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ABSTRACT

Measurement of the Antineutrino Double-Differential Charged-Current

Quasi-Elastic Scattering Cross Section

at MINERvA

Cheryl Patrick
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Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande,

hope to measure charge-parity (CP) violation in the lepton sector. In order to do this,

they must dramatically reduce their current levels of uncertainty, particularly those due

to neutrino-nucleus interaction models. As CP violation is a measure of the difference

between the oscillation properties of neutrinos and antineutrinos, data about how the

less-studied antineutrinos interact is especially valuable. We present the MINERvA ex-

periment’s first double-differential scattering cross sections for antineutrinos on scintilla-

tor, in the few-GeV range relevant to experiments such as DUNE and NOvA. We also

present total antineutrino-scintillator quasi-elastic cross sections as a function of energy,

which we compare to measurements from previous experiments. As well as being useful

to help reduce oscillation experiments’ uncertainty, our data can also be used to study

the prevalence of various correlation and final-state interaction effects within the nucleus.

We compare to models produced by different model generators, and are able to draw first

conclusions about the predictions of these models.
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A9 This trigger message is sent from accelerator division before a beam spill to tell

us to get ready to receive beam.

Arachne Our event viewer, in which you can watch events in the detector in real

time, or scan through old events by run, subrun and gate number.

Argoneut A prototype liquid argon detector that used to be located between MIN-

ERvA and MINOS. This meant that the energy reconstruction of particles that had been

matched in MINOS had to be corrected due to the extra mass between the two detectors.

Baffle Device protect equipment other than the target from the damaging effects of

the proton beam

Bar OD equivalent of a strip. In each story , bar 1 will be upstream of bar 2.

Cal stage The calibration stage runs RawToDigitAlg. That does not make raw digits

out of raw data (contrary to what the name suggests). Instead, it makes cal digits out of

supdigits. Applies the gains, MEU, strip to strip and some attenuation calibrations.

CCQE Charged-current quasi-elastic scattering, when a neutrino scatters from a nu-

cleon and exchanging a W boson. This turns the neutrino into a charged lepton (a muon,

for our νmu beam) and a neutron into a proton or vice versa: νmu + n → µ− + p or

ν̄mu+ p→ µ+ + n

CCInclusive A charged-current analysis, where no particular interaction process is

required. Thus it is looking for neutrino interactions that generate a muon.

Chain Up to 10 FEBs (each atop a PMT) are connected in a chain: a long network

cable from the CROC-E runs to the first board in the chain, and then short jumper cables

connect each board to the next. A chain of PMTs will be arranged vertically from bottom

(FEB 1) to to (FEB 10) up either the east or west side of the top of the detector.
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Channel Each PMT (and FEB) has 64 channels, which are connected to 64 different

strips in the detector. Each corresponds to a Crate-CROC-Chain-Board-Pixel. Note:

electrical engineers will sometimes use the word channel to refer to a chain (but they

count from1 instead of 0, so channel number will be chain number plus 1). This is very

confusing. Do not do it.

Charged-current Any interaction wherein a neutrino exchanges a W boson, convert-

ing into its partner charged lepton.

Chvojka corollary Free coffee for people writing their theses!

Crate There are two crates, each of which contains CROCs. There are 8 CROC-Es

in Crate - and 7 in Crate 1.

CRIM Helps to synch the timing of the CROC-Es. There are 4 CROC-Es per CRIM

(two CRIMs per crate).

CROC-E Chain readout controller (ethernet). Up to four chains of FEBs are con-

nected to a CROC, which polls the chains for readout.

Cross talk Current in a given channel can induce a small amount of current in the

neighboring channel. The weave is used to protect us from false readings due to cross

talk.

DAQ The system that receives raw data from the detector and stores it to disk.

dCache System for long-term data storage. Files copied to dCache will either be

stored to disk or to tape, and can be accessed seamlessly using Samweb.

DIS Deep inelastic scattering - occurs at high Q2, where the neutrino scatters off a

constituent quark in the nucleon, breaking it apart.
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Downstream Further along the beamline, away from the target; MINOS is down-

stream of MINERvA.

ECAL Lead electromagnetic calorimeter downstream of the fiducial tracker volume

and in the inner part of the outer detector. Designed to stop electromagnetic showers so

that their energy can be measured.

ECL Electronic Control-room log, also known as Minerva Electronic Logbook. Used

to log all shift tasks, hardware changes, or anything else that might affect the detector or

data-taking.

Electromagnetic calorimeter See ECAL

Enstore The tape backup system. Files stored on Enstore can be accessed using

Samweb.

Eroica The 2015 release of our reconstruction code.

FEB Electronics board attached on top of a PMT (one FEB per PMT) that outputs

the signal from the PMT.

Fiducial volume The central scintillator tracker part of the detector.

Final-state interaction When an interaction with a nucleus knocks out a nucleon,

this nucleon can re-interact with other particles in the nucleus. This is known as a final-

state interaction or FSI.

Frame HCAL equivalent of a module. One frame per module.

Front-End Board See FEB

Frozen detector Before the full detector was completed, we ran with only the down-

stream part of the detector, from module 49 onwards (OD frame 51 onwards). This was

known as the ‘frozen’ or ‘downstream’ detector.
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FSI See Final-state interaction

GAUDI The C++ framework used to run our production and analysis jobs. Con-

figured using options files, which live in Tools/SystemTests. Run using Gaudi.exe or

SystemTestsApp.exe, to which you pass an options file - that file includes a list of algo-

rithms you want to run, as well as various configuration parameters.

GEANT The program used to create our detector simulation

GENIE Our Monte Carlo generator

HCAL See Hadron calorimeter

Hadron calorimeter Iron calorimeter on the downstream and outside parts of the

calorimeter. Designed to stop hadrons so that all their energy will be deposited and can

be measured by the

Horn Parabolic magnets used to focus positive or negative pions (depending on cur-

rent direction) produced when the proton beam collides with the beam target. These

pions will decay to create our neutrino beam (they also create muons, which are filtered

out by rock).

ID The inner detector, with respect to the beamline, including the scintillator tracker,

nuclear targets, and downstream calorimeters.

IFDH Intensity frontier data handling. Use ifdh commands to do the equivalent of

basic Linux commands on the Fermilab system, regardless of where the files are located.

For example ifdh cp will allow you to copy files even if they are on the PNFS storage

system.

Inclusive analyses count the number of interactions measured in a given situation,

regardless of the reaction mechanism.
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Inner detector See ID.

Keep-up processing Batch processing run on a daily cron job to process raw data

into raw digits, pedestal-type raw digits to pedestal tables, and beam-type raw digits to

supdigits (pedestal suppression). Also declares these files to SAM.

LI See light injection

Light Injection (linjc) is used to calibrate PMT gain. While there is no beam, the

detector is flashed with a known amount of light from the LI boxes, and the response of

each channel is measured. Runs set to numil mode alternate LI with beam spills.

linjc See light injection

logger The nearline computer, located underground. Raw data files are copied to the

logger machine and then processed on mnvnearline1-4, to make the plots used in the shift

room. Logger is in charge of reconstructing in semi-real time for the GMBrowser display.

Main Control Room The shift room for accelerator division personnel, who control

our beam. Be sure to check in with them by calling x3721 at the beginning of your shift.

MCR See Main Control Room

MEU Overall energy level calibration. Equalizes the energy scale of a muon in data

and Monte Carlo.

Michel electron The electron produced when a muon decays at rest.

Mirror plane Magnetic field shielding between MINERvA (unmagnetized) and MI-

NOS (magnetized)

Module In the inner detector, a module consists of two planes of scintillator strips:

one in the U or V direction, and one in the X. The U,V and X configurations are all at

60 ◦ to each other.
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Muon monitor Four muon monitors are located upstream of the

MTM Minerva timing module. The A9 triggers come to the MTM, which triggers

the DAQ.

Nearline The computers that generate the shift plots that are used in the control

room.

ν Energy of the incoming lepton minus energy of the outgoing lepton. Also the symbol

for a neutrino.

numib A run that only consists of “numibeam” beam data, with no calibration data

interspersed.

numil A run in which light injection (linjc) data is interspersed between the beam

spills (numibeam data).

numip A run in which pedestal (pdstl) data is interspersed between the beam spills

(numibeam data).

Nuclear target Passive materials interspersed between the active scintillator planes

in the downstream part of the detector. MINERvA has graphite, lead, iron, water and

liquid helium targets. Some planes are divided into sections of C, Pb and Fe.

OD the outer detector, around the sides of the fiducial tracker region.

Offline Offline processing does not take place in real time, but instead occurs in

batches (keepup, calibration, reconstruction).

Online The online computers run the DAQ software.

Outer detector See OD
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Paddle One active element of the veto wall, read out by two single-channel PMTs.

The paddles are made of scintillator. 6 paddles make one wall, the veto wall has two

walls.

pdstl See pedestal

Pedestal A measure of the amount of noise received by on our detector’s channels

when there is no light in the detector. We measure pedestals, typically between beam

spills, in order to calibrate our data to remove this background noise.

Photoelectron When light from the detector’s optical fibers arrives at the PMT, it

hits a photocathode to produce photoelectrons via the photoelectric effect.

Photomultiplier tube (PMT )s receive light from the detector’s optical fibers, which

hit a photocathode to produce electrons. This signal is then amplified (typical gain is

around 500,000) to produce the output signal. MINERvA has around 500 PMTs, each

with 64 channels.

Plane Hexagonal sets of parallel scintillator strips that make up the detector. Ar-

ranged in X, U, or V configurations, which are at 60◦ to each other and all (almost) at

right angles to the beam.

Playlist A list of MINERvA runs/subruns that correspond to a specific detector

configuration. Analyses will typically process data from one or more playlists, depending

on what the analysis is looking for (for example, an antineutrino analysis will look at a

playlist of data taken in antineutrino mode).

Plex Because of cross talk, the detector is cabled so that adjacent strips are connected

to distant PMTs and vice versa. This means that if cross talk is induced in the PMT

channel next to one that received a real signal, the cross talk will show up in a distant



16

part of the detector and not be falsely assumed to be additional signal from the original

particle.The plex defines the mapping of physical space to electronics space.

PMT See photomultiplier tube

PNFS It looks like a regular network filing system, but can actually include stuff that

is backed up to tape. It is a front for dcache and Enstore.

POT normalization The number of protons on target (POT), meaning protons

delivered from the main injector to the NuMI beam target that generates the neutrino

beam, is a measure of how long the detector was exposed to beam, and how intense the

beam was. The higher the POT, the more scattering events we would expect to measure.

To compare event counts from two different data samples, we scale one sample by the

ratio of the POT values for the target. To scale simulation to data, we scale by the ratio

of the data POT to the simulated POT used to generate the Monte Carlo sample.

Q2 The square of the four-momentum transferred to the nucleus in a neutrino inter-

action. This is a popular variable for differential cross section measurements, as different

interaction mechanisms are favored at different values of Q2.

Raw data Data from the detector in the binary format in which it is stored on the

DAQ. One file is stored per subrun.

Raw digits Decoded raw data, which has been through the first stage of keepup

processing. Stored in a ROOT format. For each subrun, it the data is broken up into its

pedestal, LI, and beam components. Pedestal type raw digits are used to make pedestal

tables, which are used along with beam-type raw digits to make supdigits. LI raw digits

are used to calculate gain constants, which are used in calibration stages.
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Reco stage The reco stage of data processing takes cal digits and processes them into

reco files (SAM data stream reconstructed-pool). These are the data files on which you

can run an analysis tool.

Resonant An interaction that produces an excited state of a nucleon (typically the

delta resonance ∆1232). These typically decay to a pion and a nucleon.

Resurrection The 2013 release of our reconstruction code.

ROC W The shift room, located on the west side of the Fermilab atrium.

Rock muon A muon created by a neutrino from the beam interacting in the rock

upstream of the detector. Creates a track from the front to the back of the detector. As

muons behave as minimum-ionizing particles, these are used for calibration.

Run control Program used by shifters to start, stop and monitor the detector’s

running. Can be used to tell the detector what combination of beam, pedestal and light

injection data it should take.

SAM Fermilab’s metadata database, which stores information about experiment’s

data files (like file size, which run and subrun the file corresponds to, what version of code

it was processed with etc). Accessed via the Samweb interface.

S2S See strip to strip

Scintillator The material used for our tracker, consisting of doped polystyrene. When

a charged particle passes through the scintillator, it generates blue light, which is shifted

to green by our wavelength-shifting fibers, and travels to our PMTs where it is converted

to electrical current.



18

Slow control Program used by expert shifters to directly interface with the detector’s

hardware. Can be used to monitor hardware, upload configurations, and to directly read

memory registers on the boards.

Spill Rather than being on constantly, our beam delivers a pulse of neutrinos approx-

imately every 1.6s. This pulse is called a beam spill.

Story How far out you are in the HCAL.

Strip Long, triangular prism of scintillator, used to construct the active part of the

inner detector.

Strip to Strip Calibration to equalize the energy response of the scintillator strips

in the detector.

Subrun Our data runs are typically divided into around 40 subruns. A normal run

will consist of something like 2 numip runs, 8 numil, and 30 numib. In the control room,

you will see a run referred to as a ‘run series’ and a subrun referred to as a ‘run’.

Supdigits Beam data in which pedestals have been suppressed. Generated from raw

digits; input to the cal stage of processing.

SystemTests The directory where you store your options files for GAUDI jobs. It is

nothing to do with testing systems.

Target Could refer to a nuclear target or the beam target.

Target 1 A nuclear target, consisting of iron and lead. Same mass as target 2.

Target 2 A nuclear target, consisting of iron and lead. Same mass as target 1.

Target 3 A nuclear target, consisting of graphite, iron and lead.

Target 4 A nuclear target, consisting of pure lead.

Target 5 A nuclear target, consisting of iron and lead. Thinner than targets 1 and 2.
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Titan The original release of our reconstruction code.

Tower The 6 sides of the HCAL outer detector.

Veto wall The most upstream subdetector of MINERvA, used to tag rock muons for

helium and target 1 analyses.

W Invariant mass of the final state hadrons in an interaction.

Weave Because of cross talk, the detector is cabled so that adjacent strips are con-

nected to distant PMTs and vice versa. This means that if cross talk is induced in the

PMT channel next to one that received a real signal, the cross talk will show up in a

distant part of the detector and not be falsely assumed to be additional signal from the

original particle.

Upstream Less far along the beam line, closer to the beam target. The veto wall is

upstream of the MINERvA detector.

UROC Remote operations center - the setup that allows people to run shifts from a

location other than the Fermilab shift room.

x Bjorken x. Fraction of the total nucleon momentum carried by the struck quark.

Often used for DIS scattering.

xF Feynman x.

YELL-DAQ Phone number to call to alert a MINOS expert

y Inelasticity
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the range of energies Ēν that would be reconstructed using quasi-elastic

hypothesis for three corresponding Etrueν values. The genuine quasi-elastic



34

(dashed lines) and the multi-nucleon (dotted lines) contributions are also

shown separately. Reproduced from [151] 99

2.12 Scattering from a correlated pair of nucleons 100

2.13 Nucleon momentum distribution predictions for various nuclei, taken from

[73]. Dotted lines show the RFG prediction, while the solid line shows

the spectral-function prediction including correlated pairs. The points

correspond to data from various experiments, detailed in the reference. 101

2.14 Ratio of the spectral function distributions from figure 2.13 to the

corresponding distribution for the deuteron, allso reproduced from [73].

The dashed line represents 3He, dotted 4He, dot-dashed 16O, long dashed

56Fe, and dot-long dashed nuclear matter. 102

2.15 Ratio of the cross sections for 4He, 12C, and 56Fe vs Bjorken variable xBj

to that for 3He, from CLAS[95]. 103

2.16 The average fraction of nucleons in the various initial-state configurations

of 12C, taken from [100] 104

2.17 The scaling functions fT (top, red) and fL (bottom, green), for various

values of q, reproduced from [68] 107

2.18 Best-fit form of RT (Q2), fitted to data from [68] and [149]. Plot from [61].108

2.19 The four types of diagram for MEC with one-pion exchange, based on a

figure in [164] 109



35

2.20 Processes contributing to the total charged-current neutrino-nucleon

scattering cross section, from [110]. ‘QE’ refers to quasi-elastic scattering,

‘RES’ to resonant pion production, and ‘DIS’ to deep inelastic scattering. 111

2.21 Non-quasi-elastic charged-current neutrino scattering processes 111

2.22 Comparison of MINERvA’s neutrino-scintillator scattering data with

simulation with and without FSI effects (from [191]) 113

3.1 The energy spectrum (flux) of antineutrinos used in this analysis.

This flux is given in units of the number of antineutrinos per m2

per GeV per proton on target. This is the PPFX ‘Gen-2 thin’ flux,

with neutrino-electron scattering constraint, including systematic

uncertainties. 116

3.2 Schematic of the NuMI beam, reprinted from [98] (not to scale) 117

3.3 Schematic of the focussing horns, reprinted from [98] (not to scale) 119

3.4 Schematic of the MINERvA detector, taken from [37] (not to scale).

The beam enters from the left side of figure 3.4b. 122

3.5 MINERvA scintillator strips and how they fit together, reprinted from

[37] 124

3.6 Cartoon to demonstrate the X, U and V orientations of the scintillator

strips in the x− y plane. (Note that a real MINERvA plane has 127

strips) 125

3.7 Positions of the nuclear targets, taken from [37]. The beam passes

from left to right in this diagram. 127



36

3.8 Schematic of the MINOS detector, taken from [14] (not to scale).

The grey area in figure 3.8b denotes the area covered by the partial

scintillator planes used to instrument the upstream fine-sampling

region on the left-hand side of figure 3.8a. The red hexagon (added

by the author) indicates the position of MINERvA’s inner detector

in the beam line, as documented in [185]. The marked beam center

is for MINOS; due to the beam’s downwards angle, this does not

correspond to the beam center in MINERvA. 130

3.9 Simplified flow chart of the stages of data processing and calibration 137

3.10 Variations in the mean gain of all of MINERvA’s PMT pixels, over

time. Reprinted from [37]. 144

3.11 Diagram showing how base position is calculated 146

3.12 Triangle base position shifts used to calculate plane alignment. From

[37]. 146

3.13 Peak rock muon energy per centimeter was fitted for each plane.

These peak values for each plane (with uncertainty from fitting) are

plotted, to give a best-fit flat distribution, telling us the relative

weighting for each plane. Plot reprinted from [37]. 148

3.14 Rock muon energy clusters in data and simulation (left) and the

polynomial fit to data (right). Reprinted from [37]. 150

3.15 MEU factor C(t) for MINERvA’s low-energy run as it varies with

time since MINERvA was switched on. (This plot shows only the



37

full-detector data; day zero corresponded to the beginning of the

earlier run with only a partial detector installed.) The red dashed lines

denote the beginning and end of the ‘minerva5’ dataset corresponding

to the data used in this analysis. Plot courtesy of J. Kleykamp, from

[138]. 150

3.16 Time slewing vs hit PE, from [37] 151

3.17 An FEB’s high-, medium- and low-gain response to input charges in

the test stand, reprinted from [37] 153

3.18 Contributions to flux uncertainty 154

3.19 Flux distributions and uncertainties for both neutrinos and

antineutrinos, with and without the ν − e scattering constraint. In

each figure the top plot shows the constrained (red) and unconstrained

(black) distributions; the plot below shows the ratio of the constrained

to unconstrained values. Reproduced from [104] 160

3.20 The energy hits from a readout gate are divided into time slices,

corresponding to individual interactions or other events. Each time

slice is indicated by a different color in the top image; black hits are

below the energy threshold to be included in an event time slice. (This

is data run 2160 subrun 1, gate 594). The event displays below show

the energy deposited in the X view for the entire gate (left) and from

the first slice only (the red time slice in the top image) (right). These

images are from MINERvA’s event display utility, Arachne. [187] 167



38

3.21 Three example clusters through a plane of scintillator strips. a) Due

to the triangular structure, even particles traveling perpendicular

to the plane will almost always pass through at least two strips.

b) Multiple particles from the same interaction may cause a larger

cluster. c) A single particle may traverse several strips if it moves at

a large angle from the beam direction. 168

3.22 An example of a track seed, made from three trackable clusters, in

consecutive X planes, and forming a straight line 169

3.23 In example a) two track seeds combine to make a track candidate. In

b), despite sharing a cluster, the seeds cannot be combined to a track

candidate. 170

3.24 True - reconstructed x (left) and y (right) vertex positions , for

antineutrino CCQE candidates 176

4.1 Background processes - non-quasi-elastic charged-current neutrino

scattering 178

4.2 Final-state interactions 179

4.3 Endpoints of muon tracks generated in MINERvA interactions, plot

courtesy of J. Ratchford 189

4.4 Number of non-muon tracks in data (points) and simulation (colors,

POT-normalized to data). In the simulation, beige corresponds to CCQE

events with a QE-like signature. Blue events also have a QE-like signature,

but were generated by resonant or DIS events where the pion was absorbed



39

by FSI. Both of these are signal. The backgrounds consist of CCQE events

with non-QE-like signature (pink), typically where a pion is generated

through FSI, and non-CCQE events (resonant, with some DIS) without a

QE-like signature (red). All cuts except the track cut are applied. 191

4.5 Recoil energy region of the MINERvA inner detector (shown in blue). 192

4.6 Recoil energy for data (points) and simulation (colors, POT-normalized

to data). In the simulation, beige corresponds to CCQE events with a

QE-like signature. Blue events also have a QE-like signature, but were

generated by resonant or DIS events where the pion was absorbed by FSI.

Both of these are signal. The backgrounds consist of CCQE events with

non-QE-like signature (pink), typically where a pion is generated through

FSI, and non-CCQE events (resonant, with some DIS) without a QE-like

signature (red). All cuts except the recoil cut are applied. 193

4.7 Q2
QE -dependent recoil energy cut used in the previous MINERvA

antineutrino CCQE cross section analysis [96]. Blue events are signal,

red are background, for the previous analysis’ signal definition of true

GENIE CCQE. 195

4.8 Efficiency for non-CCQE events with a CC0π signature, and

distribution of these events in the recoil energy-Q2
QE phase space 196

4.9 Efficiency (top left), purity (top right) and the product of efficiency

times purity (bottom) for CC0π events with a maximum leading

proton kinetic energy threshold as given by the x axis value, where



40

the recoil cut is as shown in figure 4.7, but additionally accepting

all events with a reconstructed recoil energy below the y axis value.

The black and white lines show the optimized values of a 120 MeV

maximum proton kinetic energy in the signal, and a recoil energy

shelf of 80 MeV. 197

4.10 Purity of our reconstructed sample 200

4.11 Relationship between EQEν and Q2
QE in the quasi-elastic hypothesis, and

muon kinematic variables pT and p‖ . Blue dashed lines show constant

values of EQEν , increasing in 1 GeV increments from 1 to 10 GeV.

Green dashed lines show constant values of Q2
QE , increasing in 0.2 GeV2

increments from 0.2 to 2 GeV2. 203

4.12 Reconstructed event counts in data and simulation vs. muon

pT (normalized to data POT). 207

4.13 Reconstructed event counts in data and simulation vs. muon

p‖ (normalized to data POT). 208

4.14 Reconstructed event counts in data, and pull between data and

simulation, vs. muon pT and p‖ 209

4.15 Reconstructed event counts vs. muon transverse momentum, in bins

of muon longitudinal momentum (continued in next figure) 210

4.15 Reconstructed event counts vs. muon transverse momentum, in bins of

muon longitudinal momentum (continued) 211



41

4.16 Reconstructed event counts in data and simulation vs. Q2
QE

(normalized to data POT). 212

4.17 Reconstructed event counts in data and simulation vs. EQE
ν (normalized

to data POT). 213

4.18 Reconstructed event counts in data, and pull between data and

simulation, vs.Q2
QE and EQE

ν 214

4.19 Reconstructed event counts vs. Q2
QE, in bins of EQE

ν (continued in

next figure) 215

4.19 Reconstructed event counts vs. Q2
QE , in bins of EQEν (continued) 216

5.1 Stages of cross section analysis 218

5.2 Distribution of signal and background events vs. muon transverse

and longitudinal momentum. Simulation is POT-normalized to data.

In the simulation, beige corresponds to CCQE events with a QE-like

signature. Blue events also have a QE-like signature, but were

generated by resonant or DIS events where the pion was absorbed

by FSI. Both of these are signal. The backgrounds consist of CCQE

events with non-QE-like signature (pink), typically where a pion is

generated through FSI, and non-CCQE events (resonant, with some

DIS) without a QE-like signature (red). 220

5.3 Background tuning: pT < 0.15 GeV 223

5.4 Background tuning: 0.15 < pT < 0.25 GeV 224

5.5 Background tuning: 0.25 < pT < 0.4 GeV 225



42

5.6 Background tuning: pT > 0.4 GeV; p‖ < 4 GeV 226

5.7 Background tuning: pT > 0.4 GeV; p‖ > 4 GeV 227

5.8 Scales by which the background fractions should be multiplied, in

order to achieve the best data/simulation shape fit in the recoil

distribution 228

5.9 Background-subtracted event counts in data and simulation vs. muon

pT (normalized to data POT). 229

5.10 Background-subtracted event counts in data and simulation vs. muon

p‖ (normalized to data POT). 230

5.11 Cartoon to demonstrate how a small fractional migration from each

bin leads to a smearing effect on the distribution’s shape 231

5.12 Monte Carlo events distribution versus reconstructed and true muon

kinematics 231

5.13 Migration matrix for the p‖ / pT distribution. The x axis corresponds

to reconstructed bins, the y to true. 232

5.14 Unfolded event counts in data and simulation vs. muon pT (normalized

to data POT). 236

5.15 Unfolded event counts in data and simulation vs. muon p‖ (normalized

to data POT). 237

5.16 Unfolded event counts in data and simulation vs. Q2
QE (normalized to

data POT). 238



43

5.17 Unfolded event counts in data and simulation vs. EQE
ν (normalized to

data POT). 239

5.18 Efficiency × acceptance of our reconstructed sample 242

5.19 Acceptance- and efficiency-corrected event counts in data and

simulation vs. muon pT (normalized to data POT). 244

5.20 Acceptance- and efficiency-corrected event counts in data and

simulation vs. muon p‖ (normalized to data POT). 245

5.21 Acceptance- and efficiency-corrected event counts in data and

simulation vs. Q2
QE (normalized to data POT). 246

5.22 Acceptance- and efficiency-corrected event counts in data and

simulation vs. EQE
ν (normalized to data POT). 247

5.23 The energy spectrum (flux) of antineutrinos used in this analysis.

This flux is given in units of the number of antineutrinos per m2 per

GeV per proton on target. 249

5.24 Mapping of the true Eν (in the binning of the flux histogram) to

EQE
ν reconstructed in the quasi-elastic hypothesis, from our truth-level

simulation ntuple 250

5.25 Differential quasi-elastic-like cross section in data and simulation vs.

muon pT (normalized to data POT). 252

5.26 Differential quasi-elastic-like cross section in data and simulation vs.

muon p‖ (normalized to data POT). 253



44

5.27 Double-differential quasi-elastic-like cross section vs. muon transverse

momentum, in bins of muon longitudinal momentum (continued in

next figure) 254

5.27 Double-differential quasi-elastic-like cross section vs. muon transverse

momentum, in bins of muon longitudinal momentum (continued) 255

5.28 Flux integrated quasi-elastic-like differential cross section dσ/dQ2
QE in

data and simulation (normalized to data POT). 256

5.29 Energy-dependent total quasi-elastic-like cross section σ(Eν) in data

and simulation(normalized to data POT). 258

5.30 Energy-dependent total quasi-elastic-like cross section σ(EQE
ν ) in data

and simulation(normalized to data POT). 259

5.31 Double differential quasi-elastic-like cross section dσ(Eν)/dQ
2
QE, in

bins of Eν (continued in next figure) 260

5.31 Double differential quasi-elastic-like cross section dσ(Eν)/dQ
2
QE, in

bins of Eν (continued) 261

5.32 True CCQE cross section measurements in data and simulation. As

before, the differential cross sections are flux-integrated. 262

5.33 Double-differential flux-integrated true CCQE cross section d2
σ/dpTdp‖

vs. muon transverse momentum, in bins of muon longitudinal

momentum (continued in next figure) 263



45

5.33 Double-differential flux-integrated true CCQE cross section d2
σ/dpTdp‖

vs. muon transverse momentum, in bins of muon longitudinal momentum

(continued) 264

5.34 True CCQE cross section dσ(Eν)/dQ
2
QE, in bins of Eν (continued in

next figure) 265

5.34 True CCQE cross section dσ(Eν)/dQ
2
QE, in bins of Eν (continued) 266

6.1 Summary of fractional uncertainties on the cross section 280

6.2 Summary of fractional shape uncertainties in the cross section 281

6.3 Summary of fractional uncertainties on the final cross section due to flux 283

6.4 Summary of fractional uncertainties on the cross section due to muon

reconstruction 286

6.5 Summary of fractional uncertainties on the final cross section due to

background interaction model uncertainties 301

6.6 Summary of fractional uncertainties on the final cross section due to CCQE

model uncertainties 305

6.7 Summary of fractional uncertainties on the final cross section due to

final-state interaction uncertainties 312

6.8 Summary of fractional uncertainties on the final cross section due to recoil

energy reconstruction 318



46

6.9 Summary of fractional uncertainties on raw Monte Carlo distributions.

Many of these will be irrelevant to the final cross section result; some will

affect background subtraction, unfolding, and efficiency correction. 321

6.10 Summary of fractional uncertainties on raw Monte Carlo background

distributions, as a fraction of the total background event count in

simulation. The data-driven background scaling means that the effect of

these on the cross section will be reduced. 322

6.11 Summary of fractional uncertainties reconstructed data event count

distributions, after tuned backgrounds have been subtracted 323

6.12 Summary of fractional uncertainties on data distributions, after

backgrounds have been subtracted and the distribution has been unfolded 324

6.13 Summary of muon reconstruction uncertainties on data distributions, after

backgrounds have been subtracted and the distribution has been unfolded 325

6.14 Summary of fractional uncertainties on acceptance-corrected data

distributions 326

6.15 Summary of fractional uncertainties on the final data cross section

distributions 327

6.16 Absolute fractional uncertainties on the final cross section vs. muon

transverse momentum, in bins of muon longitudinal momentum (continued

in next figure) 330

6.16 Absolute fractional uncertainties on the final cross section vs. muon

transverse momentum, in bins of muon longitudinal momentum (continued)331



47

6.17 Flux uncertainties on the final cross section vs. muon transverse

momentum, in bins of muon longitudinal momentum (continued on next

page). 333

6.17 Flux uncertainties on the final cross section vs. muon transverse

momentum, in bins of muon longitudinal momentum (continued). 334

6.18 Muon reconstruction uncertainties on the final cross section vs. muon

transverse momentum, in bins of muon longitudinal momentum (continued

on next page). 336

6.18 Muon reconstruction uncertainties on the final cross section vs. muon

transverse momentum, in bins of muon longitudinal momentum

(continued). 337

6.19 Background interaction uncertainties on the final cross section vs. muon

transverse momentum, in bins of muon longitudinal momentum (continued

on next page). 339

6.19 Background interaction uncertainties on the final cross section vs.

muon transverse momentum, in bins of muon longitudinal momentum

(continued). 340

6.20 CCQE signal model uncertainties on the final cross section vs. muon

transverse momentum, in bins of muon longitudinal momentum (continued

on next page). 342



48

6.20 CCQE signal model uncertainties on the final cross section vs. muon

transverse momentum, in bins of muon longitudinal momentum

(continued). 343

6.21 Final-state interaction uncertainties on the final cross section vs. muon

transverse momentum, in bins of muon longitudinal momentum (continued

on next page). 345

6.21 Final-state interaction uncertainties on the final cross section vs.

muon transverse momentum, in bins of muon longitudinal momentum

(continued). 346

6.22 Recoil reconstruction uncertainties on the final cross section vs. muon

transverse momentum, in bins of muon longitudinal momentum (continued

on next page). 348

6.22 Recoil reconstruction uncertainties on the final cross section vs.

muon transverse momentum, in bins of muon longitudinal momentum

(continued). 349

7.1 Cartoon of Fermi potential, from [119] 351

7.2 Fractional difference between NuWro’s cross sections for local Fermi

gas and spectral function models, compared to the global Fermi gas.

As seen in these comparisons, the LFG model enhances the cross

section; spectral functions reduce it. Note that these effects are most

pronounced at neutrino energies lower than the minimum (around

1.5 GeV) analyzed in this study. Plot reproduced from [119] 352



49

7.3 Additional fractional contribution of the Nieves and TEM multi-

nucleon effects, compared to the quasi-elastic cross section, as

predicted by NuWro. Reprinted from [119]. 353

7.4 Comparison of measured quasi-elastic-like cross section with the

Global Relativistic Fermi Gas model, without RPA, with and

without 2p2h effects (continued in next figure) 356

7.4 Comparison of measured quasi-elastic-like cross section with the Global

Relativistic Fermi Gas model, without RPA, with and without 2p2h

effects (continued) 357

7.5 Comparison of measured quasi-elastic-like cross section with the

Local Relativistic Fermi Gas model, without RPA, with and

without 2p2h effects, to GENIE (continued in next figure) 359

7.5 Comparison of measured quasi-elastic-like cross section with the Local

Relativistic Fermi Gas model, without RPA, with and without 2p2h

effects, to GENIE (continued) 360

7.6 Comparison of measured quasi-elastic-like cross section and Global

Relativistic Fermi Gas models, with RPA, with and without

2p2h effects, to GENIE (continued in next figure) 361

7.6 Comparison of measured quasi-elastic-like cross section and Global

Relativistic Fermi Gas models, with RPA, with and without 2p2h

effects, to GENIE (continued) 362



50

7.7 Comparison of measured quasi-elastic-like cross section with the

Local Relativistic Fermi Gas model, with RPA, with and

without 2p2h effects, to GENIE (continued in next figure) 364

7.7 Comparison of measured quasi-elastic-like cross section with the Local

Relativisitic Fermi Gas model, with RPA, with and without 2p2h

effects, to GENIE (continued) 365

7.8 Comparison of measured quasi-elastic-like cross section with the

Spectral function model, with and without 2p2h effects, to GENIE

(continued in next figure) 366

7.8 Comparison of measured quasi-elastic-like cross section with the spectral

function model, with and without 2p2h effects, to GENIE (continued) 367

7.9 Comparison of measured quasi-elastic-like cross section and GENIE

with 26% 2p2h effect, to GENIE with no 2p2h (continued in next

figure) 368

7.9 Comparison of measured quasi-elastic-like cross section and GENIE

with 26% 2p2h effect, to GENIE with no 2p2h (continued) 369

7.10 Comparison of our measured quasi-elastic-like cross section dσ/dpT

with GENIE without 2p2h, and with 10, 26 (the standard amount)

and 40% 2p2h per CCQE interaction, simulated by the Nieves MEC

model. 370

7.11 Comparison of quasi-elastic-like cross section dσ/dpT to GENIE for

data and models. a) Global Fermi Gas without RPA; b) Local Fermi



51

Gas without RPA; c) Global Fermi Gas with RPA; d) Local Fermi

Gas with RPA; e) Spectral Functions; f) GENIE with and without

MEC 372

7.12 Comparison of quasi-elastic-like cross section dσ/dp‖ to GENIE for

data and models. a) Global Fermi Gas without RPA; b) Local Fermi

Gas without RPA; c) Global Fermi Gas with RPA; d) Local Fermi

Gas with RPA; e) Spectral Functions f) GENIE with and without

MEC 373

7.13 Comparison of dσ/dpT and dσ/dp‖ measurements with GENIE’s (red)

and NuWro’s (blue) implementations of the Global Fermi Gas without

RPA, for both the QE-like and true CCQE signal definitions 374

7.14 Comparison of measured true-CCQE cross section and GENIE with

26% 2p2h effect (blue), to GENIE with no 2p2h (red) (continued in

next figure) 376

7.14 Comparison of measured true-CCQE cross section and GENIE with 26%

2p2h effect (blue), to GENIE with no 2p2h (red) (continued) 377

7.15 Data / model comparison of the 2013 dσ/dQ2
QE measurement, taken

as a ratio to GENIE, from [96], but scaled to use the updated PPFX1

NuMI flux [36], by the method of [105] 379

7.16 Comparison between 2013 CCQE dσ/dQ2
QE for a true CCQE signal,

and the current measurement of dσ/dQ2
QE for a true CCQE signal.

The two measurements use a different integrated flux. 380



52

7.17 Double differential ν̄µ scattering cross section from MiniBooNE[30] 382

7.18 NOMAD’s antineutrino-carbon CCQE cross section measurements

(red) compared with those from previous bubble chamber experiments

(black). The data were consistent with a global relativistic Fermi gas

model, with MA = 1.06± 0.14 GeV. Reprinted from [146] 383

7.19 Preliminary plot showing the cross section σ(Eν) from this analysis

(black) compared with measurements from MiniBooNE [30] (red

squares) and NOMAD [146] (blue triangles) and GENIE’s CCQE-like

prediction (black dashed line). Our measurements show statistical

(inner tick) and total (full error bar) uncertainties. 384

B.1 Quasi-elastic scattering kinematics 431

D.1 Average pull of the 66 bins in 10 unfolded Monte Carlo sub-samples,

vs number of Bayesian unfolding iterations 445

D.2 Pull averaged over the 10 unfolded Monte Carlo sub-samples, after

four iterations. Note that the bins with the largest pulls correspond

to those with very low acceptance (for example, at high pT and low

p‖ , where the high-angle trajectory makes MINOS matching close to

impossible) 446

D.3 Pull between the average statistical uncertainty of 10 Monte Carlo

sub-samples, and the width of a Gaussian fit to a histogram of the

number of events in each sample 447



53

D.4 Pull between the average statistical uncertainty of 10 unfolded Monte

Carlo sub-samples, as reported by the unfolding procedure, and the

width of a Gaussian fit to a histogram of the number of events in each

sample 447

D.5 Pull between mean unfolded and true values in each bin. 448

D.6 Ratio of the RMS of the 10 unfolded values to the average uncertainty

reported by the unfolding procedure 449

D.7 Ratio of the warped to the central value for two of the warped

subsamples 450

D.8 Average pull between unfolded and true values of the warped samples,

vs number of iterations 450

D.9 Pull between mean unfolded and true values of the warped samples in

each bin. 451

D.10 Ratio of the RMS of the 10 unfolded values in each bin to the average

uncertainty reported by the unfolding procedure 452



54

CHAPTER 1

Introduction and motivation

1.1. Introduction

This thesis describes a measurement of a charged-current double-differential antineu-

trino scattering cross section on carbon scintillator, at the MINERvA detector at Fermi-

lab. Cross section measurements such as this are a crucial input for neutrino oscillation

experiments, and also provide a probe for studying the structure and behavior of atomic

nuclei. In this chapter we will introduce the phenomenon of neutrino oscillations and

the unanswered physics questions that they raise. We will explain why an accurate and

precise cross section model is so important to answer these questions, and describe the

current state of the art. In the following chapters, we will give an introduction to the

theory of neutrino-nucleus cross sections, and describe the detector hardware and software

tools we use to measure them. We will then give a step-by-step explanation of how the

antineutrino cross section was measured, and discuss the sources of uncertainty in this

measurement and their effects on our final distribution. Finally, we will discuss how our

measurement compares with the predictions of various different nuclear models, and how

it compares with cross sections measured by other experiments.

1.2. Neutrino oscillations

1.2.1. Neutrinos in the Standard Model
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Figure 1.1. Particles of the standard model. Image
credit: Fermilab.

In the Standard Model (Figure 1.1),

there are three flavors of neutrinos:

the electron neutrino νe, the muon

neutrino νµ, and the tau neutrino ντ .

All three flavors are electrically neu-

tral, interacting only via the weak in-

teraction. The Standard model pre-

dicts them to be massless. Each neu-

trino flavor is characterized by the

fact that it is produced in conjunc-

tion with its charged lepton partner;

the electron, muon or tau lepton. In these reactions the number from each generation of

lepton is conserved, if a particle of a given generation has a value of 1, and an antiparticle

of the same generation has a value -1.

For example, the beta decay of a neutron produces an electron (electron-generation

number +1) and an electron antineutrino (electron-generation number -1):

n→ p+ e− + ν̄e

but it will never produce, for example, an electron (electron-generation number +1) and

a muon antineutrino (muon-generation number -1, but electron-generation number 0):

n 6→ p+ e− + ν̄µ
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Meanwhile, charged pion decay produces anti-muons or muons, and thus, muon neutrinos

or antineutrinos:

π+ → µ+ + νµ

Because they are neutral particles, none of our detectors can directly observe neutrinos

themselves. However, in the rare cases that neutrinos do interact, these same rules of

lepton flavor conservation are observed. Because of this, we can infer what type of neu-

trino has interacted in a detector by looking at what charged lepton is created in that

interaction. Just as before, a muon neutrino will produce a muon in the final state, an

electron neutrino will generate an electron, and so on.

So, looking at the beta-decay equation above, we see that if we have a neutrino source

produced by beta decay, we will expect it to be a source of electron antineutrinos, and

thus, we will expect to see a positron in our final state (electron-generation lepton number

= -1, just like the ν̄e). If we have a neutrino beam produced by π+ decay, we expect it

to be a beam of muon neutrinos, so we will be looking for a muon in our final state

(muon-generation lepton number remaining at 1, as it is for νµ).

However, there have been some cases where a beam of muon neutrinos has produced

an electron in the final state, rather than a muon. The only neutrino that can create

an electron is an electron neutrino νe — it is forbidden by the Standard Model for a

νµ to interact and produce an electron. The alternative possibility is that the νµ has

somehow transformed into a νe on its way to the detector, but this is also forbidden by

the Standard Model. This oscillatory behavior was proposed by Pontecorvo [174][172],

and was confirmed by the Super Kamiokande experiment [112], which determined that

the relative flux of muon and electron neutrinos generated by cosmic ray interactions
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in the upper atmosphere had an angular dependence, indicating that the rate at which

neutrinos changed from one flavor to another was dependent on the distance they had

traveled since creation. This shows that the effect must be something that occured as the

neutrino propagated, rather than at the point of interaction.

These oscillations between neutrino flavors have been observed by several different

experiments. In this section, we will show how quantum mechanics supplies an explanation

for this strange phenomenon through the mixing of flavor states to form mass eigenstates,

and discuss how neutrino mass plays an important role in oscillatory phenomena. In

addition, we will introduce some of the current experiments that are studying neutrino

oscillations, explain the new standard model parameters they are hoping to pinpoint, and

how neutrino scattering cross sections play a part in this search.

1.2.2. Flavor state mixing

Boris Kayser et al.’s book “The physics of massive neutrinos” [135] provides an excellent

description of the theory of neutrino oscillations, which is outlined here.

We know (or, at least, we have so far observed) that all interactions involving a

neutrino involve a particular flavor or “weak interaction” eigenstate - that is, each flavor

of neutrino νl is coupled to its equivalent lepton l: electron neutrino to electron and so

on. However, if neutrinos are massive, it is possible that the freely propogating neutrino

states, each of which must have a definite mass, are not in fact these flavor eigenstates, but

a different set of states νm. In this case, flavor eigenstates would be a linear combination
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of these individual mass eigenstates:

νl =
∑
m

Ulmνm

and conversely, you could also express a mass eigenstate as a combination of flavor states:

νm =
∑
l′

U∗l′mνl′

Note that this mixing of flavor states to form mass states was first observed in the

quark sector, where small amounts of cross-generational couplings were seen, leading

Glashow, Iliopoulos and Maiani [118] to propose that instead of a d quark (mass state),

the weak interaction coupled to a combination of d and s quarks, defined by the Cabibbo

angle θC : d′ = d cos θC + s sin θC , leading to a small component of strangeness in decays.

As further quarks were discovered, this was extended to produce the CKM (Cabibbo-

Kobayashi-Maskawa) [67][139] matrix combining the mass states into weak interaction

flavor states:


d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



d

s

b


where the current best measurements of the magnitudes of the CKM matrix V are [163]:

|Vij|=


0.97425± 0.00022 0.2253± 0.0008 0.00413± 0.00049

0.225± 0.008 0.986± 0.016 0.0411± 0.0013

0.0084± 0.0006 0.0400± 0.0027 1.021± 0.032


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The equivalent unitary matrix for neutrinos Ulm is known as the neutrino mixing

matrix, or the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [173][148]. This is

the neutrino-sector analogy of the quark-sector CKM matrix. We can substitute this into

the plane-wave wave function for a neutrino propagating through space and time to give

ψ(x, t) =
∑
m

Ulmνme
ipνx−iEmt

where the energy Em is related to the neutrino’s momentum pν and the mass Mm of the

eigenstate by the special relativity relation

E2
m = p2

ν +M2
m

(where we are using natural units, meaning h̄ = c = 1). If we assume that (as is seen

to be the case for neutrinos), the particle is moving at high speed, close to the speed of

light, such that pν �Mm, we can Taylor expand to get

Em ' pν +
M2

m

2pν

Additionally, we can approximate that, as it has a speed ' 1 in our units, x ' t, giving

us

ψ(x) '
∑
m

Ulmνme
−i(M2

m/2pν)x

or, substituting in our expression for νm as a combination of flavor states,

ψ(x) =
∑
l′

[∑
m

Ulme
−i(M2

m/2pν)xU∗l′m

]
νl′
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So our wave function is actually a superposition of all the flavor states νl′ . After a neutrino

created with flavor l has traveled a distance x, it has an amplitude to have evolved into

any flavor l′, which is given by the coefficient of νl′ .

So, for example, the probability that a muon neutrino is created, but that, after travel-

ing a distance x, it is detected as an electron neutrino can be calculated by considering the

amplitude that a muon neutrino is of mass state m1, and multiplying it by the amplitude

that an m1 that has traveled a distance x will be an electron neutrino. You must then

add the equivalent amplitudes for other mass states m2 and m3. However, as we’re adding

amplitudes rather than probabilities, just as in the famous Young’s two-slit experiment,

we get a kind of “interference pattern” or oscillation of probabilities, which are equivalent

to the absolute value squared of the amplitude. Mathematically, we can see this:

P (νl → νl′ , x) =

[∑
m′

U∗lm′e−i(M
2
m′/2pν)xUl′m′

]
×

[∑
m

Ulme
−i(M2

m/2pν)xU∗l′m

]
=

∑
m

|Ulm|2 |Ul′m|2

+
∑
m′ 6=m

Re(UlmU
∗
lm′Ul′m′U∗l′m) cos

(
M2

m −M2
m′

2pν
x

)

+
∑
m′ 6=m

Im(UlmU
∗
lm′Ul′m′U∗l′m) sin

(
M2

m −M2
m′

2pν
x

)

Note the sinusoidal behavior in the quantity
M2
m−M2

m′
2pν

x. This leads to a characteristic

oscillation length Lmm′ , corresponding to the ratio of the momentum and the difference

between the squares of the masses:

Lmm′ = 2π
2pν

M2
m −M2

m′
= 4π

pν
∆M2

mm′
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Note that if the matrix U is not real, we will have CP violation effects in neutrino

oscillations; in other words, P (νl → νl′) 6= P (ν̄l → ν̄l′).

In summary:

• For neutrinos to oscillate, they must have mass

• The masses of the different states must be different (m 6= m′) — otherwise, no

oscillation takes place

• The mass eigenstates are a mixture of flavor eigenstates and vice versa

• Mixing is dependent on the difference in the squares of masses between the

eigenstates, not on the absolute masses of the states

• There is a characteristic oscillation length proportional to the neutrino’s momen-

tum

• There may be CP violation

1.2.3. Mixing fractions and the PMNS matrix

Figure 1.2. Flavor mixing

As shown previously, oscillations will only

occur if mass eigenstates consist of a mix-

ture of flavor states. Oscillation experi-

ments probe the extent to which this mix-

ing occurs. The approximate mixtures are

illustrated in the figure 1.2, where yellow

indicates electron neutrinos, pink muon, and brown tau. These mixture ratios are func-

tions of the PMNS matrix. The mass splittings between the mass states are also indicated.
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Mass splittings

It should be noted that, as the neutrino oscillations depend only on the squared mass

difference between the mass states, rather than on their absolute values, it is unknown

whether the states are arranged as shown in the the diagram, with state 3 being far more

massive than states 1 and 2 (normal hierarchy), or whether it is in fact states 1 and 2

that are heavier, with state 3 being the lightest (inverted hierarchy). However, normal

hierarchy would intuitively seem the more likely scenario, as this would correspond to

electron neutrinos tending to be lighter, while muon and tau neutrinos would be heavier,

as is the case for their corresponding charged leptons.

The mass splittings between the states are determined experimentally. The current

best fit value for the larger (“atmospheric”) mass splitting ∆M2
23 = 2.42±0.06×10−3eV 2

[163]. This is from a combined fit to measurements made by Daya Bay [43] which looks

at ν̄e disappearance over a short baseline in the flux of electron antineutrinos produced

by a nuclear reactor; T2K [3] and MINOS [21], which measure ∆M2
23 by looking at muon

neutrino disappearance from an accelerator-generated νµ beam over a long baseline.

The current world best fit value for the smaller (“solar”) mass splitting ∆M2
12 or

∆M2
� = 7.53 ± 0.18 × 10−5eV 2 [163]. This is extracted from a fit to data from the

KamLAND long-baseline reactor neutrino oscillation experiment [116] constrained by

measurements of solar neutrino oscillations [74][1][54][131][31], and from short baseline

reactor experiments Double Chooz [8], Daya Bay [42] and RENO [33] as well as the

accelerator experiments T2K [2] and MINOS [17]. Notice that the solar mass splitting is

comparable to the uncertainty on the atmospheric splitting.
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Absolute mass scale

The mass splittings measured in neutrino oscillations give no indication of the abso-

lute masses of the neutrinos. It is hoped that the mass of the lightest neutrino can be

determined by examining the spectrum of low-energy beta-decays. There are several ex-

periments hoping to establish neutrino masses, most notably KATRIN, currently under

construction in Karlsuhe, Germany. KATRIN is designed to look at the beta decay of

tritium, with a sensitivity of 0.2eV. [155]

Mixing angles

The approximate values of the PMNS matrix are (from [13]:
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 =


0.8 0.5 0.1

0.5 0.6 0.7

0.3 0.6 0.7


However, this is known not to be precise, and experiments are currently underway to

determine the matrix elements more accurately. Although it appears that there are 9

parameters to be determined, this is not in fact the case.

We assume that the PMNS matrix is unitary (it is possible that it would not be, if

there were one or more sterile neutrinos, but these have not been observed). Furthermore,

we know that the total probability of a neutrino being in some flavor eigenstate must be

equal to 1. From this, it is possible to parameterize the mixing matrix with just four

parameters: three mixing angles, θ12, θ23 and θ13, and a single phase δCP (this phase

creates an imaginary part in some of the matrix elements, that would indicate the presence
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of CP violation). Using these parameters, the matrix looks like [198]
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 =


c12c13 s12c13 s13e

−iδCP

−s12c23 − s23c12s13e
iδCP c12c23 − s23223s13e

iδCP s23c13

s12s23 − c23c12s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13


Here, cij and sij are shorthand for cos θij and sin θij, respectively. Neutrino oscillation

experiments attempt to determine these mixing angles and phase shift, as well as the

mass differences between the different states. 1

The current best fits for the mixing angles are (from [163]):

• θ13 is around 9◦; (sin2 θ13 = 2.19± 0.12 from ν̄e disappearance at reactor experi-

ments Double Chooz [9], RENO[32] and Daya Bay [43]).

• θ23 is close to 45◦, the maximal mixing. It is unknown which quadrant it falls

into ( sin2 2θ23 = 0.999+0.001
−0.018, from T2K [3])

• θ12 has been measured to be approximately 33◦. (Best fit sin2 θ12 is 0.304 from

KamLAND [116]).

1.2.4. CP-violating phase

The parameter δCP is the CP- (charge-parity symmetry) violating phase. If δCP is non-

zero, there will be differences in oscillatory behavior between neutrinos and antineutrinos.

1Note: there exists a theory (as yet unconfirmed) that neutrinos could be Majorana particles - that is,
that they are their own antiparticles, with the neutrino and antineutrino of a given flavor differing only
in their helicity. If this is found to be the case, the mixing matrix would be modified by multiplying
by additional phase-shift parameters. The Majorana nature of neutrinos is not detectable in oscillation
experiments; instead neutrinoless double beta decay experiments such as SuperNEMO [45] are needed
to establish whether neutrinos are indeed Majorana.



65

The value of δCP is as yet unknown; measuring this phase is one of the top priorities of

current and future neutrino oscillation experiments.

The MINOS collaboration have attempted to fit their oscillation data to extract a

value of δCP . The fit gives a 90% confidence level that 0.05π < δCP < 1.2π if θ23 > π/4

and mass hierarchy is normal; they place no restrictions for inverted hierarchy or θ23 < π/4

[21]. Global fits from Forero et al. [109], using accelerator data from MINOS and T2K

and reactor data from experiments such as KamLAND and Daya Bay, they extract a best

fit of δCP = 1.34+0.64
−0.38π for normal hierarchy, and δCP = 1.48+0.34

−0.32π for inverted. NOvA’s

first electron appearance results disfavor 0.1π < δCP < 0.5π for inverted hierarchy, with

a 90% confidence level.

1.3. Long-baseline oscillation experiments

The major unanswered questions in neutrino physics can be summarized as follows:

• Is the mass hierarchy normal (the small mass splitting is between the two light-

est neutrinos) or inverted (the small mass splitting is between the two heaviest

neutrinos)?

• What is the value of δCP ?

• In what octant does θ23 fall?

• What is the mass of the lightest neutrino?

• Are neutrinos Majorana or Dirac fermions?

• Does the data fit the three mass and three flavor state mixing paradigm we have

described, or is this just part of a more complex theory?
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Figure 1.3. Plot from NOvA showing the confidence level with which their ob-
servation of 3 electron neutrinos in the far detector disagrees with theory, for
different values of δCP . For their primary technique (solid lines, corresponding
to the LID likelihood-based selector technique), this disagreement confidence ex-
ceeds 90% for the inverted hierarchy between 0.1 and 0.5π. Taken from [23].
The secondary selector (Library Event Matching) shown in dashed lines does not
agree with the current best fit values for the mixing angles.

Long-baseline accelerator-based oscillation experiments are particularly suited to ad-

dress the first three of these questions, looking at the mass hierarchy, CP-violating phase,

and θ23 octant. As all of these affect the oscillation probabilities, experiments will fit for

combinations of the parameters.

Figure 1.4 shows the setup of T2K, a typical long-baseline oscillation, in Japan. An

intense neutrino beam is generated by a particle accelerator (accelerators generate beams

of νµ or ν̄µ, though there will typically be some νe /ν̄e contamination. See [98] or section
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Figure 1.4. Diagram of the T2K oscillation experiment, reprinted from
http://www.t2k.org

3.2 for a description of the NuMI beam at Fermilab, used by the NOvA and MINOS

oscillation experiments, as well as by MINERvA).

A near detector, located at the facility that generates the neutrino beam, records the

spectrum of neutrinos before oscillation. The beam then travels through the earth to a

far detector. The distance of the far detector is matched to the beam energy, with the

aim of it corresponding with the first or second oscillation maximum for one of the mixing

angles. The spectrum of neutrinos is examined at the far detector, to determine what

fraction of muon neutrinos have disappeared, and what fraction of electron neutrinos have

appeared. (Tau neutrinos may also have appeared; these are, however, more difficult to

detect). Figure 1.5 shows the predicted νe appearance spectrum for the proposed DUNE

oscillation experiment.

There are several current running long-baseline neutrino oscillation experiments. MI-

NOS (Main Injector Neutrino Oscillation Search) [94] shares the NuMI beam with MIN-

ERvA. This beam has a broad energy spectrum which peaked around 2.5 GeV for its

low-energy run until 2012. It is now running in a medium-energy configuration (MI-

NOS+) with a peak energy around 7 GeV. The far detector is situated on the beam
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Figure 1.5. Predicted νe appearance probabilities at DUNE, for three different
values of CP violating phase δCP , reprinted from [13]

axis, 450 miles from Fermilab at the Soudan mine in Minnesota. MINOS has taken both

neutrino and antineutrino data, and has published many analyses, measuring both muon

neutrino disappearance and electron neutrino appearance. [21]. This has enabled them

to measure θ23 and to constrain θ13 and δCP . MINOS has also performed sterile neutrino

searches [15] and studied atmospheric neutrinos [22]. The MINOS detectors are both

made of magnetized iron as a neutrino target, with polystyrene scintillator for detection.

NOvA, completed in 2014, also shares the NuMI beam, but its far detector is located

off the beam axis, 500 miles from Fermilab, at Ash River, Minnesota. By being off axis,

NOvA’s event rate is lower than that of MINOS, but its energy spectrum much narrower.

Both of its detectors are made of liquid scintillator, stored in extruded PVC shells. NOvA

has recently submitted its first measurements of electron neutrino appearance [23] and

muon neutrino disappearance [24] to the arXiv.
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T2K’s (Tokai to Kamioka) neutrinos travel 295km from J-PARC to the Super-Kamiokande

detector at Kamioka in Japan. Super-Kamiokande is a water Cherenkov detector, situ-

ated 2.5◦ off the beam axis. T2K has two near detectors: INGRID, located on the beam

axis, and ND280, off axis at the same angle as the Super-K detector. T2K has measured

muon neutrino disappearance and electron neutrino appearance, and was instrumental in

confirming that θ13 was non-zero. It also has the world’s leading measurement of θ23 [3].

T2K is now recording antineutrino data. The two near detectors have also been used to

make cross section measurements, which will be discussed later.

The Oscillation Project with Emulsion-tRacking Apparatus (OPERA) uses a neutrino

beam from CERN in Switzerland, with its far detector at the Laboratori Nazionali del

Gran Sasso (LNGS) in Gran Sasso, Italy. OPERA’s detector, which consists of bricks of

lead plates interleaved with photographic emulsion film, allows it to see tau neutrinos;

so far 5 ντ candidates have been observed. [26] This confirms νµ → ντ oscillations

(responsible for the νµ disappearance at MINOS and other oscillation experiments) with

a significance of 5.1σ.

Two next-generation oscillation experiments are currently in the planning phase. The

DUNE (Deep Underground Neutrino Experiment) [123] wide-band neutrino beam will

travel 800 miles from Fermilab to the Sanford Underground Research Facility in South

Dakota. The proposed DUNE detector will be a 40,000 tonne liquid argon time projection

chamber. DUNE’s physics goals are to measure CP violation, mass hierarchy and the θ23

octant.

Hyper-Kamiokande, a proposed new megaton water Cherenkov detector to replace

Super-Kamiokande as a T2K upgrade, aims to be able to determine δCP to a precision of
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19◦ or less for any values of δCP , and to establish CP violation at 5σ significance for 58%

of the parameter space [175].

1.4. Importance of cross sections to oscillation experiments

While the oscillation formula can give a prediction of the probability of neutrino

oscillation for a given baseline and neutrino energy, to convert this to an expected number

of events, one must also know the initial flux of unoscillated neutrinos, as well as the

probability that a neutrino (oscillated or otherwise) will interact within the detector.

Thus an accurate cross section model for neutrino scattering from heavy nuclei is vital

for experiments to compare their event counts to models’ predictions and thus extract

physics information such as the value of δCP and the mass hierarchy.

In order to meet their physics goals, it is important that next generation experiments

keep systematic uncertainties to a minimum. DUNE has a goal of 2% uncertainty on its

measurements [123]. Figure 1.6 shows the time (and therefore operating cost) savings

of reducing the uncertainties: it details the exposure needed to measure CP violation for

75% of possible values of δCP . We see that, to discover CP violation with 3σ significance

is predicted to take approximately 1000kt-MW-years with their standard reference design

if they can achieve 5% uncertainty on the total normalization and 1% on the relative

normalization of νe to the other neutrinos (top line of blue hashed area); with 5 ⊕ 2%

(middle line), it will take 1250kt-MW-years. Thus reducing uncertainty is key to saving

time and expense.

The sources of uncertainty come from neutrino flux spectrum, which can be reduced

by comparing near and far detector measurements; fiducial volume identification, which



71

will be small (< 1%) in such a large detector, energy scale, and interaction models for

neutrinos and antineutrinos on nuclei. The goal of the measurement in this analysis is

to reduce uncertainty on the interaction models, by constraining them with data from

our cross section measurements. According to [13], T2K currently has 5.3% interaction

model uncertainty; to meet its physics goals, DUNE must reduce this to 2%. As DUNE

intends to measure the CP-violating phase by comparing νµ → νe and ν̄µ → ν̄e scattering,

antineutrino cross sections, which have been studied less extensively than their neutrino

counterparts, are particularly necessary.

1.5. Cross sections as a probe of nuclear effects

As well as reducing model uncertainties for oscillation experiments, cross section mea-

surements can be used to investigate nuclear physics. Neutrino scattering on free nucleons

is well understood (the charged-current quasi-elastic scattering discussed in this paper was

modeled in 1972 by Llewellyn Smith [145], and this model works well for scattering from

hydrogen and deuterium). However, in heavy nuclei, interactions between the nucleons in

the nucleus affect the scattering behavior. By examining the cross section distributions

and comparing them to various models of these nuclear effects, we are able to increase our

knowledge of the nature and strength of these behaviors. As very different processes affect

cross sections in similar ways, a double-differential cross section, where we see how the

distribution behaves in a two-dimensional phase space, provide vital additional informa-

tion to help distinguish between these models. The theory of neutrino-nucleus scattering,

as well as introductions to several different nuclear models, can be found in chapter 2.
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Figure 1.6. Exposure needed for DUNE to measure δCP for 75% of possible
values of δCP , with different levels of systematic uncertainty. The blue hashed
area shows the sensitivity with the current beam design, with the three lines
representing how long DUNE must run with uncertainties from 5⊕ 3 to 5⊕ 1%,
where the two numbers refer respectively to the uncertainty on νµ normalization
and νe normalization relative to νµ and the antineutrinos. The dotted line shows
the 3σ confidence level. The green colored area shows an equivalent for a new
optimized design. Reprinted from [13]
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CHAPTER 2

Theory of quasi-elastic neutrino scattering on nuclei

2.1. Quasi-elastic scattering cross-sections

W

p

ν̄µ

n

µ+

Figure 2.1. Quasi-elastic antineutrino
scattering

This analysis looks at charged-current quasi-

elastic (CCQE) scattering of muon antineutrinos

on the material of MINERvA’s tracker region,

which is made up of strips of doped polystyrene

scintillator, with a titanium dioxide coating.

The percentage composition by mass of this ma-

terial is detailed in table 3.1; the main con-

stituents are carbon and hydrogen atoms, of which there are almost equal numbers.

