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ABSTRACT

This thesis presents the results of a search for gravitational waves in the 1-11MHz frequency

range using dual power-recycled Michelson laser interferometers at Fermi National Accelera-

tor Laboratory. An unprecedented level of sensitivity to gravitational waves in this frequency

range has been achieved by cross-correlating the output fluctuations of two identical and co-

located 40m long interferometers. This technique produces sensitivities better than two

orders of magnitude below the quantum shot-noise limit, within integration times of less

than 1 hour. 95% confidence level upper limits are placed on the strain amplitude of MHz

frequency gravitational waves at the 10�21 Hz�1/2 level, constituting the best direct limits

to date at these frequencies. For gravitational wave power distributed over this frequency

range, a broadband upper limit of 2.4⇥10�21Hz�1/2 at 95% confidence level is also obtained.

This thesis covers the detector technology, the commissioning and calibration of the

instrument, the statistical data analysis, and the gravitational wave limit results. Particular

attention is paid to the end-to-end calibration of the instrument’s sensitivity to di↵erential

arm length motion, and so to gravitational wave strain. A detailed statistical analysis of the

data is presented as well.

xiii



CHAPTER 1

INTRODUCTION

Gravitational wave detectors are poised to usher in a new era in cosmology, whereby ex-

tremely small deformations in the fabric of spacetime induced by the passage gravitational

waves (on the order of 10,000 times smaller than a proton radius!) are detectable with

precision laser interferometers. Until now, our picture of the cosmos has been painted by

measurements of the electromagnetic field (light). Now, thanks to decades of advances in

technology and precision instrumentation, we will begin to open our “eyes” to the gravita-

tional universe, and see the cosmos as it appears in gravitational radiation.

A sampling of the current state of a↵airs in the field of gravitational wave physics is

shown in Figure 1.1. The gravitational wave upper limit results reported in this work add

to the picture in Figure 1.1 at the high frequency end, between 1-11MHz, in a previously

unexplored region of parameter space. The remaining sections discuss the relevant details

for this high frequency search.

1.1 Gravitational Waves and Radiation

Events in space and time are related to each other in terms of the infinitesimal line element

ds2 in general relativity, which describes how these events are separated from each other

both in space and time:

ds2 = g
µ⌫

dxµdx⌫ (1.1)

where g
µ⌫

is the metric tensor which encodes information about the geometry and curvature

of spacetime. The dynamic interaction between the curvature of spacetime and the mat-

ter and energy embedded within it is described by Einstein’s field equations, which are a

1



Figure 1.1: A sampling of the current state of a↵airs in the field of gravitational wave physics.
The y-axis units are in amplitude spectral density of strain (Hz�1/2). Sensitivities of various
detectors are in black, with projected sensitivities of a few near-term and long-term future
experiments included. The detector noise curves all have their resonance spikes removed for
clarity. The colored source boxes have a width which gives the range of frequencies sources
of that type can have while still being of a detectable amplitude. The Figure was generated
with the online utility documented in [18], which contains full details of assumptions and
units with calculations.

set of nonlinear equations in terms of g
µ⌫

. It is this rich and dynamic interplay between

geometry and matter/energy which results in interesting modifications to the line element,

and consequently to the relationships between events in space and time. General solutions

to Einstein’s equations can be fairly di�cult to find, however it turns out to be very useful

to use an approximation of linear perturbations to the metric tensor, in what is called the

“weak field limit”, where the metric takes the linearized form:

2



g
µ⌫

= ⌘
µ⌫

+ h
µ⌫

(1.2)

where ⌘ = diag(�1, 1, 1, 1) is the Minkowski (flat) metric, and h describes small devia-

tions from flatness, with |h
µ⌫

| ⌧ 1, and the next higher order correction to the weak field

approximation being O(h2) is negligible.

It turns out [9, 24] that the linear condition on the metric in Equation (1.2) does not

uniquely specify the coordinate system in which the perturbation h
µ⌫

takes place, and con-

sequently di↵erent choices of coordinate system will describe di↵erent perturbations h
µ⌫

–

i.e. there is some gauge freedom in choosing a coordinate system which describes h
µ⌫

.

A very useful and commonly used convention is to choose the “Transverse Traceless”

(TT) gauge, which is defined by requiring that @
µ

hµ

⌫

= 0 and h0µ

= 0 (transverse), and

h
µ

µ

= 0 (traceless). The transverse condition means that metric perturbations only occur

in the directions perpendicular to the direction of propagation of the disturbance. Another

illuminating and convenient physical interpretation of the TT gauge is that coordinates are

defined by freely-falling masses [21]. For these reasons, as we will see, it is fairly intuitive to

view gravitational waves in this gauge, because we can clearly see their influence on freely-

falling test masses– we will be able to easily interpret deviations in the geodesic trajectories

of inertial masses due to h.

In the TT gauge, the weak field limit of Einstein’s equations yields a wave equation in h

[17, 21]:

✓
r2 � 1

c2
@2

@t2

◆
h

µ⌫

= 0 (1.3)

and a plane wave solution for a wave traveling in the z-direction is given by:
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h
µ⌫

=

0

BBBBBBB@

0 0 0 0

0 h+ h⇥ 0

0 h⇥ �h+ 0

0 0 0 0

1

CCCCCCCA

ei(kz�!t) (1.4)

where the notation h+ and h⇥ is in anticipation of further decomposing the plane wave

expression for h into a basis of orthogonal + and ⇥ polarizations:

e+
µ⌫

=

0

BBBBBBB@

0 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 0

1

CCCCCCCA

, e⇥
µ⌫

=

0

BBBBBBB@

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1

CCCCCCCA

(1.5)

with h+ and h⇥ being the amplitude of the waves in either polarization, so that a general

plane gravitational wave has the form

h
µ⌫

= e+
µ⌫

h+ + e⇥
µ⌫

h⇥ (1.6)

Decomposition of h for a plane wave into a basis of orthogonal + and ⇥ polarizations

shows how gravitational waves produce strain in the plane perpendicular to the propaga-

tion direction (stretching in one direction, while simultaneously squeezing in the orthogonal

direction), which was guaranteed at the outset by the transversality condition of the gauge

choice.

As a gravitational wave propagates through a region of space, it modifies the answer

we get when we measure the distance between two separated objects, and it does so in a
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time dependent way. This is because the passing gravitational wave is in fact stretching

and squeezing the underlying fabric of spacetime in which the objects are embedded. As

an explicit example, consider the measurement of the distance between two freely-falling

(inertial) mirrors separated along the x̂-axis, in the presence of a gravitational wave with +

polarization which is traveling in the ẑ-direction. We can measure the distance between the

two mirrors by sending a laser beam from one mirror down to the other mirror and back,

and then recording the round trip travel time of the light. Let L be the nominal distance

between the two mirrors in the absence of a gravitational wave. Using equations (1.1) and

(1.2), and the fact that light travels along null geodesics (meaning ds2 = 0), we can solve

for the round trip distance traveled by the light between the two mirrors. The line element

in this case is:

ds2 = 0 =
�
⌘
µ⌫

+ h
µ⌫

�
dxµdx⌫

= �c2dt2 + (1 + h+) dx
2

and integrating along the light’s trajectory gives the round trip distance traveled by the

light between the two mirrors in terms of the elapsed travel time ⌧
rt

:

L
rt

⌘ c

Z
⌧rt

0
dt = 2

Z
L

0

p
1 + h+dx

⇡ 2L

✓
1 +

h+

2

◆
(1.7)

where the last line is true when h+ ⌧ 1. Equation (1.7) shows that the presence of a

gravitational wave has increased the distance between the two mirrors by an amount dL ⇡
Lh+/2. If we now do the same measurement, but with the mirrors oriented along the ŷ-axis
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instead, we get a di↵erent answer: L
rt

= 2L
⇣
1 � h+

2

⌘
, in which case the distance between

the mirrors has been decreased by an amount dL ⇡ Lh+/2. Taking the di↵erence in path

lengths between the two directions, and noting that the distance between the mirrors is

L
rt

/2, then gives the di↵erence in lengths along the x̂- and ŷ-directions induced by the

passing gravitational wave:

L
x

� L
y

= h+L (1.8)

As will be discussed in Chapter 2, a Michelson laser interferometer is capable of directly

measuring the arm length di↵erence L
x

� L
y

in equation (1.8) by comparing the phases

of the laser beams returning from each of the two far mirrors. In this way, a Michelson

interferometer can directly measure the amplitude h of a gravitational wave.

1.2 MHz Frequency Gravitational Waves

The thought experiment above revealed that measurements of the gravitational wave strain

amplitude h depend on knowing the nominal separation distance between test masses L, or

at least being able to keep L relatively constant so that the perturbation h dominates the

motions of the test masses. As will become clear in the later technical chapters which treat

the experimental apparatus in this work, the largest and most di�cult to deal with noise

sources which cause fluctuations in L occur at low frequencies, below ⇠ 1MHz, with rapidly

increasing amplitude toward lower frequencies. It is the lower frequency regime (⇠ 100Hz)

where large-scale (L = 4km) gravitational wave detectors such as LIGO [23] and VIRGO

[2] operate, at the expense (technologically and monetarily) of having to tame the enormous

low frequency noise sources.

However at higher frequencies, above ⇠ 1MHz, the fundamental limitation to mea-
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surement precision in a Michelson interferometer is more commonly from the quantum-

mechanical nature of the laser light itself (photon shot noise), and it is (relatively speaking)

fairly easy and inexpensive to achieve sensitivities at this quantum limit1. As will become

clear later, a shorter length interferometer ends up having better sensitivity at higher fre-

quencies than a longer interferometer (c.f. section 6.5 for the exact relationship). For this

reason, we have chosen a length of 40m, which is many orders of magnitude more sensitive

to MHz frequency gravitational waves than the larger 4km interferometers.

This thesis discusses a search for gravitational waves in the 1� 11MHz frequency range,

and the following sections discuss theoretical predictions for possible sources of high fre-

quency gravitational radiation, as well as existing experimental limits on the strain amplitude

of such waves.

1.2.1 Previous Experimental Limits

The experiment in [7] used a technology based on two coupled superconducting microwave

cavities of length l, in which harmonically driven cavity length changes induce the exchange

of energy between two of the resonant microwave cavity modes (an idea originally proposed

in [20] for the detection of gravitational waves). The mechanism is particularly sensitive to

length changes at frequencies where the applied length modulation equals the di↵erence in

frequency between the two cavity modes. They report an achieved sensitivity to fractional

length changes of dl/l = 3.3 ⇥ 10�20Hz�1/2 at 1MHz.

The results of a search for a stochastic gravitational wave background (SGWB) in a

2kHz wide bandwidth centered around 100MHz are reported in [3], with a gravitational

wave strain sensitivity of 10�16Hz�1/2 in each of two 75-cm baseline synchronous recycling

interferometers. They then cross-correlated the two interferometer outputs for 1000 seconds

to place an upper limit on the energy density spectrum of the SGWB in that band of

1. Section 2.4 describes how in this work we have actually surpassed this quantum limit by more than a
factor of ⇥100.
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h2
100⌦gw

< 6 ⇥ 1025 (where the Hubble constant is H0 ⌘ h100 ⇥ 100km/s/Mpc).

There are also some recently proposed experiments for detecting MHz frequency gravi-

tational waves worth mentioning. A proposed experiment by [13] has not yet actually set

a limit, but they have made extrapolated estimates of the strain sensitivities they believe

can be reached with the technology they are developing. They propose to cryogenically cool

phonon trapping acoustic cavities (Bulk Acoustic Wave resonators), with spectral strain

sensitivities as low as 10�22Hz�1/2 per resonant mode possible, at discrete narrow band

frequencies distributed between a few MHz to around 1GHz or so.

There is also an interesting proposal to use optically trapped and levitated microspheres

in a tabletop setup to detect gravitational waves between 50-300kHz by [4]. They predict

that sensitivities exceeding laser-based gravitational wave observatories can be achieved in

this frequency range, however, it is unclear if the technology can be applied at even higher

frequencies.
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CHAPTER 2

POWER RECYCLED MICHELSON INTERFEROMETER

The end of section 1.1 began the motivation for why a Michelson laser interferometer is par-

ticularly adept at detecting the small variations in strain induced by a passing gravitational

wave. This chapter gives an overview of the type of Michelson laser interferometer used in

this work, and what level of sensitivity can be achieved. Section 2.1 describes the essential

characteristics of a Michelson interferometer and how it measures arm length di↵erences as

in Equation 1.8. Sections 2.2 and 2.3 describe how the sensitivity of an ordinary Michelson

interferometer can be vastly increased by using a technique called “power recycling.” And

section 2.4 discusses how two identical power-recycled Michelson interferometers can be used

to reach a strain sensitivity that is more than ⇥100 below the quantum shot noise limit in

an individual interferometer.

Also note that much of the supporting theoretical machinery for laser beams and inter-

ferometers is included in the appendix section D. This Chapter is a high level overview of

the concepts and motivations relevant for the optical configuration used in this experiment.

2.1 Michelson Interferometer

We can start by describing the laser beam itself1. It has an electric field with amplitude E,

which oscillates at a central frequency !: Eei!t. The laser is then incident on the Michelson

interferometer. The optical configuration of a Michelson interferometer is shown in figure

(2.1a). It consists of a beam splitter which splits the light equally into two components

(each component having half the original electric field amplitude): one component which is

reflected, and another component which is transmitted. The two beams travel for a length

L down perpendicular paths where they are reflected back to the beamsplitter by mirrors.

1. More complete details are in section D.
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The beams are then recombined at the beamsplitter, where their electric fields are summed

together, and the total phase accumulated by each beam is proportional to the total path

length traveled. The power of the recombined beam which exits the interferometer out the

“antisymmetric port” (AS-port) is given by:

Fabry-Perot Cavity 

Input Mirror 

Laser 

End Mirror 

Input 

Output 
Power Recycling 

Mirror 

Beamsplitter 
 

Laser 

End Mirror 

End Mirror 

 

Beamsplitter 
 

Michelson Interferometer 

Input 
Laser 

Output 

End Mirror 

End Mirror 

 

 

a) Michelson

b) Fabry-Perot

c) Power-Recycled 
Michelson

Figure 2.1: Optical configurations for interferometers: a) Michelson, b) Fabry-Pérot, c)
Power-Recycled Michelson.

P
out

= E
out

E⇤
out

= P
in

sin2(k(L
x

� L
y

)) (2.1)
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where k = 2⇡/�, � the laser wavelength, and L
x

and L
y

are the distances between the

beamsplitter and the two end mirrors along the x̂� and ŷ�directions, respectively. Equation

2.1 shows that the power exiting the interferometer’s antisymmetric port is given in terms

of the net arm length di↵erence L
x

� L
y

, which Equation (1.8) showed was precisely the

quantity that is modulated by the presence of a gravitational wave. Figure 2.2 schematically

depicts the propagation of the electric fields in a Michelson interferometer, and how they

combine to give constructive and/or destructive interference at the output, depending on

the di↵erence in arm lengths. The “dark fringe” corresponds to the minimum power exiting

the Michelson interferometer according to Equation (2.1), and the “bright fringe” to the

maximum.

The top right trace in Figure 2.3 shows the predicted power output of a Michelson

interferometer vs. arm length di↵erence, normalized to 1 watt of input power.

2.2 Fabry-Pérot Interferometer

The Fabry-Pérot interferometer is a resonant optical cavity formed by two partially trans-

parent mirrors, in which laser light leaking through the input mirror is reflected back and

forth between the mirrors, as shown in figure (2.1b). Resonance is achieved when an integer

number of wavelengths of the light fits within a round trip of the light in the cavity:

n� = 2L (2.2)

When this condition is satisfied, the optical field constructively interferes with itself as

it reflects back and forth between the mirrors. In this way, a large amount of optical power

can be stored inside the cavity, with only a relatively small amount of incident power.

Table D.1 in the appendix gives some useful relations for the electric fields in various parts
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Beamsplitter 
 

B. Kamai - R. Lanza - L. McCuller - J. Richardson The Fermilab Holometer   24 
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Figure 2.2: Schematic depiction of electric field propagation in a Michelson interferometer,
illustrating the concepts of “dark” and “bright” fringes, due to destructive and constructive
interference of the beams returning to the beamsplitter, respectively. The Bright fringe cor-
responds to the maximum power exiting the Michelson interferometer according to Equation
(2.1), and the Dark fringe to the minimum. The net sum of all field components is shown in
red.

of a Fabry-Pérot interferometer. From them, one can determine the power buildup, reflected

power, and transmitted power, in terms of the optical parameters. Each optic is modeled to

have amplitude reflectivity and transmission coe�cients r and t, respectively, which describe

how the electric field is distributed between reflected and transmitted components after
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interacting with an optic2.

One important quantity for the cavity is the “cavity gain” Gcav which is the ratio of

circulating power to incident power on resonance:

Gcav ⌘ P
circ

P
in

=

✓
t1

1 � r1r2

◆2

(2.3)

As will be discussed in later chapters, typical cavity gains achieved in this experiment are

on the order ⇠ 3000, providing very large circulating powers. Section D.3 in the appendix

gives an overview of a few other important quantities for a Fabry-Pérot resonator cavity,

such as the Finesse, Cavity Pole, and Free Spectral Range.

The next section discusses how the Fabry-Pérot cavity can be combined with the Michel-

son configuration to drastically improve the sensitivity of a Michelson interferometer to

di↵erential arm length motion.

