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Abstract

Appearance-type neutrino oscillation experiments, which observe the transition

from muon neutrinos to electron neutrinos, promise to help answer some of the fun-

damental questions surrounding physics in the post-Standard-Model era. Because

they wish to observe the interactions of electron neutrinos in their detectors, and

because the power of current results is typically limited by their systematic uncer-

tainties, these experiments require precise estimates of the cross-section for electron

neutrino interactions. Of particular interest is the charged-current quasi-elastic

(CCQE) process, which figures significantly in the composition of the reactions

observed at the far detector. However, no experimental measurements of this cross-

section currently exist for electron neutrinos; instead, current experiments typically

work from the abundance of muon neutrino CCQE cross-section data and apply

corrections from theoretical arguments to obtain a prediction for electron neutrinos.

Verification of these predictions is challenging due to the difficulty of constructing

an electron neutrino beam, but the advent of modern high-intensity muon neutrino

beams—together with the percent-level electron neutrino impurity inherent in

these beams—finally presents the opportunity to make such a measurement.

We report herein the first-ever measurement of a cross-section for an exclusive

state in electron neutrino scattering, which was made using the MINERνA detector

in the NuMI neutrino beam at Fermilab. We present the electron neutrino CCQE

differential cross-sections, which are averaged over neutrinos of energies 1-10 GeV

(with mean energy of about 3 GeV), in terms of various kinematic variables:

final-state electron angle, final-state electron energy, and the square of the four-

momentum transferred to the nucleus by the neutrino, Q2. We also provide a total

cross-section vs. neutrino energy.
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While our measurement of this process is found to be in agreement with the

predictions of the GENIE event generator, we also report on an unpredicted

photon-like process we observe in a similar kinematic regime. The absence of this

process from models for neutrino interactions is a potential stumbling block for

future on-axis neutrino oscillation experiments. We include kinematic and particle

species identification characterizations which can be used in building models to

help address this shortcoming.
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1

1 Introduction and motivation

Particle physics in the twenty-first century is inseparably tied to the Standard

Model (“SM”). This tour de force composed of insights about elementary particles

and the forces by which they interact, assembled from the collective experimental

evidence obtained over the previous several centuries, is remarkably successful.

Besides synthesizing data from thousands of disparate measurements into a co-

hesive system, the SM’s predictive ability is unmatched elsewhere in science. Its

prediction for the anomalous magnetic moment of the electron is perhaps its most

striking accomplishment: agreement between the best calculations and the best

measurements is on the order of 10 significant figures, better than any other theory

in the history of the scientific method [1]. And multiple times the SM has predicted

a new particle (the Z boson and the Higgs boson, for instance) that occupied

parameter space beyond the limits of detection, only to be later confirmed when

detector technology gained sufficient ground to probe it [2]. Any new data collected

is, therefore, stacked up against the predictions of the SM as a matter of course;

any new theory is likewise expected to justify its divergence in a compelling fashion.

Yet for all of its predictive power, the Standard Model is known to be incomplete.

In broad strokes, major blemishes include: the SM’s inability to unify with the

theory of general relativity (itself incredibly successful) in a consistent fashion; the

SM’s silence on the large-scale properties of our universe observed in cosmology

(such as the evidence giving rise to the postulation of dark matter and dark energy);

and theoretical-experimental discrepancies in a few very precise predictions (such

as the atomic radius of muonic hydrogen [3]). In addition, to synthesize major

discoveries over the past several decades, theorists have been forced to turn to
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ad hoc extensions to the model, particularly when confronting the enormous

range of masses measured for the family of fermions. Together with the cosmetic

distastefulness of the need to fine-tune the roughly 20 free parameters that result so

as to align with the data, all of these features are troubling: and as a result, searches

for “beyond the Standard Model” phenomena—and the hope that a discovery will

lend clues to what shape a more fundamental system might take—are numerous,

diverse, and vigorous.

As the lightest and, at least initially, the most apparently featureless, of the

fermions described by the SM, neutrinos were long nothing more than a curiosity

whose role was relegated to the conservation of energy in weak-force interactions.

But the discovery that at least two of the three known flavors bear mass, in stark

contrast to the construction of the classic SM, suddenly catapulted the neutrino

into the forefront of “beyond the Standard Model” research. Modern, large-scale

investigation into the phenomenon of neutrino oscillations (the original litmus test

which first demonstrated conclusively that neutrinos indeed do have mass) is now a

two-decades-old affair, and though much of the relevant parameter space has been

nailed down, major fundamental questions concerning the nature of neutrinos still

remain. By virtue of the same weakness of neutrino interactions that originally

relegated the neutrino to an anonymous role in particle physics—Pauli, the man

who first proposed its existence, famously lamented that he had proposed “a particle

that cannot be detected”—neutrino oscillation experiments require extremely large

detectors that are made of complex materials. Yet they must simultaneously

work at high precision to obtain results that have any hope of addressing the

most pressing questions that remain in the field (like, for example, the ordering

of the neutrino masses, and whether neutrinos and their antimatter counterparts,

antineutrinos, are exactly mirror images of one another or not). These competing

demands necessitate input data of very high quality to ensure that imprecisions

are not propagated through to the final measurements.
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Chief among the measurements that are assumed by neutrino oscillation experi-

ments is a characterization of the interaction properties of neutrinos on the materials

used as targets within detectors. Such is the importance of these neutrino-nucleus

cross-sections, in fact, that the development of cross-section measurement programs

has recently been thrust into the limelight in neutrino oscillations research. But

improving the quality of the cross-section measurements used in oscillation results

is only one arm of the dedicated neutrino scattering experiment program. Such

experiments are also valuable contributors to the world of nuclear physics as well,

where they can provide an electromagnetically neutral probe into the complex

physics of particles bound in nuclei. In so doing, they have uncovered several

complications to the simple “Fermi gas” model of the nucleus usually taken for

granted by oscillation predictions, complementing the picture first advanced by

electron scattering experiments.

The MINERνA experiment at the Fermi National Accelerator Laboratory in

Batavia, IL, operates in this intersection of neutrino oscillation and nuclear physics.

While the vast majority of results from MINERνA will focus on the interaction of

muon neutrinos (which are the primary content of NuMI’s beam) with the various

nuclei in the detector, the electron neutrino cross-section is equally important.

Appearance-type oscillation measurements—which usually begin with a nearly

pure muon neutrino beam, and measure what fraction of them oscillate to electron

neutrinos at a far detector—depend on knowing the νe cross-section to make an

accurate prediction of their expected signal event rate. Moreover, since accelerator-

made muon neutrino beams are not completely pure, but typically contain an

impurity of electron neutrinos on the order of 1%, an accurate background rate

prediction also depends on knowledge of σνe .

However, there exist only two direct measurements of σνe anywhere near the

energy range of interest to oscillation experiments [4, 5]; and these measurements’
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applicability to oscillation experiments is challenged by their small statistics (and,

in the former case, its markedly different target material, heavy freon). In lieu of

using direct measurements, oscillation calculations typically instead work from the

muon neutrino cross-section and apply corrections from theoretical arguments to

obtain a prediction for the electron neutrino cross-section. The foundational nature

of this parameter in the prediction, however, occasions a better measurement. The

work presented in this thesis intends to fill that vacuum. Because the intensity of

the NuMI beam and the length of MINERνA’s data taking period were such that

the electron neutrino impurity of the beam produced several thousand recorded νe

events in the detector, there is opportunity to make a significant improvement upon

the existing data. We therefore describe herein the first-ever direct measurement

of the cross-section of the charged-current quasi-elastic (CCQE) interaction of

electron neutrinos on a hydrocarbon target in the few-GeV energy region.

1.1. The Standard Model1

1.1.1. Fields; gauge theories

The common currency of the Standard Model is the field. Though the insights

governing the postulates on which the edifice of the SM is built are much deeper,

in essence, the SM effectively attempts to answer the questions: “What fields

govern nature, how do they evolve in time and space, and how do they interact?”

So we begin with the notion of a field: a physical quantity—whether directly

observable or not—which is defined everywhere in space and time; we represent

it by the notation ψ(x) (or represent one component of it as ψµ(x), or ψµν(x),

etc. if it is a tensorial quantity with more than a single component), where x is a

1Throughout this section we will employ natural units, ~ = c = 1, as well as the Einstein
summation convention.
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four-component Lorentz vector identifying a point in space-time.2

One can construct from a field (or multiple fields) and its (their) derivatives a

quantity which encodes its (their) contribution(s) to the energy structure of space-

time; this quantity is called the “Lagrangian density,” L(ψ, ∂ψ). To determine

the dynamics of the system modeled by this Lagrangian3, the SM then applies

the principle of stationary action (also known as the priniciple of least action, or

Hamilton’s Principle [6]) via the Euler-Lagrange equations, where we will use the

shorthand ∂µ to refer to ∂/∂xµ:

∂µ

(
∂L

∂ (∂µψ)

)
− ∂L
∂ψ

= 0 (1.1)

The result is the system’s equations of motion. Historically, Lagrangians have been

selected such that their Euler-Lagrange equations reproduce the known equations

of motion for specific fundamental forces (for example, electrodynamics). This, in

fact, was the starting place for quantum electrodynamics (QED), which, molded

by a number of brilliant theorists between roughly 1930 and 1980, eventually grew

into the shape of the Standard Model as we know it today. Stripped of its historical

trappings, the result for electrodynamics is as follows: writing the electric and

magnetic potentials as the four-vector A = (V, ~A) and the charge and current

sources as J = (ρ, ~J) let us consider the Lagrangian

L = − 1

16π
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) + JµAµ (1.2)

2As is customary, we will let xµ refer to the µth component of this (contravariant) four-vector;
one then uses the Minkowski metric gµν to obtain the covariant four-vector xµ = xµgµν from
it.

3It is commonplace in quantum field theory to refer to Lagrangian densities as simply “La-
grangians,” even though strictly speaking the Lagrangian corresponding to the Lagrangian
density L is

∫
d3xL. Since in quantum field theory one always works with the Lagrangian

density, we will follow this tradition here.
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The first term of the Euler-Lagrange equations (eq. 1.1) results in

∂L
∂(∂µAν)

= − 1

4π
(∂µAν − ∂νAµ), (1.3)

while the second term yields

∂L
∂Aµ

= Jµ, (1.4)

Thus the equations of motion are

∂µAν − ∂νAµ = 4πJµ, (1.5)

which can be shown to be equivalent to the more canonical form of Maxwell’s

equations. [2] There are a handful of other well-known sets of equations of motion

in quantum field theory; they and the Lagrangians that result in them are listed in

table 1.1.2.

It was known long before the advent of quantum mechanics that the laws of

electrodynamics are invariant under a so-called gauge transformation: an operation

whereby the electric and magnetic potentials are modified by the addition of the

gradient of a scalar field (that is, A′µ = Aµ + ∂µλ for a scalar field λ(x)). The same

principle can be seen (as it must) when viewed through the lens of field theory;

notice that

∂µAν′ − ∂νAµ′ = ∂µ(Aν + ∂νλ)− ∂ν(Aµ + ∂µλ) (1.6)

= ∂µAν + ∂µ∂νλ− ∂νAµ − ∂ν∂µλ (1.7)

= ∂µAν − ∂νAµ, (1.8)

leaving eqn. 1.5 invariant. The other fields noted in table 1.1.2 admit similar gauge

transformations.
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Name Field Lagrangian Equations of motion

Klein-Gordon Scalar field φ L = 1
2
(∂µφ)(∂µφ)− 1

2
m2φ2 ∂µ∂

µφ+m2φ = 0

Dirac Spinor field ψi L = iψγµ∂µψ −mψψ iγµ∂µψ −mψ = 0

Proca
Vector field Aµ,

L = − 1
16π
F µνFµν + 1

8π
m2AνAν ∂µF

µν +m2Aν = 0

with F µν = ∂µAν−∂νAµ

Table 1.1: Well-known Lagrangians in field theory and their resulting equations of motion. What is meant by “spinor” and “vector” fields
is discussed in sec. 1.1.2.
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1.1.2. Particles in the SM 4

So far we have nothing more than a mathematical model of free fields; no mention

(aside from the oblique introduction of the parameter m into the Lagrangians in

tab. 1.1.2) has been made of anything resembling a particle. Since the Lagrangian

density in fact represents an energy density, the quanta of the field a Lagrangian

operator represents can (in light of the energy-mass equivalence principle Einstein

made famous) very well be interpreted as “particles;” but the problem remains

that so far our fields—and therefore particles—do not interact. It was Chen Ning

Yang and Robert Mills who finally established a way to rectify this problem in a

theoretically consistent way.