A simplistic description of CCQE scattering is that the incoming antineutrino interacts

with a target proton within the nucleus, exchanging a W boson to knock out a neutron,

also leaving a positively charged muon in the final state:

ν̄µ + p→ µ+ + n

(see figure 2.1). It should be noted that, in the quasi-elastic case, the neutrino can be

considered to be scattering off of the nucleon, rather than off of one of its constituent

quarks. (Scattering from the quarks can also occur; this is known as “deep inelastic

scattering”, and dominates at higher neutrino energies than does quasi-elastic scattering).
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In the case of pure quasi-elastic scattering, it is possible to reconstruct certain char-

acteristics of the interaction using only the kinematics of the outgoing charged lepton -

particularly useful as muons tend to be relatively easy to reconstruct in current neutrino

detectors. In particular, the incoming neutrino energy and the four-momentum transfer

Q2 can be estimated.

When calculating scattering amplitudes, we must remember that nucleons are not

point-like particles, but that they have finite size and complex internal structure.

Additionally, we should note that the target material used in this experiment consists

largely of carbon; thus, the protons from which our antineutrinos scatter are frequently

bound within a nucleus consisting of twelve nucleons. The nucleons within a nucleus inter-

act with each other in complicated ways which are not fully understood. This can affect

the initial state of the target proton in a scattering experiment, as well as modifying the

final state as the ejected neutron may interact with other nucleons while escaping the nu-

cleus. It is also suspected that incident neutrinos may interact with bound multi-nucleon

states within the nucleus. These effects are complicated and not yet fully understood,

yet can cause significant modifications to the free-nucleon scattering cross section. In this

section, we will explain the basic theory of quasi-elastic scattering from a free nucleon,

followed by descriptions of contemporary theories that are used to model nuclear effects.

2.1.1. Elastic scattering

In elastic scattering, energy is conserved, and both the incoming particle and the target

retain their structure. A well-known, and relatively easy-to-study, example of this would

be electromagnetic scattering of electrons from protons, mediated by the exchange of a



75

virtual photon. “Quasi-elastic” scattering shares many similarities with elastic scattering,

with the exception that in the quasi-elastic case, it is a weak interaction involving a charge

exchange, mediated by a W boson. In attempting to understand the theory behind quasi-

elastic scattering, it may be easiest to first consider the elastic case before examining how

this is modified for the quasi-elastic.

2.1.1.1. Mott scattering. The simplest example of electromagnetic scattering involves

two point-like particles, such as an electron and a muon, known as “Mott scattering”

[159]

µ− + e− → µ− + e−

γ, q

µ−, p2

e−, p1

µ−, p4

e−, p3

Figure 2.2. Electromagnetic electron-muon

elastic (Mott) scattering

The Feynman diagram for this process,

at tree level, is mediated by a photon, as

shown in Figure 2.2. The spin-averaged

differential cross-section for this interaction

can be calculated analytically. The follow-

ing calculation follows the method of [129].

The differential cross-section is given by :

dσ

dΩ
=

(
h̄

8πmµc

)2 〈
|M|2

〉
where the matrix element M is given by the Feynman rules as:

M = − g2
e

(p1 − p3)2
[ūs3(p3)γµus1(p1)] [ūs4(p4)γµu

s2(p2)]
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Figure 2.3. Mott scattering

where the usn(pn) refer to the Dirac spinors corresponding to the spin sn and momentum

pn of each fermion n. Using the method of traces to average over initial spins and sum

over final spins, we get:

(2.1)
〈
|M|2

〉
=
g4
e

q4
LµνelectronL

muon
µν

where

(2.2) Lµνelectron ≡ 2{pµ1pν3 + pν1p
µ
3 + gµν [(mec)

2 − (p1.p3)]}

and equivalently for the muon, replacing the electron momenta and mass with muon

equivalents.

Substituting equation 2.2 into equation 2.1, we get:

〈
|M|2

〉
= 8g4e

(p1−p3)4

[
(p1.p2)(p3.p4) + (p1.p4)(p2.p3)

−(p1.p3)(mµc)
2 − (p2.p4)(mec)

2 + 2(memµc
2)2

]
(2.3)
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As the muon mass mµ � electron mass me, we can simplify by treating the electron as

massless, and the muon as remaining stationary throughout the collision (see figure 2.3).

Following the derivation in [129], we get the cross section distribution for electron-muon

electromagnetic scattering:

(2.4)
dσ

dΩMott
=

(
αh̄

2p2 sin2 θ
2

)2 [
(mec)

2 + p2 cos2 θ

2

]

where ge =
√

4πα and the fine structure constant α ≈ 1/137.

γ

γ

e−

µ−

e−

µ−

Figure 2.4. Leading-order

correction to e−µ− scattering

Higher order diagrams, such as that shown in Figure 2.4

also contribute to the cross-section, but as each vertex con-

tributes a factor of αQED ≈ 1
137

, these make little difference

to the total cross-section. A similar process may also take

place via the weak interaction, in which case the mediator

is a Z boson rather than a photon. This process, however,

is heavily suppressed below the 90GeV Z resonance peak.

2.1.1.2. Electron-proton scattering. Like the muon,

the proton is a fermion; if it were point-like, electron-proton

scattering would have exactly the same form as that just shown for Mott scattering:

〈
|M|2

〉
= LµνelectronL

proton
µν

with Lµνelectron defined as in equation 2.2 and Lproton
µν defined similarly, by replacing electron

momenta and mass with those of the proton.
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However, it is known that the proton is not a point charge; it is a composite particle

with a finite size, consisting of strongly-interacting partons: three valence quarks (uud)

plus the “sea” of gluons and quark-antiquark pairs. At high energies, typically of the

several-GeV range, electrons can scatter off of these individual partons (“deep inelastic

scattering”, e−+ p→ e−+X in which the final products are not simply the electron and

proton with which we started, but a shower of hadrons). At lower energies, of the order

of 1 GeV, we tend to see elastic scattering. The proton is even heavier than the muon,

so as with the previous example of Mott scattering, we can assume an electron scatters

from a stationary proton, and that the electron’s mass can be neglected. However, the

interaction between the virtual photon and the proton is now no longer a simple QED

vertex, as in the Mott scattering example, meaning that our matrix element must now be

modified. Again, we follow the method of [129]. The matrix element becomes:

〈
|M|2

〉
= LµνelectronK

proton
µν

where Kproton
µν is some second-rank tensor that models the unknown interaction between

the proton and the mediating photon. Furthermore, the tensor can only depend on the

four-momentum transferred to the proton, q, and the incoming proton momentum p (the

outgoing momentum is simply p + q), as these are the only momenta that contribute at

the proton vertex.

Bearing in mind that in order to contribute to the cross-section, terms in Kproton
µν must,

as with Lµνelectron, be symmetric, the most general form is given below (mp is the proton
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mass):

(2.5) Kµν
proton = −K1g

µν +
K2

(mpc)2
pµpν +

K4

(mpc)2
qµqν +

K5

(mpc)2
(pµqν + pνqµ)

(There is no K3 - this is reserved for a parity-violating term that is not relevant to elec-

tromagnetic scattering, which conserves parity. The weak interaction, however, violates

parity, and thus for neutrino scattering, an additional form factor is included, of the form

−i(εµναβpαqβ)/2m2
p, as detailed in [145]). For elastic scattering, these form factors are

functions only of the squared four-momentum transfer q2; for inelastic scattering, the form

factors would also be functions of energy transfer ν. The quantity q2 is used frequently

in calculations and measurements involving this type of interactions; more frequently we

refer to Q2 = −q2, as this quantity is always positive. It can be shown that the Ki(q
2)

are not all independent; K4 and K5 can be eliminated, giving:

Kµν
proton = −K1

(
gµν +

qµqν

q2

)
+

K2

(mpc)2

[
(p1.p)(p3.p)

(mpc)2
+
Q2

4

]

2.2. Quasi-elastic neutrino scattering

Neutrinos, having no electric charge, do not undergo electromagnetic interactions,

meaning that elastic scattering via virtual photon exchange, as shown in the previous

section, does not take place. However, neutrinos do undergo weak interactions, and it is

thus possible for neutral-current elastic scattering to take place via exchange of a Z boson,

as shown in figure 2.5a.

Figures 2.5b and 2.5c show the charged-current quasi-elastic process for an antineu-

trino and a neutrino respectively. These processes produce a charged lepton in the final
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Z

p, n

νµ, ν̄µ

p, n

νµ, ν̄µ

(a) Neutral current elastic

W−

p

ν̄µ

n

µ+

(b) ν̄ CCQE

W+

n

νµ

p

µ−

(c) ν CCQE

Figure 2.5. Elastic and quasi-elastic scattering of neutrinos from nuclei

state. (In this example, we show scattering of muon neutrinos, but the process can equally

take place with tau or electron neutrinos, in which case a tau lepton or electron respec-

tively would be produced in the final state). These leptons can be detected, and their

charge and momentum analyzed, not only in the MINERνA detector, but also in those

of numerous neutrino experiments, including those that look for oscillations. In this case,

the mediating particle is the charged W boson, which causes a neutrino to change to its

charged leptonic partner, while simultaneously changing the flavor of the target nucleon.

Neutrinos interact with neutrons, with a W+ being exchanged from the lepton to the

hadron :

νl + n→ l− + p

while antineutrinos interact with protons, with a W− being exchanged from the lepton to

the hadron (or, equivalently, a W+ from the hadron to the lepton):

ν̄l + p→ l+ + n

This analysis will principally concentrate on the antineutrino interaction, which is illus-

trated in figure 2.5b.
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CCQE interactions are of particular interest to oscillation experiments for several

reasons. They dominate at energies in the GeV range, a common energy range for neutrino

beams (for example, the Fermilab booster beam used by MiniBooNE has a mean energy

of 0.5 GeV [77]; T2K’s beam is centered at 0.6 GeV [78]; and MINOS[94] and NOvA[47]

are situated, along with MINERvA, in the NuMI beam [98] which, in its low energy

configuration, had a mean energy around 3 GeV, and now delivers 1-3 GeV neutrinos to

NOvA’s off-axis detector and a broad-spectrum beam peaking around 6 GeV to MINOS

and MINERvA). Additionally, in the case of a pure quasi-elastic interaction, we are able

to use conservation of energy and momentum parallel and perpendicular to the neutrino’s

direction to reconstruct both the energy of the incoming neutrino, Eν ; and the negative

square of the 4-momentum transferred from the leptonic to the hadronic system, Q2. Q2

is an important quantity because nucleon form factors (as explained above, and shown

again below) are functions of Q2.

(2.6) EQE
ν =

m2
n − (mp − Eb)2 −m2

µ + 2(mp − Eb)Eµ
2(mp − Eb − Eµ + pµ cos θµ)

(2.7) Q2
QE = 2EQE

ν (Eµ − pµ cos θµ)−m2
µ

These formulae are valid for a quasi-elastic interaction antineutrino incident upon a

proton at rest within a nucleus, with a binding energy Eb. (Note that this assumption

of a stationary proton with a constant binding energy is an approximation; this will be

discussed in subsequent sections.) The interaction produces a positively-charged muon

and a recoil neutron. Under the quasi-elastic assumption, no energy is lost to the rest of
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the nucleus - its only effect is to provide the binding energy that lowers the initial state

energy of the stationary proton. In these formulae, Eν and Eµ are the neutrino and muon

energy respectively. Muon momentum is represented by pµ, and θµ represents the angle

between the outgoing muon and the incoming neutrino. Four-momentum transfer q is the

difference in 4-momentum between the final state muon and the initial-state neutrino. As

the neutrino mass is negligible (less than 1eV), we take mν = 0, meaning Eν = |~pν |. The

muon mass is represented by mµ. We recall that E2 = m2 + p2 in natural units (where

the speed of light is set to 1).

Muons typically behave as minimum-ionizing particles in detectors, meaning that their

kinematics are relatively easy to reconstruct. This makes this interaction especially ap-

pealing for oscillation experiments that wish to compare measured to theoretical cross-

sections.

2.2.1. The Llewellyn-Smith model for quasi-elastic cross-section

As with the elastic electron-proton scattering discussed earlier, we are unable to make

a precise analytical calculation of the neutrino-nucleon quasi-elastic cross-section; due to

the internal structure of the nucleon, our cross-section depends on nucleon form factors.

Recall the form-factor parametrization given earlier for the proton, with the additional

parity-violating term:

(2.8)

Kµν
proton = −K1g

µν +
K2

(mpc)2
pµpν − i K3

2m2
p

εµναβpαqβ +
K4

(mpc)2
qµqν +

K5

(mpc)2
(pµqν + pνqµ)
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In 1972, C. Llewellyn-Smith [145] used these form factors to calculate the differential

quasi-elastic cross-section. He regroups the form factors in the following way:

(2.9)
dσ

dQ2
QE

(
νln→ l−p

ν̄lp→ l+n

)
=
M2G2

F cos2 θC
8πE2

ν

{
A(Q2)∓B(Q2)

s− u
M2

+ C(Q2)
(s− u)2

M4

}

where:

GF : is the Fermi coupling constant, 1.166× 10−5GeV −2

M: is the nucleon mass; Mproton = 938.27MeV/c2; Mneutron = 939.57MeV/c2

θC: is the Cabibbo angle, 13.04◦

s, u: are the Mandelstam variables; s− u = 4MEν −Q2 −m2
l

Eν: is the incoming neutrino energy which, in the quasi-elastic hypothesis, can be

calculated from the angle and energy of the final state lepton.

Q2: is the square of the four-momentum transferred from the lepton to the hadron

which, in the quasi-elastic hypothesis, can be calculated from the angle and

energy of the final state lepton.

(Constants from [163].) The coefficients A, B and C are functions of the nuclear form-

factors:

(2.10)

A(Q2) =
m2
l +Q2

M2

{(
1 +

Q2

4M2

)
|FA|2 − (1− Q2

4M2
)F 2

1

+
Q2

4M2
(1− Q2

4M2
)(ξF2)2 +

Q2

M2
Re(F ∗1 ξF2)− Q2

M2
(1 +

Q2

4M2
)(F 3

A)2

−
m2
µ

4M2

[
|F1 + ξF2|2 + |FA + 2FP |2 − 4(1 +

Q2

4M2
)((F 3

V )2 + F 2
P )

]}

(2.11) B(Q2) =
Q2

M2
Re [F ∗A(F1 + ξF2)]− m2

l

M2
Re

[
(F1 − τξF2)F 3∗

V − (F ∗A −
Q2

2M2
FP )F 3

A)

]
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(2.12) C(Q2) =
1

4

{
F 2
A + F 2

1 + τ(ξF2)2 +
Q2

M2
(F 3

A)2

}

The form factors are associated with different physics processes, and all but FA are known

to a good level of approximation from other processes, as explained below.

Of these, F1 and F2 are vector form factors, FP pseudoscalar, and FA axial vector.

The form factors F 3
V and F 3

A correspond to second-class currents which, if they exist at

all, have a small enough effect that they can be neglected [194].

2.2.2. Form factors in the Llewellyn-Smith model

2.2.2.1. Conserved Vector Current and the vector form factors. The weak inter-

action has both a vector and an axial vector component, leading to the factor γµ(1−γ5) in

the weak vertex between elementary particles. However, the internal strong interactions

between the nucleon’s components (valence quarks, gluons, and sea quark-antiquark pairs

which are constantly being created and recombining) modify this vertex factor; the term

(1−γ5) can now be written as (cV −cAγ5), where cV is a weak vector charge and cA a weak

axial charge. The Conserved Vector Current (CVC) hypothesis [117][102] claims that

the vector component will be the same for charged-current interactions (such as neutrino-

nucleon scattering) as it is for the equivalent electromagnetic interaction (charged lepton-

nucleon scattering). In other words, cV = 1 exactly. This is because, in the Standard

Model, the vector parts of the weak charged current and its hermitian conjugate, along

with the pure-isovector electromagnetic current, form an isospin triplet. This hypothesis

has been confirmed by various experiments, such as [186].
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Thus that the vector form factors can be measured via electron-nucleon scattering, a

simpler experiment due to the relative ease of producing a mono-energetic electron beam.

Using [145] [102] to relate the CCQE vector form factors to the Sachs form factors

[91][181] GV
E and GV

M (explained below), one gets (for scattering from a free nucleon):

F1(Q2) =
GV
E(Q2) + Q2

4M2G
V
M(Q2)

1 + Q2

4M2

ξF2(Q2) =
GV
M(Q2)−GV

E(Q2)

1 + Q2

4M2

where GV
E and GV

M are related to the electron scattering form factors by

GV
E(Q2) = Gp

E(Q2)−Gn
E(Q2)

(2.13) GV
M(Q2) = Gp

M(Q2)−Gn
M(Q2)

The electric (Gp
E,Gn

E) and magnetic (Gp
M ,Gn

M) form factors of the proton and neutron

can be measured via electron scattering. At Q2 = 0, the electric form factors simply

correspond to the electric charge of the proton (1, in Heaviside particle physics units) and

neutron (0), while the magnetic form factors correspond to the magnetic moments µp and

µn respectively.

At Q2 > 0, the behavior of the form factors must be determined experimentally (from

electron scattering). Budd, Bodek and Arrington[65] fitted measured cross-sections to

various theoretical models. The simplest model commonly used experiments is a dipole

approximation, based around the assumption that the nucleon’s charge has an exponential
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distribution ρ(r) = ρ0e
−Mr, whose Fourier transform gives the dipole form:

GD(Q2) =
1

(1 + Q2

4M2
V

)2
(2.14)

Gp
E(Q2) = GD(Q2) Gn

E(Q2) = 0

Gp
M(Q2) = µpGD(Q2) Gn

M(Q2) = µnGD(Q2)

In [65], M2
V is taken to be 0.71 GeV2.

The dipole approximation is thought to hold well at low Q2, where the key issue is

the spatial structure of the nucleus; however, they are less accurate at higher Q2 values,

where quark structure plays a more important role. Budd, Bodek and collaborators have

since proposed various modifications to this model[65][63][58], the most recent being

the so-called BBBA07 parameterization[58]. This is based around a parameterization by

Kelly[136] of the nucleon form factors. For Gp
M , Gp

E and Gn
M , these use a ratio of two

polynomials in τ = Q2

4M2 (M is nucleon mass), in which the degree of the denominator

is two powers of Q2 greater than that of the numerator, in order to replicate the Q−4

behavior of the form factors observed at large Q2. A pre-factor of magnetic moment µn

or µp is included for Gn
M and Gp

M respectively (see figure 2.6.

As insufficient data was available to model Gn
E in this way, the Galster form-factor[115]

Gn
E = Aτ

1+Bτ
GD was used instead. The polynomial coefficients were obtained through fits

to data as described in [136]. The Kelly form factors are multiplied by scaling functions

that affect their behavior at high Q2, having been fitted to match data from neutrino-

deuterium quasi-elastic scattering. (Deuterium was chosen in order to minimize the effect

of unknown nuclear corrections).
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Figure 2.6. Polynomial fit of form factor values measured by several experiments,
from [136].

2.2.2.2. The pseudoscalar form factor. We now turn our attention to the axial com-

ponent of the weak interaction.

Following the formalism of [80], we note that the axial part of the proton-neutron

weak matrix element has the form

(2.15) 〈p|A†µ |n〉 = − cos θC ūp

[
FAγ

µγ5 + FP
qµ

M
γ5

]
un

The first “axial” term corresponds to the basic leading order diagram for the weak

interaction, plus vertex corrections such as that shown in figure 2.7a. The second term

corresponds to pseudoscalar interactions, the most significant being that shown in figure

2.7b, where a charged pion (a pseudoscalar particle) with the same charge as the exchanged

W boson, is exchanged.

In this second case, our diagram now has two vertices: one corresponding to p+π− → n

and another which is a rotation of the weak decay of the pion: π− → µ−+ν̄µ. Connecting
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π0

W−

p

ν̄µ

n

µ+

(a) Pion vertex correction

π−

W−

p

ν̄µ

n

µ+

(b) Single pion exchange

Figure 2.7. Pion corrections to the CCQE interaction

these we have a charged pion propagator. Thus we get an amplitude that looks like:

A = [p+ π− → nvertex]× [π−propagator]× [π− → µ−ν̄µvertex]

=
[
ig0

√
2ūpγ

5un
]
×
[

1
q2−m2

π

]
×
[
cosθC

GF√
2
ifπqµ(ūmuonγ

µ(1− γ5)uνµ)
]

(2.16)

where g0 is the coupling constant for the p + π− → n interaction and fπ is the charged

pion decay constant. This would give

(2.17) 〈p|A†µ |n〉 = − cos θC ūp

[
FAγ

µ − qµ

M

g0fπ
q2 −m2

]
γ5un

The pseudoscalar part (the part multiplied by just γ5) gives us our pseudo scalar form

factor FP :

(2.18) FP (q2) = − g0fπ
q2 −m2

π

While the axial current is not conserved; it can be considered “partially conserved”;

in that it would be conserved in the limit that mπ → 0. Thus, taking a divergence of our

axial current in that limit, we get:
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(2.19)

0 = lim
mπ→0

∂Aµ

∂xµ

= lim
mπ→0

ūp

[
FA(Mp +Mn)− fπg0

q2 −m2
π

q2

M

]
γ5un

= ūp [2MFA(0)− fπg0/M ] γ5un

(We approximate Mp ≈ Mn ≡ M). This gives us the “Goldberger-Treiman relation”

[122]

(2.20) fπg0 = 2M2FA(0)

Finally, substituting back to 2.18, we can relate our pseudo scalar form-factor to the

axial form factor:

(2.21) FP = − fπg0

q2 −m2
π

=
2M2

Q2 −m2
π

FA

Note that the expression for FP only appears in the Llewellyn-Smith cross-section

formula with a multiplier of (Ml/MN)2. Thus its effect is small except in the case of tau

neutrino interactions.

2.2.2.3. The axial form factor. The weak interaction (by which neutrinos interact)

has a (V-A) form [102], including both a vector and an axial component; the electromag-

netic interaction, meanwhile, is pure vector. For this reason, it is very difficult to measure

the strength due to the axial component by looking at electromagnetic electron-nucleon

scattering (there is a small contribution from parity-violating weak neutral-current scat-

tering, but this is very hard to detect). The axial component, represented by the axial

form factor FA, is therefore measured through either neutrino-nucleon scattering or pion
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electro-production. As with the vector form factor, it is usual to use a dipole approxima-

tion,

(2.22) FA(Q2) =
gA

(1 + Q2

M2
A

)2

The constant gA, the value of the axial form-factor at Q2 = 0, has been measured

through beta-decay experiments [193] to be 1.2756(30)[150], ( MINERvA’s nominal

Monte Carlo simulation, GENIE [93], uses 1.2670) leaving one free parameter, the axial

mass MA. Bubble chambers (in which neutrinos scatter from deuterium) [50] [35] [57]

and pion electro-production [71] experiments have measured the value of MA on free or

quasi-free nucleons.

An average value of MA = 1.014 ± 0.014GeV/c2 was extracted by Bodek et al. [57]

in 2008, from various neutrino-deuterium scattering experiments. Kuzmin et al. [140]

performed global fits to neutrino and antineutrino scattering data on hydrogen, deuterium

and several materials including heavy nuclei, using alternative models for the vector form

factors. The extracted values were all consistent with Bodek et al.’s world average. Our

Monte Carlo simulation, GENIE, [93] uses MA = 0.99+25%
−15%GeV. While this model works

well for neutrino-deuterium scattering, it has been shown to break down when scattering

from heavier nuclei, as will be discussed in the following section. A summary of the history

of measurements of MA can be found in [114].
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2.3. Scattering from heavy nuclei

2.3.1. The Relativistic Fermi Gas model

Protons and neutrons are fermions. This means that they must obey the Pauli exclusion

principle, which forbids two identical fermions from occupying identical states. Because of

this, multiple protons or neutrons in a nucleus each have a number distribution dictated

by Fermi-Dirac statistics:

(2.23) ni =
1

eβ(Ei−µ) + 1

where ni denotes the number of protons or neutrons in a given energy state, Ei is the

energy of the state, µ is the chemical potential and β = 1/kT where k is Boltzmann’s

constant and T is the temperature. As temperature reduces to absolute zero, this results

in a distribution where all energy states are filled up to the Fermi energy EF = µ(T=0)

while all states above EF are empty. As temperature rises, the distribution smears, with

some states above EF being filled, and some below becoming empty. We can thus think

of the nucleus as a gas consisting of nucleons moving in “Fermi motion”, each with some

energy and momentum satisfying the Fermi-Dirac distribution.

In the Relativistic Fermi Gas (RFG) model, proposed by Smith and Moniz[184], quasi-

elastic scattering from a nucleon in a nucleus is treated as if the incoming lepton scatters

from an independent nucleon (the “impulse approximation”) as in the Llewellyn-Smith

formalism; however, in the case of the RFG, the target nucleon is not stationary, but has

a momentum consistent with the Fermi distribution. Thus the cross section for scattering

off the nucleus is replaced by a coherent sum of cross sections for scattering off of each
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individual nucleon, with the remaining nucleus (depleted by 1 nucleon) as a spectator.

In this case, we can conclude that, with a four-momentum transfer q, energy transfer ν,

nucleon mass M , and nucleon initial and final momenta pi and pf respectively:

Initial nucleon kinetic energy, KEi =~pi
2/2M

Final nucleon kinetic energy, KEf =~pf
2/2M

=(~q + ~pi)
2/2M

Energy transfer, ν =KEf −KEi

=Q2/2M + ~q.~p/M(2.24)

(Remember Q2 = −q2 is always positive.) Thus we would expect the distribution

of ν at fixed Q2 to be centered around ν̄ = Q2/2M , with a width corresponding to the

average momentum in the direction of energy transfer, which is a function of the Fermi

momentum. Fitting these distributions yields a measurement of the Fermi momentum,

which for carbon-12 has been measured to be 221±5 MeV [192]. This is the value used

by our Monte Carlo event generator, GENIE.[93]

A further consideration of the Relativistic Fermi Gas model is the concept of Pauli

blocking. This is a consequence of nucleons being fermions and thus being required to obey

the Pauli exclusion principle. Thus, a struck nucleon cannot be raised to an momentum

state that is already occupied; that is, it must have a final-state momentum above kF .

This has the effect of, for a given energy transfer, setting a lower limit on the possible

energy range of target nucleons for which an interaction is allowed. Thus, for a pure Fermi

distribution where all states up to the Fermi limit, and none above it, are occupied, the



93

range of energies allowable to a target nucleon is:

Emax =
√
k2
F +m2

N

Emin =
√
k2
F +m2

N ′ − EB − ν(2.25)

Where for a quasi-elastic interaction on a proton, mN is the proton mass, mN ′ is the

neutron mass and EB the proton binding energy (30 MeV in carbon); for interaction on

a neutron, mN is the neutron mass, mN ′ is the proton mass and EB the neutron binding

energy (34 MeV in carbon). As before, kF is the Fermi momentum and ν the energy

transfer. In a real nucleus, in which there is not a strict Fermi momentum cutoff, the

Pauli blocking mechanism is more complex; this has been studied in papers such as [144].

In our Monte Carlo generator, GENIE, Pauli blocking is implemented via a modification

to the Fermi momemtum[93].

2.3.1.1. Limitations of the RFG model. Figure 2.8 shows measurements of CCQE

νµ and ν̄µ scattering cross sections on carbon. (MiniBooNE subtracted the ν̄µ-hydrogen

component of their cross section). The plot includes results from the NOMAD experiment

at CERN[146], which operated in the 3-100 GeV range, as well as lower energy results

from MiniBooNE [30] at around 1 GeV. In each case, the results were fitted to the Rela-

tivistic Fermi Gas model, extracting best fit parameters of the axial mass MA and Pauli

blocking strength κ. In the case of NOMAD, the data were a good fit for the world average

MA measured on bubble chambers, giving a value of 1.05±0.02(stat)±0.06(sys) GeV/c2.

MiniBooNE, however, extracted a value of MA = 1.35± 0.17 GeV/c2 for scattering from



94

Figure 2.8. Flux-unfolded νµ and ν̄µ CCQE cross sections per neutron in carbon,
as a function of neutrino energy, from the MiniBooNE and NOMAD experiments,
compared to the world average and MiniBooNE best-fit RFG predictions. Re-
produced from [128]

mineral oil (CH2) - far above the world average. Table 2.1 (adapted from [134]) summa-

rizes recent measurements of MA, extracted from various experiments’ fits to the RFG

model.

This indicates that the RFG model is insufficient for describing the behavior of scat-

tering over the complete energy range. There are several likely explanations for this,

including deficiencies in the simplistic model of the potential that nucleons experience in

the nucleus, as well as the fact that the RFG model does not take account of correlation

effects between nucleons.
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Experiment Material Energy (GeV) Q2 cut (GeV2) MA (GeV)

K2K [127] Oxygen 0.3-5 Q2 > 0.2 1.20± 0.12
K2K [92] Carbon 0.3-5 Q2 > 0.2 1.14± 0.11
MINOS [88] Iron ≈ 3 None 1.19± 0.17
MINOS [88] Iron ≈ 3 Q2 > 0.2 1.26± 0.17
MiniBooNE [29] Carbon ≈ 1 None 1.35± 0.17
MiniBooNE [29] Carbon ≈ 1 Q2 > 0.25 1.27± 0.14

NOMAD [146] Carbon ≈ 3− 100 None 1.05±0.02(stat)
0.06(sys)

T2K [4] Carbon ≈ 1 None 1.26+0.21
−0.18

T2K [4] Carbon ≈ 1 None (shape) 1.43+0.28
−0.22

Table 2.1. Values of MA extracted from neutrino-nucleus scattering data

2.3.1.2. Local Fermi Gas model. The local Fermi gas model is an extension to the

relativistic Fermi gas, in which a local density approximation [160] [153] is used, so that

instead of using a constant average field for the whole nucleus, the momentum distribution

is instead dependent on a nucleon’s position within the nucleus. For a relativistic Fermi

gas:

(2.26) pRFG
F =

h̄

r0

(
9πN

4A

)1/3

where A is the atomic mass, r0 is a constant 1.25±0.20 fm, where the nuclear radius

R = r0A
1/3 in the Relativistic Fermi Gas model. N is the number of neutrons. (This gives

the Fermi momentum for neutrons; for protons, substitute Z, the number of protons, for

N). For the local Fermi gas, this is modified [119] to:

(2.27) pLFG
F (r) = h̄

(
3π2ρ(r)

N

A

)1/3
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By selecting a form for ρ(r) that corresponds to a uniform sphere of charge, the LFG

simplifies to the RFG. However, more accurate distributions are known from electron

scattering. [83]

Figure 2.9. Comparison of RFG and LFG
momentum distributions, from [119]

Figure 2.9 shows the difference in Fermi

momentum between the LFG and RFG

models. This model has been used as the

basis for many more complicated treat-

ments of nuclear effects [161][41].

2.3.1.3. Spectral functions. The Hamil-

tonian for a large nucleus is so complicated

that it is impractical to try to solve the

many-body Schrödinger equation for the

entire nucleus. However, if a mean field

is used to replace the sum of the individual

interactions, a shell model can be created. In this case, a spectral function S(~k;w) can be

defined such that the density of momentum states ρ(k) is given by ρ(k) =
∫ EF
−∞ dωS(~k;w),

as explained in [147]. The spectral function S(k;w) represents the probability of finding

a nucleon with momentum ~k and removal energy w within the nucleus. Spectral func-

tions can be used to improve the Relativistic Fermi Gas model [70]. A realistic spectral

function, however, must also include correlation effects. For small nuclei (atomic masses

up to 4), these can be calculated using many-body theory; beyond this, the calculation

becomes extremely complex. In order to generate a spectral function for heavier nuclei

that includes correlations, Benhar et al. [55] use the mean-field approach to model the
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single-particle contribution, while the correlated part is calculated for infinite nuclear

matter. A local-density approximation is used to translate this to an appropriate value

for a finite nucleus.

The effect of correlations on the spectral function prediction will be explained in the

following section.

2.4. Long range correlations: the random-phase approximation

The random-phase approximation (RPA) is a method of incorporating long-range

correlations between nucleons.[158] It is based around the phenomenon, observed in β-

decay experiments, that the electroweak coupling can be modified by the presence of

strongly-interacting nucleons in the nucleus, when compared to its free-nucleon coupling

strength - similarly to the screening of an electric charge in a dielectric. The effect of

nuclear polarization on the W and Z can be modeled by a chain of diagrams as shown in

figure 2.10, where a solid line represents a nucleon and a double line an isobar resonance.

It should be noted that long-range correlations affect the 1p1h (1-particle-1-hole) response

– in other words, this is not a multi-nucleon knockout effect.

The RPA approach affects cross section predictions at low energy transfers (and low

Q2), where a quenching of the axial current reduces the cross section compared to the

RFG prediction.

2.5. Multi-nucleon effects

The Relativistic Fermi Gas does not address multi-nucleon effects - effects due to in-

teractions between pairs or larger groups of nucleons within the nucleus. In this section

we will explain how, if nucleons are correlated, they no longer obey the assumptions of
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Figure 2.10. Set of irreducible diagrams responsible for the polarization (RPA)
effects in the 1p1h contribution to the W or Z self-energies, taken from [158]

the quasi-elastic hypothesis and Fermi Gas distribution, meaning that we will reconstruct

their energies incorrectly. For three example energies, figure 2.11, reprinted from [151],

demonstrates the predicted extent to which a true energy will be smeared when recon-

structed using the CCQE hypothesis on a system including multinucleon effects, described

using Martini et al.’s model.
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Figure 2.11. The spreading function per neutron of electron-ˆ12C scattering,
showing the range of energies Ēν that would be reconstructed using quasi-
elastic hypothesis for three corresponding Etrueν values. The genuine quasi-elastic
(dashed lines) and the multi-nucleon (dotted lines) contributions are also shown
separately. Reproduced from [151]

2.5.1. Short-range correlations

The Relativistic Fermi Gas model, which treats the individual nucleons as independent,

does not adequately take into account the nature of the nuclear force, which has a short

range with a repulsive core [46]. This short-range interaction between two (or more) very

close-together nucleons can give the individual nucleons very high momenta, far above the

Fermi momentum kF , leading to a high-momentum tail when compared to the mean-field

prediction of the Relativistic Fermi Gas model.

Figure 2.13, reprinted from [73], illustrates such a high-momentum tail, modeled using

a spectral function, in contrast to the mean-field prediction of the RFG model; the model

including the correlations has better agreement with data. Note that, while individual
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particles within a correlated pair may have very high momentum, the pair as a whole

has a low total momentum relative to kF ; this corresponds to a pair of nucleons moving

back-to-back. This effect is poorly understood, but can be examined with high-energy

probes, which can be used to isolate scattering from these high-momentum nucleons.

Figure 2.12. Scattering from a correlated
pair of nucleons

The nucleon-nucleon force has a tensor com-

ponent, which is responsible for the isosinglet np

pair with an isospin of 0, as well as a central

isotriplet (I = 1) component, which can con-

tribute pp, nn and np pairs. When the relative

momentum of the nucleons in the pair is between

300 and 600 MeV/c, and the total momentum is

small, the tensor component appears to dominate, meaning that we would expect pairs

to mainly consist of a proton and a neutron [182]. As this is the form of the deuteron, we

expect the high-momentum tail for different nuclear materials to have the same form as

that of deuterium, in this momentum range (at higher momenta, where the short-range

repulsive core dominates, we would expect this to break down). Electron-scattering exper-

iments have demonstrated this constant ratio of nucleus-deuteron ratio, as shown in figure

2.14, reprinted from [73]. This shows the ratio of several nuclei’s momentum distributions

to that of the deuteron; all of these become almost flat at momenta k > 2fm−1.

An alternative way to think of this high-momentum tail is to consider the Bjorken

variable xBj = Q2/2mNν, which corresponds to the fraction of a nucleon’s momentum

carried by a struck quark. (Q2 is the squared four-momentum transfer, mp the mass of

the nucleon, and ν the energy transfer.) In the case of elastic or quasi-elastic scattering off
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Figure 2.13. Nucleon momentum distribution predictions for various nuclei,
taken from [73]. Dotted lines show the RFG prediction, while the solid line
shows the spectral-function prediction including correlated pairs. The points
correspond to data from various experiments, detailed in the reference.

of a nucleon at rest, where we scatter of the entire nucleon, xBj = 1 - the nucleon carries

all of its own momentum. But if we scatter off of a pair, the struck nucleon can actually

have a higher momentum than the pair’s total, effectively corresponding to xBj > 1. A
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Figure 2.14. Ratio of the spectral function distributions from figure 2.13 to the
corresponding distribution for the deuteron, allso reproduced from [73]. The
dashed line represents 3He, dotted 4He, dot-dashed 16O, long dashed 56Fe, and
dot-long dashed nuclear matter.

comparison of inclusive electron-scattering cross sections vs xBj for different materials[97]

shows that the ratio of this cross section to that for deuterium reaches a flat plateau for all

materials when xBj > 1.5 (note that xBj = 2 is the maximum for scattering off a deuteron,

which has an atomic weight of 2). At lower xBj, there is still significant contribution from

the mean-field part of the distribution, whereas above xBj = 1.5, this is overwhelmed by

the correlation contribution.

Figure 2.15 shows this distribution. Plateaus indicate 2-nucleon and 3-nucleon cor-

relation zones, above xBj = 1.5 and 2.25 respectively, in electron-nucleus scattering. By

integrating the momentum distribution in these area, the CLAS collaboration [95] were
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Figure 2.15. Ratio of the cross sections for 4He, 12C, and 56Fe vs Bjorken variable
xBj to that for 3He, from CLAS[95].

able to determine the fraction of nucleons that were in short-range correlated pairs. For

carbon, this probability was calculated to be approximately 20%.

High-momentum knock-out experiments, in which high-energy electrons are scattered

on a nucleus, show that, when an interaction has missing energy - that is when the proton

ejected from the nucleus has less energy than would be expected from conserving energy

and momentum - that energy is typically found in a second ejected nucleon[99]. This is

consistent with knocking out the partner nucleon, when scattering from a nucleon that

is in a correlated pair. Subedi et al. at JLab’s Hall A [100] used custom neutron and

proton detectors to analyze the makeup of these pairs for electromagnetic scattering of

electrons from protons in carbon. They concluded that the ratio of np to pp pairs ejected
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was 18±5. This supports the theory that the dominant contribution to these short-range

correlations is from the tensor component, which includes only the isosinglet np state.

Including the findings of [95], and assuming isospin symmetry between nn and pp pairs,

they conclude that the carbon nucleus consists of 80% uncorrelated nucleons, 18% np

pairs and 1% each of nn and pp pairs.

Figure 2.16. The average fraction of nu-
cleons in the various initial-state configu-
rations of 12C, taken from [100]

Even in heavier nuclei, which tend to have

more neutrons than protons, np pairs dominate,

meaning that a proton has a greater chance of

being in a correlated pair than does a neutron.

This was demonstrated with the CLAS detector

at JLab, which looked at two-nucleon knock-outs

in carbon, aluminum, iron and lead. [182]

Note that the consequence of this for

neutrino-nucleus charged-current quasi-elastic

scattering would be that we would expect a neu-

trino scattering from a correlated np pair to produce two protons (one created by the

charged current interaction with a neutron, plus its proton partner. Correspondingly,

charged-current quasi-elastic antineutrino scattering with a correlated pair would tend to

produce two neutrons.

Bodek and Ritchie’s modification to the Relativistic Fermi Gas model [59] adds a

high-momentum tail to the RFG’s momentum distribution, based on the nucleon-nucleon

correlation function as explained in [124]. This modified version of the RFG is the nuclear
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model adopted by the GENIE Monte Carlo generator v.2.8.4, which is used in this anal-

ysis’ cross-section calculation for background subtraction, unsmearing, and acceptance

correction of our data measurements. While this method attempts to provide a realistic

initial momentum distribution, it does not include any model for the ejection of paired

nucleons, which may affect our final state.

It should be noted that there is also a small contribution from correlated groups of

three nucleons, which take the form of a 3He nucleus. These 3N correlations can have

xBj > 2, and in carbon, contribute to only approximately 0.5% of interactions[95].

2.5.2. Transverse enhancement model

The cross section for electron scattering on a nucleus can be separated into transverse and

longitudinal parts (that is, into parts where the exchanged photo is polarized transversely

and longitudinally), giving [52]

(2.28)
dσ

dΩdν
= σMott

E ′

E

[
Q4

~q 4
RL(Q2, ν) +

(
Q2

2~q 2
+ tan2 θ

2

)
RT (Q2, ν)

]

The longitudinal response function RL is proportional to the nucleon’s electric form factor,

GE, while the transverse response function RT is proportional to the magnetic form factor

GM . We can define a scaling function f such that

fL(Q2, ν) ∝ RL(Q2, ν)

G2
E

fT (Q2, ν) ∝ RT (Q2, ν)

G2
M

(2.29)
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For deep inelastic scattering, where the incoming neutrino or electron scatters off a

quark within the nucleon, the structure functions have been found to be functions only of

the Bjorken scaling variable xBj = Q2/2mNν and Q2, a process known as x-scaling. This

allows one to relate the cross section distribution to the momentum distribution of the

quarks in the nucleon. In analogy to this, one can look for a variable y which performs

a similar function for scattering from nucleons within a nucleus. As the form factors are

functions of q and ν, this y must also be a function of these variables. Day et al. [82]

derive this as:

(2.30) y(q, ν) =

[
(mA + ν)

√
Λ2 −m2

A−1W
2 − qΛ

]
/W 2

Where W ≡
√

(mA + ν)2 − q2 is the center-of-mass energy, and Λ ≡ (m2
A−1−m2+W 2)/2.

In doing so, they assume the plane-wave input approximation, that is, that a nucleon of

momentum ~k in a nucleus of mass mA (not to be confused with axial mass MA) absorbs

a photon with momentum ~q, causing the nucleon to be ejected with a momentum (~k+ ~q)

and the residual nucleus, now with mass mA−1, to recoil with momentum −~k.

The validity of the y scaling method was tested on electron scattering data from

Saclay by Finn et al.[106], and by Carlson et al.[68], who plotted fL(y) and fT (y) for

various values of q. This data (see figure 2.17, where the scaling variable is referred to as

ψ′) showed that, while fT and fL each independently obey this scaling relationship (fT

diverges with q at high y, but this effect is due to the onset of resonant interactions, and

is not relevant to the quasi-elastic behavior), the fT shows an enhancement with respect

to fL. Because meson-exchange currents are known to affect the transverse response,

it is assumed that the longitudinal response is due to a single-nucleon scattering effect,
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and that the transverse enhancement is due to multi-nucleon effects, with the difference

between the two scaled curves providing some measure of the strength of these effects.

Figure 2.17. The scaling functions fT (top, red) and fL
(bottom, green), for various values of q, reproduced from
[68]

Bodek, Budd and Christie

[61] have isolated the trans-

verse enhancement contribu-

tion. At low Q2 they used

the results of Carlson et al.[68],

who calculated ratios of trans-

verse to longitudinal response;

at high Q2, they used a

similar measurement from the

JUPITER experiment [149] .

Inclusive cross section data was fitted in four components: transverse and longitudinal

quasi-elastic contributions, inelastic contributions, and the transverse enhancement to the

QE. From this fit, they extracted a transverse enhancement ratio

(2.31) RT =
QEtransverse + TE

QEtransverse

This ratio RT (Q2) was parameterized in the form RT = 1+AQ2e−Q
2/B where A=6.0 and

B=0.34 (GeV/c)2. This best-fit parametrization is shown, along with the data, in figure

2.18.

A prediction for the effect on neutrino-nucleus scattering was made by applying a

multiplier corresponding to RT to the magnetic form factors of the nucleons. By applying

this correction to the Relativistic Fermi Gas model, they were able to produce cross
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section predictions that were consistent with the low-energy neutrino-scattering results

from MiniBooNE[77], and with the high-energy results from NOMAD[146]. Comparisons

of the dσ/dQ2 for quasi-elastic neutrino[107] and antineutrino[96] scattering in MINERvA

also showed better agreement with this model than with the Relativistic Fermi Gas.

Figure 2.18. Best-fit form of RT (Q2), fitted to data from
[68] and [149]. Plot from [61].

A somewhat similar ap-

proach was taken in a phe-

nomenological model based on

super-scaling (SuSA) of longi-

tudinal electron-nucleus scat-

tering data [40]. This is based

around the idea of finding a

scaling variable that is indepen-

dent of both momentum trans-

fer and nucleus target, for both

neutrino and electron scattering. Having done so, the strength of this in electron-

scattering is extracted, compared to theory, and then that same correction is applied to

the neutrino channel. This approach was adapted to take into account meson-exchange

currents, as these occur in the transverse channel.

Note that the transverse enhancement and SuSA models are empirical models that

ascribe an effect observed in electron scattering to multi-nucleon effects, and then attempt

to predict what effect it might have on neutrinos. Conversely, meson-exchange current

models attempt to predict multi-nucleon effects in neutrino scattering from first principles.
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Figure 2.19. The four types of diagram for MEC with one-pion exchange, based
on a figure in [164]

2.5.3. Meson-exchange currents

An alternative way of thinking about the binding between pairs of nucleons is to consider

them as being bound by the exchange of virtual mesons [164], a process known as meson-

exchange currents (MEC). In this case, it would be possible for the exchanged vector boson

to couple to the exchanged meson, or for it to couple to a nucleon only if a virtual meson

is exchanged. The longest-range diagrams will correspond to those in which a single pion

(the lightest meson) is exchanged. They can be divided into four categories, as shown
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in figure 2.19: a) pion-in-flight diagrams, where the boson couples to the exchanged pion

b) the contact or ‘seagull’ diagram, including the pseudovector nucleon-pion coupling, c)

diagrams including an intermediate virtual nucleon which exchanges the pion, and d) a

similar diagram where the intermediate is an isobar resonance, ∆(1232).

By evaluating some set of these diagrams, several cross section models have been

produced. The IFIC model of Nieves et al. [162] and the Lyon model (Marteau/Martini)

[152] are based on a local Fermi gas and both include RPA polarization effects. However,

the Lyon model does not model pion-in-flight, pion pole or contact diagrams. Additionally,

the IFIC model is only valid for momentum transfers below 1.2 GeV/c, while the Lyon

model is not fully relativistic. An alternative calculation using the Giessen Boltzmann-

Uehling-Uhlenbeck framework (GiBUU) [143] includes the local Fermi gas and a spectral-

function nuclear model, but does not include RPA.

2.6. Other neutrino-nucleon interaction processes, and final-state

interactions

Quasi-elastic scattering is not the only possible form of charged-current interaction

between a neutrino and a nucleon. Figure 2.20, reproduced from [110], shows how other

processes come into play as neutrino energy Eν increases. The lines on the plots (which

represent charged-current neutrino and antineutrino scattering cross sections respectively)

represent the predictions of the NUANCE neutrino interaction generator [69] for the

quasi-elastic (QE), resonant (RES) and deep inelastic scattering (DIS) processes, as well

as the total charged-current inclusive cross section.
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(a) Neutrino (b) Antineutrino

Figure 2.20. Processes contributing to the total charged-current neutrino-
nucleon scattering cross section, from [110]. ‘QE’ refers to quasi-elastic scat-
tering, ‘RES’ to resonant pion production, and ‘DIS’ to deep inelastic scattering.

(a) Resonant pion production (b) Deep inelastic scattering

Figure 2.21. Non-quasi-elastic charged-current neutrino scattering processes

Figure 2.21 shows the Feynman diagrams for the resonant and DIS interactions. In

resonant single-pion production (figure 2.21a), a neutrino scatters on a nucleon with the

exchange of a W boson, as in quasi-elastic scattering. However, if the exchanged W

carries sufficient energy, the nucleon can be raised to an excited state, typically one of the

∆1232 resonances, spin 3
2

states comprising u and d quarks. This unstable resonance will

decay to a pion and nucleon. For antineutrinos, there are three possible charged-current
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resonant pion production processes:

ν̄µp→ µ+pπ−

ν̄µp→ µ+nπ0

ν̄µn→ µ+nπ+

(Compare with the quasi-elastic process ν̄µp→ µ+n). In charged-current deep inelastic

scattering, the neutrino exchanges a W boson with one of the constituent quarks within

the nucleon, producing a complex hadronic final state in addition to the µ+. (Naked

quarks cannot exist outside of a hadron, therefore they rapidly recombine to create this

hadronic shower).

These processes are of concern to us because, when they occur on nucleons within a

nucleus, their final states can mimic those of quasi-elastic interactions. This is because

of the phenomenon known as “final-state interactions” or FSI. Hadrons produced by

interactions within the nucleus must traverse the rest of the nucleus in order to reach the

final state. In some cases, the hadronic products of the initial interaction will rescatter

or be absorbed, altering the kinematics and multiplicity of the hadronic final state. Of

particular concern when measuring a quasi-elastic cross section is the case in which a pion

is produced, but is then absorbed, leaving a quasi-elastic-like final state of a single muon

and neutron. (Note: it is actually not possible for a pion to simply be absorbed by the

nucleus, leaving no other products than the original nucleus; conservation of momentum

and energy require that at least two low-energy nucleons must be produced. However,

these nucleons are very difficult to detect, and may not exit the nucleus themselves.)
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Figure 2.22. Comparison of MINERvA’s neutrino-scintillator scattering data
with simulation with and without FSI effects (from [191])

A recent measurement of MINERvA’s quasi-elastic-like neutrino-scintillator scattering

cross section demonstrates the importance of modeling FSI effects when measuring CCQE

cross sections [191]. Figure 2.22 shows the distribution angle between the neutrino-muon

and neutrino-proton plane for fully-reconstructed quasi-elastic-like events (νµn→ µ−p) on

MINERvA’s scintillator tracker. This distribution is then compared to the predictions of

the GENIE event generator [93] with and without final-state interactions enabled. Each

of the simulated distributions is normalized to the area beneath the data distribution; this

serves to remove contamination from uncertainties in the measurement of the neutrino
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flux, allowing the shapes of the distributions to be compared. It can be clearly seen that

the data far more closely the simulation including FSI effects; however the agreement is

not exact, indicating that FSI modeling can be improved.
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CHAPTER 3

The MINERvA Experiment

3.1. Introduction to MINERvA

MINERvA (Main INjector ExpeRiment ν-A) is a dedicated neutrino-nucleus scatter-

ing cross-section experiment. It is situated in the NuMI neutrino beam at Fermi National

Accelerator Laboratory (FNAL, or Fermilab), in Batavia, Illinois. MINERvA detects

neutrino interactions using a tracker consisting of strips of doped polystyrene scintillator,

arranged in three orientations to enable three-dimensional track reconstruction. Upstream

of the central tracker region, planes of scintillator strips are interspersed with passive nu-

clear targets consisting of several different materials, allowing MINERvA to study how

scattering cross section distributions depend on the composition of the target nucleus.

The near detector for the MINOS experiment [94] (Main Injector Neutrino Oscillation

Search), located two meters downstream of MINERvA, serves as a muon spectrometer.

Its magnetized detector provides data on the charge and momentum of muons exiting the

back of MINERvA.

3.2. The NuMI neutrino beam

Fermilab’s NuMI (Neutrinos at the Main Injector) [98] beam serves the oscillation

experiments MINOS [94] and NOvA [169], as well as MINERvA. NuMI delivers a high-

intensity, broad-spectrum neutrino beam, consisting mainly of muon neutrinos or muon

antineutrinos, depending on configuration. For the study described in this thesis, the
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Figure 3.1. The energy spectrum (flux) of antineutrinos used in this anal-
ysis. This flux is given in units of the number of antineutrinos per m2

per GeV per proton on target. This is the PPFX ‘Gen-2 thin’ flux, with
neutrino-electron scattering constraint, including systematic uncertainties.

peak beam energy was around 3 GeV, and used the antineutrino-rich setup. This section

explains the NuMI beam as it relates to this analysis, and is summarized from [98].

In order to generate the neutrino beam, 120 GeV/c protons from Fermilab’s Main

Injector accelerator are fired into a narrow graphite target 1 meter long. Interactions

between the protons and the graphite produce pions and kaons, which are focused by a

pair of parabolic horns. The direction of the electrical current in the horns allows a beam

of neutrinos or antineutrinos to be selected. The mesons produced are allowed to decay

in a decay pipe, producing muons and neutrinos. An absorber removes any remaining

hadrons from the beam; then over 200 meters of rock filter out muons, leaving a beam

of neutrinos. A schematic of the beam components is shown in figure 3.2. The energy

spectrum of the antineutrino beam used in this study is shown in figure 3.1.



117

Figure 3.2. Schematic of the NuMI beam, reprinted from [98] (not to scale)

3.2.1. Proton beam

Fermilab’s proton source produces H− ions, which are accelerated to 400 MeV by the

linear accelerator (Linac). [75] From there, the Booster synchrotron [132] converts them

to protons, accelerates them to 8 GeV, and groups them into 1.6µs bunches with 53MHz

spacing. Six Booster bunches are then injected into the Main Injector synchrotron, which

accelerates them to 120 GeV. A spill of protons, corresponding to either five or six of

these bunches (depending on what other experiments are running) is extracted to the

NuMI beam approximately every 2.2 seconds, with a spill time of 8-10 µs. By the end of

MINERvA’s low energy run in 2012, 3.6×1013 protons on target (POT) were delivered in

each spill. In the full low-energy run from March 2010 to April 2012, MINERvA recorded

data corresponding to a total of 4.0 × 1020 POT in neutrino mode, and 1.7 × 1020 in

antineutrino mode. [37]

The proton beam is aimed at the NuMI target, located in the Target Hall, 41m

underground at Fermilab. The beam is oriented downwards at an angle of 3.343◦ (58.87

milliradians) to the horizontal; this is to align the beam to the MINOS[94] far detector,

734 km away and half a mile underground, in the Soudan mine in Minnesota. As the
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MINERvA detector is horizontal, that means that there is a 3.343◦ discrepancy between

the z axis of the detector and the beam direction.

3.2.2. Meson production

In the Target Hall, the beam is collimated using a device called a baffle. This a narrow

tube, designed to degrade the beam if it is mis-steered, as its 400kW of power could

destroy expensive components. Upon exiting the baffle, the beam hits the NuMI target; a

this point the beam spot has a diameter of 1.1-1.2 mm. The protons interact, producing

pions and kaons.

The NuMI target is 95.38 cm long, and consists of 47 20mm-long graphite fins, with a

cross-sectional area of 15×6.4mm, 0.3mm apart. This small area was chosen to prevent re-

interaction of secondary mesons. These “tertiary interactions” are a source of systematic

uncertainty on our final cross-section measurement, as they affect how well we know our

final antineutrino flux. The position of the target along the beam line is configurable;

when the data analyzed here was collected, it was inserted 50.4cm into the first focussing

horn. This position was chosen to maximize the flux of neutrinos in the 1-3 GeV energy

range, the energy that will maximize oscillation probability between the MINOS near and

far detectors.

3.2.3. Focussing horns

The pions and kaons produced in the target are focused by a pair of aluminum horns

(figure 3.3), each approximately 3m long. The horns are pulsed with a high half-sine

wave with high current (185kA for the data taken here; other currents were used in
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Figure 3.3. Schematic of the focussing horns, reprinted from [98] (not to scale)

“special runs” to generate different beam energy profiles), to create a toroidal magnetic

field of up to 3T between the inner and outer conductors. The direction of the current

selects whether positive or negative pions will be focused; in forward horn current mode

(FHC, +185 kA), we focus π+, leading to a neutrino beam, whereas with reverse horn

current (RHC, -185 kA), we select π− and thus antineutrinos.

The horns act as lenses for the beam; the parabolic shape of the inner conductor has

the effect of generating a magnetic field between the inner and outer conductors that

focuses charged particles of one sign so that they are directed towards the beam direc-

tion. Particles inside the inner conductor experience very little magnetic field (just a

small residual field due to irregularities in the horn shape); those between the conductors
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experience a field proportional to 1/R; however, due to the shape of the horn, the amount

of time they spend in this field is proportional to R2, meaning that the correcting trans-

verse momentum is proportional to R. Thus particles of the preferred sign are focussed

towards the beam direction, with the most correction being received by the particles with

the greatest deviation; meanwhile, particles of the opposite sign are defocussed and re-

moved from the beam. Note that any wrong-sign particles that pass inside the inner

conductor will experience no magnetic field and will thus remain in the beam, leading to

contamination. As these particles, with their large forward momenta, tend to be the most

energetic, wrong-sign contamination is greatest at high energies. It is a particular issue

in the antineutrino beam, as the collision of protons on the NuMI target produces more

π+ than π−.

The efficiency of beam focussing at different energies is a source of systematic uncer-

tainty on our cross section measurement, as it affects the flux distribution of incoming

neutrinos.

3.2.4. Meson decay

Particles exiting the horns pass next through the NuMI decay pipe. The composition

of the beam at this point is mainly pions, along with some kaons and some residual

protons that passed through the target without interacting. The decay pipe is 675 m long

(approximately the length needed to accommodate the decay of a 10 GeV pion), and 2 m

in diameter. Ideally, this interior of this pipe would be a vacuum to prevent re-interaction;

due to the impracticality of maintaining this, it is instead filled with helium gas, which

protects against corrosion.
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Charged pions decay via the interaction π+ → µ+νµ (and π− → µ−ν̄µ) with a branch-

ing ratio of 99.99%. [163] However, charged kaons have several significant decay modes

that produce neutrinos (its other main decay modes are to pions):

K+ →µ+νµ(63.5%)

K+ →π0e+νe(5.1%)

K+ →π0µ+νµ(3.4%)

3.2.5. Absorption

3.2.5.1. Hadron monitor and absorber. Downstream of the decay pipe is the hadron

absorber. This large structure of aluminum steel and concrete removes pions and kaons

that have not decayed, as well as the remaining non-interacting protons, from the beam;

neutrinos and muons pass through virtually unaffected. As well as cleaning the beam,

the absorber has a safety function, reducing radiation levels in groundwater and in areas

accessed by personnel.

A hadron monitor is located 80cm upstream of the absorber to monitor the hadronic

content of the beam, around 80% of which is 120 GeV protons that did not interact. The

monitor consists of a 7x7 section ionization chamber, covering an area of approximately

1 m×1 m. It is used to monitor the status of the NuMI target (these had to be replaced

several times throughout the low energy run, due to radiation damage), and to check the

horn position, primary beam angle, and the position of the beam spot.

3.2.5.2. Muon shield and monitors. Downstream of the absorber, muons are ab-

sorbed by 240 m of dolomite rock, to leave a beam of neutrinos. However, neutrino
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(a) Front view (b) Elevation view

Figure 3.4. Schematic of the MINERvA detector, taken from [37] (not to
scale). The beam enters from the left side of figure 3.4b.

interactions in the rock generate more muons, which sometimes have enough energy to

reach the MINERvA detector. These “rock muons” can be identified with the help of

MINERvA’s veto wall. As muons behave as minimum-ionizing particles in MINERvA,

they are used for energy scale calibration.

Four chambers have been carved in the rock of the muon shield. For the period

included in this analysis, three of these contained muon monitors, positioned at the dis-

tances where 4 GeV, 10 GeV and 20 GeV muons would range out. Each of these monitors,

which are 2.3 m square, consists of a 9×9 array of ionization chambers. They are used

to monitor the shape of the muon beam, which is expected to approximately mimic the

shape of the neutrino beam. In 2014, a fourth muon monitor was approved, at a distance

corresponding to 40 GeV muons [48].
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3.3. The MINERvA detector

The MINERvA detector is described in detail in [37]; this section summarizes its main

features, with particular focus on the components relevant to this analysis. As shown in

figure 3.4, the main body of the detector consists of hexagonal “modules”. Each of these is

composed of an inner detector (ID) and an outer detector (OD). Looking along the beam

line, the ID consists first of active scintillator planes interspersed with passive nuclear

targets, followed by a tracking region of pure scintillator, a downstream electromagnetic

calorimeter (ECAL), then a hadronic calorimeter (HCAL). The outer detector is mainly

composed of a heavy steel frame, interspersed with scintillator bars, which serves both for

calorimetry and as a support structure for the detector. Outside of this are the electronics

and light collection systems. Upstream of the main detector are a steel shield, veto wall,

and liquid helium target. The MINOS near detector, which serves as a muon spectrometer,

is located 2m downstream of the back of the MINERvA detector.

3.3.1. The MINERvA coordinate system

MINERvA uses a Cartesian coordinate system to refer to positions and directions within

the detector. This is defined such that the z axis is horizontal, pointing downstream along

the detector axis (from left to right in figure 3.4b). The y axis is vertical (from bottom to

top in figure 3.4a) and the x axis horizontal pointing to beam left (right to left in figure

3.4a), with the origin of the x− y plane in the center of the inner detector. The z axis is

chosen so that z = 1200cm at the front face of the MINOS near detector.
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Figure 3.5. MINERvA scintillator strips and how they fit together,
reprinted from [37]

As explained in section 3.2.1, the beam points slightly downwards towards the MINOS

far detector in Soudan, MN. Thus the beam access is in the y−z plane, with a downwards

angle of 3.343◦.

3.3.2. Tracking modules in the inner detector

The modules in the active tracking region (the region of the detector in which the inter-

actions studied in this analysis take place) are composed entirely of scintillator planes.

Planes of the same design are also interspersed with the passive nuclear targets in the

upstream region, and with the calorimeter materials in the ECAL and HCAL.

A scintillator plane is made up of 127 “strips” of doped polystyrene scintillator, with

a titanium dioxide coating. The strips have a triangular cross section 17 ± 0.5 mm and

33 ± 0.5 mm wide. The strips are arranged in an alternating orientation as shown in

figure 3.5, in order to ensure that any charged particle passing through the plane will

produce scintillation in at least two strips. The lengths of the individual strips vary from

122 to 245 cm, depending on their positions in the hexagonal detector. The strips are
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Material Percentage (%)

Hydrogen 7.42
Carbon 86.6
Oxygen 3.18
Aluminum 0.26
Silicon 0.27
Chlorine 0.55
Titanium 0.69

Table 3.1. Composition by mass of a tracker plane (information taken from [37])

X U V

Figure 3.6. Cartoon to demonstrate the X, U and V orientations of the
scintillator strips in the x−y plane. (Note that a real MINERvA plane has
127 strips)

glued together with epoxy, and the planes are then covered in Lexan to prevent light

leakage between one plane and the next. While the polystyrene is a hydrocarbon with a

CH structure, the tracker also includes the TiO2 coating, dopant and epoxy, leading to a

composition as shown in table 3.1. More details can be found in [37].