2.3 Power Recycled Michelson Interferometer

The shot-noise limited sensitivity of a single Michelson interferometer to di↵erential arm

length motion �XDARM ⌘ Lx �Ly, is given as a function of frequency in amplitude spectral

density with units meters/
p
Hz by:

�XDARM, shot =
1

k

s
E

�

PBS
=

s
hc�

4⇡2PBS
(2.4)

where k = 2⇡/�, E
�

is the energy per photon, and PBS is the power incident on the beam-

splitter. Equation 2.4 shows that the sensitivity can be increased by using a more powerful

2. In correspondence with the optical power being equal to the square of the electric field (P = E

2), the
reflected and transmitted power from an optic are described by coe�cients R ⌘ r

2 and T ⌘ t

2, respectively.
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laser. For example, using a 1watt laser, a shot noise limited sensitivity of �XDARM,shot ⇠
7 ⇥ 10�17meters/

p
Hz can be achieved, compared to using 1kW of power which would give

a sensitivity of �XDARM,shot ⇠ 2 ⇥ 10�18meters/
p
Hz. In practice, stable continuous wave

lasers do not yet exist at the powers necessary for these applications, where we typically

strive for powers of a few kilowatts.

In lieu of modifying the laser setup, we can instead combine the Michelson and Fabry-

Pérot interferometer configurations to form what is called a power-recycled Michelson inter-

ferometer, shown in figure (2.1c). The advantage of using such an optical configuration is

that the light exiting the Michelson interferometer at the symmetric port can be reused, and

the mirror at the input is called the power-recycling mirror (PRM) for this reason. If the

resonant conditions for a Fabry-Pérot cavity are met, then the phase of the beam reflected

back toward the beamsplitter from the PRM is the same as the phase of the “fresh” laser

light just entering the interferometer by passing through the PRM, and the two beams are

constructively reinforced, increasing the total power. The increased laser power incident on

the beamsplitter is essentially equivalent to simply getting a more powerful laser in the first

place, and there are more benefits to be discussed later in that the resonant cavity filters

out laser frequency and amplitude noise. The cavity also reinforces the spatial profile of the

beam in the transverse direction, which maximizes the ability of the beams in each arm to

be able to constructively interfere.

The bottom two traces in Figure 2.3 show the predicted interferometer signals vs. arm

length di↵erence for a power-recycled Michelson, normalized to P
in

= 1watt. Figure 2.4

shows actual measurements of these signals in an interferometer.
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Figure 2.3: Predicted interferometer signals vs. di↵erential arm length di↵erence, normalized
to 1 watt of input power. The red trace gives the output power for a Michelson interferometer
shown in the upper left. The black and blue traces give the circulating power and output
power for a power-recycled Michelson interferometer depicted in the bottom left.

2.4 Surpassing the Shot Noise Sensitivity Limit by

Cross-Correlating Two Interferometers

Reaching shot noise limited performance in the first place is a large experimental e↵ort, the

details of which are discussed in Chapter 4. However, once the shot noise limit is reached,

one can do even better than using a power-recycled Michelson interferometer, by using two

identical and co-located power-recycled interferometers, and cross-correlating the outputs of

the two. The shot noise (and other noises3) in each interferometer will be uncorrelated, so

that cross-correlating the outputs allows one to be sensitive to signals well below the shot

noise level of a single interferometer.

This technique produces sensitivities better than two orders of magnitude below the

quantum shot-noise limit, within integration times of less than 1 hour. Figure 6.4 illustrates

3. For example laser phase and frequency noise. In practice a large campaign was launched to reduce
the correlations between the lasers induced by radio frequency interference (RFI) and other contaminating
sources. The details of the successful e↵ort to reduce these correlations is discussed in Chapter 4
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Measured Power vs. Arm Length Difference 

6/12/14 Bobby Lanza 27 

Figure 2.4: Measured interferometer signals vs. di↵erential arm length di↵erence. A sinu-
soidal sweep was applied to the end mirrors in DARM, while engaging the CARM control
loop (c.f. section 3.7.1) with very low gain so that the laser frequency could still track the
cavity resonance. The units on the vertical axis are arbitrarily scaled so that the traces all
fit on the plot. The black trace labeled “North Transmission” is the signal from a photode-
tector sensing the small amount of power leaking out one of the end mirrors (it is linearly
proportional to the power stored in the cavity). The red trace equals the blue trace divided
by the black trace. The pink trace shows the power reflected from the power-recycling mirror
back toward the laser.

the benefit of cross-correlating the two interferometers, and even the benefit of splitting a

single interferometer’s signal onto two separate detectors and cross-correlating them– the

shot noise on each of the two photodetectors on a single interferometer is uncorrelated as

well, and this turns out to be a very useful way of measuring the frequency and intensity

noise on the beam at frequencies where the shot noise dominates the total noise power.
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CHAPTER 3

EXPERIMENTAL SETUP

Real world interferometers are considerably more complicated than the idealizations pre-

sented in Chapter 2. This Chapter covers the actual experimental implementation of the

dual power-recycled Michelson interferometers used in this work. Chapter 4 then details the

various types of noise sources that must be thwarted, and how they are subdued.

First, to clear up some notation, the two interferometers in this experiment have been

named the “L” and “T” interferometers1. An overall diagram of the core optical configuration

is shown in Figure 3.1. The physical orientation of the real interferometers is such that

North=Up and East=Right in figure 3.1. For this reason, these arms of the interferometers

are referred to as the North and East arms.

3.1 Core Optics

The beamsplitter (BS), power recycling mirror (PRM), and two end mirrors (EM) constitute

the “core optics” of the interferometer. The BS and EMs are the principle optics involved

in the detection of the passage of gravitational waves (they are the “test masses” described

in section 1.1), and together with the PRM, they have the most stringent demands on their

quality. Tables C.3, C.4, and C.5 in the appendix give an overview of the specifications for

the core optics.

As equation 2.4 shows, a principal requirement is to maximize the power buildup in the

cavity in order to achieve the highest DARM sensitivity possible. The problem of coupling

incident laser power into the power-recycling cavity is analogous to impedance matching

in electronics. For optical cavities, the relative transmission of the mirrors dictates if the

cavity is undercoupled, impedance matched, or overcoupled. The circulating power can be

1. The naming convention originates from their role in a separate experiment to search for Holographic
Noise [10, 15].

17



Input 

Output 

Beamsplitter 
 1kWatt 1Watt 

Lp = 20cm 

Ly = 40m 

Lx = 40m 

λ=1064nm 

Laser 

End Mirror 

End Mirror 

Power Recycling 
Mirror 

Figure 3.1: Core optical layout for a power-recycled Michelson interferometer in the Holome-
ter experiment.

maximized when the input mirror (PRM) has a larger transmission than the end mirrors,

in which case the cavity is overcoupled. Nominal transmission values of TPRM = 0.001 and

TEM = 10ppm were chosen2, which from equation 2.3 gives an expected cavity gain (in the

ideal case of no losses) of Gcav ⇠ 3900, with circulating power of ⇠3.9kW for 1 watt of

incident power. The total scattering and absorption losses of all the core optics must sum

up to less than the PRM transmission, in order to maintain an overcoupled cavity. Actual

cavity gains typically achieved in this experiment, which include all the real losses, are on

the order ⇠ 3000. The data in this work was recorded with Pin = 0.56W and Pcirc = 1.9kW

in the T interferometer, and Pin = 1.2W and Pcirc = 2.7kW in the L interferometer.

As equation D.12 shows, the mirror radius of curvature (ROC) and cavity length dictate

2. In reality we received end mirrors from the manufacturer which we measured to have TEM = 0.5ppm
in the T interferometer, and TEM = 1.5ppm in the L interferometer
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the resonant frequencies of higher order laser modes in the cavity. These parameters were

chosen such that only high order TEM
nm

modes would satisfy the resonance condition

simultaneously with the fundamental TEM00 mode. The values L = 40m, RPRM = 1
(flat), and REM = 75m were chosen, so that the first HOMs to be nearly co-resonant with

the fundamental TEM00 mode have n+m = 4.

3.2 Vacuum System

The vacuum system houses the core optics, and its purpose is twofold:

1. Reduce the ambient air pressure: air molecules are a scattering centers for photons,

and high pressures can induce significant phase noise on the laser beam. The total

pressure in the interferometers is kept at an average of ⇠ 10�8 Torr.

2. Shield the core optics from hydrocarbons: The danger of hydrocarbons is that the high-

powered circulating beam can bake them onto the optical surfaces, creating scattering

centers, extra loss, and phase distortions on the beam. These e↵ects in turn can

reduce the Finesse of the cavity, and so the power buildup. The partial pressure of

hydrocarbons is kept at the ⇠ 10�12 Torr level to ensure the purity of the optics3.

3.3 Laser Launch

The laser and optical components for preparing the beam to be injected into the interferom-

eter are all contained on a single large laser table, constituting the “laser launch”. The laser

launches for the L and T interferometers are shown in Figures 3.3 and 3.2, respectively.

The Holometer lasers are the Mephisto model manufactured by Innolight, which are

diode-pumped nonplanar ring oscillator (NPRO) Nd:YAG lasers, with continuous wave (CW)

3. Cavity ringdown experiments at LIGO appear to indicate that this level is more than su�cient to
maintain the required Finesse for long periods.
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output at 1064nm. Before injection into the interferometers, the laser beams are prepared

to ensure they are linearly polarized, and that they have a gaussian transverse profile with

minimal phase distortion. There are many advantages to working with a gaussian-shaped

laser beams, perhaps most importantly that they are the easiest to understand4.

Figure 3.2: “T” interferometer laser launch.

Phase modulation sidebands are generated with the electro-optic modulator “EOM2”,

for use in the Pound-Drever-Hall locking scheme for the resonant power-recycling cavity

described in section 3.7.1, with background theory in appendix D.2. The beam then enters

a mode-matching telescope which matches the beam shape to the resonant mode of the

power-recycling cavity (c.f. section 3.3.2).

There is also an auxiliary EOM (“EOM1”), which is used for diagnostic and calibration

purposes, which is further described in section 5.1.3 of Chapter 5.

4. The interested reader is referred to any of the many thorough resources on gaussian laser beams, e.g.
[22]. The theory of gaussian beams is only included here in so much as is necessary to explain the most
salient features of the instrument. Those supplementary details are in the appendix section D.
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Figure 3.3: “L” interferometer laser launch.

3.3.1 Beam Purity

The original design of the Holometer experiment incorporated a resonant 3-mirror triangular

“mode cleaning” cavity before injection into the interferometer [10], in order to filter out any

residual higher order TEM
nm

mode content from the beam, leaving only the fundamental

gaussian TEM00 component5. However, it was later determined that the injected mode

purity was su�cient, and that an initial mode cleaning stage was not necessary (the unusual

square-like beam path in the middle of figures 3.2 and 3.3 was to accommodate the original

mode cleaning cavity, which was later removed from both laser launches).

Our electro-optic modulators are commercial units from the company New Focus. It

was noticed that the use of a potassium titanyl phosphate (KTP) crystal (New Focus model

406x) in our electro-optic modulators significantly reduced the wavefront distortion in the

beam, compared to a Mg:LiNbO3 crystal (New Focus model 400x). For this reason, “EOM2”

is the KTP type. We were, however, able to operate with “EOM1” being the Mg:LiNbO3

5. c.f. sections D.1 and D.4 for background material on higher order modes
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type because of the power-recycling cavity’s ability to significantly filter out higher order

modes, as described below.

The power-recycling cavity does a great deal to filter out the higher order mode (HOM)

content of the beam, in that the TEM00 is held resonant via the Pound-Drever-Hall locking

scheme (c.f. section D.2), and the Gouy phase advance of HOMs with respect to the TEM00

(c.f. section D.4) then ensures that they do not simultaneously satisfy the cavity boundary

conditions for resonance. Consequently, for the most part, the HOM content of the injection

beam is promptly reflected from the power-recycling cavity, and does not enter the cavity or

the antisymmetric port, which would contaminate the output signal beam.

Given that idealized view, there still does exist some residual HOM content resonating in

the power-recycling cavities of both interferometers. This is because noise sidebands on the

carrier TEM00 mode have some non-zero scattering coe�cients to couple into HOMs (e.g.

from injection misalignment which couples to odd-ordered TEM
mn

modes, or end mirror

radius of curvature mismatches which couple to even ordered modes). The Gouy phase

advance then causes these HOMS to be resonant when their frequency (which is o↵set from

the carrier TEM00 mode frequency) and mode numbers satisfy equation D.12 (see section

D.4 for explanations).

The first three HOM resonances can be seen in the auto-spectrum traces of the antisym-

metric port signal photodetectors in Figures 3.7, 3.8, 3.9, 3.10, where the power in these

modes is somewhat larger than the shot noise (flat baseline). Great care was taken to opti-

mize the alignment degrees of freedom, and as discussed above to specify strict tolerances on

the optics geometries, in order to minimize the presence of resonating HOMs in the cavity.

3.3.2 Mode Matching to the Cavity

Mode matching is the process of manipulating the input laser beam so that its (complex-

valued) electric field maximally overlaps with that of the resonant mode of the optical cavity.
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It ensures the maximum amount of laser field is coupled into the cavity, and can be viewed

as a form of impedance matching. The amount of mode matching can be quantified by the

overlap integral

⌘ ⌘
��R E⇤

laserEcavitydA
��2

R |Elaser|2 dA
R ��Ecavity

��2 dA
(3.1)

where Elaser is the input laser beam’s electric field, Ecavity is the electric field of the

resonant mode supported by the cavity, and the integral is performed in the plane perpen-

dicular to the beam’s propagation. If the full complex-valued fields Elaser and Ecavity are

equal in a particular transverse plane (meaning ⌘ = 1), they will remain so along the beam’s

propagation.

Mode matching in the L interferometer was performed using a Mach-Zehnder interferom-

eter that interfered the outgoing laser beam (propagating toward the interferometer) with

the incoming laser beam (returning to the laser table after having been reflected o↵ of the

power recycling mirror). A 99% reflectivity beamsplitter on the laser table placed just before

the mode matching telescope (the 99% reflectivity beamsplitter is the mirror icon just before

lens “L4” in figure 3.3) provided 1% of the outgoing beam in one of its transmission ports,

and 1% of the incoming beam in its other transmission port, so that the 1% samples of the

incoming and outgoing beams were propagating at 90 degrees with respect to each other.

Two steering mirrors then folded the two beams back onto each other where they were

combined on a 50% beamsplitter, completing the Mach-Zehnder interferometer. A phase

modulation was applied to the return beam by driving the piezo position actuators on one of

the mode matching telescope mirrors (“SM1” in figure 3.3), which drove the Mach-Zehnder

through several fringes. The z-position (i.e. along the direction of beam propagation) of the

last mode matching lens was then finely tuned using a micrometer stage until the contrast

defect (defined in equation 5.6) of the Mach-Zehnder fringes was minimized, which meant
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that the overlap of the outgoing and incoming electric fields was maximized, which in turn

meant that the beam waist had been properly placed at the power recycling mirror.

This technique resulted in 96% mode matching for the L interferometer (i.e. ⌘ = 0.96

in equation 3.1) as determined by the relative fraction of power reflected from the power-

recycled cavity. mode matching for the T interferometer was ⇠ 88% at the time the data in

this work was recorded (it had not yet been optimized with the above technique), and has

since been made comparable to the L interferometer.

3.3.3 Intensity Noise Monitor

The high frequency intensity noise spectrum of the laser beam just before exiting the laser

table is monitored with a photodetector placed on the transmission side of the 99% reflectivity

beamsplitter on the laser launch (the 99% reflectivity beamsplitter is the mirror icon just

before lens “L4” in figure 3.3). The signal from this intensity monitor is recorded in the high

frequency DAQ (described in section 3.10.2), where its cross-spectrum is computed with the

interferometer signal photodetectors and antennas (the cross-spectrum between the intensity

monitors of both interferometers is also computed), providing an important tool to test for

correlations between the two laser systems, which could mimic the signal of a gravitational

wave.

3.4 Transfer Optics

After exiting the laser table, the beam is routed ⇠ 20ft to the interferometers using three

mirrors anchored to the wall of the tunnel. This transport scheme (called the “periscope”) is

necessary due to the limited space in the experimental hall (which is a long narrow concrete

tunnel originally used to transport beams of mesons at Fermilab). The beam path along the

periscope is in air at ambient pressure, but it is enclosed with aluminum pipes to shield from

air currents. The noise properties of the periscope are discussed in section 4.6.
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3.5 Signal Readout Optics

A diagram of the antisymmetric port optical setup is shown in the bottom left grey box of

figure 3.4. Figure 3.4 highlights the setup during the calibration measurements made in the

Michelson configuration described in section 5.1.1.

Figure 3.4: Configuration for measurements in Michelson mode. The DARM fringe is sensed
with an auxiliary photodetector (green) on the AS-port to maximize SNR. The PDAUX signal
is sent to the filter bu↵er board (FBB), digitized, then conditioned (“COND”, c.f. section
5.1.1.2). The calibration line is summed into the DARM loop after the Control (“CTRL”)
filter stage which applies gain and a loop filter with a single pole at 1Hz. The control signal
is then demuxed into the 6 PZT channels (3 for each mirror) and matrix rotations applied
to go from the DARM control basis to the PZT actuator basis. Control signals are then
converted to analog and high voltage (HV) applied before driving the end mirror PZTs. The
calibration line drive amplitude V is kept constant for all measurements, both in Michelson
and power recycled configurations. Both the optical and sensing/control topologies change
between Michelson and power recycled configurations, however the control path from the
calibration line summing junction to the end mirror PZTs is unchanged throughout, and
so the loop gain G(f

cal

) must be measured directly in both cases to tranfer the calibration
between configurations (c.f. sections 5.1.1.3 and 5.1.2.1). The PDAUX detector is removed in
power recycling configuration, and the AS-port optics and detectors used in power recycled
mode are shown with partial transparency for reference.