We must begin by clarifying some notation that we will use extensively below.

It was noted in tab. 1.1.2, for example, that the Dirac Lagrangian corresponds

to a “spinor field.” A (Dirac) spinor Ψ, in this case, is a collection of four

fields Ψi which transform under a Lorentz transformation such that the quantity

ΨΨ = |Ψ0|2 + |Ψ1|2 − |Ψ2|2 − |Ψ3|2 is invariant. In fact, introducing the so-called

“Dirac matrices” γµ,

γ0 =

1 0

0 1

 (1.9)

γi =

 0 σi

−σi 0

 (1.10)

(1.11)

(where 0 and 1 represent 2 × 2 additive and multiplicative identity matrices,

respectively, and σi are the 2× 2 Pauli matrices), we can write out the definition

4The treatment in this section was largely inspired by ref. [2].
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for Ψ more straightforwardly:

Ψ = Ψ†γ0 (1.12)

Thus the Dirac Lagrangian is in actuality an expression which sums over the four

components of Ψ (multiplied by the appropriate components of γµ and ∂/∂xµ).

With those preliminaries in mind, let us consider two Dirac fields, Ψ1 and Ψ2,

simultaneously. With the tools we have thus far, all we can do is write down their

(non-interacting) sum:

L = iΨ1γ
µ∂µΨ1 −m1Ψ1Ψ1 + iΨ2γ

µ∂µΨ2 −m2Ψ2Ψ2 (1.13)

If we perform the same sleight-of-hand with Ψ1 and Ψ2 that we have already done

with the components of each of the Ψ themselves—that is, bundle them together

into an object like a column vector—we can in fact condense this back to something

that looks exactly like what we started with:

L = iΨ (γµ∂µ1) Ψ−ΨMΨ (1.14)

if only we take

Ψ =

Ψ1

Ψ2


Ψ =

[
Ψ1 Ψ2

]
(1.15)

(1.16)
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and

M =

m1 0

0 m2

 (1.17)

Now, this Lagrangian has the peculiar property that it remains invariant if the

field Ψ is transformed by applying some unitary 2× 2 matrix U (that is, a U where

U †U = 1) to it: that is, if Ψ→ UΨ (and thus Ψ→ ΨU †), we get

L = iΨU †γµ∂µUΨ−ΨU †MUΨ (1.18)

If we choose the masses are the same, such that M = m1, then we can commute

the U in the second term past it; furthermore, since all that separates the U † and

the U in the first term is the identity matrix5, we can do the same there:

L = iΨU †Uγµ∂µΨ−ΨU †UmΨ

= iΨ (γµ∂µ) Ψ−mΨΨ (1.19)

which is the same as eq. 1.14.

It is well-known that an arbitrary 2 × 2 unitary matrix can be written al-

ternatively: U = eiH , for some Hermitian matrix H (H = H†). (Here, the

exponentiation of the matrix means that one should expand it in the usual power

series: 1 + iU + i2

2!
U2 + ....) And in fact, a Hermitian matrix can be further

decomposed: every H could be broken up into H = λ01 +λ1τ1 +λ2τ2 +λ3τ3, where

5We are being somewhat elusive with the notation here. Technically, the γµ are already 4× 4
matrices in their own right, but when we combined the two spinors into a larger one, we
implicitly created an 8× 8 block-diagonal matrix for the γµ with the γµ in both upper and
lower blocks. Similarly, if we were to explicitly write out all the components of the U matrix,
it would actually be an 8 × 8 block matrix with U11 in the upper-left block; etc. We will
henceforth dispense with the explicit identity matrix 1 in eq. 1.14 with the understanding
that it is implied where necessary.
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the λi are real numbers and the τi are the Pauli matrices. Thus, we may rewrite:

U = ei(λ01+~λ·~τ) (1.20)

using the dot-product as a convenient shortcut for the sum of the component-wise

products. By virtue of eqs. 1.14 and 1.19, then, we have shown that the joint

Dirac Lagrangian is invariant under transformations of the form Ψ→ ei(λ01+~λ·~τ)Ψ.

The space of 2× 2 unitary matrices corresponds to the group known as U(2) in

group theory, so we have established that the joint Lagrangian is invariant under a

“global” gauge transformation (that is, one that is independent of the space-time

coordinate of the fields) in the group U(2).

But what happens if the transformation is not independent of space-time? In

other words, what if we make a transformation Ψ→ SΨ = ei(λ0(x)1+~λ(x)·~τ)Ψ? The

answer was suggested by work of Hermann Weyl, who laid the groundwork using a

single field Ψ; the major insight of Yang and Mills, and the reason the theory is

named after them, was how to handle the non-commutative (non-Abelian) nature

of the matrices involved with multiple fields. The basic strategy is to offset the

extra term resulting from the differentiation of the exponential by “re-defining” the

derivative so that it is cancelled exactly. Specifically, when eq. 1.18 is rewritten

with S instead of U , the space-time derivative ∂µ applies to S as well, now:

∂µ(SΨ) = (∂µS)Ψ + S∂µΨ

= i ((∂0λ0)1 + (∂1λ1)τ1 + (∂2λ2)τ2 + (∂3λ3)τ3)SΨ + S∂µΨ (1.21)

If we wanted to counteract this action, so that the Lagrangian was invariant under

this sort of transformation, we can imagine replacing the derivative with something
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that also transforms under the transformation; we want

DµΨ→ S(DµΨ) (1.22)

It is not at all straightforward to derive how this can be done, but Yang and Mills

showed that it can. The trick is to define this mysterious new derivative—usually

called the “covariant derivative”—such that

Dµ = ∂µ − i
(
A0
µ1 + ~τ · ~Aµ

)
(1.23)

where the four functions Aiµ (which, because each has four space-time components,

remember, means a total of 16 functions...) transform in just the right way to

cancel the extra pieces in eq. 1.21. The result, after all the hard work is done, is

that our Lagrangian has a new term:

L = iΨγµDµΨ−mΨΨ

= iΨγµ∂µΨ−mΨΨ−
[
ΨγµΨA0

µ + (Ψγµ~τΨ) · ~Aµ
]

(1.24)

and the new fields Aiµ transform such that

A0
µ → A0

µ + ∂µλ0

~Aµ → ~Aµ + ∂µ~λ+ 2(~λ× ~Aµ) (1.25)

(to first order in |~λ|). The process of exchanging the usual derivatives in this way,

and introducing the fields necessary to make it gauge invariant, is often referred to

as “minimal coupling.”

Now, since we have introduced some new fields, to be consistent, we ought to

include free Lagrangians for them as well. Since each of them is a four-vector field,

the Proca Lagrangian (see tab. 1.1.2) is the appropriate one. The only hiccup is
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that the Proca Lagrangian includes two terms. The first, that proportional to F µν ,

is perfectly gauge invariant when we make the substitutions in eq. 1.25, since the

mixed partial derivatives of λ are the same. But the term proportional to AνAν

would destroy the beautiful gauge invariance we have worked so hard to maintain.

The only obvious way out of the quandary—and the one that, with the benefit of

hindsight, can be identified as the best one—is to set the mass of the gauge field

to 0. To extend this to our set of four vector fields, in addition to the scalar F µν

in tab. 1.1.2, we define

~F µν = ∂µ ~Aν − ∂ν ~Aµ − 2( ~Aµ × ~Aν) (1.26)

so that the final Lagrangian, assembling all the pieces, is

L = iΨγµ∂µΨ−mΨΨ−
[
ΨγµΨA0

µ + (Ψγµ~τΨ) · ~Aµ
]
− 1

16π

(
F µνFµν + ~F µν · ~Fµν

)
(1.27)

Remarkably, we have reproduced something that looks much like electromag-

netism simply by starting from two independent spin-1⁄2 Lagrangians and joining

them by demanding a local gauge invariance under U(2) transformations. In fact,

this Lagrangian explicitly contains the Maxwell one; simply return to a single Ψ

field, and the necessary vector fields reduce to a single field Aµ, requiring invari-

ance under a phase transformation, Ψ→ eiλ(x)Ψ. (This theory goes by the name

of quantum electrodynamics, QED.) One can equally well do this procedure for

quantum chromodynamics (QCD), the theory of the strong force, starting instead

from three Dirac fields and thus using the symmetry group SU(3).

The weak force, however—the force that underlies neutrino interactions—is

much subtler. The difference lies in the mass of the gauge bosons generated by

the coupling of the fields. In the Yang-Mills case above, we noted that we were
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forced to set the gauge boson mass to zero, in order to respect the symmetry of

the Lagrangian under the gauge transformation. (The same is true in QCD.) For

QED and QCD, this poses no problems, as the gauge bosons (the photon and the

gluon, respectively) appear empirically to be massless. But for the weak force, this

is abundantly untrue: the W± (the two charged mediators of the weak force) have

masses of roughly 80 times that of the proton, and the Z (their neutral partner) is

even heavier than that. To make this machinery work for the weak force, we need

one more trick up our sleeve.

So far we have always performed the Yang-Mills local gauge invariance procedure

on Dirac fields. But it proved worthwhile to ponder what would happen if one

began instead with fields representing particles of different spin: for example, what

about scalar particles (that is, those having no spin at all)? If we were to follow

the Yang-Mills prescription with two copies of the Klein-Gordon Lagrangian from

tab. 1.1.2, we would again wind up with four gauge fields (since we would be once

again working with U(2)). But the expression that results after the introduction

of the covariant derivative is [7], instead,

L = (DµΦ†)(DµΦ)− µ2Φ†Φ− λ(Φ†Φ)2 (1.28)

(where µ and λ simply reparameterize the constants introduced by the minimal

coupling procedure).

Now, in all the previous results, the potential part of the Lagrangian (here

corresponding to the latter two terms) was minimized for null states; interpreted in

quantum field theory, this means that the vacuum state had zero potential energy:〈
0|Ψ†Ψ|0

〉
= 0. However, this potential is instead minimized for Φ†Φ = v2/2; since

in the theory there are multiple states which would satisfy this relation, we are left

with some freedom in how we wish to write the form of the ground state, and thus

the other (excited) states which are expanded around this minimum. An astute
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choice is to write the expectation value of the ground state as

〈0|Φ|0〉 =
1√
2

0

v

 (1.29)

with

v =

√
−µ

2

λ
; (1.30)

then, when expanded around this ground state, we can rewrite the field doublet as

Φ(x) =
1√
2

exp

(
i

2v
~ξ · ~τ

) 0

v +H(x)

 (1.31)

(where the three ξi(x) and the H(x) fields are real-valued and thus reorganize

the four degrees of freedom of the two complex-valued fields of Φ). But, we have

invested much effort in rendering these Lagrangians invariant under local gauge

transformations, so if we exploit that freedom by choosing a transformation with

Φ→ e−
i
2v
~ξ·~τΨ (1.32)

then the entire exponential in eq. 1.31 cancels out. (This choice of gauge is termed

the unitary gauge.) From there, we proceed to apply the covariant derivative to Ψ,

as before:

Dµ(x)Φ(x) =
[
∂µ + A0

µ + ~Amu · ~τ
]

Φ(x) (1.33)

To obtain a version of the Lagrangian which makes the physical content clear, it
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will be necessary to reparameterize the Aiµ as well:

W µ = −ig 1√
2

(Aµ1 − iA
µ
2) (1.34)

Aµ = −i 1√
2

(
g sin(θW )Aµ3 +

g′

2
cos(θW )Aµ0

)
(1.35)

Zµ = −i 1√
2

(
g cos(θW )Aµ3 −

g′

2
sin(θW )Aµ0

)
(1.36)

with the famous “weak mixing angle” θW . (The g and g′ are constants that were

previously absorbed in the fields; we write them explicitly here because they are

known to be related by tan θW = g′/g.) If these are inserted into the covariant

derivative in eq. 1.33, and the algebra is worked all the way through, at last, one

arrives at the Higgs Lagrangian [7]:

L =
1

2
(∂H)2 − λv2H2 − g2v2

4
W †
µW

µ +
g2v2

8 cos2 θW
ZµZ

µ

+ (higher-order terms in H and products of H with W and Z) (1.37)

These would be added to the free terms corresponding to F µνFµν for each of the

gauge fields.