A 2.6±0.2 mm hole drilled down the center of each strip contains a wavelength-shifting

fiber, sealed in optical epoxy. The light collection system, including the function of the

scintillator and wavelength-shifting fibers, will be explained in section 3.4.
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Each plane is installed in one of three orientations, X, U or V. In the X orientation, the

strips are vertical (parallel to the y axis) meaning that scintillation in a given strip gives

information about the x position of a charged particle passing through the plane. Planes

with a U or V orientation have the strips oriented at 60◦ clockwise or counterclockwise,

respectively, to the vertical (see figure 3.6). By including planes in each orientation within

the detector, we are able to reconstruct three-dimensional tracks. (Two orientations would

actually be sufficient to generate a 3-d track; the third provides a check, especially useful

in the case of multiple crossing tracks).

Each module in the active tracker region consists of two planes of scintillator strips.

These alternate between UX and VX configurations, with the X orientation always being

downstream of the U or V. The central tracking region, in which this study is based,

contains a total of 62 modules.

A 2mm-thick lead collar, colored orange in figure 3.4a, covers the outer 15cm of each

scintillator plane, on the downstream side; this is designed to contain electromagnetic

showers in the ID, acting as a side electromagnetic calorimeter.

3.3.3. Calorimeter modules in the inner detector

The furthest-downstream portion of the detector contains electromagnetic and hadronic

calorimeters. The ten electromagnetic calorimeter (ECAL) modules are similar to tracker

modules, except that the 2mm-thick lead collar is replaced by a 2mm-thick sheet of lead

covering the entire module. In order to ensure that every ECAL module has lead absorber

directly upstream, a transition module between the tracker and the ECAL has a 2mm

sheet of lead on its downstream side. The dense lead absorber increases the likelihood of
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Figure 3.7. Positions of the nuclear targets, taken from [37]. The beam
passes from left to right in this diagram.

photon and electron interactions, which can then be tracked by the fine-grained scintillator

modules of the ECAL.

The 20 hadronic calorimeter (HCAL) modules, downstream of the ECAL, contain only

one plane of scintillator, followed by a 2.54cm-thick plane of steel, to encourage hadronic

interactions. The plane orientations alternate in an X-V-X-U pattern.

3.3.4. Nuclear target region

The region upstream of the tracker, as seen in figure 3.4b, contains passive nuclear targets,

which are used to test the A-dependence (that is, the dependence on the nuclear mass)

of neutrino scattering cross sections.
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Target z position (cm) Thickness (cm) Material Mass (kg)

1 452.5 2.6 Steel 322
Lead 263

2 470.2 2.6 Steel 321
Lead 263

3 492.3 2.6 Steel 158
Lead 107

Graphite 160
H2O 528.4 17-24 Water 452

4 564.5 0.8 Lead 225
5 577.8 1.3 Steel 162

Lead 134
Table 3.2. Composition by mass of nuclear targets, starting from the most
downstream (information taken from [37]). The mass is for an area within a
hexagon of apothem 85 cm, with a 2.5 cm cut on each side of the boundary
between materials.

The target region consists of five solid nuclear targets, plus a water target. Between

each of these are tracker modules, exactly analogous to those in the active tracker region.

The nuclear targets are not used for the analysis described in this thesis, which only

measures cross sections in the tracker.

The detector includes five hexagonal planes of solid targets (see figure 3.7). A water

target was later added; this was not installed when the data for this analysis were taken.

The solid targets are composed of various combinations of lead, steel and graphite. The

thicknesses and orientations of the targets vary. The thinner targets allow study of low-

energy interactions, while the thicker ones, placed further upstream, provide a higher

event rate. The nuclear targets are summarized in table 3.2.

A 1m3 cryostat is located directly upstream of the active detector. In the latter part

of the low energy data run, this was filled with liquid helium; however it was empty at

the time the data for this analysis was collected.
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3.3.5. Veto wall

The veto wall is a structure placed upstream of the helium target. It consists of alter-

nating planes of steel and scintillator (5cm steel, 1.9 cm scintillator, 2.5 cm steel, 1.9 cm

scintillator). The purpose of this is to identify “rock muons”: muons generated through

neutrino interactions with the dolomite rock upstream of the target, which enter the front

of the detector and pass all the way through. These rock muons may otherwise be con-

fused with muons produced in charged-current neutrino interactions in the first plane

of the detector. The veto wall also removes any hadrons remaining in the beam. This

structure was a late addition to the detector setup, and was not in place when the data

analyzed in this thesis was collected.

3.3.6. The outer detector

The outer detector (OD) is located on the six sides of the hexagonal modules. Its steel

frame construction serves as both a supporting structure for the detector modules, and as

a hadronic calorimeter. Each MINERvA module consists of an ID and an OD component.

The OD is colored blue in figure 3.4a.

The steel of the outer detector is interleaved with “bars” of scintillator. The steel

enables us to contain hadronic showers generated in the ID; the scintillator enables us to

measure the energy produced by these hadrons.

3.3.7. The MINOS near detector

The Main Injector Neutrino Oscillation Search (MINOS)[94], the original experiment in

the NuMI beamline, has been running since 2005. Its extensive program of analysis has
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Figure 3.8. Schematic of the MINOS detector, taken from [14] (not to
scale). The grey area in figure 3.8b denotes the area covered by the partial
scintillator planes used to instrument the upstream fine-sampling region on
the left-hand side of figure 3.8a. The red hexagon (added by the author)
indicates the position of MINERvA’s inner detector in the beam line, as
documented in [185]. The marked beam center is for MINOS; due to the
beam’s downwards angle, this does not correspond to the beam center in
MINERvA.

included measurements of θ23 [21] through νµ[18] and ν̄µ [16][20] disappearance, and of

θ13[19] through νe appearance, as well as searching for sterile neutrinos [15]. The MINOS

near detector (henceforth referred to as ‘MINOS’) is located 2.1 meters downstream of

MINERvA, and is used as a muon spectrometer. MINOS is of key importance to this

analysis, as in order to identify antineutrino charged-current events, we require that the

muon produced is matched as a µ+ in MINOS.

The 1kTon MINOS near detector [156], shown in figure 3.8, is composed of 2.54 cm-

thick steel planes, interspersed with 1 cm-thick layers of scintillator. The scintillator

planes are formed from 4.1 cm-wide parallel strips, with orientation of the strips alter-

nating between +45◦ and −45◦ to the vertical in successive planes. The first 120 planes

are instrumented for fine sampling; in this region, every fifth steel plane is followed by a
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fully-instrumented scintillator plane, while all other steel planes are followed by a partially-

instrumented scintillator plane. The area of the partially-instrumented plane is shown in

grey in figure 3.8b, while the additional area of the fully-instrumented plane is shown in

white. The coarse-sampling region, further downstream, has only the fully-instrumented

scintillator every five planes; there are no partial scintillator planes in this region.

The MINOS detector is magnetized by a coil that runs in a loop passing through

the detector (see the coil hole in 3.8b). This generates a toroidal field with an average

strength of 1.3 T. This field causes charged particle tracks to curve; the direction of

curvature indicates the particle’s charge, while its radius of curvature can be used to

estimate the particle’s momentum. If a particle ranges out within the calorimeter region,

the range of the particle can also give a momentum estimate. Both of these methods are

used to obtain the muon momenta used in this analysis; thus uncertainties on the MINOS

reconstruction and simulation contribute to our systematic uncertainty on muon energy

scale.

The requirement of a muon charge-matched in MINOS significantly aids our purity,

by removing almost all wrong-sign neutrino events. The price for this is a limitation

on our angular acceptance, as muons must be sufficiently forward-going to intercept the

front of the MINOS detector. They must also have sufficient energy to traverse any

material between the MINERvA and MINOS detectors. While this decreased acceptance

is also dependent on the position within the MINERvA detector where an interaction

took place (muons produced at the downstream end are more likely to reach MINOS),

the approximate result of the MINOS-matching restriction is that we can only reconstruct
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events with a muon energy above 1.5 GeV and an angle of less than 20◦ with respect to

the beam direction.

3.4. Light collection system

This section describes how MINERvA measures the energy of neutrino interaction

products. As a charged particle traverses a scintillator strip, it generates light, which is

transmitted via a wavelength-shifting fiber to one of the 64 channels of a photomultiplier

tube (PMT). The readout from the PMTs is processed by front-end electronics boards,

mounted on top of the PMTs, which are in turn mounted on the outside of the MINERvA

detector. The steps of this process are described below.

3.4.1. Scintillation and light transmission

MINERvA’s 32,000 scintillator strips are extruded from polystyrene doped with 1% (by

weight) 2,5-diphenyloxazole (PPO) and 0.03% (by weight) 1,4- bis(5-phenyloxazol-2-yl)

benzene (POPOP). PPO acts as a primary scintillator, absorbing energy from the particles

and emitting it as ultraviolet light with a wavelength of 357nm, with POPOP serving to

absorb the light produced and re-emit it at a violet wavelength (410nm) [87]. This

combination of materials is also used in the MINOS detectors [156], for which it was

extensively evaluated.

The light produced in the strip is read out by a 1.2 mm diameter, 175 ppm Y-11

doped, S-35, multiclad wavelength-shifting (WLS) optical fiber inserted in a hole passing

along the length of the strip (see figure 3.5). These fibers shift the wavelength of the light

to green. Light is totally internally reflected within the fibers, and thus passes along them
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to the end of the strip, where it is connected by a Fujikura-DDK optical connecter to a

1.2 mm clear optical fiber. In order to minimize light loss, the other end of the WLS fiber

is mirrored.

Each connector services eight WLS-clear fiber pairs. The eight fibers are bundled

together to form a single optical cable, surrounded by a light-tight sheath, as detailed

in [37]. The clear fibers transmit light to the photomultiplier tubes.They vary in length

from 1.08 m to 6 m.

3.4.2. Photomultiplier tubes

Light delivered by the optical fibers is read out by Hamamatsu H8804MOD-2 photomul-

tiplier tubes (PMTs), as described in [37]. The full detector has 507 PMTs, each of which

consists of 64 pixels. Each PMT services eight optical cables, which enter the PMT at a

fiber-end face plate at the end of the cylindrical optical box housing the PMT. The fibers

from the cables are then connected into an 8 × 8 array of pixels on a “fiber cookie”. Fibers

from two adjacent cables are arranged in a checkerboard-style “weave” pattern over two

rows of the pixel array. This is to ensure that fibers from adjacent detector strips do not

correspond to adjacent PMT pixels. Thus, if cross talk occurs - that is, if a signal in

one pixel induces a current in the adjacent pixel, this will not then show up in adjacent

detector strips and be misconstrued as a physical effect. The low-level signals in strips

not adjacent to true activity, resulting from cross talk with the fiber weave in place, can

be identified and disregarded when reconstructing particle activity in the detector.

Scintillation light delivered through the optical fibers impinges on a photocathode,

releasing photoelectrons via the photoelectric effect. The electrons are accelerated along
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a chain of 12 dynodes, releasing further electrons at each dynode. The resulting electrons

are collected at an anode, with a typical gain of around half a million electrons per

photoelectron.

3.5. Data acquisition

The MINERvA data acquisition system is described in detail in [171]. The following

gives a summary of the key elements.

3.5.1. Readout electronics

A front-end board or FEB is attached to the outside of each optical box; this reads out

the pulse height for the 64 channels of the corresponding PMT, as well as providing high

voltage to the PMT via a Cockroft-Walton high-voltage generator. The output of the

PMTs is read out by six “Trip-T” application-specific integrated circuit chips. Three

chips read the high-, medium- and low-gain output respectively, on 32 of the 64 PMT

channels.

Up to ten FEBs are daisy-chained together into a readout chain, connected to a

CROC-E controller (Chain ReadOut Controller - Ethernet). Each CROC-E can support

four chains, and temporarily stores data “frames” received from the FEBs on those chains.

The CROC-E also received timing information from a CRIM (CROC-E interface module),

which services up to four CROC-Es. As we receive our neutrino beam in timed pulses,

our readout window is triggered from the NuMI beam timing signal. The CROC-Es and

CRIMs are divided between two VME crates.
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3.5.2. The readout gate

The NuMI beam delivers neutrinos for a 10µs spill every 2.2 seconds. A readout gate is

opened, allowing us to take data, 500 ns before the spill is expected, and closed 5.5 ms

after it ends. We refer to these as NuMI beam gates. Additionally, we have the ability

to take pedestal gates (in which we measure the background electronics noise with no

beam present) or light injection (LI) gates (in which we flash the PMTs with LED light)

for calibration purposes. When the beam is on, a pedestal or LI gate can be opened in

the gap between two beam gates. A typical MINERvA run, lasting around 12 hours,

will record two subruns consisting of a total 1500 gates of beam data interspersed with

pedestals, eight of 1500 gates of beam/LI, and 30 consisting of 700 beam gates.

A frame of data containing the high-voltage state, hit timing and hit pulse heights is

read out from each FEB on the chain when the gate ends, and stored temporarily on the

CROC-E. The data acquisition system (DAQ) then reads the data from the CROC-Es.

The DAQ checks each FEB’s data to see whether it contains hits above a discriminator

threshold (on the high-gain TriP-T channel, as this is the most sensitive); if so, it reads

the data from that FEB, which can contain up to 7 timed hits plus an eighth untimed

hit corresponding to the total integrated charge in the remaining part of the gate after

the last timed hit. The firing of a discriminator triggers chips corresponding to the low,

medium and high gains to push data 20 clock ticks later (a tick is 9.4 ns). After the data

is pushed, the TriP-T chips must reset. This process takes 20 clock ticks, and during this

period of dead time, the 32 channels corresponding to those chips are unable to read data

from any further activity in the detector.
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This information corresponds to the low-energy data taking, as used for this analysis;

the detector is now taking medium energy data, using a different configuration.

3.5.3. The MINERvA DAQ

MINERvA has a set of three computers running its data acquisition (DAQ) software:

one per crate plus one master computer. These machines run Scientific Linux Fermi; the

DAQ software is written in C++. The DAQ computers are situated underground next to

the MINERvA detector and readout crates. Data from the FEBs is collated in memory

and written to a binary file on disk at the end of each subrun (roughly every 20 minutes,

depending on run series setup). No external network connection is required to ensure that

the data is written to disk. Twice a day, the newly-produced files are copied to Fermilab’s

bluearc servers above ground, where they undergo offline processing and cataloguing.

The nearline monitoring system reads data a frame at a time from the DAQ head

node and processes each event in near-real time from binary format to the raw digits

format, compatible with the ROOT[64] program. This data is then further processed on

the nearline machine to produce monitoring plots and event displays, which are displayed

on the control room system, allowing the MINERvA shifter to monitor the detector.

3.6. Offline data processing and calibration

The raw data files generated by the DAQ contain the timing and pulse height infor-

mation from the detector in a binary format. This data then undergoes several stages

of processing in order to convert it to a more easily readable format for processing, and

to calibrate the data in such a way that the ADC counts read out from the FEBs are
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Figure 3.9. Simplified flow chart of the stages of data processing and calibration

converted to measurements of energy deposited in the detector. A summary of the main

components of this process is shown in figure 3.9. This section outlines the key compo-

nents of the processing and calibration process; a full explanation of the calibration can

be found in [37].

3.6.1. Keep-up processing

The keep-up processing refers to a suite of tasks scheduled to run automatically once or

twice a day, without human intervention. It encompasses the processing of raw data to

raw digits, pedestal table generation, and pedestal suppression. The procedure for each
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of these is explained below: the principles behind pedestal calibration will be described

in section 3.6.1.1.

In each case, a BASH script calls a corresponding python program that manages

the processing and metadata management. The BASH script also reports any warnings

generated via email to experts.The dailyProcessingKeepup script begins by identifying

raw data files in need of processing, by checking the directory on the bluearc server in

which the files from the DAQ have been deposited. To prevent problems due to excessive

files in a single directory, the files are arranged in a directory structure whereby they

are separated by the type of run (beam, for example, or combined beam and pedestal)

and then into a separate directory containing all the files for a single run, contained in

a parent directory structure dividing them into groups of 100 runs. The keep-up script

scans this structure for files that have not yet been declared to the metadata database,

SAM [133]. These will typically be files that have been delivered from the DAQ since

the last keep-up run; however this check allows for recovery in the case of other issues.

Any undeclared file will be declared to SAM. The SAM database stores metadata about

individual files, as well as tracking their locations on disk and/or tape, allowing access

to the files without knowledge of their physical locations. Examples of metadata stored

include the run and subrun information, data tier (raw data, reconstructed Monte Carlo

simulation, calibrated data etc) and validation information such as file size and checksum.

We are also able to add custom information, recording such things as the run configuration

and detector setup at the time of the run.

Once the files have been declared, unprocessed files (both the newly declared, and

any other files which were previously declared, but for which the processing could not be
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completed, for example due to a grid outage) are processed into raw digits. A locking

mechanism is implemented to ensure that duplicate grid jobs are not generated concur-

rently for the same file. The processing involves submitting a grid job for each file, which

runs the BuildRawEventAlg algorithm for each data stream (pedestal, light injection or

beam). This algorithm is written using the GAUDI framework [51]. The data from the

FEBs is parsed into the ROOT [64] format, creating a file for each data stream that can

be used for further processing. The resulting ROOT file, known as a raw digits file, is

written to Fermilab’s dCache [111]. This is a distributed disk storage system fronted by a

single filesystem tree, allowing a file to be stored anywhere in a pool of data server nodes,

while being accessed from a Linux-style directory structure independent of its physical

storage location. This file system location is stored in the SAM database. All files writ-

ten to dCache are backed up to the Enstore tape filing system via the FTS file transfer

system.

3.6.1.1. Pedestal suppression. Similarly scheduled procedures manage pedestal table

creation (from raw digits from the pedestal data stream) and pedestal suppression (where

pedestal tables from the calibration database are used to calibrate raw digits from the

beam data stream). In these cases, the initial raw digits in need of processing are found by

querying SAM, in which a flag is set to indicate which files have already been processed,

and which are in need of reprocessing.

For two subruns at the beginning of each run (in the current standard run configura-

tion), pedestal data is taken, interspersed with the beam data, giving us a total of 1500

gates of pedestal data. This records the background level of electronic noise present in
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the detector when the beam is not firing. It can also include readings from charged parti-

cles passing through the detector, but not produced by the beam; typically, these would

be cosmic ray muons. Outliers such as these are removed using the Pierce’s Criterion

technique [180]. Once the outliers have been removed, each channel is found to have a

steady (less than 2% variation) rate of pedestals (there is around a 7% variation between

channels). The mean pedestal rate for each channel is subtracted from the ADC counts

in the raw digits beam data before performing any further calculations. This is carried

out by an automated pedestal-suppression keep-up job, which turns the beam-type raw

digits into suppressed digits. Pedestals are also subtracted from the light-injection data

used to calculate the gains. In each case, the most recent pedestal data taken before a

given LI or beam subrun is used to provide up-to-date information. We refer to the period

between consecutive sets of pedestal data as an interval of validity (IoV). As pedestals

are typically taken in the first two subruns of each data run, the pedestals from those two

subruns are used for all of the run’s data; the interval of validity corresponds to one run,

or around 12 hours. A more detailed explanation can be found in [37]

Pedestals are calculated by the pedestal table production keep-up processing job,

which runs automatically each day. This outputs pedestal tables in a text file format.

Once a month, these pedestal tables are subjected to manual data quality checks, and

once any problem tables have been removed, the tables are uploaded to the MINERvA

conditions database, which stores the pedestal level for each channel/IoV combination.
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3.6.2. Data calibration

The keep-up processing translates the ADC counts from the FEBs into an accessible

ROOT format, and suppresses the pedestals, leaving only the ADC counts generated

by actual beam events. These counts must then be calibrated in order to convert them

to measurements of energy deposited in a given strip i. This is accomplished using the

following formula (taken from [37]).

(3.1) Ei =
[
C(t) · Si(t) · ηatti · eli/λclear ·Gi(t) ·Qi(ADC)

]
× ADCi

where:

• Ei is the estimated energy deposited in strip i

• C(t) is the overall energy scale of the detector

• Si(t) is a relative energy scale correction for strip i

• ηatti corrects for attenuation in a strip as a function of location

• eli/λclear corrects for the attenuation in an optical fiber of length li

• Gi(t) is the gain of the PMT pixel corresponding to strip i

• Qi(ADC) is the ADC-to-charge conversion factor of the FEB channel correspond-

ing to strip i

Remember that each strip corresponds to a single pixel of a PMT, which corresponds

to a channel on an FEB (see section 3.4). Section 3.6.2.1 will explain how the gain factor

Gi(t) is calculated as a function of time, using light injection data. Section 3.6.2.2 will
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discuss the rock muon calibrations that give us C(t), Si(t) and ηatti , and section 3.6.2.3

will explain how the Qi is calibrated for each FEB before it is installed in the detector.

3.6.2.1. Gain calibration. The gain of a PMT is the number of electrons produced at

the anode per photoelectron (PE) generated at the cathode. The gain response of a given

PMT channel changes gradually as the PMT ages, meaning that in order to correctly

calculate the energy response from a given ADC count, we need to monitor the gains

regularly and ensure that we use a recent measurement. The method used to calculate

gains is explained in detail in [37], and summarized below.

In order to measure the gain, light injection (LI) data is used. In a MINERvA data-

taking run consisting of 40 subruns (typically lasting around 12 hours), runs 3-10 are

combined beam/LI runs, consisting of 750 beam gates interspersed with 750 gates of LI.

Thus, for a given run, 6000 gates of LI are available.

During an LI gate, the light collection system is flashed with 472 nm blue light from

AlGaInP LEDs in MINERvA’s light box (described in [37]). This light is delivered

via clear optical cables to the optical boxes, where it is spread to each pixel using a

polypropylene diffuser. By delivering a small but known amount of light (from 1 to a few

PEs, configurable via a serial connection to the light box), and measuring the resulting

ADC, it is possible to calculate the gain. Over time, we can define a channel’s gain as

(3.2) g =
Q̄

λe

where Q̄ is the mean charge measured at the anode, and λ is the number of photoelec-

trons reaching the first dynode of the chain. Using the method of [176], we can calculate
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a probability distribution Pn(q) of measuring a charge q at the anode (for a PMT with

n dynodes, each amplifying according to a Poisson distribution, with an amplification

proportional to the number of incident PEs). This distribution Pn(q) has a width σ

given by summing in quadrature the widths of the pedestal, the incoming photoelectron

distribution and the uncertainty introduced by the broadening of the dynode chain:

(3.3) σ2 = σ2
P + λg2e2 + λg2e2w2

In this equation σP is the width of the pedestal distribution, and w2 is defined by

(3.4) w2 ≡
n∑
j=1

(
j∏
i=1

1

gi

)

Where the individual dynode gains gi can be multiplied to get the total gain g. Sub-

stituting λ = Q̄/eg from equation 3.2 and rearranging, we get an equation for the gain:

(3.5) g =
σ2 − σ2

P

Q̄(1 + w2)e

Thus we are able to calculate the gain from the anode charge distribution and the

pedestal distribution, as long as we know the parameter w. We find that by using the

properties of photomultiplier tubes as given in the PMT handbook [137], which relates

the gain gi to the voltage Vi at each dynode.

(3.6) gi ∝ V α
i
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where α ≈ 0.75. Thus, using our knowledge of the high voltages to the PMT, we are able

to calculate the average gain.

A gain measurement is made for each MINERvA run, using the combined data from

all LI subruns in that run (6000 gates in the current configuration). The gain of each

channel is stored in the MINERvA conditions database, and is used to calibrate all runs

in its interval of validity - that is, all runs until the next good gain table. Before storing

the data, quality checks are run - these typically look at around a month’s worth of data

and involve checking how gains are distributed over the course of the month - outliers in

the distribution can be indicative of a bad gain table (perhaps produced during some kind

of detector maintenance) that should be discarded. In this case the interval of validity

of the previous gain table would be extended. These quality checks can also be used to

identify PMTs with dead channels, or with gains that apparently vary wildly from run to

run - this could be indicative of problems with either the PMT or the readout electronics,

and provides a timely warning when failing hardware will soon need to be replaced.

Gains in the MINERvA detector are typically of the order of 6 × 105. As shown in

3.10, the average gain increases with time, due to PMT aging. The sharp peaks occur

when the high voltage to the PMTs is reset; the PMTs take around a day to stabilize.

After the period of outage around day 160, the high voltages were recalibrated, causing a

drop in overall gain. Suggested high-voltage values are produced by the gain calibration

procedure, and are chosen to equalize gains across the detector. This is done by choosing

a value for each PMT that will set its lowest-gain 8 pixels to have a fixed average gain of

4.38× 105.

This calibration contributes the value Gi(t) to the calibration equation 3.1.
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Figure 3.10. Variations in the mean gain of all of MINERvA’s PMT pixels,
over time. Reprinted from [37].

3.6.2.2. Calibration with rock muons. The NuMI beam [98] travels through 240 m

of dolomite rock before reaching the MINERvA detector. While the main purpose of

the rock is to filter out muons generated in the interactions that produce the neutrino

beam, a small number of neutrinos from the beam will interact with the nuclei in the

rock, producing further muons. On average, one of these so-called “rock muons” crosses

the MINERvA detector from front to back every two beam pulses.

These “rock muons” , which pass through the detector as minimum-ionizing particles

depositing a known amount of energy per centimeter, can be used to correct for scintillator

plane alignment, variations in light yield between different scintillator strips, and for

overall energy scale. They can also be used to calibrate the timing. As many of these

calibrations require us to measure the response of every single detector strip to enough



146

rock muons to generate a statistically significant sample, these calibrations cannot be

performed on a daily basis like the gain and pedestal corrections; this is not problematic

as none of these are expected to change rapidly over time. Instead, calibrations use data

taken from longer intervals of the order of months. The periods are typically chosen to

correspond to hardware changes in the detector that could affect the calibration constants.

Figure 3.11. Diagram showing how base position is calculated

Plane alignment

The MINERvA inner detector consists of planes of 127 interlocking scintillator strips with

triangular cross section. It is possible for these planes to be misaligned in two ways - first,

they can be translated longitudinally, meaning that the point of each triangle is shifted

by the same distance to one side. Secondly, they can be rotated about the z axis. In order

to check for longitudinal displacement, the amount of energy deposited in each strip is

plotted vs the position relative to the strip’s nominal triangle base (the point at which we

believe the triangle’s point to be). As rock muons tend to travel in the direction of the

beam, we assume a normal incidence; in that case, the energy deposited by the muons,

which is proportional to the amount of material they travel through, should peak at the
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(a) Averaged over all strips (b) Vs. strip position

Figure 3.12. Triangle base position shifts used to calculate plane alignment.
From [37].

triangle’s point and reduce linearly to zero at its edges. By plotting energy deposited vs

the distance from the nominal peak, averaged over all strips in the plane, we can see if

there is an offset. Figure 3.12a shows this for an example plane; when the triangular strip

shape is fitted, we see that this particular plane is aligned approximately 3 mm to the

right of its nominal position.

If, instead of averaging these energy deposition patterns for all strips, we make a 2-

dimensional histogram, plotting the energy vs both the offset from the nominal base and

the longitudinal position of the strip in the plane, we are able to determine whether a

rotation around the z axis causes this shift to vary as we move across the plane. In figure

3.12b, we see that the illustrated plane does indeed have a small rotation, as evidenced by

the fitted line connecting the peak position in different strips; if there were no rotation,

this line would be vertical.



148

Figure 3.13. Peak rock muon energy per centimeter was fitted for each
plane. These peak values for each plane (with uncertainty from fitting) are
plotted, to give a best-fit flat distribution, telling us the relative weighting
for each plane. Plot reprinted from [37].

Plane misalignment is corrected for during the reconstruction phase.

Strip-to-strip calibration

Rock muons can also be used to calibrate the relative light yields of the detector’s in-

dividual strips. Variations in light yield can be caused by tiny differences in the strips’

extrusion and assembly process. They are accounted for by measuring the average energy

deposited in each strip per rock muon, a process which is repeated when dead channels

have been identified and removed from the calculation. The peak energy is then equalized
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for each plane. The resulting constants are then multiplied to give a strip-to-strip weight-

ing for each strip. These are all renormalized to ensure that the average weighting is 1,

guaranteeing that the overall energy scale is unaffected. More details of this calibration

can be found in [37].

This calibration contributes the value Si(t) to the calibration equation 3.1.

Absolute energy scale

The absolute energy scale (in “muon energy units” or MEU) is calibrated using a sample

of rock muons whose tracks in MINERvA have been matched to corresponding MINOS

tracks. The range and curvature of the MINOS tracks is used to provide an energy esti-

mate for the muon in MINOS; this is corrected for projected energy loss in the MINERvA

detector to give an estimate for its energy at the front of MINERvA. As the behavior of

muons in scintillator is well understood (see [94]), this set of muons is used to produce a

GEANT4 [27] simulation modeling how much energy such a set of muons would be ex-

pected to deposit in the detector. The energy of each reconstructed energy cluster (using a

trial MEU factor) from the muon tracks (see section 3.8 for an explanation of how energy

clusters are reconstructed) is then plotted in both data and simulation. The peak region

is fitted to a degree-5 polynomial in each case. (See figure 3.14). By comparing these

fitted distributions, an improved MEU factor can be extracted. This is then multiplied

by the slope of a plot of true vs. reconstructed energy cluster energy from the simulation

to correct for reconstruction efficiency issues.

As this does not require multiple readings in every strip, and because the overall

energy scale has been found to change with time, the interval of validity for the MEU is
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Figure 3.14. Rock muon energy clusters in data and simulation (left) and
the polynomial fit to data (right). Reprinted from [37].

Figure 3.15. MEU factor C(t) for MINERvA’s low-energy run as it varies
with time since MINERvA was switched on. (This plot shows only the
full-detector data; day zero corresponded to the beginning of the earlier
run with only a partial detector installed.) The red dashed lines denote the
beginning and end of the ‘minerva5’ dataset corresponding to the data used
in this analysis. Plot courtesy of J. Kleykamp, from [138].

two days - much shorter than for the other rock-muon calibrations. The main reason for

the change in energy scale in the low energy MINERvA run period was due to scintillator

aging, which decreased light yield. A cooling system has since been installed, improving

this issue.
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This calibration contributes the value C(t) to the calibration equation 3.1. As with

the other calibrations, more details can be found in [37].

Timing calibration

Figure 3.16. Time slewing vs hit PE,
from [37]

There is a time delay between a charged particle

entering a scintillator strip, and the charge being

read out from the channel corresponding to that

strip. This is due to a combination of scintillator

decay time, the length of the optical fiber that

the light must traverse, and data transfer differ-

ences due to an individual FEB’s position in a

chain (and the chain’s position in the CROC-E).

While the length of optical fibers is known and

can be corrected for, the other effects must be

calibrated. Again, we use rock muons. After correcting for muon time of flight and

optical fiber length, we have an estimate of when the muon should be detected in each

strip along its track. The offsets between expected and measured time are measured as

a function of the number of photoelectrons produced (time slewing, due to scintillator

decay, is known to be a function of energy). The resulting time slewing is parametrized

as a function of the number of photoelectrons (figure 3.16. Because timing is dependent

on the hardware, it must be recalibrated whenever an FEB or PMT is changed.

By summing all the timing information for a given FEB, the readout timing delay can

be isolated.
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3.6.2.3. Ex situ calibrations. In addition to the ongoing time-dependent calibrations,

some one-off calibration processes are performed outside of the detector. All of these are

also described in [37], but are summarized briefly below.

Optical cable attenuation

The optical fiber attenuation constant λclear in the calibration equation 3.1 was measured

on a dedicated test stand, where clear optical cables were connected between an LED

source box and a readout box to measure their response to a known amount of light. This

yielded a measurement of λclear = 7.83 m.

Scintillator strip attenuation

The module mapper was an apparatus used to test each module of the MINERvA detector

prior to installation. As well as checking for dead or problematic channels, this device

measured the attenuation constant for each individual scintillator strip within the module.

This test was done using two 137Cs radioactive sources, which were moved in a predefined

scan pattern over the module. The response was measured by a custom data-acquisition

system connected to a series of PMTs. By reconstructing each strips response as a function

of position along the strip, the attenuation factor ηatti in the calibration equation 3.1 was

determined for each strip.

FEB constants

Before installation in the detector, every FEB undergoes a series of tests, including mea-

suring its response to charge. A known amount of charge is injected to four non-adjacent
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FEB channels (to protect against cross talk). The FEB being tested is connected to a

data acquisition system similar to the MINERvA DAQ, and the responses of the low,

medium and high gain channels are recorded and plotted vs the input charge (figure 3.17

shows the response for one FEB). The response on each channel is fitted to three linear

segments, the parameters of which are entered into the conditions database when the

FEB is installed into the detector. When converting an ADC count to charge, the high-

gain channel will be used, unless the ADC count is above the point where its response

saturates, in that case, it will use the medium-gain channel, or if that has saturated, the

low-gain.

Figure 3.17. An FEB’s high-, medium- and low-
gain response to input charges in the test stand,
reprinted from [37]

This calibration contributes the

value Qi to the calibration equation

3.1. As with the other calibrations,

more details can be found in [37].

3.7. Simulation

We have explained how MIN-

ERvA is able to detect and record en-

ergy deposited by charged particles.

In order to turn this data into mea-

surements of physics processes that

can be interpreted by the community, we must go through several further steps. The

data recorded must be used to reconstruct particle tracks, and interpreted to determine
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what types of interaction occurred. To do this, we need to simulate the behavior of dif-

ferent types of particles in our detector, so that we can identify the particles produced

and estimate their energies. As different interaction types can give identical signatures

in MINERvA, we must use our knowledge of the theory of neutrino interactions to pre-

dict what fraction of reconstructed interactions were likely to have been produced by the

process we are studying, and what fraction were produced by background processes; we

do this using a Monte Carlo simulation of the possible interaction types produced by

neutrinos with a NuMI-like energy spectrum interacting with a MINERvA-like detector.

As we cannot measure the energy spectrum of the incoming neutrinos, we must also sim-

ulate the NuMI beam to determine our incoming neutrino flux. These simulation and

reconstruction processes are described below.

3.7.1. NuMI flux simulation

The NuMI neutrino beam is described in section 3.2. This beam has been simulated

to provide an estimate of the flux of neutrinos incident upon the MINERvA detector.

The components that go into producing this flux simulation are summarized below, and

explained in detail in [36].

3.7.1.1. Hadron production. Hadron production cross sections for the NuMI proton

beam on the graphite target are simulated using the GEANT 4 simulation [27] software

with the G4numi package, which uses the FTFP BERT (FRITIOF Precompound - Bertini

cascade) inelastic scattering model. This is constrained with proton-carbon scattering

data from CERN’s NA49 experiment [39] and cross-checked against results from the

lower-energy experiment NA61 [10]. NA49 used a 158GeV proton beam (as opposed
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(a) Hadron production (b) Beam focusing

Figure 3.18. Contributions to flux uncertainty

to the 120GeV NuMI beam) incident on a short graphite target (as opposed to NuMI’s

long rod-shaped target). NA49’s data is scaled to NuMI energies using the FLUKA Monte

Carlo simulation, which assumes Feynman scaling. NA49 data is used where the Feynman

scaling variable xF < 0.5, where

(3.7) xF =
2pL√
s

where s is the Mandelstam variable corresponding to the squared center of mass energy

and pL is the forward momentum. For xF > 0.5, measurements from the Fermilab Single

Arm Spectrometer are used [53]; NA49’s measurement takes precedence where data over-

laps. It is also used to re-weight kaon production cross sections for xF < 0.2, and nucleon

production for xF < 0.95. Because the NA49 data is taken at a different proton beam

energy, it must be rescaled to the NuMI beam energy, which is done using the Feynman

scaling technique detailed in [196], supplemented by the FLUKA Monte Carlo simulation
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[101] [62]. This re-weighting is detailed in [38]. NA49 cross sections agree with the FTFP

simulation to about ±10% for antineutrino production.

For 0.2 < xF < 0.5, the NA49 pion yields are scaled using the K/π ratios measured

on a thin carbon target at the MIPP experiment [142].

The PPFX (Package to Predict the FluX) package, released in 2015, is used to imple-

ment the reweighting scheme described above. For this analysis, we use PPFX version 1.

It includes uncertainties on the hadron production cross sections, as well as on attenuation

of the pions, kaons and protons due to re-interaction in the target, or with the materials

of the horn and decay pipe (not carbon). Additionally, there is uncertainty due to K0

production and for the estimated contribution of isoscalar conjugate of the pC → πX

interaction, nC → πX, which has not been directly measured.

PPFX accounts for uncertainty in several components of hadron production, evaluated

using the many-universe method, where uncertainties are evaluated by looking at how

simulated distributions vary when input parameters are varied within their uncertainties

(explained in more detail chapter 6). Their relative contributions to the total flux estimate

are shown in figure 3.18a. These uncertainties include:

• Meson incident correction: interactions with mesons as the projectile, for

which little data is available

• pC → πX: uncertainty on pion production cross section, based on NA49 [39]

measurements scaled with FLUKA [101][62]

• pC → KX: uncertainty on kaon production cross section, based on NA49 [39]

pion production and scaled with MIPP ratios [142]
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• Target attenuation: accounts for the uncertainty on the total interaction cross

section of nucleons and mesons on carbon

• nC → πX: neutron interaction cross section estimated through isoscalar sym-

metry

• pC → nucleonX: uncertainty on nucleon production, based on NA49 measure-

ments [39]

• Absorption: similar to target attenuation, but for the materials of the horn and

decay pipe

• Nucleon-A: interactions of protons and neutrons for materials and energy ranges

for which no experimental data is available, including proton-carbon interac-

tions for which there is no external data. This is predicted by an nuclear mass-

dependent scaling method.

3.7.1.2. Beam focusing. Two magnetic horns (described in [98]) are used to focus

pions and kaons produced in the proton-carbon target interaction. These horns take a

maximum current of 200kA, and can be run in a forward or reverse current configuration

to favor neutrino or antineutrino production respectively. Whether a given particle is

focused sufficiently such that it will produce a neutrino that hits the MINERvA detector

depends on its initial momentum and angle, as well as on its charge. For this analysis the

horn current was set up so as to prioritize the focusing of pions that give an antineutrino

beam energy peak around 3-3.5 GeV. The horn system is modeled in GEANT4 [27] using

the g4numi package.

Parameters affecting the beam focusing are listed below (taken from [38]), with their

relative contributions shown in figure 3.18b.
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• Horn transverse offset: There is a 0.3 mm uncertainty on horn 1 position and

0.5 mm on horn 2, as detailed in [98]

• Baffle scraping: at the tails of the beam transverse position distribution, the

beam may hit (‘scrape’) the walls of the baffle, as explained in [98]. There is a

0.25% uncertainty [170] on how much of the beam scrapes the baffle.

• POT counting: number of protons on target delivered by the NuMI beam is

known to 2% [170].

• Horn current uncertainty: uncertainty on the current delivered to the horns

(nominally -185 kA for this analysis) has 1% uncertainty [170].

• Horn inner conductor shape: two different implemetations of the inner con-

ductor shape model change give flux differences similar to changing the horn

current by 0.8%. We use 100% of this as an uncertainty on the inner conductor

shape. [38]

• Target longitudinal offset: Target position changed at different times during

the low-energy run, affecting the falling edge of the focusing peak. This accounts

for residual uncertainty on the offset.

• Water layer uncertainty: A 1 ± 0.5 mm layer of water on the inside surface

of the inner conductor cools the horns [38]. We simulate a 1 mm layer and use

the difference between that and 0.5 mm as an uncertainty.

3.7.1.3. Neutrino-electron scattering constraint. This procedure to constrain the

flux is explained in detail in [167]. While nucleons in nuclei are composite particles expe-

riencing complex nuclear effects, the electrons surrounding the nuclei are point particles.

The cross section for neutral current neutrino-electron scattering νµ + e→ νµ + e is well
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understood in electroweak scattering theory.

(3.8)
dσ

dy νµe→νµe
=
G2
F s

π

[(
1

2
− sin2 θW

)2

+ sin4 θW (1− y)2

]

Where y is the inelasticity Ee/Eν , the Mandelstam variable s ≈ 2meEν , GF is the

Fermi constant and θW is the Weinberg angle.

While it is a much rarer process than scattering from the nucleons in the nuclear

material, MINERvA’s low-energy run yielded 135±17 ν−e scattering events from 3.5×1020

protons on target, with a predicted background of 30 events [166]. (The beam consisted

of 93% νµ; the component of ν̄µ and traces of νe and ν̄e were also accounted for.) As the

cross section is well known, discrepancies between data and Monte Carlo predictions will

instead be due to mis-modeling of the flux distribution. Thus, the final-state distribution

of electron energies can be used to constrain both the overall normalization and the shape

of the neutrino flux. This procedure is explained in [166] and is implemented using

Bayes’ theorem, which relates the probability of a given flux model M given an observed

neutrino-electron scattering measurement Nνe−>νe to the probability of the flux model

and the probability of seeing such a measurement given that the model was correct:

(3.9) P (M |Nνe→νe) ∝ P (M)P (Nνe→νe|M)

where P (Nνe→νe|M) ∝ e−χ
2
M/2, χ2

M being the chi-squared statistic between the ob-

served and predicted electron spectra. By weighting each universes’s distributions by

e−χ
2
M , the flux is constrained. While an equivalent measurement is not available for ν̄µe

scattering, the known correlations between the neutrino and antineutrino fluxes are used

to translate this method to the antineutrino distribution. As shown in 3.19, applying the
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(a) Neutrino flux (b) Neutrino flux uncertainty

(c) Antineutrino flux (d) Antineutrino flux uncertainty

Figure 3.19. Flux distributions and uncertainties for both neutrinos and an-
tineutrinos, with and without the ν−e scattering constraint. In each figure
the top plot shows the constrained (red) and unconstrained (black) distri-
butions; the plot below shows the ratio of the constrained to unconstrained
values. Reproduced from [104]

constraint results in approximately a 2% decrease in the antineutrino flux prediction, and

a 10% reduction in flux uncertainty, changing the flux uncertainty from around 9% to 8%.
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3.7.2. Simulation: the GENIE Monte Carlo event generator

MINERvA uses the neutrino interaction event generator GENIE (Generates Events for

Neutrino Interaction Experiments) [93] version 2.8.4 to model physics processes within

the detector. GENIE is a Monte Carlo event generator, capable of simulating interactions

between any neutrino or antineutrino flavor and any nuclear target, over a range of energies

from the MeV to PeV scale. It concentrates specifically on the few-GeV range pertinent to

accelerator-based oscillation experiments. GENIE’s simulated event distributions are used

in this analysis to estimate background levels and efficiencies. From an input neutrino flux

distribution, GENIE uses a system of random number generation to simulate neutrinos

from MINERvA’s energy spectrum, and then uses its physics models corresponding to the

relative probabilities of different interactions, along with a simulation of the MINERvA

detector to generate a simulated interaction chain for each neutrino. A description of the

MINERvA geometry, modeled in GEANT 4, tells GENIE what materials make up the

detector, and where they are positioned.

In order to estimate the magnitude of uncertainty due to the physics models used in

GENIE, weights are then also generated to correspond to the change in probability of the

given event occurring in the case that a certain input parameter of the physics models

(for example, the cross section for an event producing a pion) were increased or decreased.

These weights are used to evaluate the effect of model uncertainties on our distributions,

as explained in chapter 6.

This section will summarize the physics models used by GENIE, with particular em-

phasis on those that are most significant to this analysis.
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Nuclear model. Chapter 2 explains in detail how important nuclear effects are when

scattering from nuclear material, and details several commonly-used nuclear models. GE-

NIE models the nucleus using the Relativistic Fermi Gas model [184] incorporating the

Bodek-Ritchie high-momentum tail [59] that simulates short-range correlations. For car-

bon, the Fermi momentum is taken as kF = 0.221 GeV/c. A mass density is determined

for any nucleus by interpolating between those for which there is data; in this case, a fit

is made to a parametrization of data from review articles. Pauli blocking is also applied.

A factor is also included to model Bjorken xBj-dependent effects such as the EMC effect,

shadowing and anti-shadowing; however these effects are not relevant to quasi-elastic

scattering, where xBj = 1.

Quasi-elastic scattering model. GENIE models quasi-elastic cross sections following

Llewellyn Smith’s prescription [145], as explained in section 2.2.1. This parametrizes the

cross section as a function of the squared four-momentum transfer Q2, where the pre-

factors depend on the nucleon form factors. Vector form factors are modeled by default

using the BBBA05 model [63]. The simulated distributions used in this analysis use

BBBA05; however, the Sachs [91] dipole form factor model is used to evaluate the effect

of uncertainty in the vector form factor model (see chapter 6 for more details). For the

axial vector form factor fA, a dipole form is used, with gA = fA(0) = 1.2670 and axial

mass MA = 0.99 GeV/c2.

Background models. In section 2.6, we introduced the resonant and deep inelastic

scattering (DIS) processes. These processes are typically backgrounds to the quasi-elastic

scattering analysis; however, they can also contribute to the quasi-elastic-like cross section

through the effect of final-state interactions - in particular, if a pion produced by a resonant
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interaction is absorbed, leaving a final-state that mimics a quasi-elastic. Uncertainty in the

modeling of these processes also affects the uncertainty on our cross section distributions,

as we rely on GENIE’s predictions of resonant and DIS interaction rates when subtracting

the fraction of events that we believe to correspond to background processes.

GENIE uses the Rein-Sehgal model [178] to simulate baryon resonance production,

which provides cross sections for 16 different unambiguous resonance states. All reso-

nance parameters are updated to the latest best values. As with quasi-elastic scattering,

resonant scattering includes an axial mass parameter, MRES
A , which GENIE takes to be

1.12 GeV/c2. Resonant events are the dominant background for this analysis.

DIS cross sections are calculated with an effective leading order model with a low-Q2

modification from Bodek and Yang [60]. Hadronic showering is modeled with the AGKY

model [197]. More detail is given in chapter 6 where we discuss how this model affects

our systematic uncertainties. The Bodek-Yang model also describes other low-energy

non-resonant pion production processes. At the energy range of this analysis, and after

our reconstruction cuts, the contamination from DIS is minimal.

Final-state interactions. Section 2.6 discusses the effect of final-state interactions: re-

scattering that sometimes occurs as a hadronic interaction product traverses the nu-

cleus. GENIE simulates the re-scattering of nucleons and pions in the nucleus using the

INTRANUKE-hA intranucleon hadron cascade package [89]. This works by tracking par-

ticles’ progress through the nucleus in steps of 0.05 fm. After each step, a mean free path

λ for the hadron in question is calculated based on the local nucleon density (a func-

tion of position in the nucleus), ρN(r), the hadron’s energy Eh, and the isospin-averaged
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interaction cross section for the propagating hadron σhN :

(3.10) λ(r, Eh) =
1

σhNEhρN(r)

This is used to determine a probability that the simulated particle will ‘interact’; a

roll is then made to determine whether or not an interaction will take place at the step in

question. If so, an interaction type is determined (absorption, charge-exchange scattering

etc) based on their relative cross sections. Once the interaction type is determined, final-

state particles will be generated. Each individual interaction product is only allowed to

re-interact once; in reality, there could be multiple re-interactions. Where possible, cross

sections are determined from data; where no data exists for nucleon or pion scattering at

a given material and energy, the cross section must be extrapolated.

3.7.3. Detector simulation with GEANT4

Once GENIE has generated a neutrino scattering interaction, and has produced a set

of final-state particles, we use the GEANT4 toolkit [27] v9.4.02 to simulate how these

particles propagate through the material of the detector. A detailed model of the detec-

tor’s geometry, including coated scintillator strips, absorbers and all the nuclear targets is

generated. GEANT4 has an extensive range of physics interaction models for many par-

ticles on all types of nuclei, and can thus model particles’ passage through this simulated

detector, predicting the energy that will be deposited in each scintillator strip. In MIN-

ERvA, the Bertini Cascade model [130] is used to simulate hadronic interactions. The

optical and electronics systems are also simulated, which allows this energy deposition to

be converted to a simulated readout that can be analyzed as if it were MINERvA data.
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3.8. Reconstruction

The calibrated data measurements, and our Monte Carlo simulation, each provide

us with the energy depositions generated by (real or simulated) neutrino scattering in-

teractions in the MINERvA detector. The next stage of processing involves running

reconstruction algorithms on this data in order to analyze the patterns in the energy

deposits, and to identify particle tracks. A general reconstruction procedure is run on all

of MINERvA’s data and simulation; this does such things as identifying muon tracks and

matching them to tracks in MINOS, and identifying energy formed into distinct clusters,

as well as counting the dispersed energy. This reconstructed data is saved in the form of

ROOT ntuple files, which are then made available for further analysis-specific processing.

As this study analyzes interactions based on the kinematics of a MINOS-matched

muon produced in a quasi-elastic interaction, muon reconstruction is of key importance.

In order to reconstruct a muon, we must:

(1) Divide a gate’s data into time slices corresponding to individual interactions or

events (eg a rock muon passing through)

(2) Identify energy clusters within a time slice

(3) Group clusters to generate track candidates

(4) Identify which track represents the muon, and identify the interaction vertex

(5) Identify muon tracks in MINOS

(6) Match the MINERvA track to a MINOS track to reconstruct its charge and

energy

These steps will be explained below; more detail can be found in [37].
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3.8.1. Time slicing

Figure 3.20 shows how the hit profile of a 10µs gate is divided up into time slices. The x

axis shows the time (in ns) within the gate; the y axis indicates the number of hits. The

time slicing procedure attempts to identify groups of hits that occur at approximately the

same time, and are thus likely to correspond to a single interaction or other event (such

as a rock muon or cosmic ray passing through the detector). In the figure, 12 candidate

events are isolated.

In order to create time slices, an offline time slicing algorithm scans through the spill

time in 80ns blocks. When it identifies a block in which sufficient hits (summed over the

entire detector) have fired the discriminator to indicate 10 photoelectrons, a new time

slice begins. The following 80ns blocks are added to the time slice until the number of

hits drops below the 10-PE threshold (hits that do not fire the discriminator are included

if they share a Trip-T with hits that do). When the threshold is no longer met, the

algorithm continues to scan until it again finds a time block with 10 PE or more, when it

opens the next time slice. Note that the time slicing sums all hits across the detector that

fire the discriminator - it does not take the spatial distribution of the hits into account.

3.8.2. Clustering

Once a time slice has been identified, the next step is to generate ‘clusters’ of hits that

are adjacent in space. A cluster consists of adjacent strips showing activity. Figure 3.21

shows a plane with three example clusters - the presence of non-activated strips between

the activity separates the three. The energy-weighted central position of each cluster is
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(a) Hits from a single gate divided into time slices

(b) All hits in the gate (X view) (c) Hits in time slice 1 (X view)

Figure 3.20. The energy hits from a readout gate are divided into time
slices, corresponding to individual interactions or other events. Each time
slice is indicated by a different color in the top image; black hits are below
the energy threshold to be included in an event time slice. (This is data
run 2160 subrun 1, gate 594). The event displays below show the energy
deposited in the X view for the entire gate (left) and from the first slice
only (the red time slice in the top image) (right). These images are from
MINERvA’s event display utility, Arachne. [187]
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Figure 3.21. Three example clusters through a plane of scintillator strips.
a) Due to the triangular structure, even particles traveling perpendicular to
the plane will almost always pass through at least two strips. b) Multiple
particles from the same interaction may cause a larger cluster. c) A single
particle may traverse several strips if it moves at a large angle from the
beam direction.

found; its time is set to the time of the highest-energy hit. Clusters are then divided into

5 categories:

(1) Low energy : less than 1 MeV

(2) Trackable: 1-12 MeV total, maximum four hits, one (or more, if adjacent) hit

with more than 0.5MeV

(3) Heavily ionizing : not trackable, but with over 1MeV total, and with 1-3 (adja-

cent) hits with more than 0.5 MeV

(4) Supercluster : more than 1 MeV (but not trackable or heavily ionizing), or with

5 or more hits

(5) Cross talk : composed of hits on PMT pixels next to pixels associated with a

particle interaction, suggesting it has been generated by optical or electronic

cross talk, rather than by an actual particle
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Figure 3.22. An example of a track seed, made from three trackable clus-
ters, in consecutive X planes, and forming a straight line

3.8.3. Track reconstruction

Clusters are formed into tracks, three dimensional objects representing particles’ trajec-

tories through the detector. The first step of the track reconstruction algorithm is to

combine a time slice’s clusters into ‘seeds’:

• Three trackable or heavy ionizing clusters

• ...in consecutive planes of the same (X,U or V) orientation

• ...that fit to a straight line

Note that this limits the ability to reconstruct very sideways-going seeds, which will

not have enough of a forward component to form clusters in three different planes of the

same orientation. This leads to an inability to reconstruct tracks with angles between

70◦ and 110◦ to the beam direction. This restriction does not affect this analysis, as the

only track we require is a MINOS-matched muon; to reach MINOS, muons must be far
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Figure 3.23. In example a) two track seeds combine to make a track can-
didate. In b), despite sharing a cluster, the seeds cannot be combined to a
track candidate.

more forward-going, and we are limited to a maximum angle of around 20◦ to the beam

direction.

Multiple seeds in the same orientation are merged into a track candidate if they contain

a common cluster, have a consistent direction, and don’t include more than one cluster in

the same plane (see figure 3.23). A given seed can only be in one track candidate. Once

candidates are built, they can be merged according to the same criteria as seeds. This
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allows a track candidate to continue to follow its trajectory even if there is are dead pixels

in one of the planes along the track.

Once the track candidates are formed in each plane, they are formed into 3-dimensional

tracks using two algorithms. The first looks for combinations of three tracks, one from

each orientation (X, U and V) that overlap in the z direction and fall along the same three-

dimensional line. (Note that, because of this requirement, the shortest possible track that

can be generated by this method is eleven planes long. The muon tracks characteristic

of the quasi-elastic interactions sought in this analysis must be longer than this, in order

to satisfy the requirements that they both originate in the fiducial volume, and exit the

back of the detector in order to continue to MINOS.)

After this algorithm is run, a second algorithm attempts to form the remaining pairs

of the candidates, with different plane orientations (X/U, X/V, or U/V) into three-

dimensional lines, and to fill in these lines with untracked clusters. If sufficient clusters fit

to the line, it is promoted to a track. This method can find shorter tracks (nine planes),

as well as tracks that are obscured in one orientation.

Once tracks are identified, they are fitted with a Kalman filter routine, and additional

untracked clusters (including superclusters) in planes adjacent to the track. This allows

tracks to intersect or to be extrapolated through areas of high activity (such as a hadron

shower) by sharing the energy of superclusters they encounter.

Once tracks have been created, the longest track of over 25 clusters is designated the

‘anchor track’. The downstream end of this track is designated the primary vertex. For

the interactions studied in this analysis, the anchor track corresponds to the muon, and

its origin is the neutrino interaction vertex. The vertex identification is be improved by
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identifying other tracks emerging from the vertex point, and using those to re-estimate

its exact position. Note that for this analysis, we reject all events in which any tracks

other than the muon are identified.

Once it has been found, the anchor track, is ‘cleaned’ to ensure that it emulates the

minimum-ionizing particle behavior expected of a muon, by removing superclusters and

extra energy near the vertex that are inconsistent with known muon characteristics.

MINERvA also includes a short tracker algorithm; however this is not used to identify

muons, the only tracks that are of interest to us.

3.8.4. Charge identification and energy measurement with MINOS

For this analysis, we require that an interaction produces a muon that can be matched

with a track in MINOS. As explained in section 3.3.7, MINOS is situated downstream

of MINERvA, and is magnetized, enabling us to identify the muon’s charge. This is

vital to filter out negative muons produced by neutrino contamination of the antineu-

trino beam. MINOS’s magnetic field causes a muon’s track to be deflected. When the

data for this analysis were taken, the NuMI horns were set up with reversed current, to

produce an antineutrino-enhanced beam. Accordingly, during this period, MINOS’s coil

was connected in such a direction that positive muons would be deflected towards the

coil, focusing them and providing them with a maximum trajectory through the detector.

Negative muons, conversely, would be deflected away from the coil.

In MINOS, as in MINERvA, time slices are selected by looking at hits clustered in

space and time. The hits in a given time slice are then formed into clusters, which are

grouped into tracks if their positions are correlated. The track’s path is the estimated
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using a Kalman filter; unlike in MINERvA, MINOS tracks curve due to the detector’s

magnetic field. The track fitting algorithm outputs an estimates of the track’s momentum

calculated from its curvature, and an estimate calculated from its range [86].

MINOS tracks are matched to MINERvA muons when activity is measured in the last

five planes of MINERvA, and a track starts in the first four planes of MINOS within 200ns

of the MINERvA track time. The MINERvA track is extrapolated forwards to where it

would intercept the first MINOS plane, and the MINOS track is extrapolated back to the

last plane of MINERvA. If, in each case, the extrapolated track intercepts within 40 cm of

the track in the other detector, the tracks are considered a match. Failing this, tracks may

be matched if the point of closest approach between the two tracks is within 40cm. (This

was of particular value in early measurements, not used in this analysis, for which the

ArgoNEUT [44] detector was positioned between MINOS and MINERvA; muons could

scatter from the material of ArgoNEUT, altering their direction).

As mentioned in 3.3.7, the upstream section of MINOS is instrumented as a calorimeter

(see figure 3.8), while the downstream part serves only as a tracking spectrometer. For

muons that stop in the calorimeter region, their energy can be measured by summing the

total energy deposited, using the method developed by MINOS and explained in [12].

This ‘range’ measurement leads to an uncertainty of 2% on the momentum.

For muons that do not stop in the calorimeter region, the momentum must be mea-

sured by the track’s curvature K in the magnetic field, which is the inverse of its radius

of curvature R, in cm. This is related to the momentum by

(3.11) K ≡ 1

R(cm)
=

0.3B

P
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where B is the magnetic field in kGauss and P is the component of momentum perpen-

dicular to the magnetic field, in MeV. The curvature method is less precise than the range

method, adding an additional 2.5% uncertainty on the momentum for muons with mo-

menta below 1 GeV and 0.6% for those with higher momenta, to be added in quadrature

to the range uncertainty, as stated in [37].

3.8.5. Recoil energy reconstruction

We refer to final-state energy not associated with the lepton (for this analysis, the µ+)

track as “recoil energy”. The recoil system can include non-muon tracks as well as non-

tracked energy deposits. For this analysis, we reject all events with tracks other than the

muon (as our signal is for events resembling the ν̄µp → µ+n final state, where we allow

only the muon, plus neutrons and sub-120MeV kinetic energy protons in the final state;

neutrons are uncharged, and the protons allowed in our signal have too little energy to

generate tracks). We do, however, look at the summed recoil energy, and make a Q2

dependent cut on this in order to identify quasi-elastic-like events. The procedure for

measuring the recoil energy is summarized below, and explained in detail in [37].

The recoil energy - all the energy not associated with the muon track - is summed

calorimetrically across the detector, using the formula

(3.12) Ecal
recoil ≡ α

∑
i

Csd
i Ei

This is a weighted sum of the energy Ei deposited in each sub-detector i. The energy

associated with a given interaction is the total sum of all clusters except those due to

cross talk and those associated with the muon track. The clusters must have a hit time



175

between 20 ns before and 35 ns after the first hit on the muon track (used to identify the

interaction time).

Each sub-detector is weighted by a calorimetric constant Csd
i , in order to take ac-

count of the different materials therein. (For this analysis, we look at the recoil in both

the scintillator tracker and in the electromagnetic calorimeter (ECAL), which consists of

scintillator and lead absorber). The calorimetric constants have the form

(3.13) Csd =
Eabs + Escint

f × Escint

Where Eabs and Escint are the energy lost in a single plane of absorber and scintillator

respectively when a minimum-ionizing particle travels through it perpendicular to the

plane, and f is the active fraction of the scintillator plane. The constants measured for

scintillator, ECAL and HCAL are Cscint = 1.22, CECAL = 2.013 and CHCAL = 10.314.

The overall scale α in equation 3.12 is not relevant to this analysis, as we use the

simulation to assess the recoil energy, and apply the same reconstruction cuts to simulation

and data.

Uncertainties on the recoil energy are complex, as they depend on the detector com-

position, the scintillator’s response to different particles, and the response of the optical

and electronics systems. We estimate the uncertainties by using a test beam to measure

the response of a MINERvA plane to different particles [76]. More information about

recoil uncertainties and how they affect this analysis is included in section 6.7.

3.8.5.1. Detector resolution. We can use the simulation to evaluate our detector’s

resolution. To do this, we subtract the reconstructed value of a quantity in the simulation

(such as muon angle, or vertex position in a given direction) from the true value generated
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Figure 3.24. True - reconstructed x (left) and y (right) vertex positions ,
for antineutrino CCQE candidates

by the Monte Carlo generator, for each interaction. Making a histogram of these plots

and fitting it (the shape fits well to a double Gaussian) allows us to get an estimate of

the resolution from the width of the central Gaussian. Figure 3.24 shows an example of

how the vertex position resolution in the x − y plane is estimated. The plot in x has a

width of 2.120 mm; that in y has a width of 2.387 mm. Thus we can conclude that the

vertex position resolution is less than 3 mm in each direction. (Note that the z resolution

is far less simple, as it is limited by the plane structure of the detector.)

Approximate values of the resolution in various quantities are shown in table 3.3. For

detailed plots and tables of resolutions, see [103].

Quantity Resolution

Vertex x 3 mm
Vertex y 3 mm
Vertex z 10 mm

Muon angle 0.5◦

Muon energy 0.1 to 0.6 GeV (best resolution at low energies and angles)
Table 3.3. Approximate values of the resolution of various quantities, for a
CCQE antineutrino sample
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CHAPTER 4

Charged-current quasi-elastic event selection

4.1. Signal definition

4.1.1. The CCQE interaction

This analysis measures the charged-current quasi-elastic cross-section for anti-neutrinos

incident on the plastic scintillator (CH) tracker region of the MINERvA detector. In the

free-nucleon case, this interaction would be represented by:

ν̄µ + p→ µ+ + n

The interaction is explained in detail in section 2.2. A true charged-current quasi-

elastic (CCQE) antineutrino scattering interaction should produce a characteristic signa-

ture: an outgoing positive muon plus a recoil neutron. Thus, in general, our reconstruction

should attempt to identify final states with this configuration, while rejecting events from

other processes.

Specifically, we need to remove resonant events, wherein a pion (or kaon) is produced

from the decay of a resonant state such as one of the ∆1232 resonances, spin 3
2

states

comprising u and d quarks, as shown in figure 4.1a. We also attempt to reject deep

inelastic scattering, where scattering off one of the component quarks in the nucleon

produces a hadronic shower. (See section 2.6 for an explanation of these processes).
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(a) Resonant pion production (b) Deep inelastic scattering

Figure 4.1. Background processes - non-quasi-elastic charged-current neutrino
scattering

However, we know from electron scattering experiments (and see hints from our own

previous neutrino-scattering results) that correlated pairs of nucleons can exist within the

nucleus (see section 2.5). A quasi-elastic scatter from a correlated pair can cause the

ejection of additional nucleons. The situation is further complicated by the possibility

of final-state interactions, hereafter referred to as FSI, (figure 4.2), in which hadrons

produced in an initial interaction may re-interact as they propagate through the nucleus.

