.1.1.5 Neutrino oscillations

In recent decades, it was discovered that neutrinos can undergo a change in
flavour as they propagate [39]. In order to correctly model our backgrounds,
neutrinos changing flavour in-flight between production in the atmosphere
and detection in the DUNE far detector must be simulated. A short summary
of neutrino oscillation phenomenology is provided in Appendix B.

The GENIE FlavorMixer class included in GENIE is able to change
neutrino flavour during event simulation, but three-flavour oscillation is not
implemented. As part of this work, a modified version of the Prob3++ neu-
trino oscillation framework [80,81] was implemented within GENIE, allowing
for neutrino flavour oscillation to be performed after GENIE has performed
ray-casting and selected a neutrino energy and direction. Prob3++ models
neutrino oscillation in the atmosphere, and also accounts for matter effects
in an Earth treated as several layers of uniform matter density. Although
the publicly available Prob3++ assumes an on-surface detector, a modified
version that accounts for underground detectors is used. These modifica-
tions were performed by IceCube collaborators [82], and are not yet publicly
available.

For each bin in zenith and azimuth angle, Honda atmospheric fluxes are
provided accompanied with a probability distribution for neutrino production
height in the atmosphere. Since only the direction — not the production
height — is modelled by GENIE, this probability distribution is used in
conjunction with a Monte Carlo simulation method to select a production
height when calculating neutrino path length in order to compute neutrino
oscillation probability. The neutrino oscillation parameters used, shown in
Table 7.1, are the late-2016 NuFit values [83].
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Table 7.1: NuFit normal mass hierarchy oscillation parameters used for os-
cillating atmospheric neutrino flux (from [83]).

Oscillation parameter Value
δm2

21 7.50× 10−5 eV2

δm2
32 2.52× 10−3 eV2

sin2 θ12 0.306
sin2 θ23 0.441
sin2 θ13 0.022
δcp 0

7.2 Monte Carlo production

Signal and background Monte Carlo events were produced using version
6.24.00 of the LArSoft framework [3], with DUNE-specific simulation tools
from the dunetpc repository. Two separate samples of signal and background
events — one for network training, the other for testing — were produced,
each consisting of 200,000 events.

The geometry used for these simulations is a reduced version of a DUNE
10 kt single phase module. Since simulating 200 full drift volumes for a
single process that occurs over only one or a handful of these drift volumes
is an inefficient use of computational resources, instead a reduced 1× 2× 6

geometry is used. This consists of 12 wrapped anode planes, each with a
drift volume and cathode on both sides, stacked two high and six deep such
that the anode wire planes of all 12 modules are aligned along a single plane.
This reduced geometry is 7.3 m wide, 12.1 m high and 13.9 m deep. A simple
diagram is provided in Figure 7.5.

High-statistics samples were produced by parallelising MC production
across many computing nodes using Fermilab grid computing resources. The
project.py tool was used for job submission and bookkeeping. Simulation
is carried out by several successive modules, all of which are described below.
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(a) (b)

Figure 7.5: Layout of DUNE 1×2×6 geometry, shown from the side (a) and
the front (b). This geometry is stacked two modules high and six modules
deep, where each module contains an anode plane in the centre and a drift
region on either side.

7.2.1 Event generation

In this stage, the final state products of the initial n − n̄ or atmospheric
neutrino interaction are produced. Signal events were simulated using the
GENIE n − n̄ event generator described in Chapter 5, while background
event were simulated using the GENIE atmospheric neutrino event generator
discussed in Section 7.1.

The vertex of simulated n− n̄ events is randomly selected homogeneously
inside the active volume of the TPC. The range of simulated vertex positions
for atmospheric neutrino interactions is wider, homogeneously selected from
the range of the full LArTPC cryostat, which extends an additional 50 cm
in all directions except for the negative z direction, in which it extends 3 m
beyond boundary of the active volume.

7.2.2 Physics simulation

The byproducts of the initial particle interaction are propagated through the
TPC. This is performed using a LArSoft implementation of GEANT4 [84],
which consists of several steps: first, all particles produced in the previous
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generator stage are propagated through the detector, until they either range
out or escape. A separate stage is then performed for simulating ionisa-
tion electrons, producing simchannel objects that simulate the number of
electrons collected on each TPC wire.

Finally, an ‘MC reco’ stage is performed. This stage considers all MC
truth particles produced by GEANT inside the detector, and determines
which would be visible in the detector. For all visible particles, it then
produces a geometric object (either a 3D line for a track, or a cone for
an EM shower) associated with that particle, which represents an idealised
version of a reconstructed particle.

For a particle to be considered visible, it must be inside the detector’s
fiducial volume, it must be a particle type that can be detected by the TPC,
and it must be above a certain detection energy threshold. For instance, a
π0 meson does not have an associated MC reco object, since it does not leave
a signature in the detector, but if it decays into two γ showers, each of these
produces an associated MC shower object.

7.2.3 Detector simulation

There are several stages to detector simulation in LArSoft. First, simchannel
objects are converted into a waveform format. Noise on waveforms is then
simulated, assuming an exponential frequency spectrum for noise with a high-
frequency cutoff. A pedestal value is added to the waveform.

Due to the large scale of the DUNE detector, storing every TPC wave-
form would take up a prohibitively large, amount of mostly redundant data.
Therefore a form of zero suppression is performed, and any wire waveforms
without any time ticks over 10 ADC after deconvolution are discarded. Since
subsequent ROI-finding involves applying a 20 ADC threshold, as described
below, this zero suppression involves minimal information loss in terms of
the produced image.
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7.2.4 Wire reconstruction

Having simulated the detector output, including simulating TPC noise, wire
reconstruction is then performed in order to reduce this noise. This recon-
struction is designed to be applied identically to data and simulations.

Due to the difference in waveform polarity between different TPC wire
planes, a deconvolution stage is applied to DUNE wire waveforms in order
to produce unipolar waveforms. During this stage, other wire processing
stages such as noise reduction can be applied, but are not performed for the
purposes of this analysis. These processed wires are stored as recob::Wire
objects.

7.3 Image preparation

Before events can be processed by a CNN, some preparatory steps must
first be taken. The recob::Wire objects from the reconstruction stage are
separated out into different APAs; for the purposes of these studies, only a
single APA is considered at a time. Usually only wires from a single APA
remain after zero suppression, or several APAs if the event crosses multiple
modules. For each APA, the ADC counts after deconvolution for all time
ticks on all wires across all three planes are added together, and the APA
with the most activity is selected by maximising this parameter.

A region of interest is then selected in each of the three wire planes. A
20 ADC threshold is defined, and a rectangular region of interest is found
according to the first and last time tick and wire that exceed this threshold.
The region of interest is defined as this region plus a small surrounding margin
region with a size of 10 pixels on all sides in the final image, corresponding
to either 10 wires and 40 time ticks or 20 wires and 80 time ticks either side,
depending on the level of downsampling performed.

Due to memory limitations on the size of images provided to the network,
the ROI images must be downsampled to a size of 600 × 600 pixels. Since
there are O(4000) time ticks per event, and only O(1000) wires per plane,
the image is automatically downsampled in the time direction by taking the
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Figure 7.6: Image processed by network for the collection plane (top), and
zoomed into the interesting region (bottom), for a well-classified signal n− n̄
event. This event was given a score of 0.99999968 by the network.



7.3 Image preparation 105

0 100 200 300 400 500 600
Wires

0

100

200

300

400

500

600

Ti
m

e 
[ti

ck
s]

0
100
200
300
400
500
600
700

AD
C 

co
un

ts

0 50 100 150 200 250 300 350
Wires

0

50

100

150

200

250

300

350

Ti
m

e 
[ti

ck
s]

0
100
200
300
400
500
600
700

AD
C 

co
un

ts

Figure 7.7: Image processed by network for the collection plane (top), and
zoomed into the interesting region (bottom), for a poorly-classified (ie. clas-
sified as background) signal n − n̄ event. This event was given a score of
7.7× 10−7 by the network.
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Figure 7.8: Image processed by network for the collection plane (top), and
zoomed into the interesting region (bottom), for a poorly-classified (ie. classi-
fied as signal) background atmospheric neutrino event. This event was given
a score of 0.99999988 by the network.
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Figure 7.9: Image processed by network for the collection plane (top), and
zoomed into the interesting region (bottom), for a well-classified background
atmospheric neutrino event. This event was given a score of 0 by the network.
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average of every four ADC counts in the time dimension. If the image is
still larger than 600 × 600 pixels, the image is then downsampled again in
both dimensions, by averaging ADC counts across time ticks and wires. This
downsampled image is then embedded in an empty image of 600× 600 pixel
size, to ensure a uniform image size for all images processed by the network.