The triumph of this approach is that despite explicitly setting the masses in

the Proca field Lagrangian to zero for all the gauge fields, masses still result from

combining the Yang-Mills technique with the non-zero vacuum expectation value

for the scalar field. In particular, the second term in eq. 1.37 corresponds to a mass

term for the H field (now known usually as the Higgs field); the third and fourth

correspond to mass terms for the W and Z fields (the vector bosons that mediate

the weak force). When we combine the Higgs Lagrangian with what results from

the Yang-Mills procedure applied to the fermion fields, the sum prescribes fields

for all the fundamental fermions in the standard model, all of the gauge bosons

that create interactions between them, and a Higgs field from which the mass of
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Particle electric charge (e) Spin (~/2) Mass (MeV/c2)

Higgs boson H 0 0 ∼ 125, 000

Electron e -1 1/2 ∼ 0.5

Muon µ -1 1/2 ∼ 100

τ -1 1/2 ∼ 1750

Electron neutrino νe 0 1/2 < 0.00001

Muon neutrino νµ 0 1/2 < 0.002

Tau neutrino ντ 0 1/2 < 20

u quark 2/3 1/2 < 5

d quark -1/3 1/2 < 10

c quark 2/3 1/2 ∼ 1200

s quark -1/3 1/2 ∼ 100

t quark 2/3 1/2 ∼ 175, 000

b quark -1/3 1/2 ∼ 4250

photon γ 0 1 0

gluon g 0 1 0

W± boson ±1 1 ∼ 80, 000

Z boson 0 1 ∼ 90, 000

Table 1.2: Particles whose fields are described in the Standard Model. They are further
subdivided into quarks (constituents of baryons, including protons and
neutrons) and leptons (do not form larger structures); each of the fermions
(spin-1⁄2 particles) also has an anti-particle partner with opposite charge
but the same spin and mass. Charges are given in terms of the elementary
charge e; spins are terms of the Planck’s constant ~.

the weak vector bosons emerges. This was a truly spectacular accomplishment,

and its synthesis resulted in several Nobel prizes. The plethora of particles whose

fields the Standard Model describes (along with some of their quantum numbers,

which—excluding their masses, on which more in sec. 1.1.3—are consequences of

the field structure, even though we did not discuss them here) is shown in tab. 1.2.
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1.1.3. Fermion masses in the SM and why the neutrino

was massless

To this point we have worried only about the masses of the gauge bosons. Most of

the fermions—of which the neutrinos are a subclass—empirically do have nonzero

masses, as noted in tab. 1.2; but, as we saw in sec. 1.1.2, the masses (parameter

m) that we thought to carry around starting from the Dirac Lagrangian in tab.

1.1.2 cannot be responsible for them. Instead, the Standard Model endows the

fermions with mass in the same way it does the vector bosons: through spontaneous

symmetry breaking.

In eq. 1.24, we saw that the introduction of the covariant derivative produces

extra terms quadratic in the fermion field and linear in the gauge fields. Inspired

by this phenomenon, we can find terms similar to them that respect the gauge

symmetry, where, instead of the gauge field, we use the Higgs scalar field Φ. Such

terms resemble (taking, for the moment, the simplification where we have only

field singlets ψ and φ):

LY = yψφψ (1.38)

where y is a constant characterizing the strength of the interaction between the

fermions and the scalar field. When the scalar field φ is re-expressed around its

vacuum expectation value as in eq. 1.31, this component of the Lagrangian becomes

LY = − 1√
2
yψ(v +H(x))ψ (1.39)

and while the second term is still an interaction term with the H field, the first

term—the one proportional to v—is now a mass term for the field Ψ.

As expressed here, any fermion field could be used for ψ, so there is no reason
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to expect that the neutrinos would be any different from the other, massive leptons.

However, there is one further complication in the Standard Model that rendered it

attractive to conceptualize the neutrinos, particularly, as having no mass: and it

has to do with the nature of the chirality of the weak force.

In general, Dirac fields can be decomposed into two (orthogonal) components

using the chirality projection operators:

PR,L =
1± γ5

2
(1.40)

with

γ5 = iγ0γ1γ2γ3 (1.41)

so that

ψL = PLψ =
1− γ5

2
ψ

ψR = PRψ =
1− γ5

2
ψ (1.42)

Now, empirically, the charged-current interactions of the weak force are always

left-handed, and the gauge theory used to describe it must reflect that. The way

this requirement is implemented in the Standard Model is by decomposing the U(2)

gauge group into SU(2) (the space of all unitary 2× 2 matrices whose determinant

is 1) and U(1) (rotations by a phase angle), and requiring that the SU(2) piece—the

interactions resulting from the vector bosons in the gauge theory—act only on

the left-handed component of the fermion fields. The right-handed projection,

therefore, is unaffected by the SU(2) component altogether; it is thus frequently

said that ψR is a singlet under these SU(2) operations. To denote this situation,

the gauge group for weak interactions is usually written as SU(2)L × U(1).
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While it is irrelevant for those fermions whose masses can be measured more

or less directly, an interesting theoretical point can be raised about these chiral

decompositions. Notice, first of all, that since γ5 is symmetric and real, (γ5)† = γ5,

and so P †L,R = PL,R. Then, because γ0 anticommutes with γ5:

ψR = (PRψ) = (PRψ)†γ0 = ψ†γ0PL = ψPL (1.43)

and in the same way, ψL = ψPR. Furthermore, written in terms of the chiral

decomposition, the Dirac Lagrangian in tab. 1.1.2 becomes

Lchiral = iψR∂µγ
µψR + iψL∂µγ

µψL −m(ψRψL + ψLψR) (1.44)

= iψR∂µγ
µψR + iψL∂µγ

µψL (1.45)

if the field is massless. That is to say: for a massless field, the chiral components of

a state completely decouple in the Lagrangian, and therefore, their time-evolution

is not related. In other words, a massless field can exist indefinitely in a purely

chiral state, whereas a massive field cannot. Even more suggestively, for a massless

particle, its eigenvalue under the chirality operator PR is identical to its helicity

~σ · ~p/|~p|: that is, helicity and chirality coincide. Taking the fact that neutrinos that

interact via the charged current experimentally always have left-handed helicity,

and combining it with the fact that prior to the resolution of the solar neutrino

conundrum (on which see below) there was no convincing evidence that neutrinos

did have mass, many physicists found the idea of a massless neutrino extremely

compelling.
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1.2. Beyond the Standard Model: neutrino

oscillations

1.2.1. Massive neutrinos

The conception of the neutrino as a massless particle made an extremely convenient

fit into the mathematical picture offered by the Standard Model, and was ultimately

only challenged—in the way that seems to be customary for science—by an

experiment that was seeking to establish something else. In the 1960s, models

of the mechanism underlying the Sun’s enormous power output were converging

on a complicated fusion cycle, which was predicted to produce a copious flux

of neutrinos. Confirmation of this “solar neutrino” hypothesis was expected

to provide important evidence in the race to understand the Sun’s core. So,

in what has become a seminal experiment for the history of neutrino physics,

Ray Davis and collaborators constructed a detector which would capture the by-

products of neutrinos interacting with tetrachloroethylene (C2Cl4) via the reaction

ν + 37Cl → 37Ar + e−. (The resultant radioactive argon atoms were flushed out

of the enormous tank of tetrachloroethylene using a helium gas current forced

through the volume, and their decays observed in a proportional counter.) Their

measurement, that the rate of argon atoms they collected was roughly a third of

what was expected based on the best predictions [8], gave rise to what has usually

been termed the “solar neutrino problem.”

Many subsequent experiments further confirmed the deficit observed by Davis,

eventually precluding the dismissal of the result as experimental error. Parallel

refinements of the calculations used to produce the predicted rates also ruled out

egregious errors in the model. Eventually, the clever idea proposed by Bruno

Pontecorvo in 1957 [9]—positing that there could be multiple “flavors” of neutrinos

which could “oscillate” back and forth into one another (based on the previously
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known model of K0 ↔ K0 oscillations)—rose to the forefront of the discussion.

Crucially, though, such a mechanism required at least one of the neutrino flavors

to have a nonzero mass – medicine that many theorists originally found difficult to

swallow.

Decades of successive experiments attempting to substantiate or disprove the

theory of neutrino oscillations finally culminated in the definitive measurement by

the Subury Neutrino Observatory (SNO) collaboration that the neutrinos detected

by Davis make up only about 35% of the total flux of neutrinos originating from

the Sun. The rest, they found, were consistent with having undergone precisely the

transition predicted by the neutrino oscillation model. [10] This was seen as the

convincing proof that at least two of the three flavors that are now known (known

by their charged lepton partners, electron, muon, and tau) are not massless. A

number of other experiments have since confirmed this conclusion, measuring the

disappearance (or new appearance) of neutrinos creating by solar, cosmic-ray, and

terrestrial (accelerator) sources subject to propagation across various distances.

1.2.2. Formalism

The mathematical formulation of neutrino oscillations sees the three neutrinos that

were previously known by the lepton they produce in a charged-current reaction—

νe, νµ, and ντ—as quantum-mechanical states that do not coincide exactly with

the basis of states corresponding to their masses. That is, using α to run over the

flavors, and i to denote the various masses,

|να〉 =
3∑
i=1

U∗αi |νi〉 (1.46)
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where U∗αi are the entries in a unitary matrix that is not diagonal.6 (We assume here

that both the flavor states |να〉 and the mass states |νi〉 are unit normalized, and that

each is an orthogonal basis set; these assumptions can be shown to be reasonable,

though we will not do so here. [7]) Because in quantum mechanics the stationary

states of a system correspond to states of fixed energy, the stationary neutrino

states are those of definite mass (which, by Einstein’s equation E2 = ~p2+m2, means

that at zero momentum, energy and mass are interchangeable). Such states can be

expanded as plane wave solutions to the time-dependent Schrodinger equation:

|νi(t)〉 = e−i(pi·xi) |νi(t = 0)〉 (1.47)

(with p and x the customary momentum and position four-vectors).

Now, since neutrinos’ masses are very small (whatever their precise values may

be), they propagate in the ultrarelativistic regime (E2 � m2), where Einstein’s

equation can be simplified via Taylor expansion:

|~p| =
√
~E2 −m2 (1.48)

= E

√
1 +

m2

E2
(1.49)

≈ E

(
1− m2

2E2

)
(1.50)

Then, assuming we align our coordinate system so that the plane wave is propa-

gating exclusively along the z-direction (so that ~p · ~x = pzz), and note that for an

6It would be equally sensible to use this matrix’s Hermitian conjugate here; traditionally,
however, the un-starred version is reserved for the matrix that decomposes the mass states in
terms of the flavor ones. To avoid confusion, we will retain that tradition here.
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ultrarelativistic particle traveling along the z-axis, t ≈ z, we find

e−i(pi·xi) = e−i(Eit−~p·~x) (1.51)

= e−i(Ei−pz)z (1.52)

≈ e
−i

(
Ei−Ei+ m2

2Ei

)
z

(1.53)

= e
−i

(
m2

2Ei
z
)

(1.54)

so that the propagation of a neutrino mass eigenstate obeys

|νi(z)〉 = e−im
2
i z/2Ei |νi(0)〉 (1.55)

The probability of observing a neutrino of flavor β after a neutrino initially in

state α has propagated a distance z is then, according to quantum mechanics,

Pα→β = |〈νβ| να(z)〉|2 (1.56)

If we expand both states in terms of the mass eigenstates per eq. 1.46, and then

apply eq. 1.55, we get

Pα→β(z) =

∣∣∣∣∣
(∑

i

Uβi 〈νi|

)(∑
j

U∗αj |νj(z)〉

)∣∣∣∣∣
2

(1.57)

=

∣∣∣∣∣
(∑

i

Uβi 〈νi|

)(∑
j

U∗αje
−im2

jz/2E |νj〉

)∣∣∣∣∣
2

(1.58)

=

∣∣∣∣∣∑
i

U∗αiUβie
−im2

i z/2E

∣∣∣∣∣
2

(1.59)

where we have dropped the subscript on the energy since the flavor state’s total

energy is fixed. It is traditional to work this expression out somewhat further (and
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also to use L instead of z); after some algebra, one can show [7]

Pα→β = δαβ − 4
∑
k>j

<
(
U∗αkUβkUαjU

∗
βj

)
sin2

(
∆m2

kjL

4E

)

+ 2
∑
k>j

=
(
U∗αkUβkUαjU

∗
βj

)
sin

(
∆m2

kjL

2E

)
(1.60)

(with δαβ being the Kronecker delta, and ∆2
kj = m2

k −m2
j). That is: oscillation

occurs if and only if at least one pair of states has nonzero ∆m2 between them,

which requires at least one of the neutrinos to be massive.