The standard operating configuration in power-recycled mode (e.g. when taking science
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data) has the green auxiliary photodetector “PDAUX” removed, and the photodetectors

PDc, PDs1, and PDs2, along with the mirrors and lenses shown with partial transparency,

all in use.

PDc measures low frequency signals ( 1MHz, although only 16kHz is usable by the low

frequency DAQ described in section 3.10.1), which are sent to the low frequency DAQ in the

same manner as depicted for PDAUX in figure 3.4. The high frequency signal photodetectors

are PDs1 and PDs2, and they are digitized in the fast DAQ described in section 3.10.2. The

details of the signal photodetectors are discussed in section 3.9.

1% of the antisymmetric port power is immediately picked o↵ with a beamplitter “W1”

to CCD cameras (not shown) and photodetectors for control and diagnostics functions, and

the remaining 99% is sent to two signal photodectors by a 50/50 beamsplitter. Details of

the signal PDs are in section 3.9.

3.6 End Mirror Transmission Optics

The power leaking out the end mirrors provides a useful measure of the stored cavity power.

It is equal to the stored cavity power (shown for example in black in figures 2.3 and 2.4),

attenuated by the transmission of the end mirrors (which was measured to be 0.5ppm for

the T interferometer, and 1.5ppm for the L interferometer. As discussed in section 3.7.2,

the transmitted light is also used in the feedback scheme to control the Di↵erential Arm

(DARM) degree of freedom.

The transmission optical setup also contains a CCD camera and iris used to align the

interferometer beams and view the beam. Still images from the transmission CCD cameras

are visible in the TV screens in figure 3.5.
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Figure 3.5: Control station screens in the tunnel, where both interferometers were piloted
for the data runs in this work.

3.7 Feedback and Control

Equation (1.8) shows that if we hope to measure a gravitational wave strain with amplitude

h, we must be able to keep the nominal separation distance between test masses L relatively

constant, so that the perturbation h dominates the motions of the test masses. In an ideal

world, we could simply plop the interferometer optics down in fixed locations, and they would

remain there, unperturbed and with absolute stillness, until the passage of a gravitational

induced a measurable length change. Of course the reality is that we are faced with the

problem of having to constantly counteract the influence of many external noise sources

from jostling the optics from their ideal locations.

Another very important reason to minimize the fluctuations in L can be seen in the
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interferometer signals plotted in Figure 2.3. We’d like to keep the fluctuations in L (i.e.

fluctuations on the x-axis of the plots) small enough so that the interferometer signals remain

su�ciently linear in L. And as we’ll also see, we don’t want L to cross through zero, otherwise

negative feedback will turn into positive feedback. Lastly, as Chapter 5 discusses, a full

calibration of the interferometer is only as good as the stability of the operating point. The

feedback systems hold the interferometer in a particular configuration corresponding to a

specific arm length di↵erence value on the x-axis in figure 2.3, and the calibration applies to

that configuration. If the operating point is moved, the sensitivity will change, and so will

the calibration, principally because the stored cavity power will also change (c.f. Equation

2.4).

This section outlines the feedback systems implemented in this experiment6. The various

noise sources which necessitate the use of feedback are discussed in Chapter 4.

3.7.1 Common Arm (CARM) and Laser Frequency Sensing and Control

Until now we have mostly been talking about di↵erences in the arm length, and correspond-

ingly motions of the end mirrors in opposite directions (if one mirror moves toward the

beamsplitter, then the other moves away). An orthogonal degree of freedom is the common

arm (CARM) motion, where both mirrors either move in or out. CARM motion is important

for maintaining resonance in the power-recycling cavity. The cavity can be thought of as a

Fabry-Pérot cavity with a composite end mirror made up of the Michelson interferometer

(BS and two EMs). CARM then controls the length of this cavity, whereas di↵erential arm

motion controls the reflectivity of the Michelson “mirror” (the reflectivity and transmission

being dictated by equation 2.1). In this way, the problem of maintaining resonance in a

power-recycled Michelson interferometer is reduced to arranging for the laser wavelength (or

equivalently frequency) to track the motion in CARM (or vice versa).

6. A fairly good technical overview of feedback methods is given in [5].
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We use the Pound-Drever-Hall (PDH) technique to hold the laser frequency locked to

the CARM degree of freedom. The technical details of the PDH technique relevant for our

application are given in the appendix D.2. Here we note that the PDH feedback loop is

depicted in Figures 3.3 and 3.2, and the relevant noise properties of the laser (which is the

dominant noise source in the CARM feedback loop) are discussed in section 4.2.

3.7.2 Di↵erential Arm (DARM) Sensing and Control

The di↵erential arm (DARM) degree of freedom is controlled using what is called a “DC

lock”, where motion in DARM is sensed by a photodetector on the transmission side of

an end mirror. As the black trace in figure 2.3 shows, the stored cavity power exhibits a

resonance around zero DARM o↵set. However, an appropriate error signal needs to change

sign on either side of the desired operating point, and since all of the traces in figure 2.3

have either a minimum or maximum at zero DARM o↵set, that operating point cannot be

used to derive an error signal with only the light intensities shown in the figure7. For this

reason we subtract a small DC o↵set from the transmitted power signal, so that the signal

does cross zero when DARM is at some small o↵set value. This type of lock is therefore

referred to as a “DC lock”, or an “edge lock”.

Each end mirror is mounted with 3 piezo actuators which are used to control the mirror’s

position via the digital control system described in section 3.10.1. The transmitted power

is sensed with the photodetector on the North transmission optics breadboard, and then

digitized in the slow DAQ. The DC o↵set is then added and control filters applied to the

signal to help suppress the dominant noise sources (as described in section 4.6). The control

signal is then demuxed into the 6 PZT channels (3 for each mirror) and matrix rotations

7. There are several methods for generating an appropriate error signal at zero DARM o↵set by using
a dither, which ultimately returns the derivative of the traces here and so they do cross zero (e.g. LIGO
originally operated this way), however they require significantly more work to calibrate and extract mean-
ingful scientific results from, and importantly they typically involve high frequency dither signals in the MHz
range, which could ultimately contaminate our signal band.
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applied to go from the DARM control basis to the PZT actuator basis. Control signals are

then converted to analog and high voltage (HV) applied before driving the end mirror PZTs.

An important question is how stable we need to keep DARM motions in order to hold the

interferometer in a reasonably linear region of the response according to the traces in figure

2.3. From the blue trace, we can see that di↵erential motions of the end mirrors by more than

just a few nanometers will change the operating point from being “inside” the volcano-like

response curve, to operating on the “outside” (left or right of the peaks). If we were to lock

DARM to the antisymmetric port power, the fluctuation in operating point to the outside of

the volcano would change the sign of the DARM loop error signal, creating positive feedback,

which would drive the interferometer even further from the desired operating point. This

is the reason for locking to the transmitted cavity power, which does not experience a sign

change at the volcano peaks.

It is also very important to note from the cavity power (black trace) that large changes

in cavity power can occur as well for small DARM motions, resulting in large changes in

sensitivity as per Equation 2.4. For these reasons we lock the DARM degree of freedom to

have a total RMS motion of far less than a few nanometers.

Figure 3.6 shows low frequency spectra of the antisymmetric port signals in each inter-

ferometer (corresponding to the blue trace in figure 2.3) with the interferometers locked as

described above, during the data taking runs in this work. The spectra were calibrated in

units of meters/
p
Hz of DARM motion using the method described in Chapter 58. These

plots show that the DARM control loop in each interferometer has suppressed the di↵er-

ential motion of the end mirrors to a total RMS motion of less than 1 Angstrom.

This very small level of total RMS motion allows for the interferometers to be held at an

operating point very close to the dark fringe (consequently maximizing the stored cavity

power, and therefore maximizing the sensitivity), while still maintaining a su�ciently linear

8. The low frequency signals are calibrated in the same way as described in Chapter 5, however the extra
steps of transferring the calibration to higher frequency and to the signal photodetectors is not needed
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output response to fluctuations in DARM. Maintaining a linear output response to DARM

motion means there is no nonlinear harmonic generation or distortion products which could

significantly cloud the interpretation of the DARM spectrum in the signal band, in addition

to generating instabilities in the feedback loops.

Figure 3.6: Low frequency residual power-recycled DARM spectra, calibrated in
meters/

p
Hz. This is the residual DARM motion in power recycled operation. Of par-

ticular note is the total RMS di↵erential arm motion (DC limit of dashed lines) for each
interferometer, which is below 1 Angstrom, allowing for stable high power operation.

3.8 Alignment

In addition to the two longitudinal degrees of freedom DARM and CARM, the mirrors can

move in angle as well. In practice, as is mentioned in section 4.6, we were able to suppress

all angular motions of the optics with passive isolation methods, and so active feedback from

not necessary. This section briefly outlines the relevant alignment issues.
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3.8.1 Injection Alignment

The two steering mirrors “SM1” and “SM2” in the mode matching telescope in figures 3.2

and 3.3 together with the last of the three periscope mirrors provide all the dynamic range

necessary for keeping the injection beam aligned with the power-recycling cavity. “SM1” and

“SM2” are equipped with piezo actuated steering knobs, but in practice it is only necessary

to optimize the injection alignment every once in a while by hand. The last periscope mirror

is placed a few feet from the PRM, and it is seated in a picomotor-actuated mount to help

in the event that gross (re)alignments are needed.

3.8.2 Common and Di↵erential Angles

The 3 piezo actuators mounted on each end mirror are capable of controlling the longitudinal

position of the mirror, as well as angular motions. A quadrant photodetector placed on the

anti-symmetric port while driving the mirrors in piston mode is used to orthogonalize the

piezo drive in the 3 directions. The relative gain for the drive in each piezo is stored in the

digital control system. As mentioned above and in section 4.6, the core optics (BS, PRM,

EMs) are all mounted on top of a passive seismic isolation system consisting of viton ball

springs and heavy steel plates, which damp seismic vibrations above ⇠ 10Hz. the vacuum

system in which the isolation stages sit is bolted directly to the concrete floor of the tunnel.

No elaborate suspension systems are needed to isolate the optics, because our signal band is

in the MHz frequency range, where seismic and other vibrational noise sources are negligible.

We only require enough vibration isolation to hold the interferometer at a stable lock point,

as described in section 3.7.2. This is one great simplifying feature that our smaller / higher

frequency system has compared to the larger interferometers such as LIGO and VIRGO.

As with the last periscope mirror, the BS and PRM are also equipped with picomotor

actuated mounts for gross alignment needs, but these degrees of freedom are not actively

controlled while the experiment is running.
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3.9 Signal Photodetectors

The two main requirements for our signal photodectors are that they have response in the

MHz frequency range, and that they can operate linearly with very high incident optical

power, on the order ⇠ 150mW (in practice we operate them with  100mW to have a

safe margin). The reason for the latter requirements is what is called the contrast defect

of the interferometer (defined in equation (5.6))– If the electric fields of the laser beams

recombining at the BS are not perfectly matched in shape, meaning their decomposition in

terms of Hermite-Gauss polynomials in equation D.1 are not the same, then there will be

regions of the electric fields which cannot constructively or destructively interfere, and so

the two beams simply travel independently of each other, with 50% of the non-interfering

part traveling to the antisymmetric port. We term this extra light “junk light”, because it

carries no useful information about the DARM (or CARM) positions of the end mirrors, and

so no scientific information about possible gravitational waves. The junk light simply adds

more noise to the signal readout.

The net e↵ect of the contrast defect is to fill in the red trace in Figure 2.3, so that even

when DARM truly is at zero o↵set, there is still light exiting the antisymmetric port (all

junk light in this case).

The signal photodetectors we use are commercially available New Focus model 1811

detectors, which have been extensively modified to handle these very high power levels,

while still retaining very low noise performance and exceptional RFI shielding (c.f. section

4.5).

In order to avoid saturating the photodetector’s transimpedance amplifier with the very

large DC photocurrent and the large low frequency intensity modulations induced by seismic

noise, the photocurrent is high-pass filtered at 200kHz. The exclusion of the low frequency

signal by the high-pass filtering stage does, however, result in a more complicated calibration

scheme for the interferometer sensitivity (c.f. section 5), where the low frequency modulation
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signal used to calibrate the interferometer must be sensed with a separate low frequency

photodetector and then transferred to the high frequency output of the signal detector.

3.10 Data Acquisition

There are two main data acquisition systems in the experiment. One operating at 16kHz

Nyquist frequency used to control of the DARM degree of freedom as well as monitoring low

frequency interferometers and seismometer channels (“slow DAQ”), and another operating

at 50MHz Nyquist, which processes all of the high frequency data for the interferometer

signal photodetectors, auxiliary detectors, and antennas.

3.10.1 Slow (Control)

The slow DAQ for each interferometer consists of 16 analog inputs channels and 16 analog

outputs. The analog signals are passed though a custom signal filtering and bu↵er board

(FBB) unit and the inputs are digitized at 32kHz. Digital control filters (poles, zeros,

mixers, dividers) are then implemented in the time domain via digital biquad filters in an

FPGA, which has on the order of 1K programmable filters. The high level interface uses

a combination of “MEDM: Motif Editor and Display Manager”, control software inherited

from LIGO, and custom software9.

3.10.2 Fast (Signal)

The high frequency DAQ consists of 4 National Instruments crates, each with a single 2-

channel ADC + GPS phase lock for synchronization, which altogether digitize a total of 8

analog channels directly in the tunnel, in close proximity to the signal photodetectors. The 8

analog channels are sampled at 100MHz, giving a 50MHz of usable bandwidth. The digitized

9. The slow control system will be part of the thesis of another graduate student Lee McCuller.
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timeseries data is then sent via fiber optic cables several yards away to our operations center

for processing, and the optical link ensures minimal cross-talk between channels (crucial

for reducing correlations between interferometer signals). Each 1 second long data segment

from all 8 channels is Fourier transformed and cross-spectra are then computed between all

8 channels on a 32-core machine in real time. The final cross-spectrum data and supporting

metadata is saved in HDF5 format for later processing o✏ine. More details concerning the

data analysis are given in section 6.1.

In addition to the 4 signal photodetectors, the DAQ is fed the intensity monitors from each

laser launch, as well as two loop antennas placed in the tunnel in order to veto electromagnetic

correlations also detected in the ambient RF environment (c.f. section 6.3 where this was

used in the data analysis).
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Figure 3.7: All 4 signal photodetectors for the 7 data runs in this work (DAQ Runs 00156-
00162, labeled here “run59”-“run62”), plotted over the full 0-50MHz range of the DAQ. CH0
and CH1 are the L interferometer, CH2 and CH3 are the T.
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Figure 3.8: DAQ Runs 00156-00162 All 4 signal photodetectors: 1st Higher Order Mode,
which is excited by laser noise coupling into it. CH0 (top) and CH1 are the L interferometer,
CH2 and CH3 are the T. The thick black traces are the max and min values in each frequency
bin over the entire 1 hour of data, over all 7 data runs. The colored traces are the mean
values for each data run.
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Figure 3.9: DAQ Runs 00156-00162 All 4 signal photodetectors: 2nd Higher Order Mode,
which is excited by laser noise coupling into it. CH0 (top) and CH1 are the L interferometer,
CH2 and CH3 are the T. The thick black traces are the max and min values in each frequency
bin over the entire 1 hour of data, over all 7 data runs. The colored traces are the mean
values for each data run. 38



Figure 3.10: DAQ Runs 00156-00162 All 4 signal photodetectors: 3rd Higher Order Mode,
which is excited by laser noise coupling into it. CH0 (top) and CH1 are the L interferometer,
CH2 and CH3 are the T. The thick black traces are the max and min values in each frequency
bin over the entire 1 hour of data, over all 7 data runs. The colored traces are the mean
values for each data run. 39



CHAPTER 4

NOISE SOURCES AND COUPLINGS

Noise sources can be divided into two categories based on their frequency range:

• Low Frequency: . 100kHz – Relevant to control system and operating stability

• High Frequency: & 500kHz – Relevant for science data

The key results of this Chapter and the vigilant experimental campaign to tame these

noise sources is summarized here:

• Low Frequency Noise: Figure 3.6 shows that the sum of all noise sources in the

DARM degree of freedom after the application of control loop and passive isolation

suppression techniques has been reduced to less than 1 Angstrom total RMS, which

meets the requirement for stable high power operation close to the dark fringe (c.f.

section 3.7.2).

• High Frequency Noise: The two gray traces in Figure 6.4 are the cross-spectra

between signal photodetectors in a single interferometer, and they show that the sum

of all high frequency noises on the laser beam in each interferometer is at or below the

shot noise level (which is the flat / white noise). Also, and most importantly, the cross-

correlation between the two interferometers (blue trace) shows negligible contamination

after 1 hour of integration, which allows for clear statements to be made about MHz

frequency gravitational waves.