As previously mentioned, the region of interest for a CNN image is se-
lected using a 20 ADC threshold. In some events there is zero or minimal
activity inside the detector, preventing the ability to apply this threshold and
select an ROI. Since these events would produce effectively empty images,
which do not contribute to CNN training and cannot be efficiently classified,
these events are instead omitted entirely, leading to an inefficiency in image
production.

This inefficiency is considerably larger for the atmospheric neutrino sam-
ple than the n−n̄ sample. Since n−n̄ events are simulated inside the fiducial
volume only, empty events require that all final state particles produced are
either undetectable in LArTPCs (ie. neutrons), or below LArTPC energy
detection thresholds. Such topologies are extremely rare for n− n̄ events (of
the 200,000 test images produced, only 9 events did not produce an image)
and so the efficiency is effectively 100%.

In contrast, the image production inefficiency for atmospheric neutrinos
in DUNE is approximately 35%. Investigating MC truth information for
events for which no image is produced reveals that this inefficiency has two
sources. Firstly, due to the fact that events are simulated in the region
surrounding the detector, there are some events for which the neutrino inter-
action occurs entirely outside the TPC fiducial volume. This effect is visible
in all spatial dimensions, and is shown for the z component of vertex posi-
tion in Figure 7.10; the range of the detector in z is −0.8 cm to 1393.4 cm.
The second source is a lack of visible energy — many interactions do occur
inside the TPC, but produce little or no detectable activity. The total visible
energy of atmospheric neutrino events is shown in Figure 7.11, and events
for which no image is produced exhibit a clear correlation with lower total
visible energy.
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Figure 7.10: The z component of atmospheric neutrino event vertex, for
events that produced no image (red) and events that did produce an image
(blue).
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(a) Absolute distribution for n − n̄
events, including well-classified events
(CNN score > 0.99), poorly-classified
events (CNN score < 0.99), and events
for which no image was produced.
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(b) Ratio of well-classified n− n̄ events
(CNN score > 0.99) to all classified
events (omitting events for which no im-
age was produced).
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(c) Absolute distribution for atmo-
spheric neutrino events, including well-
classified events (CNN score < 0.01),
poorly-classified events (CNN score >
0.01), and events for which no image
was produced.
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(d) Ratio of well-classified atmospheric
neutrino events (CNN score < 0.01) to
all classified events (omitting events for
which no image was produced).

Figure 7.11: Total event visible energy distributions for n − n̄ (top) and
atmospheric neutrino (bottom) events, including absolute distributions (left)
and event ratios for well-classified events (right).



7.4 Network training 111

7.4 Network training

Once labelled input images had been produced, they were used to train a
convolutional neural network. The network was trained using a gradient
descent method, as defined in Section 6.3.4. For a more broad overview of
CNN concepts such as network training, see Chapter 6.

Network training was performed using an nVidia GTX TITAN X graphics
card. The VGG16 network architecture was used (see Section 6.4.2), training
on labelled samples of approximately 50,000 signal and background events
each. The typical training time for an optimised network is several days.

Several networks were trained at different values of learning rate — 0.001,
0.0003, 0.0001 and 0.000001 — and the optimal learning rate was found to
be 0.0003. In addition, networks were trained using different network depths
— both collection plane only and 3-plane versions. The network training
parameters for the optimal configuration are shown in Table 7.2.

Table 7.2: The solver parameters used during network training. The learning
rate and policy are defined in Section 6.3.5, as are the γ and power variables.
Weight decay is a regularisation term that prevents the CNN from relying
too heavily on any single network weight. The RMS decay is defined in
Equation 6.8. Maximum iterations defines how long the network will train
for before stopping, while the snapshot defines how often network models are
saved.

Parameter Value
Base learning rate 0.0003
Learning rate policy “inv”
Gamma 1× 10−5

Power 0.75
Weight decay 0.001
RMS decay 0.99
Maximum iterations 100000
Snapshot 250
Network depth Collection plane

The network’s training progress is output to log files containing the net-
work’s computed loss and accuracy as a function of iteration. These metrics
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are visualised and monitored during training by parsing this text file. The
training loss for the parameters in Table 7.2 is shown in Figure 7.13, while
the corresponding accuracy is shown in Figure 7.12.
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Figure 7.12: CNN training accuracy monitored as a function of training
iteration. The accuracy is the proportion of images correctly classified by the
network, with the training sample shown in blue and red, and the accuracy
on an independent test sample shown in green. The optimal network model
at 21,000 iterations is indicated by the black dotted line.

7.5 Network performance

7.5.1 Network tests

When a CNN is trained, the intention is that it will learn from features
associated with the labelled events it is provided — the differences in topology
between n− n̄ events and atmospheric neutrino events. The network weights
learned in the very first network layer are shown in Figure 7.14 as an example.

One challenge of network training is overtraining — given a finite training
set, the network will learn on a combination of features associated with a
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Figure 7.13: CNN training loss monitored as a function of training iteration.
The loss is the parameter the CNN attempts to minimise as it learns, defined
in Section 6.3.3. The loss is shown for the training sample in blue and red,
and for an independent test sample in green. The optimal network model at
21,000 iterations is indicated by the black dotted line.
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Figure 7.14: The network weights for filters in the conv1_1 layer of a network
trained on DUNE n−n̄ and atmospheric neutrino events. 64 individual filters
are shown, each with a size of 3× 3 pixels. Convolution filters are explained
in more detail in Section 6.2.1.
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type of event and features specific to the events it has been provided with.
The former describs the network’s ability to identify any event of that type,
and should be maximised; by contrast, the latter should be minimised, as it
incorporates features that are not representative of the broader event type.

To account for this effect, the effectiveness of the network is tested us-
ing separate Monte Carlo samples — identical to the training samples, but
generated independently. Since these events share the same high-level event
features as the training sample, but differ in the specifics of each individual
event, an overtrained network will perform worse on this test sample. The
effects of overtraining are mitigated by testing each snapshot of the network
and selecting the model with the lowest loss. The accuracy and loss for the
test sample are shown in Figures 7.12 and 7.13.

A trained network was scored using high-statistics samples of signal and
background events. 200,000 simulated events were generated of n − n̄ and
atmospheric neutrino events each. Due to the inefficiency in ROI image
production, 199,991 n − n̄ ROI images and 132,076 atmospheric neutrino
ROI images were produced.

The network assigns a softmax score to each event, giving them scores for
the signal and background labels (as described in Section 6.3.2). Since there
are only two labels, and the softmax scores by definition sum to unity, we
use the signal label score for both signal and background events. Signal-like
events are classified with a score closer to 1, while background-like events are
scored closer to 0.

The CNN score distribution for the test samples is shown in Figure 7.15.
We place a discriminator cut on this score, and count the number of signal
and background events that pass. By taking the ratio of passed events to total
event rates, we calculate a signal selection efficiency and background rejection
rate. Varying this cut and calculating the efficiency and background rate
produces an efficiency vs background curve, which is shown in Figure 7.16.

Atmospheric neutrino event rates as a function of CNN discriminator cut
are shown in Table 7.3. The majority of neutral current elastic interactions do
not produce an image — the ROI image production rate is ∼ 30%, compared
to 70− 80% for all other interaction types.
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atmospheric neutrino (red) events from independent test samples.
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Figure 7.16: CNN selection efficiency vs background rate curve. Each point
on this curve corresponds to a given cut on CNN score, for which the efficiency
and background rate are computed.
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Table 7.3: Rate of atmospheric neutrino events produced in GENIE using
Honda fluxes, and surviving CNN score discriminator cuts. Percentages are
efficiencies relative to the total number of events. Neutral current (NC) deep
inelastic scattering (DIS) events are the most commonly mis-identified event
type, followed by charged current (CC) resonant pion production, CC DIS
and CC quasielastic ντ events.