So far we have said nothing about the oscillation parameters Uαi. This matrix

should be unitary by virtue of the orthogonality and completeness of the sets of

states |να〉 and |νi〉.7 It is known that the N2 degrees of freedom of a N×N unitary

matrix can be decomposed into real parameters by a suitable parameterization; for

a 3× 3 matrix, this yields three “mixing angles” and six phase factors. Arguments

based on the invariance of the weak current under phase transformations reduce

this total for the physical case of neutrinos to three mixing angles and one phase

factor. [7] Traditionally, the mixing angles are denoted θij (corresponding to mixing

between |νi〉 and |νj〉) and the phase factor as δ (or δCP , since it is related to the

breaking of the symmetry of the Lagrangian under charge-parity operations). If

we further introduce the notation cij = cos(θij) and sij = sin(θij), then the matrix

can be written out as [11]:

U =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (1.61)

7The extent to which this is exactly true is directly related to the search for so-called “sterile
neutrinos,” about which we will remain silent for the remainder of this document. Further
reading can be obtained in, e.g., ref. [11].
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This matrix is called the “PMNS” matrix (after Bruno Pontecorvo, Ziro Maki,

Masami Nakagawa, and Shoichi Sakata).

1.3. Neutrino interactions and scattering

1.3.1. Oscillations to cross-sections

In the decade-and-a-half since the SNO result, the focus of neutrino physics research

has drifted from the question of whether neutrinos have mass to the question of

how much, and to a certain extent, why. Fully determining the parameters that

govern neutrino oscillation would constitute significant progress in this campaign.

Among the most tantalizing prospects is the measurement of the parameter δCP

discussed above, a nonzero value of which would indicate that neutrinos and

their antiparticles undergo oscillation differently. (Such a discovery would have,

improbably, significant bearing on the fundamental question of why our universe

appears to be filled with matter, rather than equivalent amounts of matter and

anti-matter, as our original models of cosmogenesis predicted.) Other lingering

fundamental questions include the signs of the various ∆m2 (notice that the leading

term in oscillation probability depends only on the square of the sine of these

parameters) and the absolute values of the masses themselves.

The effort to measure the parameters of neutrino oscillation catapults us squarely

into the realm of precision measurement. For instance, the measurement of δCP

in experiments using accelerators (where beams of muon neutrinos are generated,

and the observation is of their oscillation into electron neutrinos) relies on the

difference in sign between neutrinos and antineutrinos in the following term in the

oscillation probability [12]:

sin 2θ12 sin 2θ23

2 sin θ13

sin
∆m2

21L

4E
sin2 2θ13 sin2 ∆m2

31L

4E
sin δCP (1.62)
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The size of this quantity is strongly influenced by the factors involving θ13; since

θ13 is small (roughly 9◦), this term is small. Furthermore, as it is at most about

25% of the leading term in the oscillation probability, one must search for a small

variation on a larger trend.

Searching for small features in a potentially noisy dataset requires sufficient

statistical power to resolve them. And, superimposed on the general problem of the

weakness of neutrino interactions in the first place, the desire for precision neutrino

physics results has driven the experimental community to build large detectors

from massive nuclei, in order to maximize the neutrino target. But here increased

statistical power comes at a heavy price: while we are able to predict the interaction

properties of neutrinos with single nucleons with reasonable success, the added

complications of the nuclear environment introduce significant uncertainties into

any result that requires a model of the rate or outgoing kinematics of particles in a

neutrino reaction. As neutrino oscillation campaigns typically reverse-engineer the

oscillation probability by comparing a predicted event rate with what is actually

observed in their detectors, oscillation experiments cannot escape this curse.

The mathematical framework used to quantify interaction probabilities in the

Standard Model is that of the cross-section. From the relevant particle flux Φ, one

can then compute the event rate as a function of any parameter of interest (call it

ξ, so that the event rate is dN/dξ), so long as the cross-section is available as a

function of that parameter (dσ/dξ):8

dN

dξ
= Φ

dσ

dξ
(1.63)

8Once again, we must follow the traditional notation here, even though the objects which
appear to be derivatives in this equation are strictly not. The differential notation is typically
used because often we use a cross-section divided into bins in some parameter which is
not an intrinsic property of the interacting particle(s)—say, for instance, the energy of an
outgoing particle—and we can obtain the total event count by integrating eq. 1.63 across
that parameter so long as the “differential” cross-section is correct.
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So, then, the success of a neutrino oscillation measurement—where a precise

prediction of N(Eν) = Φ(Eν)σ(Eν) is crucial to the determination of the result—is

vitally tied to the quality of its cross-section model.

1.3.2. Cross-sections in the SM

The Standard Model prescribes a specific set of rules which can be used to compute

the cross-section for any process where a Feynman diagram can be drawn of it using

only elementary quarks, leptons, and gauge bosons. In fact, the formula known

as Fermi’s Golden Rule specifies that for a scattering process where non-identical

particles numbered 1 (with four-momenta p1 and mass m1) and 2 (etc.) interact

to yield non-identical particles numbered 3 through n [2],9

σ =
1

4
√

(p1 · p2)2 − (m1m2)2

∫
|M|2(2π)4δ4 (p1 + p2 − (p3 + p4 + ...+ pn))

×
n∏
j=3

1

2
√
~p2
j +m2

j

d3~pj
(2π)3

; (1.64)

here M is what is known as the matrix element or amplitude for the process in

question, and it is calculated using Feynman rules (derived ultimately from the

Lagrangian of the governing fundamental force) applied to the Feynman diagram

of the process.

One of the simplest weak-force processes for which the Standard Model cross-

section can be computed exactly10 is what is called “inverse muon decay,” in which

a muon neutrino interacts with an atomic electron: νµ + e− → µ− + νe. This

process can be represented by the diagram shown in fig. 1.1.

One can deduce from the Lagrangian a set of rules that correspond to the

lines in the diagram representing incoming and outgoing and internally exchanged

9Identical particles in either the initial or final state reduce the result by a factor of 1/s! for
each set of s identical particles.

10Computed exactly to first order in perturbation theory, anyway.
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Figure 1.1: Feynman diagram for inverse muon decay. Reading from left to right, this
diagram indicates a muon neutrino (top left) and an electron (bottom left)
interacting by exchanging a W boson (center) to produce a muon (top
right) and an electron neutrino (bottom right).

particles as well as the vertices that join them. [1] The amplitude for the inverse

muon decay process, when the momentum transferred to the electron is much less

than the W mass (about 80 GeV), works out to be [2]:

M =
g2
w

8M2
W

[u(3)γµ(1− γ5)u(1)][u(4)γµ(1− γ5)u(2)] (1.65)

where in this expression gw is the weak coupling constant, MW is the mass of the

W boson, and the u(i) are particular Dirac wavefunction states that solve the

Dirac equation.

It is known that this expression can be simplified substantially if we wish to

average over the polarization of the inital state fermions. Since, for our purposes,

we do not care what orientation the incoming or outgoing particles had—we only

want the cross-section—we can use a technique attributed [2] to Casimir, followed

by the application of some theorems involving the traces of the resulting matrices,

to obtain the spin-averaged amplitude squared 〈|M|2〉. This will be inserted into

Fermi’s Golden Rule to obtain the differential cross-section vs. the solid angle Ω.
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The result is:

〈
|M|2

〉
= 8

(
gwE

MW

)4 [
1−

(mµ

2E

)2
]

(1.66)

dσ

dΩ
=

1

2

(
g2
wE

4πM2
W

)2 [
1−

(mµ

2E

)2
]2

(1.67)

Here, the kinematics (energy E) are given in the center-of-momentum reference

frame, where the neutrino and electron have equal and opposite momenta before

the collision: to compare them to those measured in an experiment, they would

need to be transformed back into the laboratory coordinate system (where the

electron is essentially at rest and the neutrino carries all the momentum). But,

regardless, the cross-section is a function only of the initial-state kinematics and

constants that are either known from the Standard Model or can be measured

experimentally. Thus, the cross-section can be predicted with very good precision.

The situation becomes much more difficult when hadrons—particles composed

of bound states of quarks—are involved. In particular, this difficulty extends to

the nucleons that comprise nearly all of the mass in ordinary matter. Though

QCD does provide a framework describing the interactions between quarks and

the gluons that mediate the strong force, the perturbative mechanism it uses for

calculations does not apply to the especially strong binding that exists between

quarks inside hadrons. For instance, the charged-current quasi-elastic (CCQE)

process we will consider in the next section is the analog of inverse muon decay

where a neutrino interacts with a nucleon instead of an electron. In that process,

however, we cannot write down a closed-form expression for the amplitude like was

done in 1.65. Instead, as we will see shortly, we will be forced to make do with

parameterizing our ignorance in terms of form factors, replacing the second factor

in eq. 1.65 with one in which the vector-minus-axial-vector tensorial structure

γµ(1− γ5) is exchanged for a parameterization in terms of every possible type of
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tensor [7]:

M∝ up(pp)

[
γµF1(Q2) +

i

2mN

σµνqνF2(Q2)− γµγ5FA(Q2)− qµ

mN

γ5FP (Q2)

]
un(pn)

(1.68)

These various F are the form factors, and will play heavily into the exposition

below.

1.3.3. CCQE

Around 1 GeV, the most common charged-current interaction that neutrinos ex-

perience when interacting with ordinary matter is charged-current quasi-elastic

(CCQE) scattering: the neutrino exchanges a (charged) W boson with a nucleon,

converting the neutrino into a charged lepton, and the nucleon into its isospin

partner. For appearance-type neutrino oscillation experiments, this process is

typically a large fraction of the predicted event rate, and it is thus essential to have

an accurate characterization of its cross-section. In those experiments, usually the

initial neutrino beam is of muon neutrinos, which oscillate into electron neutrinos;

at the far end, where the electron neutrino interacts, the process may be written

as follows:

νe + n→ e− + p+

νe + p+ → e+ + n (1.69)

This reaction is illustrated in the Feynman diagram in fig. 1.2.

The formalism for the derivation of the cross-section explored below works

equally well for any flavor, even though the outgoing lepton has different mass

depending on its flavor. We will apply it in general, and note where the lepton’s

mass becomes a relevant quantity.
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Figure 1.2: Feynman diagram for νe CCQE scattering. (The antineutrino version would
exchange νe → νe, e

− → e+, n↔ p+.)

CCQE with free nucleons

V −A formula The full calculation for a differential cross-section of the CCQE

process originates from the late 1960s. C. H. Llewellyn Smith’s review [13] is the

derivation most commonly followed in the literature; it is written in terms of the

Lorentz invariants called Mandelstam variables: Q2 = −qµqµ, where q represents

the four-momentum transferred from the neutrino to the nucleon it interacts with;

s = (pν + pN )2; and u = (pl− pN )2. (Sometimes the Mandelstam variable t = −Q2

is also used.) The lengthy computation results in the cross-section (after being

recast in somewhat more modern notation [7]):

dσ

dQ2
=
M2g2

W cos2 θc
8πE2

ν

(
A(Q2)±B(Q2)

s− u
M2

+ C(Q2)
(s− u)2

M4

)
(1.70)
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where the A, B, and C are functions of various form factors of various tensorial

natures (F1 and F2 are vector; FP is pseudo-scalar; and FA is axial vector):

A =
m2 +Q2

M2

[
(1 + τ)F 2

A − (1− τ)(F 2
1 − τF 2

2 ) + 4τF1F2

− m2

4M2

(
(F1 + F2)2 + (FA + 2FP )2 − 1

4
(1 + τ)F 2

P

)]
B = 4τFA(F1 + F2)

C =
1

4
(F 2

A + F 2
1 + τF 2

2 ) (1.71)

In these expressions, m is the lepton mass; M is the initial nucleon mass; and

τ = Q2

4M2 . (The ± in the cross-section is taken to mean that it is positive for

the neutrino-incident process, and negative for the antineutrino one.) It is worth

observing here that for electron and muon neutrino scattering, the fraction m2

M2

is small, and so any terms proportional to it are negligible; this simplifies the

expression for A, in particular, enormously. Finally, it should also be mentioned that

originally, Llewellyn Smith considered so-called “second-class” currents, of higher-

order in the Lagrangian; on theoretical grounds these are commonly neglected

(and, in any case, have never been observed). The fixing of the remaining form

factors is discussed in the following sections.