In this way, for example, a neutron produced in a quasi-elastic interaction could produce a

pion by interacting with another nucleon as it exits the nucleus (figure 4.2a). Conversely,

a pion produced in an initial resonant interaction may re-interact and become absorbed

within the nucleus, leading a quasi-elastic-like final state of just the muon and neutron

(figure 4.2b). There is thus no direct one-to-one correlation between final states (which we

can attempt to detect) and the initial interaction type that we are attempting to identify.

(The theory behind final-state interactions is discussed in section 2.6.)

As the definition of what constitutes a quasi-elastic interaction on a heavy nuclear

target is somewhat ambiguous, our goal is to define a signal which:
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(a) Resonant process with a QE-like final state

(b) QE process with pion in the final state

Figure 4.2. Final-state interactions

• Corresponds as well as possible to the CCQE process

• Can be identified in the MINERvA detector with well-understood efficiency (the

fraction of signal events that can be successfully reconstructed) and purity (the

fraction of reconstructed events that correspond to signal, rather than back-

ground)

• Is clearly defined, so that theorists can use models to generate cross section

predictions for the specified signal definition

Bearing this in mind, we consider the pros and cons of alternative definitions, as listed

below.



180

4.1.2. True CCQE signal definition

For MINERvA’s initial CCQE cross-section publications [96][107], we measured the cross

section for interactions that were initially quasi-elastic (that is, no resonant or deep inelas-

tic scatters), regardless of the final-state particles produced. Thus, a quasi-elastic scatter

in which the resulting neutron undergoes FSI, producing a pion, would be considered a

signal event under this definition. A resonant event in which the pion is absorbed in the

nucleus would be a background event, as would resonant events that produce low-energy

pions not removed by the recoil energy cut.

This signal definition has the advantage of including contributions only from one

physical interaction process (CCQE, with no contribution from resonant or DIS events).

Its disadvantage is that it has no defined final-state signature: signal events may or may

not, for example, include pions in the final state. When reconstructing events, the only

information available to us is the composition of this final state. We can determine which

events in our simulation should be considered signal by looking at those in which GENIE

tags as CCQE, and in turn use this to correct our data distribution. However, this is

very dependent on GENIE’s CCQE model - a model which our work in [96] and [107]

has already shown to be incomplete.

4.1.3. Quasi-elastic-like signal definition

“Quasi-elastic-like” events are those whose final-state signature matches that of a quasi-

elastic scatter. This definition, however, is open to interpretation. For a free-nucleon an-

tineutrino quasi-elastic scattering event, the final state would include a positively-charged
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muon and a single neutron. However, when scattering from a heavy nucleus, the possi-

bility of nucleon pair correlations in the initial state leads us to suspect that a neutrino

scattering quasi-elastically from a correlated pair could eject both partners [100]. If the

correlations observed in electron-nucleus scattering are correct, this would lead us to ex-

pect that we will scatter from asingle proton (leading to a neutron in the final state)

around 80% of the time, from an np pair (leading to a possible second final-state neutron)

18% of the time, with a small fraction of 1-2% of scattering events from pp pairs, which

could produce a low-energy proton. Thus there is an argument for including events with

an additional nucleon in the final state under the definition of quasi-elastic-like.

Furthermore, there is a historical basis for a quasi-elastic-like definition of CC0π -

that is, a final state of an appropriately-charged muon, plus nucleons. No other types

of hadrons are allowed; neither are photons. In this case, backgrounds include resonant

events producing a pion that is not caught by the recoil cut; however, resonant events

where the pion is absorbed will now become signal, even if they contain multiple high-

energy nucleons (pion ‘absorption’ produces a minimum of two nucleons in addition to

that already generated by the resonant event; thus events of this type will have three or

more nucleons in the final state). This signal definition made sense for the equivalent

measurement at MiniBooNE[30], whose mineral oil Cherenkov detector, while able to

detect muons and pions, was not sensitive to nucleons. (It was also used for T2K’s

CCQE-like neutrino-scattering measurement [5]. T2K has only recently begun taking

antineutrino data, and has not yet amassed sufficient statistics to analyze antineutrino

scattering cross sections). MINERvA’s scintillator tracker, however, is able to resolve
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proton tracks above a kinetic energy of 110 MeV [191], and to detect the energy deposited

by charged particles.

Our principal signal (that from an antineutrino scattering quasi-elastically from a

non-correlated proton) has a signature of a single neutron (and positive muon). The

electron-scattering data suggests that the majority of events will be of this type, with most

antineutrino-correlated pair scatters also giving a neutrons-only final state. Therefore,

our cuts preferentially select for events with this signature. For this study, we define our

signal for quasi-elastic-like events to be CC0π with no protons above a measurable kinetic

energy threshold. We take this threshold to be 120MeV. Protons with energies below this

threshold will be contained within our exclusion region around the vertex, for which we

do not measure the recoil energy, as explained in section 4.3. The energy threshold’s value

was selected by optimizing the product of purity and efficiency, and will be explained in

section 4.3.

As we are measuring a cross section on scintillator, we require the interaction to have

taken place within the detector’s fiducial volume: the tracking region of the detector that

is formed of scintillator strips (see figure 3.4).

Thus our quasi-elastic-like signal definition is antineutrino scattering events:

• whose interaction vertex is in the fiducial volume

• with a final-state µ+

• with any number of final-state neutrons

• with any number of final-state protons under 120MeV of kinetic energy

• with no other mesons, photons (de-excitation photons, which have energies less

than 10MeV, are allowed), or heavy baryons
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4.2. Data and simulation samples

4.2.1. Run periods

For the anti-neutrino double-differential analysis, we use data taken from the “minerva5”

playlist. This was taken in MINERvA’s low-energy run, with the reverse horn current set-

ting that favors antineutrinos. It corresponds to MINERvA runs 2650 to 2856, recorded

between November 5 2010 and February 24 2011. The data was taken in the low-energy

beam mode with a peak neutrino energy of around 3 GeV, as shown in figure 3.1. Simu-

lated data (hereafter referred to as Monte Carlo) was taken from the ”minerva5” Monte

Carlo playlist, with run numbers from 50200-50249. Data and Monte Carlo were processed

using the v10r8p8 (Eroica) version of the MINERvA analysis framework and reconstructed

using the CCQEAntiNuTool analysis tool. The data sample corresponds to 1.041× 1020

protons on target (POT), the total number of protons delivered by the Main Injector

accelerator to the NuMI beam target over the entire run period. The Monte Carlo simu-

lation corresponds to 9.515×1020 POT; in this case the protons are, of course, simulated,

rather than delivered by the actual accelerator.

Many of the plots in the following sections will compare data and simulation. As the

Monte Carlo simulates more protons than were actually delivered in our data run period,

it is natural that it will also produce correspondingly larger event counts. We thus show

POT-normalized distributions when comparing data and simulation; this means that the

simulation is scaled by the ratio of the data POT to the simulated Monte Carlo POT.
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4.2.2. Data and simulation ntuple formats

Both data recorded by the detector and simulated data generated by the GENIE event

generator [93] is stored in the ROOT [64] file format. These files contain tree-like struc-

tures known as ntuples, which store information about each interaction event. We generate

four types of ntuple files:

• Data ntuples, with reconstructed information about real interactions in the de-

tector

• Reconstructed Monte Carlo ntuples, with reconstructed and generator-level

information about simulated interactions

• Truth ntuples, with generator-level information about all simulated interactions,

including those that we could not reconstruct (for example where we were not able

to reconstruct a MINOS-matched muon, so could not measure the properties that

depend on muon kinematics). The reconstructed Monte Carlo ntuples contain

only the subset of the events in the Truth ntuples that we were able to reconstruct.

• Meta ntuples, which contain information about the contents of the other ntuples,

such as the number of POT

For simulation, it is important to recognize the difference between true generated

quantities, and reconstructed quantities. For example, we may simulate an interaction

that generates a 3.8 GeV muon. However, due to the resolution of the detector and the

complexity of our reconstruction algorithms, when we reconstruct that muon’s track, we

may estimate it to have an energy of 3.7 GeV. When we reconstruct simulated interactions,

we store both the true quantity and the reconstructed quantity in the ntuples. We can

then use this simulation to measure how the distributions we reconstruct differ from
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Ntuple Data Reconstructed
MC

Truth Meta

Reconstructed quantities x x
Shifted reconstructed quantities
for evaluating systematic uncer-
tainties

x

True quantities from GENIE x x
Weights for evaluating system-
atic uncertainties

x x

POT information x

Table 4.1. Information contained in the different ntuples

what actually occurred in the (simulated) detector, and calculate corrections that can be

applied to our data. This procedure is described in detail in chapter 5. The reconstructed

Monte Carlo tuples also include additional information that is used to evaluate the effect

of systematic uncertainties on our distributions (for example, the effect of changing pion

production cross section by 20%, or of underestimating the detector’s energy response to

protons by 4%). The procedure for evaluating these is explained in detail in chapter 6.

The ntuple variables used in the analysis are listed in appendix C.

4.2.3. Weighting simulated events

The Monte Carlo is designed to simulate nature as well as possible. To avoid generating

more simulation as our knowledge of nature improves, we use a reweighting technique to

adjust our simulated distribution in line with the latest external data. When we histogram

event distributions in simulation, we weight its contribution to the histogram by a number

corresponding to the relative probability of such an event occurring given our latest data

constraints, compared to the probability that it would have occurred if nature had been
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exactly as predicted when we generated the original simulation. The weight we apply is

a product of

• Flux weight, constrained by neutrino-electron scattering

• Non-resonant single pion production weight

• Muon tracking efficiency correction

The simulated events were generated using a simulation of the NuMI beam’s energy

spectrum. Since these events were generated, MINERvA studied the neutrino-electron

scattering cross section [167].To obtain a flux weight, we use alternative flux histograms

constrained by the neutrino-electron scattering event rate. As the cross section for this

process is well known, we are able to extract a data-constrained flux measurement from

our event distribution for the process, as explained in section 3.7.1.3. To apply this

constraint, we look up the flux measurement for a simulated event’s true neutrino energy

as measured with the ν− e constraint, and divide by the flux for the true neutrino energy

in the flux histograms used to generated the simulation to get a weight that we can apply

to our simulated event.

A fit to neutrino-deuterium scattering data from bubble chamber experiments [179]

constrains the cross section for non-resonant single pion production events, which is

found to be just 43± 5% of that estimated by GENIE. Thus we apply a weight of 0.43 to

all events that correspond to this interaction type. This affects only 3% of our selected

sample, as we attempt to remove events that produce pions.

A reanalysis of our muon tracking efficiency in MINOS and MINERvA [56] found

that our simulation slightly overestimated our ability to reconstruct muons. This study

was done by looking at the fraction of the tracks exiting the back of MINERvA and
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heading towards MINOS’s fiducial volume that are successfully matched to a MINOS

track. We correct for this by weighting our simulation to account for this inefficiency. For

the ‘minerva5’ dataset used in this analysis, MINERvA’s tracking efficiency is corrected

by a factor of 99.5%, while MINOS tracking efficiency is corrected by a factor of 97.5%

for muons with momenta below 3 GeV and 99.5% for those with higher momenta.

4.3. Event selection

4.3.1. Selecting reconstructable events

Event reconstruction is performed by the CCQEAntiNuTool analysis tool, which is written

in C++ and run using the MINERvA analysis framework, which is built around the the

GAUDI software architecture system [51]. In order to identify a reconstructable event, we

require good MINERvA data with good MINOS tracks; no DAQ readout or timing errors,

and good quality beam data. Additionally, we require a muon “prong” (a MINERvA track

candidate), matched to a MINOS muon track, with an interaction vertex in the MINERvA

detector within an apothem of 900 mm from the x-y center of MINERvA and with a z

coordinate between 4500 mm and 9050 mm (a larger region than that which will be used

for our final analysis cuts).

For Monte Carlo, the MuonIsPlausible() check ensures that the MINOS-matched muon

has at least half its hits from Monte Carlo, rather than from the data overlay used to

protect against pile-up effects.

This basic selection includes far more events than will be selected by our final cuts.

This allows for such possibilities as observing the neutrino background in the anti-neutrino
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sample, adjusting our final cuts in order to evaluate systematic effects, and seeing inter-

actions occurring outside the main tracker volume.

4.3.2. Charged-current antineutrino event selection

To identify charged-current antineutrino scattering events, we impose the following re-

construction cuts on our data:

• MINOS-matched µ+

• Upstream no dead-time cut

• Fiducial volume cut

4.3.2.1. MINOS-matched positive muon. Because the MINOS detector has a mag-

netic field, it can be used to identify the charge of a muon, based on its curvature in

the field. For our anti-neutrino study, we require a reconstructed muon track that can

be matched with the track of a positively-charged muon in MINOS (see section 3.8.4 for

details of the matching process). Note that this limits our acceptance for events in which

the produced muon has a high transverse or low longitudinal momentum as the geometry

of the MINOS and MINERvA detectors requires that the muon must be able to travel

at least 2 meters beyond the back of MINERvA, and that having done so, it must be

incident on the cross sectional area of the MINOS detector (see figure 4.3).

In spite of this limitation, the MINOS matching cut is valuable because it virtually

eliminates contamination of the sample with events generated by incident neutrinos (as

opposed to anti-neutrinos), which would produce a µ− instead of a µ+. Because the

NuMI beam is generated with protons incident on a matter target, it produces more

positively than negatively charged mesons, and these decay to give more neutrinos than
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Figure 4.3. Endpoints of muon tracks generated in MINERvA interactions, plot
courtesy of J. Ratchford

antineutrinos. Even with the horns set up to preferentially focus the mesons that will

produce antineutrinos, there is still a significant contamination of the anti-neutrino beam

by neutrinos. The problem is especially severe at higher energies, where the low transverse

momentum of the mesons produced at the proton target makes it difficult for the horns

to defocus them.

4.3.2.2. Dead-time cut. MINERvA can experience some dead time (see section 3.5.2)

after an event has been recorded. A consequence of this can be that the upstream part of

a track may not be detected. This can be especially problematic in the case of rock muons

- that is, muons produced when neutrinos from the beam interact in the rock upstream

of the MINERvA detector, leading to a muon track that enters MINERvA at the first

module and continues through the detector. If dead time leads to the upstream part of

one of these tracks not being detected, it will appear as if this muon track started part

way through the detector, mimicking the signal of a CCQE event.
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In order to protect against this, a cut is made on events in which the quantity ”tdead”,

as calculated by the DeadTimeTool is less than two. This quantity is calculated by pro-

jecting the muon track upstream by two modules and checking whether the electronics

corresponding to each of the strips intersected by the projection or their immediate neigh-

bors were experiencing dead time. If two or more of these strips were in dead time during

the event, the event is rejected.

4.3.2.3. Fiducial volume cut. As this analysis is measuring a cross section for scatter-

ing on scintillator, we require the reconstructed interaction vertex to be within the fiducial

volume of our detector (the scintillator tracker in figure 3.4). In MINERvA coordinates,

this means that the vertex must be within a hexagon of apothem 850 mm, and with a z

position between 5980 and 8422 mm (corresponding to modules 27 to 80, inclusive).

4.3.3. Quasi-elastic event selection

Once we have identified a selection of good quality, charged-current antineutrino scattering

interactions, we must then make cuts to attempt to identify a CCQE-like signal - that is,

events with only neutrons and low-energy protons in the hadronic final state. In order to

select these events, we look at the recoil energy - the non-muon energy deposited in the

detector - as the recoil distribution differs between CCQE and non-CCQE events. Section

3.8.5 details how the recoil energy is reconstructed and calibrated.

The quasi-elastic selection is explained in the following sections, and can be summa-

rized as:

• No non-muon tracks

• Q2-dependent recoil energy cut
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• 15 GeV maximum longitudinal muon energy

Figure 4.4. Number of non-muon tracks in data (points) and simulation (colors,
POT-normalized to data). In the simulation, beige corresponds to CCQE events
with a QE-like signature. Blue events also have a QE-like signature, but were
generated by resonant or DIS events where the pion was absorbed by FSI. Both
of these are signal. The backgrounds consist of CCQE events with non-QE-like
signature (pink), typically where a pion is generated through FSI, and non-CCQE
events (resonant, with some DIS) without a QE-like signature (red). All cuts
except the track cut are applied.

4.3.3.1. Track cut. As our signal allows only neutrons and low-energy protons (below

the tracking threshold of 450 MeV) in the hadronic final state, we require that no tracks

(other than the muon track) are present. Figure 4.4 shows the effect this has on the

distribution, removing a small number of background events with an extra track, due to

either pions or high-energy protons. The effect is modest once the recoil cut has been

applied.

4.3.3.2. Q2-dependent recoil energy cut. Charged pions and high-energy protons do

not always leave reconstructable tracks; they do, however, deposit clusters of energy in the
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TRACKER ECAL HCAL

Figure 4.5. Recoil energy region of the MINERvA inner detector (shown in blue).

detector. We thus look at the total calorimetrically measured recoil energy in the detector.

The recoil energy is defined as energy from clusters in the tracker or electromagnetic

calorimeter regions of the detector (except for low-activity and cross-talk clusters) that

are not associated with the muon track, and which have a timestamp between 20 ns

before and 35 ns after the timestamp of the muon vertex. When summing the recoil

energy, we exclude a sphere of radius 100 mm around the interaction vertex (defined as

the start point of the muon track). This is because we know that 2p2h effects, which are

not modeled in the current version of our simulation, can produce additional low-energy

nucleons; we want to keep these events in our selected sample, as one of our goals is to

measure the strength and form of these kinds of interactions. We also know that the

efficiency of any cut on energy close to the vertex would have poorly-modeled efficiency,

not only because we do not model 2p2h effects, but because final-state interactions, also

generate low-energy particles that will deposit energy near the vertex; our simulation does
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model these effects, but they are not well understood, and the model may not reproduce

true particle distributions.

Figure 4.6. Recoil energy for data (points) and simulation (colors, POT-
normalized to data). In the simulation, beige corresponds to CCQE events with a
QE-like signature. Blue events also have a QE-like signature, but were generated
by resonant or DIS events where the pion was absorbed by FSI. Both of these
are signal. The backgrounds consist of CCQE events with non-QE-like signature
(pink), typically where a pion is generated through FSI, and non-CCQE events
(resonant, with some DIS) without a QE-like signature (red). All cuts except the
recoil cut are applied.

To identify CCQE events, we consider the distribution of recoil energy versus the

squared four-momentum transfer, Q2. As we do not have the ability to measure Q2

directly in our data, we instead reconstruct it from muon kinematics using the quasi-

elastic hypothesis:

(4.1) Q2
QE = 2EQE

ν (Eµ − pµ cos θµ)−m2
µ
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(4.2) EQE
ν =

m2
n − (mp − Eb)2 −m2

µ + 2(mp − Eb)Eµ
2(mp − Eb − Eµ + pµ cos θµ)

Where Eν and Eµ are the neutrino and muon energy respectively. Muon momentum

is represented by pµ, and θµ represents the angle between the outgoing muon and the

incoming neutrino. The proton and muon masses are mp and mµ respectively and Eb is

the binding energy of 30 MeV. Note that this assumes a CCQE interaction on a non-

correlated nucleon at rest: for interactions with correlated pairs of nucleons, and for QE-

like interactions that were not initially CCQE (such as resonant pion production followed

by pion absorption), this hypothesis will not correctly reconstruct the true neutrino energy

or Q2. In the rest of this thesis, EQE
ν or Q2

QE will refer to the quantities reconstructed

with this hypothesis, while Eν and Q2 will refer to the true (but unmeasurable in our

detector) values.

For the previous 2013 antineutrino CCQE analysis at MINERvA [96], we required

that recoil energy (in GeV) must be less than 0.03 + 0.3Q2
QE (where Q2

QE is in GeV2)

and that the total recoil energy be less than 0.45 GeV. This cut was chosen to maximize

the product of efficiency and purity for the sample. Figure 4.7 shows the distribution of

signal and background events in the 2013 analysis, relative to the cut.

For the 2013 MINERvA CCQE analysis, the signal definition was events that were

defined by GENIE as having a primary interaction type of CCQE. For this analysis, with

the CCQE-like signal definition, we find that the efficiency for CCQE-like events that are

not CCQE is poor due to the recoil cut: just 17% for CC0π events that are not CCQE

(see figure 4.8). (Note: efficiency refers to the fraction of signal events that we were able

to reconstruct, and is a measure of how well our cuts manage to identify signal events.
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(a) Signal events (b) Background events

Figure 4.7. Q2
QE -dependent recoil energy cut used in the previous MIN-

ERvA antineutrino CCQE cross section analysis [96]. Blue events are sig-
nal, red are background, for the previous analysis’ signal definition of true
GENIE CCQE.

Acceptance refers to the fraction of signal events that our detector was able to measure -

for example, the requirement that muons must be forward enough to hit MINOS limits

our angular acceptance. When evaluating these effects, we look at the fraction of signal

events that we can reconstruct, compared to the total number of signal events; this ratio

gives us the product of efficiency times acceptance. Because we only ever evaluate these

two effects together, and cannot separate them, to this product, and will use the terms

‘efficiency’ and ‘acceptance’ interchangeably to refer to said product of efficiency and

acceptance.)

To improve this efficiency, two adjustments were made:

• Requirement of a maximum proton kinetic energy threshold in the signal defini-

tion
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(a) Efficiency for non-CCQE CC0π events vs.
Q2
QE

(b) Recoil distribution of non-CCQE
CC0π events vs. Q2

QE

Figure 4.8. Efficiency for non-CCQE events with a CC0π signature, and
distribution of these events in the recoil energy-Q2

QE phase space

• A “shelf” in the recoil distribution: a minimum recoil energy below which all

events are be accepted

To select the thresholds for the maximum proton kinetic energy and recoil cut shelf,

the purity and efficiency were plotted for various values of these cuts, as shown in figure

4.9.

Figure 4.9a shows the efficiency as the maximum proton kinetic energy and recoil cut

shelf are varied. As the cut shelf rises, loosening the recoil cut, efficiency increases as

we accept more events into our sample. Introducing lower thresholds on allowed leading

proton kinetic energy increases efficiency, as energetic protons that our recoil cut rejects

no longer correspond to signal events.

Figure 4.9b shows the purity (the fraction of selected events that correspond to signal,

rather than background) as the maximum proton kinetic energy and recoil cut shelf are
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(a) Efficiency (b) Purity

(c) Efficiency times purity

Figure 4.9. Efficiency (top left), purity (top right) and the product of ef-
ficiency times purity (bottom) for CC0π events with a maximum leading
proton kinetic energy threshold as given by the x axis value, where the recoil
cut is as shown in figure 4.7, but additionally accepting all events with a re-
constructed recoil energy below the y axis value. The black and white lines
show the optimized values of a 120 MeV maximum proton kinetic energy
in the signal, and a recoil energy shelf of 80 MeV.
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varied. As the cut shelf rises, loosening the recoil cut, background events that were previ-

ously cut out of our sample are rejected, reducing purity. Introducing lower thresholds on

allowed leading proton kinetic energy also decreases purity, as more events with protons

in the final state that passed our recoil cut start to be classified as backgrounds.

Figure 4.9c shows the product of the two distributions. The black and white lines

show the optimal configuration that maximizes this product: a 120 MeV maximum proton

kinetic energy threshold, and a recoil energy shelf of 80 MeV. This gives us a final Q2
QE -

dependent recoil energy cut of

• All events with recoil > 0.45 GeV are rejected

• Events where recoil > 0.03 + 0.3Q2
QE are rejected (recoil in GeV, Q2

QE in GeV2),

except:

• All events with recoil < 0.08 GeV are accepted

4.3.3.3. Longitudinal muon momentum cut. We also require our reconstructed

muon longitudinal momentum to be less than 15 GeV. This controls muon energy scale

uncertainty for very forward muons. In the absence of this cut, some very energetic,

forward-going muons have very poor energy reconstruction in MINOS, with the recon-

structed energy far higher than the true energy. This is a particular problem when a

muon has too much energy to range out in the MINOS tracking calorimeter, and so little

transverse momentum that its track curves very little. See section 3.8.4 for more details

of how muon momentum is reconstructed in MINOS.

4.3.3.4. Sample purity. After making the cuts, we still have some contamination of

background events in our sample. Figure 4.10 shows the purity of the reconstructed sam-

ple: the fraction of reconstructed events in each bin that correspond to signal processes.
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Figure 4.10a shows how purity varies in the pT /p‖ phase space, while 4.10b shows how it

varies with reconstructed Q2
QE and EQE

ν . Purity is lowest at high pT (high Q2
QE ) where

resonant events are prevalent. The 100% purity in the highest Q2
QE /lowest EQE

ν bin is

artificial; it in fact corresponds to a bin in which we have no events at all, due to lack of

acceptance.

The overall purity of this sample is 80.9%.

4.3.4. Choice of plotting variables and bins

This analysis is designed to produce double-differential cross sections. By measuring

the cross section in two dimensions, we will be able to pick out details hidden by the

single-differential cross sections such as those measured in [96] and [107]. This additional

information will enable us to differentiate between models that describe very different

physics, but which produce similar predictions in the Q2 space.

Other experiments have chosen to plot double-differential CCQE cross sections vs. the

kinematics of the final-state muon. These have the advantage of being directly measurable

quantities (as opposed to, for example Q2
QE , which is reconstructed using the quasi-elastic

hypothesis and relying on various assumptions). These measurable quantities are preferred

by theorists when generating models’ predicted distributions.

MiniBooNE. a short-baseline oscillation experiment at Fermilab, looked at how the

cross section for CCQE neutrino and antineutrino scattering varied with muon kinetic

energy, Tµ, and the cosine of the angle between the muon and the incoming neutrino beam,

cos θµ [29][30]. The MiniBooNE detector’s [77] 4π solid angle coverage (it is a spherical

mineral oil Cherenkov detector, with photomultiplier tubes in all directions) allows for
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good coverage of this phase space. In MINERvA, however, the limit of approximately

θµ < 20◦ imposed by the requirement for a MINOS-matched muon, as well as the higher-

energy beam that produces more forward-going interaction products, means that we have

acceptance only in the range 0.94 < cos θ < 1, rendering this an impractical choice for

our detector technology.

T2K, a long-baseline oscillation experiment originating at J-PARC in Japan (and

with a far detector at Kamioka, Super-Kamiokande) has published double-differential

CCQE neutrino scattering measurements from its near detector ND280, situated 2.5◦ off

of the beam axis. ND280’s tracker consists of two fine-grained scintillator-bar targets

interspersed with three gas time-projection chambers [11] in a magnetic field, allowing

for charge identification as well as particle identification and momentum measurements.

As with MiniBooNE, T2K does not have the angular restriction that MINERvA has, and

has measured the cross section vs. the muon momentum, pµ and cosine of the muon

angle cos θµ with respect to the beam [5][7]. They are able to measure cross sections for

0.6 < cos θµ < 1.

(INGRID, T2K’s on-axis near detector [6], has a design that shares some common

elements with MINERvA’s, with an upstream ‘proton module’ constructed of scintillator

strips, and a downstream region consisting of magnetized iron interspersed with scintil-

lator, similar to the MINOS detector composition. To date, however, INGRID has only

measured total cross sections for CCQE, rather than differentials.)

Given our restricted angular acceptance, cos θµ is a poor choice for distinguishing the

patterns in our distribution. Instead, we choose muon transverse (pT ) and longitudinal

momentum (p‖ ), where we have sufficient resolution to be able to reconstruct data in
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several bins in each dimension. We also look at the distribution vs. Q2
QE and EQE

ν , both

reconstructed in the quasi-elastic hypothesis from the muon kinematics (see equations 4.1

and 4.2). Note that, as Q2
QE and EQE

ν are reconstructed from the muon kinematics, they

are both functions of p‖ and pT . Figure 4.11 shows lines of constant Q2
QE and EQE

ν ,

projected onto the p‖ /pT phase space. For most of the region considered by this analysis,

EQE
ν correlates fairly well with p‖ , while Q2

QE is mostly a function of pT . Note that this

simplification breaks down at high pT and low p‖ .

This combination has two advantages: it can be projected onto the Q2
QE axis to

give a single-differential distribution that can be compared with our previous dσ/dQ2

measurement [96]. Also, as one axis is an approximation of the incoming neutrino energy,

it can be used to produce a flux-weighted cross section (we know our flux distribution as

a function of neutrino energy).

Note that care must be taken, as EQE
ν does not correspond exactly to true neutrino

energy except in the case of a pure quasi-elastic scatter from a stationary nucleon, an

assumption which does not apply to all interactions in our signal definition. This gives us

a choice: the first option is that when correcting our measured distribution to the truth,

we can correct to a true EQE
ν reconstructed from the true muon kinematics (so that we

use the formula above, but instead of using our measured muon energy and angle in

the calculation, we use the true energy and angle reported by the simulation. This is less

model-dependent in terms of the acceptance and unfolding correction, but means that the

flux-weighted distribution will be weighted slightly incorrectly, as the flux is a function of

true Eν . Alternatively, when unfolding and acceptance-correcting, we can correct to true

Eν - this may introduce model dependence in the unfolding and acceptance, but allows us
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to do the flux weighting correctly. Both methods were used; the differences in cross section

were very slight. We will present both cross section results; plots for intermediate stages

reflect the unfolding and acceptance correction to true Eν only, to avoid near-duplication

of figures.

Figure 4.11. Relationship between EQEν andQ2
QE in the quasi-elastic hypothesis,

and muon kinematic variables pT and p‖ . Blue dashed lines show constant values

of EQEν , increasing in 1 GeV increments from 1 to 10 GeV. Green dashed lines
show constant values of Q2

QE , increasing in 0.2 GeV2 increments from 0.2 to

2 GeV2.

Ideally, when selecting the binning of our data, we would choose bins such that

• Bins are as narrow as possible to give the maximum detail of the distributions’

shapes

• Statistics in each bin are large enough that we are not overwhelmingly dominated

by statistical uncertainty



204

• Each bin is wider than the resolution in the binning quantity at that point, to

protect against the majority of events being reconstructed in the wrong bin

• Acceptance should be roughly constant across the bin

For a double-differential cross section, some compromise must be made as the bins

form a two-dimensional grid. For example, by choosing narrow p‖ bins in the low pT re-

gion where statistics are high, we maximize our power to distinguish the distribution’s

shape, but this leads to low per-bin statistics, and in some cases, to rapidly changing ac-

ceptance, in high-pT bins where the data is more sparse. A binning was selected where the

resolution was good enough that we were able to unfold a data-sized warped sub-sample

of simulation successfully, reproducing the sample’s true bin distribution to within sta-

tistical uncertainty. The unfolding study is explained in appendix D. This does, however

lead to a small number of bins (6 out of 66, in the high pT /low p‖ region where muon

angles are above the ≈ 20◦ threshold where the MINOS match requirement leads to poor

acceptance) , where the acceptance is so low or so widely-varying that we cannot reliably

report a result.

Because of the MINOS-matching restriction, which limits sideways-going muons, we

look at data with pT < 1.5 GeV. The MINOS match requirement also means that we

will be unable to reconstruct low-energy muons; for this reason, we look at p‖ > 1.5GeV.

The upper limit of p‖ < 15 GeV mimics our reconstruction cut on longitudinal muon

momentum.

The choice of bins can be seen in the event distributions in section 4.3.5.
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4.3.5. Raw event counts

A total of 18,380 interactions pass our reconstruction cuts for data. 162,328 simulated

interactions pass the cuts, of which 128,865 are signal events.

4.3.5.1. Distributions vs. muon transverse and longitudinal momentum. The

plots in this section show the distribution of reconstructed events in data (points) and

simulation (red line), after all cuts, versus each of our variables. Uncertainties on the

data are indicated by error bars; uncertainty on the Monte Carlo is indicated by a pink

shaded bar. The data uncertainty is statistical; the Monte Carlo simulation includes

all sources of systematic uncertainty. This is due to the standard MINERvA method

used to evaluate uncertainties; this method, along with all of the sources of uncertainty

evaluated, is described in chapter 6. The systematic uncertainties on the simulation here

include uncertainties on the models used to generate the simulation, many of which will

be largely irrelevant or have only a small effect on our data, as well as uncertainties on

our resolution in various parameters, which will affect our data through the unfolding and

efficiency correction.

Figure 4.12 shows the double-differential event distribution in muon transverse and

longitudinal momentum, projected onto pT . Figure 4.13 shows this same distribution

projected onto p‖ . For each variable, the top plot shows the number of events in data

and simulation. The simulation, which corresponds to approximately 10 times more

protons on target (POT) than the data, has been scaled to the data POT. Additionally,

the data in each bin is scaled by the bin width to give a number of events per GeV. The

grey hatched area at the bottom of the top plot corresponds to background events in the

simulation that nevertheless passed our reconstruction cuts.
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The bottom plot in each figure shows a ratio of the number of events in data to the

number in simulation, where the simulation, once again, has been POT-normalized to the

data. The pink bar shows the fractional uncertainty on the simulation.

With the full two-dimensional distribution, it is harder to show how data relates to

simulation, and to show uncertainties. Figure 4.14a shows a two-dimensional distribution

of events in data, once again normalized by the bin width in each direction to give a count

per GeV per GeV.

Figure 4.14b shows the pull between data and simulation. This is a function of the

number of events N in data and Monte Carlo simulation, and of the uncertainties σ on

those measurements:

(4.3) pull =
Ndata −NMC√
σ2

data + σ2
MC

Thus a pull of zero (shown in white) corresponds to data-simulation agreement, a pull

of +1 corresponds to a 1σ excess in data and a pull of−1 to a 1σ excess in simulation. Data

excesses are colored red, with a stronger color indicating a greater excess, and simulation

excesses in blue.

Figure 4.15 shows the data and simulation event distributions versus muon pT , in

bins of p‖ . Again, the counts are scaled by the bin width in each dimension, to give a

distribution per GeV per GeV.

4.3.5.2. Distributions vs. Q2
QE and EQE

ν . This section shows the same distributions

as in section 4.3.5.1, but presented vs. Q2
QE and EQE

ν . See section 4.3.5.1 for an explana-

tion of the plots. At this stage, we are only able to reconstruct EQE
ν in the quasi-elastic
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Figure 4.12. Reconstructed event counts in data and simulation vs. muon
pT (normalized to data POT).
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p‖ (normalized to data POT).
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Figure 4.15. Reconstructed event counts vs. muon transverse momentum,
in bins of muon longitudinal momentum (continued in next figure)

hypothesis from the reconstructed muon variables; we can therefore only show these dis-

tributions as a function of reconstructed EQE
ν as this is also our best-effort reconstruction

of true Eν .
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Figure 4.15. Reconstructed event counts vs. muon transverse momentum, in
bins of muon longitudinal momentum (continued)
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(b) Data/simulation ratio

Figure 4.16. Reconstructed event counts in data and simulation vs. Q2
QE

(normalized to data POT).
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Figure 4.17. Reconstructed event counts in data and simulation vs.
EQE
ν (normalized to data POT).
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Figure 4.18. Reconstructed event counts in data, and pull between data
and simulation, vs.Q2

QE and EQE
ν
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Figure 4.19. Reconstructed event counts vs. Q2
QE, in bins of EQE

ν (contin-
ued in next figure)
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Figure 4.19. Reconstructed event counts vs. Q2
QE , in bins of EQEν (continued)
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CHAPTER 5

Double-differential cross section calculation

5.1. How the cross section is calculated

The double-differential cross section versus variables x and y in bin (i, j) is given by:

(5.1)

(
d2σ

dx dy

)
ij

=

∑
αβ Uαβij(Ndata,αβ −N bkgd

data,αβ)

εij(ΦT )(∆xi)(∆yj)

Where

• Ndata,αβ is the number of data events reconstructed in bin (α, β)

• N bkgd
data,αβ is the estimated number of background events reconstructed in bin (α, β)

• Uαβij is the element of a migration matrix connecting reconstructed bin (α, β) to

true bin (i, j)

• εij is the product of reconstruction efficiency and detector acceptance for events

in true bin (i, j)

• Φ is the flux of incoming neutrinos (either integrated or for the given bin - see

later discussion)

• T is the number of scattering targets (here, the number of protons)

• ∆xi is the width of bin i

• ∆yj is the width of bin j
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Figure 5.1. Stages of cross section analysis

Ndata,αβ is the event distribution shown in section 4.3.5. This chapter will explain how

the other components of equation 5.1 are estimated from the simulation, and describe the
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stages of the cross section calculation. These stages are summarized as a flow chart in

figure 5.1.

5.2. Background subtraction

The term N bkgd
data,αβ in equation 5.1 refers to the estimated number of reconstructed data

events that correspond to background processes. By this we mean events that have passed

our reconstruction cuts, but which were not actually generated by quasi-elastic-like events,

according to our signal definition. Recall that our quasi-elastic-like signal, explained in

section 4.1.3, is defined as having a final state containing a µ+, any number of neutrons,

any number of protons with less than 120 MeV kinetic energy, and no pions, other hadrons,

or non-de-excitation photons. Thus, background events in our sample could, for example,

correspond to resonant events with pions that did not make a track, and that generated

recoil distributions that fell within our cuts. Figure 5.2 shows the distribution of signal

and background events vs. muon transverse and longitudinal momentum.

In our simulation, we are able to identify which of our reconstructed events are signal

and which are background, by looking at the truth information provided by the GENIE

Monte Carlo generator [93], which can tell us the energies and multiplicity of particles

in the final state. Thus, a simple way to determine the fraction of events in each recon-

structed data bin that correspond to backgrounds would be to assume that this fraction

was the same as in the simulation for the same bin:

(5.2) N bkgd
data,αβ =

N bkgd
MC,αβ

NMC,αβ

×Ndata,αβ
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(a) Vs. muon pT (b) Vs. muon p‖

Figure 5.2. Distribution of signal and background events vs. muon trans-
verse and longitudinal momentum. Simulation is POT-normalized to data.
In the simulation, beige corresponds to CCQE events with a QE-like sig-
nature. Blue events also have a QE-like signature, but were generated
by resonant or DIS events where the pion was absorbed by FSI. Both of
these are signal. The backgrounds consist of CCQE events with non-QE-
like signature (pink), typically where a pion is generated through FSI, and
non-CCQE events (resonant, with some DIS) without a QE-like signature
(red).

However, in doing this, we are very reliant on the simulation’s ability to correctly

predict the strengths of signal and background processes. MINERvA’s charged pion

production analysis [90] suggests that GENIE over-predicts the rate of resonant pion

production, our most common background. In order to protect against this, we instead use

a data-driven fitting procedure to determine the relative fractions of signal and background

in our data, by determining the fractions of signal and background processes that would

best match our data’s shape.

The result of background subtraction is reconstructed distributions corresponding to

only CCQE-like events, plotted vs the reconstructed variables (without correction for any

mis-reconstruction due to detector effects, or for loss of efficiency due to the detector’s or

the reconstruction algorithm’s limitations).
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5.2.1. Background fitting procedure

As the chief factor in discriminating between signal and background (after eliminating

events with wrong-sign muons or which have tracks, indicating additional charged particles

that would not be produced by a CCQE-like process) is in the recoil energy distribution, it

is in this distribution that we look at our signal and backgrounds, to attempt to determine

the best-fit fractions of signal and background processes to match our data.

To do this, our Monte Carlo is area-normalized to the data in each of five regions of the

pT/p‖ phase space, selected for their similarity in signal and background shapes. For each

of these bins, the non-vertex recoil energy, after all other cuts, is plotted in data, and in

signal and background Monte Carlo. (Events which pass all physics cuts, but whose true

vertex falls outside the fiducial volume, are considered signal for this study). The signal

and background distributions from simulation are scaled so that the total summed area of

the two distributions matches that of the data, allowing us to compare the distributions’

shapes. At this stage of the procedure, we define events who fit our signal definition of

quasi-elastic-like scattering, but which have a true interaction vertex outside the fiducial

volume, as signal; these come from the same physics processes as other quasi-elastic-like

interactions, and will thus generate signal-like recoil distributions. The TFractionFitter

tool, part of the ROOT framework [64], is used to perform a fractional fit of the simulation

to data, in which the relative normalizations of the signal and background parts of the

simulation are allowed to float, until the best match to data is achieved.

Figures 5.3-5.7 show the recoil distributions in data and (area-normalized) simulation

in the five regions of pT/p‖, before and after tuning the signal and background fractions.

In each case, a scale is extracted corresponding to the factor by which the background
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was scaled to give the best fit. The most likely estimate of background fraction within

each bin the data distribution corresponds to the background fraction of the Monte Carlo

in that bin, multiplied by this scale factor. Thus, we get our final result:

(5.3) Dsi = Di ×
(

1− Si
Mbi

Mi

)

where Si is the scale factor corresponding to bin i. Di corresponds to the number of

data events in bin i, while Dsi is the estimated number of signal events in data in bin

i. Mi is the number of Monte Carlo events in bin i and Mbi the number of Monte

Carlo background events in bin i. Note that by multiplying the data distribution by (1-

scaled background), we protect against double-counting statistical uncertainties, as would

occur if we subtracted off the scaled background (adding the background uncertainty in

quadrature to the original data uncertainty).

The scales for our pT vs. p‖ backgrounds, and for our Q2
QE vs. EQE

ν backgrounds, are

shown in figure 5.8 and in table 5.1. In each case, as suggested by [90], the simulation is

found to predict too high a fraction of background events; this is corrected for by scaling

the backgrounds down by a fraction varying from 8 to 19% depending on the bin.

The background-subtracted Monte Carlo distribution is generated by selecting only

reconstructed events that pass the true CCQE-like signal cuts.

5.2.2. Background-subtracted event distributions

The plots in this section show the distribution of events in data (points) and simulation

(red line), after tuned backgrounds have been subtracted. Uncertainties on the data are

indicated by error bars; uncertainty on the Monte Carlo simulation is indicated by a
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Figure 5.3. Background tuning: pT < 0.15 GeV

pink shaded bar. The background subtraction procedure causes uncertainties (previously

all evaluated on the simulation) to move to the data. This is because the fraction of

backgrounds subtracted carried systematic uncertainty; using this uncertain distribution

in the subtraction calculation means that the uncertainty will be propagated to the result

of the subtraction process. The systematic effects on the background-subtracted data

distribution are dominated by background model uncertainties. They are explained in

detail in section 6.8.2.
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Figure 5.4. Background tuning: 0.15 < pT < 0.25 GeV

Figure 5.9 shows the double-differential background-subtracted event distribution in

muon transverse and longitudinal momentum, projected onto pT . Figure 5.10 shows this

same distribution projected onto p‖. For each variable, the top plot shows the number of

events in data and simulation. The simulation, which corresponds to approximately 10

times more protons on target (POT) than the data, has been scaled to the data POT.

Additionally, the data in each bin is scaled by the bin width to give a number of events

per GeV. The bottom plot in each figure shows a ratio of the number of events in data to
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Figure 5.5. Background tuning: 0.25 < pT < 0.4 GeV

the number in simulation, where the simulation, once again, has been POT-normalized

to the data. The pink bar shows the fractional uncertainty on the simulation.

After background subtraction, 15,265 events remain in our data distribution.

5.3. Unfolding

5.3.1. Detector smearing

The limitations of any particle detector mean that no quantity can be reconstructed with

exact precision. For example, in MINERvA, our position resolution is limited by the
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Figure 5.6. Background tuning: pT > 0.4 GeV; p‖ < 4 GeV

size of the scintillator strips; the energy resolution by the detector response to charged

particles, calibration etc. Thus a reconstructed quantity (such as the muon energy) may

be measured somewhat higher or lower than its true value, and may therefore be recon-

structed (“migrate”) into an adjacent, or even more distant, bin. The effect of this is to

“smear” a distribution - sharp peaks in a true distribution will tend to broaden in the

reconstructed distribution, as demonstrated by the cartoon in figure 5.11.
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Figure 5.7. Background tuning: pT > 0.4 GeV; p‖ > 4 GeV

5.4. Unsmearing the data

To correct for this effect, we look at Monte Carlo simulation, in which we have access

to both generated and reconstructed quantities. Figure 5.12 shows the distribution of

signal events in our reconstructed Monte Carlo sample, plotted versus the reconstructed

(left) and true generated (right) values of muon longitudinal and transverse momentum.

Note that, for this stage of the procedure, we do not enforce the requirement of an

interaction vertex in the fiducial volume when we define our ‘signal’ in the reconstructed
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Figure 5.8. Scales by which the background fractions should be multiplied,
in order to achieve the best data/simulation shape fit in the recoil distribu-
tion

Bin pT range (GeV) p‖ range (GeV) Scale χ2/DOF before χ2/DOF after

0 0-0.15 GeV 1.5-15GeV 0.87±0.07 2.97 0.51
1 0.15-0.25 GeV 1.5-15GeV 0.92±0.05 3.12 0.82
2 0.25-0.4 GeV 1.5-15GeV 0.86±0.03 5.02 0.70
3 0.4-1.5 GeV 1.5-4GeV 0.81±0.03 9.39 0.35
4 0.4-1.5 GeV 4-15GeV 0.90±0.04 1.89 0.23

Bin Q2
QE range (GeV) EQE

ν range (GeV) Scale χ2 before χ2 after

0 0-0.05 GeV2 1.5-10GeV 0.89±0.05 3.83 0.92
1 0.05-0.2 GeV2 1.5-10GeV 0.88±0.03 5.23 0.76
2 0.2-0.8 GeV2 1.5-10GeV 0.83±0.03 8.57 0.30
3 0.8-2 GeV2 1.5-10GeV 0.84±0.08 1.66 0.28

Table 5.1. Summary of the scales by which the background fractions should
be multiplied, in order to achieve the best data/simulation shape fit in
the recoil distribution, along with uncertainty in the scale and χ2 between
data and simulation before and after. TFractionFitter introduces additional
degrees of freedom to the fit to account for statistical fluctuation in the
simulation template shapes, causing the χ2/DOF after the fit to appear
lower than one would expect.

distribution. This is to protect agains labeling events as backgrounds when they are in

fact from quasi-elastic-like processes.
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Figure 5.9. Background-subtracted event counts in data and simulation vs.
muon pT (normalized to data POT).
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Figure 5.10. Background-subtracted event counts in data and simulation
vs. muon p‖ (normalized to data POT).
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(a) Example true distribution (b) Effect of smearing on reconstruction

Figure 5.11. Cartoon to demonstrate how a small fractional migration from
each bin leads to a smearing effect on the distribution’s shape

(a) Reconstructed variables (b) True variables

Figure 5.12. Monte Carlo events distribution versus reconstructed and true
muon kinematics

The effect of this smearing can be characterized by generating a “migration matrix”,

Uijαβ a histogram in which the x axis corresponds to the bin in which a given event was

reconstructed, and the y axis to the bin in which that event was generated.

Note that in this case, a bin refers to a unique combination of pT and p‖ , and that,

furthermore, we must include overflow and underflow bins, in which either or both of the
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Figure 5.13. Migration matrix for the p‖ / pT distribution. The x axis
corresponds to reconstructed bins, the y to true.

pT and p‖ values fall outside of our measurement range. Thus the total matrix is of size

N × N bins, where the number of bins on each axis is related to the number of pT and

p‖ bins NT and N‖ respectively by N = (NT + 2)(N‖ + 2).

The migration matrix for our simulated reconstructed signal distribution is shown in

figure 5.13. The x axis indicates bins in the reconstructed variables, where the bins of

p‖ are repeated for each bin of pT , causing an appearance of (NT +2)×(NT +2) subplots.

The y axis indicates bins in the true variables, arranged in the same way. Thus any events

on the diagonal were reconstructed in the the correct bin of both p‖ and pT . An event

reconstructed in the wrong bin of p‖ (but the right pT bin) will be displayed in another

bin in the same subplot; one reconstructed in the wrong pT bin (but the right p‖ bin) will

appear in a different subplot, but in the same relative position within that subplot.

If each row of this matrix is normalized to 1, it represents the probability that an

event generated in a given bin of p‖ and pT will be reconstructed in each of the possible
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p‖ /pT bins. This smearing matrix Uijαβ can be represented by:

(5.4) Uijαβ =
N reconstructed, αβ

generated, ij

N reconstructed
generated, ij

Theoretically, inverting this matrix would give an unsmearing (also known as unfolding

- I will use the two terms interchangeably) matrix, corresponding to the probability that

a Monte Carlo event reconstructed in a given bin of p‖ and pT would have been generated

in a given bin. We can postulate that applying this same unsmearing matrix to a data

distribution would correct for the smearing effect on data:

(5.5) Ndata, α =
∑
i

U−1
iα N

reconstructed, i
data

This is a very large matrix to invert (for our 6 pT and 11 p‖ bins, the migration matrix

has (13 × 8)2 = 10816 entries. Additionally, we must consider that, as the unsmearing

matrix is derived from the Monte Carlo simulation, the unfolding is dependent on the

models used to generated this Monte Carlo, as well as the statistics of the simulated data.

Using the matrix inversion method to unfold inflates the statistical uncertainty on the

unfolded spectrum. Several alternative unfolding methods are available, which attempt

to alleviate these issues. As with all previous MINERvA analyses, we use an iterative

Bayesian method [81], implemented in MINERvA’s MnvUnfold package, which in turn

uses the ROOT package RooUnfold. [25]. This study uses four iterations of Bayesian

unfolding.

The unfolding procedure was validated using an ensemble test, in which ten data-

sized subsamples of the simulation were selected and warped by an adjustment to the

axial mass simulation. These samples were then unfolded using the migration matrix
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generated from the full un-warped simulation. We then looked at the mean of the pull

in each bin between the unfolded and true distributions, for each of the ten samples, for

different numbers of iterations of unfolding. As the number of iterations increases, the

pulls tend to a stable value. However, using too many iterations is inadvisable as each

successive iteration introduces statistical uncertainty. Thus four iterations was selected

as a minimum number of iterations that would stabilize the unfolding. More details of

the unfolding validation study are provided in appendix D.

The result of unfolding is reconstructed distributions corresponding to only CCQE-like

events, plotted vs the true variables, corrected for smearing between bins due to detector

effects, but not for loss of efficiency due to the detector’s or the reconstruction algorithm’s

limitations).

5.4.1. Unfolded event distributions

Event distributions after unfolding, along with data/simulation ratios are shown in figures

5.14 (projected onto pT ), 5.15 (projected onto p‖ ), 5.16 (projected onto Q2
QE ) and 5.17

(projected onto EQE
ν ). The effect of unfolding is to move events between bins (and pos-

sibly in and out of the sample, into the not-shown overflow and underflow). The unfolded

Monte Carlo simulation corresponds to all signal events that pass our reconstruction cuts,

plotted versus the true generated quantities. Uncertainties on the data are indicated by

error bars; uncertainty on the Monte Carlo simulation is indicated by a pink shaded bar.

Systematic uncertainties on the data increase due to uncertainties that can move

events between bins. For example, an uncertainty on the muon energy scale could cause

p‖ and pT to be measured slightly higher or lower than their true values, and events that
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fall near bin boundaries to be reconstructed into the wrong bin. The effects are explained

in detail in section 6.8.3.

At this point comes a choice: whether to unfold to true Eν or to EQE
ν calculated from

the true muon kinematics. Whereas our reconstructed distributions have been the same

for both, we must make a decision which variable to correct to. Both were studied, and

the differences between them were slight; the plot here shows reconstruction to true Eν .

5.5. Efficiency and acceptance correction

5.5.1. Detector acceptance and reconstruction efficiency

Ideally, to make our cross section measurement, we would detect and reconstruct every

signal event during our run period. We are hampered from doing this by the limitations

of both our detector’s acceptance, and the efficiency of our reconstruction algorithms.

The detector acceptance refers to the fraction of signal events that we are able to

see, based upon the limitations of the detector’s technology. The largest effect on our

acceptance in this analysis is from the fact that we require final-state muons to be matched

with a track in the MINOS detector 2 m downstream, limiting the muon’s angle with

respect to the beam line to a maximum of around 20◦. The MINOS-match requirement

also limits our ability to accept muons with low longitudinal momentum, which will stop

before they reach MINOS. The temporary loss of detector channels due to dead time also

affects the detector acceptance.

The reconstruction efficiency refers to the fraction of signal events that we are able to

reconstruct with our cuts. The largest loss of efficiency is due to the Q2
QE -dependent recoil

cut, as some quasi-elastic-like events can have identical recoil signatures to background
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Figure 5.14. Unfolded event counts in data and simulation vs. muon pT
(normalized to data POT).
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(b) Data/simulation ratio

Figure 5.15. Unfolded event counts in data and simulation vs. muon p‖
(normalized to data POT).
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Figure 5.16. Unfolded event counts in data and simulation vs. Q2
QE (nor-

malized to data POT).
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Figure 5.17. Unfolded event counts in data and simulation vs. EQE
ν (nor-

malized to data POT).
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events. While loosening this cut would increase efficiency, it would be at the cost of

purity, as background events moved into the selected sample. The cut has been chosen

to maximize the product of efficiency and purity, while ensuring that the sample includes

some quasi-elastic-like events that do not result from an initial quasi-elastic interaction

(see the discussion in section 4.3.3.2. Reconstruction efficiency can also be lost when we

reconstruct a track due to an allowed sub-120 MeV proton, where we fail to reconstruct

the muon’s track in MINOS (which can happen in the case of MINOS event pile-up,

when two tracks particles pass through MINOS at the same time). It is also possible to

incorrectly reconstruct an interaction’s vertex outside of the fiducial volume, or to mis-

reconstruct a muon’s forward momentum as being above 15 GeV (for very high-energy,

straight-going muons that do not range out in MINOS, the curvature may be so slight

that we are unable to make a good-quality momentum measurement).

As both the reconstruction efficiency and detector acceptance lead to the same effect

— reducing the number of signal events that make it into our reconstructed sample — we

instead calculate the product of acceptance and efficiency, corresponding to the fraction

of signal events that we manage to include in our sample after reconstruction cuts. In the

rest of this section, the words ‘efficiency’ and ‘acceptance’ will be used interchangeably to

refer to this product. It is this product that is referred to by the term εij in equation 5.1.

5.5.2. Correction for efficiency and acceptance

To estimate the efficiency, we again turn to the simulation. In the generated bin i, j, the

efficiency is given by
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(5.6) εij =
Ngenerated and reconstructed
ij

Ngenerated
ij

To determine the denominator of equation 5.6, the number of generated events, Ngenerated
ij ,

we look at our true simulated distribution (stored in a separate Truth ntuple, as explained

in 4.2.2, which includes generator-level information about the all simulated interactions,

including those that were not reconstructable, typically because of no MINOS match).

We apply our full signal cut (including the fiducial volume cut) and histogram the event

count vs. the true variables. When constructing this distribution, we do not include the

tracking efficiency weight (a reconstruction effect) in the event weight.

To get the numerator of equation 5.6, Ngenerated and reconstructed
ij , we select all events in the

reconstructed Monte Carlo ntuple that pass both the signal cuts and the reconstruction

cuts. In this case, when making the signal cut, we do not require the true vertex to

be within the fiducial volume. This selection corresponds to the background-subtracted

Monte Carlo. We histogram the event count vs. the true variables, giving a distribution

that corresponds to the background-subtracted, unfolded Monte Carlo.

Figure 5.18 shows the product of efficiency and acceptance vs. p‖ and pT (figure 5.18a)

and vs. Eν and Q2
QE (figure 5.18b). The extremely poor acceptance at high pT / low

p‖ (which corresponds approximately with the high Q2
QE /lowEQE

ν region; see figure 4.11)

is due to the MINOS match requirement; these are high-angle muons that will bypass

MINOS. Efficiency also decreases at higher energies, where interactions are more inclined

to generate large amounts of recoil energy, which may be vetoed by our Q2
QE -dependent

recoil cut as they mimic the recoil distributions of non-quasi-elastic-like events. Again,
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(a) Vs. p‖ and pT

(b) Vs. Eν and Q2
QE

Figure 5.18. Efficiency × acceptance of our reconstructed sample

the acceptance was calculated versus both Eν and EQE
ν , with only slight differences; Eν

is shown.
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The overall efficiency × acceptance of the sample is 50.6%.

5.5.3. Efficiency-corrected distributions

Event distributions after efficiency correction, along with data/simulation ratios, are

shown in figures 5.19 (projected onto pT ), 5.20 (projected onto p‖ ), 5.21 (projected

onto Q2
QE ) and 5.22 (projected onto Eν). The effect of acceptance correction is to add

back in signal interactions that we predict to have taken place, but to have not been

reconstructed. The efficiency-corrected Monte Carlo simulation corresponds to the true

distribution produced by the event generator. Uncertainties on the data are indicated by

error bars; uncertainty on the Monte Carlo simulation is indicated by a pink shaded band.

Section 6.8.4 explains how efficiency correction affects uncertainties - its most significant

effect is to increase statistical uncertainty in bins with very poor acceptance.

5.6. Cross section calculation from acceptance-corrected distribution

To convert an acceptance-corrected distribution to a cross section, we must divide

by the number of targets (protons, in this case), the total number of protons on target

(POT), and the flux per POT. These are summarized in table 5.2 and explained in this

section.

Quantity Value

Protons on target (data) 1.041× 1020

Protons on target (simulation) 9.515× 1020

Number of targets 1.76474× 1030 protons
Integrated flux 2.36008× 10−8ν̄µ/cm2 / POT

Table 5.2. Quantities we divide by to convert our acceptance-corrected distri-
butions to flux-integrated cross sections
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(a) Event counts

(b) Data/simulation ratio

Figure 5.19. Acceptance- and efficiency-corrected event counts in data and
simulation vs. muon pT (normalized to data POT).
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(a) Event counts

(b) Data/simulation ratio

Figure 5.20. Acceptance- and efficiency-corrected event counts in data and
simulation vs. muon p‖ (normalized to data POT).
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(a) Event counts

(b) Data/simulation ratio

Figure 5.21. Acceptance- and efficiency-corrected event counts in data and
simulation vs. Q2

QE (normalized to data POT).
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(a) Event counts

(b) Data/simulation ratio

Figure 5.22. Acceptance- and efficiency-corrected event counts in data and
simulation vs. EQE

ν (normalized to data POT).
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5.6.1. The antineutrino flux

The “flux” Φ refers to the energy spectrum of the antineutrino beam. The NuMI beam’s

“PPFX” flux prediction is explained in detail in [36], and is summarized in section 3.7.1

of this document. In order to convert a measured (background-subtracted, unfolded and

acceptance-corrected) event count, we must divide by the number of incoming neutrinos

per unit area that generated the distribution. The flux prediction from PPFX is given

per proton on target; we therefore multiply this by the total number of protons on target

(1.041 × 1020 ) for our sample. Figure 5.23 shows this flux distribution as a function of

incoming neutrino energy.

(Note that this refers to true neutrino energy Eν , which differs from the neutrino

energy estimate from muon kinematics in the quasi-elastic hypothesis, EQE
ν . Thus, this

flux weighting is strictly correct for the distributions vs Eν , and slightly incorrect for that

vs EQE
ν . The differences will be shown below, and are very subtle.)

There are two alternative ways in which we can divide by the flux to obtain a cross

section. Previous MINERvA quasi-elastic measurements [96][107][191] reported a flux-

integrated cross section, meaning that they integrated the total flux distribution in some

energy range and divided by the resulting number, which corresponded to the number

of neutrinos per POT per unit area in that entire range. This was a practical solution

as these analyses measure the single-differential cross section dσ/dQ2
QE, which is not

directly correlated with neutrino energy. (They are not, however, entirely unrelated; as

these distributions show, the neutrino energy places restrictions on the available four-

momentum that can be transferred, and when publishing a flux-integrated cross section
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Figure 5.23. The energy spectrum (flux) of antineutrinos used in this anal-
ysis. This flux is given in units of the number of antineutrinos per m2 per
GeV per proton on target.

such as these, it is necessary to also publish the flux in order to understand how exactly

the cross section was generated.)

For distributions in the pT /p‖ phase space, we report flux-integrated cross sections.

We do the same for the single-differential cross section dσ/dQ2
QE. We integrate over

the entire available flux range of 0-100 GeV, to get a total integrated flux of 2.36008 ×

10−8 cm−2 per proton on target.

For the EQE
ν / Q2

QE distribution, flux integration makes little sense. While EQE
ν is

not exactly equal to true Eν, they are very highly correlated (see figure 5.24). In this

case, the more relevant distribution is a flux-weighted cross section, where the number of

events in each bin is scaled down by the flux in that bin (in which case we can produce a

total cross section vs. neutrino energy σ(Eν) or σ(EQE
ν ) rather than a differential cross

section dσ/dEν or dσ/dEQE
ν ).
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simulation ntuple

The flux correction introduces a significant increase in systematic uncertainty due to

the flux, while leaving all other fractional uncertainties constant, as explained in section

6.8.5.

The fluxes used for this normalization are central-value weighted fluxes from the PPFX

(generation 2, thin target) flux, generated with the MINERvA ‘compute flux’ script,

without the neutrino-electron scattering constraint.

5.6.2. Number of targets

The final stage is to the cross section is to divide by the number of targets, T , that are

available for a neutrino to interact with. The target for an antineutrino quasi-elastic

scatter (ν̄µp → µ+n) is a proton. The scintillator tracker (on which this cross section is

measured) is not made of a single element, but of a polymer, polystyrene, together with
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doping agents, epoxy and light-tight coating (its composition is listed in 3.1). However,

the vast majority consists of polystyrene molecules, in which there are an equal number

of carbon and hydrogen atoms. The fiducial volume contains 1.76474 × 1030 protons,

of which 1.44182 × 1030 are in carbon nuclei, and 2.44088 × 1029 are in hydrogen. The

uncertainty in the mass model (1.4%) is taken into account by the systematic uncertainty

analysis.

Note that for quasi-elastic-like scattering, it is possible that a scattering process could

originate on a neutron (e.g. ν̄µn → µ+∆−) where the resonance decays ∆− → nπ− and

the pion is absorbed). We may also scatter from a correlated nucleon pair. Thus, while

we use the number (1.76474× 1030) of protons as our target number, these factors must

be included in our simulation.

5.7. Cross section distributions

5.7.1. Quasi-elastic-like differential cross sections vs. pT and p‖

Differential cross sections vs. pT and p‖ and data/simulation ratios are shown in figures

5.25 (dσ/dpT ) and 5.26 (dσ/dp‖). Uncertainties on the data are indicated by error bars.

At this stage, we do not report an uncertainty on the simulation; this uncertainty is

precisely what we hope to reduce with this analysis.