Type Number of events

Total w/ ROI image % CNN score
> 0.99

% CNN score
> 0.99995

νe CC QE 31321 23087 73.7 73 0.2 0
NC elastic 11178 3692 33.0 0 0.0 0
CC res+coh 9113 6984 76.6 100 1.1 2
NC res+coh 3340 2432 72.8 21 0.6 0
CC DIS 6348 5064 79.8 73 1.1 1
NC DIS 2006 1534 76.5 58 2.9 0

νµ CC QE 32527 23780 73.1 1 0.0 0
NC elastic 14205 4834 34.0 1 0.0 0
CC res+coh 11861 9128 77.0 27 0.2 0
NC res+coh 4787 3450 72.1 23 0.5 0
CC DIS 11301 9140 80.9 91 0.8 0
NC DIS 3582 2780 77.6 63 1.8 0

ντ CC QE 110 91 82.7 2 1.8 0
NC elastic 8431 2805 33.3 0 0.0 0
CC res+coh 171 133 77.8 2 1.2 0
NC res+coh 2021 1489 73.7 18 0.9 0
CC DIS 286 242 84.6 3 1.0 0
NC DIS 1325 1064 80.3 28 2.1 0

ν̄e CC QE 6143 4516 73.5 19 0.3 0
NC elastic 4345 1428 32.9 0 0.0 0
CC res+coh 81 69 85.2 1 1.2 0
NC res+coh 1306 963 73.7 7 0.5 0
CC DIS 1374 1115 81.1 16 1.2 1
NC DIS 586 442 75.4 15 2.6 0

ν̄µ CC QE 7716 5568 72.2 0 0.0 0
NC elastic 5957 1984 33.3 0 0.0 0
CC res+coh 112 90 80.4 0 0.0 0
NC res+coh 2152 1569 72.9 11 0.5 0
CC DIS 2925 2346 80.2 15 0.5 0
NC DIS 1214 945 77.8 23 1.9 2

ν̄τ CC QE 49 34 69.4 0 0.0 0
NC elastic 3596 1124 31.3 0 0.0 0
CC res+coh 57 47 82.5 2 3.5 0
NC res+coh 869 639 73.5 3 0.3 0
CC DIS 86 75 87.2 0 0.0 0
NC DIS 396 312 78.8 3 0.8 0
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Neutral current deep inelastic scattering events are the most commonly
misclassified event type, with 2 − 3% of events classified with a score of
> 0.99. The network very efficiently rejects νe and νµ CCQE events, but
classifies 2% of ντ CCQE events with a score > 0.99. Resonant, coherent
and charged current DIS events are generally misclassified at the ∼ 1% level,
with the exception of νµ and CC resonant and coherent events which the
CNN misclassifies only 0.2% of the time.

With the strongest CNN score discriminator of 0.99995 applied, only six
background events remain from the 130, 000 event sample — two νµ CC
resonant events, one νµ CC DIS event, one ν̄e CC DIS event and two ν̄µ NC
DIS events. This corresponds to a background rejection rate of 99.997%.
By comparison, 27,815 simulated signal events survived this cut out of the
199,991 event sample.

7.5.2 MC truth feature identification

For a given image classified by the CNN, we retain the event number and
match the event to its corresponding Monte Carlo truth information. Access
to this information allows for correlations to be drawn between network-
selected events and the physics characteristics of the event.

In order to understand the network’s characteristics, the terms signal-
like and background-like are defined. A signal-like event is defined as
any event with a CNN score higher than 0.99, while a background-like
event is defined as any event with a CNN score lower than 0.01.

Histograms were produced for various physical quantities, both for signal-
like signal events and all signal events. The ratio of these histograms was then
taken, since if the network is able to more efficiently select events in a certain
region of parameter space, then the corresponding ratio plot will demonstrate
a ratio closer to 1 in this region. Similar ratio plots were produced using the
ratio of background-like background events to all background events.

In signal events, the only particles produced by the GENIE event gener-
ator at MC truth level are nucleons and pions. Due to the broad range of
neutrino interaction types, the range of final state particles in the background
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sample is far more diverse.
Kinematic variables were calculated using MC reco objects, as defined

in Section 7.2.2. The advantage of using MC reco objects, rather than MC
truth information, is that it allows consideration of only the visible portion of
the event, discarding any invisible particles such as neutrons and low-energy
protons. Since the CNN is obviously unable to learn from invisible particles,
this allows us to concentrate solely on the subset of event kinematics the
network is sensitive to.

Event kinematics are calculated by considering the energy and momentum
of final state particles. Final state particles are defined as:

• Any visible object with an associated MC truth generator-level pri-
mary.

• Any visible child particle of an invisible generator-level primary.

The majority of final state particles satisfy the first condition; the second
condition is included primarily to account for π0 mesons, which are them-
selves invisible but decay into a γγ or e+e− pair that can be detected.

A particle’s momentum is taken as the MC reco object’s momentum at
its first trajectory point. Particle energy is taken in the same manner, with
the additional caveat that for a proton, rest mass is subtracted in quadrature
— since the majority of protons in the final state will have been ejected from
the nucleus during final state interactions, their rest mass should be removed
from the calculation of event energy. This removal of proton rest mass is
propagated through to event invariant mass, which is calculated using sums
over the event’s momentum and energy.

The network’s resolving power as a function of total event kinematic
variables — visible energy, invariant mass and net momentum — are shown
in Figures 7.11, 7.17 and 7.18, respectively. The network’s ability to cor-
rectly classify signal and background events exhibits a weak dependence on
total event kinematics, particularly visible energy and invariant mass. The
network exhibits some dependence on net momentum, as both signal and
background events are classified more effectively at higher net momentum.



7.5 Network performance 121

0 1 2 3 4 5
Invariant mass [GeV]

0

5000

10000

15000

20000

N
o.

ev
en

ts

No image

< 0.99

> 0.99

(a) Absolute distribution for n − n̄
events, including well-classified events
(CNN score > 0.99), poorly-classified
events (CNN score < 0.99), and events
for which no image was produced.
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(b) Ratio of well-classified n− n̄ events
(CNN score > 0.99) to all classified
events (omitting events for which no im-
age was produced).
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(c) Absolute distribution for atmo-
spheric neutrino events, including well-
classified events (CNN score < 0.01),
poorly-classified events (CNN score >
0.01), and events for which no image
was produced.
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(d) Ratio of well-classified atmospheric
neutrino events (CNN score < 0.01) to
all classified events (omitting events for
which no image was produced).

Figure 7.17: Event invariant mass distributions for n − n̄ (top) and atmo-
spheric neutrino (bottom) events, including absolute distributions (left) and
event ratios for well-classified events (right).
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(a) Absolute distribution for n − n̄
events, including well-classified events
(CNN score > 0.99), poorly-classified
events (CNN score < 0.99), and events
for which no image was produced.
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(b) Ratio of well-classified n− n̄ events
(CNN score > 0.99) to all classified
events (omitting events for which no im-
age was produced).
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(c) Absolute distribution for atmo-
spheric neutrino events, including well-
classified events (CNN score < 0.01),
poorly-classified events (CNN score >
0.01), and events for which no image
was produced.
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(d) Ratio of well-classified atmospheric
neutrino events (CNN score < 0.01) to
all classified events (omitting events for
which no image was produced).

Figure 7.18: Total event net momentum distributions for n − n̄ (top) and
atmospheric neutrino (bottom) events, including absolute distributions (left)
and event ratios for well-classified events (right).
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(a) Absolute distribution for n − n̄
events, including well-classified events
(CNN score > 0.99), poorly-classified
events (CNN score < 0.99), and events
for which no image was produced.
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(b) Ratio of well-classified n− n̄ events
(CNN score > 0.99) to all classified
events (omitting events for which no im-
age was produced).

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0
Net momentum (x component) [GeV]

0

10000

20000

30000

40000

50000

60000

N
o.

ev
en

ts

No image

> 0.01

< 0.01

(c) Absolute distribution for atmo-
spheric neutrino events, including well-
classified events (CNN score < 0.01),
poorly-classified events (CNN score >
0.01), and events for which no image
was produced.
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(d) Ratio of well-classified atmospheric
neutrino events (CNN score < 0.01) to
all classified events (omitting events for
which no image was produced).

Figure 7.19: x component of event net momentum for n− n̄ (top) and atmo-
spheric neutrino (bottom) events, including absolute distributions (left) and
event ratios for well-classified events (right).
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The x component of total event momentum is shown in Figure 7.19.
Similar behaviour is exhibited in this distribution to the total event net
momentum — events with a higher net momentum are marginally more likely
to be correctly classified by the network. The network is not using event net
momentum as a discriminator between signal and background, as is the case
in a cut-based analysis. Instead, it more effectively classifies both signal and
background events at higher net momenta. Net momentum distributions in
y and z exhibit the same behaviour as the distribution in x.

The network exhibits a stronger dependence on particle multiplicities
than it does on event kinematics, as shown in Figures 7.20, 7.21 and 7.22.
The network more efficiently selects signal events with higher multiplicities
of charged pions and protons, and with lower multiplicities of neutral pions
— in other words, the network exhibits a preference for tracks over EM
showers. Since EM showers consist of erratic charge deposition contained
within a cone, while tracks consist of a straight line of deposited charge, it
stands to reason that the pattern recognition approach of a CNN would more
efficiently select the latter.

The weak dependence of CNN performance on high-level physics features
demonstrates the power of the CNN approach. The information used by the
CNN to select events is complementary to that of traditional reconstruction
techniques, which use such physics features to perform an event selection.