Vector form factors; CVC The vector form factors F1 and F2 are inherently

electromagnetic, as one might expect from the vector nature of the electromagnetic

interaction. At Q2 = 0, in fact, they reduce to (respectively) the difference between

the proton and neutron electric charges and the difference between their anomalous

magnetic moments [7]. But to move away from Q2 = 0—since, of course, in

CCQE, some four-momentum must always be exchanged with the nucleon, if for

no other reason than that the nucleon changes mass—we must turn to some kind

of scattering measurement.
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The same argument that results in the simplifications at Q2 = 0 establishes

a relationship between F1 and F2 and another set of form factors used in the

scattering of charged leptons from nucleons; the fundamental relationship is called

the Conserved Vector Current (CVC) hypothesis, which is a consequence of the

weak isospin invariance of the QCD Lagrangian [7]. Those form factors can be

straightforwardly measured in electron scattering experiments as functions of Q2

(since the initial and final state kinematics are available); the data used in neutrino

models (the BBBA05 form factors [14]) is usually parameterized in the form used

by Kelly [15]:

G(Q2) ∝
∑n

k=0 akτ
k

1 +
∑n+2

k=1 bkτ
k

(1.72)

Notice that when Q2 (and therefore τ) is small, the Kelly form factor reduces to

what is known as “dipole” form:

G(Q2)
Q2�M2

−−−−−→ 1

1 + τ
(1.73)

This form will also serve usefully in some of the other form factors.

Pseudoscalar form factor; PCAC Another conservation hypothesis allows

the relation of the pseudoscalar form factor to the axial one (discussed shortly),

again at Q2 = 0. In this case, one employs the Partially-Conserved Axial Current

(PCAC) hypothesis, which supposes that the the Klein-Gordon pion field is related

to the axial part of the hadronic current from weak hadronic interactions. This

provides for the expression of the hadronic FP in terms the FA and an experimental

constant:

FP =
2M2FA(Q2)

Q2 +m2
π

(1.74)
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(in this case using mπ for the charged pion mass).

Axial vector form factor The axial form factor FA is the only parameter in

the cross-section that cannot be satisfactorily fixed using data from non-neutrino

experiments. The current best estimates of this form factor, in fact, arise from fits

to νµ CCQE data sets. [16] For these fits, the most common parameterization of

FA is again a dipole:

FA(Q2) =
gA

(1 + Q2

M2
A

)2
(1.75)

with gA ∼ 1.26 measured in free neutron decay [17]. Though values fit for the

“axial mass” MA have varied somewhat [18, 19], MINERνA’s own measurements

favor MA = 0.99 [20, 21], and we will employ that value for the analysis in this

work.

Nuclear/initial state effects

The formalism above was all derived assuming that the target nucleon is free

(i.e., does not experience any potential) and at rest. Given that modern neutrino

detectors are nearly all constructed from materials made of nuclei more complex

than hydrogen, these are questionable assumptions. The effect of the initial state

nucleon momentum is particularly notable.

Because the nucleus is a bound state of nucleons, the nucleons within it exist

in states of negative potential energy. However, since nucleons are all fermions,

they obey the Pauli exclusion principle, which requires that no more than a single

particle in a system can occupy a state with a given set of quantum numbers. This

means that, for example, no two protons can occupy the same bound state energy

level. Thus, when a neutrino interacts with a nucleon, if the energy transferred

to the nucleon is not enough to eject it from the nucleus altogether, the nucleon
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would be left co-existing in an energy level with the nucleon already occupying

it. Because this is prohibited, the interaction is suppressed. As a result, neutrino

interactions which transfer less than the energy required to elevate a nucleon above

the so-called Fermi energy (maximum energy within the nucleus) are suppressed,

and a minimum energy transfer threshold for the process is observed.

Models for how these energy levels within the nucleus are distributed vary

widely. The simplest—and the one currently used as a basis in most neutrino

interaction generators—is the Relativistic Fermi Gas (RFG), first proposed by

Smith and Moniz [22]. In this model, nucleons are seen as non-interacting, and

confined in a simple gas within the nucleus. In the initial calculation, as well as in

early implementations, the threshold effect due to the Pauli blocking mentioned

above was enforced by setting the cross-section for momentum transfers of less

than the Fermi energy to 0. (An average binding energy Eb is also typically

subtracted from the prediction of the final-state energy to account for the energy

lost in ejecting the nucleon from its place in the potential well.) Because there

is good evidence that pairs of nucleons often form stronger bound states within

the nucleus, which can allow them to have opposite momenta of magnitude larger

than the Fermi energy allows, more modern implementations, like the GENIE

model discussed in sec. 5.2.1, often modify the step function somewhat. In these

models, the struck nucleon has a decaying but nonzero probability of having more

momentum than that corresponding to the Fermi energy (a “Bodek-Ritchie tail,”

after the parameterization in ref. [23]).

Other models attempt to further improve upon the characterization of the

interaction of nucleons within the nucleus. Spectral function models, for example,

replace the step function of the RFG with a probability distribution derived from

a nuclear shell model [24, 25]. Meson exchange current (MEC) models attempt to

remove the non-interacting nature of the other models altogether by calculating
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amplitudes for the exchange of mesons (typically pions) between baryons in the

nucleus [26, 27]; some of these models can even predict the kinematics of the

simultaneous ejection of multiple nucleons that existed in correlated states prior

to the neutrino interaction [28]. (The amplitudes of MEC processes’ final states

can interfere with those of the traditional CCQE, and therefore affect the final

observable distributions.) There are also empirical attempts based on electron

scattering data to parameterize the effect of nuclear initial state effects on the final

cross-section [29].

FSI

The nuclear medium has another significant consequence for neutrino interactions:

any final-state particles composed of quarks can interact via the strong force with

the remnant nucleus as they exit. These interactions are often lumped together

under the label “final-state interactions,” or FSI. Final-state interactions can

severly influence the energy and angle of particles as they traverse the nucleus,

smearing out estimators of those quantities; or, worse, particles can be absorbed,

or new ones created. In a search for CCQE events, the most serious of these effects

is the potential for the absorption of pions that were created by the decay of a

nucleon resonance (excited by the neutrino interaction): for instance, νµ + n →

µ−∆+ → µ−p+π0. If the pion in this reaction is absorbed by the nucleus before

it can be observed, the final-state particles are identical to those from the CCQE

interaction of eq. 1.69.

Modelers take several different approaches to FSI. The most popular is to

adopt a cascade-type model like those used for hadron formation in higher-energy

situations (like particle colliders). These step final-state particles through the

nuclear medium subject to interaction probabilities from various models that run

as functions of the path traveled. Simulations used by theorists [30] as well as
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neutrino experiments [31] employ this approach. Another method is the more

phenomenological one used in GENIE [32] (discussed further in sec. 5.2.1), in

which dedicated hadron-nucleus scattering data is used to predict the kinematics

and multiplicities of hadrons exiting the nucleus.

1.3.4. Previous attempts to measure σνe

The prediction of the Standard Model that νµ and νe interactions should follow

the same behavior apart from the effects of the different final-state lepton masses—

known generally as “lepton universality”—has been extensively investigated. (The

impact of the differing masses is extensively studied in ref. [33].) In addition to

verification using charged lepton probes, experiments using wide-band neutrino

beams, with energies typically ranging from 0 to several hundred GeV, made a

number of measurements of the ratios of the interaction rates or cross-sections of

muon and electron neutrinos primarily in the 1970s and 1980s. [34, 35, 36, 37, 5,

38, 39] Of these experiments, only the Gargamelle collaboration [5, 38] published

any cross-sections for the νe interactions they observed; they produced a total

charged-current cross-section σνe on heavy freon using neutrinos of energies between

0 and 10 GeV. No significant deviations from the universality predicted by the

Standard Model were found in any of these results.

More recently, the T2K collaboration also measured cross-sections for inclusive

charged-current electron neutrino interactions, this time on a carbon target. [4]

T2K’s result is for much lower energy neutrinos (roughly 0-3 GeV), but made

use of a much more intense beam, such that they obtained sufficient statistics to

also produce cross-sections differential in the electron angle and energy, and the

reconstructed Q2 of the interaction, in addition to a total cross-section. Again,

their results were consistent with the predictions of lepton universality.
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2 Creating a high-intensity

neutrino beam

The Fermi National Accelerator Laboratory’s NuMI (“Neutrinos at the Main

Injector”) high-intensity neutrino beam provided the neutrinos used for the mea-

surement described in this work. The creation of a high-intensity neutrino beam is

a complex process involving a number of stages, all of which are described herein.

The various components described below (as well as a few others used in other

experiments) are depicted in figure 2.1.

Figure 2.1: A plan view of the Fermilab accelerator complex. From ref. [40].
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2.1. Proton acceleration

Neutrinos in NuMI arise from the decay of particles produced by the collisions

of high energy protons (Ep = 120 GeV) with a target. The creation of the high-

intensity proton beam used in this process employs much of the Fermilab accelerator

complex; each stage will be described in sequence below.

Proton beams at Fermilab begin their life with a negative-Hydrogen (H-) ion

source, which creates H- ions from diatomic hydrogen gas in a magnetized sputtering

chamber. [41] H- ions emerge from the source at roughly 18 KeV and are accelerated

to 750 KeV by a Cockroft-Walton accelerator, after which they are fed into a linear

accelerator (“Linac”) which accelerates them to about 116 MeV via an Alvarez

drift-tube system. [41] A second linear accelerator (a newer side-coupled system,

which is more powerful and more efficient) then accelerates the H- to 400 MeV. [41]

Since the Linac principle is based on RF power, they produce particles in “bunches”

that are synchronized to the RF phase frequency.

Upon exiting the so-called “pre-accelerator” chain (the Cockroft-Walton and

Linacs), the H- are “debunched” (since the Linac bunches are not compatible with

the Booster’s RF magnets) and then fed into the Booster (a synchrotron accelerator

with a diameter of 150 meters) for acceleration to 8 GeV. During injection, each

successive bunch from the Linac is combined with a previously-injected bunch

already circulating in the Booster, after which they are passed through a carbon foil,

which strips the electrons from the H- ions. This merged collection of protons then

can be further merged with successive bunches; once all the Linac bunches that

simultaneously fit into the accelerator reach full intensity of about 3× 1012 protons,

they are accelerated through multiple orbits around the ring until they reach the

Booster’s target energy of 8 GeV. [41, 42]

Once the beam is fully accelerated to 8 GeV, it is passed to the Main Injector,

which was the immediate preaccelerator for the 1-TeV Tevatron accelerator until the
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latter was decommissioned in 2011. Extraction and transfer to the Main Injector

from the Booster is conceptually (if not technically) much simpler than extraction

from the Linac: so-called “kicker” quadrupole magnets (which are synchronized to

the proton bunch time) steer the beam out of the plane of the ring, and further

magnets direct beam along a path into the Main Injector field.

While the Main Injector serves a number of other purposes even after the

decommissioning of the Tevatron, we will pass over all aspects of it except those

that are relevant to the creation of the NuMI beam. As with the Booster, all the

bunches from the preceding step are loaded before beginning acceleration, though

in this case, the bunch structure from the Booster is retained. Acceleration is to

120 GeV, after which protons can be fast extracted using another set of kicker

magnets into the line that delivers them to NuMI. [43]

2.2. Protons to neutrinos

Several steps which do not involve the acceleration of protons remain before the

neutrino beam itself results. An overview of the various components of the NuMI

beam line is presented in fig. 2.2; the individual stages in the process are detailed

further below.

First, as was noted above, bunches of protons are extracted from the Main

Injector using kicker magnets. These are directed downwards into the earth

at an angle to the horizon of 58 milliradians (this angle being chosen for the

purposes of the MINOS experiment, the user for whom the beam line was originally

constructed). [45] These beam “spills” (as they are commonly known) nominally

occur at 0.45 Hz, with a design intensity of roughly 35 × 1012 protons per pulse.