5.7.2. Quasi-elastic-like cross sections vs. Q2
QE and Eν

This section shows cross section distributions presented vs. Q2
QE and Eν . Uncertainties

on the data are indicated by error bars. No uncertainty is reported on simulation.



252

 (GeV)
T

Muon p

0 0.2 0.4 0.6 0.8 1 1.2 1.4

/G
e

V
/p

ro
to

n
)

2
 (

c
m

µ
T

 /
 d

p
σ

d

0

2

4

6

8

10

12

14

­39
10×

Data
Simulation

POT­Normalized

Data POT: 1.04E+20

MC POT: 9.52E+20

Summary: Cross section

A PreliminaryνMINER

(a) Cross section
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(b) Data/simulation ratio

Figure 5.25. Differential quasi-elastic-like cross section in data and simula-
tion vs. muon pT (normalized to data POT).
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(b) Data/simulation ratio

Figure 5.26. Differential quasi-elastic-like cross section in data and simula-
tion vs. muon p‖ (normalized to data POT).
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(a) 1.5 - 2 GeV
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(b) 2 - 2.5 GeV
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(c) 2.5 - 3 GeV
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(d) 3 - 3.5 GeV

 (GeV)
T

Muon p

0 0.2 0.4 0.6 0.8 1 1.2 1.4

/G
e

V
/G

e
V

/p
ro

to
n

)
2

 (
c

m
µ

T
 d

p
µ

 /
 d

p
σ

2
d

0

0.5

1

1.5

2

2.5

3

­39
10×

Data
Simulation

POT­Normalized

Data POT: 1.04E+20

MC POT: 9.52E+20

 3.5 to 4 GeV: Cross sectionMuon p

A PreliminaryνMINER

(e) 3.5 - 4 GeV
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Figure 5.27. Double-differential quasi-elastic-like cross section vs. muon
transverse momentum, in bins of muon longitudinal momentum (continued
in next figure)
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Figure 5.27. Double-differential quasi-elastic-like cross section vs. muon trans-
verse momentum, in bins of muon longitudinal momentum (continued)

The single-differential cross section, dσ/dQ2
QE is shown in figure 5.28. This is a flux-

integrated cross section, similar to those in section 5.7.1, and is generated by projecting

a double-differential flux-integrated d2σ/dQ2
QEdEν distribution onto the Q2

QE axis.
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Figure 5.28. Flux integrated quasi-elastic-like differential cross section
dσ/dQ2

QE in data and simulation (normalized to data POT).
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For the cross section vs the neutrino energy, we present a flux-weighted total cross

section σ(Eν), as explained in section 5.6.1, rather than an integrated differential cross

section.

For comparison, we also present the cross section where we unfold and efficiency-

correct to EQE
ν rather than to Eν ; a more valid procedure for the unfolding correction,

given that we reconstructed EQE
ν from muon kinematics, but a less valid procedure for the

flux-weighting. As can be seen, there is little difference between the σ(Eν) and σ(EQE
ν ).

The double differential cross sections are also flux-weighted, displaying dσ(Eν)/dQ
2
QE.

The following chapter will discuss how these cross section measurements compare with

those from other experiments.

5.7.3. True CCQE cross sections

The main focus of the analysis was the calculation of a quasi-elastic-like double-differential

cross sections shown above, which correspond to our measurement for the signal definition

described in section 4.1.3. As an extension to the analysis, however, we also calculated

a true CCQE cross section, using the signal definition described in section 4.1.2. Recall

that, for the quasi-elastic-like cross section, our signal corresponded to interactions with

a quasi-elastic-like final state, even if that final state was generated by a resonant or DIS

interaction followed by FSI. For the true CCQE definition, our signal corresponds only

to events where the initial interaction was quasi-elastic, even if FSI created final-state

particles such as pions that mimicked a non-quasi-elastic interaction. The signal also

includes 2p2h events were a CCQE interaction takes place on a correlated pair. These
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Figure 5.29. Energy-dependent total quasi-elastic-like cross section σ(Eν)
in data and simulation(normalized to data POT).
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Figure 5.30. Energy-dependent total quasi-elastic-like cross section σ(EQE
ν )

in data and simulation(normalized to data POT).
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Figure 5.31. Double differential quasi-elastic-like cross section
dσ(Eν)/dQ

2
QE, in bins of Eν (continued in next figure)

are not included in the current GENIE simulation; a systematic uncertainty is included

to take account of the effect this has on backgrounds and acceptance.
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Figure 5.31. Double differential quasi-elastic-like cross section
dσ(Eν)/dQ

2
QE, in bins of Eν (continued)

The true CCQE single-differential cross section projections are shown in figure5.32,

while double differential cross sections are shown in figure 5.33 (d2
σ/dpTdp‖), and 5.34

(dσ(Eν)/dQ
2
QE).
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Figure 5.32. True CCQE cross section measurements in data and simula-
tion. As before, the differential cross sections are flux-integrated.
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Figure 5.33. Double-differential flux-integrated true CCQE cross section
d2
σ/dpTdp‖ vs. muon transverse momentum, in bins of muon longitudinal

momentum (continued in next figure)



264

 (GeV)
T

Muon p

0 0.2 0.4 0.6 0.8 1 1.2 1.4

/G
e

V
/G

e
V

/p
ro

to
n

)
2

 (
c

m
µ

T
 d

p
µ

 /
 d

p
σ

2
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

­39
10×

Data
Simulation

POT­Normalized

Data POT: 1.04E+20

MC POT: 9.52E+20

 4.5 to 5 GeV: Cross sectionMuon p

A PreliminaryνMINER

(g) 4.5 - 5 GeV

 (GeV)
T

Muon p

0 0.2 0.4 0.6 0.8 1 1.2 1.4

/G
e

V
/G

e
V

/p
ro

to
n

)
2

 (
c

m
µ

T
 d

p
µ

 /
 d

p
σ

2
d

0

0.1

0.2

0.3

0.4

0.5

­39
10×

Data
Simulation

POT­Normalized

Data POT: 1.04E+20

MC POT: 9.52E+20

 5 to 6 GeV: Cross sectionMuon p

A PreliminaryνMINER

(h) 5 - 6 GeV

 (GeV)
T

Muon p

0 0.2 0.4 0.6 0.8 1 1.2 1.4

/G
e

V
/G

e
V

/p
ro

to
n

)
2

 (
c

m
µ

T
 d

p
µ

 /
 d

p
σ

2
d

0

0.05

0.1

0.15

0.2

0.25

0.3

­39
10×

Data
Simulation

POT­Normalized

Data POT: 1.04E+20

MC POT: 9.52E+20

 6 to 8 GeV: Cross sectionMuon p

A PreliminaryνMINER

(i) 6 - 8 GeV

 (GeV)
T

Muon p

0 0.2 0.4 0.6 0.8 1 1.2 1.4

/G
e

V
/G

e
V

/p
ro

to
n

)
2

 (
c

m
µ

T
 d

p
µ

 /
 d

p
σ

2
d

0

0.02

0.04

0.06

0.08

0.1

0.12

­39
10×

Data
Simulation

POT­Normalized

Data POT: 1.04E+20

MC POT: 9.52E+20

 8 to 10 GeV: Cross sectionMuon p

A PreliminaryνMINER

(j) 8 - 10 GeV

 (GeV)
T

Muon p

0 0.2 0.4 0.6 0.8 1 1.2 1.4

/G
e

V
/G

e
V

/p
ro

to
n

)
2

 (
c

m
µ

T
 d

p
µ

 /
 d

p
σ

2
d

0

10

20

30

40

50

60

70

­42
10×

Data
Simulation

POT­Normalized

Data POT: 1.04E+20

MC POT: 9.52E+20

 10 to 15 GeV: Cross sectionMuon p

A PreliminaryνMINER

(k) 10 - 15 GeV

Figure 5.33. Double-differential flux-integrated true CCQE cross section
d2
σ/dpTdp‖ vs. muon transverse momentum, in bins of muon longitudinal mo-

mentum (continued)
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Figure 5.34. True CCQE cross section dσ(Eν)/dQ
2
QE, in bins of Eν (con-

tinued in next figure)
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Figure 5.34. True CCQE cross section dσ(Eν)/dQ
2
QE, in bins of Eν (continued)
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CHAPTER 6

Systematic uncertainties

6.1. Statistical and systematic uncertainties

6.1.1. Statistical uncertainty

In a counting measurement such as MINERvA, our results are subject to some level

of uncertainty. These uncertainties can be divided into two categories: statistical and

systematic. A statistical uncertainty on a measurement is an inevitable consequence of a

stochastic process; our event counts in our different energy or momentum bins are based

on a random process, and this element of randomness leads to an uncertainty in the

precision of our event count. This statistical uncertainty applies to our data histograms,

but it is also applicable to our Monte Carlo simulation (referred to hereafter just as

Monte Carlo), as this is generated by a procedure that uses random number generators.

In order to obtain a total fractional statistical uncertainty on our measurements, we can

add the data and Monte Carlo fractional statistical uncertainties in quadrature (as they

are uncorrelated, being generated by completely separate random processes). For this

study, we have roughly ten times more Monte Carlo events than data events; for this

reason, data statistics are the dominant factor in the total statistical uncertainty.
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6.1.2. Systematic uncertainty

While the statistical uncertainty corresponds to the level of precision to which we can

measure a quantity by taking only a finite number of samples, systematic uncertainties

represent the level of precision to which we can measure quantities, given the limitations

of our detector, the theoretical models we use in our reconstruction, and our knowledge

of the incident neutrino beam. In this chapter, we will focus on sources of systematic

uncertainties, how they can be quantified, and how we propagate uncertainties into our

cross-section measurements.

6.2. Evaluating systematic uncertainties on our measurements

Systematic uncertainties can be evaluated for many elements of the models and mea-

sured variables that we use to reconstruct our result. Each must be separately evaluated

and quantified: for example, hypothetically, we may determine that:

• Due to the scintillator-strip structure of our detector, we can determine the po-

sition of an interaction vertex to the nearest centimeter

• The cross section model we have for a proton producing a pion in our beam target

is accurate to ±10%

• Pile-up in 2 ± 1% of data events leaves us unable to reconstruct the event, and

this is not modeled in our Monte Carlo. While we can correct for this bias, we

must evaluate the uncertainty on the correction

Once these individual uncertainties have been evaluated, we must determine the effect

that the uncertainties on these components will have on our final cross section distri-

bution. We evaluate this using a “many-universe” method. When analyzing the Monte
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Carlo, as well as generating our simulated “central-value” event distribution (that is, the

distribution generated with our best estimate of simulation parameters), we re-generate

our distributions using an altered Monte Carlo (for example, a Monte Carlo where we have

produced 10% more pions in our target, or one in which every muon energy measurement

is 2% higher). We can imagine that this would be the result of our analysis in an alternate

universe where, for example, the physics has slightly different parameters than used in our

central-value measurement, or in which our detector has a slightly different response. For

that universe, the systematic uncertainty on each bin’s measurement would correspond

to the difference between the central-value event count in the bin, and the shifted event

count. In the case where we want to quantify the result of varying the same quantity in

more than one way (for example increasing the muon energy by 2%, and decreasing it by

2%), we generate a histogram for each, corresponding to multiple shifted universes. When

we generate multiple universes for a systematic effect, the magnitude of the systematic

uncertainty in each bin due to the effect corresponds to the average difference between

each shifted histogram and the central value in that bin. In this analysis, we are able to

evaluate some uncertainties (such as lack of precision in measured muon track angles) with

only one shifted universe; for others (such as uncertainty in our final-state re-interaction

rates) we use two, shifting both up and down within uncertainties in the re-interaction

cross sections. For the complicated effects due to our lack of knowledge of the neutrino

flux, we evaluate 100 universes, varying many parameters within their uncertainties to

generate each.

As the Monte Carlo is used in all stages of the cross section calculation, alterations to

the simulation introduce changes to, for example, the acceptance calculation, predicted
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background levels, and unsmearing matrix. When shifted versions of these are used

to produce a cross section, those differences will propagate to the cross section that is

generated. The extent of these differences to the cross section will give us an indication

of the effect that the uncertainty in question has on our final result.

In the MINERvA analysis framework, we facilitate the many-universe calculation by

converting our central-value histogram from a ROOT TH2D (2-dimensional histogram)

object to an MnvH2D object. This is part of MINERvA’s custom PlotUtils package,

which is built to hold the shifted histograms corresponding to the different systematic

uncertainties’ universes. The MnvH2D implements operations that must be performed

on all universes, simplifying the cross section calculation procedure, in which each step

(background subtraction, unfolding, efficiency correction etc) must be performed for every

individual universe. In order to do this, not only our raw Monte Carlo distributions, but

also all other objects generated from the Monte Carlo (efficiency histograms, migration

matrix, background scales) must be generated in all of our shifted universes.

There are several ways in which we can generate alternate universes, appropriate for

different situations:

• Smearing and scaling of observables

• Re-weighting techniques

• Alternative simulations

These will be discussed below.
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6.2.1. Smearing and scaling of observables

Some quantities, if varied, will affect which events will pass our reconstruction cuts,

entering the sample. For example, an inaccuracy in measuring the position of an event

vertex in the detector will affect which events pass the requirement that the interaction

must have taken place in the detector’s fiducial volume. In this case, when generating

Monte Carlo, we add to our tuple one or more alternative versions of the quantity (or

quantities: for example, the x, y and z positions). These could involve simply adjusting

the quantity by a fixed scale for each event, corresponding to a potential bias (this scale

may be a function of the variable, for example a 1% increase, or of other variables (for

example, seeing the effect on reconstructed neutrino energy by making a 1% increase

to final-state muon energy)). Alternatively, we may “smear” the quantity, by adding a

random amount selected from a Gaussian distribution with a width corresponding to the

1σ uncertainty on the quantity, corresponding to a perceived lack of precision. In some

situations, we way want to see the effect of more than one adjustment to the quantity -

for example, we may generate one variable corresponding to an energy 2% higher than

our central reconstructed value, and another corresponding to an energy 2% lower.

The set of histograms corresponding to each universe for a given systematic (e.g. the

histograms for shifting muon energy up and shifting it down) is stored in an object called

an MnvLatErrorBand, corresponding to a “lateral” error band, in which events may move

from one bin to another, or may move in and out of the sample. (For example, if we are

increasing muon energy measurements by 10%, an event with a 0.95 GeV muon that

would have once fallen into the < 1 GeV bin will now fall into the > 1 GeV bin). The

MnvLatErrorBand class not only enables storage of the individual histograms for each
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universe, but also includes methods to calculate the systematic uncertainty due to the

combined effect of those universes, to perform operations on all universes at once, such as

multiplying every universe’s histogram by a constant. The MnvPlotter utility, also part

of the PlotUtils package, can then be used to provide visualizations of these effects.

Examples of uncertainties that are treated in this way are our ability to measure to

muon energy and angle (which affect the values of p‖ and pT that we record, moving

events from bin to bin or in and out of the samples space, and our detector’s response to

different particles, which would affect our measured recoil energy, changing which events

pass the recoil cut.

6.2.2. Re-weighting

While some uncertainties affect which events will pass our reconstruction cuts, and which

bins they fall into, others affect the probability that a given Monte Carlo event is likely

to exist at all - for example, the probability of a final-state interaction producing a pion

may be 10% higher or lower than we assumed when making our central value tuples.

In this case, when generating Monte Carlo, an extra field is included to store a weight

corresponding to the event’s relative likelihood when our quantity (say the pion production

rate) is shifted. For a given uncertainty, we may store a single weight, or we may store

multiple ones (for example, one corresponding to an increased pion production rate, and

another corresponding to a decreased rate). Each of these adjusted weights can be thought

of as corresponding to a “universe” in which the parameter (such as the pion production

cross section) had a different value. For example, increasing the pion production cross
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section would give an increased weight, or probability, to all events with a pion in the

final state, while having no effect (a weight of 1) on events with no pion.

After plotting the central-value histogram, we use our same cuts and plot another

histogram for each of our universes, weighting each event by its stored weight value cor-

responding to that universe. As with the cut-modification systematics, the value of the

uncertainty in each bin is the difference between the central-value event count in the bin,

and the shifted one. With two universes, it is the average difference between each shifted

histogram and the central value.

Whereas, for the smearing and scaling systematics, we built a lateral error band, in

this case we have a “vertical” error band, represented by the MnvVertErrorBand. This

is because in this case, each event stays in its original bin, but with a different weight. A

vertical error band can be populated by specifying, for each event, a vector corresponding

to the weight of that event in each universe. Again, the PlotUtils functionality enables

us to extract absolute and fractional systematic errors from this structure.

More universes are used for more complicated situations wherein many parameters

combine to have a total effect on the produced cross-section uncertainty. The flux sys-

tematics are especially complex, as there are many components that combine to have an

effect on the overall neutrino cross section. For these more complicated systematics, we

use a “many universe” technique. In this case, we consider each parameter that has an

effect on the final result, and evaluate the systematic uncertainty on that parameter. We

then create a large number of “universes” by sampling the parameter space and then cal-

culating each event’s weight in each one. A sampling universe corresponds to a situation

in which each of the contributing parameters is separately smeared by a random number
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from a gaussian distribution around its central value, with a width of its uncertainty.

For example, if we have a central horn current of 200kA and a central POT of 9 × 1019,

one universe might correspond to the case where the horn current was 201kA and POT

8.9 × 1019, and another to the case where current was 202kA and the POT 9.1 × 1019.

The set of shifted parameters is used to calculate a weight for each event in each universe.

For each bin, the event counts for that bin in all the universes are histogrammed, and the

width of the resulting distribution gives the systematic uncertainty in that bin.

We use the reweighting method to evaluate the effect of changing the central value

probabilities used by the Monte Carlo when calculating the cross sections for initial in-

teractions and for different final-state interaction processes. In this case we typically use

2 universes. For flux uncertainties, we use 100.

6.2.3. Alternate simulations

Some variations to the Monte Carlo cannot be simulated simply by applying weights.

In this case, we generate a complete new set of Monte Carlo, changing all of these non-

reweightable parameters at once. By performing a central-value analysis on an alternate

sample, we get a single shifted universe corresponding to the combined effect of these

changes. We add this shifted sample as a lateral error band with 1 universe. We use

one alternate sample that includes changes to the models for the formation zone and

effective nuclear radius, as well as incorporating an alternative hadronization model and

a varied detector response to cross talk. The alternate Monte Carlo sample uses a total

of 9.337× 1020 POT.
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Additionally, an additional sample of Monte Carlo is used to simulate the effect due

to 2-particle-2-hole meson exchange current (MEC) events, as modeled by Nieves et al.

[162]. While this effect is modeled in the newest version of GENIE, it is not available in

version 2.8.4, which is used for this analysis. Thus a sample generated of MEC interactions

generated with a more recent version is used to evaluate the effect on our distribution of

adding the effect to the simulation. This sample uses 2.485 × 1021 POT (more POT are

needed to generate sufficient statistics for this sample than for our standard samples, as

the 2p2h processes are rarer than 1p1h CCQE).

6.2.4. How each uncertainty is evaluated

Table 6.1 details which uncertainties are analyzed by which of the methods listed above.

For convenience, the uncertainties are grouped by the type of physics that they are mea-

suring. In this, GENIE [93] refers to our Monte Carlo simulation package. FSI stands for

final-state interactions. All of these uncertainties will be described in detail later in this

chapter.

6.2.5. The covariance matrix

In all cases, the systematic uncertainty is are evaluated by forming a covariance matrix.

This matrix contains information about the value of a given of systematic uncertainty

in a given bin, as well as information about the extent of correlation between bins for

that uncertainty. For example, consider how we create our many universes by changing

some set of parameters, and recalculating our event distributions. If universes in which

the event count in bin i increases also lead to an increased event count in bin j, this is
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Uncertainty Category

Meson exchange current model Alternate simulation
Other GENIE signal uncertainties Re-weighting
GENIE background uncertainties Re-weighting

Flux uncertainties Re-weighting
FSI uncertainties Re-weighting

Detector particle responses Smearing/scaling
Neutron path length weight Re-weighting

Muon energy/angle uncertainties Smearing/scaling
GENIE variation uncertainties Alternate simulation

Mass model Re-weighting
Tracking efficiency Re-weighting

Table 6.1. Summary of techniques used to evaluate the individual systematic
uncertainties

indication of positive correlation between bins i and j. If universes in which the event

count in bin i increases give a decreased event count in bin j, this is indication of a

negative correlation between bins i and j.

The covariance matrix is an N × N matrix, where N is the total number of bins in

our two-dimensional distribution: for example, in the pT vs p‖ case, N is the number of

pT bins (including over- and under-flow) multiplied by the number of p‖ bins (including

over- and under-flow). For any two bins, i and j, (where each bin corresponds to a single

combination of pT vs p‖), the value of the covariance matrix element is given by

(6.1) Mij = Mji =

n∑
k=1

(xik − x̄i)(xjk − x̄j)wk
n∑
k=1

wk

Where:

• Mij is the matrix element corresponding to the covariance between bins i and j.

Note that the covariance matrix is symmetric: Mij = Mji
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• n is the total number of universes

• wk is a weight to be applied to universe k (for unweighted universes, wk is always

1)

• xik refers to the event count in bin i, in universe k

• x̄i is the mean event count in bin i, averaged over all universes: x̄i =

n∑
k=1

xikwk

n∑
k=1

wk

The magnitude of the uncertainty in bin i is then given by the square root of the

matrix element [i, i]:

(6.2) σi =

√√√√√√√
n∑
k=1

(xik − x̄i)2wk

n∑
k=1

wk

or, for unweighted universes, by the familiar standard deviation formula:

(6.3) σi =

√
n∑
k=1

(xik − x̄i)2

√
n

While the diagonal elements of the covariance matrix are used to calculate the mag-

nitude of the uncertainty in each bin, the off-diagonal elements are used in chi-squared

calculations, to determine the goodness of fit between distributions (for example between

data and Monte Carlo distributions, or between measured results and different theoretical

models. The formula for the chi-squared is given by:

(6.4) χ2 =
N∑
i=1

N∑
j=1

(xi − yi)M−1
ij (xj − yj)

where:
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• N is the number of bins (for calculation of χ2, we would tend to ignore overflow

and underflow bins)

• M−1
ij is the [i, j]matrix element of the inverse of the covariance matrix

• xi is the value in the ith bin of the quantity for which we have calculated the

covariance matrix

• yi is the value in the ith bin of the model against which we are comparing

If a model describes the data perfectly, we would expect a chi-square per degree of

freedom around 1. The number of degrees of freedom is typically equal to the number

of bins used in the calculation. Note that taking a shape-only comparison removes one

degree of freedom (once all but one of the bins’ values are known, there is only one possible

allowed value for the final bin that will meet the area-normalization condition).

6.2.5.1. Correlation matrix. The correlation matrix provides a measure of how corre-

lated an uncertainty is between bins. An element Xij of the correlation matrix is related

to the corresponding element Mij of the covariance matrix by:

(6.5) Xij =
Mij

σiσj

The possible values in the correlation matrix range from -1 (completely anti-correlated;

if our systematic effect causes the value to increase in bin i, it will cause it to decrease

in bin j, and vice versa) to +1 (completely correlated; if our systematic effect causes the

value to increase in bin i, it will increase correspondingly in bin j).

An example of an effect with complete positive correlation would be something that

changed the normalization of the event count, such as our tracking efficiency effect (see
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section 6.4.2). Note that, by definition, the diagonals of the correlation matrix, which

correspond to the systematic uncertainty in a single bin, will always have a value of +1.

Negative correlation will typically be observed in shape-only distributions, where we

impose a requirement that the normalization of each universe must be the same. For this

reason, an effect that increases the event count in one bin must, by necessity, decrease it

in others, in order to keep the total event count constant.

A value of zero in the correlation matrix indicates that the effects of the given sys-

tematic on the two bins in question are completely uncorrelated.

6.2.6. Summary of uncertainties on raw data distributions

As there are many systematic uncertainties to consider, we categorize them in groups as

follows:

• Flux uncertainties

• Muon reconstruction uncertainties

• Primary interaction uncertainties

• Hadron interaction uncertainties (FSI)

• Recoil uncertainties

Figure 6.1 summarizes the contributions of these groups to the total fractional un-

certainty on our raw distributions, while figure 6.2 shows their effect on the shape of the

distribution (as opposed to the total normalization). These uncertainties are broken down

into more detailed, two-dimensional bins, in section 6.9.1. More detail of the uncertainties

that make up these groups will be given later in this document.
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Figure 6.1. Summary of fractional uncertainties on the cross section
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Figure 6.2. Summary of fractional shape uncertainties in the cross section



282

6.3. Flux uncertainties

The neutrino “flux” refers to the rate and energy distribution of incoming neutrinos.

Our beam consists of antineutrinos with a broad spectrum of energies, and because the

flux and energy distribution of these antineutrinos cannot be directly measured, it is

necessary to calculate an expected flux distribution based upon what we know about how

the beam is produced.

The neutrino beam is generated when protons from Fermilab’s NuMI beam-line hit

a graphite target, producing various particles, including pions and kaons. These are

then focused using a pair of magnetic focusing horns, whose current can be adjusted to

favor either positive mesons (which will decay to produce neutrinos) or negative mesons

(which will produce antineutrinos). Adjusting the horn current can also favor different

energy profiles for the resulting neutrino beam. The focused mesons decay according to

mechanisms such as

(6.6) π− → µ− + ν̄

Muons are filtered out as the beam traverses 240 meters of rock, resulting in a neutrino

beam. The NuMI beam is described in detail in [98].

The calculation of the NuMI flux is complex, and is described in more detail in [38].

The sources of uncertainty can be categorized as being due to:

• Hadron production rates for the NuMI beam, as measured by Fermilab’s PPFX

(Package to Predict the Flux) method

• Focusing of the hadron beam by the focusing horns
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Figure 6.3. Summary of fractional uncertainties on the final cross section due to flux

The relative magnitude of the flux uncertainties is summarized in figure 6.3.

In each case, flux uncertainties are treated at the Monte Carlo generation level. Various

parameters are smeared by throwing a random number from a Gaussian distribution with

a width of 1 standard deviation of that parameter. Using the smeared parameters, a

weight is calculated for each event, based on the probability of that event being generated

given the new parameter set. This process is repeated 100 times, so that for each event,

there is an array of 100 different weights, corresponding to the 100 different parameter

sets that were randomly selected.
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For each of these 100 sets of weights, we generated a histogram, using our standard

cuts. These 100 histograms correspond to how our Monte Carlo event distribution would

look, given those 100 different sets of smeared parameters. For each bin of our distribution,

the 100 values corresponding to the event counts in the 100 smeared universes are plotted.

Additionally, we apply the neutrino-electron scattering constraint, explained in section

3.7.1.3 and in [167]. To do this, for each simulated event, we look up the relevant flux

value based on the ν−e constrained flux histogram for the universe, and divide this value

by the unweighted central flux value used to generated the simulation, to get a corrected

weight. A detailed description of the sources of flux uncertainty is given in section 3.7.1
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6.4. Muon reconstruction uncertainties

There is some level of imprecision in how well we can measure the properties of a

muon moving through our detector. As this analysis calculates cross sections based on

the muon kinematics, we must quantify the extent to which we are able to measure these

properties.

The muon energy scale, included in this section, is our most significant individual

uncertainty over much of our phase space. This is unsurprising, as our analysis is so

dependent on muon reconstruction and kinematics.

The relative magnitude of the muon reconstruction uncertainties is summarized in

table 6.2 and figure 6.4.

Parameter Variation Effect on cross section

Muon energy scale 11 MeV(assay), 30 MeV
(dE/dx), 2-3.2% (MINOS)

1− 15%

Tracking efficiency 3-4% 1%
Muon angle smearing 1 mr 4% (high pT /p‖ only)
Muon angle bias 1 mr < 1%
Vertex smearing x:0.91 mm, y: 1.25 mm, z:

1 cm
< 0.5%

Mass model 1.4% 1.4%

Table 6.2. Summary of muon reconstruction uncertainties

The muon reconstruction calculations use only 1 or 2 universes and quantify various

aspects of our uncertainty in measuring the properties of a muon moving through the

detector.
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Figure 6.4. Summary of fractional uncertainties on the cross section due to muon
reconstruction

6.4.1. Muon energy scale

For this analysis, we require a MINOS-matched muon. We reconstruct the muon energy

using a combination of the momentum measured in MINOS (both by range and curvature)

and by the energy deposition rate in the MINERvA detector.

In order to calculate this systematic, we generated histograms in two universes, cor-

responding to a reconstructed muon energy shifted up by 1σ and down by 1σ. These

are used to create two shifted histograms in a lateral error band. The momentum shift

corresponds to changes in three different properties:
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• An 11MeV shift corresponding to our uncertainty in MINERvA’s material assay,

and

• A 30 MeV shift corresponding to our uncertainty in the measurement of energy

deposition rate in MINERvA, dE
dx

, and

• A MINOS momentum-dependent shift [37] corresponding to

– 2% for muons whose momentum is measured by range, added in quadrature

to

– 0.6% for muons with momentum is measured by curvature to be above 1GeV,

or

– 2.5% for muons with momentum is measured by curvature to be below 1GeV

These shifts are calculated using the calculateMomentumCorrection method of MuonU-

tils. The total muon energy scale uncertainty is calculated by adding the components in

quadrature. Note that the MINOS range uncertainty is applied to all MINOS-matched

muons; the additional curvature uncertainty is only non-zero if it was not possible to mea-

sure the muon’s momentum by range, and it instead had to be measured by curvature

(that is, if the muon did not stop in the calorimeter region of MINOS).

Because our cuts (specifically the Q2
QE-dependent recoil energy cut, as we reconstruct

Q2
QE from muon kinematics) depend on the muon momentum, this means that, when

generating the shifted histograms, we must make our cuts using these shifted values,

changing the total number of events that pass the cuts.

Our event distributions are plotted versus the muon longitudinal and transverse mo-

mentum (p‖µ and pTµ) or versus the neutrino energy and 4-momentum transfer (Eν and

Q2
QE) calculated in the quasi-elastic hypothesis from muon kinematics. Because all of
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these variables depend on the muon momentum, the shifted universe plots are plotted

with the axes corresponding to the shifted variables (that is, the variables pTµ , Q2
QE etc.

are calculated as functions of the shifted muon momentum).

6.4.2. Tracking efficiency

This uncertainty corresponds to the combined uncertainty in three sources of event loss.

These are for MINERvA tracking efficiency (such as that due to events lost in the dead

time between triggers), for MINOS tracking efficiency, and for matching between MIN-

ERvA and MINOS tracks . With each of these factors, an uncertainty is associated.

Our Monte Carlo simulates events one at a time. However, in the actual MINERvA

detector, when a channel has experienced activity, there is a reset period or “dead time”

of around 100ns following the 150ns window in which charge is counted[37]. This, it is

possible that a second neutrino event can take place in the dead time. We attempt to

simulate this in the Monte Carlo using a data overlay method [108].

The tracking efficiency in the MINERvA detector is measured by taking muon tracks

that have been matched in MINOS, extrapolating them back, and seeing what percentage

are also matched as muon tracks in the MINERvA detector. The study is detailed in

[183]. MINERvA tracking efficiency is 99.5%. In the same document, the muon tracking

efficiency in MINOS is also discussed. Our analysis depends on our identification of a

MINOS-matched muon. However, it has been observed that muon tracks in MINOS may

be misidentified, particularly if two or more MINOS tracks overlap in time. While this

phenomenon may occur in data, we do not simulate these overlapping events in Monte
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Carlo. As it is a function of pile-up, it is both intensity- and momentum-dependent, the

effect being more significant below 3 GeV (97.5% efficiency) than above 3GeV (99.5%).

The total correction and the uncertainty on this correction are calculated using the

MnvNormalizer class in the MINERvA PlotUtils package. This utility provides a total

weight (by multiplying the individual weights) and a total uncertainty on the correction

(by summing the uncertainties on each in quadrature). The only component of this

uncertainty that is not constant over our whole phase space is that due to the MINOS

reconstruction, which is more significant at lower energies; apart from this, the uncertainty

is flat.

6.4.3. Muon angle smearing

The study in [200] looks at how well we can measure the angle of muon tracks. This is

done by cutting a track in half, and attempting to reconstruct the angle of each half of

the track, and seeing how well these agree (MINERvA has no magnet, so tracks should be

straight). This method was used on both data and Monte Carlo tracks, with no difference

seen above the milliradian scale.

To quantify the effect of possible differences in resolution below this scale, we “smear”

the angle θµ between the muon and the beam in Monte Carlo. We do this by adding a

small shift to the muon angle in the x− z plane , based on a random number taken from

a Gaussian distribution with a width of 1 milliradians. This shift (which may be positive

or negative) is then added to the original angle in this plane, θx, to produce a shifted

angle. An analogous procedure is performed for θy, and the shifted angles are combined.
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As the shifts will move some angles up and some down, we need only 1 shifted his-

togram (1 universe). Some of our cuts (specifically the Q2
QE-dependent recoil energy cut)

depend on the muon angle. When generating the shifted histogram, we must cut on these

shifted values, changing the total number of events that pass the cuts.

Our plotting variables, the muon longitudinal and transverse momentum (p‖µ and

pTµ) and the neutrino energy and 4-momentum transfer (Eν and Q2
QE) calculated in the

quasi-elastic hypothesis from muon kinematics, also depend on the muon angle. Thus the

shifted universe plot is plotted with the axes corresponding to the shifted variables (that

is, the variables pTµ , Q2
QE etc. are calculated as functions of the shifted muon angle).

The angular smearing is most significant for events where the muon’s trajectory is at

a large angle to the beam direction, and thus contributes at high pT and low p‖ .

6.4.4. Muon angle bias

The NuMI beam points downwards by 0.05887 radians, in order to point at the MINOS

far detector, in the Soudan mine in Minnesota. (The coordinate system of the detector is

such that the z direction is along the axis of the detector, with the beam in the y-z plane).

MINERvA studies [168] [165] using very forward-going electrons from neutrino-electron

scattering in MINERvA detect a small bias in the beam angle. To correct for this, when

correcting from the MINERvA coordinate system to the beam coordinate system, we

include an additional correction in data only of -3mr in the y − z plane and -1mr in the

x − z plane. As there is some uncertainty on this bias (quantified in [85]), we account

for this by generating two universes, one in which bias is increased by 1mr, and one in
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which it is decreased by 1mr. As the uncertainty is biggest in the x− z plane, it is in this

direction that we make these shifts.

As our cuts (specifically the Q2
QE-dependent recoil energy cut) depend on the muon

angle, the number of events that pass the cuts will change when using these shifted values.

We also plot against variables (Eν , Q
2
QE, p‖µ and pTµ) calculated with this shifted angle.

For this systematic, we use two universes, corresponding to an over-and under-estimate

of the bias. Its effect is modest over most of the phase space, and contributes little when

added in quadrature to the other muon reconstruction uncertainties.

6.4.5. Vertex smearing

The position of the interaction vertex (in this case, the starting vertex of the muon track)

is used to determine whether an event takes place within the fiducial tracker region.

The study in [199] looks at differences in vertex resolution between data and Monte

Carlo, calculating an uncertainty of 0.91mm for the x coordinate and of 1.25mm for the

y coordinate (the y-z plane being that containing the beam and the central axis of the

detector). In the x and y directions, we find the resolution by plotting the difference

between true and reconstructed positions (the residual) in our Monte Carlo. These form

a double-gaussian distribution, which can be fitted, and the width of the central peak

taken as the resolution. As our detector consists of planes of scintillator transverse to the

z direction, our resolution in the z direction is less easy to calculate. The residual distri-

bution no longer forms a Gaussian, instead forming a much more complicated distribution

that is heavily dependent on the vertex’s z position within its strip. We thus consider a
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conservative value of 1 cm as our possible resolution difference in the z direction. To cre-

ate a shifted value for the vertex position, we smear our position simultaneously by 0.91

mm in x, 1.25 mm in y, and 1 cm in z. (To “smear” a quantity by some amount means

that we add a value to the quantity, taken at random from a Gaussian distribution with

a width corresponding to the amount). We create a single shifted universe by applying

our cuts to the shifted events. As the fiducial volume cut depends on vertex position, a

different set of events will be selected after the shift. However the effect is very minor,

and barely contributes when the uncertainties are added in quadrature.

6.4.6. Mass model

The MINERvA tracker consists of scintillator strips coated with a reflective coating and

attached with glue. Thus, while it mostly consists of the well-defined scintillator, there is

also a small contribution to the total mass from the glue and coating, the exact mass of

which is known to a precision of ±1.4%. The mass and its uncertainty are documented

in [177]. The mass model uncertainty is tracked in the shared MINERvA module Mn-

vNormalizer. While this is not directly related to the muon measurement, we include it

in this category as it affects the muon energy scale.

6.5. Interaction model uncertainties

The models used by our Monte Carlo generator, GENIE 2.8.4, [93] include various

parameters which can only be measured by experiment. As such, these parameters carry

uncertainties, which can affect the cross-section distributions produced by GENIE. Un-

certainties are evaluated for the following parameters used in the primary interaction
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model; that is, in the model for the initial neutrino-nucleon interaction probability distri-

bution, prior to final-state effects or transit of the reaction products through the detector.

The GENIE uncertainties are summarized in [113], and are explained in detail in the

remainder of this section.

Most GENIE uncertainties are evaluated using the re-weighting method. In general,

we use two universes, one corresponding to an increase in some parameter, and one to a

decrease. The method for evaluating each of these uncertainties is the same: the function

fillGenieWeightBranches from the MINERvA utility AnaUtils/GenieWeightExtensions.cc

is used when generating tuples. For each event, this populates an array of 7 weight values

for each of the listed uncertainties; these weights correspond to the probability of the

event occurring if the parameter in question were shifted by −3σ, −2σ, −1σ, no shift,

+1σ, +2σ and +3σ respectively. For each uncertainty, we use the weights corresponding

to the −1σ and +1σ shifts to create two universes. The uncertainty due to the parameter

are then calculated using the reweighting technique described in section 6.2.2.

We can divide the re-weightable GENIE interaction model uncertainties into two

groups - those on the signal model (charged-current quasi-elastic interactions) and those

on background models (resonant and deep inelastic scattering interactions). Background

event model uncertainties contribute to cross section uncertainty as they affect the fraction

of events that we subtract in the background subtraction process. The signal model also

makes a small contribution as we fit the signal and background shapes in order to perform

our background fits, and to adjust the background rates in each universe. Additionally,

we must note that for a QE-like signal definition, where our signal is defined by the final-

state signature, some signal events will actually result from resonant or DIS events where
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final-state interactions lead to a QE-like final state, while some background events will in

fact be primary CCQE interactions in which a pion is later generated. This means that

the background subtraction will introduce a small amount of uncertainty from the CCQE

“signal” model due to the subtraction of these CCQE (but not QE-like) backgrounds.

GENIE uncertainties that change particle fates (such as changing the hadronization

model) cannot be modeled using the re-weighting method. In this case, we generate an

alternative simulated sample in which these models have been adjusted.

6.5.1. Background model uncertainties

Table 6.3 lists a summary of background model parameters, including their central values

and uncertainties.

6.5.1.1. MA (Elastic scattering) (MaNCEL). Unlike in quasi-elastic scattering, elas-

tic scattering is a neutral-current effect, involving no charge exchange: a neutrino scatters

off a nucleon, exchanging a Z boson. As this is a weak interaction, it also contains an

axial component and, as with the quasi-elastic version, involves an axial form factor and

the corresponding axial mass MA. A ±25% shift in the elastic-scattering axial mass is

simulated in the MaNCEL error band. As we require a MINOS-matched muon, which is

easily identifiable (and which would not be produced by neutral-current event), we have

very little elastic background, and this uncertainty is at less than 0.5% across all our bins.

6.5.1.2. η (Elastic scattering) (EtaNCEL). GENIE uses the Ahrens[34] model of

elastic scattering. This includes a form factor

(6.7) GA(Q2) =
1

2

GA(0)

(1 + Q2

M2
A

)2
(1 + η)
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Parameter Abbreviation Central
value

Variation Effect
on cross
section

Axial mass for
neutral-current elastic
scattering

MaNCEL MA = 0.99
GeV

±25% < 0.5%

Strange axial form
factor for neutral-
current elastic scat-
tering

EtaNCEL η = 0.12 ±30% < 0.5%

Normalization of
neutral-current reso-
nance production

NormNCRES 1 ±20% < 0.5%

Axial mass for reso-
nance production

MaRES MRES
A =

1.12 GeV
±20% 3-6%

Vector mass for reso-
nance production

MvRES MRES
V =

0.84 GeV
±3% < 1%

Deep inelastic scatter-
ing normalization

NormDISCC 1 < 0.5%

Non-resonant 1-pion
production strength
(ν : n or ν̄ : p)

Rvn1pi 1 ±5% < 0.5%

Non-resonant 2-pion
production strength
(ν : n or ν̄ : p)

Rvn2pi 1 ±50% < 0.5%

Non-resonant 1-pion
production strength
(ν : p or ν̄ : n)

Rvp1pi 1 ±50% < 0.5%

Non-resonant 2-pion
production strength
(ν : p or ν̄ : n)

Rvp2pi 1 ±50% < 0.5%

GENIE variations genie variations 2%

Table 6.3. Summary of background uncertainties

In this formula, η is a numeric parameter corresponding to the strange axial form factor.

The GENIE default value is η =0.12. The EtaNCEL uncertainty models shifts to this

value. Again, this refers to elastic scattering, an extremely small background for this
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analysis. An ±30% shift in the value of η still leads to an EtaNCEL error band of less

than 0.5% across all our bins.

6.5.1.3. NC Resonance normalization (NormNCRES). Neutral-current resonant

interactions are similar to charged-current resonant interactions, except for a Z boson

is exchanged instead of a W±. Again, we expect to see a nucleon and pion produced,

with the pion possibly being affected by final-state interactions to produce an elastic-like

signal. However, as no muon is produced in elastic interactions, it is easy for us to reject

this background by requiring a MINOS-matched muon track, and a 1σ shift in the total

event count due to NormNCRES gives less than a 0.5% effect to our distribution.

6.5.1.4. MA and MV (resonance production) (MaRES and MvRES). Charged-

current resonance production refers to a charged-current interaction in which the struck

nucleon is raised to an excited state (most commonly one of the ∆1232 resonances, spin

3
2

states comprising u and d quarks, which decay to a nucleon and a pion). While the

products of this interaction (muon, nucleon and pion) differ from the CCQE signature

(muon and nucleon only), the pion produced may undergo final state interactions within

the nucleus, meaning that it may be absorbed and not exit the nucleus, leading to a

quasi-elastic-like final state of just a muon and nucleon. Alternatively, the pion may

exit the nucleus but not travel far enough to produce an identifiable track. For these

reasons, resonant events form a significant proportion of our background for a CCQE

signal definition, and comprise part of our signal for a CCQE-like definition where our

signal is based on final-state particles rather than on primary interaction.

GENIE models resonant interactions are using the Rein Sehgal model [178]. Like

the Llewellyn-Smith CCQE model, this includes nucleon form factors, in the form of a
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“transition form factor”:

(6.8) GV,A(q2) =

(
1− q2

4m2
N )

)1/2−n
(

1

q2 −M2
V,A)

)

Where MV = 0.84 GeV and MA = 1.12 GeV and the pre-factor depends on the number

n of oscillator quanta in the resonance. GENIE accounts for uncertainty in the values of

these form factors, with a ±20% shift in MRES
A , and a ±10% shift in MRES

V . However,

fits to electroproduction data [141] constrain MV to a smaller uncertainty, of the order of

3%, as explained in [157]. Thus the MvRES weights are scaled for each event so that the

difference between the shifted and central values for each event is 0.3 times the GENIE

shift.

These uncertainties mainly affect our background rate and shape; the relatively large

uncertainty on MA causes MaRES to be the largest background interaction uncertainty.

It is particularly important at higher Q2, above 1GeV2 (or correspondingly, at pT above

0.5 GeV), where the resonant production cross section is higher.

6.5.1.5. CC DIS normalization (NormDISCC). At high interaction energies, it is

possible that, instead of scattering off an intact nucleon, a neutrino can scatter off one

of the quarks within the nucleon. This effect is known as deep inelastic scattering, and

is typically characterized by the ejection of several hadrons from the nucleus. For a true

CCQE signal, this represents a small part of the background, as DIS events tend to have

higher recoil energies, and thus fail our reconstruction cuts. However, charged-current

DIS events that produce many nucleons can be CCQE-like in that they produce only

nucleons and a muon in the final state. Additionally, DIS events tend to occur at high Q2
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and are this not prevalent in this study’s phase space. The ±1σ shift represented by the

NormDISCC error band produces an effect less than 0.5% over our entire phase space.

6.5.1.6. Pion production from non-resonant interactions (Rvn1pi, Rvn2pi,

Rvp1pi, Rvp2pi). While the resonant interactions described earlier account for the

majority of pion production, other inelastic processes, as described by Bodek-Yang [60],

also take place. These four uncertainties describe non-resonant pion production. Rvn1pi

and Rvn2pi correspond to 1- and 2-pion production respectively from ν : n or ν̄ : p in-

teractions; Rvp1pi and Rvp2pi correspond to 1- and 2-pion production respectively from

ν : p or ν̄ : n. In each of these cases, a 1σ change corresponds to a ±50% shift in

the strength of the interaction type. GENIE includes values for all of these shifts; the

Rvn1pi is additionally constrained by a fit to pion-production data on deuterium from

bubble-chamber experiments at Argonne and Brookhaven National Laboratories [179].

This showed that GENIE’s estimate of the strength of this effect was overestimated; the

actual effect was 43±5% of that estimated by GENIE. Thus we reweight both our central

value to reduce the probability of events like these, as well as reducing the uncertainty

to just a 5% shift in the effect. All of the non-resonant pion production processes have a

small effect on our sample as we attempt to reject events with pions.

6.5.1.7. Alternative GENIE Sample. Other effects within the GENIE simulation

cannot be modeled by reweighting, as they change particle fates. In this case, a separate

sample of Monte Carlo must be generated, and the analysis run on this sample. The

central values from performing each step of the cross-section calculation on this sample

generate a single universe of shifted distributions. The difference between this and the

central value in each bin gives a measurement of the level of uncertainty due to the
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combined effect of the processes involved. (Note that, in order for this to be valid, the

distributions generated with the shifted Monte Carlo must be normalized to the same

number of protons on target (POT) as the central-value Monte Carlo, to ensure a like-

for-like comparison).

We use a single alternative GENIE sample, which includes the effects of several pro-

cesses, listed below.

Effective nuclear radius correction. The effective nuclear radius also affects the dis-

tance within which a particle is susceptible to final-state interactions. If the effective

nuclear radius is increased, final-state particles have a longer journey before they are free

of the nucleus, increasing the probability that they will undergo FSI. The central value

effective nuclear radius used by GENIE for carbon-12 is 3.2 fm.

Formation zone. When a deep inelastic scattering interaction occurs, the quarks pro-

duced can propagate some distance through the nucleus, with low interaction probability,

before forming hadrons. GENIE[93] uses a formation time of 0.342 fm/c, corresponding

to the SKAT model [49]. Increasing the radius of this formation zone thus reduces the

amount of nuclear matter through which the eventual hadrons must propagate to escape

the nucleus, and thus the amount of time for which they are susceptible to final-state

interactions.

Alternative hadronization model. GENIE [93] uses the AGKY[197] hadronization

model for deep inelastic scattering processes, with a phenomenological description of the

hadron multiplicity based on KNO scaling at low invariant masses (< 2.3GeV/c2), with a

gradual change to the PYTHIA/JETSET hadronization model for high invariant masses

(< 3GeV/c2). The KNO-based system includes a pT -based rejection scheme which is
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designed to reproduce experimental data. Turning this off gives an alternative model ,

which produces a more isotropic momentum distribution for the produced hadrons. [188]

Cross talk. Cross talk [37] is an electronics effect, by which light incident on a given

photomultiplier tube channel induces a small amount of signal in a neighboring channel.

For example, light on the channel corresponding to the muon track, in which a lot of

energy is deposited, could induce a signal in the channel next to it, either within the

PMT, or at the optical fiber–PMT junction. Several safeguards are in place to minimize

this effect. For example, the cables are “woven” such that neighboring channels in the

detector are far apart in electronics space, and vice versa - thus cross talk hits will appear

to have come from a part of the detector far from the track or energy blob that “caused”

them, and will not be mistakenly included as part of that track. Although MINERvA

attempts to filter cross talk, there is still some uncertainty as to what fraction of the

remaining recoil energy comes from this source. Based on the recommendations in [195],

where muon measurements of cross talk are compared with bench test measurements, this

uncertainty is ±20%. The alternative GENIE sample increases the rate of cross talk by

1σ.

Note that cross talk is not really a GENIE model effect - it affects the recoil energy

reconstruction. However, as a non-reweightable effect that can be simulated, it is conve-

nient to include it in this alternate sample, to save the processing load of generating an

entire separate sample that just varies the cross talk model.

6.5.1.8. Summary of background model uncertainties. The relative magnitude of

the background interaction uncertainties is summarized in figure 6.5. For ease of reading,

uncertainties of less than 0.5% in all bins are not drawn.
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Figure 6.5. Summary of fractional uncertainties on the final cross section due
to background interaction model uncertainties

6.5.2. Signal model uncertainties

Table 6.4 lists a summary of these parameters, including their central values and uncer-

tainties.

6.5.2.1. MA (CCQE scattering, shape only) (MACCQEshape). The Llewellyn-

Smith model, used by GENIE to model the quasi-elastic scattering cross section, includes

an axial form factor FA, which must be measured by experiment. GENIE assumes a dipole

model for this - that is, it assumes that the axial potential takes an exponential form

proportional to, ρ(r) = ρ0e
−Mr, whose Fourier transform gives a form factor of the form
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Parameter Abbreviation Central
value

Variation Effect
on cross
section

CCQE axial mass
(fixed normaliza-
tion)

MACCQEshape MA =
0.99 GeV

±15% < 2%

CCQE normaliza-
tion

NormCCQE +20% −
15%

2-4%

Vector form factor
model

VecFFCCQEShape BBBA05 Dipole < 1%

Pauli suppression CCQEPauliSupViaKF κ = 1.007 30% < 2%
Meson exchange cur-
rents

MEC None 26% of
CCQE

5-10%
(max
at low
p‖ /pT )

Table 6.4. Summary of CCQE signal model uncertainties

FA(Q2) = FA(0)

(1+ Q2

M2
A

)2
. The parameter FA(0) is well-known from neutron beta decay; the

axial mass, MA, however, must be measured in neutrino scattering experiments. Based

on the results of bubble-chamber measurements on deuterium, GENIE uses a value of

MA = 0.99 GeV. However, other experiments, on heavier nuclei such as carbon, have

used shape fits to data to extract higher values; for example, MiniBooNE [29] found

M eff
A = 1.35± 0.17 GeV.

A change in the value of MA changes both the shape and normalization of the pre-

dicted cross section distribution. A 1σ shift in MACCQEshape uncertainty parameter

corresponds to making a ±15% shift in MA, while holding normalization constant. As

these variations in the CCQE shape are largely due to 2-particle-2-hole processes, whose

effect we model separately in the meson exchange current model systematic uncertainty,

this is a conservative estimate.
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6.5.2.2. CCQE normalization (NormCCQE). Uncertainty in the overall normaliza-

tion of the predicted quasi-elastic event rate is the most significant factor in the absolute

primary interaction uncertainty. However, as this affects only the normalization (and not

the shape) of the CCQE events, it provides only a small contribution to the shape-only

distribution. A +1σ shift in the NormCCQE parameter corresponds to a scaling of +20%

while a −1σ shift is −15%. As these variations in the CCQE normalization are largely due

to 2-particle-2-hole processes, whose effect we model separately in the meson exchange

current model systematic uncertainty, this is a conservative estimate.

6.5.2.3. CCQE vector form factor model (VecFFCCQEshape). The Llewellyn-

Smith CCQE cross section formula includes two vector form factors, which are related

to the electric and magnetic form factors of the proton and the neutron. While initial

models assumed a basic dipole form for the electromagnetic potential, this has been

found to be a poor model, especially at high Q2 where interactions are influenced by

the quark substructure, and the nucleon cannot be considered as a homogenous particle.

GENIE uses the BBBA05 model [63] for this vector form factor; however there are several

different, and more recent models, based on parameterization of electron scattering results.

To account for the effect on the quasi-elastic cross-section shape of varying the calculated

form factor, the VecFFCCQEshape parameter changes the vector form factor model from

BBBA05 to a dipole [91]. The total normalization is held constant, so that this change

affects only the shape.

6.5.2.4. Pauli blocking in CCQE (CCQEPauliSupViaKF). Because nucleons are

fermions, the Pauli exclusion principle states that no two neutrons or protons can occupy

the same energy state. [66] This means that the final-state nucleon produced must have
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an energy above the Fermi energy EF , as states up to this energy are filled, according to

the Fermi-Dirac distribution. This limits the cross section at low Q2, where nucleons with

a low initial energy may not receive enough additional energy to break free of the nucleus.

For a given energy transfer w and binding energy EB, the initial state nucleon must

have an energy EN > κ(EF − w + EB). The strength of the Pauli blocking is controlled

by the parameter, κ. While this would be expected to be equal to 1, the MiniBooNE

experiment found a better fit to their CCQE neutrino scattering data using a model with

κ = 1.007 [29]. To take this into account, we introduce a 35% uncertainty on κ and

use this to generate the CCQEPauliSupViaKF error band. Even this rather conservative

uncertainty on κ leads to only a minimal influence on our overall event counts, with less

than a 0.5% effect in all bins.

6.5.2.5. Meson exchange current model. The version of GENIE used in this analysis

(2.8.4) does not model 2-particle-2-hole meson exchange current interactions, in which the

neutrino can scatter from a correlated pair of nucleons within the nucleus, rather than from

an individual nucleon. However, later versions of GENIE do include this model. A sample

of 2.48 × 1021 POT of Monte Carlo was generated with MEC interactions, following the

model of Nieves et al. [162][126]. (The large amount of POT was necessary to generate

the statistics necessary for a good estimate of the cross section, as the cross section for

2p2h interactions is around 1/4 that of the free-nucleon CCQE cross section[100]). The

magnitude of the MEC event count distribution, when POT-normalized to the Monte

Carlo, serves as a single error band estimating the magnitude of this uncertainty on the

signal model.
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Figure 6.6. Summary of fractional uncertainties on the final cross section due
to CCQE model uncertainties

6.5.2.6. Summary of CCQE signal model uncertainties. The relative magnitude

of the CCQE signal model uncertainties is summarized in figure 6.6. For ease of reading,

uncertainties of less than 0.5% in all bins are not drawn.

6.6. Final-state interaction uncertainties

In heavy nuclei, the primary interaction does not necessarily determine the final state.

Instead, it is possible that the particles produced by this initial interaction can re-interact

during their passage through the nuclear medium. This could for example, lead to a quasi-

elastic primary event with a pion in the final state, as the neutron produced initially
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interacts with another proton or neutron in the nucleus. Conversely, a resonant pion

production event may have a quasi-elastic-like signature, if the pion is re-absorbed and

does not exit the nucleus. We refer to these as “final-state interactions”. GENIE [93]

models the probability of them occurring using the INTRANUKE-hA intranucleon hadron

cascade package [89].

Uncertainty in the hadron interaction model affects our total event rate uncertainty

much less significantly than does our uncertainty in the primary interaction, flux, or muon

reconstruction. Its overall effect is around 2% across most of our phase space.

As with the primary interaction uncertainties, these are calculated with two universes

reweighted to−±1σ as generated by the GenieWeightExtensions function fillGenieWeight-

Branches. For details of how this works, see section 6.5. The sources of the individual

uncertainties are explained below, while table 6.5 summarizes them.

6.6.1. Mean free paths (MFP N and MFP pi)

A 1σ variation of the mean free path for nucleons (MFP N) and for pions (MFP pi)

corresponds to a change of ±20%. Note that this parameter corresponds to the mean free

path of produced hadrons within the nucleus; the shorter the mean free path, the greater

the probability that FSI will occur before the particle escapes the nucleus. According to

[93], the mean free path for a nucleon produced at MINERvA energies is a few femtometers

within the nucleus.

The mean free path of the pion has a fairly significant effect on our total hadronic

interaction uncertainty (about a 0.5% uncertainty overall), as it affects whether a pion

produced in a non-CCQE interaction will exit the nucleus (a background event that is
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Parameter Abbreviation Variation Effect
on cross
section

Neutron mean free path MFP N ±20% < 1%
Pion mean free path MFP Pi ±20% < 1%
Nucleon elastic scattering
cross section

FrElas N ±30% < 1%

Pion elastic scattering cross
section

FrElas Pi ±10% < 1%

Nucleon inelastic scattering
cross section

FrInel N ±40% < 1%

Pion inelastic scattering
cross section

FrInel Pi ±40% 3-5%

Nucleon charge exchange
cross section

FrCEx N ±50% < 1%

Pion charge exchange cross
section

FrCEx Pi ±50% < 1%

Nucleon absorption cross
section

FrAbs N ±20% < 2%

Pion absorption cross sec-
tion

FrAbs Pi ±20% 3-5%

Nucleon pion production
cross section

FrPiProd N ±20% < 1%

Pion pion production cross
section

FrPiProd Pi ±20% < 1%

DIS hadronization model
adjustment

AGKYxF1pi ±20% < 1%

Pion angle distribution (res-
onant events)

Theta Delta2Npi Isotropic →
Rein-Sehgal

< 0.5%

Resonant decay photon
branching ratio

RDecBR1gamma ±50% < 0.5%

Table 6.5. Summary of hadron interaction uncertainties

likely to fail our reconstruction cuts), or whether it will re-interact, potentially producing a

CCQE-like signature (and probably passing our reconstruction cuts). The mean free path

for nucleons has a smaller (less than 0.5%) effect. While CCQE events always produce a

neutron (which would be affected by this), our reconstruction cuts do not require that it
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is detected, so re-interaction would have a small effect, unless it produces a proton that

is subsequently tracked. There may also be some effect due to background events (e.g.

DIS) that produce protons, as this may affect whether that proton is tracked (the event

fails our reconstruction cuts) or not (it may pass).

6.6.2. Nucleon and pion fates

GENIE includes the capacity to determine uncertainties due to the following particle

“fates”:

• Elastic (FrElas N, FrElas pi)

• Inelastic (FrInel N, FrInel pi)

• Charge exchange (FrCEx N, FrCEx pi)

• Absorption (FrAbs N, FrAbs pi)

• Pion production (FrPiProd N, FrPiProd pi)

These refer to the probability of a hadron (produced by our primary interaction)

undergoing different forms of final state interaction. In elastic scattering, the nucleus

remains in the ground state, and the hadron retains its same charge. Our 1σ uncertainty

on FrElas N (nucleon elastic scattering) is ±30%, while for pions (FrElas pi), it is ±10%.

It should be noted that FrElas N correlates completely with changes to the mean free

path (MFP N) for the nucleon. While events containing only neutrons, our CCQE signal

particles, are unlikely to be rejected by our reconstruction cuts regardless of whether they

have re-scattered in the nucleus, this could affect whether we mistakenly accept events

with protons (if their subsequent scattering leads to them having such low energy as to not
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be identified and rejected by our track and recoil energy cuts). Because of this, FrElas N

is one of our most significant hadron interaction uncertainties, at around 1%.

An inelastic scatter can break up the nucleus. To produce our uncertainty due to this,

we vary the cross sections for inelastic rescattering (FrInel N) and (FrInel pi) by ±40%.

Charge exchange occurs where the final state hadron has a different charge from that

originally produced (for example, a CCQE-produced neutron undergoes FSI, causing a

proton to be ejected). For both nucleons (FrCEx N) and pions (FrCEx pi), we vary the

cross section for this process by ±50%. The nucleon situation could be important for the

true CCQE sample as a neutron produced in a CCQE antineutrino interaction could exit

the nucleus as a proton, making it more likely to be rejected by our recoil and track cuts.

When a hadron is absorbed in the nucleus, it does not appear in the final state. This

can be a cause of non-CCQE primary interactions with a CCQE-like signature, as pions

produced by mechanisms such as resonance production are subsequently absorbed. Thus

a background event for the true-CCQE analysis could be misidentified as signal, while

these events will be legitimate signal in a CCQE-like analysis. As the final state matches

the signal we are selecting for with our reconstructed cuts, we select a large number of

these events. Because of this, the pion absorption cross-section is the largest component of

the hadron interaction uncertainties for the CCQE analysis, with around a 1% fractional

uncertainty. The 1σ variation that produces this uncertainty for (FrAbs pi) is a ±30%

variation in the pion absorption cross section, while that for nucleon absorption (FrAbs N)

is varied by ±20%. While the nucleon absorption cross section has a smaller effect than

that of pion absorption, it also contributes significantly to the total hadron interaction

uncertainty, particularly at higher Q2. Events affected by this are those in which protons
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are produced (e.g. by DIS and hadronization) but the protons are absorbed in the nucleus,

leading to a neutron-only final hadronic state. While these events are not true CCQE,

they would have a CCQE-like signal and would tend to be selected by our reconstruction

cuts.

Pion production in final-state interactions (where the nucleon has enough energy to

produce an additional particle) can cause a primary CCQE interaction to mimic a res-

onant interaction. An event like this (FrPiProd N) would be signal for a CCQE signal

definition, but background for a CCQE-like, due to the presence of a pion in the final state.

Additionally, the pion would make the event likely to fail recoil energy and track cuts.

Additionally, a pion from an initial interaction could produce another if it re-interacts

(FrPiProd pi). The 1σ variation for each of these cases is ±20%.

6.6.3. Hadronization model (AGKYxF1pi)

In deep inelastic scattering, the incoming neutrino scatters off a parton (quark or gluon)

within the nucleon, breaking up the nucleon. As the strong force prevents quarks and

gluons from existing outside of hadrons, interactions of this type form hadronic showers,

in a process known as “fragmentation” or “hadronization”. GENIE simulates this using

the AGKY hadronization model [197], which is described in [93]. The AGKYxF1pi

parameter varies the distribution of the pion Feynman parameter, xF , in 1-pion states of

this model.

DIS events tend to have a high recoil energy due to the hadron shower, and are thus

only a small background to our sample. For that reason, this has only a small effect on

our event count (less than 0.5% in almost the entire sample), this being most noticeable
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at high energies and Q2 (high muon momentum, both transverse and longitudinal), where

DIS events are more prevalent.