7.6 Discussion

7.6.1 APA stitching

In this study, images are produced from whichever DUNE APA contains
the most activity, due to the challenge presented in stitching images from
multiple APAs together. In doing so, much useful information is discarded.
For instance, a neutrino interaction containing a long muon track would be
easily distinguished from any n − n̄ event due to its extent in space, but
limiting images to a single APA truncates the muon track and limits the
information available to the network.
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(a) Absolute distribution for n − n̄
events, including well-classified events
(CNN score > 0.99), poorly-classified
events (CNN score < 0.99), and events
for which no image was produced.
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(b) Ratio of well-classified n− n̄ events
(CNN score > 0.99) to all classified
events (omitting events for which no im-
age was produced).
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(c) Absolute distribution for atmo-
spheric neutrino events, including well-
classified events (CNN score < 0.01),
poorly-classified events (CNN score >
0.01), and events for which no image
was produced.
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(d) Ratio of well-classified atmospheric
neutrino events (CNN score < 0.01) to
all classified events (omitting events for
which no image was produced).

Figure 7.20: Charged pion multiplicity distributions for n − n̄ (top) and
atmospheric neutrino (bottom) events, including absolute distributions (left)
and event ratios for well-classified events (right).
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(a) Absolute distribution for n − n̄
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(b) Ratio of well-classified n− n̄ events
(CNN score > 0.99) to all classified
events (omitting events for which no im-
age was produced).
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(c) Absolute distribution for atmo-
spheric neutrino events, including well-
classified events (CNN score < 0.01),
poorly-classified events (CNN score >
0.01), and events for which no image
was produced.
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(d) Ratio of well-classified atmospheric
neutrino events (CNN score < 0.01) to
all classified events (omitting events for
which no image was produced).

Figure 7.21: Neutral pion multiplicity distributions for n − n̄ (top) and at-
mospheric neutrino (bottom) events, including absolute distributions (left)
and event ratios for well-classified events (right).
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(a) Absolute distribution for n − n̄
events, including well-classified events
(CNN score > 0.99), poorly-classified
events (CNN score < 0.99), and events
for which no image was produced.
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(b) Ratio of well-classified n− n̄ events
(CNN score > 0.99) to all classified
events (omitting events for which no im-
age was produced).

0 5 10 15 20
Proton multiplicity

0

10000

20000

30000

40000

50000

60000

70000

80000

N
o.

ev
en

ts

No image

> 0.01

< 0.01

(c) Absolute distribution for atmo-
spheric neutrino events, including well-
classified events (CNN score < 0.01),
poorly-classified events (CNN score >
0.01), and events for which no image
was produced.
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(d) Ratio of well-classified atmospheric
neutrino events (CNN score < 0.01) to
all classified events (omitting events for
which no image was produced).

Figure 7.22: Proton multiplicity distributions for n−n̄ (top) and atmospheric
neutrino (bottom) events, including absolute distributions (left) and event
ratios for well-classified events (right).
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Stitching event displays from multiple APAs is relatively simple in the
collection view, where wires are vertical. Stitching wires in induction planes
with diagonal wires is extremely non-trivial, especially considering wires are
wrapped around both sides of the collection plane(s).

One suggested method is to stitch images across multiple APAs in the
collection view, while retaining the single-APA images in the two induction
views. This approach provides the network with a full view of the event
in one plane, while also providing a close-up view of the interaction’s most
interesting region in the remaining planes. Exploring this approach in future
studies is strongly advocated.

7.6.2 Effect of containment

Although no consideration for event containment within the selected APA is
applied during image production, the effects of containment on network per-
formance were explored. The shortest distance from event vertex to detector
module boundary was calculated, and network performance was evaluated
as a function of this variable, as shown in Figure 7.23. Although the network
is trained and tested on both contained and uncontained events, it exhibits
a slight decrease in efficiency for signal events close to a detector module
boundary. This behaviour is not observed for background events.

Since the DUNE detector is modular, events are only included in this
calculation if the detector module containing the vertex and the module
used to produce an image were the same. Due to the larger average spatial
extent of atmospheric neutrino events, they are more likely to cross multiple
APAs, and so the chances of the image being produced for a subsequent
module are higher. Of the events for which an image was produced, that
image contained the vertex in 96% of n− n̄ events and 80% of atmospheric
neutrino events.
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(a) Absolute distribution for n − n̄
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(b) Ratio of well-classified n− n̄ events
(CNN score > 0.99) to all classified
events (omitting events for which no im-
age was produced).
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(c) Absolute distribution for atmo-
spheric neutrino events, including well-
classified events (CNN score < 0.01),
poorly-classified events (CNN score >
0.01), and events for which no image
was produced.
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(d) Ratio of well-classified atmospheric
neutrino events (CNN score < 0.01) to
all classified events (omitting events for
which no image was produced).

Figure 7.23: Shortest distance from event vertex to closest detector module
boundary for n−n̄ (top) and atmospheric neutrino (bottom) events, including
absolute distributions (left) and event ratios for well-classified events (right).
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7.7 Sensitivity calculation

Measurements of processes such as nucleon decay and n− n̄ oscillation typi-
cally take the form of a lifetime limit at 90% confidence level. For such rare
processes, which have never been observed and are not predicted under the
Standard Model of particle physics, it is hypothesised that the process will
not be observed, given an expected background rate and a measured event
rate consistent with that expected background rate. This information is then
used to set a lower limit on the process’s lifetime (in the case that a significant
excess above expected background is observed, a different approach must be
taken) [85].

Considering two events, A and B, each of which has a distinct probability
of occurring, we construct a Bayesian distribution to compute the probability
of A given B,

p(A|B) =
p(B|A)p(A)

p(B)
, (7.3)

where p(A) and p(B) are the individual probabilities of A and B. For this
kind of search, A refers to a prediction made by theory, and B to the observed
data. We therefore calculate the probability of the theory being accurate,
provided with a given data set, p(theory|data).

When measuring discrete events during a continuous measurement pe-
riod, the appropriate probability distribution to use is the Poisson distribu-
tion,

p(r;λ) =
e−λλr

r!
, (7.4)

where λ is the mean expected event rate, and r is the number of observed
events. This distribution describes the probability of observing a given set
of data given a theoretical assumption.

The number of events observed is

λ = ΓEε+ b , (7.5)
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where Γ is the bound n− n̄ oscillation width, E is the total DUNE exposure
in neutron-years, ε is the signal selection efficiency and b is the expected
background rate.

By substituting Equation 7.5 into Equation 7.4, and then placing that
total expression into Equation 7.3, we arrive at the total probability of ob-
serving a given event rate as a function of the bound n− n̄ oscillation width
Γ,

P (Γ|nobs) = A

∫ ∫ ∫
e−(ΓEε+b)(ΓEε+ b)

nobs!
P (Γ)P (E)P (ε)P (b)dEdεdb .

(7.6)
This equation is integrated over Gaussian priors for the uncertainty dis-

tributions for Γ, λ and ε. Since the DUNE detector is not yet operational,
preliminary values are chosen for systematic uncertainties based on the re-
cently published Super-Kamiokande analysis, as shown in Table 7.4. The
sensitivity for the systematics-free case is also considered — in this case, the
exposure, selection efficiency and background rate are held at their central
values, without Gaussian priors, and a one-dimensional integral over the n−n̄
width is performed.

Table 7.4: Preliminary systematic uncertainties used for DUNE n− n̄ sensi-
tivity studies. Since a full systematic uncertainty evaluation is not possible
at present, these preliminary values, derived from the Super-Kamiokande
n− n̄ search, are used as placeholders.

Variable Systematic uncertainty
Exposure 3 %
Signal selection efficiency 25 %
Background rate 25 %

The DUNE sensitivity is calculated assuming the measured event rate is
equal to the expected background rate, for a given value of total detector size
and run time, selection efficiency, and expected number of background events.
The total integral is evaluated by integrating over Γ from 0 → 1× 1030. The
upper limit of integration is then iteratively reduced until the total integral
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is 90% of its original value. The inverse of this width is τn−n, the bound
lifetime limit at 90% confidence level.

The integration is performed using Cubature, an open-source C package
for multi-dimensional integration [6]. By computing selection efficiency and
background rate as a function of CNN score discriminator, these can then
be propagated to sensitivities. Optimal sensitivity is achieved by strongly
rejecting background events, rather than efficiently selecting signal events.
The bound and free-equivalent sensitivities as a function of CNN score cut
for an aggressive score cut are shown in Figures 7.26 and 7.27 respectively,
calculated using Equation 2.49 and the conversion factor 0.666 × 1023 s−1

provided in Section 2.2.
At the tail end of the sensitivity vs background rate distribution, the

sensitivity is approximately linear as a function of background rate. In order
to prevent discontinuities in the sensitivity surface, which exist due to the
discrete nature of the size of the statistical sample, a simple linear fit is
performed on this distribution, as shown in Figure 7.25, smoothing out the
sensitivity surface. In the longer term, this sensitivity distribution can be
smoothed by producing a higher-statistics test sample. The relationship
between CNN score cut and signal selection efficiency in this region is also
shown in Figure 7.24.