(For reasons that will become clear shortly, the number of protons in a spill is

typically characterized by the number of protons ultimately colliding with a target;

thus the beam intensity is measured in “protons on target,” or P.O.T.) This
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Figure 2.2: An overview of the NuMI beam line. From ref. [44].

translates to delivery of approximately 4 × 1020 P.O.T. per year under normal

operating circumstances. [46]

The beam line magnets then direct protons through a graphite baffle (for

the purposes of collimation and beamline equipment downstream from large mis-

steerings of protons [44]) before they are forced to collide with the meson production

target. NuMI production targets for the run period containing this analysis’s data

are long (97 cm), narrow (1.5 cm× 0.64 cm cross-sectional area) graphite targets

segmented into 47 “fins,” each of which is approximately 2 cm long, and which are

spaced by 0.3 cm longitudinally. The target structure is affixed to hardware for

stabilization, cooling, and environmental insulation. The target and associated

support structure are illustrated in figure 2.3.

The reaction products of the proton beam-target interaction are extraordinarily

diverse. Not only are a large number of final-state particles possible from a single

interaction of a proton with the graphite, but furthermore, any particle produced in

the proton-target interaction can itself interact again with the target or its carrier,

or other beam line components1, which can result in neutrino-producing decays of

1Other examples include the magnetic horns discussed below, the decay tunnel walls, and the
beam dump at the end of the tunnel.
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Figure 2.3: The NuMI meson production target design. From ref. [45].

different energy spectra. This mechanism—which is often given the label “tertiary

neutrino production,” as the most recent ancestor undergoing an interaction was

itself a secondary or later product—is one of the largest sources of systematic

uncertainty in the final neutrino flux prediction. This will be discussed in more

detail in chapter 3.

By design, the makeup of the particle spray which exits the target after interac-

tion is heavily dominated by charged pions (and, to a lesser extent, charged kaons).

Now, the goal of NuMI is to provide, at high intensity, as monochromatic and

“mono-helitic”2 a neutrino beam as possible, where the beam energy and helicity

are tunable parameters. Therefore, these secondary (resulting from a primary

proton’s interaction with the target) and tertiary (resulting from a secondary

particle’s interaction) mesons, whose decay products will include the neutrinos for

the beam, must be filtered based on both the sign of their electric charge and on

their momentum. The NuMI technique, which is shared with other high-intensity

2That is, containing only a single helicity: either ν or ν, but not a mixture.
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neutrino beams worldwide, is to do the selection via magnetic “horns:” large, thin

aluminum conductors with roughly parabolic cavities inside. These are carefully

designed to act as a magnetic lens system: when the appropriate current is pulsed

peripherally around the horns, pions with kinematics that will result in the desired

neutrino beam configuration are focused down the beam line by the resulting

toroidal magnetic field, while pions with undesirable kinematics (as well as other

particle species generally) are largely deflected aside. The current in the horn

can be modulated both in amplitude and direction to achieve the desired hadron

spectrum and sign. Fig. 2.4 illustrates the horn system with a schematic.3

⊗

B
π−

i

ii

Horn 2Horn 1
target

baffle

π+, K+

Figure 2.4: A schematic of the NuMI horn system in cross-section. From ref. [44].

Along the beam axis then follows a 675 m long, absorber-clad decay pipe, where

most of the surviving particles (i.e., those not directed into the side walls) decay

in flight. Here positively-charged pions and kaons quickly decay to anti-muons

and muon neutrinos (the charges and helicities reversed for negatively-charged

mesons)—the latter of which, because of their minimal mass, are strongly boosted

along the initial focusing direction and travel mostly along the beam axis. The

electron neutrinos and muon antineutrinos resulting from the decay of anti-muons

(again, reversing the helicities for negative mesons) are not as strongly boosted

due to the three-body nature of the muon decay, but some still pass through the

3While it is possible to further improve the chromatic spread of the beam by placing the detector
slightly displaced from the main axis of the beam (see, e.g., ref. [47]), one must sacrifice much
of the beam intensity by doing so. NuMI trades monochromaticity for intensity.
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detector, resulting in a mild “contamination” of the muon neutrino beam with

electron neutrinos and wrong-helicity muon anti-neutrinos.4 (Much more will be

made of this in ch. 3.) Finally, a beam dump at the end of the volume absorbs

leftover proton beam and any other undecayed hadrons. Muons that have not

decayed in the decay volume typically stop in the 270 m of rock between the decay

volume and the detector hall (which is approximately 100 m underground). Figure

2.2 gives an overview schematic of the beam line setup. [46]

Though originally the decay pipe was designed such that it would sustain a

medium vacuum of around 1 Torr, safety concerns prompted the later introduction

of a system to maintain an atmosphere of approximately 0.9 atm of helium gas

in the decay pipe. While less than ideal (secondary mesons can now be deflected

from the beam axis by interactions with the helium gas), this configuration has

proven to introduce only manageable errors into the flux prediction. [48] All of

MINERνA’s data were acquired with a beam configuration containing helium in

the decay volume.

The data presented in this analysis were collected in the so-called “low-energy,

forward horn current” (LE FHC) beam line configuration, where the target is

partially inserted into the more upstream of the two horns, leaving 10 cm separation

between the target end and the narrowest part of the horn. The horn current

direction in this configuration is chosen to select positively-charged mesons and its

magnitude is fixed at 185 kA.5 As chapter 3 will demonstrate, this configuration

is projected to yield a neutrino beam illuminating MINERνA which consists of

94.13% νµ, 5.14% νµ, 0.69% νe, and 0.04% νe.

4Additional electron neutrinos and antineutrinos are also produced directly in the decays of
kaons, typically at higher energies than we will be concerned with for this analysis. The
kaon-parent flux is roughly 10% of the electron neutrino flux and is treated together with it
in ch. 3.

5This target-horn configuration pairing is often assigned the code “le010z185i”.
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3 Characterizing the neutrino

flux

Because neutrinos rarely interact with matter, it is difficult to make a direct

measurement of the energy spectrum of a neutrino beam. In addition, analytic

calculations of this neutrino flux are notoriously difficult: first, because the strong-

force interactions in the NuMI target are poorly modeled by current theory; and

second, because the target system is comprised of many different components in

which beam-line particles can undergo re-interactions. MINERνA therefore relies

on a detailed simulation program—based on the GEANT4 simulation package

[49]—significantly augmented by internal and external data constraints to provide

a prediction. The final flux prediction has uncertainties of order 8-10%.

3.1. g4numi: GEANT4 simulation

We begin with a GEANT4-based [49] simulation package known as g4numi, which

models the interaction of 120 GeV protons with the graphite neutrino target and the

resultant decay product interactions with the target and horns (as described above

in section 2.2).1 Because GEANT4 is modular, it allows the run-time selection

of various interaction models bundled with the package. Based on its superior

agreement [50] with the NA49 data set mentioned in section 3.2.1 below, we elected

to use the newer “FTFP-BERT” (FRITIOF Precompound + Bertini cascade)

physics list rather than the default “QGSP-BERT” model [51]. After propagation

through the target and horn system, g4numi yields the neutrino fluxes depicted in

fig. 3.1.

1Our version of g4numi is built upon GEANT4 version 9.2p03.



47

Neutrino energy (GeV)
0 5 10 15 20

 / 
P

.O
.T

. /
 G

eV
2

s 
/ m

ν

0

0.2

0.4

0.6

0.8

1
-310×

 fluxµν

 100)× flux (eν

Figure 3.1: The predicted NuMI beam flux from g4numi for the le010z185i configuration
described in the text.
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3.2. External constraints from hadron

production experiments

The dominant uncertainties in the simulation stem from an underlying inability

to predict the products of the strong interactions of the beam protons with the

graphite NuMI target. Because we cannot predict with certainty the particle

composition of the by-products and their energies, the neutrino beam composition

and spectrum are also consequently uncertain. We therefore turn to experimental

data to fill in the gaps in our predictive machinery.

Detailed measurements of the particle production species and spectra for

reactions such as those occurring in the NuMI target are present in the literature.

But, mainly because NuMI’s target is thick (multiple interaction lengths), until

very recently there was no single published work presenting results that apply to

NuMI directly. (The MIPP experiment at Fermilab collected data on a replica

NuMI target, at proton energies of 120 GeV, but their conclusions [52] were not

available to be incorporated into into our prediction in time to be included with this

analysis.) Instead, for an external flux constraint, we are forced to choose between

data sets that were collected on much thinner targets or at different energies (the

data from CERN’s NA49 experiment [53], for example, and some of that from

NA61 [54]).

For the results discussed in this work, we elected to use the data from NA49

[53] as our primary external constraint, supplemented by data from Barton et al.

[55] in specific cases. NA49 collected data from 377,000 proton interactions on a

thin (1.5% interaction length) graphite target at proton energies of 158 GeV (the

CERN SPS beam) and measured the resulting charged particle spectrum using a

proportional counter detector. Barton’s group used a 100-GeV proton beam (M6E

at Fermilab) and similar target and detector technology to NA49, though their
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statistics were much poorer. We use these datasets to re-normalize the interaction

rates predicted by the GEANT4 simulation of the proton-target collisions in NuMI

(sec. 3.1) as described below in section 3.2.1. The validity of the scaling procedure

used to translate from NA49 and Barton energies to NuMI energies is discussed in

appendix A.

3.2.1. Central-value reweighting of NuMI simulation

Beam attenuation correction

Since the neutrino production target is multiple interaction lengths long, as the

proton beam passes through the target, progressively more protons interact, and the

beam is therefore progressively attenuated. Though the beam simulation attempts

to model this phenomenon, it does so using the cross-sections from the FTFP-BERT

model, which we found we needed to adjust using NA49’s measurements (on which

see the detail further below). We therefore correct the attenuation calculation itself

based on the difference between GEANT4’s FTFP-BERT cross-section and the

one measured by NA49. To do so, we warp the neutrino spectrum by applying an

additional weight to generated neutrino interactions (sec. 5.2.1) according to the

following formula:

watten = exp (−x (σdata − σsim) ρ) (3.1)

where x is the axial distance into the target the interaction occurred; the σs

are the production cross-sections measured by NA49 and used in the simulation,

respectively; and ρ is the average target density (graphite plus a small admixture

of helium due to the spaces between the target fins and the presence of helium in

the decay pipe (sec. 2.2)). The effect of this correction is small, but not negligible;

it is illustrated in fig. 3.2.
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Figure 3.2: The effect of the beam attenuation correction as a ratio to the nominal
FTFP-BERT flux. The attenuation correction is the difference between
the blue and the red curves. Courtesy L. Aliaga (MINERνA).

Production cross-section correction

Though one can describe the data from experiments like NA49 and Barton in terms

of the outgoing particle kinematics directly (outgoing momentum and angle, for

example), these quantities are bound in an inflexible way to the initial conditions

of the experiment (particularly the incoming proton momentum). Thus, it is tradi-

tional to report results instead in terms of quantities that scale sensibly to different

beams. In particular, the resultant distributions of production cross-sections are

usually given in terms of the particle’s transverse momentum (the component

transverse to the proton beam), pT , and the scaling parameter introduced by

Feynman [56]:

xF =
2pL√
s

where pL is the component of the particle’s momentum that is parallel to the

beam in the center-of-momentum frame, and s is the square of the total center-
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of-momentum energy of the reaction. According to Feynman’s postulate [56]

(well-supported in energy regimes above ∼ 10 GeV by accelerator data; see, e.g.,

ref. [57]), the invariant cross-section (“invariant” because it is a Lorentz invariant

[11]) of an inclusive particle production process,

f = E
d3σ

dp3
(3.2)

depends on xF and pT , but not s.