4.1 Schnupp Asymmetry

The net arm length di↵erence �L between the two interferometer arms is called the Schnupp

asymmetry, and it facilitates the conversion of injected frequency noise at the interferometer
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input, to intensity noise at the AS-port (which mimics a DARM signal), in a manner lin-

early proportional to the imbalance �L. The apparent DARM motion ASD�X,apparent at

the antisymmetric port (in units of meters/
p
Hz) is related to the injected frequency noise

ASDfreq (in units of Hz/
p
Hz) by:

ASD�X,apparent =
2�L�

c
· ASDfreq (4.1)

where � = 1064nm is the laser wavelength. The Schnupp asymmetry was measured in each

interferometer by locking the Michelson at half fringe (no power recycling), modulating the

laser frequency, and measuring the transfer function to the AS-port. Knowing the Michelson

DARM calibration (see Chapter 5) and the magnitude of the laser frequency modulation,

Equation (4.1) then gives the Schupp asymmetry. The measured values in each interferometer

were: �LT = 1 ± 1[cm], �LL = 5 ± 1[cm].

4.2 Laser Frequency Noise

There are two main requirements for the laser frequency noise:

1. The residual RMS frequency noise (with the CARM control loop engaged) must be

much less than the PR cavity resonance width, to enable stable common mode locks.

2. The frequency noise appearing at the AS-port as intensity noise due to the Schnupp

asymmetry (c.f. section 4.1) must be below the shot noise in our signal band. (This

is not a strict requirement for gravitational wave searches, however, it is for the Holo-

graphic Noise search [10]).

The frequency noise around the 280THz carrier of both Holometer lasers was measured

by optically heterodyning the two lasers onto a fast RF photodiode, and using the resulting
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beat note to phase-lock the two lasers at a fixed relative frequency o↵set. The spectrum of

noise around the beat note is then the quadrature sum of the frequency noise from each laser

individually, converted to intensity noise by the optical mixing.

Figure 4.1 shows the measured laser frequency noise, together with a modeled estimate

of the CARM loop suppression of frequency noise while power recycling. The total RMS of

the free running (“Out-of-Loop”) laser frequency noise was measured to be ⇠ 260Hzrms (in

good agreement with previous measurements of the same model lasers [16]). The CARM

loop typically has a unity gain frequency (UGF) of ⇠ 20kHz, which results in a suppression

of the RMS frequency noise to ⇠ 30Hzrms or so. This is less than 1/10th of the half width at

half maximum of the power recycling cavity resonance (also called the “cavity pole”), which

allows for stable power-recycled locks.

Figure 4.1: Measured laser frequency noise and modeled CARM loop suppression in power-
recycled operation. The grey trace is the measured free-running (no control loops) frequency
noise of the Holometer lasers (it is an average of the noise in both Holometer lasers). The
black trace is an estimate of the residual laser frequency noise with the CARM control loop
engaged. The salient feature is that the estimated in-loop residual frequency noise has a
total RMS of ⇠ 34Hz, which is less than 1/10th of the half width at half maximum of the
power recycling cavity resonance, allowing for stable power-recycled locks.

42



4.3 Laser Intensity Noise

Laser intensity noise is characterized by the normalized intensity fluctuations, referred to as

Relative Intensity Noise (RIN):

RIN ⌘ �P

P
(4.2)

where P is the DC optical power, and �P is the AC spectral density of power fluctuations.

As with the laser frequency noise, it is desirable for the magnitude of the intensity noise to

be smaller than the shot noise in the signal band. The intensity noise of the laser at 1MHz

is dominated by the relaxation oscillations in the laser, and the Mephisto laser unit itself

has an internal feedback loop which senses the excess noise and controls the pump diodes to

compensate (this feedback loop is called the “noise eater”), resulting in a large suppression

of the relaxation oscillation peak. Figure 4.2 shows the relative intensity noise of one of our

lasers, as measured by the manufacturer (which is typical for both of the Holometer lasers).

Before injection into the interferometer, the relative intensity noise is still larger than the

shot noise up to a few MHz, however the cavity pole of the interferometer acts as a 1/f

low pass filter for intensity noise. The cavity pole during the data runs in this work was

⇠ 330Hz in the T interferometer, and ⇠ 400Hz in the L interferometer, resulting in a larger

than ⇥2000 suppression of intensity the noise at 1MHz, so that the relative intensity noise

is below the shot noise.

4.4 Sawtooth Noise

The “Sawtooth noise” is a spectral feature which appears on both interferometers indi-

vidually, with nearly identical morphology, however it does not correlate between the two

interferometers. It can be seen as the gray traces in figure 6.4, which are the cross-spectra
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Figure 2: Measured relative intensity noise PSD of the Innolight Mephisto laser.
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7 Contrast defect due to thermal lensing

Caveat: the conclusions in this section are preliminary, and still under some dispute. We will

discuss this next week.

Absorption of optical power in either the substrate or the coatings can cause thermal distortions
of the shapes of the optics. The resulting change in focussing properties is called thermal lensing. If
the contrast defect due to the lensing exceeds the 5 ppm requirement given in the previous section,
the photodetector will be swamped by junk light, resulting in potentially large increases in the
required integration time.

Thermal lensing was studied by Winkler, et.al [2], who find that the change in the sagitta �s,
measured over a transverse beam waist size, of the surface of an optic due to power absorption Pa

on the surface obeys

�s ⇡ �

4⇡�

Pa. (24)

For our fused silica substrates, � = �n/�T ⇡ 10�5
/K is the temperature dependence of the index

of refraction, and � = 1.4 W/m·K is the thermal conductivity. Similarly, for absorption by an
intense beam passing through the substrate, the surface distortion is

�s ⇡ 1.3
�

4⇡�

pad. (25)

where pa is the power absorbed per unit length, and d is the distance traversed through the
substrate.

For distortion of a single optic, the contrast defect will cause a minimum output power at the

7

Figure 4.2: Measured relative intensity noise of one of the Innolight Mephisto laser for the
Holometer (typical for both lasers). “NE” stands for “noise eater”, which is the internal
intensity noise suppression feedback loop in the laser.

of the signal photodetectors on a single interferometer (i.e. each trace only measures the

noise in a single interferometer). It is mentioned here for completeness, although to this

date its origin is unexplained. One current suspicion as of this writing is that this noise

may possibly be due to the vibrational eigenmodes of the fused silica substrates for the core

optics (beamsplitter, end mirrors, and power-recycling mirror), however this remains to be

proven. The important fact is that it is NOT correlated between the two interferometers,

and so it cannot be mistaken for a real gravitational wave signal.

4.5 Radio Frequency Interference (RFI)

A large experimental campaign was launched to mitigate contaminating noise sources in the

MHz frequency range, as this is the primary signal band. At these frequencies, seismic and
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mechanical noise sources are not so much a problem, as it is rather di�cult to couple much

mechanical energy into massive objects at MHz frequencies. Rather, the primary sources

of noise in the MHz frequency range are electromagnetic in nature, for example local radio

stations, electrical cross-talk, and ground loops.

The largest challenges were in shielding the signal photodetectors from ambient radio

frequency interference (RFI), as well as electrically isolating the two lasers from each other

in order to minimize spurious correlations between the two interferometer systems. Initially,

it was found that there was a significant amount of RFI correlating between the signal

photodetectors as well as between the lasers, which could be traced to the power source

in the tunnel which was coupling common mode noise between nearly all of the electrical

subsystems. This was in fact somewhat fortunate that most of the noise had a similar

common mode nature, because a significant amount of reduction in RFI was achieved using

toroidal ferrite common mode chokes, heliax coax cables, and similar techniques. Some

amount of experimentation was done to find ferrite materials which absorbed RF energy in

the MHz range very well, and it was a fairly tedious and incremental process to sequentially

isolate each and every subsystem, requiring great care to ensure that the electrical topologies

of all the subsystems were in fact isolated.

The process was ultimately very successful. Figure 4.3 shows a before and after com-

parison of RFI contamination between the two lasers. The beams from each laser were sent

directly to a photodector which was digitized and cross-correlated, and after 12 hours of

integration nearly all of the cross-correlation between the two lasers is eliminated. Similar

results were obtained for the signal photodetectors and all the way through the DAQ signal

chain.

Another important point is that the clocks in the separate digitizers are phase locked to

GPS, with synchronization better than 10ns and relative phase drift of < 90� at 25MHz,

meaning that the DAQ is indeed stable enough to measure correlated power at MHz fre-
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Figure 4.3: Comparison of RFI contamination between the two lasers before and after an
extensive campaign to eliminate cross-correlations. After 12 hours of integration, nearly all
of the cross-correlation between the two lasers is eliminated (red), compared to before (grey).
The y-axis is in units of amplitude coherence, which is the amplitude spectral density of the
cross-correlation normalized by each auto-spectrum, meaning that a value of 1 is interpreted
as perfect correlation between the two lasers. Figure generated by J. Richardson.

quencies. An example of observing highly-correlated noise lines was shown by the grey trace

in Figure 4.3, for the lasers prior to RFI shielding.

4.6 Mechanical and Acoustic Noise

Mechanical and acoustic noise sources are relevant to interferometer control up to frequencies

as high as ⇠100kHz or so, where the opportunity exists for causing instabilities in the DARM

(. 1kHz) and CARM (. 100kHz) control loops. These low frequency mechanical noise

sources are the largest and most di�cult to deal with noise sources which cause fluctuations

in L below ⇠ 1MHz, and they have rapidly increasing amplitude toward lower frequencies.

Isolating the core optics (BS, PRM, EMs) from seismic and vibrational disturbances is

the most critical. The core optics are all mounted on top of a passive seismic isolation
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system consisting of viton ball springs and heavy steel plates, which damp seismic vibrations

above ⇠ 10Hz, pictured in figure 4.4. The end mirrors in the North are mounted on similar

isolation stages. The end mirrors in the East were not mounted on isolation stages, as it was

empirically determined that isolation at the vertex and North was su�cient. The vacuum

system in which the isolation stages sit is bolted directly to the concrete floor of the tunnel.

No elaborate suspension systems are needed to isolate the optics, because our signal band is

in the MHz frequency range, where seismic and other vibrational noise sources are negligible.

We only require enough vibration isolation to hold the interferometer at a stable lock point,

as described in section 3.7.2. This is one great advantage that this smaller / higher frequency

system has over the larger interferometers such as LIGO and VIRGO.
Seismic Isolation installed in interferometer and tested 
 

Dec 3, 2012 Bobby Lanza 6 

power recycling mirror 

Beamsplitter 
3” diameter 

Passive 
Seismic Isolation 

40 lb + 60 lb steel plates Viton balls 

12” 

Figure 4.4: Passive seismic isolation for the beasmplitter and power-recycling mirror in the
central vacuum service vessel.

Early studies showed that the vibrational noise of the wall on which the periscope mirrors

are mounted is su�ciently small as to not induce too much alignment jitter on the beam,

and it has since been found during operations that the wall and periscope mount mechanical

vibrations are of negligible magnitude.

The beam path along the periscope is in air at ambient pressure, but it is enclosed with
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aluminum pipe to shield from air currents, which can induce phase noise on the beam, as well

as modulations to the alignment of the beam with respect to the interferometer. Although

not ideal, this scheme has proven to be su�cient for high quality operations. A possible

future upgrade could be to evacuate the air in the periscope pipe, however this would only

be a convenience for the times when injection alignment is particularly non-stationary. It has

been found, though, that we can indeed operate with this setup, and produce high quality

science data.
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CHAPTER 5

END-TO-END CALIBRATION

The direct end-to-end calibration of the power recycled interferometer described here starts

with the output voltage spectrum on the AS-port signal photodetectors in V/
p
Hz as digi-

tized in the high frequency DAQ, and converts that to units of DARM sensitivity in m/
p
Hz.

This is done by directly driving the end mirror PZTs in DARM at a known magnitude at

low frequency (⇠1kHz), so that the line is visible on the AS-port control photodetector, and

then propagating that signal to high frequency on the signal photodetectors.

As mentioned in section 3.9, the photocurrent of the signal photodetectors is high-pass fil-

tered at 200kHz in order to avoid saturating the transimpedance amplifier with the very large

DC photocurrent and the large low frequency intensity modulations induced by seismic noise.

The exclusion of the low frequency signal by the high-pass filtering stage then significantly

complicates the interferometer calibration procedure, where the low frequency calibration

signal must be sensed with a separate low frequency photodetector and then transferred

to the high frequency output of the signal detector. The calibration line is present during

power recycled operation, and it’s absolute magnitude in units of meters of DARM motion is

precisely measured in the Michelson configuration before and/or after a data run. A separate

amplitude modulated signal is used to measure the relative gain between control and signal

photodetectors, in order to transfer the calibration to the signal band in the MHz frequency

range.

The DARM degree of freedom is defined as the di↵erence in length of the two interfer-

ometer arms:

�XDARM ⌘ Lx � Ly (5.1)
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At high frequencies, above the influence of the control loops and the cavity pole, the

frequency response from DARM motion of the end mirrors to intensity out the AS-port

is flat, except at integer multiples of the FSR where the response has very narrow nulls

with half width at half maximum (HWHM) given by the cavity pole. This di↵ers from the

frequency response of beamsplitter motion to AS-port intensity, which has a series of much

broader nulls at integer multiples of half the FSR [10]. In this way, the calibration here is

directly applicable to the strain sensitivity to gravitational waves.

In the following discussion each term of the calibration equation carries with it subscripts

and superscripts denoting the measurement configuration pertaining to that term, with

notation defined in Table 5.1.

sub/super script Description
c, s AS-port photodetector used: control or signal

PR, M interferometer configuration: Power Recycled or Michelson
closed, open DARM control loop state: locked or not locked
HF, LF frequency range: High (⇠1MHz) or Low (⇠1kHz)
X,V quantity: DARM displacement (meters) or signal (Volts)

Table 5.1: Notation for terms in the end-to-end calibration equation

The calibration involves the determination of the Volts/meter conversion term dVs,PR,HF
closed /dX

in the relation

ASDs,PR,HF
m/

p
Hz

= ASDs,PR,HF
V/

p
Hz

· 1

dVs,PR,HF
closed /dX

(5.2)

where the left hand side is the high frequency [HF ⇠1MHz] power recycled [PR] closed loop

[closed] DARM sensitivity in m/
p
Hz of a signal photodetector [s]. Repeated application of

the chain rule allows the conversion term dVs,PR,HF
closed /dX to be expanded into a product of

7 terms which can be measured individually:
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dV
s,PR,HF
closed
dX

=

s!c

dV
s,PR,HF
closed

dV
c,PR,HF
closed| {z }

dV s
dV c

·
closed!open

dV
c,PR,HF
closed

dV
c,PR,HF
open| {z }

1
|1�GPR(fHF)|

·
HF!LF

dV
c,PR,HF
open

dV
c,PR,LF
open| {z }

Control PD
gain linearity

from High Freq
to Low Freq

·
open!closed

dV
c,PR,LF
open

dV
c,PR,LF
closed| {z }

|1�G

PR|

·

·
PR!M

dV
c,PR,LF
closed

dV
c,M,LF
closed| {z }
V

c,PR
cal

V
c,M
cal

·
closed!open

dV
c,M,LF
closed

dV
c,M,LF
open| {z }

1
|1�GM|

·
V!X

dVc,M,LF
open

dX| {z }
Afringe

2⇡
�

(5.3)

The blue expressions under each term in equation 5.3 indicate the experimentally mea-

sured quantities. The red expressions above are short hand indicating the quantities that

change between numerator and denominator, with arrows following the logical flow of the

calibration scheme. The last term in equation 5.3 shows that the calibration is ultimately

referenced to the laser’s wavelength � measured in the Michelson configuration.

We also note that derivative terms involving the open and closed DARM control loop

state are measures of the complex-valued loop gain G(f) = |G(f)|ei✓(f)

dVclosed

dVopen
=

1

|1 � G(f)| . (5.4)

There are two immediate simplifications of Equation 5.3: first, the power recycled DARM

loop gain magnitude at high frequency, |GPR(fHF)|, is e↵ectively zero because the unity gain

frequency (UGF) is typically only ⇠450Hz, and above the UGF the loop gain falls o↵ roughly

as 1/f . Consequently, at high frequency (⇠ 600kHz, where the calibration is transferred to

the signal photodetector), Equation 5.4 shows that the calibration term
dV

c,PR,HF
closed

dV

c,PR,HF
open

= 1 to

within 0.1%.

Second, the gain of the control photodetector from ⇠1kHz to ⇠600kHz (where the cali-
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bration is transferred to the signal PD) is assumed in this work to be constant (discussion /

justification in section 5.1.3).

Combining equations 5.2, 5.3 then gives an expression to plug the measurement results

into for the final calibration:

ASDs,PR,HF
m/

p
Hz

= ASDs,PR,HF
V/

p
Hz

· dV
c

dV s

·
V

c,M
cal, closed

���1 � GM(fcal)
���

V
c,PR
cal, closed

��1 � GPR(fcal)
��
· �

2⇡Afringe
(5.5)

Section 5.1 discusses the detailed measurements of each of the terms in equation 5.5

for the T interferometer, with the final results summarized in section 5.1.4. Calibration

of the L interferometer followed the same scheme but with an extra step of performing a

full set of calibration measurements after the science data was recorded, and transferring

the calibration to the science data set. In that process for the L interferometer, two addi-

tional calibration lines were added to test systematics and reliability. The details of the L

interferometer calibration are discussed further in section 5.2.