Using an optimised cut of 0.99995, a value of 14% for signal selection
efficiency and 99.997% for background rejection rate is achieved. Assuming
systematic uncertainties similar to Super-Kamiokande, the sensitivity to free
n − n̄ oscillation lifetime in DUNE after ten years will be 1.6 × 109 s. The
way in which this evolves as a function of time is shown in Figure 7.28.

For reference, this sensitivity was compared to the sensitivity for an equiv-
alent exposure calculated using signal selection efficiency and background
rejection rates achieved by Super-Kamiokande, with 40Ar bound-to-free con-
version factor. This calculation assumed a signal selection efficiency of 12.1%
and a background misidenfification rate of 0.12%, where this value was ex-
trapolated from an absolute background rate by assuming the same atmo-
spheric neutrino rate per neutron yr exposure as used in DUNE. This free-
equivalent n − n̄ lifetime sensitivity is 3.3 × 108 s, indicating that DUNE’s



7.7 Sensitivity calculation 133

0.99980 0.99985 0.99990 0.99995 1.00000

CNN score cut

0

5

10

15

20

25

S
ig

na
l

se
le

ct
io

n
effi

ci
en

cy
[%

]

CNN

Discriminator

Figure 7.24: Signal selection efficiency as a function of CNN score discrimi-
nator.
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improved sensitivity is due both to its improved mass and its improved res-
olution.
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Figure 7.25: Background rate as a function of CNN score discriminator, with
linear fit performed to prevent statistical fluctuations.

7.7.1 Three-plane vs one-plane training

Since network depth (ie. the number of wire plane images used per event) is
a configurable parameter, a study was performed to investigate the effect of
training a network using images from all three wire planes simultaneously.
Network performance was found to be worse for a network trained on all
three planes simultaneously. Due to a weaker resolving power, a more relaxed
CNN score discriminator of 0.999 was applied, leading to a free n− n̄ lifetime
sensitivity of 1× 109 s at 90% confidence level, as shown in Figure 7.29.

Future CNN implementations could adopt a hybrid network architecture,
consisting of layers trained on each of the three wire planes independently
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Figure 7.26: Bound n − n̄ oscillation lifetime sensitivity in DUNE at 90%
CL as a function of CNN score discriminator. The discontinuity occurs when
the sensitivity calculation switches from using a Gaussian probability distri-
bution to a Poisson distribution.
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Figure 7.27: Free-equivalent DUNE sensitivity at 90% CL as a function of
CNN score discriminator, compared with the free-equivalent 90% CL limit
from Super-Kamiokande. The discontinuity occurs when the sensitivity cal-
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and layers trained on all three planes simultaneously. Such architectures
would likely yield the best results for classification, and their adoption is
advocated in futures studies.
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Figure 7.29: Free-equivalent n−n̄ lifetime sensitivity as a function of exposure
for a CNN trained simultaneously on all three wire planes. The sensitivity
is shown for the full far detector coming online at once, as well as the sen-
sitivity assuming one 10 kt module coming online per year, over a period
of four years. The sensitivity is calculated assuming Super-Kamiokande-like
systematic uncertainties, as shown in Table 7.4.



8 n− n̄ Oscillation Search in
MicroBooNE

In the previous chapter, it was demonstrated that convolutional neural net-
works show great promise as an analysis tool in LArTPCs. However, these
studies are based in Monte Carlo simulations, and implicitly make the as-
sumption that LArTPC data will be perfectly modelled by simulations, an
assumption that is questionable at best.

In order to develop these techniques for use in analysing actual data, it
is necessary to understand not only the performance of CNNs in simulation,
but also how they are applied to data. In this chapter, the studies performed
in the previous chapter for DUNE simulations are repeated in the smaller
MicroBooNE LArTPC for which data is currently available.

A CNN is trained on Monte Carlo simulations of simulated signal and
background events in MicroBooNE. Since MicroBooNE is operating on-
surface, and also significantly smaller in size than DUNE, signal and back-
ground images differ from the DUNE detector, and so this study is not a
direct analogue to the DUNE case. This CNN is used to classify test sam-
ples of signal and background simulations, as in the DUNE case, but also to
classify MicroBooNE data.

Due to the low exposure considered in MicroBooNE (time exposure of
∼ 15 minutes and 87 tons active mass), the rate of atmospheric neutrinos
is negligible compared to the large flux of cosmogenic particles. Therefore,
cosmogenic interactions are the source of background considered in this study.

Significant differences between the network’s classification of simulated
and data background events were found, proving that CNNs are highly sen-

139
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sitive to data-MC disagreement. These results are discussed in the context
of potential future work, with several different avenues of research proposed
for understanding these disagreements and taking steps to mitigate them.

8.1 Cosmogenic background simulation

As MicroBooNE is an on-surface detector, it is constantly exposed to cosmo-
genic particles produced in the atmosphere by high-energy cosmic rays.

MicroBooNE uses CORSIKA [86] to simulate air showers produced in the
atmosphere by high-energy cosmic rays. Hadronic showers above 80 GeV are
simulated using GHEISHA routines [87]; below this threshold, CORSIKA
passes off hadronic shower simulation to FLUKA [88,89].

Cosmogenic interactions in MicroBooNE are produced using a 5-component
cosmic ray flux model, the constant mass composition model, which considers
cosmic ray nuclei in five mass groups — p, α, N, Mg and Fe [90]. Event gen-
eration in MicroBooNE samples a previously produced database of hadronic
showers generated by CORSIKA, preventing the need to rerun CORSIKA
and FLUKA whenever new cosmogenic interactions are simulated.

Cosmogenic particles produced in the region surrounding the Micro-
BooNE detector in a 50,000 event sample are shown in Table 8.1. These
events were simulated using version 6.35.00 of LArSoft [3] and CORSIKA
version 7.4003. The most common particles are muons and protons, in addi-
tion to a significant contribution from electrons and positrons, photons and
neutrons. Charged pions and kaons are simulated at a very low rate, and
the rate at which kaons are visible in the detector is vanishingly small. The
flux of antinucleons, the particles most likely to emulate an n− n̄ topology,
is so low that the chances of observing an annihilation event are remote.

8.2 Event selection

The presence of cosmogenic interactions in MicroBooNE necessitates a differ-
ent approach to DUNE. In DUNE, the interaction rate is low enough that we
can assume any given interaction in the detector will be the only interaction
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Table 8.1: Multiplicity of detected cosmogenic primaries in a 50,000 event
sample of CORSIKA simulations in MicroBooNE, corresponding to a time
exposure of 110 s. Particles are generated in the region surrounding Mi-
croBooNE and are only counted if they have an associated MC track or
shower, meaning they enter the TPC active volume and have energy above
the threshold for detection.

Particle type No. visible particles Average no. per event
µ− 337205 6.74
µ+ 268429 5.37
e− 26711 0.53
e+ 27308 0.55
γ 113727 2.27
π+ 83 0.0017
π− 133 0.0027
K+ 1 0.00002
K0

L 0 0
p 212525 4.25
p 9 0.00018
n 22030 0.44
n 7 0.00014
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occurring in that readout window. Identifying the location of the interac-
tion and defining an image ROI is trivial — we simply search for wires with
energy deposition above the expected noise level.

However, in MicroBooNE any given readout window will contain many
cosmogenic interactions in addition to the signal n − n̄ event. This renders
the technique used in DUNE for identifying an ROI via energy deposition
information impractical, and so an alternative approach is necessary.

For the purposes of this study, no attempt is made to remove cosmogenic
interactions, and no ROI finding is performed. Instead, the entire TPC
readout is downsampled to fit into an image size the network can handle.
Since the signal and background MC samples contain identical cosmogenic
simulations, the network is trained to identify n− n̄ oscillation events inside
the TPC.

8.3 Monte Carlo production

Since each MicroBooNE signal window contains many cosmogenic interac-
tions, the definition of signal and background is reframed with respect to
the DUNE studies. The challenge is not rejecting background events, as in
DUNE, but instead in picking out candidate signal events among the cosmo-
genic interactions.

Two different kinds of Monte Carlo samples were produced. The first was
a standard simulation of cosmogenic interactions in MicroBooNE, simulated
using CORSIKA as detailed in Section 8.1. The second was another cosmo-
genic sample, identical except for an additional GENIE n− n̄ event generator
stage run in addition to the CORSIKA generator. This second sample con-
sists of MicroBooNE cosmogenic events, each of which also contain an n− n̄

event.
A MicroBooNE truncated waveform is used, consisting of 6400 time ticks

in the time range -400 to 6000. Waveforms are sampled at 2 MHz, and so
each time tick is 0.5 µs in duration [35]. The n− n̄ event vertex is randomly
selected homogeneously within a region 5 cm inside the MicroBooNE active
volume at time tick 0. Since a full drift readout window of 2.2 ms is smaller
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than the extent in time of a readout window, the n − n̄ vertex position
is inhomogeneous in the produced image, as it cannot appear at the very
beginning or end of the drift readout.