6.6.4. Delta decay angle (Theta Delta2Npi)

The most common pion production mechanism in neutrino scattering is resonant scat-

tering, in which the struck nucleon is excited to a ∆ resonance state, which then decays

to a nucleon and a pion. In GENIE, the resulting pions are modeled with an isotropic

distribution. The Theta Delta2Npi uncertainty models the effect of introducing a more

realistic angular distribution for these pions, using the Rein-Sehgal model [178]. For the

CCQE study, which aims to reject events with pions, this has a minimal (< 0.1%) effect

on our event counts.

6.6.5. Resonant decay photon branching ratio (RDecBR1gamma)

The RDecBR1gamma uncertainty varies the branching ratio to photons in the decay of

resonant states. A 1σ variation to this branching ratio corresponds to ±50%. For the

CCQE study, which aims to reject events resonant events and those with photons, this

has a negligible (< 0.1%) effect on our event counts.

6.6.6. Summary of final-state interaction uncertainties

The relative magnitude of the final-state interaction uncertainties is summarized in figure

6.7. For ease of reading, uncertainties of less than 0.5% in all bins are not drawn.
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Figure 6.7. Summary of fractional uncertainties on the final cross section due
to final-state interaction uncertainties

6.7. Recoil reconstruction uncertainties

As explained in 4.3 of our selection criteria involves a Q2
QE-dependent cut on the non-

vertex recoil energy — that is, the energy deposited in the detector that forms isolated

energy “blobs”, plus the dispersed energy deposits that are not included in a blob or

track.

The measured recoil energy can be caused by charged particles in the detector, or

by a neutron interacting with a detector nucleus. We model the detector’s calorimetric

energy response to the various particles using GEANT4 [27]. To model our uncertainty in
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the detector simulation, we use the method described in section 6.2.1, where we generate

shifted universe histograms by adjusting the isolated and dispersed recoil energy by some

amount, and regenerating our event distribution. Typically, we generate two shifted

universes, corresponding to ±1σ shifts in the parameter in question.

The individual recoil reconstruction uncertainties are listed in 6.6 and discussed below.

Parameter Variation Effect on cross section

Neutron path length Energy-dependent 2− 6%
Proton response 3-4% < 0.5%
Pion response 4%(400-1900 MeV) or 5% < 1%
Other (E-M) response ±3% < 0.5%

Table 6.6. Summary of recoil reconstruction uncertainties

6.7.1. Neutron path length

CCQE antineutrino events have a hadronic final state consisting of a neutron. In order to

reject events that include other final-state particles, while retaining those with a neutron,

we need to know how neutrons interact in the MINERvA tracker. GEANT4 is used

to simulate this. In order to evaluate a systematic on the neutron interaction model,

we use a reweighting technique, corresponding to a variation in the mean free path of

neutrons in the detector, based on comparisons between GEANT and various path length

measurements [190].

The technique is described in [154] and can be summarized as follows: Assuming a

neutron scatters only once, the probability that it will have scattered after a distance x

is given by

(6.9) p(x, λ) =
e−x/λ

λ
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Where λ is the interaction length in the detector material. To get the cumulative prob-

ability that an interaction would have occurred within a radius r (proportional to cross

section), one would need to integrate:

(6.10) P (r) =

∫ r

0

p(x, λ) dx.

To generate weights, we need to take a ratio of a shifted to a default cross section, when

a path length is shifted.

(6.11) weight =
P (r, λ(1 + δ))

P (r, λ)

For small shifts λ→ λ(1 + δ), this can be expanded in a power series, giving a weight

of

(6.12) weight = 1− rδ

λ(er/λ − 1)
+O(δ2)

for neutrons that interact in the detector and a weight of

(6.13) weight = 1 +
rδ

λ
+O(δ2)

for neutrons that exit the detector without interacting.

The default mean free path λ is taken from the GEANT simulation and, for the

scintillator tracker, is related to the neutron’s momentum by

(6.14) λ =
1

0.0010528− 0.3269
min[pn,1000]

+ 159.55
min[pn,1000]2
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To make our shifts, we substitute this formula for λ, as well as r, the distance that the

neutron travels through the detector, and insert a shift fraction δ corresponding to the

fraction by which GEANT differs from measured path lengths in other studies. This value

is dependent on the neutron kinetic energy (here in MeV), and corresponds to 25% for

Tn < 25 MeV; 10% + 0.6%(50− Tn) for 25 < Tn < 50 MeV; 10% for 50 < Tn < 150 MeV,

10% + 0.6%(50−Tn) + Tn−150
1500

for 150 < TN < 300 MeV and 20% for Tn > 300 MeV. This

corresponds to the measured data-Monte Carlo discrepancies in the < 25, 50 − 150 and

> 300 MeV ranges, with linear interpolation between these regions to give a continuous

distribution.

For this uncertainty, we use two universes — one in which the path length is shifted

up by δ and one in which it is shifted down. As CCQE events always have a neutron in

the final state, this is an important recoil energy systematic, with the highest significance

of all our recoil uncertainties.

6.7.2. Charged particle response (proton, pion and others)

The recoil energy in each generated event can be divided into constituents that are gener-

ated by neutrons, protons, pions and other particles (mostly electrons/positrons and pho-

tons from electromagnetic showers, although there is also a small kaon contribution).To

generate uncertainties for the detector’s response to the different particles, for each event,

we shift the fraction of both the isolated and dispersed energy contributions to the recoil

energy for a given particle type by a percentage. To make two universes, we make a shift

up and a shift down.
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Protons are divided into three energy groupings. For low kinetic energy protons below

50 MeV, we shift energies by 4% - that is, the dispersed energy is shifted (dispersed

energy ×(1 ± 0.04× proton fraction), and correspondingly for the isolated energy. For

protons from 50-100 MeV, the shift is 3.5%; for above 100 MeV, we use 3%. These were

determined by the MINERvA test beam, as documented in [84].

The proton response affects our event rate measurement < 1% across our whole phase

space, as the track cut removes many protons, and only a small amount of those that

remain pass into our selected sample by making this shift.

The pion calorimetric response has been constrained by recent test beam studies [125]

to an accuracy of 4%, for pions with a kinetic energy between 400 and 1900 MeV. We

thus separate our pions into two categories - “constrained” within this energy range,

and “unconstrained” outside of it. Pions within the constrained range have their energy

fraction varied by ±4%, while others have it varied by ±5%, as detailed in [37]. The pion

response has only a minor effect (< 1% across our whole phase space) on our cross section,

as the shift makes only a modest difference to the number of pions that will mistakenly

be reconstructed.

For the other (basically electromagnetic, though it may include small amounts of

kaons) response, we vary the fraction of the recoil due to other particles by ±3%, as

recommended in [37]. This uncertainty was derived by observing the energy response for

Michel electrons (electrons from muon decay), which have a well-known energy spectrum.

This change mainly affects the Q2 (pT µ) shape, and contributes its maximum of around

1% uncertainty at low Q2.
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Figure 6.8. Summary of fractional uncertainties on the final cross section due
to recoil energy reconstruction

6.7.3. Summary of recoil reconstruction uncertainties

The relative magnitude of the recoil reconstruction uncertainties is summarized in figure

6.8. For ease of reading, uncertainties of less than 0.5% in all bins are not drawn.
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6.8. Propagation of uncertainty through the analysis stages

The cross section calculation consists of several stages. Systematic effects must be

considered at each stage. As the Monte Carlo is used to evaluate the magnitude of the

effects, the uncertainty universes are initially added to Monte Carlo-based distributions.

As these distributions are used with the raw data distribution in various stages of the

cross section calculation, the uncertainties transfer from the Monte Carlo to the data

histograms, as will be demonstrated in this section.

The objects generated from Monte Carlo include:

• Raw Monte Carlo distributions

• Background scales (used in background subtraction)

• Migration matrix (used for unsmearing)

• Truth histogram (used for acceptance-correction)

• Flux histograms (integrated to apply flux correction)

Table 6.7 summarizes at which stages the individual categories of systematics come

into play. For example, separate migration matrices must be made for the systematic

universes that move muon transverse and longitudinal energies between bins. Conversely,

for systematic universes where a quantity is weighted, that weight must be applied in the

true histogram used for the acceptance-correction phase. In situations where a specific

quantity is not evaluated for a given uncertainty’s universes, the central value is used. In

this table, the muon reconstruction uncertainties refer to muon energy scale, angle bias

and smearing, and vertex smearing. Particle responses refer to the proton, pion and other

particle responses, in the recoil systematic category.
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Uncertainty Raw Bkgd scales Migration matrix Truth Flux

GENIE signal uncertainties x x x
GENIE background uncertainties x x x

Flux uncertainties x x x x
FSI uncertainties x x x
Particle responses x x x

Neutron path length weight x x x
Muon reconstruction x x x

Genie variation uncertainties x x x
Mass model x x x

Tracking efficiency x x x

Table 6.7. Summary of which uncertainties are separately evaluated when gen-
erating different analysis histograms from Monte Carlo data

6.8.1. Raw Monte Carlo distributions

Figure 6.9 shows the distribution of uncertainties on the raw Monte Carlo distributions.

For ease of viewing, the individual uncertainties are combined into summary groups,

and the distributions are projected onto pT and p‖ . Note that, following the standard

MINERvA systematic uncertainty evaluation procedure, the custom is to initially evaluate

the effect of all uncertainties on the reconstructed simulation. A large portion of this is

model uncertainty which will have little to no effect on our final cross section. Some

sources of uncertainty, however, will affect the data when the uncertain simulation is used

to estimate the amount of background to subtract, and to unfold and efficiency-correct

our data.

As expected, the dominant uncertainty on our Monte Carlo is that of the CCQE signal

model - precisely the thing that we are hoping to improve with this measurement. The

effect of this uncertainty on our final cross sections is much smaller than the uncertainty
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Figure 6.9. Summary of fractional uncertainties on raw Monte Carlo distribu-
tions. Many of these will be irrelevant to the final cross section result; some will
affect background subtraction, unfolding, and efficiency correction.

it indicates on the simulation. With results such as ours, future versions of generators

will be able to decrease the CCQE model uncertainties.

Figure 6.10 shows the uncertainties on the subsample of the Monte Carlo that cor-

responds to background events. In this case there is little contribution from the CCQE

model, with a greater fractional contribution from uncertainties on the resonant and DIS

process that constitute the background. The small residual contribution from the CCQE

model is due to the small proportion of CCQE events that subsequently produce a pion via

FSI. As these do not have a CCQE-like final state, they become part of our background.
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Figure 6.10. Summary of fractional uncertainties on raw Monte Carlo back-
ground distributions, as a fraction of the total background event count in simu-
lation. The data-driven background scaling means that the effect of these on the
cross section will be reduced.

If a “true GENIE CCQE” signal definition were used, there would be no contribution at

all from CCQE events.

6.8.2. Background-subtracted data distributions

Figure 6.11 shows the distribution of uncertainties on the data after subtracting the scaled

background fraction extracted from the Monte Carlo. Because of the data-driven scaling,
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Figure 6.11. Summary of fractional uncertainties reconstructed data event count
distributions, after tuned backgrounds have been subtracted

the effect on the cross section uncertainty from the background subtraction is modest. It

is dominated by background model, FSI and recoil model uncertainties.

6.8.3. Unfolded data distributions

Figure 6.12 shows the distribution of uncertainties on the data after unsmearing using

the migration matrix extracted from the Monte Carlo, which moves events from their

reconstructed to their true bins. This generates a significant contribution from muon
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Figure 6.12. Summary of fractional uncertainties on data distributions, after
backgrounds have been subtracted and the distribution has been unfolded

reconstruction uncertainties, which can cause events to move between bins. The muon

energy scale dominates, as shown in figure 6.13

6.8.4. Acceptance-corrected data distributions

Figure 6.14 shows the distribution of uncertainties on the data after acceptance correc-

tion to the true Monte Carlo distribution. The main effect of this is to introduce large

statistical uncertainties in bins with very low acceptance, particularly at high pT , where
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Figure 6.13. Summary of muon reconstruction uncertainties on data distribu-
tions, after backgrounds have been subtracted and the distribution has been
unfolded

muons’ high-angle trajectories make them very unlikely to hit the front face of MINOS,

and at low p‖ where they lack the energy to reach the MINOS detector.

6.8.5. Cross section uncertainties

Figure 6.15 shows the distribution of uncertainties on the final cross sections. This in-

troduces uncertainty on the flux measurement; to convert from an acceptance-corrected

event count to a cross section, we must divide by the integrated flux. Our flux histograms

have 100 universes each corresponding to the PPFX and beam-focusing uncertainties.

This causes each flux universe to be scaled differently, introducing uncertainty. All other

uncertainties are unchanged, as we divide by the central value.
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Figure 6.14. Summary of fractional uncertainties on acceptance-corrected data
distributions
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Figure 6.15. Summary of fractional uncertainties on the final data cross section
distributions
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6.9. Detailed breakdown of uncertainties vs. p‖ and pT

As there are so many systematic uncertainties to consider, we categorize them in

groups as follows:

• Flux uncertainties

• Muon reconstruction uncertainties

• Signal model uncertainties

• Background model uncertainties

• Final-state interaction uncertainties

• Recoil reconstruction uncertainties

To obtain a combined fractional uncertainty for a group, the individual group fractional

uncertainties are added in quadrature:

(6.15) σtotal =
√
σ2

1 + σ2
2 + ...

By a “fractional” uncertainty, we mean the uncertainty in a given bin as a fraction of

the total event count in that bin. This approach assumes that the uncertainties are uncor-

related. Note that in some cases an individual uncertainty line can in fact incorporate a

few correlated uncertainties (for example, see the muon energy scale uncertainty discussed

in section 6.4.1, which includes uncertainties in the MINERvA energy deposition rate and

in the MINOS reconstruction of the muon energy).

Note also that the uncertainties shown here are only the values from the diagonal of a

covariance matrix that shows how uncertainties are correlated from bin to bin. While the
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off-diagonal terms of this matrix are not included in these plots, they will become impor-

tant when making χ2 comparisons to simulation and other theoretical models, where the

way that the bins vary together is just as important as the magnitudes of the uncertainties

in individual bins.

We present fractional uncertainties on the two-dimensional distributions, presented

in bins of muon longitudinal and transverse momentum (p‖µ and pT µ) and the neutrino

energy and four-momentum transfer calculated from the quasi-elastic hypothesis (Eν and

Q2
QE).

For each of these plots, the systematic uncertainty groups are represented by the

colored lines. The grey dashed line represents the statistical uncertainty on the data.

6.9.1. Fractional systematics vs. p‖µ and pT µ

Figure 6.16 shows the grouped systematic uncertainties plotted vs. the muon transverse

momentum, with one plot per bin of muon longitudinal momentum.

For these absolute uncertainties, the flux dominates, except for in regimes (low pT ,

and high pT / low p‖) where there is little data, and we become statistics-dominated.
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Figure 6.16. Absolute fractional uncertainties on the final cross section vs. muon
transverse momentum, in bins of muon longitudinal momentum (continued in
next figure)
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Figure 6.16. Absolute fractional uncertainties on the final cross section vs. muon
transverse momentum, in bins of muon longitudinal momentum (continued)
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6.9.1.1. Flux systematics vs. p‖µ and pT µ. The flux lines in figures 6.16 are formed

by adding two separate flux systematics in quadrature. Figure 6.17 shows a breakdown

of these into the individual components: beam focusing (see section 3.7.1.2), and hadron

production (see section 3.7.1.1). For all muon momenta, the hadron production model

dominates the flux uncertainty, although both sources contribute similarly to the shape

uncertainty as the hadron production varies little with pT and p‖.

The data is shown in tabular form in table E.1.
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Figure 6.17. Flux uncertainties on the final cross section vs. muon transverse
momentum, in bins of muon longitudinal momentum (continued on next page).
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Figure 6.17. Flux uncertainties on the final cross section vs. muon transverse
momentum, in bins of muon longitudinal momentum (continued).
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6.9.1.2. Muon reconstruction systematics vs. p‖µ and pT µ. The muon recon-

struction lines in figure 6.16 are formed by adding the individual muon reconstruction

systematics in quadrature. Figure 6.18 and table E.2 show a breakdown of these into the

individual components: muon energy scale (see section 6.4.1), tracking efficiency (section

6.4.2), muon angle smearing (section 6.4.3), muon angle bias 6.4.4) and vertex smearing

6.4.5). Over most of our momentum range, muon energy scale dominates the muon recon-

struction systematics, although at very forward-going muons, uncertainty on the muon’s

angle becomes dominant.
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Figure 6.18. Muon reconstruction uncertainties on the final cross section vs.
muon transverse momentum, in bins of muon longitudinal momentum (continued
on next page).
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Figure 6.18. Muon reconstruction uncertainties on the final cross section vs.
muon transverse momentum, in bins of muon longitudinal momentum (contin-
ued).
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6.9.1.3. Background interaction model systematics vs. pT and p‖. The back-

ground interaction model lines in figure 6.16 are formed by adding the individual back-

ground interaction model systematics in quadrature. Figure 6.19 and table E.3 show a

breakdown of these into the individual components.
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Figure 6.19. Background interaction uncertainties on the final cross section vs.
muon transverse momentum, in bins of muon longitudinal momentum (continued
on next page).
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Figure 6.19. Background interaction uncertainties on the final cross section vs.
muon transverse momentum, in bins of muon longitudinal momentum (contin-
ued).
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6.9.1.4. CCQE signal model systematics vs. pT and p‖. The CCQE signal interac-

tionmodel lines in figure 6.16 are formed by adding the individual signal model systematics

in quadrature. Figure 6.20 and table E.5 show a breakdown of these into the individual

components.
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Figure 6.20. CCQE signal model uncertainties on the final cross section vs.
muon transverse momentum, in bins of muon longitudinal momentum (continued
on next page).
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Figure 6.20. CCQE signal model uncertainties on the final cross section vs.
muon transverse momentum, in bins of muon longitudinal momentum (contin-
ued).
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6.9.1.5. Final-state hadron interaction systematics vs. p‖µ and pT µ. The hadron

interaction lines in figure 6.16 are formed by adding the individual final-state hadron

interaction systematics in quadrature. Figure 6.21 and table E.6, show a breakdown of

these into the individual components.
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Figure 6.21. Final-state interaction uncertainties on the final cross section vs.
muon transverse momentum, in bins of muon longitudinal momentum (continued
on next page).
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Figure 6.21. Final-state interaction uncertainties on the final cross section vs.
muon transverse momentum, in bins of muon longitudinal momentum (contin-
ued).
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6.9.1.6. Recoil reconstruction systematics vs. pT and p‖. The recoil reconstruction

lines in figure 6.16 are formed by adding the individual recoil systematics in quadrature.

Figure 6.22 and table E.9 show a breakdown of these into the individual components.
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Figure 6.22. Recoil reconstruction uncertainties on the final cross section vs.
muon transverse momentum, in bins of muon longitudinal momentum (continued
on next page).
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Figure 6.22. Recoil reconstruction uncertainties on the final cross section vs.
muon transverse momentum, in bins of muon longitudinal momentum (contin-
ued).
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CHAPTER 7

Discussion of results

7.1. Alternative nuclear models

As explained in chapter 2, the nucleus is a complex environment, and the interactions

between nucleons affect neutrino-nucleus scattering distributions. Several different the-

ories attempt to explain the effects. The NuWro event generator [121] includes several

of these models; the details of their implementations are described in [119]. All of the

effects are described in chapter 2; this section includes a summary of the models available

and how they can be combined. We will then compare the predictions of the different

models to our cross section measurement.

NuWro’s models consist of the following components:

• Basic nuclear model: Global or local Fermi gas, or spectral function

• Random Phase Approximation: Turned on or off

• 2p2h multi-nucleon effects: Nieves and Transverse Enhancement models

The two Fermi gas models can be combined with the RPA effect. In each case, and

in the case of spectral functions, an additional component from one or other of the 2p2h

models can be added. A brief summary of the different models is given below. In addition,

GENIE 2.10 allows one to generate samples of 2p2h events in the Nieves model; we will

also compare our data to a GENIE sample with this additional effect.
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7.1.1. Basic nuclear models

Figure 7.1. Cartoon of Fermi potential, from [119]

The global relativistic Fermi gas model (RFG or GFG) is the nuclear model

used by GENIE [93], the simulation program we used for the unfolding, background

estimation and acceptance correction. The model is described in section 2.3.1. It treats

nucleons as independent particles moving in a fixed Fermi potential. GENIE takes the

Fermi momentum kF to be 221 MeV for carbon, with a binding energy EB of 30 MeV

for protons and 34 MeV for neutrons. It also includes Pauli blocking [144] and a Bodek-

Ritchie high-momentum tail [59]. NuWro uses the same model as GENIE for quasi-elastic

scattering. However NuWro’s treatment of final-state interactions is rather different from

GENIE’s [119].

The local relativistic Fermi gas model (LFG), described in section 2.3.1.2, replaces

the constant Fermi momentum with a distribution that depends on a particle’s position in

the nucleus. Cross section predictions using the LFG model are higher than those using

the global Fermi gas model [119], although the effects are minor at our energies; figure

7.2 indicates that the effect on the total energy-dependent cross section is most significant
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Figure 7.2. Fractional difference between NuWro’s cross sections for local
Fermi gas and spectral function models, compared to the global Fermi gas.
As seen in these comparisons, the LFG model enhances the cross section;
spectral functions reduce it. Note that these effects are most pronounced
at neutrino energies lower than the minimum (around 1.5 GeV) analyzed
in this study. Plot reproduced from [119]

at low energies, flattening to a near-constant enhancement of less than 5% to the total

cross section above in our energy range of above 1.5 GeV.

NuWro also includes a spectral function (SF) model, as explained in section 2.3.1.3.

This models the nucleus with a shell model of energy levels, including a component corre-

sponding to short-range correlations between pairs of nucleons. Cross sections calculated

using spectral functions are smaller than those calculated with the Fermi gas model [119].

Again, in our energy range, figure 7.2 indicates an almost-flat reduction at the 10% level

in the energy-dependent cross section.

All of these models use the Llewellyn Smith [145] model for the basic free-nucleon

cross section. This model, as explained in section 2.2.2.3, has a free parameter, the axial
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mass MA. GENIE takes this to be 0.99 GeV, close to the world average. MiniBooNE,

however, extracted a value of MA = 1.35 GeV from their quasi-elastic fits [29]. We

therefore also include these models with MA=1.35 GeV in our comparisons.

7.1.2. RPA

The Random-Phase Approximation described in section 2.4, refers to long-range

correlations that have a polarization effect, screening the weak charge of the W boson.

The effect of RPA is to reduce cross sections at low Q2. This is a 1-particle-1-hole effect

— that is, it does not cause multi-nucleon knockout. RPA is not part of the 2p2h models,

and may occur in addition to those effects. When modeling distributions, we can turn on

this effect to modify the Fermi gas distributions.

Figure 7.3. Additional fractional contribution of the Nieves and TEM multi-
nucleon effects, compared to the quasi-elastic cross section, as predicted by
NuWro. Reprinted from [119].
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7.1.3. 2p2h multi-nucleon effects

Figure 7.3 shows the additional contributions to the cross section from the 2-particle-2-

hole (2p2h) effects caused by correlations and meson exchange currents. These effects

are believed to occur in addition to the 1p1h quasi-elastic cross section, and thus always

represent an enhancement to the cross section. NuWro has provided us with two alterna-

tive models; these both attempt to simulate similar physics processes, but using different

approaches. The Nieves model, described in section 2.5.3 is a prediction generated by

evaluating the Feynman diagrams that lead to meson exchange currents (MEC), where

pions and other particles are exchanged between pairs of nucleons, leading to the possibil-

ity of scattering from these correlated pairs, and to possible multi-nucleon knockout.The

Transverse Enhancement Model or TEM, explained in section 2.5.2, attempts to

parameterize an enhancement seen in electron scattering that is believed to have been

caused by meson exchange current processes. These multi-nucleon enhancements can be

added to any of NuWro’s basic nuclear models, with or without RPA.

GENIE also provides an implementation of the Nieves model. None of the other

nuclear models were available in GENIE at the time of writing, though there are plans to

add them to future versions.

7.2. Comparison of quasi-elastic-like cross sections vs. pT and p‖ with models

In order to compare our cross section with the many models from NuWro (and the one

model from GENIE), we divide them up based on the basic nuclear model, and whether

or not we include the RPA effect. Thus, we will show a set of double-differential cross

section plots corresponding to these six configurations:
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• NuWro Global Relativistic Fermi gas, without RPA effects

• NuWro Local Relativistic Fermi gas, without RPA effects

• NuWro Global Relativistic Fermi gas, with RPA effects

• NuWro Local Relativistic Fermi gas, with RPA effects

• NuWro Spectral Functions, without RPA effects

• GENIE Global Relativistic Fermi gas, without RPA effects

On each of the NuWro plots, we will show the data, along with lines representing the

following NuWro models:

• MA = 0.99 GeV, with no 2p2h effects

• MA = 1.35 GeV, with no 2p2h effects

• MA = 0.99 GeV, with the Nieves model for 2p2h contributions

• MA = 0.99 GeV, with the transverse enhancement model for 2p2h contributions

We will also include a line corresponding to GENIE’s prediction, which is always the

global Fermi gas with MA = 0.99 GeV, without RPA or 2p2h effects.

The sole GENIE plot will compare data to GENIE’s GFG prediction with and without

a 2p2h contribution from the Nieves model.

7.2.1. Global Relativistic Fermi gas, without RPA effects

These plots contain variations on the global Fermi gas model, with no contribution from

the RPA effect. By comparing the blue Nieves and purple transverse-enhancement lines

with the light green line corresponding to the NuWro with no MEC, we can see the

contribution from 2p2h effects in the pT /p‖ phase space. For all values of p‖ , Nieves

predicts a greatest enhancement at low pT , while TEM predicts enhancement at higher
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Figure 7.4. Comparison of measured quasi-elastic-like cross section with the
Global Relativistic Fermi Gas model, without RPA, with and without
2p2h effects (continued in next figure)
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Figure 7.4. Comparison of measured quasi-elastic-like cross section with the
Global Relativistic Fermi Gas model, without RPA, with and without
2p2h effects (continued)
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pT , around 0.6 GeV. At high pT , both of these converge to join the non-enhanced NuWro

line.

A particular feature of these plots is that the pale green line represents NuWro’s mod-

eling of the non-enhanced global Fermi gas, with no RPA or 2p2h effects; in other words,

this is modeling the same effects as GENIE. However, the NuWro line is markedly differ-

ent from the GENIE (red) line; NuWro’s prediction is approximately 80% of GENIE’s,

with a particularly low cross section at low pT and low p‖ . A possible explanation for this

could be that NuWro and GENIE use rather different models for final-state interactions,

which contribute to the quasi-elastic-like cross section.

7.2.2. Local Relativistic Fermi gas, without RPA effects

Compared to the global Fermi gas, the local Fermi gas model generates an enhancement

to the cross section, especially at low pT and low p‖ . Its effect does not appear sufficient

to explain the data excess at low pT and p‖ . The GENIE model in the plots remains

as global Fermi gas. A local Fermi gas model will be added to GENIE in an upcoming

release, but is not available in GENIE 2.8.4; it will be an interesting exercise to compare

the GENIE LFG model with this data.

7.2.3. Global Relativistic Fermi gas, with RPA effects

The effect of RPA is to suppress the cross section at low Q2 (compare figure 7.6, which

includes RPA, to figure 7.4, which does not). This mostly translates to a suppression

at low pT , across the whole p‖ range. As the NuWro cross sections are already lower

than our measurement, the RPA effect makes the models appear less consistent with our
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Figure 7.5. Comparison of measured quasi-elastic-like cross section with the
Local Relativistic Fermi Gas model, without RPA, with and without
2p2h effects, to GENIE (continued in next figure)
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Figure 7.5. Comparison of measured quasi-elastic-like cross section with the
Local Relativistic Fermi Gas model, without RPA, with and without 2p2h
effects, to GENIE (continued)
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Figure 7.6. Comparison of measured quasi-elastic-like cross section and
Global Relativistic Fermi Gas models, with RPA, with and without
2p2h effects, to GENIE (continued in next figure)
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Figure 7.6. Comparison of measured quasi-elastic-like cross section and Global
Relativistic Fermi Gas models, with RPA, with and without 2p2h effects, to
GENIE (continued)
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distribution. A slight enhancement due to RPA at high pT may provide better agreement

with data, but our uncertainty in this area is large. There is no RPA model currently

available in GENIE.

7.2.4. Local Relativistic Fermi gas, with RPA effects

The combined effect of RPA’s low pT suppression of RPA and the increased cross section

due to the LFG leads to a lower cross section than for the basic RFG models at low pT ,

with an enhancement at higher pT .

7.2.5. Spectral functions

Spectral functions produce a lower cross section that does the global Fermi gas model,

as shown in figure 7.2. As NuWro already under-predicts the data with its Fermi Gas

prediction, spectral functions exacerbate this issue.

7.2.6. 2p2h effects modeled in GENIE

GENIE’s implementation of the Nieves model was used to generate a sample of 2p2h

effects (also used to calculate the MEC systematic error band, as explained in section

6.2.3). When POT-normalized to our standard simulation, the 2p2h sample contains 26%

as many 2p2h events as the standard simulation contains CCQE events (there are 18%

as many QE-like 2p2h events in the POT-normalized Nieves sample as there are 1p1h

QE-like events in the standard sample). Figure 7.9 shows the effect of adding this 2p2h

effect to GENIE’s cross section prediction. The model with 2p2h added appears to show

better agreement with the data than the model without 2p2h.
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Figure 7.7. Comparison of measured quasi-elastic-like cross section with
the Local Relativistic Fermi Gas model, with RPA, with and without
2p2h effects, to GENIE (continued in next figure)
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Figure 7.7. Comparison of measured quasi-elastic-like cross section with the
Local Relativisitic Fermi Gas model, with RPA, with and without 2p2h
effects, to GENIE (continued)
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Figure 7.8. Comparison of measured quasi-elastic-like cross section with
the Spectral function model, with and without 2p2h effects, to GENIE
(continued in next figure)
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Figure 7.8. Comparison of measured quasi-elastic-like cross section with the
spectral function model, with and without 2p2h effects, to GENIE (continued)
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Figure 7.9. Comparison of measured quasi-elastic-like cross section and GE-
NIE with 26% 2p2h effect, to GENIE with no 2p2h (continued in next
figure)
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Figure 7.9. Comparison of measured quasi-elastic-like cross section and GE-
NIE with 26% 2p2h effect, to GENIE with no 2p2h (continued)



369

(GeV)
µT

p

0 0.2 0.4 0.6 0.8 1 1.2 1.4

/G
e
V

/P
ro

to
n

)
2

 (
c
m

µ

d
pσ
d

0

2

4

6

8

10

12

14

­39
10×

Figure 7.10. Comparison of our measured quasi-elastic-like cross section
dσ/dpT with GENIE without 2p2h, and with 10, 26 (the standard amount)
and 40% 2p2h per CCQE interaction, simulated by the Nieves MEC model.

A future enhancement could be to fit for the amount of 2p2h that best matches

our data. Figure 7.10 shows our data in comparison to three different simulated MEC

strengths, generated using GENIE’s implementation of the Nieves meson-exchange current

model. To perform a fit to these templates, we would need to minimize a goodness of fit

quantity, such as the two-dimensional χ2. Note that we would not currently be able to

include other factors such as RPA and the possibility of switching between the global and

local Fermi has models in this fit, as those are not yet implemented in GENIE. A new

version of GENIE, to be released later in 2016, will include these features.

7.2.7. Projection of data and models onto pT

An interesting summary can be found by projecting the data and model comparisons

separately onto muon p‖ and pT , to obtain single-differential cross sections. Figure 7.11

shows the projection of all the models to give dσ/dpT . An excess of data over simulation
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at intermediate pT is not accounted for by any of the models. However, a corresponding

increase in cross section is shown in that same intermediate pT range by the transverse

enhancement model (TEM). While that model predicts a consistently smaller overall

cross section than our data, we should remember that this model is an enhancement to

the NuWro Fermi gas models, which predict a smaller cross section than GENIE due

to the difference in FSI modeling. It is therefore possible that GENIE with the TEM

enhancement would better reproduce our data distribution. This model is to be added to

a new release of GENIE.

7.2.8. Projection of data and models onto p‖

We can also project our data onto muon p‖ . Here, we see that the models show far less

variation in shape, with most of the differences between them coming from an overall

normalization of the cross section. None of the models replicate our shape in muon p‖ ;

neither do any of them match the normalization.

7.3. Comparison of true CCQE distributions with models

A comparison of the true CCQE (see section 4.1.2) cross section measurements to

models allows us to look at distributions that do not depend on the final-state interaction

models. (Our standard quasi-elastic-like definition, as explained in section 4.1.3, includes

contributions from resonant interactions that include FSI.) This allows us to distinguish

whether differences between data and models for the quasi-elastic-like distributions are

more likely to be due to FSI or resonant cross section modeling, or whether they are more

likely to be due to other effects such as correlations.
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(e) Spectral functions

(GeV)
µT

p

0 0.2 0.4 0.6 0.8 1 1.2 1.4

/G
e
V

/P
ro

to
n

)
2

 (
c
m

µ
T

d
pσ
d

0

2

4

6

8

10

12

14

­39
10×

(f) GENIE + MEC

Figure 7.11. Comparison of quasi-elastic-like cross section dσ/dpT to GE-
NIE for data and models. a) Global Fermi Gas without RPA; b) Local
Fermi Gas without RPA; c) Global Fermi Gas with RPA; d) Local Fermi
Gas with RPA; e) Spectral Functions; f) GENIE with and without MEC

Figure 7.13 shows a comparison of our measurements of the single-differential cross

sections dσ/dpT and dσ/dp‖, for both quasi-elastic-like and true CCQE signal definitions,

with the GENIE prediction without 2p2h effects, and with the corresponding NuWro
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(c) GFG + RPA
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(e) Spectral functions
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(f) GENIE + MEC

Figure 7.12. Comparison of quasi-elastic-like cross section dσ/dp‖ to GE-
NIE for data and models. a) Global Fermi Gas without RPA; b) Local
Fermi Gas without RPA; c) Global Fermi Gas with RPA; d) Local Fermi
Gas with RPA; e) Spectral Functions f) GENIE with and without MEC

prediction. In each case, the difference between GENIE and NuWro is more pronounced

when predicting a quasi-elastic-like cross section than when predicting a CCQE cross

section. This suggests that the discrepancies between the models are mostly due to the
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FSI modeling, or to the resonant cross section. This is as expected, as both generators

ostensibly use the same parameters to model the CCQE cross section, whereas they use

different methods to simulate final-state interactions.

A probably explanation for this is in the differing treatments of final-state interactions

between NuWro and GENIE. GENIE’s FSI simulates more protons in the final state than

does NuWro’s; in order to conserve energy, this necessarily means that GENIE’s FSI

protons will tend to have lower energies than NuWro’s. This analysis defines the signal
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to include events with any number of protons with kinetic energy below 120 MeV; it

is therefore particularly sensitive to the energy distribution of final-state protons. As

NuWro’s protons generated by FSI tend to have higher energies, resonant production

followed by FSI is more likely to generate background events (where one or more protons

has kinetic energy above 120 MeV) in NuWro than in GENIE. [120] GENIE’s FSI model

produces quasi-elastic-like distributions that agree better with our data measurement than

the distributions produced by NuWro.

Figure 7.14 shows a comparison of our CCQE measurement with GENIE’s prediction

both with and without the Nieves 2p2h effect. As with the QE-like measurement shown in

figure 7.9, the data appear to agree better with the prediction that includes 2p2h effects.

7.4. Conclusions from model comparisons

To summarize, we can draw the following conclusions from comparing our measured

quasi-elastic-like and true CCQE cross sections with models:

Our data prefer GENIE’s global Fermi gas prediction with 2p2h over the

prediction without 2p2h. As shown in 7.9, the quasi-elastic-like prediction with 2p2h

is a better match for our quasi-elastic data than the prediction with no 2p2h. This is also

borne out by the true CCQE predictions in 7.14.

Our data prefer GENIE’s final-state interaction model to NuWro’s. Our

quasi-elastic-like signal definition, which allows final states containing the positive muon

characteristic of a charged-current antineutrino interaction, all neutrons, and protons

with kinetic energy below a 120 MeV threshold, is very sensitive to final-state interaction

modeling. While GENIE and NuWro’s CCQE models are very similar, they differ in their
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Figure 7.14. Comparison of measured true-CCQE cross section and GENIE
with 26% 2p2h effect (blue), to GENIE with no 2p2h (red) (continued in
next figure)
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treatment of final states, causing more significant differences in their quasi-elastic-like

predictions, as shown in 7.13. For the global Fermi gas model, our data agree better

with GENIE’s model than NuWro’s. The enhancements generated by changing NuWro’s

nuclear model to a local Fermi gas, and by adding 2p2h effects to NuWro’s prediction, as

shown in 7.5, improve the agreement with data, but still under-predict for low p‖ .

More GENIE models will allow for better testing. Currently, 2p2h effects are

simulated using the Nieves model. We do not yet have access to GENIE simulations for

the TEM modeling of 2p2h, for the local Fermi gas or spectral function nuclear models,

or for the RPA effect. A later version of GENIE will include these effects, allowing for

further comparisons with the data. The reduced cross section for all NuWro distributions

due to NuWro’s different FSI model makes it hard to compare the different 2p2h models

in NuWro to the data.

A χ2 comparison can provide more answers. To make a complete comparison,

once can calculate a full two-dimensional χ2 fit between the data and the different models,

taking into account the correlations between bins. The data are in place and await a full

suite of theoretical predictions for true-CCQE and QE-like signatures. These are currently

being generated.

7.5. Comparison with previous and external results

7.5.1. Previous MINERvA CCQE antineutrino scattering results

In 2013, MINERvA published antineutrino scattering cross sections dσ/dQ2
QE. [96] This

measurement differed from the primary result of this analysis, in that it attempted to
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measure the cross section for true quasi-elastic scattering, while this study looks at quasi-

elastic-like scattering that includes a component generated by pion production followed

by final-state interactions. The 2013 analysis was less complicated by the identification of

final states with multiple nucleons, and its measurement was less dependent on final-state

interaction modeling. However it was particularly dependent on GENIE’s CCQE model

for acceptance correction, a model that we know to be incomplete.

Figure 7.15. Data / model comparison of the 2013 dσ/dQ2
QE measurement,

taken as a ratio to GENIE, from [96], but scaled to use the updated PPFX1
NuMI flux [36], by the method of [105]

Figure 7.15 shows the ratio of the cross section measurement from the 2013 paper to

GENIE, along with several models from NuWro. Note that, for the 2013 analysis, there

was much closer agreement between GENIE and NuWro than in the analysis discussed

in this thesis. That supports the theory that the difference between the two generators

comes in for the events that are quasi-elastic-like, but that are not quasi-elastic; in the
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(a) dσ/dQ2
QE for CCQE signal from [96]

but scaled to the updated PPFX1 NuMI
flux [36], by the method of [105]

)2 (GeV
QE

2Q

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/p
ro

to
n

)
2

/G
e

V
2

 (
c

m
Q

E

2
 /

 d
Q

σ
d

0

2

4

6

8

10

12

14

16

­39
10×

Data
Simulation

POT­Normalized

Data POT: 1.04E+20

MC POT: 9.52E+20

Summary: Cross section

A PreliminaryνMINER

(b) dσ/dQ2
QE for CCQE signal, from this analysis

Figure 7.16. Comparison between 2013 CCQE dσ/dQ2
QE for a true CCQE

signal, and the current measurement of dσ/dQ2
QE for a true CCQE signal.

The two measurements use a different integrated flux.

2013 analysis those would have been considered background, and were not included in the

model distributions shown here.

The measurement in [96] was taken in 2013; since then, there have been significant

advances in the prediction of the NuMI flux, thanks to the PPFX flux simulation [36].

The cross section measurement from the 2013 analysis was re-weighted to the new flux

prediction using the method described in [105], to give an estimate of the cross section

using the PPFX flux. This method also recalculates the covariance matrix.

Figure 7.16 shows a comparison of the 2013 measurement, scaled to the improved

PPFX flux measurement [36] using the method of [105] (figure 7.16a) and this mea-

surement (figure 7.16b) of dσ/dQ2
QE, projected from the double-differential cross section.

Both cross sections are flux-averaged.

There are some differences between the analyses; the 2013 analysis looked at a flux

range of 1.5 < Eν < 10 GeV, and introduced this neutrino energy range limit on its
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signal definition and cuts; we place no limit on neutrino energy. Our full integrated flux

is 2.36008 × 10−8cm−2 per POT; if we limit it to 1.5-10 GeV, it would be decreased to

2.02829 × 10−8cm−2, a 14% decrease. Our increased flux corresponds to a lower cross

section (inversely proportional to the integrated flux) for the current 2016 measurement

(figure 7.16b) compared to the updated 2013 measurement (figure 7.16a). There are also

minor differences in the event selection and reconstruction: we have a maximum p‖ limit

of 15 GeV, and have an updated tracking efficiency and mass model, and a correction for

a muon angle bias.

7.5.2. MiniBooNE double-differential cross section

The neutrino oscillation experiment MiniBooNE has also measured an antineutrino double-

differential scattering cross section [30]. There are several differences between Mini-

BooNE’s measurement and ours. MiniBooNE has a lower beam energy [28] (with a mean

energy of 665 MeV, while ours peaks around 3 GeV). They also use a very different

detector technology; the MiniBooNE detector [77] is a spherical mineral oil Cherenkov

detector, with no limit on the angular acceptance. The mineral oil target, while also a

hydrocarbon, has a higher fraction of hydrogen than MINERvA’s polystyrene (mineral oil

has approximately 2 hydrogen atoms per carbon atom (CnH2n+2 for n ≈ 20); polystyrene

has approximately 1).

While MiniBooNE’s detector is good at identifying muons, it has poor sensitivity to

nucleons. Thus it identifies quasi-elastic antineutrino scattering events by looking for a

muon and no pions in the final state. Any number of nucleons are allowed, as they are

undetectable.
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Informed by the results of fits to the light-target CCQE

experiments, Meff;H
A ¼ 1:026� 0:021 GeV [19,20] is as-

sumed and subtracted from the data. Systematic error due
to this background is evaluated with the method described
earlier in this section with K ¼ 100 throws against the
0.021 GeV uncertainty. Including this additional error
and, more importantly, considering the lower sample purity
for this alternate definition of signal events, the fractional
normalization uncertainty increases to 17.4%.

D. Results

The ��� CCQE double-differential flux-integrated cross

section on mineral oil is shown with shape uncertainty in
Fig. 8, and the one-dimensional projections are compared
to RFG predictions in Fig. 9. The configuration with the
hydrogen content subtracted is given in Appendix D
and may be more readily compared to theoretical calcula-
tions for ��� CCQE interaction on carbon, such as in

Refs. [60–65]. Bins in the kinematic region�1< cos �� <

þ1 and 0:2< T� ðGeVÞ< 2:0 are reported if theymeet the

statistical requirement of at least 25 events in the recon-
structed and background-subtracted data term (dj � bj) in

Eq. (3). If this threshold is not met, no measurement is
reported. As no explicit assumptions about the underlying
interaction are necessary to reconstruct muon kinematics,
this result is nearly model independent. Since some back-
ground processes are not directly constrained by data, most
notably CC1��, Appendix D tabulates the subtracted data.

V. CONCLUSION

This work presents the first measurement of the ���

CCQE double-differential cross section in terms of muon
angle and energy. This measurement is also the first ���

charged-current cross-section measurement with the ma-
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Figure 7.17. Double differential ν̄µ scattering cross section from MiniBooNE[30]

As MiniBooNE benefits from angular acceptance in all directions, they choose to make

their double-differential cross section measurement in the muon angle θµ with respect to

the beam, and its kinetic energy Tµ. As shown in figure 7.17, the measured cross section
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is a poor fit to the standard global Fermi gas model with MA = 0.99 GeV. Instead, it

provides a better fit to a version with MA = 1.35 GeV, the best-fit value from their

neutrino-mode quasi-elastic analysis [29].

7.5.3. NOMAD antineutrino quasi-elastic cross section

Figure 7.18. NOMAD’s antineutrino-carbon CCQE cross section measure-
ments (red) compared with those from previous bubble chamber experi-
ments (black). The data were consistent with a global relativistic Fermi
gas model, with MA = 1.06± 0.14 GeV. Reprinted from [146]

NOMAD (Neutrino Oscillation Magnetic Detector), a νµ → ντ search which ran at

CERN from 1995-8 [189], used a higher energy beam than either MINERvA or Mini-

BooNE, with an average antineutrino energy of 17.6 GeV. The detector technology was

also very different, consisting of 44 drift chamber modules, filled with an argon-ethane gas

mixture, with the casing (average atomic mass 12.9) serving as a passive target, located

in a 0.4 Tesla magnetic field. NOMAD measured an antineutrino CCQE cross section

[146]. They did not take final-state interactions into account when choosing their signal

definition, but instead made a true CCQE measurement; their event selection was on a
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single positive muon (charge-identified thanks to the magnetic field) and no other tracks.

A value of the axial mass, MA, was extracted from the dσ/dQ2 distribution shape, and

from the total cross section.

NOMAD reported a total cross section 〈σQE〉ν̄ = (0.81 ± 0.05(stat) ± 0.09(sys) ×

10−38 cm2 on the 3-100 GeV energy range. They also extracted a best-fit value of the

axial mass MA = 1.06± 0.14 GeV.

7.5.4. Comparison of this analysis’ results to NOMAD and MiniBooNE’s
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Figure 7.19. Preliminary plot showing the cross section σ(Eν) from this
analysis (black) compared with measurements from MiniBooNE [30] (red
squares) and NOMAD [146] (blue triangles) and GENIE’s CCQE-like pre-
diction (black dashed line). Our measurements show statistical (inner tick)
and total (full error bar) uncertainties.

Figure 7.19 gives an indication of how the MINERvA results compare to those of

MiniBooNE, at lower energies, and NOMAD, at higher. (MiniBooNE’s results, originally

measured on mineral oil, have had the hydrogen component subtracted off to give a cross

section on carbon.) The black points show the data from this analysis, unfolded to true
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Eν. The plot appears to show agreement with the MiniBooNE distribution, but to show

tension with NOMAD’s results. Note that, as with this analysis, MiniBooNE was looking

at a quasi-elastic-like distribution, while NOMAD studied true CCQE.
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CHAPTER 8

Conclusions

We have presented MINERvA’s first double-differential cross section for antineutrino

scattering, and its first quasi-elastic-like antineutrino scattering cross section. We studied

scattering of muon antineutrinos on doped polystyrene scintillator, producing a double-

differential flux-integrated cross section in the muon transverse and longitudinal momen-

tum d2σ/dpTdp‖. We introduced a novel quasi-elastic-like definition, where our signal was

a positive muon in the final state, along with any number of neutrons and any number of

protons with less than 120MeV of kinetic energy. We also produced an energy-dependent

cross section dσ(Eν)/dQ
2
QE. By projecting these double-differential cross sections, we

also generated the flux-integrated single-differential cross sections dσ/dpT , dσ/dp‖ and

dσ/dQ2
QE. Additionally, we calculated the total scattering cross section σ(Eν) as a func-

tion of neutrino energy. A comparison with different generator’s models showed better

agreement with the GENIE generator than with NuWro. The differences between these

generators’ predictions were shown to be due to the component of the quasi-elastic-like

cross section that came from final-state interactions, rather than due to the quasi-elastic

model itself.

An excess of data over GENIE suggests that additional nuclear 2-particle-2-hole effects

such as meson exchange currents may be present. Adding a meson exchange current

model to GENIE’s prediction produced distributions that were a better match to our
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measurement. An upcoming version of GENIE will allow us to model several different

nuclear effects and extensions to the Fermi Gas model and test these against our data.

Our total cross section results were also compared with those from the MiniBooNE

and NOMAD experiments, whose results had previously shown tension with each other.

The MINERvA result appears to show greater agreement with MiniBooNE; however, it

should be noticed that our signal definition is more similar to MiniBooNE’s than it is to

NOMAD’s, which may affect the result.

A comparable double differential cross section is being calculated at MINERvA for

quasi-elastic-like neutrino scattering; it will be interesting to see whether these results

show similar patterns when compared to generators’ models. It will also be interesting

to compare with the models from the next GENIE version. If we are able to use the

data to constrain the strength of correlation effects in the quasi-elastic like channel, it

will be a great help to oscillation experiments who need to reduce their current levels of

uncertainty on interaction models.

In future, we plan to study the difference between true quasi-elastic and quasi-elastic-

like signal definitions, which gives us information about final-state interaction effects.

MINERvA is also currently collecting data at a higher energy range with a neutrino

beam, and plans to collect higher-energy antineutrino data; we also have approximately

9×1019 POT of antineutrino data taken with a partial “frozen” MINERvA detector [72],

which could be incorporated into a future version of this analysis. An analysis on quasi-

elastic-like scattering is underway for MINERVA’s passive nuclear targets, which will

provide cross sections on lead and iron as well as on carbon. Furthermore, the planned

CAPTAIN-MINERvA extension [79], where the CAPTAIN liquid argon time-projection
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chamber will be placed upstream of MINERvA, in place of its current helium target. This

will be extremely valuable as the DUNE next-generation oscillation experiment will use a

liquid-argon detector; CAPTAIN-MINERvA will provide neutrino-argon scattering cross

sections in the DUNE energy range to help reduce their uncertainties, and to study how

neutrino scattering on argon compares with that on carbon.

MINERvA has a rich program for measurements of quasi-elastic scattering for neu-

trinos and antineutrinos, with a variety of targets, and over a broad energy range that

is very relevant to the current and future neutrino oscillation program. These measure-

ments will be key to improving modeling of neutrino scattering on heavy nuclei, and to

understanding how the nucleus affects scattering.
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APPENDIX A

Preliminary tables of cross section measurements

Note: these measurements are preliminary and may change slightly before publica-

tion.

A.1. Quasi-elastic-like cross sections

The tables in this section list our cross section measurements for the quasi-elastic-

like signal definition explained in section 4.1.3. In each case, we show a table of values

corresponding to the cross section, followed by a table of statistical uncertainties, then

one of systematic uncertainties. Units are explained in the captions to the tables.

A.1.1. Muon parallel and transverse momentum

The cross section vs. muon parallel and transverse momentum, d2σ/dpTdp‖ is shown in

table A.1. The statistical uncertainty on these measurements is in table A.2, and the

systematic uncertainty in table A.3.

Table A.4 shows the differential cross section dσ/dpT , generated by projecting the

two-dimensional measurement onto the pT axis. Table A.5 shows the differential cross

section dσ/dp‖, generated by projecting the two-dimensional measurement onto the p‖

axis.
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0-0.15 0.15-0.25 0.25-0.4 0.4-0.7 0.7-1 1-1.5

1.5-2 59.93 179.79 286.27 280.38 143.00 6.57
2-2.5 57.69 197.56 327.00 397.44 161.32 23.43
2.5-3 62.74 258.48 410.63 420.40 192.86 12.17
3-3.5 63.16 198.63 352.40 350.22 112.64 15.38
3.5-4 42.10 126.39 216.03 206.86 74.15 9.93
4-4.5 17.71 65.48 137.29 99.12 37.53 5.78
4.5-5 8.82 39.11 61.77 53.60 23.69 4.21
5-6 4.59 23.90 33.81 41.31 17.68 2.98
6-8 3.69 9.79 20.22 24.06 11.66 1.92
8-10 2.46 7.62 10.71 9.81 6.03 2.53
10-15 0.68 2.69 5.10 5.84 2.90 0.94

Table A.1. Measured double differential quasi-elastic-like cross section
d2σ/dpTdp‖. Units are 10−41cm2/GeV2/proton. Columns represent bins
of pT (GeV), rows are bins of p‖ (GeV).

0-0.15 0.15-0.25 0.25-0.4 0.4-0.7 0.7-1 1-1.5

1.5-2 7.41 17.06 19.88 18.57 26.34 4.23
2-2.5 6.72 15.46 17.52 16.63 15.13 9.34
2.5-3 6.61 17.26 18.63 14.86 12.57 2.81
3-3.5 6.49 14.39 16.38 12.38 7.56 3.13
3.5-4 5.00 10.76 11.98 8.88 5.65 1.88
4-4.5 2.86 6.96 9.42 5.80 3.53 1.11
4.5-5 1.96 5.47 5.73 3.90 2.61 0.84
5-6 1.19 3.47 3.46 2.86 1.88 0.61
6-8 0.85 1.58 2.05 1.62 1.15 0.35
8-10 0.75 1.45 1.46 1.01 0.79 0.48
10-15 0.23 0.48 0.67 0.50 0.37 0.20

Table A.2. Statistical uncertainty on the measured double differential quasi-
elastic-like cross section d2σ/dpTdp‖. Units are 10−41cm2/GeV2/proton.
Columns represent bins of pT (GeV), rows are bins of p‖ (GeV).

A.1.2. True neutrino energy and Q2
QE

The energy-dependent cross section vs Q2
QE, dσ(Eν)/dQ

2
QE is shown in table A.6. The sta-

tistical uncertainty on these measurements is in table A.7, and the systematic uncertainty

in table A.8.
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0-0.15 0.15-0.25 0.25-0.4 0.4-0.7 0.7-1 1-1.5

1.5-2 13.33 34.89 46.89 41.59 28.45 1.41
2-2.5 9.72 31.11 46.88 48.65 19.88 6.54
2.5-3 9.56 37.19 53.32 45.18 22.79 2.93
3-3.5 8.54 22.52 38.12 37.73 15.43 4.28
3.5-4 5.34 13.94 22.07 25.17 11.82 2.23
4-4.5 2.82 7.45 16.44 14.49 5.92 1.40
4.5-5 1.55 4.40 6.91 6.36 3.08 1.15
5-6 0.77 2.82 3.69 4.63 2.43 0.74
6-8 0.49 1.36 2.42 2.76 1.82 0.45
8-10 0.37 1.14 1.44 1.22 1.10 0.54
10-15 0.11 0.30 0.96 0.72 0.49 0.38

Table A.3. Systematic uncertainty on the measured double dif-
ferential quasi-elastic-like cross section d2σ/dpTdp‖. Units are
10−41cm2/GeV2/proton. Columns represent bins of pT (GeV), rows are
bins of p‖ (GeV).

Bin Cross section Statistical uncertainty Systematic uncertainty

0-0.15 176.36 7.97 25.87
0.15-0.25 604.88 18.53 79.71
0.25-0.4 1016.84 21.08 120.36
0.4-0.7 1042.29 17.60 112.82
0.7-1 440.14 17.66 60.21
1-1.5 55.29 5.90 12.29

Table A.4. Differential quasi-elastic-like cross section dσ/dpT , along with
statistical and systematic uncertainties. Units are 10−41cm2/GeV/proton.
The pT bins are in GeV.

The flux-integrated single-differential cross section dσ/dQ2
QE is shown in table A.9.

This is generated by dividing the (background-subtracted, unfolded, efficiency-corrected)

event distribution dN/dQ2
QE by the total flux Φ.

Table A.10 shows the energy-dependent cross section σ(Eν). This is generated by

dividing the number of events in each energy bin Ni(Eν) by the flux in that bin Φi(Eν).
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Bin Cross section Statistical uncertainty Systematic uncertainty

1.5-2 200.21 10.53 28.14
2-2.5 256.80 8.81 30.93
2.5-3 286.92 6.92 31.65
3-3.5 228.74 5.52 24.37
3.5-4 140.62 3.98 16.57
4-4.5 73.68 2.67 10.03
4.5-5 39.79 1.81 4.78
5-6 27.34 1.25 3.16
6-8 16.24 0.72 1.95
8-10 8.75 0.54 1.14
10-15 4.23 0.24 0.55

Table A.5. Differential quasi-elastic-like cross section dσ/dp‖, along with
statistical and systematic uncertainties. Units are 10−41cm2/GeV/proton.
The p‖ bins are in GeV.

0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 3498.11 4098.42 3587.67 3204.90 1882.18 585.97 145.49 0.00
2-2.5 2582.14 3462.87 3259.15 2973.10 2278.96 778.20 199.09 0.00
2.5-3 2984.61 3852.23 3824.71 3566.23 2379.89 965.92 325.91 41.33
3-3.5 2932.52 3534.99 3672.29 3460.72 2462.35 1175.62 378.99 88.44
3.5-4 2602.07 2879.70 3491.03 2982.39 2131.48 1003.12 398.14 83.95
4-5 1000.55 1298.97 1610.57 1568.23 1037.29 478.51 182.42 60.64
5-6 1045.86 1961.67 1584.68 1483.00 1345.00 578.34 150.77 65.62
6-7 1221.27 1853.47 2224.07 1794.67 1705.64 690.83 231.40 60.65
7-8 1395.01 1351.66 1738.52 2058.22 1395.95 740.43 221.33 76.95
8-10 805.77 1072.27 1042.58 928.46 556.75 317.68 156.95 55.24

Table A.6. Measured energy-dependent quasi-elastic-like cross section
dσ(Eν)/dQ

2
QE. Units are 10−41cm2/GeV2/proton. Columns represent bins

of Q2
QE (GeV2), rows are bins of Eν (GeV).

A.1.3. Neutrino energy reconstructed in the CCQE hypothesis, and Q2
QE

The reconstructed energy-dependent cross section vs Q2
QE, dσ(EQE

ν )/dQ2
QE is shown in

table A.11. The statistical uncertainty on these measurements is in table A.12, and

the systematic uncertainty in table A.13. The total reconstructed energy-dependent cross
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0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 486.84 561.95 409.15 327.46 257.58 200.56 288.22 0.00
2-2.5 294.74 363.61 259.26 194.36 147.61 91.23 105.01 0.00
2.5-3 282.07 332.15 240.39 176.40 113.79 63.10 58.36 21.22
3-3.5 271.52 304.04 225.63 164.64 104.35 57.21 44.03 20.80
3.5-4 287.41 291.86 240.93 165.81 102.59 51.99 38.23 15.15
4-5 133.81 149.31 124.67 91.96 54.80 27.06 19.16 9.36
5-6 220.72 330.36 210.25 147.70 105.91 49.98 23.10 12.00
6-7 316.60 399.39 334.89 205.62 159.75 70.68 39.14 14.10
7-8 407.92 280.89 310.54 271.13 150.05 84.61 40.94 17.49
8-10 228.50 222.31 173.16 115.61 64.60 35.81 25.65 12.00

Table A.7. Statistical uncertainty on the measured quasi-elastic-like energy-
dependent cross section dσ(Eν)/dQ

2
QE. Units are 10−41cm2/GeV2/proton.

Columns represent bins of Q2
QE (GeV2), rows are bins of Eν (GeV).

0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 969.37 1067.58 772.20 706.64 393.98 121.76 93.22 0.00
2-2.5 480.75 629.37 513.87 453.95 325.30 100.90 59.43 0.00
2.5-3 502.88 563.41 539.69 480.41 294.04 118.48 62.68 12.74
3-3.5 421.24 450.58 455.24 424.31 290.21 137.96 65.31 16.08
3.5-4 387.47 391.82 462.70 389.82 294.47 144.74 73.82 24.03
4-5 205.44 223.68 272.64 267.14 183.06 87.74 43.35 13.76
5-6 190.97 333.09 249.07 232.75 209.65 101.73 31.26 16.16
6-7 200.61 334.32 351.08 241.64 226.70 101.85 46.32 12.95
7-8 213.68 219.82 233.72 300.70 189.95 122.90 39.99 18.41
8-10 110.16 207.16 162.95 122.12 74.79 46.66 28.48 14.02

Table A.8. Systematic uncertainty on the measured energy-
dependent quasi-elastic-like cross section dσ(Eν)/dQ

2
QE. Units are

10−41cm2/GeV2/proton. Columns represent bins of Q2
QE (GeV2), rows are

bins of Eν (GeV).

section σ(EQE
ν ), generated by dividing the event count Ni(E

QE
ν ) in each bin by that energy

bin’s flux Φ(Eν), is shown in table A.14. Note the difference between true Eν (a property

of the incoming neutrino) and EQE
ν , in which we reconstruct an approximation of Eν from

the muon kinematics, using the quasi-elastic hypothesis, as explained in appendix B. The
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Bin Cross section Statistical uncertainty Systematic uncertainty

0-0.025 1146.41 49.58 169.06
0.025-0.05 1454.29 57.91 195.82
0.05-0.1 1493.60 43.12 184.31
0.1-0.2 1382.50 32.43 163.35
0.2-0.4 973.90 23.16 108.07
0.4-0.8 416.82 16.88 44.58
0.8-1.2 127.83 10.50 18.75
1.2-2 25.86 2.65 4.80

Table A.9. Flux-integrated quasi-elastic-like differential cross section
dσ/dQ2

QE, along with statistical and systematic uncertainties. Units are

10−41cm2/GeVˆ2/proton. The Q2
QE bins are in GeV2.

Bin Cross section Statistical uncertainty Systematic uncertainty

1.5-2 679.40 77.81 143.73
2-2.5 729.05 34.10 102.43
2.5-3 872.28 25.31 106.36
3-3.5 938.22 22.63 106.99
3.5-4 831.90 20.97 112.72
4-5 815.18 22.37 144.48
5-6 915.86 38.12 145.51
6-7 1126.08 55.30 150.32
7-8 1086.87 60.33 154.01
8-10 1074.65 58.02 145.77

Table A.10. Energy-dependent quasi-elastic-like cross section σ(Eν), along
with statistical and systematic uncertainties. Units are 10−41cm2/proton.
The Eν bins are in GeV.

ratio of dσ(EQE
ν )/dQ2

QE to dσ(Eν)/dQ
2
QE is shown in table A.15, with the statistical and

systematic uncertainties in tables A.16 and A.17 respectively.
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0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 3492.24 4245.94 3778.16 3415.43 2120.79 745.85 0.00 0.00
2-2.5 2687.21 3677.30 3368.53 3143.17 2388.83 840.00 187.09 0.00
2.5-3 3022.38 3872.41 3837.07 3551.01 2359.51 974.87 340.26 4.53
3-3.5 2760.38 3284.92 3486.76 3323.43 2381.88 1136.16 360.80 94.08
3.5-4 2347.31 2611.69 3282.67 2754.17 1984.54 934.42 385.77 80.17
4-5 913.13 1192.03 1463.71 1469.71 963.34 450.88 175.41 61.05
5-6 926.76 1875.77 1525.16 1368.65 1298.58 556.74 147.22 64.98
6-7 1198.66 1735.20 2118.60 1796.22 1667.76 663.96 219.75 59.56
7-8 1387.64 1365.39 1713.50 1972.86 1321.36 720.99 219.32 81.27
8-10 803.37 1027.70 1002.36 913.42 543.70 309.62 155.43 53.63

Table A.11. Measured reconstructed energy-dependent quasi-elastic-like
cross section dσ(EQE

ν )/dQ2
QE. Units are 10−41cm2/GeV2/proton. Columns

represent bins of Q2
QE (GeV2), rows are bins of EQE

ν (GeV).