5.1 Measurements For the Calibration

A brief summary of the scheme used to measure the individual terms in equation 5.5 is given

in Table 5.2.

5.1.1 Measurements in Michelson Mode

The Michelson configuration was used to precisely measure the absolute magnitude of the

calibration line in meters of DARM motion. Once this is known, the magnitude of the same

line appearing in the control photodetector in power-recycled mode can be inferred using

the DARM loop gain of the power recycled lock.

The voltage output of the AS-port control photodetector is proportional to the optical
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Configuration Quantity Measured Measurement Type Measurement Instrument

Michelson
Vc,M

cal,closed Spectrum

GM(fcal) DARM loop TF Slow DAQ
Afringe Timeseries

PR Mich
Vc,PR

cal,closed Spectrum Slow DAQ

GPR(fcal) DARM loop TF Slow DAQ

(during data run) ASDs,PR,HF
V/

p
Hz

Spectrum Fast DAQ

PR Mich (anytime) dV

c

dV

s TF HP4396A Analyzer

Table 5.2: Summary of the calibration measurement scheme.

power out the AS-port, and in the Michelson can be expressed in terms of DARM motion

X as:

Vc,M
open = Afringe sin

2(kX) + �CD (5.6)

where k = 2⇡/�, �CD is the contrast defect for the Michelson, and the subscript ‘open’

emphasizes this is the open loop response.

The Michelson was locked at “half fringe”, meaning the argument of the sine in equation

5.6 was locked at kX = ⇡/4. The slope of Vc,M
open at the lock point then gives the conversion

from Volts to meters:

dVc,M
open

dX

�����
kX=⇡

4

= 2Afringek sin(kX) cos(kX)
��
kX=⇡

4
= Afringe

2⇡

�


Volts

meter

�
(5.7)

The remaining sections describe the details of the measurements in Michelson mode.

A complete set of measurements in Michelson mode was performed twice (re-aligning and

locking the interferometer before each measurement) to assess the repeatability, and they

agreed to 1%.
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5.1.1.1 Temporary ASPD for better SNR

For the Holometer interferometers, operating in Michelson mode means the power recycling

mirror (PRM) is misaligned so that beams returning from the end mirrors and reflecting

o↵ the PRM are dumped into the ba✏es of the arms so that no resonant cavity is formed.

Consequently, the operating power of the Michelson is reduced by the PRM’s transmissivity

of 10�3, and there is very little light incident on the control photodetector on the AS-port

(⇠ 10�6W at half fringe).

A useful interpretation of equation 5.5 is that the three Michelson terms

V
c,M
cal, closed ·

���1 � GM(fcal)
��� · �

2⇡Afringe
(5.8)

together give the open loop magnitude of the calibration line in meters of DARM motion. In

other words, this number is independent of the DARM control loop used, and importantly,

independent of the photodetector used to make the measurement. Exploiting this to optimize

the SNR of the measurement, a temporary photodetector was installed on the AS-port in a

location with ⇠ 200⇥ more optical gain. The measurement setup is shown in figure 3.4.

An auxiliary photodetector (“PDAUX” in Figure 3.4) placed directly before the shutter

to signal detectors was chosen for the measurement because of its increased gain and better

SNR compared to the DC channel of the NF1811 signal detectors which are on the same

optical path. An f=38.1mm lens before the PDAUX focused the beam on the diode.

The full DARM spectrum during the measurements is shown in figure 5.1. Figure 5.2

shows the SNR of the calibration line above background noise was 26 dB.
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Figure 5.1: Michelson DARM spectrum measured on the conditioning filter output with
calibration line visible for the two measurement sets performed. Details of the f

cal

= 987Hz
calibration line are in figure 5.2. Some minor di↵erences in the low frequency spectrum are
visible where seismic noise dominates the RMS– eg a line at 29Hz from a pump on site is
known to come and go– however the calibration peak is comfortably above the dominant
seismic contributions to DARM noise, and it is constant to 1% between the two measurement
sets (c.f. figure 5.2).

.

5.1.1.2 Conditioned DARM Fringe Amplitude

For convenience, the control photodetector signals were measured after digitization and after

the “COND” (for Conditioning) filter module in the digital control software, which had a

DC o↵set that subtracted the term �CD in Equation 5.6 and gain such that the unlocked

Michelson fringes go between 0V at the dark fringe and 1V at the bright fringe. This has

the e↵ect of setting Afringe ⇠ 1 in Equation 5.5. Tuning the gain and DC o↵set of the

conditioning filter stage was done by applying a 2Hz sine wave drive to the DARM degree of

freedom of the end mirrors, and adjusting the gain and o↵sets while observing the timeseries
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Figure 5.2: Calibration lines in the Michelson DARM spectrum measured on the conditioning
filter output for the two measurement sets performed. Left panel: the mean SNR of the peak
above the mean background noise level for the two measurements was 26 dB. The red dots
are the peak values and the red lines are the regions of the background noise used to compute
the SNR as well as the contribution of the background noise to the standard deviation of
the measured peak values. The background contributed less than 0.1% to the total standard
deviation of the measured peak and so is ignored. Right panel: the peak values in the two
measurement sets agreed to 1%, showing excellent reproducibility. The full DARM spectrum
during the measurements is shown in figure 5.1

of the conditioned output. The result of the tuning is shown in figure 5.3, which shows the

error associated with Afringe ⇠ 1 is less than 0.5%.

Vc,M could be renamed to VCOND,M, but this has no bearing on the results so the former

is used for simplicity.
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Figure 5.3: Timeseries output of the tuned conditioning filter stage during a Michelson
DARM sweep, showing the error associated with Afringe ⇠ 1 in Equation 5.5 is less than
0.5%. A 2Hz sine wave drive was applied to the end mirror PZTs with amplitude large enough
to sweep DARM through several fringes within one drive period. The tuning proceeds in
two steps: first the interferometer alignment is optimized by minimizing the dark fringe
amplitude (which simultaneously maximizes the bright fringe), ensuring maximum overlap
of the electric fields returning from each arm when they interfere at the beamsplitter. second
the conditioning filter stage DC o↵set and gain are adjusted to make the fringe min and max
go between 0-1V, respectively. The two right panels are zoomed into the fringe extrema.

5.1.1.3 Calibration Line Magnitude

With the Michelson locked at half fringe, the loop-suppressed (ie closed loop) magnitude

Vc,M
cal,closed of the fcal = 987Hz calibration line was measured by recording the amplitude

spectral density ASD (in V/
p
Hz units) of the conditioned signal and converting to Vrms

units by integrating over the width of the calibration line with the equivalent noise bandwidth

(ENBW):
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Vc,M
cal,closed =

sZ
f2

f1

|ASD|2 · ENBW (5.9)

The measured peak values in the two measurement sets agreed to 1%. Results are shown

in figures 5.1 and 5.2, giving Vc,M
cal,closed = (1.07 ± 0.01) ⇥ 10�5Vrms. Figure 5.16 in section

5.2.1 shows the results for all 3 calibration lines used in the L interferometer calibration

while power recycling (c.f. section 5.2).

5.1.1.4 DARM loop gain

The DARM open loop gain in single-pass Michelson operation GM (f) was measured by

summing in a broadband white noise excitation with the digital control system. The out-of-

loop (ie open loop) magnitude of the calibration line Vc,M
cal,open was then computed using the

measurement of the loop gain at the calibration line frequency GM(fcal):

Vc,M
cal,open = V

c,M
cal, closed

���1 � GM(fcal)
��� (5.10)

where the right-hand side is the numerator in the term 2nd from the right in equation 5.5.

Measurements and analysis with descriptions are in figures 5.4, 5.5, 5.6. The results for the

magnitude and phase of the loop gain at f
cal

are |GM(fcal)| = 0.33510 ± (5 ⇥ 10�5) [V/V],

and ✓M (fcal) = 57 ± 1[degrees].

The coherence in the Michelson TF at f
cal

(and for most of the measurement bandwidth)

was very nearly 1, and so the random error (c.f. equation B.1) was already less than 1%,

basically good enough. However the fitting analysis used in the power recycling case (section

5.1.2.2) was applied in the Michelson case because the tools were already in place– see the

power recycled TF measurement for details and a better example of the benefit of the fit
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analysis.

Figure 5.4: Michelson DARM loop transfer function measurement used for the determination
of the loop gain GM(f

cal

). See figure 5.11 for a more detailed description in the case of power
recycling.

5.1.2 Measurements in Power-Recycled Mode

As with the Michelson measurements, the closed loop magnitude of the calibration line in

power recycled mode was measured in the control photodetector by injecting the line during

data runs, using the same amplitude drive summed into the end mirror PZTs at the same

point in the DARM loop as the Michelson measurements. The power recycled DARM loop

gain was also measured for the calibration. The configuration for power recycled operation

is shown in Figure 5.8
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Figure 5.5: Fit to the Michelson DARM loop transfer function data in figure 5.4. see figure
5.12 for a more detailed description in the case of power recycling, and also for a better
example of the benefit of the fitting method.

5.1.2.1 Calibration Line Magnitude

The same methods as section 5.1.1.3 were used in power recycled mode. Results are shown

in figures 5.9 and 5.10.

The right panel in figure 5.10 shows that the power recycled operating point was repro-

ducible and stable to 4% across the 7 data runs (labeled: DAQ runs 00156 through 00162).

The peak magnitude used for the calibration is the average of the 7 data runs: Vc,PR
cal,closed =

(4.36 ± 0.18) ⇥ 10�3Vrms.

5.1.2.2 DARM loop gain

The same methods as section 5.1.1.4 were used in power recycled mode. Measurements and

analysis with descriptions are in figures 5.11, 5.12, 5.13, and 5.14.
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Figure 5.6: Michelson TF raw residuals for the fit in figure 5.5. See figure 5.13 for a detailed
description in the case of power recycling, and also for a better example of the benefit of the
fitting method.

The result for the magnitude of the loop gain at f
cal

is |GPR(fcal)| = 0.3007 ± 0.0018.

The transfer function phase at the calibration line frequency was measured to be ✓PR(f
cal

) =

�24± 12[degrees], where the standard deviation in phase is given by Equation (9.91) in [6].

The phase error contributed less than 1% to the total calibration error, so an additional fit

analysis was not performed.
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Figure 5.7: Michelson transfer function, error in the fit. See 5.14 for details.

Figure 5.8: Configuration for measurements in power recycled mode. The calibration line is
summed into the same junction as in single-pass Michelson mode in Figure 3.4. A quadrant
photodetector for alignment and CCD camera are on the AS-port down stream of PDc.
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Figure 5.9: Superimposed power recycled DARM spectra for the 7 data runs (DAQ runs
00156-00162), measured at the control photodetector output immediately after digitization.
Details of the f

cal

= 987Hz calibration line are in figure 5.10, which also shows that the
operating point was reproducible and stable to within 4% across the runs. The peaks just
below 2kHz are end mirror piezo resonances. They had been acting up at this time, but extra
finely tuned notch filters tamed them to this manageable level, and they did not interfere
with the calibration results.
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Figure 5.10: Calibration line in the power recycled DARM spectra for DAQ runs 00156-
00162, measured at the control photodetector output immediately after digitization. Left
panel: the 7 data sets superimposed, showing the mean SNR of the peak above the mean
background noise level was 42 dB. The red dots are the peak values and the red lines are the
regions of the background noise used to compute the SNR as well as the contribution of the
background noise to the standard deviation of the measured peak values. The background
contributed less than 0.1% to the total standard deviation of the measured peak and so is
ignored. Right panel: shows that the power recycled operating point was reproducible and
stable to within 4% across DAQ runs 00156-00162. The full low frequency DARM spectrum
for all data runs is in figure 5.9.
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Figure 5.11: Power recycled Michelson DARM loop transfer function measurement used for
the determination of the loop gain GPR(f

cal

). The red shaded region encloses the measured
magnitude (black) ± �r(f), where �r(f) is the standard deviation from random error due to
non-perfect coherence and limited number of averages. The functional form of �r(f) is given
in equation B.1. Figures 5.12 and 5.13 show a fit and analysis to further reduce the error in
the magnitude |GPR(f

cal

)| below that given by �r(f
cal

) in the single frequency bin for f
cal

.
navg = 5 averages were used. This TF was measured immediately following DAQ data runs
00156-00162 with the same operating point.
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Figure 5.12: Fit to the power recycled Michelson DARM loop transfer function data in
figure 5.11 to reduce the errors in the measured loop gain magnitude |GPR(f

cal

)|. The grey
shaded region encloses the measured magnitude (black) ± �data(f) ⌘ �r(f), where �r(f) is
the standard deviation from random error due to non-perfect coherence and limited number
of averages. The functional form of �r(f) is given in equation B.1. navg = 5 averages
were used. The motivation for the fit was to further reduce the error in the magnitude
|GPR(f

cal

)| below that given by �r(f
cal

) in the single frequency bin for f
cal

. The standard
error (�/µ) was reduced from 20% without the fit (ie using �data(fcal

)) to 0.6% using the
fit, by leveraging the extra information contained in the rest of the data, where |G(f)| is
expected to be a simple function of frequency. Note: the error was reduced by a factor of
roughly 1/

p
N for N = 650 data points used in the fit. A non-linear least squares fit to the

function yfit(f) = b1f
b2 was used, with best fit parameters b1 = 1.41⇥104, b2 = �1.56. The

fit residuals are in figure 5.13. A linear fit to the log of the data produced similar results.
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Figure 5.13: Power recycled Michelson transfer function raw residuals for the fit in figure
5.12. The heteroscedasticity (variable errors) in the raw residuals plot, seen as an increased
deviation from 0 at data points corresponding to higher frequencies (left of the plot), is
largely due to the drop in coherence at higher frequencies, which produces an increase in
random errors of the transfer function estimate at higher frequencies [c.f. equation B.1]. The
Studentized Residuals are one way of correcting for this by normalizing the residuals with
an appropriate function of the variance of residuals and the diagonals of the hat matrix,
providing a means to interpret the residuals for di↵erent data points on more equal footing,
and to check for outliers that significantly e↵ect the fit. However, the e↵ect here is small,
and visual inspection of the data shows there do not appear to be any significant outliers,
so this is not expected to contribute significantly to the final fit result. In other words this
is taken to be a su�cient measure for the goodness of fit.
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Figure 5.14: Power recycled Michelson error in the transfer function fit. The error in the fit is
quadratic, and one can optimize where the minimum error occurs by choosing the frequency
bandwidth for the analysis. The single-pass Michelson case was not in need of this. However
in the power recycled case, an e↵ectively two parameter optimization was used, in that the
lower frequency range already had small errors due to higher coherence, and so including
those data points reduced the overall error (at the expense of moving the minimum of the
error parabola away from the 987Hz calibration line frequency). This is a generally useful
technique for optimizing where the errors are minimized in a fit.
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5.1.3 Transfer of Calibration to Signal Photodetectors

The configuration of the control (“PDc”) and signal (“PDs”) photodetectors on the AS-port

is in Figure 5.8. The relative gain of these detectors was measured so that the calibra-

tion could be transferred to the high frequency DARM spectrum in the fast DAQ data.

Measurement results are in Figure 5.15.

Figure 5.15: Relative gain measurement for the two photodetectors PDc and PDs, in linear
units. Blue shaded regions are ignored for the measurement. The mean is 326, sample
standard deviation (highlighted in green) is 105.4, and the standard error of the mean is
105.4/

p
N = 10.2 for N = 106 frequency bins used. NOTE: this is with PDc measured into

50 ohms, and this measurement is of the ratio PDs/PDc, so this result must be divided by
2 for the factor used in the calibration equation. Also note that the analysis bandwidth
was chosen somewhat arbitrarily by eye, however, increasing this range to, e.g., 700kHz has
negligible e↵ect on the result.

Any amplitude modulated 1064nm source originating from a point on the AS-port optical

path before the beam splits to the PDc and PDs detectors would su�ce for the measurement,

provided there are negligible losses along either optical path to the detectors (which would
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bias the result), and there is su�cient SNR of the AM peak in each detector.

The power recycled Michelson was locked at moderate power (outside the volcano-shaped

response in the blue trace of Figure 2.3, for optimal stability), and the AM line at the AS-port

used for the TF measurement was generated by driving the auxiliary EOM (phase modulator)

on the laser table (“EOM1” in Figures 3.2 and 3.3), and the Schnupp asymmetry converted

the phase modulation sidebands (PM) to amplitude modulation (AM) sidebands at the AS-

port. The HP4396A analyzer then mixed down the PD signals at the drive frequency to

measure the relative TF. The advantage of this method is that it uses the existing in-situ

setup and is very quick to measure before or after a data run. It is worth noting, however,

that one must take care to avoid measurements at frequencies where higher order modes are

resonant in the optical cavity, because optical mixing of the carrier with the higher order

modes can result in extra amplitude modulation on the photodetectors, significantly skewing

the transfer function results.

The transfer function was directly measured over a ⇠ 100kHz bandwidth between 500kHz-

600kHz (a larger BW was actually measured, but 100kHz was used for analysis). Below this

band, down to the 987Hz calibration line frequency, it is assumed that the gain of PDc is flat,

and this appears to be a reasonable assumption. The measured TF agreed very well with

the expected result based on the optics and photodetector properties, where the PDc specs

(Thorlabs PDA20CS) state a �3dB bandwidth of 4MHz, and a gain of 4.75⇥ 103V/A±2%.