Due to the presence of cosmogenic interactions within each MicroBooNE
readout window, ROI-finding cannot be performed using ADC thresholding.
Instead, no ROI finding is performed at all. Images are produced using the
entire MicroBooNE event-sized readout window — 8456 wires and 6400 time
ticks. These images are heavily downsampled, with much image resolution
being lost in the process. Images are downsampled by a factor of 4 in wire
space for U and V planes, and a factor of 6 in wire space for the Y plane. All
images are downsampled by a factor of 10 in time, producing images with a
uniform size of 600× 640 pixels.

Due to the constant flux of cosmogenic particles present in every read-
out window, no simulated image is empty of activity. The image produc-
tion inefficiency in the DUNE studies, especially in the atmospheric neutrino
background sample, is not present in these MicroBooNE studies. Example
CNN images for the signal and background sample are shown in Figures 8.1
and 8.2, respectively.

8.4 Network training

A network was trained using labelled samples of 50,000 events each of signal
(n− n̄ plus cosmogenics) and background (cosmogenics only) samples. The
same network architecture (Table 6.1) and solver parameters (Table 7.2) are
used as for the DUNE study. The training accuracy and loss are shown in
Figures 8.3 and 8.4 respectively.

8.5 Network performance

The network was tested using independent Monte Carlo samples of signal
and background events. The score distributions are shown in Figure 8.5. As
is the case for DUNE, the network displays impressive resolving power in
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Figure 8.1: CNN Monte Carlo image of full MicroBooNE readout, containing
both simulated cosmogenic interactions and a visible n − n̄ oscillation star
in the bottom centre of the image.
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Figure 8.2: CNN Monte Carlo image of full MicroBooNE readout, containing
only simulated cosmogenic interactions.
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Figure 8.3: MicroBooNE CNN training accuracy monitored as a function of
training iteration.
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Figure 8.4: MicroBooNE CNN training loss monitored as a function of train-
ing iteration.
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identifying events containing n− n̄ in among the cosmogenic interactions in
Monte Carlo.

As in the DUNE case, applying a CNN score cut to classified signal
and background events yields a signal selection efficiency and background
rejection rate, and varying this score cut produces a curve in efficiency vs
background rate, shown in Figure 8.6.

Again the network demonstrates an impressive ability to select events
containing signal. In this study the network is not only able to recognise
n−n̄ interactions, but also pick them out inside events containing cosmogenic
interactions.
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Figure 8.5: MicroBooNE CNN score distributions for Monte Carlo n−n̄ with
cosmogenics (blue) and cosmogenic-only (red) events.
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Figure 8.6: MicroBooNE signal selection efficiency vs background rate curve
for Monte Carlo n− n̄ and cosmogenic events.
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8.6 MicroBooNE sensitivity to n − n̄ oscilla-
tion
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Figure 8.7: Signal selection efficiency in MicroBooNE as a function of CNN
score discriminator.

Using the same sensitivity calculation method detailed in Section 7.7, the
n− n̄ lifetime sensitivity was evaluated for a search in MicroBooNE cosmo-
genic data. The central frame of a single MicroBooNE readout window is
≈ 2.2 ms. The current statistics of beam-external triggers in MicroBooNE is
approximately 380,000 events, corresponding to a live-time of around 15 min-
utes, with an active mass of 87 tons. Due to the small MicroBooNE exposure,
as well as the large and constant flux of cosmogenic particles, MicroBooNE’s
n− n̄ oscillation lifetime sensitivity is far below current experimental limits.

The signal selection efficiency as a function of CNN score discriminator
is shown in Figure 8.7, while the background rate is shown in Figure 8.8.
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Figure 8.8: Background rejection rate in MicroBooNE as a function of CNN
score discriminator.
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The n − n̄ lifetime sensitivity was profiled as a function of CNN score dis-
criminator, as shown in Figure 8.9. The MicroBooNE CNN exhibits weaker
resolving power than that from DUNE, and so a CNN score discriminator of
0.99 is applied, corresponding to a signal selection efficiency of 45% and a
background rejection rate of 99%. Assuming one hour of exposure in Micro-
BooNE, the free n− n̄ lifetime sensitivity is 1.3× 105 s using only statistical
uncertainties.

Although not within the scope of this thesis, it should be noted that in
addition to beam-external triggers, the zero-suppressed MicroBooNE super-
nova readout could be used as a source of beam-external data. This could
potentially drastically increase available statistics, providing an exposure on
the order of years instead of hours. However, due to the high background
rate and small detector active volume, the n − n̄ lifetime sensitivity would
still be far below current experimental limits. Furthermore, the impact that
data zero suppression has on CNN performance has yet to be established.

8.7 Data-MC agreement

The network was also tested using a sample of real cosmogenic data col-
lected in MicroBooNE, with an example image shown in Figure 8.11. The
prod_extbnb_reco_neutrino2016_goodruns_v5 data set was used to pro-
duce images. This data set consists of beam-external cosmogenic events, and
is slightly biased in comparison to the Monte Carlo training sample. In this
data set, the MicroBooNE software trigger imposes a requirement that all
events pass a 3.5 photoelectron (PE) optical threshold [91], slightly biasing
images classified towards higher TPC activity. This is not expected to have
a large impact on image classification.

The CNN score distribution is shown in Figure 8.12. The CNN is found
to respond very differently to data events compared to Monte Carlo, misclas-
sifying the majority of images as containing an n − n̄ event. Given current
lifetime limits on n− n̄ oscillation, this is not realistic.

This data test highlights the necessity for further development in order
for these techniques to be an effective analysis tool. The studies presented
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Figure 8.9: Bound n− n̄ lifetime sensitivity at 90% confidence level in Micro-
BooNE as a function of CNN score discriminator, assuming a total exposure
of 1 hour.
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Figure 8.10: Free n − n̄ lifetime sensitivity at 90% confidence level in Mi-
croBooNE as a function of exposure, with a CNN score discriminator cut
of 0.99 applied. MicroBooNE’s sensitivity with only statistical uncertain-
ties is 1.3 × 105 s after only one hour (a factor of ∼ 1000 below current
best limits). The discontinuity occurs at the boundary between sensitivity
calculation with a Poisson distribution at lower statistics and a Gaussian
distribution at higher statistics.
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Figure 8.11: CNN data image of cosmogenic interactions in MicroBooNE.
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Figure 8.12: MicroBooNE CNN score distributions for Monte Carlo and data
cosmogenic events.
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in this thesis highlight the great potential of CNNs as a tool for identifying
different event topologies — but they also highlight the need to carefully
understand and account for differences between data and Monte Carlo.

The distinguishing power of CNNs can only be utilised effectively if the
effect of data-Monte Carlo difference can be overcome. Since this technique
shows great promise as an analysis tool, further studies are warranted into
investigating and solving this challenging problem.

The fact that the network responds very differently to images from data
and simulation is indicative of differences between the two. Since a CNN
approach utilises different information to a more traditional reconstruction
approach, simulations that agree well with data from the viewpoint of tradi-
tional reconstruction can be identified as different by a CNN.

There are several methods through which these effects can be mitigated.
Since the network is sensitive to differences between simulation and data,
we can either entirely eliminate all differences between data and simulation,
or search for ways to understand why CNNs respond differently to data and
simulation, independently of its ability to classify event types. Since a perfect
modelling of data using simulation is unrealistic, the ideal solution will likely
be some combination of the two.

8.7.0.1 Noise simulations

The fact that the network is sensitive to data-MC differences is itself a mo-
tivator for further study. We can train a network using nominally identical
samples from data and simulation, such as the MicroBooNE cosmogenic sam-
ples discussed in this chapter. By looking in detail at network weights, we
can understand how the network is sensitive to data-MC differences.

This technique could be used to improve the precision with which events
in a LArTPC are simulated. The network’s ability to resolve data from
Monte Carlo could be assessed as a function of, for instance, variations in
the simulation of noise, or in the flux of cosmogenic particles. Minimising
the network’s resolving power with respect to these quantities could lead to
a more accurate modelling of data.
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8.7.0.2 Wires and hits

An early attempt at CNN training in MicroBooNE [92] made use of an MCC
(Monte Carlo Challenge) sample for cosmogenic background events, and a
custom-generated sample of n−n̄ signal events with cosmogenic overlay. The
two samples were not consistent in their noise simulation, and the resulting
trained CNN was able to separate signal and background with perfect accu-
racy. A custom background MC sample was then produced, with noise sim-
ulation identical to the signal sample, and the network retrained to produce
the results presented above. This indicates that CNNs are highly sensitive to
differences in noise simulation, which is likely the primary cause of data-MC
disagreements.