0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 452.28 560.26 406.34 339.12 281.21 264.08 0.00 0.00
2-2.5 306.86 375.30 264.43 200.82 152.57 99.84 117.39 0.00
2.5-3 284.08 339.79 241.93 177.93 113.69 65.78 67.58 2.30
3-3.5 262.59 291.80 219.33 160.30 103.09 57.59 44.81 27.02
3.5-4 268.02 275.28 232.13 156.10 99.14 51.50 41.44 15.01
4-5 125.30 139.70 116.47 87.02 51.93 25.90 18.80 9.69
5-6 204.88 313.96 205.46 139.07 104.31 48.22 22.64 12.38
6-7 320.39 380.10 321.52 203.89 157.98 68.74 38.32 13.89
7-8 417.28 289.00 306.50 260.04 142.86 82.08 41.03 19.18
8-10 230.53 211.15 168.50 115.10 63.61 35.39 25.81 11.95

Table A.12. Statistical uncertainty on the measured reconstructed energy-
dependent quasi-elastic-like cross section dσ(EQE

ν )/dQ2
QE. Units are

10−41cm2/GeV2/proton. Columns represent bins of Q2
QE (GeV2), rows are

bins of EQE
ν (GeV).
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0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 817.40 934.45 717.97 673.81 406.74 148.44 0.00 0.00
2-2.5 473.43 624.12 507.66 466.78 310.00 95.08 72.63 0.00
2.5-3 490.82 534.71 521.70 469.85 265.52 104.28 56.86 1.84
3-3.5 362.31 380.19 387.49 361.02 249.33 121.18 47.52 22.53
3.5-4 310.08 320.70 391.08 316.73 252.87 125.67 67.14 19.47
4-5 168.85 187.73 229.05 232.45 159.69 78.92 39.34 13.00
5-6 164.87 284.42 225.41 202.09 189.39 96.75 29.66 15.43
6-7 184.90 351.92 285.34 236.37 212.26 95.06 42.32 12.25
7-8 211.19 217.36 239.55 296.93 172.24 104.61 40.49 17.83
8-10 107.96 189.32 159.14 119.49 71.66 45.13 27.78 14.37

Table A.13. Systematic uncertainty on the measured reconstructed energy-
dependent quasi-elastic-like cross section dσ(EQE

ν )/dQ2
QE. Units are

10−41cm2/GeV2/proton. Columns represent bins of Q2
QE (GeV2), rows are

bins of EQE
ν (GeV).

Bin Cross section Statistical uncertainty Systematic uncertainty

1.5-2 723.20 63.66 138.00
2-2.5 765.23 36.93 102.24
2.5-3 860.45 25.14 98.29
3-3.5 904.12 23.55 92.57
3.5-4 776.32 20.66 96.83
4-5 764.81 21.53 128.00
5-6 876.47 37.07 133.26
6-7 1093.58 54.23 139.80
7-8 1057.20 58.92 142.17
8-10 1049.80 57.44 141.65

Table A.14. Reconstructed energy-dependent quasi-elastic-like cross sec-
tion σ(EQE

ν ), along with statistical and systematic uncertainties. Units
are 10−41cm2/proton. The EQE

ν bins are in GeV.
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0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 1.00 1.04 1.05 1.07 1.13 1.27 0.00 0.00
2-2.5 1.04 1.06 1.03 1.06 1.05 1.08 0.94 0.00
2.5-3 1.01 1.01 1.00 1.00 0.99 1.01 1.04 0.11
3-3.5 0.94 0.93 0.95 0.96 0.97 0.97 0.95 1.06
3.5-4 0.90 0.91 0.94 0.92 0.93 0.93 0.97 0.95
4-5 0.91 0.92 0.91 0.94 0.93 0.94 0.96 1.01
5-6 0.89 0.96 0.96 0.92 0.97 0.96 0.98 0.99
6-7 0.98 0.94 0.95 1.00 0.98 0.96 0.95 0.98
7-8 0.99 1.01 0.99 0.96 0.95 0.97 0.99 1.06
8-10 1.00 0.96 0.96 0.98 0.98 0.97 0.99 0.97

Table A.15. Ratio of dσ(EQE
ν )/dQ2

QE to dσ(Eν)/dQ
2
QE . Columns represent

bins of Q2
QE (GeV2), rows are bins of EQE

ν (GeV).

0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 0.19 0.20 0.17 0.15 0.21 0.63 0.00 0.00
2-2.5 0.17 0.16 0.12 0.10 0.10 0.18 0.77 0.00
2.5-3 0.13 0.12 0.09 0.07 0.07 0.09 0.28 0.08
3-3.5 0.12 0.11 0.08 0.07 0.06 0.07 0.16 0.39
3.5-4 0.14 0.13 0.09 0.07 0.06 0.07 0.14 0.25
4-5 0.17 0.15 0.10 0.08 0.07 0.08 0.14 0.22
5-6 0.27 0.23 0.18 0.13 0.11 0.12 0.21 0.26
6-7 0.37 0.29 0.20 0.16 0.13 0.14 0.23 0.32
7-8 0.42 0.30 0.25 0.18 0.14 0.16 0.26 0.35
8-10 0.40 0.28 0.23 0.17 0.16 0.16 0.23 0.30

Table A.16. Statistical uncertainty on the ratio of dσ(EQE
ν )/dQ2

QE to

dσ(Eν)/dQ
2
QE . Columns represent bins of Q2

QE (GeV2), rows are bins

of EQE
ν (GeV).
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0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 0.08 0.05 0.04 0.05 0.05 0.24 0.00 0.00
2-2.5 0.05 0.03 0.01 0.01 0.03 0.04 0.19 0.00
2.5-3 0.02 0.03 0.01 0.01 0.02 0.03 0.07 0.05
3-3.5 0.03 0.02 0.02 0.02 0.02 0.03 0.07 0.13
3.5-4 0.03 0.02 0.03 0.03 0.02 0.02 0.03 0.07
4-5 0.03 0.04 0.02 0.03 0.03 0.03 0.03 0.04
5-6 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.04
6-7 0.02 0.04 0.04 0.01 0.01 0.02 0.02 0.03
7-8 0.02 0.04 0.04 0.03 0.02 0.05 0.02 0.04
8-10 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.02

Table A.17. Systematic uncertainty on the ratio of dσ(EQE
ν )/dQ2

QE to

dσ(Eν)/dQ
2
QE . Columns represent bins of Q2

QE (GeV2), rows are bins

of EQE
ν (GeV).
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A.2. True CCQE cross sections

The tables in this section list our cross section measurements for the true quasi-

elastic signal definition explained in section 4.1.2. In each case, we show a table of values

corresponding to the cross section, followed by a table of statistical uncertainties, then

one of systematic uncertainties. Units are explained in the captions to the tables.

A.2.1. Muon parallel and transverse momentum

The cross section vs. muon parallel and transverse momentum, d2σ/dpTdp‖ is shown in

table A.18. The statistical uncertainty on these measurements is in table A.19, and the

systematic uncertainty in table A.20.

Table A.21 shows the differential cross section dσ/dpT , generated by projecting the

two-dimensional measurement onto the pT axis. Table A.22 shows the differential cross

section dσ/dp‖, generated by projecting the two-dimensional measurement onto the p‖

axis.

A.2.2. True neutrino energy and Q2
QE

The energy-dependent true CCQE cross section vs Q2
QE, dσ(Eν)/dQ

2
QE is shown in ta-

ble A.23. The statistical uncertainty on these measurements is in table A.24, and the

systematic uncertainty in table A.25. The flux-integrated single-differential cross section

dσ/dQ2
QE is shown in table A.26. Table A.27 shows the energy-dependent cross section

σ(Eν).
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0-0.15 0.15-0.25 0.25-0.4 0.4-0.7 0.7-1 1-1.5

1.5-2 41.63 127.56 226.94 230.63 126.94 9.72
2-2.5 39.75 141.78 267.19 336.24 144.06 33.34
2.5-3 44.30 194.17 345.37 364.72 184.25 14.58
3-3.5 52.63 159.07 303.57 315.70 104.01 16.47
3.5-4 32.45 98.67 187.01 191.08 69.51 9.37
4-4.5 14.69 55.46 122.14 90.43 34.78 5.36
4.5-5 7.80 30.67 52.24 47.44 22.19 3.85
5-6 3.45 18.67 28.82 36.06 16.40 2.79
6-8 2.83 8.55 17.30 20.28 10.30 1.99
8-10 2.09 5.72 8.57 8.51 4.90 1.94
10-15 0.52 2.22 4.32 4.88 2.42 0.80

Table A.18. Measured double differential true CCQE cross section
d2σ/dpTdp‖. Units are 10−41cm2/GeV2/proton. Columns represent bins
of pT (GeV), rows are bins of p‖ (GeV).

0-0.15 0.15-0.25 0.25-0.4 0.4-0.7 0.7-1 1-1.5

1.5-2 5.80 13.47 16.45 15.91 24.48 6.15
2-2.5 5.26 12.52 14.96 14.76 14.47 13.78
2.5-3 5.39 14.44 16.39 13.50 12.47 3.69
3-3.5 5.99 12.60 14.76 11.53 7.31 3.55
3.5-4 4.41 9.40 10.88 8.38 5.50 1.96
4-4.5 2.65 6.49 8.76 5.39 3.40 1.14
4.5-5 1.96 4.73 5.12 3.57 2.58 0.88
5-6 1.01 3.04 3.10 2.59 1.85 0.61
6-8 0.74 1.50 1.83 1.43 1.11 0.40
8-10 0.71 1.25 1.24 0.90 0.71 0.46
10-15 0.19 0.44 0.61 0.44 0.33 0.20

Table A.19. Statistical uncertainty on the measured double differential
true CCQE cross section d2σ/dpTdp‖. Units are 10−41cm2/GeV2/proton.
Columns represent bins of pT (GeV), rows are bins of p‖ (GeV).

A.2.3. Neutrino energy reconstructed in the CCQE hypothesis, and Q2
QE

The reconstructed energy-dependent true CCQE cross section vs Q2
QE, dσ(EQE

ν )/dQ2
QE

is shown in table A.28. The statistical uncertainty on these measurements is in table



424

0-0.15 0.15-0.25 0.25-0.4 0.4-0.7 0.7-1 1-1.5

1.5-2 14.63 35.90 52.26 44.13 20.17 1.85
2-2.5 11.84 34.87 55.96 57.36 16.66 10.91
2.5-3 11.77 40.52 62.15 52.83 22.33 2.91
3-3.5 10.30 25.79 44.57 43.46 14.42 4.62
3.5-4 6.07 15.11 24.91 27.08 11.47 1.87
4-4.5 2.82 7.76 17.92 14.55 5.62 1.30
4.5-5 1.58 4.76 7.58 7.11 2.96 0.93
5-6 0.85 3.33 4.49 5.31 2.35 0.70
6-8 0.67 1.53 2.85 3.18 1.75 0.45
8-10 0.38 1.28 1.56 1.43 0.94 0.33
10-15 0.12 0.47 0.80 0.97 0.47 0.43

Table A.20. Systematic uncertainty on the measured double differential
true CCQE cross section d2σ/dpTdp‖. Units are 10−41cm2/GeV2/proton.
Columns represent bins of pT (GeV), rows are bins of p‖ (GeV).

Bin Cross section Statistical uncertainty Systematic uncertainty

0-0.15 176.36 7.97 25.87
0.15-0.25 604.88 18.53 79.71
0.25-0.4 1016.84 21.08 120.36
0.4-0.7 1042.29 17.60 112.82
0.7-1 440.14 17.66 60.21
1-1.5 55.29 5.90 12.29

Table A.21. Differential true CCQE cross section dσ/dpT , along with statis-
tical and systematic uncertainties. Units are 10−41cm2/GeV/proton. The
pT bins are in GeV.

A.29, and the systematic uncertainty in table A.30. By projecting, we can get the total

reconstructed energy-dependent cross section σ(EQE
ν ), shown in table A.31.
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Bin Cross section Statistical uncertainty Systematic uncertainty

1.5-2 200.21 10.53 28.14
2-2.5 256.80 8.81 30.93
2.5-3 286.92 6.92 31.65
3-3.5 228.74 5.52 24.37
3.5-4 140.62 3.98 16.57
4-4.5 73.68 2.67 10.03
4.5-5 39.79 1.81 4.78
5-6 27.34 1.25 3.16
6-8 16.24 0.72 1.95
8-10 8.75 0.54 1.14
10-15 4.23 0.24 0.55

Table A.22. Differential true CCQE cross section dσ/dp‖, along with statis-
tical and systematic uncertainties. Units are 10−41cm2/GeV/proton. The
p‖ bins are in GeV.

0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 2486.00 2942.41 2674.31 2731.36 1718.83 612.40 165.39 0.00
2-2.5 1807.76 2535.17 2733.30 2534.40 1962.21 738.15 217.15 0.00
2.5-3 2203.80 2888.97 3062.89 2999.53 2011.61 883.46 308.43 57.12
3-3.5 2256.33 2597.41 2950.67 2874.98 2096.97 1023.97 383.27 108.57
3.5-4 1897.96 1916.82 2597.81 2485.24 1814.04 861.18 384.21 97.56
4-5 756.11 1032.50 1274.83 1289.62 868.23 415.31 168.29 65.30
5-6 744.45 1561.85 1195.15 1196.51 1128.38 487.99 142.53 61.32
6-7 871.60 1401.54 1826.69 1574.08 1413.66 593.37 211.66 58.61
7-8 998.60 974.68 1303.28 1635.18 1063.63 599.33 208.39 78.97
8-10 680.52 728.05 725.94 744.01 457.66 247.87 138.89 57.54

Table A.23. Measured energy-dependent true CCQE cross section
dσ(Eν)/dQ

2
QE. Units are 10−41cm2/GeV2/proton. Columns represent bins

of Q2
QE (GeV2), rows are bins of Eν (GeV).
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0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 363.43 441.39 324.65 276.18 231.86 207.28 277.29 0.00
2-2.5 239.06 298.73 226.97 167.96 128.87 87.01 113.52 0.00
2.5-3 236.63 281.35 207.44 153.89 99.35 59.58 57.09 30.28
3-3.5 239.14 255.30 197.35 142.72 92.58 52.45 47.83 26.36
3.5-4 244.51 229.83 201.19 144.14 90.73 46.95 39.87 17.99
4-5 115.85 132.73 107.54 78.90 47.47 24.41 19.56 10.59
5-6 178.96 294.14 175.72 125.08 91.33 44.18 23.96 12.50
6-7 263.10 346.17 298.30 184.70 137.07 63.85 39.19 15.55
7-8 362.44 234.64 252.42 229.96 120.41 72.72 41.64 18.56
8-10 207.42 167.26 135.62 96.00 53.86 29.50 24.75 13.57

Table A.24. Statistical uncertainty on the measured energy-dependent true
CCQE cross section dσ(Eν)/dQ

2
QE. Units are 10−41cm2/GeV2/proton.

Columns represent bins of Q2
QE (GeV2), rows are bins of Eν (GeV).

0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 896.62 904.51 722.84 725.27 409.80 145.19 75.53 0.00
2-2.5 510.83 647.31 602.94 514.30 387.97 127.12 87.34 0.00
2.5-3 612.46 659.93 618.49 554.25 349.37 134.57 56.24 11.95
3-3.5 554.01 509.19 553.89 502.78 334.06 146.19 52.70 17.74
3.5-4 454.88 415.72 514.47 437.53 316.23 135.14 63.30 20.14
4-5 213.87 241.62 281.18 269.43 180.21 81.32 36.91 13.38
5-6 216.03 394.63 262.96 247.76 226.04 92.52 25.90 13.27
6-7 272.38 360.72 374.09 282.58 252.42 111.83 40.05 10.71
7-8 249.77 214.34 237.41 327.38 186.64 106.65 39.66 15.17
8-10 132.94 196.31 153.46 129.14 78.38 44.73 20.78 13.05

Table A.25. Systematic uncertainty on the measured energy-dependent
true CCQE cross section dσ(Eν)/dQ

2
QE. Units are 10−41cm2/GeV2/proton.

Columns represent bins of Q2
QE (GeV2), rows are bins of Eν (GeV).
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Bin Cross section Statistical uncertainty Systematic uncertainty

0-0.025 1146.41 49.58 169.06
0.025-0.05 1454.29 57.91 195.82
0.05-0.1 1493.60 43.12 184.31
0.1-0.2 1382.50 32.43 163.35
0.2-0.4 973.90 23.16 108.07
0.4-0.8 416.82 16.88 44.58
0.8-1.2 127.83 10.50 18.75
1.2-2 25.86 2.65 4.80

Table A.26. Flux-integrated true CCQE differential cross section dσ/dQ2
QE,

along with statistical and systematic uncertainties. Units are
10−41cm2/GeV2/proton. The Q2

QE bins are in GeV2.

Bin Cross section Statistical uncertainty Systematic uncertainty

1.5-2 679.40 77.81 143.73
2-2.5 729.05 34.10 102.43
2.5-3 872.28 25.31 106.36
3-3.5 938.22 22.63 106.99
3.5-4 831.90 20.97 112.72
4-5 815.18 22.37 144.48
5-6 915.86 38.12 145.51
6-7 1126.08 55.30 150.32
7-8 1086.87 60.33 154.01
8-10 1074.65 58.02 145.77

Table A.27. Energy-dependent true CCQE cross section σ(Eν), along with
statistical and systematic uncertainties. Units are 10−41cm2/proton. The
Eν bins are in GeV.
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0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 2476.72 2921.28 2678.35 2723.60 1723.41 614.08 0.00 0.00
2-2.5 1797.27 2608.45 2753.07 2539.04 1951.23 737.86 229.93 0.00
2.5-3 2226.43 2873.04 3069.11 2978.50 2009.43 867.50 295.76 10.16
3-3.5 2241.41 2564.85 2914.48 2889.10 2099.49 1027.20 370.35 117.69
3.5-4 1880.15 1887.07 2597.00 2477.97 1808.05 858.48 395.86 98.58
4-5 754.60 1030.20 1266.95 1296.74 873.71 421.12 174.51 67.38
5-6 718.59 1562.92 1184.83 1178.02 1133.04 491.66 145.16 64.88
6-7 871.72 1336.74 1833.63 1575.58 1408.35 596.83 208.94 57.70
7-8 1023.25 1013.68 1298.89 1645.34 1081.07 598.71 210.89 85.47
8-10 681.88 721.18 712.22 742.16 456.44 247.16 137.21 56.53

Table A.28. Measured reconstructed energy-dependent cross section
dσ(EQE

ν )/dQ2
QE. Units are 10−41cm2/GeV2/proton. Columns represent

bins of Q2
QE (GeV2), rows are bins of EQE

ν (GeV).

0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 359.71 436.72 320.03 276.70 235.66 226.29 0.00 0.00
2-2.5 238.78 302.93 227.87 167.59 128.55 91.17 151.55 0.00
2.5-3 237.04 281.48 208.04 154.45 100.30 60.97 62.61 4.64
3-3.5 238.08 253.00 196.53 143.38 93.60 54.04 50.03 36.30
3.5-4 241.36 227.26 201.61 144.00 91.80 48.65 44.60 19.59
4-5 116.10 131.89 107.07 79.13 47.80 24.73 20.39 11.21
5-6 178.13 291.91 175.49 123.49 92.55 44.27 24.11 13.62
6-7 267.15 335.48 297.82 181.57 137.05 64.23 39.01 14.87
7-8 370.82 236.33 254.36 231.79 121.99 73.22 42.11 21.21
8-10 209.78 166.87 133.24 96.47 53.96 29.54 24.92 13.55

Table A.29. Statistical uncertainty on the measured reconstructed energy-
dependent true CCQE cross section dσ(EQE

ν )/dQ2
QE. Units are

10−41cm2/GeV2/proton. Columns represent bins of Q2
QE (GeV2), rows are

bins of EQE
ν (GeV).
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0-0.025 0.025-0.05 0.05-0.1 0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.2 1.2-2

1.5-2 872.39 913.43 710.10 664.11 386.76 188.42 0.00 0.00
2-2.5 541.68 684.11 635.23 534.00 358.72 111.03 90.23 0.00
2.5-3 614.28 611.99 601.92 551.67 324.05 115.89 43.04 4.04
3-3.5 447.89 434.08 459.83 423.23 296.67 133.96 48.29 21.00
3.5-4 349.48 311.68 412.80 351.99 272.96 128.32 64.33 18.44
4-5 159.34 190.90 224.91 230.18 159.85 77.91 37.80 13.47
5-6 187.75 330.52 223.39 213.00 201.89 91.32 26.27 14.75
6-7 239.25 323.30 312.73 267.67 229.46 111.44 40.73 11.43
7-8 230.44 200.32 238.41 309.73 178.71 101.69 37.58 15.52
8-10 128.52 184.73 146.57 124.40 78.44 43.53 20.22 11.69

Table A.30. Systematic uncertainty on the measured reconstructed
energy-dependent true CCQE cross section dσ(EQE

ν )/dQ2
QE. Units are

10−41cm2/GeV2/proton. Columns represent bins of Q2
QE (GeV2), rows are

bins of EQE
ν (GeV).

Bin Cross section Statistical uncertainty Systematic uncertainty

1.5-2 723.20 63.66 138.00
2-2.5 765.23 36.93 102.24
2.5-3 860.45 25.14 98.29
3-3.5 904.12 23.55 92.57
3.5-4 776.32 20.66 96.83
4-5 764.81 21.53 128.00
5-6 876.47 37.07 133.26
6-7 1093.58 54.23 139.80
7-8 1057.20 58.92 142.17
8-10 1049.80 57.44 141.65

Table A.31. Reconstructed energy-dependent true CCQE cross section
σ(EQE

ν ), along with statistical and systematic uncertainties. Units are
10−41cm2/proton. The EQE

ν bins are in GeV.
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APPENDIX B

Quasi-elastic kinematics

B.1. Q2
QE calculation in the quasi-elastic hypothesis

W, q

p

ν̄µ : (Eν , ~pν)

n

µ+ : (Eµ, ~pµ)

Figure B.1. Quasi-elastic scattering kinematics

Calculation of squared 4-momentum

transfer from the leptonic to the

hadronic system. Assuming quasi-

elastic scattering stationary initial-

state proton, this can be calculated

purely from the muon kinematics. In

this calculation, Eν and Eµ are the neutrino and muon energy respectively. Muon momen-

tum is represented by pµ, and θmu represents the angle between the outgoing muon and

and the incoming neutrino. Four-momentum transfer q is the difference in 4-momentum

or the final state muon and the initial-state neutrino. As neutrino mass is negligible (less

than 1eV), we take mν = 0, meaning Eν = |~pν |. Muon mass is represented by mµ.
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Q2 = −q2

= −(pµµ − pµν )2

= (~pµ − ~pν)2 − (Eµ − Eν)2

= p2
µ + p2

ν − 2~pµ.~pν − (E2
µ + E2

ν − 2EνEµ)

= (E2
µ −m2

µ) + E2
ν − 2Eνpµ cos θµ − E2

µ − E2
ν + 2EνEµ

= 2Eν(Eµ − pµ cos θµ)−m2
µ

B.2. EQE
ν in the quasi-elastic hypothesis

The calculation below is for the quasi-elastic hypothesis with an antineutrino incident

upon a proton at rest within a nucleus, with a binding energy Eb. The interaction produces

a positively-charged muon and a recoil neutron. Under the quasi-elastic assumption, no

energy is lost to the rest of the nucleus - its only effect is to provide the binding energy

that lowers the initial state energy of the stationary proton. The same terminology is used

as in the previous calculation; additionally, En, pn and θn refer to the energy, momentum

and angle of the neutron with respect to the incoming neutrino.

pν = Eν = pµ cos θµ + pn cos θn

0 = pµ sin θµ + pn sin θn
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Square and add the pn terms to eliminate θn:

p2
n = p2

µ sin2 θµ + p2
µ cos2 θµ + E2

ν − 2Eνpµ cos θµ

= p2
µ + E2

ν − 2Eνpµ cos θµ

Now conserve energy. Initially we have our incident neutrino and a proton bound in the

nucleus with binding energy Eb; afterwards we have a muon and a free neutron.

Eν + (mp − Eb) = En + Eµ

En = Eν + (mp − Eb)− Eµ

Square both sides and substitute in for E2
n = m2

n + p2
n with p2

n as given above:

m2
n + (p2

µ + E2
ν − 2Eνpµ cos θµ) = (Eν + (mp − Eb)− Eµ)2

m2
n + p2

µ + E2
ν − 2Eνpµ cos θµ = E2

ν + (mp − Eb)2 + E2
µ − 2EµEν

+ 2Eν(mp − Eb)− 2Eµ(mp − Eb)

Eν(2pµ cos θµ − 2Eµ + 2(mp − Eb)) = m2
n − E2

µ + E2
µ −m2

µ

+ 2(mp − Eb)Eµ − (mp − Eb)2

EQE
ν =

m2
n − (mp − Eb)2 −m2

µ + 2(mp − Eb)Eµ
2(mp − Eb − Eµ + pµ cos θµ)
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APPENDIX C

Ntuple branches

C.1. Quantities for cross section measurement

This section explains the combination of ntuple branches used to calculate the quan-

tities used in the cross section measurement.

Transverse muon momentum

Reconstructed:

CCQEAntiNuTool p mu sin(CCQEAntiNuTool theta mu)/1000

True:√
(mc primFSLepton[2] sin θb + mc primFSLepton[1] cos θb)2 + mc primFSLepton[0]2)/1000

where θb is the beam angle, 0.05887 radians. Values are in GeV.

Longitudinal muon momentum

Reconstructed:

CCQEAntiNuTool p mu cos CCQEAntiNuTool theta mu/1000

True:

(mc primFSLepton[2] cos θb −mc primFSLepton[1] sin θb)/1000

where θb is the beam angle, 0.05887 radians. Values are in GeV.
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Note: for data only, a bias in the beam angle is corrected for by shifting the angle in

the y − z plane by -1 milliradians and in the x − z plane by -3 milliradians. These are

then combined to give a corrected value for CCQEAntiNuTool theta mu.

Neutrino energy (quasi-elastic hypothesis)

Reconstructed:

CCQEAntiNuTool E/1000

True:

truth E nu tmk/1000

Note that the true value here is the value you would get if you reconstructed the

neutrino energy using the quasi-elastic hypothesis, but from the true muon kinematics.

This is not necessarily the same as the actual true neutrino energy, as the assumptions of

the quasi-elastic hypothesis do not always hold. Value is in GeV.

Q2
QE (quasi-elastic hypothesis)

Reconstructed:

CCQEAntiNuTool Q2/1000000.

Reconstructed:

truth Q2 tmk/1000000.

Note that the true value here is the value you would get if you reconstructed Q2
QE using

the quasi-elastic hypothesis, but from the true muon kinematics. This is not necessarily
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the same as the actual true Q2, as the assumptions of the quasi-elastic hypothesis do not

always hold. Value is in GeV2.

C.2. Reconstructed variables used in central value analysis

C.2.1. Variables used for cuts

phys n dead discr pair upstream prim track proj: used for the dead-time cut -

must be less than 2.

n extra outgoing tracks: Used for track cut - must be 0.

CCQEAntiNuTool charge mu: Muon charge

CCQEAntiNuTool vtx: Array corresponding to vertex (x,y,z) position in the detector

in mm

CCQEAntiNuTool is plausible: True if event could be reconstructed as a charged-

current event

CCQEAntiNuTool vtx fiducial: True if event is reconstructed in the fiducial volume

CCQEAntiNuTool blob dispersed energy nohcal: Recoil energy (not in isolated

energy blobs) - used in recoil cut

CCQEAntiNuTool blob isolated energy nohcal: Recoil energy (in isolated blobs)

- used in recoil cut. Recoil is the sum of the dispersed and isolated energy.

C.2.2. Variables used for differential cross section

CCQEAntiNuTool E: Reconstructed EQE
ν

CCQEAntiNuTool Q2: Reconstructed Q2
QE

CCQEAntiNuTool E mu: Reconstructed muon energy
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CCQEAntiNuTool p mu: Muon momentum

CCQEAntiNuTool theta mu: Muon angle

truth genie wgt Rvn1pi: Used in simulation only to calculate a correct event weight

C.3. Variables used in systematic uncertainty variations (Monte Carlo only)

C.3.1. GENIE model uncertainties

truth genie wgt MaCCQEshape: Modifies the shape of the CCQE signal cross sec-

tion model for a shift in axial mass MA

truth genie wgt VecFFCCQEshape: Modifies the shape of the CCQE signal cross

section model for a shift in vector form factor

truth genie wgt NormCCQE: Modifies the normalization of the CCQE signal cross

section model

truth genie wgt CCQEPauliSupViaKF: Used in the Pauli suppression uncertainty

for CCQE signal model

truth genie wgt EtaNCEL: Used in systematic to vary η for neutral current elastic

scattering background

truth genie wgt MaNCEL: Modifies neutral current elastic scattering background for

a shift in axial mass MA

truth genie wgt MaRES: Modifies resonant background distribution if resonant axial

form factor changes

truth genie wgt MvRES: Modifies resonant background distribution if resonant vec-

tor form factor changes
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truth genie wgt NormDISCC: Modifies deep-inelastic scattering cross section nor-

malization

truth genie wgt Rvn1pi: Modifies cross section for non-resonant inelastic background

processes

truth genie wgt Rvn2pi: Modifies cross section for non-resonant inelastic background

processes

truth genie wgt Rvp1pi: Modifies cross section for non-resonant inelastic background

processes

truth genie wgt Rvp2pi: Modifies cross section for non-resonant inelastic background

processes

C.3.2. Recoil uncertainties

truth neutron kevinwgtvardown, truth neutron kevinwgtvarup: Used in the

neutron path length systematic uncertainty

CCQEAntiNuTool blob dispersed energy nohcal otherfrac: Used in other-particle

(EM) response uncertainty

CCQEAntiNuTool blob dispersed energy nohcal pionfrac: Used in pion response

uncertainty

CCQEAntiNuTool blob dispersed energy nohcal protonfrac: Used in proton re-

sponse uncertainty

CCQEAntiNuTool blob dispersed energy nohcal xtalkfrac: Used in cross-talk un-

certainty

CCQEAntiNuTool blob isolated energy nohcal otherfrac: Used in other-particle
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(EM) response uncertainty

CCQEAntiNuTool blob isolated energy nohcal constrained pionfrac: Used in

pion response uncertainty

CCQEAntiNuTool blob isolated energy nohcal unconstrained pionfrac: Used

in pion response uncertainty

CCQEAntiNuTool blob isolated energy nohcal low protonfrac: Used in proton

response uncertainty

CCQEAntiNuTool blob isolated energy nohcal med protonfrac: Used in proton

response uncertainty

CCQEAntiNuTool blob isolated energy nohcal high protonfrac: Used in proton

response uncertainty

C.3.3. Hadronization (final-state interaction) uncertainties

truth genie wgt AGKYxF1pi: Used for the deep inelastic scattering hadronization

model uncertainty

truth genie wgt FrAbs N: Used in nucleon absorption systematic (FSI)

truth genie wgt FrAbs pi: Used in pion absorption systematic (FSI)

truth genie wgt FrCEx N: Used in nucleon charge exchange systematic (FSI)

truth genie wgt FrCEx pi: Used in pion charge exchange systematic (FSI)

truth genie wgt FrElas N: Used in nucleon elastic scattering systematic (FSI)

truth genie wgt FrElas pi: Used in pion elastic scattering systematic (FSI)

truth genie wgt FrInel N: Used in nucleon inelastic scattering systematic (FSI)

truth genie wgt FrInel pi: Used in pion inelastic scattering systematic (FSI)
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truth genie wgt FrPiProd N: Used in nucleon pion production scattering systematic

(FSI)

truth genie wgt FrPiProd pi: Used in pion pion production scattering systematic

(FSI)

truth genie wgt MFP N: Used in systematic for nucleon mean free path in the nucleus

(FSI)

truth genie wgt MFP pi: Used in systematic for pion mean free path in the nucleus

(FSI)

truth genie wgt RDecBR1gamma: Modifies branching ratio for background reso-

nant event decaying to photons

truth genie wgt Theta Delta2Npi: Modifies delta decay angle for resonant back-

grounds.

C.3.4. Muon reconstruction uncertainties

CCQEAntiNuTool p mu minos: Muon momentum in MINOS. Used in the tracking

efficiency correction, where the MnvNormalizer tool computes a momentum-dependent

efficiency.

CCQEAntiNuTool sys E minerva energy scale (down/up): Shifted neutrino en-

ergy used to calculate the MINERvA energy scale systematic uncertainty

CCQEAntiNuTool sys E mu minerva energy scale (down/up): Shifted muon

energy used to calculate the MINERvA energy scale systematic uncertainty

CCQEAntiNuTool sys E theta bias (down/up): Shifted neutrino energy used to

calculate the muon angle bias uncertainty
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CCQEAntiNuTool sys E theta smear: Shifted neutrino energy used to calculate the

muon angle smearing uncertainty

CCQEAntiNuTool sys Q2 minerva energy scale (down/up): Shifted Q2
QE used

to calculate the MINERvA energy scale systematic uncertainty

CCQEAntiNuTool sys Q2 theta bias (down/up): Shifted Q2
QE used to calculate

the muon angle bias uncertainty

CCQEAntiNuTool sys Q2 theta smear: Shifted Q2
QE used to calculate the muon

angle smearing uncertainty

CCQEAntiNuTool sys biased theta mu (down/up): Shifted muon angle for the

muon angle bias uncertainty

CCQEAntiNuTool sys p mu˙minerva energy scale (down/up): Shifted muon

momentum used to calculate the MINERvA energy scale systematic uncertainty

CCQEAntiNuTool sys smeared theta mu: Muon angle shifted by a random value

from a 1 sigma distribution, used to calculate the theta smear uncertainty

CCQEAntiNuTool sys smeared vertex (x,y,z): Event vertex position shifted by a

random value from a 1 sigma distribution, used to calculate vertex smear uncertainty

C.4. True GENIE information (Monte Carlo only)

truth is fiducial: Used for the fiducial volume cut for the true distributions used in

the efficiency/acceptance correction.

truth qelike: Used for the signal cut for the QE-like signal definition, to identify events

with a muon, nucleons and no other particles in the final state.

truth E nu tmk: Neutrino energy, constructed in the CCQE hypothesis from true
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muon kinematics. In MeV.

truth Q2 tmk: Q2
QE , constructed in the CCQE hypothesis from true muon kinematics.

In MeV2.

truth muon theta tmk: :True muon angle - equivalent to the long complicated formula

we are using

truth dist to plane center: Distance in mm from the centre of the plane, in the z

direction

mc intType: Interaction type: 1=elastic (signal for the true CCQE definition); 2=res-

onant, 3=DIS

mc current: 1 for charged-current events, 0 for neutral current. Must be 1 for this anal-

ysis’ signal.

mc charm: Charm events are not part of our signal - we only want events where this

is false

mc incoming: PDF code of incoming particle type. 14 is a muon-neutrino; -14 is a

muon-antineutrino. Used to select appropriate signal events

mc incomingE: Generated incoming neutrino energy - actual, not calculated in CCQE

hypothesis

mc Q2: Generated interaction Q2 (not Q2
QE calculated in CCQE hypothesis)

mc vtx: Vector corresponding to vertex (x,y,z) position

mc primFSLepton: Vector corresponding to outgoing muon 4-momentum (pxµ, pyµ,

pzµ, Eµ)
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C.5. Standard MINERvA information

ev run: MINERvA run number in which this event took place (data)

ev subrun: MINERvA subrun number (within the run) in which this event took place

(data)

ev gate: MINERvA gate number (within the subrun) in which this event took place

(data)

mc run: Generated MINERvA run number in which this event was simulated (simula-

tion)

mc subrun: Generated MINERvA subrun number in which this event was simulated

(simulation)

mc nthEvtInFile: Position in simulation file (simulation)



443

APPENDIX D

Validating the unfolding method

As we do not know the true distribution of events in our data (that is what we are

trying to measure!), we must use Monte Carlo to evaluate the ability of our unfolding

method to reproduce a generated distribution from a reconstructed one. To validate our

unfolding, we used our reconstructed signal Monte Carlo to generate a migration matrix,

and used this to unfold various Monte Carlo subsamples.

By definition, if there is no bug in the unfolding procedure, unfolding the reconstructed

distribution used to generate the migration matrix should exactly reproduce the true

distribution used to generate the matrix, with a single iteration of Bayesian unfolding. It

was confirmed that this was the case, giving a discrepancy of less than one part in 10−10

in each bin.

D.1. Optimizing number of iterations

Ten subsamples were generated by dividing up the Monte Carlo into ten based on the

gate number in the file

(D.1) sample number = (event number/2)%10

Each of these subsamples has roughly the same statistics as our data. The results of

unfolding the ten subsamples were recorded for up to nine iterations of Bayesian unfold-

ing.For each subsample, in each bin, the pull between the unfolded and true event counts
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Figure D.1. Average pull of the 66 bins in 10 unfolded Monte Carlo sub-
samples, vs number of Bayesian unfolding iterations

was calculated (that is unfolded value minus true value, divided by the uncertainty on the

unfolded value). As statistical uncertainty increases with number of unfolding iterations,

the goal is to select the smallest number of iterations for which the pulls converge to a

small value. To study this, the mean pull of the 66 non-overflow and -underflow bins was

plotted vs the number of iterations, for each of the 10 samples. The results of this are

shown in figure D.1.

Based on this plot, we conclude that the pulls have stabilized by four iterations. The

mean pull in each bin after four iterations is shown in figure D.2.

D.2. Ensemble test

D.2.1. Test of statistical uncertainties

For each bin, the number of events reconstructed in each of the ten samples was his-

togrammed and fitted to a Gaussian. The width of the Gaussian should be equal (within
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Figure D.2. Pull averaged over the 10 unfolded Monte Carlo sub-samples,
after four iterations. Note that the bins with the largest pulls correspond to
those with very low acceptance (for example, at high pT and low p‖ , where
the high-angle trajectory makes MINOS matching close to impossible)

errors) to the average statistical uncertainty on the number of events in the bin for the in-

dividual samples. To confirm this, the pull of each was calculated: the difference between

average statistical uncertainty and the fit width, in units of the combined uncertainty on

the two measurements (added in quadrature). The results of this test for reconstructed

and true distributions are shown in figure D.3

D.2.2. Test of unfolding

Each of these samples was unfolded using four iterations of Bayesian unfolding, based

on the migration matrix generated from the complete sample. To check the statistical

uncertainties reported by the unfolding procedure, the same procedure was performed on

the results of the unfolding, as shown in figure D.4.
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(a) Reconstructed variables (b) True variables

Figure D.3. Pull between the average statistical uncertainty of 10 Monte
Carlo sub-samples, and the width of a Gaussian fit to a histogram of the
number of events in each sample

Figure D.4. Pull between the average statistical uncertainty of 10 unfolded
Monte Carlo sub-samples, as reported by the unfolding procedure, and the
width of a Gaussian fit to a histogram of the number of events in each
sample

To test whether the unfolding procedure reproduced the true values, the pull between

the average unfolded and true values was calculated for each bin. In each bin, the ten

values corresponding to the ten datasets were histogrammed and fitted to a Gaussian to
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(a) Pulls in each bin (b) Histogram of each bin’s pull

Figure D.5. Pull between mean unfolded and true values in each bin.

obtain a mean and RMS for that bin. This procedure was performed on both the true and

unfolded histograms. The pull was calculated for each bin by measuring the difference

between the mean true value and the mean unfolded value, divided by the combined

uncertainty on these two means (added in quadrature). Figure D.5 shows these pulls.

The pull values in each bin are histogrammed (figure D.5). We expect a mean value of 0

and a width of 1. The plot shows that there is an average negative pull of 14%, however

this is not significant enough to warrant assigning a correction or systematic uncertainty

to the procedure.

To test the uncertainties reported by the unfolding procedure, we compare the RMS

of the values of the 10 unfolded subsamples with the uncertainty reported on the unfolded

values. Figure D.6 shows the ratio of the RMS test to the error given by the unfolding

procedure.

Within errors, we expect this ratio to be 1; the histogram confirms this to be the case,

validating the uncertainties returned by the unfolding.
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(a) RMS of unfolded values/average uncer-
tainty (b) Histogram of each bin’s ratio

Figure D.6. Ratio of the RMS of the 10 unfolded values to the average
uncertainty reported by the unfolding procedure

D.3. Warped Monte Carlo unfolding test

Each of the ten subsamples used in the ensemble test corresponded to approximately

one tenth of the original Monte Carlo sample, and was made up of events from that

sample; thus the reconstructed and true event distributions in each sample were close to

being proportional to the distribution used to generate the unsmearing matrix. Our data

distribution, while similar, does not follow the exact shape of the Monte Carlo. To check

that the unfolding procedure is able to unfold a distribution that does not exactly mimic

that of the original simulation, two sets of ten “warped” samples were generated. In each

case, weights were applied to each event, corresponding to changes in the quasi-elastic

model. For the first sample, the events were weighted to simulate a distribution in which

the value of the axial mass MA was reduced by 1σ, while also reducing the normalization

for all CCQE events by 1σ. For the second sample, both MA and the CCQE event

normalization were increased by 1σ. More information about the effect of these changes

can be seen in the chapter describing systematic uncertainties. Figure D.7 shows the
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(a) Subsample 8, warped with MA decreased (b) Subsample 3, warped with MA increased

Figure D.7. Ratio of the warped to the central value for two of the warped
subsamples

(a) Warped with MA decreased (b) Warped with MA increased

Figure D.8. Average pull between unfolded and true values of the warped
samples, vs number of iterations

effect of warping on two of our samples, by taking a ratio of the warped to the central

value for the subsample. As can be seen, the effect is around 15-20%, and varies over the

phase space.

The same procedure as was used in the ensemble test was also performed on these

warped samples. As with the unwarped samples, the unfolding procedure stabilizes by

four iterations.
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(a) Pulls in each bin with MA reduced
(b) Histogram of each bin’s pull with MA re-
duced

(c) Pulls in each bin with MA increased
(d) Histogram of each bin’s pull with MA in-
creased

Figure D.9. Pull between mean unfolded and true values of the warped
samples in each bin.

The pull between the mean unfolded and true values of the ten samples is shown in

figure D.9

The mean of the 66 bins’ average pulls is -15% for both samples; almost exactly the

same as for the unwarped samples. We also check the error reported by the unfolding

procedure, as show in D.10. Again, we confirm that these distributions are centered at 1,

verifying the unfolding uncertainties.
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(a) Ratio each bin with MA reduced (b) Ratios in each bin with MA reduced

(c) Ratio in each bin with MA increased (d) Ratios in each bin with MA increased

Figure D.10. Ratio of the RMS of the 10 unfolded values in each bin to the
average uncertainty reported by the unfolding procedure
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APPENDIX E

Tables of systematic uncertainties

p‖µ
(GeV) pTµ

(GeV) Flux

< 1.5 < 0 0.0%

< 1.5 0 - 0.15 8.3%

< 1.5 0.15 - 0.25 7.9%

< 1.5 0.25 - 0.4 8.1%

< 1.5 0.4 - 0.7 7.7%

< 1.5 0.7 - 1 7.5%

< 1.5 1 - 1.5 0.0%

< 1.5 > 1.5 0.0%

1.5 - 2 < 0 0.0%

1.5 - 2 0 - 0.15 7.8%

1.5 - 2 0.15 - 0.25 7.8%

1.5 - 2 0.25 - 0.4 7.8%

1.5 - 2 0.4 - 0.7 7.7%

1.5 - 2 0.7 - 1 7.8%

1.5 - 2 1 - 1.5 8.1%

1.5 - 2 > 1.5 0.0%
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p‖µ
(GeV) pTµ (GeV) Flux

2 - 2.5 < 0 0.0%

2 - 2.5 0 - 0.15 7.8%

2 - 2.5 0.15 - 0.25 7.8%

2 - 2.5 0.25 - 0.4 7.8%

2 - 2.5 0.4 - 0.7 7.7%

2 - 2.5 0.7 - 1 7.7%

2 - 2.5 1 - 1.5 7.6%

2 - 2.5 > 1.5 0.0%

2.5 - 3 < 0 0.0%

2.5 - 3 0 - 0.15 7.8%

2.5 - 3 0.15 - 0.25 7.7%

2.5 - 3 0.25 - 0.4 7.8%

2.5 - 3 0.4 - 0.7 7.7%

2.5 - 3 0.7 - 1 7.7%

2.5 - 3 1 - 1.5 7.7%

2.5 - 3 > 1.5 0.0%

3 - 3.5 < 0 0.0%

3 - 3.5 0 - 0.15 7.8%

3 - 3.5 0.15 - 0.25 7.7%

3 - 3.5 0.25 - 0.4 7.8%

3 - 3.5 0.4 - 0.7 7.7%

3 - 3.5 0.7 - 1 7.7%

3 - 3.5 1 - 1.5 7.6%

3 - 3.5 > 1.5 0.0%
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p‖µ
(GeV) pTµ (GeV) Flux

3.5 - 4 < 0 0.0%

3.5 - 4 0 - 0.15 7.8%

3.5 - 4 0.15 - 0.25 7.7%

3.5 - 4 0.25 - 0.4 7.8%

3.5 - 4 0.4 - 0.7 7.7%

3.5 - 4 0.7 - 1 7.7%

3.5 - 4 1 - 1.5 7.9%

3.5 - 4 > 1.5 0.0%

4 - 4.5 < 0 0.0%

4 - 4.5 0 - 0.15 7.8%

4 - 4.5 0.15 - 0.25 7.7%

4 - 4.5 0.25 - 0.4 7.8%

4 - 4.5 0.4 - 0.7 7.8%

4 - 4.5 0.7 - 1 7.9%

4 - 4.5 1 - 1.5 8.3%

4 - 4.5 > 1.5 12.0%

4.5 - 5 < 0 0.0%

4.5 - 5 0 - 0.15 7.7%

4.5 - 5 0.15 - 0.25 7.8%

4.5 - 5 0.25 - 0.4 7.8%

4.5 - 5 0.4 - 0.7 7.8%

4.5 - 5 0.7 - 1 7.9%

4.5 - 5 1 - 1.5 8.4%

4.5 - 5 > 1.5 8.5%
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p‖µ
(GeV) pTµ (GeV) Flux

5 - 6 < 0 0.0%

5 - 6 0 - 0.15 7.8%

5 - 6 0.15 - 0.25 7.7%

5 - 6 0.25 - 0.4 7.8%

5 - 6 0.4 - 0.7 7.8%

5 - 6 0.7 - 1 7.9%

5 - 6 1 - 1.5 8.0%

5 - 6 > 1.5 9.8%

6 - 8 < 0 0.0%

6 - 8 0 - 0.15 7.9%

6 - 8 0.15 - 0.25 7.9%

6 - 8 0.25 - 0.4 7.9%

6 - 8 0.4 - 0.7 7.8%

6 - 8 0.7 - 1 7.9%

6 - 8 1 - 1.5 8.1%

6 - 8 > 1.5 8.3%

8 - 10 < 0 0.0%

8 - 10 0 - 0.15 8.4%

8 - 10 0.15 - 0.25 7.9%

8 - 10 0.25 - 0.4 7.4%

8 - 10 0.4 - 0.7 8.0%

8 - 10 0.7 - 1 8.0%

8 - 10 1 - 1.5 7.8%

8 - 10 > 1.5 7.7%
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p‖µ
(GeV) pTµ (GeV) Flux

10 - 15 < 0 0.0%

10 - 15 0 - 0.15 9.0%

10 - 15 0.15 - 0.25 6.9%

10 - 15 0.25 - 0.4 3.5%

10 - 15 0.4 - 0.7 8.0%

10 - 15 0.7 - 1 8.2%

10 - 15 1 - 1.5 7.7%

10 - 15 > 1.5 1.5%

> 15 < 0 0.0%

> 15 0 - 0.15 161.8%

> 15 0.15 - 0.25 250.6%

> 15 0.25 - 0.4 154.6%

> 15 0.4 - 0.7 1651.9%

> 15 0.7 - 1 608.8%

> 15 1 - 1.5 269.0%

> 15 > 1.5 0.0%

Table E.1. Absolute fractional flux uncertainties vs.p‖µ and pTµ
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p‖µ
(GeV) pTµ (GeV) Eµ scale θ bias θ smear Vtx smear Tracking eff. Mass model

< 1.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

< 1.5 0 - 0.15 54.8% 1.6% 0.6% 0.0% 1.2% 1.4%

< 1.5 0.15 - 0.25 57.8% 0.4% 1.0% 1.0% 1.2% 1.4%

< 1.5 0.25 - 0.4 38.3% 0.6% 1.4% 0.7% 1.2% 1.4%

< 1.5 0.4 - 0.7 31.2% 1.5% 0.3% 0.3% 1.2% 1.4%

< 1.5 0.7 - 1 12.5% 2.7% 2.4% 0.1% 1.2% 1.4%

< 1.5 1 - 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

< 1.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

1.5 - 2 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

1.5 - 2 0 - 0.15 11.0% 0.0% 0.1% 0.3% 1.2% 1.4%

1.5 - 2 0.15 - 0.25 11.3% 0.6% 0.1% 0.1% 1.2% 1.4%

1.5 - 2 0.25 - 0.4 9.7% 0.3% 0.4% 0.1% 1.2% 1.4%

1.5 - 2 0.4 - 0.7 7.5% 0.2% 0.3% 0.1% 1.2% 1.4%

1.5 - 2 0.7 - 1 4.6% 0.2% 0.6% 0.5% 1.2% 1.4%

1.5 - 2 1 - 1.5 7.4% 1.0% 5.0% 0.7% 1.0% 1.4%

1.5 - 2 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2 - 2.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2 - 2.5 0 - 0.15 5.5% 0.4% 0.1% 0.0% 1.3% 1.4%

2 - 2.5 0.15 - 0.25 6.9% 0.6% 0.6% 0.2% 1.2% 1.4%

2 - 2.5 0.25 - 0.4 6.4% 0.0% 0.2% 0.0% 1.2% 1.4%

2 - 2.5 0.4 - 0.7 3.5% 0.2% 0.3% 0.1% 1.2% 1.4%

2 - 2.5 0.7 - 1 4.3% 0.8% 0.1% 0.1% 1.2% 1.4%

2 - 2.5 1 - 1.5 4.6% 3.6% 1.9% 0.2% 1.2% 1.4%

2 - 2.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) Eµ scale θ bias θ smear Vtx smear Tracking eff. Mass model

2.5 - 3 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2.5 - 3 0 - 0.15 4.8% 0.6% 0.0% 0.2% 1.2% 1.4%

2.5 - 3 0.15 - 0.25 6.7% 0.2% 0.1% 0.0% 1.2% 1.4%

2.5 - 3 0.25 - 0.4 4.7% 0.0% 0.3% 0.1% 1.2% 1.4%

2.5 - 3 0.4 - 0.7 1.3% 0.0% 0.1% 0.1% 1.2% 1.4%

2.5 - 3 0.7 - 1 4.9% 0.0% 0.2% 0.0% 1.2% 1.4%

2.5 - 3 1 - 1.5 13.3% 0.6% 1.6% 0.1% 1.2% 1.4%

2.5 - 3 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 - 3.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 - 3.5 0 - 0.15 5.1% 0.2% 0.8% 0.1% 1.2% 1.4%

3 - 3.5 0.15 - 0.25 1.1% 0.5% 0.0% 0.0% 1.2% 1.4%

3 - 3.5 0.25 - 0.4 0.9% 0.1% 0.3% 0.1% 1.2% 1.4%

3 - 3.5 0.4 - 0.7 3.7% 0.1% 0.1% 0.1% 1.2% 1.4%

3 - 3.5 0.7 - 1 8.0% 0.4% 0.2% 0.1% 1.2% 1.4%

3 - 3.5 1 - 1.5 11.0% 0.2% 2.0% 0.3% 1.2% 1.4%

3 - 3.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3.5 - 4 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3.5 - 4 0 - 0.15 4.2% 0.1% 1.2% 0.2% 1.2% 1.4%

3.5 - 4 0.15 - 0.25 0.9% 0.4% 0.7% 0.1% 1.2% 1.4%

3.5 - 4 0.25 - 0.4 1.2% 0.5% 0.2% 0.0% 1.2% 1.4%

3.5 - 4 0.4 - 0.7 7.6% 0.2% 0.1% 0.1% 1.1% 1.4%

3.5 - 4 0.7 - 1 12.2% 0.0% 0.2% 0.1% 1.1% 1.4%

3.5 - 4 1 - 1.5 15.8% 0.3% 0.6% 1.1% 1.0% 1.4%

3.5 - 4 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) Eµ scale θ bias θ smear Vtx smear Tracking eff. Mass model

4 - 4.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

4 - 4.5 0 - 0.15 9.4% 1.3% 0.8% 0.7% 0.8% 1.4%

4 - 4.5 0.15 - 0.25 4.9% 0.8% 0.0% 0.0% 0.8% 1.4%

4 - 4.5 0.25 - 0.4 6.0% 0.2% 0.3% 0.1% 0.8% 1.4%

4 - 4.5 0.4 - 0.7 11.0% 0.3% 0.5% 0.2% 0.8% 1.4%

4 - 4.5 0.7 - 1 11.6% 0.2% 0.0% 0.2% 0.7% 1.4%

4 - 4.5 1 - 1.5 19.3% 0.8% 0.7% 0.5% 0.6% 1.4%

4 - 4.5 > 1.5 2.7% 5.5% 11.0% 4.8% 0.5% 1.4%

4.5 - 5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

4.5 - 5 0 - 0.15 5.1% 1.8% 1.0% 0.5% 0.4% 1.4%

4.5 - 5 0.15 - 0.25 2.1% 0.3% 0.0% 0.3% 0.4% 1.4%

4.5 - 5 0.25 - 0.4 4.3% 0.6% 0.0% 0.0% 0.4% 1.4%

4.5 - 5 0.4 - 0.7 5.9% 0.2% 0.6% 0.1% 0.4% 1.4%

4.5 - 5 0.7 - 1 6.8% 0.1% 0.4% 0.4% 0.4% 1.4%

4.5 - 5 1 - 1.5 17.3% 1.2% 0.9% 0.1% 0.4% 1.4%

4.5 - 5 > 1.5 21.5% 3.0% 2.5% 0.2% 0.4% 1.4%

5 - 6 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

5 - 6 0 - 0.15 4.0% 1.4% 0.2% 0.1% 0.4% 1.4%

5 - 6 0.15 - 0.25 2.0% 0.5% 0.4% 0.1% 0.4% 1.4%

5 - 6 0.25 - 0.4 2.8% 0.7% 0.1% 0.1% 0.4% 1.4%

5 - 6 0.4 - 0.7 2.9% 0.6% 0.1% 0.0% 0.4% 1.4%

5 - 6 0.7 - 1 8.1% 0.8% 0.5% 0.1% 0.4% 1.4%

5 - 6 1 - 1.5 15.9% 0.5% 3.2% 0.1% 0.4% 1.4%

5 - 6 > 1.5 0.7% 1.5% 1.0% 2.6% 0.4% 1.4%
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p‖µ
(GeV) pTµ (GeV) Eµ scale θ bias θ smear Vtx smear Tracking eff. Mass model

6 - 8 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

6 - 8 0 - 0.15 2.7% 0.3% 2.9% 0.3% 0.3% 1.4%

6 - 8 0.15 - 0.25 1.6% 0.3% 1.6% 0.2% 0.4% 1.4%

6 - 8 0.25 - 0.4 1.6% 0.2% 0.8% 0.1% 0.4% 1.4%

6 - 8 0.4 - 0.7 4.3% 0.0% 0.4% 0.0% 0.4% 1.4%

6 - 8 0.7 - 1 8.8% 0.4% 0.7% 0.2% 0.4% 1.4%

6 - 8 1 - 1.5 12.0% 1.9% 1.9% 0.2% 0.4% 1.4%

6 - 8 > 1.5 36.1% 9.7% 21.1% 1.3% 0.5% 1.4%

8 - 10 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

8 - 10 0 - 0.15 0.6% 3.1% 5.9% 1.2% 0.3% 1.4%

8 - 10 0.15 - 0.25 3.5% 0.1% 3.5% 0.4% 0.3% 1.4%

8 - 10 0.25 - 0.4 0.6% 0.6% 0.2% 0.3% 0.4% 1.4%

8 - 10 0.4 - 0.7 1.5% 0.0% 1.0% 0.1% 0.4% 1.4%

8 - 10 0.7 - 1 7.0% 1.4% 2.2% 0.5% 0.4% 1.4%

8 - 10 1 - 1.5 10.6% 0.7% 2.0% 0.1% 0.4% 1.4%

8 - 10 > 1.5 27.2% 4.6% 9.6% 0.3% 0.4% 1.4%

10 - 15 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 - 15 0 - 0.15 1.9% 0.4% 2.6% 0.0% 0.4% 1.4%

10 - 15 0.15 - 0.25 0.2% 0.4% 2.9% 0.2% 0.3% 1.4%

10 - 15 0.25 - 0.4 0.5% 0.3% 0.5% 0.4% 0.4% 1.4%

10 - 15 0.4 - 0.7 3.2% 0.5% 0.6% 0.0% 0.4% 1.4%

10 - 15 0.7 - 1 9.1% 2.1% 2.3% 0.3% 0.4% 1.4%

10 - 15 1 - 1.5 1.1% 14.4% 31.2% 0.6% 0.4% 1.4%

10 - 15 > 1.5 130.5% 78.4% 159.9% 0.7% 0.5% 1.4%
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p‖µ
(GeV) pTµ (GeV) Eµ scale θ bias θ smear Vtx smear Tracking eff. Mass model

> 15 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

> 15 0 - 0.15 5.6% 0.2% 4.9% 0.3% 0.3% 1.4%

> 15 0.15 - 0.25 1.9% 0.1% 6.9% 0.2% 0.4% 1.4%

> 15 0.25 - 0.4 1.8% 0.3% 4.3% 0.3% 0.3% 1.4%

> 15 0.4 - 0.7 2.7% 0.3% 0.0% 0.3% 0.4% 1.4%

> 15 0.7 - 1 4.7% 2.2% 0.8% 0.3% 0.4% 1.4%

> 15 1 - 1.5 7.3% 6.3% 8.8% 0.3% 0.4% 1.4%

> 15 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table E.2. Absolute fractional muon reconstruction uncertainties vs.p‖µ and pTµ

p‖µ
(GeV) pTµ (GeV) NormDISCC Rvn1pi Rvn2pi Rvp1pi Rvp2pi GENIE variations

< 1.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

< 1.5 0 - 0.15 0.0% 0.1% 0.2% 0.3% 0.4% 0.4%

< 1.5 0.15 - 0.25 0.0% 0.1% 0.3% 0.7% 0.5% 15.2%

< 1.5 0.25 - 0.4 0.0% 0.1% 0.3% 0.5% 0.2% 2.1%

< 1.5 0.4 - 0.7 0.0% 0.2% 0.7% 0.2% 0.8% 4.2%

< 1.5 0.7 - 1 0.0% 0.3% 1.5% 0.4% 1.6% 22.0%

< 1.5 1 - 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

< 1.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) NormDISCC Rvn1pi Rvn2pi Rvp1pi Rvp2pi GENIE variations

1.5 - 2 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

1.5 - 2 0 - 0.15 0.0% 0.0% 0.1% 0.2% 0.2% 7.5%

1.5 - 2 0.15 - 0.25 0.0% 0.0% 0.2% 0.0% 0.2% 1.0%

1.5 - 2 0.25 - 0.4 0.0% 0.1% 0.1% 0.0% 0.2% 2.0%

1.5 - 2 0.4 - 0.7 0.0% 0.1% 0.4% 0.1% 0.3% 3.1%

1.5 - 2 0.7 - 1 0.0% 0.3% 0.2% 0.5% 0.9% 13.6%

1.5 - 2 1 - 1.5 0.0% 0.4% 0.3% 0.0% 0.8% 8.4%

1.5 - 2 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2 - 2.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2 - 2.5 0 - 0.15 0.0% 0.0% 0.1% 0.1% 0.1% 0.5%

2 - 2.5 0.15 - 0.25 0.0% 0.0% 0.1% 0.1% 0.2% 1.7%

2 - 2.5 0.25 - 0.4 0.0% 0.0% 0.1% 0.0% 0.0% 0.8%

2 - 2.5 0.4 - 0.7 0.0% 0.1% 0.3% 0.0% 0.3% 1.4%

2 - 2.5 0.7 - 1 0.0% 0.2% 0.6% 0.1% 0.4% 3.1%

2 - 2.5 1 - 1.5 0.0% 0.2% 0.5% 0.3% 0.8% 22.6%

2 - 2.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2.5 - 3 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2.5 - 3 0 - 0.15 0.0% 0.0% 0.0% 0.1% 0.1% 2.4%

2.5 - 3 0.15 - 0.25 0.0% 0.0% 0.1% 0.1% 0.1% 1.2%

2.5 - 3 0.25 - 0.4 0.0% 0.0% 0.1% 0.0% 0.1% 1.3%

2.5 - 3 0.4 - 0.7 0.0% 0.1% 0.3% 0.0% 0.3% 0.1%

2.5 - 3 0.7 - 1 0.0% 0.2% 0.5% 0.1% 0.5% 2.5%

2.5 - 3 1 - 1.5 0.0% 0.3% 0.8% 0.2% 0.3% 17.0%

2.5 - 3 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) NormDISCC Rvn1pi Rvn2pi Rvp1pi Rvp2pi GENIE variations

3 - 3.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 - 3.5 0 - 0.15 0.0% 0.0% 0.0% 0.1% 0.1% 0.8%

3 - 3.5 0.15 - 0.25 0.0% 0.0% 0.1% 0.0% 0.1% 2.4%

3 - 3.5 0.25 - 0.4 0.0% 0.0% 0.1% 0.1% 0.1% 0.5%

3 - 3.5 0.4 - 0.7 0.0% 0.1% 0.2% 0.0% 0.2% 1.0%

3 - 3.5 0.7 - 1 0.0% 0.2% 0.4% 0.0% 0.3% 4.5%

3 - 3.5 1 - 1.5 0.0% 0.3% 0.8% 0.4% 0.8% 22.7%

3 - 3.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3.5 - 4 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3.5 - 4 0 - 0.15 0.0% 0.0% 0.0% 0.1% 0.1% 2.8%