Also, the photocurrent from the diode is directly fed into the transimpedance amplifier, with

no intervening capacitors or filtering components. In addition, the overall DARM sensitivity

calibration reported in this work agreed with the shot noise limited sensitivity expectation

based on the measured power on the beamsplitter to within 5% (see Section 5.3).

A direct measurement of the gain linearity of PDc from ⇠1kHz-1MHz was attempted

using shot noise from an incandescent bulb, however the required DC light level to see the

shot noise above detector noise at high frequency saturated the output. This is because the
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(dark) noise floor of the PDA20CS rises by ⇠ ⇥10 at high frequency, to the point where the

SNR becomes <1. A TF between PDc and an unmodified NF1811 (which has response to

lower frequency than the modified versions) using an AM modulated laser source is probably

a su�cient method to gauge the gain linearity of PDc, given that the NF1811 gain linearity

is known to be fairly flat, and so is a good reference.

The 500kHz-600kHz bandwidth for the measurement was chosen because the TF mag-

nitude was fairly flat over this range, and this band is free from higher order mode cavity

resonances. Below this range the measured TF magnitude decreased toward lower frequen-

cies, as expected from the 200kHz high-pass response of the NF1811’s AC channel. At

⇠1MHz (which is a relative frequency o↵set from the resonant TEM00 carrier) the Gouy

phase advance of the first order transverse mode makes up for the frequency o↵set and

the mode becomes resonant in the cavity. The small (but non-negligible) coupling from

the TEM00 EOM-generated phase sidebands into the first order spatial mode saturated the

HP4396A analyzer inputs. Above ⇠1MHz the noise floor of the PDA20CS is rather large

and so the SNR of the measurement was too poor.

The quantity measured and plotted in figure 5.15 is dV

s

dV

c measured into 50 ohms by the

HP4396A analyzer, and the result there is 326±10[V/V]. The value reported in table 5.3

for dV

s

dV

c for the full DARM calibration, which is the value entered into equation 5.5, is this

divided by 2 because the PDc DARM spectrum is measured into a high impedance.

5.1.3.1 Agreement with Expected Result

The expected result for the TF measured into the 50 ohm inputs of the HP4396A analyzer

(the quantity plotted in figure 5.15), given the reflectivity and gain specs for the optics and

photodetectors, respectively, is 333[V/V]. This is in excellent agreement with the measured

value of 326±10 [V/V].
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Quantity µ ± � �/µ

Vc,M
cal,closed (1.07 ± 0.01) ⇥ 10�5[Vrms] 1%

|GM(fcal)| 0.33510 ± (5 ⇥ 10�5) [V/V] 0.01%
✓M(fcal) 57 ± 1[degrees] –
Afringe 1.000 ± < 0.005 < 0.5%

Vc,PR
cal,closed (4.36 ± 0.18) ⇥ 10�3[Vrms] 4.1%

|GPR(fcal)| 0.3007 ± 0.0018 [V/V] 0.6%
✓PR(fcal) �24 ± 12[degrees] –

dV

s

dV

c 163 ± 5 [V/V] 3.1%

Table 5.3: Summary of measurement results for the terms in Equation 5.11. Although the
phase error in the power recycled Michelson transfer function is 12 degrees, it contributes
⇠ 0.1% to the total calibration error. Note that the standard error �/µ is not a useful
quantify for phase.

5.1.4 Summary of Measurement Results

Table 5.3 gives a summary of the calibration measurements with errors. The final result for

the [meters/Volt] conversion term in the calibration equation 5.2 using the results in table

5.3 is:

1

dVs,PR,HF
closed /dX

=
dV c

dV s

·
V

c,M
cal, closed

���1 � GM(fcal)
���

V
c,PR
cal, closed

��1 � GPR(fcal)
��
· �

2⇡Afringe
[m/V]

= (3.01 ± 0.21) ⇥ 10�12 [m/V] (5.11)

which is ±7% for the T interferometer.

5.2 L Interferometer Calibration

5.2.1 Transfer of Calibration Between Measurement Suites

Calibration of the L interferometer followed the same scheme as the T interferometer out-

lined in the previous sections, but with an extra step of performing a full set of calibration

measurements after the science data was recorded, and transferring the calibration to the
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science data. In that process for the L interferometer, two additional calibration lines were

added to test systematics and reliability, as shown in Figure 5.16. This section details the L

interferometer calibration.

Figure 5.16: Measurement of the 3 calibration lines injected for the L interferometer cali-
bration suite.

For simplicity we refer to a “calibration suite” to mean a set of calibration measurements,

together with the high frequency DAQ data recorded in a particular power-recycled state

of the interferometer, to which the calibration applies. Altogether, the end product of a

calibration suite is a high frequency DARM spectrum calibrated in m/
p
Hz units.

The shot noise limited DARM sensitivity estimate which includes the e↵ects of contrast

defect is given in Equation 5.20, and it can be used to transfer the calibration between two

suites of measurements I and II:
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ASDI
m/

p
Hz

= ASDI
V/

p
Hz

· CII ·
vuutP II

BS,e↵

P I
BS,e↵

·
s

1 + �I

1 + �II
(5.12)

where PBS,e↵ ⌘ PBS ·P
i

⌘
i

, � ⌘ PJunk/PFringe is the ratio of contrast defect light to signal

light in the TEM00 mode at the AS-port (see section 5.3.1), and CII is the meters/Volt

calibration constant for measurement suite II, with

CI = CII ·
vuutP II

BS,e↵

P I
BS,e↵

·
s

1 + �I

1 + �II
. (5.13)

Equation 5.12 is strictly true under the assumptions that:

1. The AS-port e�ciency terms
P

i

⌘
i

are the same between calibration suites,

2. The North transmission optical and electronics chain also remained the same,

3. An estimate for the contrast defect is attainable for each interferometer configuration

I and II.

With these requirements satisfied, it is also true that the ratio of e↵ective beamsplitter

powers can be simplified to the ratio of voltages on the North transmission photodetector,

and this is what was done in practice to transfer the L interferometer calibration to the

science data set reported in this work.

� in each set of the calibration suites I and II was estimated to be 1, and the ratio of

North transmission voltages was V II/V I = 0.882, giving a final calibration constant for the

L interferometer science data set in this work (suite I) of:

74



CI = (2.27 ± 0.18) ⇥ 10�12
hm
V

i
(5.14)

which is ±8%.

5.2.2 Exclusion of 1 Signal Photodetector in L interferometer Data

Subsequent measurements of one of the signal photodetectors on the L interferometer showed

varied and unreliable results, leading to the conclusion that it was ultimately unfit for science

data, and so it was excluded from all results in this work. The impact of this is in actuality

not all that large, reducing the L interferometer’s e↵ective shot noise limited sensitivity by

a factor of
p
2.

5.3 Comparison with Shot Noise Limited Sensitivity Estimate

from Stored Cavity Power

The shot noise limited sensitivity of the power recycled Michelson in the ideal case of no

contrast defect and no losses in the AS-port optics chain is:

ASD
shot,m/

p
Hz

=
1

k

s
E

�

PBS
=

s
hc�

4⇡2PBS
(5.15)

where k = 2⇡/� and E
�

is the energy per photon. Multiplying equation 5.15 by k gives

units of radians/
p
Hz. When losses are considered on the asymmetric port path between the

beamsplitter and photodetector, the sensitivity is given by
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ASD
shot,m/

p
Hz

=

s
hc�

4⇡2 · PBS ·P
i

⌘
i

(5.16)

where ⌘
i

are optical and electronic e�ciencies along the AS-port beam path (i.e. 0 < ⌘ < 1,

and ⌘ = 1 when there are no losses). For example ⌘QE is the quantum e�ciency of the

photodetectors.

5.3.1 Contrast Defect

Light exiting the AS-port that is not in the TEM00 mode and/or does not interfere between

the two arms is dubbed junk light, because it contains no useful DARM phase information.

The total AS-port power is the sum of junk and useful fringe light:

PAS,Total = PFringe + PJunk (5.17)

and the noise spectral densities add in quadrature:

ASDAS,Total =
q

(ASDFringe)2 + (ASDJunk)2 (5.18)

Junk light reduces the overall DARM sensitivity by adding more noise (decreasing the

SNR). If, for example, ASDJunk = ASDFringe, the total AS-port noise ASDAS,Total is in-

creased by
p
2 compared to the case with no junk light, and correspondingly the DARM

sensitivity is reduced by
p
2.

Letting � ⌘ PJunk/PFringe we have
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ASDAS,Total = ASDFringe

p
1 + �, (5.19)

which provides a correction to the shot noise limited DARM sensitivity estimate in Equa-

tion 5.16, now including the e↵ects of contrast defect:

ASD
shot,m/

p
Hz

=

s
hc�

4⇡2 · PBS ·P
i

⌘
i

·
p

1 + �. (5.20)

Equation 5.20 shows how the shot noise limited sensitivity scales with the beamsplitter

power and various loss terms. The contrast defect for the T interferometer was roughly mea-

sured to be ⇠50ppm. Estimates from CCD image data of the AS-port beam during lock indi-

cate that the total AS-port power was comprised of approximately equal parts junk and fringe

(TEM00) light, meaning � ⇠ 1. With the AS-port power split equally onto two detectors, val-

ues of ⌘QE = 0.7, ⌘split = 0.5 (splitting power to two detectors), and PBS =1.92kW give a sin-

gle detector shot noise limited sensitivity estimate of ASD
shot,m/

p
Hz

= 3.99⇥10�18m/
p
Hz.

Importantly, this agrees with the end-to-end calibration to 5% for a single signal photode-

tector in the T interferometer.

As a consistency check, PBS was measured to be 1.92kW. A ratio of PJunk/PBS = 50ppm,

and equal parts junk and fringe light would then give
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PAS,Total = PFringe + PJunk (5.21)

⇠ 2PJunk

= 2PBS · CD

= 2 · 1920watts · 50ppm

= 0.192watts

half of which (96mW) is incident on each signal detector. The total AS-port power measured

for the data runs was PAS,Total ⇠177mW1, which is in good agreement with expectation.

1. The control photodector’s voltage was directly calibrated to total AS-power with a Thorlabs S310C
power meter, and the photodetector voltage was recorded during the data taking runs.
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CHAPTER 6

ANALYSIS AND RESULTS

This chapter presents an overview of the data analysis and results. Much of the statistical

machinery used in this chapter is developed in Appendix A.

6.1 Data Acquisition and Methodology

As mentioned in section 3.10.2, each of the four signal photodetector channels (two for

each interferometer), together with the 4 auxiliary channels for laser intensity monitors and

loop antennas, is digitized in the fast DAQ at 100MHz sampling rate. Each 1 second long

timeseries data segment from each of the 8 channels is then Fourier transformed, and cross-

spectra are computed between all 8 channels in the frequency domain. The FFT sample size

used is 65536, resulting in a frequency resolution of 763Hz.

The resulting (real-valued) auto-spectra and (complex-valued) cross-spectra, in power

spectral density units (V2/Hz), are then averaged in the frequency domain for each suc-

cessive 1 second long batch of data. The cross-coherence is then computed as the square

root of Equation (B.2), which normalizes the cross-spectrum by the individual auto-spectra.

After all the spectra from all the data segments have been averaged together, the cross-

interferometer spectra are then averaged together, giving the final spectrum to be calibrated

and used in the final analysis.

The di↵erential arm (DARM) sensitivity calibration in meters/Volt is then applied to

the auto- and cross-spectra as described in Chapter 5, where the geometric mean of the

two individual T and L interferometer calibration constants is used for the cross-spectrum

calibration in meters/
p
Hz.
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6.2 Systematic and Statistical Errors

The dominant source of error in the results presented in this work is systematic error in

the overall calibration of the detector response, which is 7% for the T interferometer (c.f.

Equation 5.11) and 8% for the L interferometer (c.f. Equation 5.14).

These systematic errors are in turn dominated by the variations in operating point for

the two interferometers between the seven individual data runs that were combined to give

the total integration time of 1 hour. Each of the seven data runs was terminated because

one or both of the interferometers lost lock (due to seismic impulses, for example), and upon

reacquiring lock, there were small variations in operating point between data runs, which

are quantified by the variability in the measured calibration line magnitude between runs.

One possible data analysis procedure could be to weight the data in each run by the relative

change in magnitude of the calibration line, however, because the variations are fairly small,

a simpler approach is used in this work, whereby the variation in calibration line magnitude

contributes to the systematic error in the overall result.

6.3 Test for Correlations

An important consequence of Equation (A.12) is that the ratio of the standard deviation to

the mean for the coherence is constant, independent of the number of averages mavgs:

p
Var[Coh]

E[Coh]

�����
c=0

=

r
4

⇡
� 1 ⇠ 0.523 (6.1)

This will hold true so long as there is no underlying correlated signal (c = 0). Once the

number of averages becomes large enough to begin to resolve a correlated signal (if there is

one), then terms involving c in Equation (A.8) begin to become important. This can also be

seen in the real part of the cross-coherence in Equation (A.7), where the variance integrates
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down by mavgs until the mean value c can finally be resolved.

This property of the coherence spectrum was exploited to very clearly expose frequency

components with statistically significant correlations. Figure (6.1) shows a sliding window

method for computing the ratio in equation (6.1) for a variety of window sizes, to very easily

reveal correlations. Each data point in the figure is the result of centering a window of

bandwidth �B at that frequency, and computing the ratio of the standard deviation to the

mean over that bandwidth. The window is then shifted one frequency bin to the right, and

the ratio is computed again, and so on. This method can help to expose correlations not so

easily detected by eye in the coherence spectrum.

Figure 6.1 shows that there are only two fairly narrow bandwidth correlations (at 1.35MHz

and 1.97MHz) over the entire bandwidth from 1.1MHz-11MHz. These same correlations were

also present in the cross-coherence spectra between ALL of the signal photodetectors and

the large loop antenna (c.f. figures 6.2 and 6.3), meaning that the source of the correlations

is(are) electromagnetic in nature, and they can safely be ignored as possible gravitational

wave signals. The figure legend lists the window bandwidths used for each trace.

6.4 Di↵erential Arm (DARM) Motion Sensitivity

Figure 6.4 shows the final high frequency DARM sensitivity in units of meters/
p
Hz for the

combined 1hr of integration time, after applying the full end-to-end calibration described in

chapter 5.
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Figure 6.1: The correlation test described in section 6.3, applied to the cross-coherence
spectrum between interferometers. The two visible correlations were also present in the
cross-coherence spectra between ALL of the signal photodetectors and the large loop antenna,
meaning that the source of the correlations is(are) electromagnetic in nature, and they can
safely be ignored as possible gravitational wave signals.
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Figure 6.2: Matrix of coherence plots for the three signal photodetectors included in the
analysis, and the loop antenna, showing correlation between the signal photodetectors and
the loop antenna at 1.35MHz. Plots on the diagonal are the auto-spectra (blue traces),
and the o↵-diagonal plots are the cross-coherences (red is magnitude, grey is phase). The
loop antenna auto-spectrum is the bottom right. From these plots, one can see that around
1.35MHz there is correlation between the two interferometers, but there is also correlation
with the loop antenna, so these correlations can safely be ignored as not possibly being due
to gravitational waves. Details are discussed in section 6.3.
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Figure 6.3: The same as figure 6.2 (see for description of plot), but now highlighting a
correlation around 1.97MHz, and again showing correlation with the loop antenna.
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Figure 6.4: High frequency residual DARM spectra, with the direct end-to-end calibration
results applied to both interferometers, giving units of meters/

p
Hz. Traces h00i and h11i

are the auto-spectra of the two L interferometer signal photodetectors, and the L-L cross-
spectrum is trace h10i. Similarly, the T interferometer data is in traces h22i, h33i, and h32i.
The two interferometer cross-spectrum is shown in thick blue (trace h123i. See section 5.2.2
for why detector “0” was excluded), and its frequency-rebinned value is in orange (all data
points over the visible range were averaged into a single bin. The vertical error bar is from
the systematic error in the end-to-end calibration).
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6.5 Detector Response to Gravitational Waves

In this work, the sensitivity to gravitational waves incident from directly above the apparatus,

traveling orthogonal to the interferometer plane, with polarization aligned with the arms (+

polarization) is considered. In this case, a gravitational wave at frequency f
gw

and amplitude

h(t) = hexp(i2⇡f
gw

t) causes a di↵erential arm phase change of [21]:

�� = h(t)
4⇡L

�

sin x

x
eix (6.2)

where x ⌘ 2⇡f
gw

L/c and � = 1064nm is the laser wavelength. Equation (6.2) is then

normalized to give a transfer function magnitude which has a DC limit that goes to one,

given by:

|��norm| ⌘ sin ⇡x

⇡x
(6.3)

The DARM signal data (blue trace in Figure 6.4) is then divided by Equation (6.3) to

give the final data in units of equivalent gravitational wave strain. The result of this process

is the dark grey data trace in Figure 6.6. The normalized gravitational wave transfer function

in Equation (6.3) is plotted in figure 6.5.

It should be noted that if one were interested in using the data reported here to analyze

the sensitivity to gravitational waves incident in another orientation, one would simply have

to apply the new gravitational wave transfer function to the DARM signal data in Figure

6.4.
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Figure 6.5: Normalized gravitational wave transfer function in Equation (6.3).