Since TPC noise is a major contributor to data-MC disagreements, it may
be beneficial to produce images using detector hits instead of deconvoluted
wires. Since hits are produced by fitting Gaussian distributions to wire sig-
nals (as demonstrated in Figure 4.3), using hits to produce images may help
to mitigate the effects of noise on network response, particularly in regions
of images that contain only noise. This approach has been taken by other
MicroBooNE collaborators working with CNNs .

8.7.0.3 Network improvements

In terms of mitigating the network’s sensitivity to differences between simu-
lation and data, both low-level and high-level approaches can be envisioned.
In terms of low-level features, training a network to distinguish between data
and MC provides us with an insight into the types of convolutional filters
the network uses to identify such differences. We can envision modifying a
network to penalise it for learning on this type of information, forcing it only
to learn on information which is insensitive to data-Monte Carlo differences.
This would be a highly non-trivial undertaking, but could be worthwhile if
such techniques are to receive widespread use as a LArTPC analysis tool.

Another potential approach to overcoming this problem, previously sug-
gested by other MicroBooNE collaborators, is the use of Generative Adver-
sarial Networks (GANs) [93]. Such networks utilise a generative model, which
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generates new images based on a training sample of images, and set it against
an adversarial network that attempts to ascertain whether an image has been
generated or is part of the training set. We can envision adapting a similar
framework that combines a network that classifies Monte Carlo events with
another network that understands the differences between data and Monte
Carlo.
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9 Conclusions

The ultimate goal of this thesis is to understand future prospects for exploring
new parameter space for n − n̄ oscillation in the context of the upcoming
Deep Underground Neutrino Experiment. The motivations for this work
are several, as discussed in more detail in Chapter 2; measurement of n −
n̄ oscillation would have implications for the source of matter-antimatter
asymmetry in the universe and the nature of neutrino mass, in addition to
being a landmark discovery in its own right.

Since its first proposal in the late 1960s, many experiments have searched
for — and failed to find — n− n̄ oscillation. Chapter 3 summarises previous
experimental searches, and also offers a brief summary of the antiproton
scattering data from which n− n̄ oscillation branching ratios are derived.

If this n − n̄ oscillation is realised in nature, it occurs with a lifetime
longer than 2.7×108 s at 90% CL for a free neutron, or 1.9×1032 years for a
neutron bound in oxygen. The next generation of neutrino detectors, utilising
liquid argon time projection chamber technology, offer high resolution, large
exposures and low background environments; the basic principles of this
technology is summarised in Chapter 4.

9.1 Event generator development

Chapter 5 discusses the development of an n− n̄ event generator as part of
GENIE, later included in an official release. The event generator uses branch-
ing ratios from antiproton scattering data, and simulates nuclear effects such
as Fermi momentum and final state interactions.

Some validations studies are also presented that demonstrate neglect-
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ing intermediate states in nucleon-antinucleon annihilation (such as ρ reso-
nances) is an acceptable approximation, given that such structure is largely
eliminated by the profound effect that final state interactions have on the
annihilation byproducts.

Several additional avenues for improvement to the event generator, in-
cluding the implementation of updated branching ratios, have been outlined
in this thesis. Additional modelling of intermediate states could also be a
beneficial improvement, though as discussed above, it is a labour-intensive
process that provides little benefit.

The development of this event generator serves a twofold purpose: firstly,
it was a fundamental component of the analysis work described in this thesis,
and secondly, it is this author’s hope that the development and public release
of an n−n̄ event generator lays important groundwork for future work carried
out by others in n − n̄ oscillation. The public availability of this generator
provides an easy simulation source for others to study n− n̄ oscillation, and
also provides the opportunity for others to update, modify and refine this
event generator in the future.

9.2 Convolutional neural networks

Convolutional neural networks are a powerful tool for image classification,
and are increasingly being used as an analysis tool in particle physics. The
work described in this thesis involves the use of CNNs to select n− n̄ events,
and so Chapter 6 provides an overview of basic CNN operating principles,
and describes techniques and tools used.

Chapter 7 discusses work carried out in using CNNs to classify and dis-
tinguish Monte Carlo simulations of n−n̄ and atmospheric neutrino events in
DUNE. Simulation methods for atmospheric neutrino events are described,
as is the method for producing images for classification. Networks trained
on DUNE simulations demonstrates an ability to very efficiently select n− n̄

events while rejecting atmospheric neutrino backgrounds. Efforts are made
to correlate network learning with event MC truth information — CNNs
seem to prefer tracklike objects to showerlike objects. The network’s abil-
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ity to resolve signal from background is equivalent to a free n − n̄ lifetime
sensitivity of 1.6× 109 s at 90% confidence level, a factor of 5 improvement
over current best limits, and the first ever evaluation of DUNE’s sensitivity
to n− n̄ oscillation.

The study performed in MicroBooNE, described in Chapter 8, emphasises
again the power of convolutional neural networks as an analysis tool — in
this context, a CNN is not only able to distinguish signal from background,
but also identify signal n−n̄ events embedded within LArTPC event displays
of cosmogenic interactions, with a free n− n̄ lifetime sensitivity of 1.3×105 s
at 90% CL (neglecting systematics) after only one hour of exposure. How-
ever, it also demonstrates the impact of data-MC disagreement on network
performance, highlighting the challenges that must be overcome in order for
CNNs to be viable as an analysis tool.

9.3 Future challenges
Chapter 8 also summarises several potential avenues through which the ef-
fects of data-MC disagreements on CNN performance can be mitigated. Due
to the complicated geometry of DUNE, there are undoubtedly optimisations
to be made in image production, especially with regards to the wrapped wire
geometry and the combination of information across multiple TPC modules.

In addition, testing a network trained on Monte Carlo on data events
demonstrates that CNNs are highly sensitive to data-MC disagreements.
Several suggestions are made for avenues to overcome this issue, including
noise simulation improvements, alternate approaches to image production,
and alternate network architectures.

The work carried out in this thesis demonstrates the potential for both the
Deep Underground Neutrino Experiment and the use of convolutional neural
networks for exploring new parameter space in n − n̄ oscillation. Through
detailed simulation and image production, a CNN approach is shown to have
the potential to improve on current measurements by a factor 5. Given
the challenges demonstrated in moving from Monte Carlo to data, strong
motivation is provided for the continued development of these techniques
over the coming decade.
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A Antiproton scattering data

This appendix provides the branching ratio tables from several independent
measurements of at-rest antiproton annihilation. These branching ratios are
discussed within the context of n−n̄ oscillation branching ratios in Chapter 3,
and are here reproduced in full for reference.

A.1 Antiproton annihilation in hydrogen

The nn annihilation branching ratios are derived from four data sets of stop-
ping antiprotons on hydrogen. Each of these four sources is briefly sum-
marised below.

A.1.1 Cresti et al.

Cresti et al. measured approximately 10,000 antiproton annihilation events
in the Saclay 81 cm hydrogen chamber, produced using the CERN proton
synchrotron [94]. The branching ratios are shown in Table A.1, and compared
with Super-Kamiokande branching ratios in Table A.2. The paper describes
these events as stopping antiprotons, with 93% of events being induced by
antiprotons which stopped inside the detector, although no numbers are pro-
vided for the momentum range of these stopping antiprotons.

A.1.2 Baltay et al.

Baltay et al. measured approximately 45,000 antiproton annihilation events
in the 30 inch Columbia-BNL hydrogen bubble chamber, produced using the
Brookhaven Alternating Gradient Synchrotron [95]. The branching ratios are
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Table A.1: Branching ratios for p̄p annihilation, as published in Armenteros
and French’s review of nucleon-antinucleon annihilation [31]. The data is
taken from two publications of bubble chamber measurements: one from
the CERN proton synchrotron by Cresti et al. [94], and the other from the
Brookhaven Alternating Gradient Synchrotron by Baltay et al. [95].

Channel Branching ratio [%]
Cresti et al. Baltay et al.

Multi-π0 — 3.20± 0.5
π+π− 0.33± 0.04 0.32± 0.03
π+π−π0 8.8± 1.4 11.9± 1.5
π+π−nπ0 (n > 1) — 34.5± 1.2
2π+2π− 11.4± — 12.0+0.6

−1.6

π+π−ω 5.2± 0.3 3.8± 0.04
2π+2π−π0 38.7± 1.9 35.0± 5.2
2π+2π−nπ0 (n > 1) — 21.3± 1.1
3π+3π− 1.7± 0.2 1.9± 0.2
3π+3π−π0 3.6± 0.7 1.6± 0.3
3π+3π−nπ0 (n > 1) — 0.3± 0.1

Table A.2: A comparison between Super-Kamiokande n − n̄ branching ra-
tios and Cresti et al. antiproton annihilation data collected at the CERN
proton synchrotron [94], and reproduced in Armenteros and French’s 1969
review [31]. Only channels for which both tables have ratios available are
considered. The full tables for each experiment are provided in Tables 3.2
and A.1 respectively.