We use this so-called Feynman scaling to apply the NA49 and Barton measured

pion production cross-sections to the NuMI data by assuming that the Feynman

scaling (along with measured corrections and violations) implemented in the

FLUKA simulation package [58, 59] is correct. (The uncertainty in the flux due to

this procedure is negligible, as discussed in app. A.) Under this hypothesis, we

scale (for example) the NA49 measured cross-section by the ratio of FLUKA’s

predicted cross-section at the target energy to FLUKA’s prediction at the NA49

energy. That is:

f(ENuMI) = fNA49(158 GeV)× fFLUKA(ENuMI)

fFLUKA(158 GeV)

Because NuMI’s target is much thicker than that used by NA49 and Barton,

we can only apply reweighting factors from these experiments to events in NuMI

which are comparable. We term particles from interactions where the original beam

proton interacted just once in the target, and the exiting charged particle did not

re-interact, “NA49-like” particles, and reweight only neutrino events with neutrinos

stemming from “NA49-like” particles. With this caveat, then, we reweight each

event exiting the NuMI simulation whose neutrino ancestry contains an “NA49-like”

particle whose kinematics are covered by the data from NA49 (or Barton) by the

ratio of the measured NA49 (Barton) cross-section to the cross-section used by
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Figure 3.3: The predicted NuMI le010z185i beam flux after reweighting. Courtesy L.
Aliaga, M. Kordosky, A. Norrick (MINERνA).

GEANT. More specifically, pion weights are calculated from the NA49 data when

xF < 0.5 and from the Barton dataset when xF > 0.5; we apply weights to events

where a kaon is produced if xF < 0.2, based on a different study from NA49 [60];

and we apply weights calculated from NA49 data for events producing a proton

with xF < 0.95 from a third study by NA49 [61]. The weight applied to a simulated

neutrino event is then simply the ratio of the scaled NA49 (or Barton) cross-section

to the GEANT cross-section at the NuMI energy (120 GeV):

wNA49 =
fNA49(ENuMI)

fGEANT(ENuMI)
(3.3)

Plots of the modifications that this procedure makes to GEANT’s prediction of

the NuMI beam flux are in fig. 3.3. Note that the alterations are, in general, quite

large (up to 40%).

3.3. Flux uncertainties

The lion’s share of the uncertainties in the a priori flux prediction that we obtain

from the GEANT4 prediction of sec. 3.1 are due to re-interactions of hadrons within
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the target material. When the simulation throws an interaction with outgoing

kinematics that are governed by the external hadron production data of sec. 3.2,

we are able to use that data as a constraint, as explained there. However, for the

remaining interactions—of which there are, unfortunately, many—we are forced to

choose some method for evaluating the uncertainty in the final flux prediction due

to the uncertainties in the underlying models used in GEANT4.

The uncertainties in these parameters are often correlated in such a way that

they are difficult to propagate through calculations analytically. To cope with

this fact, we have adopted a sampling-style approach in which we generate a

large number (usually roughly 1000) of variations on the desired distribution in

which the various parameters in question have been sampled based on their central

values and known uncertainties. We then compute the uncertainty on the final

distribution—here, the flux—from the spread of these varied distributions in each

bin.

The various parameters which must be varied in GEANT according to their

uncertainties are grouped together into discrete “tunes,” which, in the GEANT

jargon, are usually called “physics models” or “physics lists.” We use the difference

between the hadron kinematics predicted by these physics lists, which model the

interactions of hadrons with matter in different ways, to determine the mean and

variance of the distribution from which the relevant parameters are sampled in

the variations. In particular, for this analysis we compared the predicted outgoing

kinematic distributions of pions and kaons (which decay in flight to neutrinos)

from the following models to determine the uncertainties on non-NA49-constrained

neutrinos:

QGSP “quark-gluon string” model with “pre-compound” model back-end

QGSP-BERT above QGSP coupled to Bertini cascade model

QGSC-BERT like QGSP except with a “chiral-invariant phase space” model
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Figure 3.4: The final a priori νe + νe flux prediction and its uncertainties.

back-end

FTFP-BERT Fritiof-like string pre-compound model with Bertini cascade

FTF-BIC Fritiof-like string model with a binary-cascade model

All of these models are described in further detail in ref. [51].

3.4. In situ constraint: neutrino-electron elastic

scattering

Because of the difficulties associated with the a priori flux prediction and un-

certainties that we obtain from secs. 3.1-3.3, we furthermore employ an in situ

measurement technique to arrive at our best estimate of the flux. This method

relies on a particular reaction channel which is predicted very precisely in the

standard model: the neutral-current, elastic scattering of neutrinos from atomic

electrons within the detector medium, ν + e → ν + e. (The charged-current

scattering of electron neutrinos on electrons yields an identical final state, and

therefore interferes constructively with the neutral-current process; it is similarly

well predicted by the SM and will be lumped together with the neutral-current
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process for the remainder of this section.) The isolation and extraction of the rate

of such events is a challenging process, and will not be considered in detail here; it

is described in depth in ref. [62]. Instead we will focus here on the application of

the constraint it provides to the flux prediction.

To constrain the flux prediction using ν + e events, we consider the distribution

of incoming neutrino energies from the a priori prediction of secs. 3.1-3.3 given

in fig. 3.4a. The uncertainties illustrated in fig. 3.4b are computed, as noted

in sec. 3.3, by varying parameters in the underlying models, and computing the

spread of the resulting distributions. Since each of these variations in the flux can

be propagated through our simulation to yield a prediction for the number and

spectrum of ν + e events, we begin by comparing the measured distribution in the

data to the predicted distribution of ν + e events in the variation and computing a

χ2 statistic between them:

χ2 =

Nbins∑
i=1

(Di − Vi)2

σi
(3.4)

where Di is the content of the ith bin of the measured distribution in data (with

its uncertainty σi), and Vi is the content of the ith bin in the simulated variation.

We assign the value of the probability computed in the standard way from the

χ2 statistic [11] to each variation as its weight. After all the weights have been

assigned, we renormalize them such their mean is 1. To determine the predicted

uncertainty from these variations, we then compute a weighted variance from their

spread (instead of the unweighted version we used previously) in each bin:

σ2 =
1∑
wi

∑
wi (xi − µ′)2

(3.5)

where wi is the weight for variation i, and xi and µ′ are the value of the variation

and the weighted mean of all of the variation distributions in bin i, respectively.
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Figure 3.5: Effect of the ν + e scattering constraint on the predicted number of ν + e
events. Courtesy J. Park (MINERνA).

The effect that the constraint has on an example variable—the number of ν + e

events, which is a single-bin variable, chosen for simplicity—is presented in fig. 3.5.

Applying the weights to the flux-parameter variations in this fashion reduces

the spread of the variations, and thus the uncertainty, but it does not adjust

the central-value prediction. However, we can also make use of the information

contained in the weights to improve the central value as well. In this case, we

examine the mean of the distribution of variations in each bin of the variable

in question. The ratio of the weighted mean (that is, after the constraint is

applied) to the unweighted mean is multiplied (bin by bin) against the central

value distribution to yield the corrected central value distribution. Finally, any

other variations associated with the variable in question that are not variations

in the flux parameters are translated by the same amount as the difference in the

central value, so as to render the fractional variance invariant. The effect on the νe

flux is illustrated in fig. 3.6.

Because this approach uses the predicted values of the variable of interest as

they are fluctuated by varying the underlying flux model parameters, we can use it
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Figure 3.6: Effect of the flux constraint described in the text on the νe + νe flux
prediction and its uncertainties.

to predict the effect of the flux constraint on any distribution, not just the flux

itself. This feature will be heavily exercised in sec. 7.

3.5. Final flux prediction

The final flux prediction (the a priori prediction with the constraint of sec. 3.4

applied) is shown in fig. 3.7.
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4 The MINERνA detector

MINERνA is a finely segmented, scintillator-based tracking detector and sampling

calorimeter. Like many other particle physics detectors, it can be subdivided

into a handful of subdetectors which serve different purposes. It is instructive

to consider the detector in a cylindrical coordinate system, in which case we can

subdivide along two different axes: radially, the detector breaks into an Inner

Detector (“ID”), designed primarily for precise particle tracking, and an Outer

Detector (“OD”), which primarily serves as a sampling calorimeter; axially, from

upstream to downstream along the beam line, MINERνA is built of a “nuclear

targets” region (passive targets of different materials interleaved with scintillator), a

“tracker” region (pure scintillator), an electromagnetic calorimeter (ECAL) region,

and a hadronic calorimeter (HCAL) region. The active parts of the detector

transmit their light into a network of photomultiplier tubes (PMTs) via optical

fibers, and custom electronics read out the response of the PMTs. The nature of

each subsection of the detector, as well as the technology used to instrument it, is

enumerated in detail below; further descriptions, as well as detailed performance

metrics, can also be found in ref. [63].

4.1. Subdetector arrangement and function

MINERνA consists of 120 welded steel hexagonal “modules” that hang in a

manner akin to file folders on a steel support structure attached to the floor of the

underground experiment hall. Though conceptually the ID and OD are different

subdetectors, the steel frame of the OD serves also as the support structure for
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each module, and therefore each module contributes to both subdetectors. As

shown in fig. 4.1, moving radially inward from the outer edge of the OD region of

each module, one first encounters four so-called “stories,” layers of two rectangular

strips of scintillator, interleaved with the steel. Contained further inward, one finds

one or two inner detector hexagonal planes (each half the axial depth of the module

in the latter case), the composition of which varies depending on the module type:

nuclear target-type modules are single planes built from sheets of graphite, lead,

and/or steel, edge-welded together in various shapes to make a hexagon; tracker-

type modules are made of two planes of edge-glued scintillator strips (further

described in sec. 4.2); ECAL-type modules are identical to scintillator modules

except that a 0.2 cm layer of lead is affixed to the front of the more upstream plane;

HCAL-type planes are composed of a plane of solid steel followed by a plane of

iron. Furthermore, a “collar” of lead (shaped like a hexagonal annulus; again see

fig. 4.1) covers the outermost portion of scintillator in the tracker-type planes. The

only exception to the general pattern described here is the water target, residing

in the middle of the targets region, which (due to design considerations) has no

OD frame and is composed of Kevlar sheets fixed to a circular steel frame and is

filled with distilled water.

Each longitudinal region—nuclear targets, tracker, ECAL, HCAL—is then

composed of an assortment of modules of the appropriate types; this is depicted in

fig. 4.2. At the most upstream end, the nuclear target region alternates each of

the five nuclear target-type modules with four successive tracker-type modules, for

a total of 28 modules. (As the nuclear target region is not used for the analysis

described in this work, it will be neglected from here on.) This is followed by

the tracker region (62 modules), which occupies the bulk of the detector volume

(though still a minority of the mass), made entirely of tracker-type modules. The

downstream end of the detector contains the ECAL (10 modules; ∼ 8 radiation

lengths) and HCAL (20 modules; ∼ 3 nuclear interaction lengths), in that order,
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Front View


Inner Detector (ID)




Figure 4.1: An engineering drawing of a MINERνA tracker-type module, as seen from
the front (looking downstream along the beam line). The “ears” from
which it hangs on the support structure are shown in red; optical fiber
couplings are the outermost yellow elements; the OD steel is shown in cyan;
the lead collar is yellow; and scintillator strips are gray.

which are built from the corresponding type of modules. (A “transition” module,

which is like an ECAL-type module except that the lead sheet is attached to the

back of the module instead of the front, sits in place of a normal tracker module at

the end of the tracker region.)

One additional complication to the geometry of the detector is the plane

orientation. Because each strip of scintillator runs the full width of the ID portion

a plane, any given plane can yield only two-dimensional information about the

position of a particle passing through it: the coordinate transverse to the axis of the

strip, and the coordinate along the beam direction (the latter being shared by all

strips within the same plane). Therefore, to fully reconstruct a three-dimensional

path through the detector, it is necessary to orient the planes along different

axes—termed “views”—in an alternating fashion. MINERνA uses three plane
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Figure 4.2: The layout of the modules in MINERνA. Beam is incident from the left.
The upstream veto system, liquid helium target, and MINOS near detector
are not mentioned further in the text as they are unused in this analysis.

views: “X,” in which the strip axis points along the vertical (as defined by gravity);

and “V” and “U,” where the axis is rotated by ±60◦ (respectively) as compared

to X. Successive modules group these varying views in a regular pattern: the first

module in a sequence is composed of a U plane and an X plane (in that order);

it is followed by a module containing a V plane an X plane (again in that order);

and then the pattern is repeated.