6.6 Upper Limits on Gravitational Wave Strain Amplitudes in

the 1-11MHz Frequency Range

The general form of the coherence sampling distribution in equation (A.8) was used to

generate 95% confidence upper limits (one-sided confidence intervals) for the strain amplitude

of possible gravitational waves passing through the detector. The method used to compute

the upper limits was the standard Neyman construction for frequentist confidence intervals

(c.f. chapter 9 of [11], and the “statistics” review in [19]). The upper limits were computed

on the coherence data, and then scaled to physical units by multiplying by the constant

factor that normalizes the coherence (which does not a↵ect the statistics). The spectrum

was first scaled from coherence to meters/
p
Hz using the calibration described in section 5.

The data was then converted to equivalent gravitational wave strain by dividing by the arm

length as well as the antenna response function.
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The upper limits were computed by solving the following equation for the value of the

correlated fraction c 1:

� =

Z
robs

0
fCoh(r, c,mavgs)dr (6.4)

where fCoh(r, c,mavgs) is given in Equation (A.8), and robs is the measured value of r

(i.e. the measured coherence). The probability threshold � was chosen to be � = 0.05

(corresponding to a (1� �)⇥ 100% = 95% upper limit). Equation 6.4 was then numerically

solved for c at each data point robs over the analysis bandwidth, and the results are the

magenta trace in figure 6.6. The scientific python (“SciPy”) libraries scipy.integrate.quad

and scipy.optimize.fsolve were used for numerical integration and root finding, respectively.

As equation (6.4) shows, confidence intervals are a function of the measured data, and the

fluctuations in the upper limits (magenta trace in figure 6.6) across frequency bins reflects

this fact. Therefore, to help guide the eye, the thick black curve in Figure 6.6 was computed

in the following way: the mean value of all the upper limit values across frequency bins was

computed in coherence units, and this mean value was then scaled to strain units in the

same way as the data was (described above). All of the spectral shaping of the black curve

therefore comes from the auto-spectra of the original data, as well as the gravitational wave

transfer function. This spectral shaping from the auto-spectra is also present in the data

and upper limit traces of figure 6.6, only with far larger variance between frequency bins.

Another way of interpreting the black curve is that in the limit that the experiment were

to be repeated an infinite number of times (producing an infinite number of data sets like

the one reported here), the average of all the magenta traces from each repeated experiment

would converge to something close to the black trace. This is true because the black curve

1. Equation 6.4 here is the same as Equation (9.9) in [11], but translated into the present notation, and
with lower limit of integration equal to zero because r > 0.
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was produced using a large number of samples— the samples were at di↵erent frequencies,

but in the limit that there truly is no underlying correlation, averaging along the frequency

axis is equivalent to averaging the same number of samples measured in a single bin.

The above results are upper limits on fairly narrow band sources of gravitational waves,

on the order of the frequency bin width which is 763Hz. The data over the bandwidth 1-

11MHz was also averaged together into a single large bin to test for a broadband source of

gravitational wave power. The upper limit was computed in coherence units first, as with

the narrow band limit, and then the upper limit on broadband gravitational wave strain was

computed by using the average of the gravitational wave transfer function over the entire

band. The 95% confidence upper limit for broadband gravitational wave power computed in

this way is 2.4 ⇥ 10�21Hz�1/2.
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Figure 6.6: 95% confidence level upper limits on the strain amplitude of gravitational waves
incident on the apparatus. The results are to be interpreted as the sensitivity to gravita-
tional waves incident from directly above the interferometers, traveling orthogonal to the
interferometer plane, with polarization aligned with the arms (“+” polarization). The grey
trace is the original data (the blue trace in Figure 6.4) with the gravitational wave antenna
sensitivity transfer function applied. The magenta trace is the 95% confidence level upper
limit, and the thick black curve is the mean value of the magenta, to better guide the eye (the
mean is computed in coherence units before scaling to strain. See section 6.6 for details).
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In conclusion, the work presented in this thesis places new limits on the strain amplitude

of gravitational waves in the 1-11MHz frequency range. By cross-correlating the output

of two identical power-recycled Michaelson laser interferometers, an unprecedented level of

sensitivity is achieved, which is better than two orders of magnitude below the quantum shot-

noise limit in a single interferometer. 95% confidence level upper limits are placed on the

strain amplitude of narrow band (⇠ 760Hz) gravitational wave sources at the 10�21 Hz�1/2

level. For gravitational wave power distributed over this frequency range, a broadband upper

limit of 2.4 ⇥ 10�21Hz�1/2 at 95% confidence level is also obtained

In the near term future, with the techniques developed in this thesis, more data will

be taken, for longer integration times, resulting in even further sensitivity to gravitational

waves. The improvement in sensitivity scales as the fourth root of the integration time, so

for example with only sixteen more hours of data, the present limits can be improved by a

factor of two.
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Figure 7.1: The Holometer Team, pictured over the East Holometer arms. From left to
right: C. Hogan, S. Meyer, R. Weiss, R. Lanza, D. Gustafson, H. Glass, J. Richardson, L.
McCuller, A. Chou, B. Kamai, C. Stoughton, O. Kwon, R. Tomlin
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APPENDIX A

THE CROSS-SPECTRUM SAMPLING DISTRIBUTION

A.1 The General Form

The cross-spectrum G
xy

expressed in Cartesian coordinates has the form (dropping the

explicit frequency dependence)

G
xy

= X1 + iX2 (A.1)

where X1 = Re
⇥
G

xy

⇤
, and X2 = Im

⇥
G

xy

⇤
. X1 is also referred to as the “co-spectrum”, and

X2 the “quadrature spectrum”. In polar coordinates G
xy

has the form:

G
xy

= Rei✓ (A.2)

where the magnitude and phase of the cross-spectrum are related to the co- and quadrature

spectra as:

R ⌘ ��G
xy

�� =
q
X2

1 +X2
2 , (A.3)

✓ ⌘ Arg
�
G

xy

�
= tan�1X2

X1

In general, X1 and X2 are two NON-identically distributed gaussian random variables:
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X1 ⇠ N
⇣
µ1, �

2
1

⌘
(A.4)

X2 ⇠ N
⇣
µ2, �

2
2

⌘

where it is generally the case that µ1 6= µ2, and �1 6= �2. The fact that X1 and X2 can

have di↵erent means and variances results in the sampling distribution for R =
q
X2

1 +X2
2

being rather nontrivial to compute.1 It can be shown that the sampling distribution for the

magnitude of the cross-spectrum R is given by [1]:

f
R

(r, µ
i

, �
i

) =
r

�1�2
exp

"
�1

2

 
µ2

1

�2
1

+
r2

2�2
1

+
r2

2�2
2

!#
(A.5)

⇥
1X

n=0

"
n

I
n

 
r2

4

 
1

�2
2

� 1

�2
1

!!
· I2n

 
rµ1

�2
1

!

where I
n

are modified Bessel functions of the first kind, "0 = 1, and "
n

= 2 for n > 0. The

Bessel function sum in (A.5) converges rather quickly, and in practice the inclusion of terms

up to n ⇠ 15 is more than su�cient for most computations and error requirements. Figure

A.1 shows an example of the relatively quick convergence of Bessel function terms.

A.2 Normalization for Coherence Measurements with Averaged

Samples

The analysis can be simplified considerably by transforming the cross-spectrum into coher-

ence, by applying the appropriate normalization. Coherence is defined as [6]:

1. For example, if µ1 6= µ2, but �1 = �2 = 1, then R would have a noncentral chi distribution. However,
we will be concerned principally with the case when both the means and variances are di↵erent, which
requires a little more work to solve for the distribution of R.
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Figure A.1: Demonstration of the relatively quick convergence of the Bessel function sum
in equation (A.5). A high level of convergence can be seen after only including up to n = 3
in this example. For reference, a Rayleigh distribution is also plotted, corresponding to the
case where µ1 = µ2 = 0 and �1 = �2. The shaded region uncludes 95% of the area under
the curve.

�
xy

(f) ⌘
��G

xy

(f)
��

p
G

xx

(f)G
yy

(f)
(A.6)

where G
xx

(f), G
xy

(f) are the auto- and cross-POWER spectral densities, respectively, both

in units of V2/Hz. Note that equation (A.6) is the square root of equation (B.2).

We now define c to be the fraction of correlated noise power between the two channels,

and mavgs the number of averaged samples, in which case the distributions for X1 and X2

in coherence units become2:

2. Also note that this form assumes that the correlated signal appears only in the real part of the cross-
spectrum. If this is not the case in a particular application, it is simple to rotate the coordinates so that
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X1 ⇠ N
✓
c,

1 + 2c+ 2c2

2mavgs

◆
(A.7)

X2 ⇠ N
✓
0,

1 + 2c

2mavgs

◆
.

Note that the correlated component of the signal c appears in both the real and imaginary

quadratures, X1 and X2, but in di↵erent ways. In the imaginary part of G
xy

(X2), c appears

only in the variance, whereas in the real part of G
xy

(X1), c is also the mean. (A.7) also

shows that the standard deviations of X1 and X2 scale as 1/
p
mavgs, as expected. Plugging

(A.7) into (A.5) gives the general form of the sampling distribution for the magnitude of the

coherence spectrum:

fCoh(r, c,mavgs) =
2 r mavgsp

(1 + 2c+ 2c2)(1 + 2c)
(A.8)

⇥ exp


�mavgs

2

✓
r2 + 2c2

1 + 2c+ 2c2
+

r2

1 + 2c

◆�

⇥
1X

n=0

"
n

I
n

 
r2c2mavgs

(1 + 2c)(1 + 2c+ 2c2)

!
· I2n

✓
2rcmavgs

1 + 2c+ 2c2

◆

A.3 The Special Case of No Correlation: The Rayleigh

Distribution

Setting the correlated fraction c = 0 in (A.8) gives a Rayleigh distribution3

any correlated component indeed appears only in the real part. That case is the same as a bivariate normal
distribution with correlated quadratures. In that case, a transformation (rotation) can be applied so that
the new coordinates are uncorrelated.

3. Another way of seeing this is that the Euclidean norm of two i.i.d. zero-mean normal random variables
has a Rayleigh distribution. Also note that Equation (A.5) gives a Rayleigh distribution when µ1 = µ2 = 0,
and �1 = �2.
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fCoh(r, c = 0,mavgs) = 2rmavgse
�r

2
mavgs (A.9)

= Rayleigh(r,mavgs) (A.10)

A more frequently encountered expression for the Rayleigh distribution is

f(r, �) =
r

�2 e
�r

2
/2�

2
(A.11)

where � is the scale parameter of the distribution, and for Rayleigh it corresponds to the

mode. By making the identification �2 = 1/(2mavgs) between equations (A.11) and (A.9),

we see that when c = 0 the coherence sampling distribution tends indefinitely to smaller r

with more averaged samples. Similarly, the mean and variance of the Rayleigh distribution

after mavgs averaged samples are

µ = �

r
⇡

2
=
r

⇡

4mavgs
(A.12)

Var = �24 � ⇡

2
=

1 � ⇡/2

mavgs

which now gives insight into why the trace of a cross-spectrum measurement on a spec-

trum analyzer behaves the way it does: when there is no underlying correlated signal between

the two channels, the mean and standard deviation of the measurements are BOTH reduced

by mavgs, and the cross-spectrum trace drifts further and further down the y-axis (smaller

r), with more averaged samples. This behavior is illustrated by the red Rayleigh distribution

traces in figure A.2.
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A.4 Verification of the Coherence Sampling Distribution with

Simulated Data

Simulated coherence data was generated and fits to the histogrammed data were performed

using the coherence sampling distribution in Equation (A.8), for cases with and without

an underlying correlated signal. Figures A.3, A.4, A.5, and A.6 show the spectra of the

simulated data and fits to the histogrammed data, for two distinct sets of data. In each of

the two simulated data sets, two Gaussian white noise time series s
i

were generated:

s
i

= n
i

+ n
c

(A.13)

where i 2 {1, 2}, n
i

is uncorrelated between the two time series, and n
c

is the correlated

component common to both time series. The two data sets di↵er by changing the correlated

component n
c

such that the correlated fraction “c” in the coherence is 0.02 in the first data

set (Figures A.3 and A.4), and c = 0.01 in the second data set (Figures A.5 and A.6). The

Welch method with 50% overlapped data segments was used to compute the FFTs of the

time series data, with mavgs = 12, 799 data segments averaged.

An important point to make is that the histograms are composed of all the data along

the frequency axis in the coherence plots. This is equivalent to generating many di↵erent

samples in a single frequency bin and histogramming those values, but the advantage here

is that it is much quicker computationally. The plots show that the coherence sampling

distribution in Equation (A.8) describes the data well.
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Increasing !
# samples!
averaged

Figure A.2: Resolving correlated components by averaging samples. Each plot shows the
coherence sampling distribution in equation (A.8), for the case of no correlation (red) and
the case with correlated fraction c = 0.01 (blue). The 3 plots have an increasing number
of averaged samples mavgs, going from top to bottom. This illustrates the important and
useful property of the cross-spectrum to resolve very small signals burried in noise. As the
number of samples is increased, eventually it becomes statistically very likely that measured
coherence values will be concentrated near the mean value of the underlying correlated
signal. This statistical framework describes what occurrs in each and every frequency bin of
a cross-spectrum measurement.
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Figure A.3: Simulated data set #1 used to verify the validity of the coherence sampling
distribution in Equation (A.8). The correlated fraction is c = 0.02. The power spectrum
of the correlated component n

c

is in red. The case of no correlation (c = 0) is shown for
reference (green trace in the coherence plot). The analysis results are in Figure A.4.
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Figure A.4: Fits to simulated data set #1 shown in Figure A.3 using the coherence sampling
distribution in Equation (A.8). For the case of correlated fraction c = 0, �2/d.o.f = 0.943,
and for the case of c = 0.02, �2/d.o.f = 0.612.
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Figure A.5: Simulated data set #2 used to verify the validity of the coherence sampling
distribution in Equation (A.8). The correlated fraction is c = 0.01. The power spectrum
of the correlated component n

c

is in red. The case of no correlation (c = 0) is shown for
reference (green trace in the coherence plot). The analysis results are in Figure A.6.

102



Figure A.6: Fits to simulated data set #2 shown in Figure A.5 using the coherence sampling
distribution in Equation (A.8). For the case of correlated fraction c = 0, �2/d.o.f = 0.871,
and for the case of c = 0.01, �2/d.o.f = 0.655.
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APPENDIX B

STATISTICAL ERRORS IN TRANSFER FUNCTION

MEASUREMENTS

B.1 General Formulae

The normalized random error in the transfer function magnitude
��H

xy

(f)
�� due to non-perfect

coherence and limited number of averages navg is given by the standard deviation of the

estimated magnitude divided by the estimate of the transfer function magnitude itself [6]:

"r(f) ⌘ �r(f)��H
xy

(f)
�� =

q
1 � �2

xy

(f)
���

xy

(f)
��p2navg

(B.1)

where �2
xy

(f) is the Magnitude-Squared Coherence (MSC)

�2
xy

(f) ⌘
��G

xy

(f)
��2

G
xx

(f)G
yy

(f)
(B.2)

and G
xx

(f),
��G

xy

(f)
�� are the auto- and cross-POWER spectral densities, respectively,

both in units of V2/Hz. Note that equation B.1 tends to zero as �
xy

! 1 or navg becomes

large, as one would expect.

B.2 E↵ects of Overlapping and Windowing

Equation B.1 above was derived in [6] for distinct non-overlapping data segments, averaged

together. This section addresses the e↵ects of using the Welch method with 50% overlapped

data segments and the use of a Hanning window.

It is shown in [14] that a 50% overlapped Hanning window procedure only modifies 1/
p
N
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scalings in spectral estimates (for standard deviations and mean values) by 2.8%– a small

e↵ect. This modification is due to the fact the the overlapped portions of data segments are

inherently correlated. This 2.8% correction to the cross-spectrum sampling distribution was

verified using simulated data in python (which ultimately uses FFTW to compute Fourier

transforms). For example, the standard deviation of the cross-spectrum estimator with no

overlap scales as 1/
p
N , whereas it scales as 1.028/

p
N when a 50% overlapped Hanning

window procedure is used. This same correction factor is true for the mean value of the cross-

spectrum when there is no underlying correlated signal (or equivalently when not enough

averages have been recorded to resolve an underlying correlated signal)

There is also the question of whether the Welch method introduces bias to the cross-

spectrum estimator. [25] finds that, “The introduction of overlap [eg with a Hanning window]

does not a↵ect the bias of the estimate.”

It should also be noted that the equations for transfer function error as well as coherence

which are presented in [6], are only valid in the limit when the coherence is rather large.

However, when the coherence is very small, for example in the cases in this work when there

is no statistically significant correlation, the equations in [6] are not applicable, and the

methods in Appendix A are needed.
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APPENDIX C

SPECIFICATIONS AND PARAMETERS

Stored Cavity Power 1.9kW
Injected Laser Power 0.56W

Finesse ⇠ 5785
Cavity Pole ⇠ 332Hz
Storage Time 239µsec

Contrast Defect ⇠ 50ppm
FSR 3.8422 MHz ± 100 Hz

Inferred PRM to End Mirror Length 39.013 meters ± 1mm
AS-port Power Attenuation with ND Filter None

Table C.1: T interferometer operating point parameters during the data runs in this work.