Channel Branching ratio [%] Ratio [SK/data]
SK Cresti et al.

π+π− 2 0.33 6.1
π+π−π0 6.5 8.8 0.74
2π+2π− 7 11.4 0.61
π+π−ω 10 5.2 1.9
2π+2π−π0 24 38.7 0.62
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shown in Table A.1, and compared to Super-Kamiokande branching ratios
in Table A.3. The paper describes these events as stopping antiprotons, but
again an upper limit on antiproton momentum is not provided.

Table A.3: A comparison between Super-Kamiokande n− n̄ branching ratios
and Baltay et al. antiproton annihilation data collected at the Brookhaven
Alternating Gradient Synchrotron [95], and reproduced in Armenteros and
French’s 1969 review [31]. Only channels for which both tables have ratios
available are considered; the full tables for each experiment are provided in
Tables 3.2 and A.1 respectively.

Channel Branching ratio [%] Ratio [SK/data]
SK Baltay et al.

Multi-π0 1.5 3.20 0.47
π+π− 2 0.32 6.3
π+π−π0 6.5 11.9 0.55
π+π−nπ0 (n > 1) 39 34.5 1.1
2π+2π− 7 12.0 0.58
π+π−ω 10 3.8 2.6
2π+2π−π0 24 35.0 0.69
2π+2π−nπ0 (n > 1) 10 21.3 0.47

A.1.3 Pavlopoulos et al.

Pavlopoulos et al. measured antiproton annihilations in an NaI γ spectrome-
ter at the CERN Proton Synchrotron [96]. The branching ratios are shown in
Table A.4, and compared to the Super-Kamiokande branching ratios in Ta-
ble A.5. These measurements were made using a beam of antiprotons with
an initial momentum of 800 MeV/c, but a momentum range for stopping
antiprotons is not provided.

A.1.4 Backenstoss et al.

Backenstoss et al. measured antiproton annihilations in an NaI γ spectrom-
eter at the CERN Proton Synchrotron [97]. The branching ratios are repro-
duced in Table A.6, and compared to Super-Kamiokande branching ratios in
Table A.7. The antiproton beam with an initial momentum of 600 MeV/c
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Table A.4: Branching ratios for p̄p annihilation, as published by Pavlopoulus
et al. [96]. This data was collected at the CERN Proton Synchrotron using
a large NaI γ spectrometer.

Channel Branching ratio [%]
π+π− 0.33± 0.04
2π+2π− 5.8± 0.3
3π+3π− 1.9± 0.2
π+π−π0 7.8± 0.6
2π+2π−π0 15.8± 4.3
π+π−ω 3.8± 0.4
3π+3π−π0 1.9± 0.5
π+π−2π0 9.3± 3.0
π+π−3π0 23.3± 3.0
π+π−4π0 2.8± 0.7
2π+2π−2π0 16.6± 1.0
2π+2π−3π0 4.2± 1.0
2π0 0.04± —
nπ0 (n > 2) 3.2± 0.5

Table A.5: A comparison between Super-Kamiokande n− n̄ branching ratios
and Pavlopoulos et al. antiproton annihilation data collected at the CERN
Proton Synchrotron [96]. Only channels for which both tables have ratios
available are considered; the full tables for each experiment are provided in
Tables 3.2 and A.4 respectively.

Channel Branching ratio [%] Ratio [SK/data]
SK Pavlopoulos et al.

π+π− 2 0.33 6.1
2π+2π− 7 5.8 1.2
π+π−π0 6.5 7.8 0.83
2π+2π−π0 24 15.8 1.5
π+π−ω 10 3.8 2.6
π+π−2π0 11 9.3 1.2
π+π−3π0 28 23.3 1.2
2π+2π−2π0 10 16.6 0.6
2π0 1.5 0.04 37.4
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was slowed in a graphite target, and stopped in a 25 cm liquid hydrogen
target; no momentum range is provided for the stopping antiprotons.

Since the branching ratios presented in this reference are used for Monte
Carlo simulations, rather than measurements from data, this paper does not
provide uncertainties on branching ratios.

Table A.6: Branching ratios for p̄p annihilation, as published by Backenstoss
et al. [97]. These branching ratios were used for Monte Carlo simuations at
the CERN Proton Synchrotron using an NaI γ spectrometer.

Channel Branching ratio [%]
π+π−π0 6.4
π+π−2π0 9.3
π+π−3π0 23.3
π+π−4π0 2.8
π+π−ω 3.8
2π+2π−π0 13.7
2π+2π−2π0 16.6
2π+2π−3π0 4.2
3π+3π−π0 1.3
nπ0 3.2
π+π− 0.4
2π+2π− 6.9
3π+3π− 2.1

A.2 Antiproton annihilation in deuterium

Only one source for p̄n annihilation is considered: Bettini et al. measured
∼ 20, 000 antiproton annihilation events using a deuterium bubble chamber
at the CERN Proton Synchrotron [27]. The measured branching ratios are
reproduced in Table A.8, and compared to Super-Kamiokande in Table 3.4.
Only events with a spectator proton momentum of p < 250 MeV/c are con-
sidered.
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Table A.7: A comparison between Super-Kamiokande n− n̄ branching ratios
and Backenstoss et al. antiproton annihilation data collected at the CERN
Proton Synchrotron [97]. Only channels for which both tables have ratios
available are considered; the full tables for each experiment are provided in
Tables 3.2 and A.6 respectively.

Channel Branching ratio [%] Ratio [SK/data]
SK Backenstoss et al.

π+π−π0 6.5 6.4 1.0
π+π−2π0 11 9.3 1.2
π+π−3π0 28 23.3 1.2
π+π−ω 10 3.8 2.6
2π+2π−π0 24 13.7 1.8
2π+2π−2π0 10 16.6 0.6
nπ0 1.5 3.2 0.47
π+π− 2 0.4 5.0
2π+2π− 7 6.9 1.0

Table A.8: Branching ratios for p̄n annihilation, as published by Bettini et
al. [27] and reproduced in Armenteros & French’s review of antiproton anni-
hilation data [31]. This data was collected at the CERN Proton Synchrotron
using a deuterium bubble chamber. Here the charge of π± is left as originally
measured, and has not been inverted.

Channel Branching ratio [%]
π−nπ0 (n > 0) 16.4± 0.5
π−π0 0.7± —
2π−π+nπ0 (n ≥ 0) 59.7± 1.2
2π−π+ 1.57± 0.21
2π−π+π0 21.8± 2.2
3π−2π+nπ0 (n ≥ 0) 23.4± 0.7
4π−3π+nπ0 (n ≥ 0) 0.39± 0.07



B Neutrino oscillations

Neutrino oscillations were first proposed by Bruno Pontecorvo in 1958 [98],
and first definitively measured at the Sudbury Neutrino Observatory in
2002 [99]. This discovery has serious implications for Standard Model neu-
trinos: they are not massless, as previously believed, but possess a small but
non-zero mass. Three distinct neutrino mass states exist, and mixing oc-
curs between mass and flavour states [39]. Neutrinos interact via a definitive
flavour state, and propagate in a definitive mass state. Mixing between mass
and flavour states is described using matrix elements,

ναL =
N∑
k=1

UαkνkL , (B.1)

where U is a unitary matrix, and the subscripts α and k refer to flavour and
mass eigenstates respectively — Greek indices are used for flavour states and
Roman indices for mass states.

Assuming that no sterile neutrinos exist [100], and there are only three
massive neutrinos, this mixing matrix can be parameterised in terms of three
mixing angles θ12, θ13 and θ23 and one CP-violating phase δCP . The full
mixing matrix is

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (B.2)

first proposed by Maki, Nakagawa and Sakata [101] based on Pontecorvo’s
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prediction, referred to as the PMNS matrix.
The flavour oscillation probability of a function of time can be expressed

as

P (να → νβ) = 〈νβ| |να(t)〉 =
3∑

k=1

U∗
αkUβke

−iEkt . (B.3)

The PMNS matrix describes three-flavour neutrino oscillations in a vac-
uum, but does not account for the effect of the constant density of electrons
in matter. While all three neutrino flavours can interact via neutral current
interactions, only electron-flavoured neutrinos (and antineutrinos) can inter-
act via charged current interactions. An additional potential is experienced,

HF = U

0 0 0

0
∆m2

21

2E
0

0 0
∆m2

31

2E

U † +

VCC 0 0

0 0 0

0 0 0

 (B.4)

where VCC = ±
√
2GFne, where GF is the Fermi coupling constant and ne is

the electron density in the medium.
Neutrino oscillations are included in the simulation of atmospheric neu-

trinos as a background process in the search performed in Chapter 7. A full
simulation of three-flavour oscillations is performed, including matter effects
when neutrinos propagate through the Earth.
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