3.5 - 4 0.15 - 0.25 0.0% 0.0% 0.1% 0.1% 0.0% 1.2%

3.5 - 4 0.25 - 0.4 0.0% 0.0% 0.1% 0.0% 0.1% 1.1%

3.5 - 4 0.4 - 0.7 0.0% 0.1% 0.2% 0.0% 0.2% 0.0%

3.5 - 4 0.7 - 1 0.0% 0.2% 0.3% 0.1% 0.2% 0.2%

3.5 - 4 1 - 1.5 0.0% 0.4% 0.7% 0.7% 0.8% 6.7%

3.5 - 4 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

4 - 4.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

4 - 4.5 0 - 0.15 0.0% 0.0% 0.0% 0.0% 0.1% 6.1%

4 - 4.5 0.15 - 0.25 0.0% 0.0% 0.1% 0.1% 0.1% 2.2%

4 - 4.5 0.25 - 0.4 0.0% 0.0% 0.1% 0.1% 0.1% 2.4%

4 - 4.5 0.4 - 0.7 0.0% 0.1% 0.2% 0.0% 0.2% 0.3%

4 - 4.5 0.7 - 1 0.0% 0.2% 0.3% 0.1% 0.6% 1.5%

4 - 4.5 1 - 1.5 0.0% 0.5% 0.8% 0.5% 1.3% 4.3%

4 - 4.5 > 1.5 0.0% 1.3% 0.3% 1.5% 3.3% 37.6%
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p‖µ
(GeV) pTµ (GeV) NormDISCC Rvn1pi Rvn2pi Rvp1pi Rvp2pi GENIE variations

4.5 - 5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

4.5 - 5 0 - 0.15 0.0% 0.0% 0.0% 0.1% 0.1% 11.2%

4.5 - 5 0.15 - 0.25 0.0% 0.0% 0.1% 0.2% 0.2% 1.3%

4.5 - 5 0.25 - 0.4 0.0% 0.0% 0.1% 0.1% 0.2% 0.3%

4.5 - 5 0.4 - 0.7 0.0% 0.1% 0.3% 0.1% 0.2% 0.8%

4.5 - 5 0.7 - 1 0.0% 0.2% 0.6% 0.1% 0.7% 0.1%

4.5 - 5 1 - 1.5 0.0% 0.4% 0.4% 0.4% 0.8% 14.4%

4.5 - 5 > 1.5 0.0% 0.4% 0.1% 1.9% 0.2% 53.2%

5 - 6 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

5 - 6 0 - 0.15 0.0% 0.0% 0.0% 0.1% 0.1% 10.1%

5 - 6 0.15 - 0.25 0.0% 0.0% 0.1% 0.1% 0.1% 0.2%

5 - 6 0.25 - 0.4 0.0% 0.0% 0.1% 0.1% 0.2% 1.8%

5 - 6 0.4 - 0.7 0.0% 0.1% 0.3% 0.2% 0.2% 0.1%

5 - 6 0.7 - 1 0.0% 0.2% 0.5% 0.0% 0.6% 2.1%

5 - 6 1 - 1.5 0.0% 0.4% 0.7% 0.1% 1.1% 9.8%

5 - 6 > 1.5 0.0% 0.6% 1.8% 0.0% 1.0% 68.2%

6 - 8 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

6 - 8 0 - 0.15 0.0% 0.0% 0.0% 0.4% 0.1% 0.3%

6 - 8 0.15 - 0.25 0.0% 0.0% 0.1% 0.1% 0.1% 5.2%

6 - 8 0.25 - 0.4 0.0% 0.0% 0.1% 0.2% 0.2% 4.1%

6 - 8 0.4 - 0.7 0.0% 0.1% 0.3% 0.0% 0.4% 0.1%

6 - 8 0.7 - 1 0.0% 0.2% 0.5% 0.3% 0.4% 4.9%

6 - 8 1 - 1.5 0.0% 0.5% 1.2% 0.2% 1.5% 8.4%

6 - 8 > 1.5 0.0% 1.1% 2.6% 1.7% 3.6% 4.0%
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p‖µ
(GeV) pTµ (GeV) NormDISCC Rvn1pi Rvn2pi Rvp1pi Rvp2pi GENIE variations

8 - 10 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

8 - 10 0 - 0.15 0.0% 0.0% 0.0% 0.0% 0.1% 5.7%

8 - 10 0.15 - 0.25 0.0% 0.0% 0.1% 0.1% 0.2% 4.7%

8 - 10 0.25 - 0.4 0.0% 0.0% 0.1% 0.0% 0.2% 1.3%

8 - 10 0.4 - 0.7 0.0% 0.1% 0.2% 0.2% 0.5% 4.1%

8 - 10 0.7 - 1 0.0% 0.3% 0.7% 0.2% 1.0% 8.8%

8 - 10 1 - 1.5 0.0% 0.5% 1.2% 0.3% 1.7% 0.7%

8 - 10 > 1.5 0.0% 0.9% 2.1% 0.7% 3.8% 40.6%

10 - 15 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 - 15 0 - 0.15 0.0% 0.0% 0.0% 0.2% 0.0% 7.8%

10 - 15 0.15 - 0.25 0.0% 0.0% 0.1% 0.2% 0.2% 1.6%

10 - 15 0.25 - 0.4 0.0% 0.0% 0.2% 0.4% 0.3% 14.4%

10 - 15 0.4 - 0.7 0.0% 0.1% 0.2% 0.2% 0.3% 2.5%

10 - 15 0.7 - 1 0.0% 0.3% 0.7% 0.1% 0.2% 0.7%

10 - 15 1 - 1.5 0.0% 0.6% 1.0% 1.2% 1.6% 6.4%

10 - 15 > 1.5 0.0% 2.2% 5.5% 4.1% 10.2% 177.3%

> 15 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

> 15 0 - 0.15 0.0% 0.0% 0.0% 0.5% 0.0% 5.6%

> 15 0.15 - 0.25 0.0% 0.0% 0.1% 0.3% 0.0% 56.4%

> 15 0.25 - 0.4 0.0% 0.0% 0.2% 0.8% 0.3% 31.1%

> 15 0.4 - 0.7 0.0% 0.2% 0.2% 0.1% 0.4% 53.0%

> 15 0.7 - 1 0.0% 0.1% 0.4% 2.1% 0.3% 14.8%

> 15 1 - 1.5 0.0% 0.4% 1.3% 1.0% 1.1% 14.6%

> 15 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) NormDISCC Rvn1pi Rvn2pi Rvp1pi Rvp2pi GENIE variations

Table E.3. Absolute fractional primary interaction uncertainties (inelastic)
vs.p‖µ and pTµ

p‖µ
(GeV) pTµ

(GeV) EtaNCEL MaNCEL MaRES MvRES NormNCRES

< 1.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

< 1.5 0 - 0.15 0.0% 0.0% 1.3% 0.0% 0.0%

< 1.5 0.15 - 0.25 0.0% 0.0% 2.4% 0.1% 0.0%

< 1.5 0.25 - 0.4 0.0% 0.0% 2.7% 0.2% 0.0%

< 1.5 0.4 - 0.7 0.0% 0.0% 4.0% 0.4% 0.0%

< 1.5 0.7 - 1 0.0% 0.0% 4.3% 0.4% 0.0%

< 1.5 1 - 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

< 1.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

1.5 - 2 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

1.5 - 2 0 - 0.15 0.0% 0.1% 0.4% 0.0% 0.0%

1.5 - 2 0.15 - 0.25 0.0% 0.0% 0.9% 0.0% 0.0%

1.5 - 2 0.25 - 0.4 0.0% 0.0% 1.5% 0.1% 0.0%

1.5 - 2 0.4 - 0.7 0.0% 0.0% 2.4% 0.4% 0.0%

1.5 - 2 0.7 - 1 0.0% 0.0% 3.6% 0.4% 0.0%

1.5 - 2 1 - 1.5 0.0% 0.0% 8.1% 1.0% 0.0%

1.5 - 2 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) EtaNCEL MaNCEL MaRES MvRES NormNCRES

2 - 2.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

2 - 2.5 0 - 0.15 0.0% 0.0% 0.4% 0.0% 0.0%

2 - 2.5 0.15 - 0.25 0.0% 0.0% 0.7% 0.0% 0.0%

2 - 2.5 0.25 - 0.4 0.0% 0.0% 1.3% 0.1% 0.0%

2 - 2.5 0.4 - 0.7 0.0% 0.0% 1.8% 0.3% 0.0%

2 - 2.5 0.7 - 1 0.0% 0.0% 1.6% 0.1% 0.0%

2 - 2.5 1 - 1.5 0.0% 0.0% 5.6% 0.4% 0.0%

2 - 2.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

2.5 - 3 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

2.5 - 3 0 - 0.15 0.0% 0.0% 0.3% 0.0% 0.0%

2.5 - 3 0.15 - 0.25 0.0% 0.0% 0.6% 0.0% 0.0%

2.5 - 3 0.25 - 0.4 0.0% 0.0% 1.0% 0.1% 0.0%

2.5 - 3 0.4 - 0.7 0.0% 0.0% 1.4% 0.2% 0.0%

2.5 - 3 0.7 - 1 0.0% 0.0% 0.9% 0.0% 0.0%

2.5 - 3 1 - 1.5 0.0% 0.0% 0.0% 0.3% 0.0%

2.5 - 3 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

3 - 3.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

3 - 3.5 0 - 0.15 0.0% 0.0% 0.2% 0.0% 0.0%

3 - 3.5 0.15 - 0.25 0.0% 0.0% 0.5% 0.0% 0.0%

3 - 3.5 0.25 - 0.4 0.0% 0.0% 0.7% 0.1% 0.0%

3 - 3.5 0.4 - 0.7 0.0% 0.0% 1.1% 0.2% 0.0%

3 - 3.5 0.7 - 1 0.0% 0.0% 1.1% 0.1% 0.0%

3 - 3.5 1 - 1.5 0.0% 0.0% 1.6% 0.0% 0.0%

3 - 3.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) EtaNCEL MaNCEL MaRES MvRES NormNCRES

3.5 - 4 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

3.5 - 4 0 - 0.15 0.0% 0.0% 0.1% 0.0% 0.0%

3.5 - 4 0.15 - 0.25 0.0% 0.0% 0.4% 0.0% 0.0%

3.5 - 4 0.25 - 0.4 0.0% 0.0% 0.6% 0.0% 0.0%

3.5 - 4 0.4 - 0.7 0.0% 0.0% 0.9% 0.1% 0.0%

3.5 - 4 0.7 - 1 0.0% 0.0% 0.8% 0.0% 0.0%

3.5 - 4 1 - 1.5 0.0% 0.0% 4.2% 0.4% 0.0%

3.5 - 4 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

4 - 4.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

4 - 4.5 0 - 0.15 0.0% 0.0% 0.1% 0.0% 0.0%

4 - 4.5 0.15 - 0.25 0.0% 0.0% 0.4% 0.0% 0.0%

4 - 4.5 0.25 - 0.4 0.0% 0.0% 0.5% 0.0% 0.0%

4 - 4.5 0.4 - 0.7 0.0% 0.0% 0.9% 0.2% 0.0%

4 - 4.5 0.7 - 1 0.0% 0.0% 0.7% 0.1% 0.0%

4 - 4.5 1 - 1.5 0.0% 0.0% 2.8% 0.1% 0.0%

4 - 4.5 > 1.5 0.0% 0.0% 28.1% 4.2% 0.0%

4.5 - 5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

4.5 - 5 0 - 0.15 0.0% 0.0% 0.1% 0.0% 0.0%

4.5 - 5 0.15 - 0.25 0.0% 0.0% 0.5% 0.0% 0.0%

4.5 - 5 0.25 - 0.4 0.0% 0.0% 0.7% 0.1% 0.0%

4.5 - 5 0.4 - 0.7 0.0% 0.0% 1.1% 0.2% 0.0%

4.5 - 5 0.7 - 1 0.0% 0.0% 0.7% 0.1% 0.0%

4.5 - 5 1 - 1.5 0.0% 0.0% 4.4% 0.5% 0.0%

4.5 - 5 > 1.5 0.0% 0.0% 8.4% 0.7% 0.0%
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p‖µ
(GeV) pTµ (GeV) EtaNCEL MaNCEL MaRES MvRES NormNCRES

5 - 6 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

5 - 6 0 - 0.15 0.0% 0.0% 0.0% 0.0% 0.0%

5 - 6 0.15 - 0.25 0.0% 0.0% 0.4% 0.0% 0.0%

5 - 6 0.25 - 0.4 0.0% 0.0% 0.6% 0.1% 0.0%

5 - 6 0.4 - 0.7 0.0% 0.0% 1.0% 0.2% 0.0%

5 - 6 0.7 - 1 0.0% 0.0% 0.6% 0.0% 0.0%

5 - 6 1 - 1.5 0.0% 0.0% 4.2% 0.6% 0.0%

5 - 6 > 1.5 0.0% 0.0% 10.8% 1.6% 0.0%

6 - 8 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

6 - 8 0 - 0.15 0.0% 0.0% 0.0% 0.0% 0.0%

6 - 8 0.15 - 0.25 0.0% 0.0% 0.4% 0.0% 0.0%

6 - 8 0.25 - 0.4 0.0% 0.0% 0.9% 0.1% 0.0%

6 - 8 0.4 - 0.7 0.0% 0.0% 1.3% 0.2% 0.0%

6 - 8 0.7 - 1 0.0% 0.0% 1.9% 0.2% 0.0%

6 - 8 1 - 1.5 0.0% 0.0% 5.6% 0.7% 0.0%

6 - 8 > 1.5 0.0% 0.0% 25.3% 3.5% 0.0%

8 - 10 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

8 - 10 0 - 0.15 0.0% 0.0% 0.1% 0.0% 0.0%

8 - 10 0.15 - 0.25 0.0% 0.0% 0.6% 0.0% 0.0%

8 - 10 0.25 - 0.4 0.0% 0.0% 1.1% 0.1% 0.0%

8 - 10 0.4 - 0.7 0.0% 0.0% 1.3% 0.2% 0.0%

8 - 10 0.7 - 1 0.0% 0.0% 2.8% 0.3% 0.0%

8 - 10 1 - 1.5 0.0% 0.0% 5.9% 0.7% 0.0%

8 - 10 > 1.5 0.0% 0.0% 14.0% 1.5% 0.0%
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p‖µ
(GeV) pTµ (GeV) EtaNCEL MaNCEL MaRES MvRES NormNCRES

10 - 15 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

10 - 15 0 - 0.15 0.0% 0.0% 0.1% 0.0% 0.0%

10 - 15 0.15 - 0.25 0.0% 0.0% 0.4% 0.0% 0.0%

10 - 15 0.25 - 0.4 0.0% 0.0% 0.7% 0.0% 0.0%

10 - 15 0.4 - 0.7 0.0% 0.0% 1.5% 0.3% 0.0%

10 - 15 0.7 - 1 0.0% 0.0% 3.5% 0.5% 0.0%

10 - 15 1 - 1.5 0.0% 0.0% 7.7% 0.9% 0.0%

10 - 15 > 1.5 0.0% 0.0% 48.4% 6.7% 0.0%

> 15 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

> 15 0 - 0.15 0.0% 0.0% 0.5% 0.0% 0.0%

> 15 0.15 - 0.25 0.0% 0.0% 0.1% 0.0% 0.0%

> 15 0.25 - 0.4 0.0% 0.0% 0.7% 0.1% 0.0%

> 15 0.4 - 0.7 0.0% 0.0% 1.0% 0.2% 0.0%

> 15 0.7 - 1 0.0% 0.0% 2.0% 0.4% 0.0%

> 15 1 - 1.5 0.0% 0.0% 13.1% 1.6% 0.0%

> 15 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

Table E.4. Absolute fractional primary interaction shape uncertainties (res-
onant and neutral current) vs.p‖µ and pTµ
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p‖µ
(GeV) pTµ (GeV) Vector FF MA shape Pauli Supp Normalization MEC

< 1.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

< 1.5 0 - 0.15 1.1% 2.4% 4.7% 5.0% 8.3%

< 1.5 0.15 - 0.25 0.3% 1.5% 3.9% 4.0% 11.4%

< 1.5 0.25 - 0.4 0.1% 0.9% 2.8% 2.9% 7.1%

< 1.5 0.4 - 0.7 0.9% 0.8% 0.5% 2.8% 0.9%

< 1.5 0.7 - 1 3.5% 5.5% 1.1% 6.9% 4.3%

< 1.5 1 - 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

< 1.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

1.5 - 2 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

1.5 - 2 0 - 0.15 0.5% 1.2% 2.4% 2.8% 12.0%

1.5 - 2 0.15 - 0.25 0.2% 0.9% 2.5% 2.5% 10.3%

1.5 - 2 0.25 - 0.4 0.1% 0.6% 1.7% 2.2% 7.0%

1.5 - 2 0.4 - 0.7 0.5% 0.3% 0.4% 2.1% 5.2%

1.5 - 2 0.7 - 1 1.9% 0.4% 0.6% 4.1% 0.6%

1.5 - 2 1 - 1.5 1.3% 1.5% 1.1% 6.6% 2.4%

1.5 - 2 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

2 - 2.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

2 - 2.5 0 - 0.15 0.6% 1.1% 1.9% 2.6% 9.7%

2 - 2.5 0.15 - 0.25 0.2% 0.6% 1.8% 1.7% 9.0%

2 - 2.5 0.25 - 0.4 0.0% 0.4% 1.3% 1.8% 7.5%

2 - 2.5 0.4 - 0.7 0.3% 0.2% 0.3% 1.6% 5.4%

2 - 2.5 0.7 - 1 1.5% 0.2% 0.5% 2.4% 0.1%

2 - 2.5 1 - 1.5 2.1% 1.6% 0.7% 5.1% 0.7%

2 - 2.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) Vector FF MA shape Pauli Supp Normalization MEC

2.5 - 3 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

2.5 - 3 0 - 0.15 0.4% 0.7% 1.5% 1.8% 9.0%

2.5 - 3 0.15 - 0.25 0.2% 0.5% 1.4% 1.6% 7.6%

2.5 - 3 0.25 - 0.4 0.0% 0.3% 1.1% 1.5% 6.8%

2.5 - 3 0.4 - 0.7 0.2% 0.1% 0.2% 1.3% 4.5%

2.5 - 3 0.7 - 1 1.2% 0.3% 0.4% 2.1% 1.1%

2.5 - 3 1 - 1.5 2.4% 0.6% 0.7% 2.8% 0.9%

2.5 - 3 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

3 - 3.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

3 - 3.5 0 - 0.15 0.3% 0.5% 1.0% 1.4% 7.0%

3 - 3.5 0.15 - 0.25 0.2% 0.4% 1.2% 1.3% 5.6%

3 - 3.5 0.25 - 0.4 0.0% 0.2% 0.8% 1.0% 5.6%

3 - 3.5 0.4 - 0.7 0.2% 0.0% 0.1% 1.0% 4.2%

3 - 3.5 0.7 - 1 1.0% 0.4% 0.4% 2.0% 1.2%

3 - 3.5 1 - 1.5 2.2% 0.2% 0.6% 3.6% 0.7%

3 - 3.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

3.5 - 4 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

3.5 - 4 0 - 0.15 0.3% 0.5% 1.1% 1.2% 6.1%

3.5 - 4 0.15 - 0.25 0.1% 0.3% 0.8% 0.9% 6.2%

3.5 - 4 0.25 - 0.4 0.0% 0.2% 0.6% 0.9% 5.0%

3.5 - 4 0.4 - 0.7 0.1% 0.0% 0.1% 0.7% 3.5%

3.5 - 4 0.7 - 1 0.9% 0.5% 0.4% 1.7% 1.8%

3.5 - 4 1 - 1.5 2.4% 0.4% 1.0% 5.3% 0.7%

3.5 - 4 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) Vector FF MA shape Pauli Supp Normalization MEC

4 - 4.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

4 - 4.5 0 - 0.15 0.2% 0.3% 0.6% 0.9% 5.8%

4 - 4.5 0.15 - 0.25 0.1% 0.2% 0.8% 0.8% 4.6%

4 - 4.5 0.25 - 0.4 0.0% 0.1% 0.5% 0.7% 5.3%

4 - 4.5 0.4 - 0.7 0.1% 0.1% 0.1% 0.7% 3.3%

4 - 4.5 0.7 - 1 1.0% 0.9% 0.7% 1.9% 1.3%

4 - 4.5 1 - 1.5 3.1% 1.5% 1.5% 4.9% 0.8%

4 - 4.5 > 1.5 4.9% 2.6% 3.7% 18.7% 10.5%

4.5 - 5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

4.5 - 5 0 - 0.15 0.3% 0.4% 1.0% 1.2% 6.5%

4.5 - 5 0.15 - 0.25 0.1% 0.4% 1.3% 1.3% 5.5%

4.5 - 5 0.25 - 0.4 0.0% 0.2% 0.7% 1.0% 5.1%

4.5 - 5 0.4 - 0.7 0.1% 0.0% 0.1% 0.9% 3.9%

4.5 - 5 0.7 - 1 1.0% 0.9% 0.8% 2.1% 1.5%

4.5 - 5 1 - 1.5 2.7% 1.5% 1.4% 5.2% 0.7%

4.5 - 5 > 1.5 0.4% 1.6% 1.3% 4.7% 0.6%

5 - 6 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

5 - 6 0 - 0.15 0.3% 0.6% 1.1% 1.4% 7.3%

5 - 6 0.15 - 0.25 0.1% 0.3% 1.1% 1.2% 6.9%

5 - 6 0.25 - 0.4 0.0% 0.2% 0.8% 1.0% 5.5%

5 - 6 0.4 - 0.7 0.1% 0.0% 0.1% 0.9% 4.8%

5 - 6 0.7 - 1 1.1% 0.9% 0.7% 2.0% 1.8%

5 - 6 1 - 1.5 2.5% 1.3% 1.4% 5.8% 1.2%

5 - 6 > 1.5 3.0% 2.6% 2.7% 9.7% 0.8%
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p‖µ
(GeV) pTµ (GeV) Vector FF MA shape Pauli Supp Normalization MEC

6 - 8 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

6 - 8 0 - 0.15 0.4% 0.5% 1.3% 1.4% 6.7%

6 - 8 0.15 - 0.25 0.2% 0.4% 1.3% 1.3% 7.9%

6 - 8 0.25 - 0.4 0.0% 0.2% 0.8% 1.3% 5.7%

6 - 8 0.4 - 0.7 0.1% 0.1% 0.0% 1.0% 4.3%

6 - 8 0.7 - 1 1.0% 0.6% 0.7% 2.6% 2.0%

6 - 8 1 - 1.5 2.7% 1.3% 1.4% 7.0% 0.0%

6 - 8 > 1.5 3.3% 1.8% 3.1% 19.3% 4.3%

8 - 10 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

8 - 10 0 - 0.15 0.4% 0.7% 1.7% 1.7% 4.0%

8 - 10 0.15 - 0.25 0.2% 0.6% 2.4% 1.8% 7.7%

8 - 10 0.25 - 0.4 0.0% 0.2% 0.9% 1.5% 9.0%

8 - 10 0.4 - 0.7 0.1% 0.1% 0.0% 0.9% 5.9%

8 - 10 0.7 - 1 1.1% 0.6% 0.7% 3.3% 2.6%

8 - 10 1 - 1.5 2.6% 1.1% 1.2% 6.9% 0.6%

8 - 10 > 1.5 2.8% 2.1% 2.6% 13.3% 5.2%

10 - 15 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

10 - 15 0 - 0.15 0.5% 0.9% 2.1% 1.9% 6.7%

10 - 15 0.15 - 0.25 0.1% 0.4% 1.0% 1.5% 5.7%

10 - 15 0.25 - 0.4 0.0% 0.2% 1.0% 1.4% 8.9%

10 - 15 0.4 - 0.7 0.1% 0.1% 0.0% 1.1% 5.2%

10 - 15 0.7 - 1 1.3% 0.7% 0.9% 3.7% 2.6%

10 - 15 1 - 1.5 3.1% 1.2% 1.3% 8.5% 0.2%

10 - 15 > 1.5 8.0% 2.5% 5.1% 34.4% 2.4%
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p‖µ
(GeV) pTµ (GeV) Vector FF MA shape Pauli Supp Normalization MEC

> 15 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

> 15 0 - 0.15 1.1% 2.7% 5.8% 5.1% 9.4%

> 15 0.15 - 0.25 0.5% 0.4% 5.1% 0.7% 7.5%

> 15 0.25 - 0.4 0.2% 0.3% 2.0% 1.5% 6.4%

> 15 0.4 - 0.7 0.2% 0.7% 0.2% 0.9% 17.1%

> 15 0.7 - 1 0.7% 0.1% 0.5% 3.1% 0.3%

> 15 1 - 1.5 2.6% 1.3% 1.5% 8.0% 2.4%

> 15 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

Table E.5. Absolute fractional signal model uncertainties vs.p‖µ and pTµ

p‖µ
(GeV) pTµ (GeV) AGKYxF1pi MFP N MFP pi RDecBR1gamma Theta Delta2Npi

< 1.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

< 1.5 0 - 0.15 0.1% 0.6% 2.4% 0.0% 0.0%

< 1.5 0.15 - 0.25 0.4% 1.0% 2.0% 0.0% 0.0%

< 1.5 0.25 - 0.4 0.6% 0.1% 1.7% 0.0% 0.0%

< 1.5 0.4 - 0.7 0.5% 0.9% 1.1% 0.0% 0.1%

< 1.5 0.7 - 1 1.2% 3.7% 2.8% 0.0% 0.0%

< 1.5 1 - 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

< 1.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) AGKYxF1pi MFP N MFP pi RDecBR1gamma Theta Delta2Npi

1.5 - 2 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

1.5 - 2 0 - 0.15 0.1% 0.3% 1.5% 0.0% 0.1%

1.5 - 2 0.15 - 0.25 0.1% 0.0% 0.7% 0.0% 0.0%

1.5 - 2 0.25 - 0.4 0.3% 0.5% 1.2% 0.0% 0.0%

1.5 - 2 0.4 - 0.7 0.3% 1.2% 1.0% 0.0% 0.0%

1.5 - 2 0.7 - 1 0.2% 1.0% 0.9% 0.0% 0.0%

1.5 - 2 1 - 1.5 0.4% 0.2% 2.5% 0.0% 0.1%

1.5 - 2 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

2 - 2.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

2 - 2.5 0 - 0.15 0.1% 0.1% 1.2% 0.0% 0.0%

2 - 2.5 0.15 - 0.25 0.0% 0.3% 0.9% 0.0% 0.0%

2 - 2.5 0.25 - 0.4 0.1% 0.3% 0.9% 0.0% 0.0%

2 - 2.5 0.4 - 0.7 0.3% 0.4% 0.8% 0.0% 0.0%

2 - 2.5 0.7 - 1 0.2% 1.2% 0.9% 0.0% 0.0%

2 - 2.5 1 - 1.5 0.9% 4.4% 1.5% 0.0% 0.3%

2 - 2.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

2.5 - 3 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

2.5 - 3 0 - 0.15 0.0% 0.5% 1.0% 0.0% 0.0%

2.5 - 3 0.15 - 0.25 0.0% 0.0% 0.7% 0.0% 0.0%

2.5 - 3 0.25 - 0.4 0.1% 0.3% 0.7% 0.0% 0.0%

2.5 - 3 0.4 - 0.7 0.2% 0.5% 0.8% 0.0% 0.0%

2.5 - 3 0.7 - 1 0.2% 1.1% 0.7% 0.0% 0.0%

2.5 - 3 1 - 1.5 0.2% 1.5% 0.7% 0.0% 0.0%

2.5 - 3 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) AGKYxF1pi MFP N MFP pi RDecBR1gamma Theta Delta2Npi

3 - 3.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

3 - 3.5 0 - 0.15 0.0% 0.3% 0.8% 0.0% 0.0%

3 - 3.5 0.15 - 0.25 0.1% 0.1% 0.4% 0.0% 0.0%

3 - 3.5 0.25 - 0.4 0.0% 0.2% 0.6% 0.0% 0.0%

3 - 3.5 0.4 - 0.7 0.1% 0.4% 0.6% 0.0% 0.0%

3 - 3.5 0.7 - 1 0.2% 1.4% 0.7% 0.0% 0.0%

3 - 3.5 1 - 1.5 0.2% 2.8% 0.3% 0.0% 0.0%

3 - 3.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

3.5 - 4 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

3.5 - 4 0 - 0.15 0.0% 0.4% 0.6% 0.0% 0.0%

3.5 - 4 0.15 - 0.25 0.0% 0.0% 0.4% 0.0% 0.0%

3.5 - 4 0.25 - 0.4 0.1% 0.2% 0.5% 0.0% 0.0%

3.5 - 4 0.4 - 0.7 0.1% 0.4% 0.4% 0.0% 0.0%

3.5 - 4 0.7 - 1 0.2% 0.9% 0.7% 0.0% 0.0%

3.5 - 4 1 - 1.5 1.0% 2.6% 0.6% 0.0% 0.1%

3.5 - 4 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

4 - 4.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

4 - 4.5 0 - 0.15 0.1% 0.0% 0.2% 0.0% 0.0%

4 - 4.5 0.15 - 0.25 0.0% 0.2% 0.2% 0.0% 0.0%

4 - 4.5 0.25 - 0.4 0.0% 0.3% 0.7% 0.0% 0.0%

4 - 4.5 0.4 - 0.7 0.2% 0.6% 0.6% 0.0% 0.0%

4 - 4.5 0.7 - 1 0.4% 1.3% 0.7% 0.0% 0.0%

4 - 4.5 1 - 1.5 0.1% 1.8% 0.2% 0.0% 0.1%

4 - 4.5 > 1.5 0.7% 7.8% 2.0% 0.1% 0.1%
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p‖µ
(GeV) pTµ (GeV) AGKYxF1pi MFP N MFP pi RDecBR1gamma Theta Delta2Npi

4.5 - 5 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

4.5 - 5 0 - 0.15 0.1% 0.4% 0.5% 0.0% 0.0%

4.5 - 5 0.15 - 0.25 0.1% 0.2% 0.4% 0.0% 0.0%

4.5 - 5 0.25 - 0.4 0.1% 0.1% 0.5% 0.0% 0.0%

4.5 - 5 0.4 - 0.7 0.2% 0.3% 0.7% 0.0% 0.0%

4.5 - 5 0.7 - 1 0.3% 1.0% 0.9% 0.0% 0.0%

4.5 - 5 1 - 1.5 0.8% 0.1% 0.8% 0.0% 0.1%

4.5 - 5 > 1.5 0.0% 13.4% 0.1% 0.1% 0.3%

5 - 6 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

5 - 6 0 - 0.15 0.1% 0.0% 1.2% 0.0% 0.0%

5 - 6 0.15 - 0.25 0.1% 0.1% 0.6% 0.1% 0.0%

5 - 6 0.25 - 0.4 0.0% 0.1% 0.6% 0.0% 0.0%

5 - 6 0.4 - 0.7 0.2% 0.6% 0.7% 0.0% 0.0%

5 - 6 0.7 - 1 0.3% 1.2% 0.7% 0.0% 0.1%

5 - 6 1 - 1.5 1.1% 1.1% 1.1% 0.0% 0.1%

5 - 6 > 1.5 6.6% 1.3% 0.8% 0.5% 0.6%

6 - 8 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

6 - 8 0 - 0.15 0.2% 0.1% 0.4% 0.0% 0.1%

6 - 8 0.15 - 0.25 0.1% 0.1% 0.5% 0.0% 0.0%

6 - 8 0.25 - 0.4 0.1% 0.3% 0.6% 0.0% 0.1%

6 - 8 0.4 - 0.7 0.3% 0.4% 0.6% 0.0% 0.0%

6 - 8 0.7 - 1 0.3% 0.2% 1.3% 0.0% 0.0%

6 - 8 1 - 1.5 1.1% 2.2% 1.1% 0.0% 0.2%

6 - 8 > 1.5 1.9% 3.2% 2.8% 0.0% 0.1%
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p‖µ
(GeV) pTµ (GeV) AGKYxF1pi MFP N MFP pi RDecBR1gamma Theta Delta2Npi

8 - 10 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

8 - 10 0 - 0.15 0.0% 0.7% 0.3% 0.0% 0.1%

8 - 10 0.15 - 0.25 0.1% 0.2% 1.0% 0.0% 0.0%

8 - 10 0.25 - 0.4 0.1% 0.2% 0.7% 0.0% 0.0%

8 - 10 0.4 - 0.7 0.2% 0.5% 1.0% 0.0% 0.0%

8 - 10 0.7 - 1 0.3% 0.5% 1.6% 0.0% 0.1%

8 - 10 1 - 1.5 1.4% 2.4% 2.0% 0.0% 0.1%

8 - 10 > 1.5 0.8% 0.7% 0.3% 0.2% 0.2%

10 - 15 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

10 - 15 0 - 0.15 0.1% 0.1% 0.1% 0.0% 0.2%

10 - 15 0.15 - 0.25 0.0% 0.6% 0.9% 0.0% 0.1%

10 - 15 0.25 - 0.4 0.2% 0.7% 0.8% 0.0% 1.0%

10 - 15 0.4 - 0.7 0.4% 0.7% 0.9% 0.0% 0.1%

10 - 15 0.7 - 1 0.9% 1.4% 1.2% 0.0% 0.0%

10 - 15 1 - 1.5 1.4% 1.0% 1.0% 0.2% 0.0%

10 - 15 > 1.5 5.3% 4.5% 0.3% 0.0% 0.0%

> 15 < 0 0.0% 0.0% 0.0% 0.0% 0.0%

> 15 0 - 0.15 0.2% 1.2% 3.4% 0.0% 0.2%

> 15 0.15 - 0.25 0.1% 1.3% 0.7% 0.0% 0.2%

> 15 0.25 - 0.4 0.3% 0.9% 0.8% 0.0% 0.7%

> 15 0.4 - 0.7 0.3% 3.5% 0.9% 0.0% 0.2%

> 15 0.7 - 1 0.9% 2.3% 0.5% 0.0% 0.1%

> 15 1 - 1.5 1.2% 2.8% 1.1% 0.1% 0.0%

> 15 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0%

Table E.6. Absolute fractional hadron interaction uncertainties vs.p‖µ and pTµ
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p‖µ
(GeV) pTµ (GeV) FrAbs N FrAbs pi FrCEx N FrCEx pi FrElas N FrElas pi

< 1.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

< 1.5 0 - 0.15 0.9% 10.5% 2.0% 0.1% 2.4% 0.9%

< 1.5 0.15 - 0.25 0.9% 7.2% 0.1% 0.6% 1.2% 0.7%

< 1.5 0.25 - 0.4 0.8% 5.4% 1.9% 0.2% 1.8% 0.6%

< 1.5 0.4 - 0.7 0.2% 5.2% 0.6% 0.2% 1.1% 0.5%

< 1.5 0.7 - 1 4.5% 5.2% 3.5% 0.5% 2.2% 2.2%

< 1.5 1 - 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

< 1.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

1.5 - 2 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

1.5 - 2 0 - 0.15 0.2% 6.4% 0.6% 0.4% 0.7% 0.6%

1.5 - 2 0.15 - 0.25 0.1% 5.5% 0.1% 0.2% 0.1% 0.7%

1.5 - 2 0.25 - 0.4 0.1% 4.7% 0.2% 0.3% 0.3% 0.5%

1.5 - 2 0.4 - 0.7 0.2% 4.8% 0.4% 0.3% 0.9% 0.5%

1.5 - 2 0.7 - 1 0.4% 5.2% 1.6% 0.2% 1.0% 0.6%

1.5 - 2 1 - 1.5 1.6% 5.9% 2.3% 1.5% 3.1% 0.1%

1.5 - 2 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2 - 2.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2 - 2.5 0 - 0.15 0.5% 6.4% 0.0% 0.5% 1.2% 0.8%

2 - 2.5 0.15 - 0.25 0.0% 4.5% 0.1% 0.2% 0.7% 0.5%

2 - 2.5 0.25 - 0.4 0.2% 4.2% 0.0% 0.3% 0.9% 0.5%

2 - 2.5 0.4 - 0.7 0.0% 4.0% 0.5% 0.2% 0.7% 0.5%

2 - 2.5 0.7 - 1 0.2% 3.7% 0.4% 0.0% 1.3% 0.4%

2 - 2.5 1 - 1.5 1.6% 5.4% 1.3% 1.7% 0.8% 0.1%

2 - 2.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) FrAbs N FrAbs pi FrCEx N FrCEx pi FrElas N FrElas pi

2.5 - 3 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2.5 - 3 0 - 0.15 0.5% 4.8% 0.3% 0.3% 0.2% 0.5%

2.5 - 3 0.15 - 0.25 0.1% 4.0% 0.0% 0.2% 0.2% 0.5%

2.5 - 3 0.25 - 0.4 0.2% 3.8% 0.1% 0.3% 0.7% 0.4%

2.5 - 3 0.4 - 0.7 0.1% 3.3% 0.2% 0.2% 0.9% 0.4%

2.5 - 3 0.7 - 1 0.1% 3.3% 0.5% 0.2% 1.8% 0.4%

2.5 - 3 1 - 1.5 0.8% 2.6% 0.8% 0.0% 0.8% 0.1%

2.5 - 3 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 - 3.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 - 3.5 0 - 0.15 0.2% 4.1% 0.0% 0.2% 0.7% 0.4%

3 - 3.5 0.15 - 0.25 0.0% 3.4% 0.2% 0.3% 0.4% 0.4%

3 - 3.5 0.25 - 0.4 0.1% 2.9% 0.1% 0.2% 0.4% 0.3%

3 - 3.5 0.4 - 0.7 0.2% 2.7% 0.3% 0.2% 0.9% 0.3%

3 - 3.5 0.7 - 1 0.6% 3.0% 1.0% 0.0% 1.2% 0.4%

3 - 3.5 1 - 1.5 0.3% 3.3% 0.9% 0.1% 1.4% 0.1%

3 - 3.5 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3.5 - 4 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3.5 - 4 0 - 0.15 0.2% 3.7% 0.6% 0.2% 0.7% 0.4%

3.5 - 4 0.15 - 0.25 0.1% 2.7% 0.3% 0.2% 0.3% 0.3%

3.5 - 4 0.25 - 0.4 0.0% 2.4% 0.1% 0.2% 0.4% 0.3%

3.5 - 4 0.4 - 0.7 0.2% 2.3% 0.2% 0.1% 0.7% 0.2%

3.5 - 4 0.7 - 1 0.3% 3.0% 0.7% 0.1% 1.4% 0.3%

3.5 - 4 1 - 1.5 0.5% 4.6% 1.2% 0.3% 2.7% 0.4%

3.5 - 4 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%



482

p‖µ
(GeV) pTµ (GeV) FrAbs N FrAbs pi FrCEx N FrCEx pi FrElas N FrElas pi

4 - 4.5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

4 - 4.5 0 - 0.15 0.2% 3.4% 0.1% 0.1% 0.2% 0.4%

4 - 4.5 0.15 - 0.25 0.3% 2.5% 0.0% 0.2% 1.1% 0.2%

4 - 4.5 0.25 - 0.4 0.1% 2.0% 0.0% 0.1% 0.5% 0.2%

4 - 4.5 0.4 - 0.7 0.2% 2.5% 0.2% 0.1% 0.8% 0.3%

4 - 4.5 0.7 - 1 0.1% 3.5% 1.3% 0.2% 2.0% 0.4%

4 - 4.5 1 - 1.5 0.1% 4.0% 1.0% 0.0% 0.6% 0.3%

4 - 4.5 > 1.5 3.8% 13.6% 5.4% 0.4% 2.7% 5.0%

4.5 - 5 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

4.5 - 5 0 - 0.15 0.0% 4.3% 0.6% 0.2% 0.0% 0.2%

4.5 - 5 0.15 - 0.25 0.3% 3.2% 0.3% 0.2% 1.4% 0.4%

4.5 - 5 0.25 - 0.4 0.0% 2.7% 0.3% 0.1% 0.1% 0.3%

4.5 - 5 0.4 - 0.7 0.2% 3.1% 0.6% 0.1% 0.7% 0.3%

4.5 - 5 0.7 - 1 0.3% 3.9% 1.3% 0.1% 1.6% 0.4%

4.5 - 5 1 - 1.5 0.0% 5.7% 1.1% 0.1% 1.3% 0.4%

4.5 - 5 > 1.5 8.2% 8.1% 8.0% 0.1% 8.4% 0.3%

5 - 6 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

5 - 6 0 - 0.15 0.2% 4.1% 0.7% 0.5% 0.5% 0.2%

5 - 6 0.15 - 0.25 0.3% 2.9% 0.5% 0.2% 1.6% 0.3%

5 - 6 0.25 - 0.4 0.1% 2.5% 0.3% 0.2% 0.2% 0.4%

5 - 6 0.4 - 0.7 0.0% 3.4% 0.3% 0.1% 0.5% 0.3%

5 - 6 0.7 - 1 0.1% 3.8% 0.7% 0.1% 1.2% 0.4%

5 - 6 1 - 1.5 0.6% 6.2% 1.1% 0.4% 2.3% 0.7%

5 - 6 > 1.5 1.2% 4.0% 5.4% 1.4% 4.3% 0.2%
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p‖µ
(GeV) pTµ (GeV) FrAbs N FrAbs pi FrCEx N FrCEx pi FrElas N FrElas pi

6 - 8 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

6 - 8 0 - 0.15 0.3% 4.4% 0.0% 0.3% 2.8% 0.6%

6 - 8 0.15 - 0.25 0.4% 3.7% 0.2% 0.2% 0.0% 0.3%

6 - 8 0.25 - 0.4 0.5% 3.5% 0.6% 0.5% 0.2% 0.4%

6 - 8 0.4 - 0.7 0.3% 3.5% 0.4% 0.2% 1.2% 0.5%

6 - 8 0.7 - 1 0.1% 4.6% 0.7% 0.3% 1.4% 0.5%

6 - 8 1 - 1.5 0.7% 6.6% 0.1% 0.6% 1.0% 0.5%

6 - 8 > 1.5 1.3% 11.9% 0.9% 0.3% 1.1% 1.2%

8 - 10 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

8 - 10 0 - 0.15 0.5% 4.5% 1.0% 0.1% 0.3% 0.7%

8 - 10 0.15 - 0.25 0.8% 4.1% 0.0% 0.4% 2.8% 0.5%

8 - 10 0.25 - 0.4 0.6% 3.9% 0.2% 0.1% 1.6% 0.4%

8 - 10 0.4 - 0.7 0.0% 3.6% 0.7% 0.1% 0.6% 0.4%

8 - 10 0.7 - 1 0.2% 6.0% 0.9% 0.2% 1.7% 0.5%

8 - 10 1 - 1.5 0.6% 7.1% 1.1% 0.0% 1.5% 0.5%

8 - 10 > 1.5 4.1% 6.2% 4.2% 0.7% 2.5% 0.4%

10 - 15 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 - 15 0 - 0.15 0.5% 4.8% 0.8% 0.5% 0.2% 0.5%

10 - 15 0.15 - 0.25 0.3% 3.5% 0.2% 0.2% 0.2% 0.4%

10 - 15 0.25 - 0.4 0.0% 3.9% 1.9% 0.0% 1.3% 0.3%

10 - 15 0.4 - 0.7 0.3% 3.7% 0.2% 0.1% 0.9% 0.4%

10 - 15 0.7 - 1 0.2% 5.5% 0.8% 0.3% 2.1% 0.6%

10 - 15 1 - 1.5 0.6% 7.3% 1.0% 0.1% 1.4% 0.6%

10 - 15 > 1.5 1.0% 8.6% 1.8% 0.2% 0.2% 0.9%
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p‖µ
(GeV) pTµ (GeV) FrAbs N FrAbs pi FrCEx N FrCEx pi FrElas N FrElas pi

> 15 < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

> 15 0 - 0.15 3.9% 10.6% 12.6% 0.4% 18.3% 0.8%

> 15 0.15 - 0.25 3.9% 2.4% 0.7% 0.2% 8.1% 0.3%

> 15 0.25 - 0.4 2.5% 4.1% 2.6% 0.1% 2.4% 0.4%

> 15 0.4 - 0.7 1.5% 3.5% 0.6% 0.0% 7.8% 0.3%

> 15 0.7 - 1 1.8% 5.6% 3.2% 0.3% 4.5% 0.5%

> 15 1 - 1.5 0.6% 5.8% 1.6% 0.1% 4.2% 0.5%

> 15 > 1.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table E.7. Absolute fractional hadron interaction uncertainties vs.p‖µ and pTµ

p‖µ
(GeV) pTµ (GeV) FrInel N FrInel pi FrPiProd N FrPiProd pi

< 1.5 < 0 0.0% 0.0% 0.0% 0.0%

< 1.5 0 - 0.15 0.8% 11.1% 0.1% 0.2%

< 1.5 0.15 - 0.25 1.6% 6.7% 0.1% 0.1%

< 1.5 0.25 - 0.4 0.1% 5.3% 0.1% 0.1%

< 1.5 0.4 - 0.7 0.7% 5.2% 0.3% 0.1%

< 1.5 0.7 - 1 2.2% 3.1% 0.7% 0.1%

< 1.5 1 - 1.5 0.0% 0.0% 0.0% 0.0%

< 1.5 > 1.5 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) FrInel N FrInel pi FrPiProd N FrPiProd pi

1.5 - 2 < 0 0.0% 0.0% 0.0% 0.0%

1.5 - 2 0 - 0.15 0.1% 6.3% 0.0% 0.1%

1.5 - 2 0.15 - 0.25 0.1% 5.3% 0.0% 0.1%

1.5 - 2 0.25 - 0.4 0.7% 4.4% 0.0% 0.1%

1.5 - 2 0.4 - 0.7 0.0% 4.4% 0.1% 0.1%

1.5 - 2 0.7 - 1 1.5% 4.7% 0.9% 0.3%

1.5 - 2 1 - 1.5 0.9% 3.9% 2.9% 0.4%

1.5 - 2 > 1.5 0.0% 0.0% 0.0% 0.0%

2 - 2.5 < 0 0.0% 0.0% 0.0% 0.0%

2 - 2.5 0 - 0.15 0.5% 5.6% 0.0% 0.1%

2 - 2.5 0.15 - 0.25 0.6% 4.4% 0.0% 0.0%

2 - 2.5 0.25 - 0.4 0.6% 3.8% 0.0% 0.1%

2 - 2.5 0.4 - 0.7 0.1% 3.7% 0.1% 0.1%

2 - 2.5 0.7 - 1 0.7% 3.8% 0.3% 0.1%

2 - 2.5 1 - 1.5 1.2% 3.7% 0.3% 0.2%

2 - 2.5 > 1.5 0.0% 0.0% 0.0% 0.0%

2.5 - 3 < 0 0.0% 0.0% 0.0% 0.0%

2.5 - 3 0 - 0.15 0.2% 4.7% 0.0% 0.1%

2.5 - 3 0.15 - 0.25 0.2% 3.9% 0.0% 0.0%

2.5 - 3 0.25 - 0.4 0.2% 3.5% 0.0% 0.1%

2.5 - 3 0.4 - 0.7 0.3% 3.1% 0.0% 0.1%

2.5 - 3 0.7 - 1 0.4% 3.1% 0.4% 0.1%

2.5 - 3 1 - 1.5 0.6% 2.6% 1.2% 0.1%

2.5 - 3 > 1.5 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) FrInel N FrInel pi FrPiProd N FrPiProd pi

3 - 3.5 < 0 0.0% 0.0% 0.0% 0.0%

3 - 3.5 0 - 0.15 0.2% 4.2% 0.0% 0.0%

3 - 3.5 0.15 - 0.25 0.1% 3.2% 0.0% 0.0%

3 - 3.5 0.25 - 0.4 0.0% 2.7% 0.0% 0.0%

3 - 3.5 0.4 - 0.7 0.2% 2.5% 0.0% 0.0%

3 - 3.5 0.7 - 1 0.1% 2.9% 0.3% 0.1%

3 - 3.5 1 - 1.5 0.8% 3.7% 1.3% 0.1%

3 - 3.5 > 1.5 0.0% 0.0% 0.0% 0.0%

3.5 - 4 < 0 0.0% 0.0% 0.0% 0.0%

3.5 - 4 0 - 0.15 0.2% 3.6% 0.0% 0.0%

3.5 - 4 0.15 - 0.25 0.3% 2.5% 0.0% 0.0%

3.5 - 4 0.25 - 0.4 0.2% 2.1% 0.0% 0.0%

3.5 - 4 0.4 - 0.7 0.2% 2.2% 0.0% 0.0%

3.5 - 4 0.7 - 1 0.4% 2.9% 0.3% 0.1%

3.5 - 4 1 - 1.5 1.0% 4.3% 1.5% 0.1%

3.5 - 4 > 1.5 0.0% 0.0% 0.0% 0.0%

4 - 4.5 < 0 0.0% 0.0% 0.0% 0.0%

4 - 4.5 0 - 0.15 0.0% 3.6% 0.0% 0.0%

4 - 4.5 0.15 - 0.25 0.6% 2.5% 0.0% 0.0%

4 - 4.5 0.25 - 0.4 0.3% 1.9% 0.0% 0.0%

4 - 4.5 0.4 - 0.7 0.3% 2.4% 0.0% 0.1%

4 - 4.5 0.7 - 1 0.0% 3.2% 0.3% 0.1%

4 - 4.5 1 - 1.5 2.0% 4.2% 1.1% 0.1%

4 - 4.5 > 1.5 1.6% 8.2% 2.4% 0.5%
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p‖µ
(GeV) pTµ (GeV) FrInel N FrInel pi FrPiProd N FrPiProd pi

4.5 - 5 < 0 0.0% 0.0% 0.0% 0.0%

4.5 - 5 0 - 0.15 0.7% 4.8% 0.0% 0.0%

4.5 - 5 0.15 - 0.25 0.3% 3.1% 0.0% 0.0%

4.5 - 5 0.25 - 0.4 0.3% 2.8% 0.0% 0.0%

4.5 - 5 0.4 - 0.7 0.4% 3.2% 0.0% 0.0%

4.5 - 5 0.7 - 1 0.2% 3.8% 0.3% 0.1%

4.5 - 5 1 - 1.5 1.4% 5.7% 1.0% 0.2%

4.5 - 5 > 1.5 46.1% 8.9% 9.5% 0.4%

5 - 6 < 0 0.0% 0.0% 0.0% 0.0%

5 - 6 0 - 0.15 0.0% 4.2% 0.0% 0.0%

5 - 6 0.15 - 0.25 0.4% 2.8% 0.0% 0.0%

5 - 6 0.25 - 0.4 0.3% 2.1% 0.0% 0.0%

5 - 6 0.4 - 0.7 0.1% 3.5% 0.0% 0.1%

5 - 6 0.7 - 1 0.1% 3.8% 0.4% 0.1%

5 - 6 1 - 1.5 0.2% 5.2% 1.4% 0.2%

5 - 6 > 1.5 3.1% 2.0% 2.0% 0.6%

6 - 8 < 0 0.0% 0.0% 0.0% 0.0%

6 - 8 0 - 0.15 1.5% 3.8% 0.0% 0.0%

6 - 8 0.15 - 0.25 0.3% 3.7% 0.0% 0.0%

6 - 8 0.25 - 0.4 0.2% 2.8% 0.0% 0.0%

6 - 8 0.4 - 0.7 0.2% 3.2% 0.0% 0.1%

6 - 8 0.7 - 1 0.1% 4.2% 0.3% 0.1%

6 - 8 1 - 1.5 0.4% 5.8% 1.2% 0.3%

6 - 8 > 1.5 1.6% 10.7% 2.6% 0.7%
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p‖µ
(GeV) pTµ (GeV) FrInel N FrInel pi FrPiProd N FrPiProd pi

8 - 10 < 0 0.0% 0.0% 0.0% 0.0%

8 - 10 0 - 0.15 1.0% 4.3% 0.0% 0.1%

8 - 10 0.15 - 0.25 1.3% 3.6% 0.0% 0.0%

8 - 10 0.25 - 0.4 0.9% 3.8% 0.0% 0.1%

8 - 10 0.4 - 0.7 0.3% 3.5% 0.0% 0.1%

8 - 10 0.7 - 1 0.3% 5.9% 0.4% 0.2%

8 - 10 1 - 1.5 0.0% 7.4% 0.8% 0.4%

8 - 10 > 1.5 4.5% 6.0% 1.2% 0.7%

10 - 15 < 0 0.0% 0.0% 0.0% 0.0%

10 - 15 0 - 0.15 0.6% 4.0% 0.0% 0.0%

10 - 15 0.15 - 0.25 0.2% 3.3% 0.0% 0.0%

10 - 15 0.25 - 0.4 1.1% 4.7% 0.0% 0.1%

10 - 15 0.4 - 0.7 0.6% 3.7% 0.0% 0.1%

10 - 15 0.7 - 1 0.5% 4.7% 0.2% 0.2%

10 - 15 1 - 1.5 0.4% 7.5% 1.0% 0.2%

10 - 15 > 1.5 1.2% 8.5% 0.1% 0.6%

> 15 < 0 0.0% 0.0% 0.0% 0.0%

> 15 0 - 0.15 5.2% 9.7% 0.4% 0.6%

> 15 0.15 - 0.25 2.7% 2.3% 0.0% 0.0%

> 15 0.25 - 0.4 2.8% 3.9% 0.0% 0.1%

> 15 0.4 - 0.7 5.9% 3.8% 0.0% 0.1%

> 15 0.7 - 1 1.8% 5.1% 0.4% 0.2%

> 15 1 - 1.5 5.9% 5.9% 0.3% 0.3%

> 15 > 1.5 0.0% 0.0% 0.0% 0.0%

Table E.8. Absolute fractional hadron interaction uncertainties vs.p‖µ and pTµ
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p‖µ
(GeV) pTµ (GeV) n path length p response π response Other response

< 1.5 < 0 0.0% 0.0% 0.0% 0.0%

< 1.5 0 - 0.15 3.8% 0.0% 1.7% 0.3%

< 1.5 0.15 - 0.25 3.1% 0.3% 0.7% 0.2%

< 1.5 0.25 - 0.4 1.6% 0.0% 0.8% 0.1%

< 1.5 0.4 - 0.7 2.9% 0.3% 0.5% 0.4%

< 1.5 0.7 - 1 8.3% 1.2% 3.0% 0.4%

< 1.5 1 - 1.5 0.0% 0.0% 0.0% 0.0%

< 1.5 > 1.5 0.0% 0.0% 0.0% 0.0%

1.5 - 2 < 0 0.0% 0.0% 0.0% 0.0%

1.5 - 2 0 - 0.15 2.8% 0.0% 0.7% 0.2%

1.5 - 2 0.15 - 0.25 1.8% 0.0% 0.6% 0.2%

1.5 - 2 0.25 - 0.4 1.4% 0.1% 0.5% 0.2%

1.5 - 2 0.4 - 0.7 2.4% 0.2% 0.5% 0.2%

1.5 - 2 0.7 - 1 5.3% 0.5% 1.0% 0.4%

1.5 - 2 1 - 1.5 5.5% 0.4% 0.1% 0.4%

1.5 - 2 > 1.5 0.0% 0.0% 0.0% 0.0%

2 - 2.5 < 0 0.0% 0.0% 0.0% 0.0%

2 - 2.5 0 - 0.15 2.4% 0.1% 1.1% 0.2%

2 - 2.5 0.15 - 0.25 1.4% 0.0% 0.6% 0.1%

2 - 2.5 0.25 - 0.4 1.4% 0.0% 0.5% 0.2%

2 - 2.5 0.4 - 0.7 2.2% 0.2% 0.5% 0.2%

2 - 2.5 0.7 - 1 3.8% 0.4% 0.6% 0.2%

2 - 2.5 1 - 1.5 5.2% 0.3% 0.0% 0.0%

2 - 2.5 > 1.5 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) n path length p response π response Other response

2.5 - 3 < 0 0.0% 0.0% 0.0% 0.0%

2.5 - 3 0 - 0.15 1.9% 0.0% 1.0% 0.2%

2.5 - 3 0.15 - 0.25 1.4% 0.1% 0.8% 0.3%

2.5 - 3 0.25 - 0.4 1.2% 0.0% 0.4% 0.2%

2.5 - 3 0.4 - 0.7 2.0% 0.1% 0.5% 0.2%

2.5 - 3 0.7 - 1 3.1% 0.3% 0.7% 0.2%

2.5 - 3 1 - 1.5 2.8% 0.1% 0.4% 0.1%

2.5 - 3 > 1.5 0.0% 0.0% 0.0% 0.0%

3 - 3.5 < 0 0.0% 0.0% 0.0% 0.0%

3 - 3.5 0 - 0.15 1.7% 0.0% 0.8% 0.2%

3 - 3.5 0.15 - 0.25 1.1% 0.0% 0.5% 0.2%

3 - 3.5 0.25 - 0.4 1.0% 0.0% 0.4% 0.2%

3 - 3.5 0.4 - 0.7 1.6% 0.1% 0.4% 0.2%

3 - 3.5 0.7 - 1 3.1% 0.3% 0.4% 0.2%

3 - 3.5 1 - 1.5 3.4% 0.3% 0.4% 0.3%

3 - 3.5 > 1.5 0.0% 0.0% 0.0% 0.0%

3.5 - 4 < 0 0.0% 0.0% 0.0% 0.0%

3.5 - 4 0 - 0.15 1.3% 0.0% 0.5% 0.4%

3.5 - 4 0.15 - 0.25 1.0% 0.0% 0.6% 0.2%

3.5 - 4 0.25 - 0.4 0.9% 0.0% 0.4% 0.2%

3.5 - 4 0.4 - 0.7 1.5% 0.1% 0.4% 0.2%

3.5 - 4 0.7 - 1 3.2% 0.2% 0.4% 0.2%

3.5 - 4 1 - 1.5 5.2% 0.3% 1.0% 0.3%

3.5 - 4 > 1.5 0.0% 0.0% 0.0% 0.0%
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p‖µ
(GeV) pTµ (GeV) n path length p response π response Other response

4 - 4.5 < 0 0.0% 0.0% 0.0% 0.0%

4 - 4.5 0 - 0.15 1.1% 0.0% 0.7% 0.4%

4 - 4.5 0.15 - 0.25 0.7% 0.0% 0.5% 0.3%

4 - 4.5 0.25 - 0.4 0.7% 0.0% 0.2% 0.2%

4 - 4.5 0.4 - 0.7 1.4% 0.1% 0.4% 0.2%

4 - 4.5 0.7 - 1 2.7% 0.2% 0.6% 0.2%

4 - 4.5 1 - 1.5 5.7% 0.0% 0.6% 0.4%

4 - 4.5 > 1.5 31.3% 0.7% 1.5% 0.5%

4.5 - 5 < 0 0.0% 0.0% 0.0% 0.0%

4.5 - 5 0 - 0.15 1.7% 0.0% 0.4% 0.2%

4.5 - 5 0.15 - 0.25 0.8% 0.0% 0.7% 0.2%

4.5 - 5 0.25 - 0.4 0.9% 0.0% 0.3% 0.2%

4.5 - 5 0.4 - 0.7 1.7% 0.1% 0.4% 0.2%

4.5 - 5 0.7 - 1 3.2% 0.1% 0.6% 0.3%

4.5 - 5 1 - 1.5 6.3% 0.3% 0.6% 0.4%

4.5 - 5 > 1.5 3.1% 0.5% 0.7% 0.4%

5 - 6 < 0 0.0% 0.0% 0.0% 0.0%

5 - 6 0 - 0.15 1.3% 0.1% 0.7% 0.5%

5 - 6 0.15 - 0.25 1.2% 0.0% 0.6% 0.1%

5 - 6 0.25 - 0.4 0.9% 0.1% 0.3% 0.2%

5 - 6 0.4 - 0.7 1.9% 0.1% 0.5% 0.2%

5 - 6 0.7 - 1 3.2% 0.2% 0.7% 0.4%

5 - 6 1 - 1.5 6.9% 0.3% 1.0% 0.4%

5 - 6 > 1.5 18.4% 0.2% 0.5% 0.4%
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p‖µ
(GeV) pTµ (GeV) n path length p response π response Other response

6 - 8 < 0 0.0% 0.0% 0.0% 0.0%

6 - 8 0 - 0.15 1.5% 0.0% 1.3% 0.2%

6 - 8 0.15 - 0.25 1.2% 0.0% 0.7% 0.4%

6 - 8 0.25 - 0.4 1.1% 0.1% 0.3% 0.1%

6 - 8 0.4 - 0.7 1.9% 0.2% 0.5% 0.2%

6 - 8 0.7 - 1 4.1% 0.3% 0.7% 0.2%

6 - 8 1 - 1.5 8.6% 0.2% 1.5% 0.5%

6 - 8 > 1.5 14.5% 0.1% 0.7% 0.4%

8 - 10 < 0 0.0% 0.0% 0.0% 0.0%

8 - 10 0 - 0.15 2.2% 0.3% 0.8% 0.4%

8 - 10 0.15 - 0.25 1.3% 0.0% 0.7% 0.2%

8 - 10 0.25 - 0.4 1.4% 0.0% 0.6% 0.3%

8 - 10 0.4 - 0.7 1.8% 0.1% 0.6% 0.4%

8 - 10 0.7 - 1 4.9% 0.1% 0.9% 0.2%

8 - 10 1 - 1.5 7.0% 0.2% 1.1% 0.7%

8 - 10 > 1.5 8.7% 0.1% 1.0% 0.9%

10 - 15 < 0 0.0% 0.0% 0.0% 0.0%

10 - 15 0 - 0.15 1.4% 0.0% 0.2% 0.1%

10 - 15 0.15 - 0.25 1.0% 0.0% 0.5% 0.1%

10 - 15 0.25 - 0.4 1.5% 0.0% 0.8% 0.2%

10 - 15 0.4 - 0.7 2.3% 0.1% 0.4% 0.1%

10 - 15 0.7 - 1 4.5% 0.4% 1.1% 0.3%

10 - 15 1 - 1.5 8.2% 0.3% 1.5% 0.4%

10 - 15 > 1.5 16.8% 0.5% 1.6% 1.7%
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p‖µ
(GeV) pTµ (GeV) n path length p response π response Other response

> 15 < 0 0.0% 0.0% 0.0% 0.0%

> 15 0 - 0.15 0.6% 0.0% 0.8% 0.1%

> 15 0.15 - 0.25 2.0% 0.0% 0.4% 0.0%

> 15 0.25 - 0.4 0.4% 0.0% 0.6% 1.3%

> 15 0.4 - 0.7 3.6% 0.0% 0.5% 0.1%

> 15 0.7 - 1 5.7% 0.2% 0.8% 0.2%

> 15 1 - 1.5 10.2% 0.4% 1.4% 0.5%

> 15 > 1.5 0.0% 0.0% 0.0% 0.0%

Table E.9. Absolute fractional recoil reconstruction uncertainties vs.p‖µ and pTµ
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