Stored Cavity Power 2.7kW
Injected Laser Power 1.2W

Finesse ⇠ 4710
Cavity Pole ⇠ 408Hz
Storage Time 195µsec

Contrast Defect ⇠ 50ppm
FSR 3.8347 MHz ± 100 Hz

Inferred PRM to End Mirror Length 39.089 meters ± 1mm
AS-port Power Attenuation with ND Filter 30% Attenuation

Table C.2: L interferometer operating point parameters during the data runs in this work.
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Substrate material Low inclusion fused silica
Dimensions 50.4 mm diameter, 12.7 mm thickness

Substrate wedge 5 arc minutes
Surface figure Nominally flat. Greater than 10 km radius of curvature, both sur-

faces. Astigmatism: < 8 nm Amplitude of the Zernike coe�cient
Z2,2, as defined in Born and Wolf.

Surface error < 0.6 nm, best e↵ort for < 0.3 nm for spatial frequencies <
1 mm�1; < 0.2 nm frequencies 1 � 50mm�1, over central 45 mm.

Coating deposition method Ion beam sputtering
Surface 1 Normal incidence partial reflector, T = 1000±100 ppm. Best e↵ort

absorption at 1064 nm < 1 ppm.
Surface 2 Anti-reflection coating, designed for normal incidence. R < 50 ppm

reflection, best e↵ort for R < 10 ppm.

Table C.3: Power recycling mirror specifications

Substrate material Heraeus 3001, low inclusion fused silica
Dimensions 76.2 mm diameter, 12.7 mm thickness

Substrate wedged 30 arc minutes
Surface figure Nominally flat. Greater than 10 km radius of curvature, both sur-

faces. Astigmatism: < 8 nm Amplitude of the Zernike coe�cient
Z2,2, as defined in Born and Wolf.

Surface error < 0.6 nm, best e↵ort for < 0.3 nm for spatial frequencies <
1 mm�1; < 0.2 nm frequencies 1� 750mm�1, over central 65 mm.

Coating deposition method Ion beam sputtering
Surface 1 P-polarization beam splitter, 45 degrees angle of incidence on the

air side. Transmission T = 0.5 ± 0.01. Absorption at 1064 nm
< 1 ppm.

Surface 2 P-polarization anti-reflection coating, designed for 45 degrees angle
of incidence on the air side. R < 50 ppm reflection, best e↵ort for
R < 10 ppm. Absorption at 1064 nm < 1 ppm.

Table C.4: Beamsplitter specifications

Substrate material Fused silica
Dimensions 50.8 mm diameter, 6.35 mm thickness

Side 1 (cavity side) Radius of curvature: 75 meters; Surface Roughness: <1 Å RMS;
Transmission: T = 0.5 ppm (T interferometer), T = 1.5 ppm (L
interferometer)

Side 2 (transmission side) Surface Flatness: Within 0.25 wave @ 6328 Å; AR coating
@1064nm.

Table C.5: End mirror specifications. Transmission values were measured by us.
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length g-factor R
PRM

R
EM

z
R

!0 !
PRM

!
EM

40 m 0.70 inf 78 m 39.2 m 3.6 mm 3.6 mm 5.2 mm

Table C.6: Nominal power-recycling cavity design configuration.
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APPENDIX D

LASER BEAMS AND INTERFEROMETERS:

SUPPLEMENTAL

D.1 Gaussian Beams

As a laser beam propagates along a direction z, the transverse size of the beam will grow

due to the uncertainty principle, as in Fig. [D.1].

Figure D.1: Gaussian laser beam parameters: z is the distance along the direction of propa-
gation, w is the radius at distance z, w0 is the smallest radius (the “waist”), z0 is the waist
position, ⇥ is the divergence angle of the beam, ZR is the “Rayleigh range,” the distance
away from the beam waist where the transverse beam size increases by a factor of

p
2. Figure

from wikipedia/Gaussian beam.

In Fig. [D.1], the beam is focused to a radius w0 (the “waist”), and as the transverse

size of the beam grows smaller, there is a corresponding increase in uncertainty of the trans-

verse momentum, causing the beam to diverge, asymptotically approaching an angle ⇥ with

respect to the beam axis. When ⇥ is su�ciently small (“weak focusing condition”), as is

the case in our experiment and many laser applications, the transverse spatial profile of the

beam is described by solutions to the paraxial wave equation. In rectangular coordinates

and one transverse dimension these solutions take the form of what are called Hermite-Gauss

TEM
nm

modes, given by [22],
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⇥ exp


i(2n+ 1) (z) � ikz � i

kx2

2R(z)
� x2

w2(z)

�

where the H
n

’s are the Hermite polynomials of order n, R(z) ⌘ z � z0 is the wavefront

radius of curvature at position z,  (x) is the “Gouy phase” (explained in section (D.4)), and

k = 2⇡/� is the wavenumber. The solutions for two transverse dimensions are given by:

u
nm

(x, y, z) = u
n

(x, z) ⇥ u
m

(y, z). (D.2)

D.2 Pound-Drever-Hall Locking Technique

The Pound-Drever-Hall (PDH) locking technique is a method for maintaining resonance in

an optical cavity with the injected laser beam. Very thorough treatments of the PDH method

can be found in [8, 12]. This section gives only a brief overview of the concepts necessary

for understanding the implementation of PDH in this experiment.

A feedback loop is created between the laser and the resonator cavity (in our case the

power-recycling cavity of the interferometer). The length L of the cavity provides a reference

distance against which the laser wavelength is compared. The PDH feedback loop contin-

uously monitors and adjusts the laser’s output frequency so that a half-integer number of

wavelengths fits in a length L, thereby maintaining resonance in the cavity.

The laser beam is first phase modulated in an electro-optic modulator (EOM). The

EOM consists of a Mg:LiNbO3 crystal which becomes birefringent in response to an applied

voltage (“Pockels e↵ect”). This changes the index of refraction along a single axis, and

the polarization of the beam is prepared to be aligned with this axis, so that the beam
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acquires a phase shift from the change in refractive index. The EOM voltage is modulated

at a specified RF frequency (f
RF

) corresponding to the combined resonant response of the

crystal’s capacitance and an external inductor1. This places RF sidebands f
s

on either side

of the central (“carrier”) laser frequency f
c

, at frequencies f
s

= f
c

± f
RF

.

After the EOM, the beam is then fed through a Faraday isolator (FI), which acts as

an optical diode: the FI prevents scattered light traveling up stream toward the laser from

damaging the laser, as well as redirecting the light reflected back from the interferometer

to photodetectors, for use in the remaining steps of the PDH feedback scheme. In the FI,

the beam propagates through a >1 Tesla longitudinal magnetic field and a terbium gallium

garnet crystal, which rotates the beam polarization by 45� via the Faraday e↵ect. Reflected

components of the beam, returning in the opposite direction through the FI, receive an

additional 45� of rotation, resulting in a polarization angle of 90� w.r.t. the initial beam.

These 90� rotated beams are then diverted away from the original beam axis with a polarizing

beam splitter, and focused onto an RF photodiode. As discussed later, the signal in the

photodiode from the returning beam is used to produce the error signal for the PDH feedback

loop.

After passing through the FI, the beam (now composed of carrier and sidebands) is

directed into the resonator cavity. Focusing lenses prior to the cavity are arranged so that

the beam waist is placed at the cavity input mirror, with the appropriate size as determined

by the cavity properties (c.f. section 3.3.2).

The electric field of the beam after being phase modulated in the EOM has the form:

1. The second EOM used in this experiment (which is not used for PDH, c.f. figures 3.2 and 3.3) does
not have this inductor, and so can be operated in broadband for diagnostic and calibration purposes, as
described in the main text.
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where the “modulation depth” � is typically very small, allowing for the approximation in

the second line. Here, the carrier frequency is f
c

= !/2⇡, and the sideband frequencies are

f
s

= (!±⌦)/2⇡ = f
c

±fRF. If we were to instead apply amplitude modulation to the beam,

the electric field would have the form:

Einc = E0e
i!t (1 + � sin⌦t)

= E0
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ei!t + i

�

2
ei(!+⌦)t � i

�

2
ei(!�⌦)t

◆
(D.4)

Equations (D.3) and (D.4) show that a pure phase modulation can be turned into a

pure amplitude modulation by changing the relative phase between carrier and sidebands

by ⇡/2. In the PDH scheme, the sidebands lie outside of the cavity resonance bandwidth

when the carrier is close to resonance. The sidebands are therefore reflected o↵ the cavity

input mirror (the power-recycling mirror, PRM, in this case) back through the FI toward

the photodetector (“REFL” port in figures 3.2 and 3.3). The carrier, being within the cavity

bandwidth, enters the cavity and bounces around between the mirrors. Some of the carrier

light leaks out the far end mirrors, some is dissipated within the cavity by scattering o↵

of impurities on the mirrors (e.g. dust specs), and some is transmitted back through the

PRM and recombines with the modulation sidebands. If the carrier satisfies the resonance

condition of the cavity, it will have acquired a net phase that is an integer multiple of ⇡ when

it exits the cavity through the PRM and recombines with the sidebands. From Eq. (D.3),
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the recombined beam will still be equivalent to a phase modulated beam. However, if the

carrier is not on resonance, then when it leaves the cavity it will have acquired a net phase

di↵erent from n⇡. When it recombines with the sidebands, there will then be an amplitude

modulation as well. The photodetector is a “square-law detector”, meaning it measures the

square of the electric field EE⇤, and as such it is impervious to phase modulations. However

it is sensitive to amplitude modulations, and this is how the PDH loop is able to sense when

the laser is o↵ resonance from the cavity.

There are two equivalent ways to view the PDH locking technique. One can either treat

the cavity length L as being fixed and the laser wavelength � as changing, or the reverse (of

course in reality both are occurring simultaneously). When the laser frequency is very close

to resonance, the power in the beam reflected back from the cavity can be approximated in

the following simple form that is linear in the cavity length fluctuations �L [8]:

Pref ⇡ 2P
s

� 16
p

P
c

P
s

F
�
�L sin⌦t. (D.5)

where P
s

is the power in the sidebands, P
c

the carrier power, and F is the cavity finesse,

described in section (D.3). The reflected power is detected by the RF photodetector which

has a transimpedance amplifier that converts the induced photocurrent into a voltage. The

voltage signal is then multiplied with the original modulation signal from the RF signal

generator in a mixer (c.f. “mixer” in figures 3.2 and 3.3). The mixer picks out the component

proportional to sin⌦t, producing the error signal ✏:

✏ ⌘ �16
p
P

c

P
s

F
�
�L (D.6)

The error signal in equation D.6 has the right properties necessary to create a negative
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feedback loop; it is negative in magnitude when the carrier is on the high frequency side of

resonance, positive when the carrier is on the low frequency side of resonance, and zero on

resonance. To see this, note that an increase in L means that to maintain resonance, the

laser wavelength must increase, i.e. the frequency must decrease.

The error signal is then split into high and low frequencies and sent to the laser for

controlling the output frequency. The laser has two input controls for adjusting the output

frequency. The “fast” or “PZT” channel controls a piezo actuator that is coupled to the

lasing crystal. The piezo applies a pressure to the lasing crystal, changing it’s length, thereby

changing the wavelength of the light. The piezo has resonances beginning around 100kHz,

so the error signal must be attenuated below this– in practice we actuate up to 20kHz

or so. The “slow” channel controls the temperature of the lasing crystal, with the same

e↵ects as the piezo, but on a much slower time scale (sub Hz) and with much larger gain

(small temperature changes produce very large frequency changes). In practice, we found it

unnecessary to actuate the frequency using the thermal controls, because the relative drift

between the cavity and laser stays within the dynamic range of all the feedback components

for su�ciently long periods of time, and so the relatively small gain of the PZT channel is

adequate 2.

D.3 Finesse, Cavity Pole, & Free Spectral Range

As laser light reflects back and forth between the cavity end mirrors and PRM, the circulating

intensity experiences resonant peaks when the round trip phase advance of the electric field

(!t = !2L/c) is an integer multiple of 2⇡, and hence undergoes constructive interference.

The resonant frequencies f0 = !/2⇡ of the cavity therefore satisfy the condition:

2. For example, the natural drift of the laser is ⇠ 1MHz/minute, while the gain of the PZT channel is
⇠ 1.5MHz/V with an actuation range of ±100V . Similar arguments and measurements show that other
components in the PDH loop have enough dynamic range to operate without clipping or saturating for long
enough periods of time as to not be a concern.
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f0 = n
c

2L
(resonance condition) (D.7)

where n is an integer. The quantity c/2L is called the Free Spectral Range (FSR), or axial

mode spacing, and represents the frequency spacing between cavity resonances. It should be

noted that the FSR represents the frequency spacing between resonances for the transverse

Gaussian-shaped mode (i.e. TEM00). As discussed in section (D.4) below, each higher order

TEM
nm

mode experiences an additional phase advance as it propagates along the beam

path, and is subject to the modified resonance condition in Eq (D.12).

When the laser frequency satisfies the resonance conditions of the cavity, reflections back

toward the error signal photodiode in the PDH loop are minimized, and the cavity acts as

an absorber. When monitoring the output voltage from the PDH error signal photodiode

(c.f. section D.2 and figures 3.2 and 3.3) as the laser frequency goes through resonance, steep

dips in the signal, i.e. absorption lines, are clearly visible (see pink trace in figure 2.4). The

full width at half maximum (FWHM) of these resonance peaks is the cavity bandwidth, and

along with the FSR it determines a quantity called the cavity finesse (F), which is analogous

to the quality factor Q of a mechanical resonator.

The Finesse of an optical cavity is defined as the ratio of the FSR to the cavity bandwidth:

F ⌘ FSR

FWHM
(finesse) (D.8)

It is a measure of the power losses of the beam within the cavity. In the ideal limit that

the only power loss in the cavity is due to transmission through the end mirrors, the Finesse

takes the form [22]:
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F =
⇡
p
r1r2

1 � r1r2
(D.9)

where r1 and r2 are the reflectivities of the cavity end mirrors. The terminology “cavity

pole” is often used as well, which is defined as:

fpole = FWHM/2 (cavity pole) (D.10)

D.4 Gouy Phase and Higher Order Modes

For a general beam composed of the fundamental gaussian TEM00 mode and higher order

TEM
nm

modes, the total phase advance �(L) accumulated across the cavity length L is

given by [22],

�(L) =
!L

c
� (n+m+ 1) cos�1 ±p

g1g2 (D.11)

where g
i

⌘ 1 � L/R
i

are called the cavity g-parameters, and R
i

are the radii of curvature

of the cavity mirrors. The first term is just the phase shift of a wave traveling at speed c

over a distance L, and the second term is the Gouy phase advance. The general condition

for cavity resonance is then given by:
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!L

c
� (1 + n+m) cos�1 ±p

g1g2 = q⇡, (D.12)

for some integer q. From (D.12) we see that the Gouy phase advance breaks the frequency

degeneracy for resonating Hermite-Gauss modes, forcing the resonant frequencies of higher

order TEM
nm

modes to be o↵set from each other.

The presence of resonating higher order modes can add excess noise to the signal readout

of the interferometers, and in some cases they can cause instabilities in the feedback loops.

It is therefore desirable to minimize the occurrence of Gouy phase resonances from higher

order modes. This can be achieved by choosing the cavity parameters in equation D.12 such

that only modes with very high values of n and m will satisfy condition (D.12).

Higher order modes (HOM) can be generated in many di↵erent ways. Particular examples

in this experiment are given in section 3.3.1, with HOM resonances clearly visible in the

auto-spectrum traces of the antisymmetric port signal photodetectors in Figures 3.7, 3.8,

3.9, 3.10.
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D.5 Useful Optical Equations

Href(w) ⌘ Eref
Einc

= r1�r2(R1+T1)e
�i w

FSR

1�r1r2e
�i w

FSR
Reflected electric field transfer function

Hcirc(w) ⌘ Ecirc
Einc

= �it1

1�r1r2e
�i w

FSR
Circulating electric field transfer function

Htrans(w) ⌘ Etrans
Einc

= �t1t2e
�i w

2FSR

1�r1r2e
�i w

FSR
Transmitted electric field transfer function

where � ⌘ kL = 2⇡

�

L = w

c

L = w

2FSR

and L = cavity length

F ⌘ FSR
FWHM =

⇡

p
r1r2

1�r1r2
Finesse

fpole ⌘ HWHM = FSR
2F Cavity Pole

Gcav ⌘
⇣

Ecirc
Einc

⌘2
=
⇣

t1
1�r1r2

⌘2
(Power) Cavity Gain on resonance

Table D.1: A few useful Fabry-Perot cavity relations.
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APPENDIX E

GLOSSARY OF SYMBOLS

E Electric field

r Amplitude reflectivity of an optic,

and radial coordinate in coherence sampling distribution

t Amplitude transmissivity of an optic, and time

w0 Beam waist size

w Beam radius, and angular frequency

z0 Beam waist position

z Position along beam propagation axis

FSR Free Spectral Range

F Cavity Finesse

f
R

Sampling distribution for the magnitude of the cross-spectrum R

fCoh Sampling distribution for the magnitude of the coherence spectrum

G(f) Complex-valued loop gain. G(f) = |G(f)|ei✓(f), with phase angle ✓(f)

G
ii

(f) Auto-spectral density function (one-sided)

G
ij

(f) Cross-spectral density function (one-sided)

�2
ij

(f) Magnitude-Squared Coherence (MSC)

h Gravitational wave strain amplitude

HOM Higher Order Mode

(Hermite-Guass TEM
nm

laser modes with n,m not both 0)

PRM Power recycling mirror

TF Transfer Function

See also Table 5.1 for notation used in the calibration in Chapter 5.
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