This choice of plane views informs the coordinate system chosen for the detector

geometry. The +ŷ-direction is the the usual “up,” antiparallel to the direction

of gravitation. The +ẑ-axis is chosen to lie parallel to both the cavern floor and

the downstream direction of the beam (which, since ẑ must be perpendicular to

ŷ, and since the beam points slightly downward, means that ẑ forms an angle

of about 3◦ to the beam). To complete a right-handed coordinate system, then,

the +x̂-direction must point to the left when viewing the detector from the most

upstream end and looking downstream. (x, y) = (0, 0) represents the center of an

ID plane, while z = 12000 mm is anchored to the front of the MINOS near detector

(which was installed in the detector hall many years prior to MINERνA). With

these choices, the unit vectors corresponding to the positive strip directions in the

U and V planes, respectively, become 1
2
(x̂±

√
3ŷ). The coordinate system is better
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described by an illustration, given in fig. 4.3.

upstream
face

+ x̂

+ ŷ

+ ẑ

Figure 4.3: The MINERνA coordinate system, shown with representative schematics
of detector planes for reference. This view is from upstream toward down-
stream, where the +ẑ-direction is the direction in which the planes are
stacked. From front to back, the planes shown are in the UXVX ordering
described in the text.

4.2. Active plane composition and

instrumentation

Despite the various orientations they are assembled into, planes whose ID region are

composed of active scintillator (and not of some passive material) are all constructed

from the same materials and share the same basic structure. The ID region of

such a plane is composed of 127 triangular strips of scintillator material made

from a co-extrusion of doped polystyrene and a reflective titanium dioxide outer

coating. Each of these is, cross-sectionally, an isoceles triangle with width 3.3 cm

and height 1.7 cm; strips are cut longitudinally such that, when assembled, they fit

into a regular hexagon of apothem 1.07 m. (Note that this implies strip lengths

which vary from 1.2 m on the plane edges to about 2.5 m at the plane center.)
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Component H C O Al Si Cl Ti

Strip 7.59% 91.9% 0.51% - - - 0.77%

Plane 7.42% 87.6% 3.18% 0.26% 0.27% 0.55% 0.69%

Table 4.1: Chemical composition of scintillator strips and constructed planes, by mass
percentage. From ref. [63].

Glued (using an optically clear epoxy) into a 2.6 mm hole running lengthwise along

the strip is so-called “wavelength-shifting” (“WLS”) fiber, a proprietary product

of Kuraray Co., which transports scintillation light out of the strip. In so doing,

light is downshifted from the ultraviolet spectrum of the scintillator response into

the visible spectrum where the photomultiplier tubes (described further below)

are most sensitive. This results in typical attenuations of roughly 40% for the

longest strips. WLS fibers are further coupled to clear fibers, which carries light

the remaining distance to the photomultipliers (where electronic readout begins,

as in sec. 4.3), further attenuating the light by a factor ranging from about 0.85

(for the shortest fibers) to 0.45 (for the longest ones).

Strips are glued edgewise (using a different, translucent epoxy) in an alternating

fashion so as to make a consistent edge. (See figure 4.4.) In order to ensure that

ambient light in the detector hall cannot leak into the strip and overwhelm the

comparatively dim signal from particle interactions, each plane face is then covered

with sheets of Lexan (glued on with an opaque gray epoxy), and further secured

with black PVC electrical tape. Planes assembled as such have an average areal

density of 2.02± 0.03 g/cm2, of which the chemical composition is listed in table

4.1.

Figure 4.4: Illustration of the arrangement of strips within a plane, viewed along the
axis of the strips. The green circle represents the WLS fiber.
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4.3. Readout electronics and data acquisition

system

The electronic readout system converts actual scintillator light to an electronic

representation suitable for storage and analysis. As with the detector design,

each subsystem is explained below, with significantly more detailed specifications

available in ref. [64].

4.3.1. Photomultiplier tubes

Light incoming via the clear fibers of sec. 4.2 is coupled into light-tight capsules

containing 64-channel multi-anode photomultiplier tubes (PMTs) using commercial

connectors. Inside these capsules, known better as “PMT boxes,” optical fibers on

the receiving end of the connectors are woven into a special arrangement which maps

the light from neighboring strips in a plane in the detector onto non-neighboring

PMT pixels, thereby mitigating the effect of the phenomenon known as “cross-talk”

(discussed in further detail below). Each fiber is mated to a single PMT channel

using a specially machined connector.

Photons passing into the PMT strike a cathode, and, by the photoelectric

effect, liberate typically zero or one electron per photon (the quantum efficiency

of the sensor being roughly 20%). Electrons are then accelerated through twelve

“dynodes” in turn, each of which typically bears a higher fraction of the total PMT

potential of several hundred volts and each of which is made of a material which

has a large secondary electron emission probability. When struck by an incoming

electron, therefore, more electrons are created from a dynode, resulting in a gain in

the number of electrons of a factor of 105-106 by the end of the chain. [65] A custom

printed circuit board attaches to the base of the PMT to facilitate collection of the

charge from the 64 independent anodes. A photograph of a partially assembled
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PMT box is given in fig. 4.5.

Multi-anode PMTs experience two notable side effects which are undesirable

and must be taken into account. First, because the pixels on the PMT face (and the

corresponding dynode chains within the PMT itself) are relatively small and border

each other directly, photons intended for one pixel (or photoelectrons intended for

one dynode chain) are able to wander into a neighboring pixel (or dynode chain).

This pheonomenon is known as “cross-talk;” the first variety is called “optical

cross-talk,” and the second will be referred to as “dynode-chain cross-talk.” Based

on bench measurements, we both simulate and attempt to subtract this cross-talk

as a calibration. (The measurements and procedures used are described in sections

5.2.3 and 5.3.7, respectively.) Second, PMTs are susceptible to what is known as

“afterpulsing,” in which residual gasses which have leaked into the PMT through

the glace face are ionized by electrons progressing down the chain. Because the

resulting ions are positively charged, they accelerate the wrong way through the

dynodes, eventually colliding with a dynode or the photocathode and producing a

secondary (lesser) electron cascade. This results in a delayed signal. As discussed

below in sec. 4.3.2, afterpulsing plays a role in so-called “dead-time” creation,

forcing a compensatory procedure of overlaying data onto our simulation. (Further

discussion is below.)

4.3.2. Front-end electronics

The current exiting the anodes of one PMT is collected by a custom printed circuit

board called a “front-end board” (“FEB”), which mounts directly on to the PMT

box. Besides serving as the high-voltage power supply for the PMT via the onboard

Cockroft-Walton generator, the FEB also digitizes the incoming charge in three

gain ranges using one of six onboard “TriP-t” (i.e., Trigger and Pipeline with

timing) integrated circuits. Charge is collected during a 16-microsecond window
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Figure 4.5: A partially assembled PMT box. From right, visible are the fibers, the
coupling fixture (black cylinder), the PMT itself (black rectangular solid),
PMT base boards with ribbon cable, and end cap. A spare PMT base
board is front left. From ref. [63].

called a “gate,” designed to capture the entire breadth of a roughly 10 microsecond

Main Injector beam spill plus a large fraction of slower particle decays.

The digitization scheme is roughly as follows. First, analog charge in each

gain range is continuously fed into a discriminator circuit, which latches when

a pre-set threshold is reached. Then, following a discriminator latch, charge in

each gain range is pushed into time-stamped buckets in a charge pipeline for a

pre-set period (which, during the run period of this analysis, was equivalent to

16 9.4 ns-long system clock ticks, or 150.4 ns). Finally, charge is pushed out of

the pipeline and digitized and stored, and the discriminator capacitor is cleared,

during a 20 clock tick (188 ns) window during which no new incoming charge is

recorded. After this the board is ready to accept charge once again. The pipelines

contain enough register space to store seven of these time-stamped segments plus

an eighth, untimed readout (which happens at the very end of the 16-microsecond

gate).

The system clock on an FEB, which governs the clock ticks noted above, is
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regulated by a 53 MHz crystal oscillator built into a field-programmable gate

array (FPGA) chip integrated onto the FEB. Although the crystal’s fundamental

resonance controls the system clock tick length and provides the resolution quoted

above (9.4 ns), when the FEB is time-stamping activity in the charge pipeline,

it is further able to compare the phase of the oscillator to a reference and thus

subdivide a clock tick to into quarters. Therefore, the best resolution on the time

stamp of each pipeline bucket is one quarter-tick, that is, 2.35 ns.

Since neutrino interactions during this running period are relatively rare, oc-

curring only a few times per beam spill, very little of the detector is illuminated

at any given time. However, the design of the FEBs contains one feature which,

unfortunately, tends to amplify any effects from the pile-up of multiple particle

interactions in one gate when such a thing does transpire. There are only six TriP-t

chips for any given FEB, as observed above, while there are 64 incoming channels

whose charge is being distributed among them; this results in a number of channels

being ganged together so that they can be serviced by the same TriP-t. (The high-

and medium- gain ranges of the channels are split between four of the TriP-ts,

meaning that those TriP-ts handle 16 channels each; meanwhile, the low-gain ranges

are divided between the remaining two, making them responsible for 32 channels

each.) Consequently, when the discriminator latches for any particular channel,

all of the channels in its TriP-t group experience the same digititization and reset

periods. Should any new activity be incoming on any of the channels in this

group during the reset time, it will be lost. Typically we refer to this phenomenon

as “discriminator dead time,” and it necessitates a modification technique to the

simulation in order to simulate events that are not observed as a result (as discussed

in sec. 5.2.3). Furthermore, in an event with many neutrino interactions or other

related activity (e.g., PMT afterpulsing, explained in sec. 4.3.1), the readout

buffers can be saturated, such that real physics activity is relegated to the untimed

eighth bucket in the charge pipeline. The overlay technique mentioned above is a



69

partial simulation of this effect, as well, but cannot compensate for it completely

since we do not accurately simulate afterpulsing from activity originating in the

simulation itself. We disregard any activity in the eighth charge bucket, which is a

negligible correction for this analysis.

4.3.3. Rack-mounted electronics

The FEBs are synchronized to each other and to the Main Injector time by daisy-

chaining them together and operating the chain as a slave to a device called a chain

read-out controller (“CROC”). Synchronization and clock signals from the CROC

(whose provenance will be further discussed shortly) are transmitted through the

FEB loop, adding a pre-programmed time offset (measured in an in situ timing

calibration (see sec. 5.3.6) stored in each FEB’s FPGA chip (sec. 4.3.2) to account

for the delay corresponding to the FEB’s position in the loop. The maximum

number of FEBs thus chained together is governed by the degradation of the

serialization lock and timing signals through the ethernet cable connecting them

together; this constraint imposes a practical limit of a maximum of 10 FEBs per

chain. Each CROC supports four chains; in total MINERνA uses 15 CROCs to

service the 507 FEBs used on the detector (more than the minimum of 13 because

of design considerations arising from the PMT mounting locations).

The 15 CROCs are VMEbus (“VERSAmodule Eurocard”) devices [66], and

are therefore used exclusively from within a readout device known as VME “crate”

(which, through a “crate controller” module also within the crate, ultimately

provides their connection to the data acquisition computers). Other devices

also call the VME crate their home, including four “CROC interface modules”

(CRIMs), bridging up to four CROCs each to the crate controller, and a “MINERνA

Timing Module” (MTM), which is directly connected to the Main Injector’s timing

distribution system. Timing signals thus arrive via the MTM, are distributed to
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the CRIMs, fan out from them to the CROCs, and ultimately run through the

FEB loop. Since a crate can service up to eight CROCs in addition to the crate

controller and two CRIMs, MINERνA requires two crates to address all of the

front-end electronics. [64]

In addition to distributing timing and programming information, the FEB

daisy-chain system also serves as the conduit for the extraction of pulse height

data collected during data taking gates. At the end of a gate, each CROC polls

all of the FEBs in each of its chains sequentially. The pipelined and buffered

data (as described above in section 4.3.2) are aggregated by the CROC and then

transmitted to the data aquisition computer responsible for that crate (see next

section).

4.3.4. Data acquisition computers

MINERνA employed a cluster of three data acquisition computers during the

running period corresponding to the data used in this analysis: two “slave” ma-

chines, each of which was responsible for communicating directly with one VME

crate; and one “master” machine, which was responsible for synchronizing readouts,

assembling the data from both slaves together into a single data stream, and

serving as the interface to the user via run control software. In addition, a fourth

“slave” machine was used to duplicate the data stream for the purposes of online

monitoring. All of these computers run custom DAQ software based on top of the

Event Transfer package (version 9.0), based on CODA [67]; this software originates

from Jefferson Laboratory.
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5 Data collection and simulation

The data used in this analysis were collected and calibrated using a number of

techniques designed to maximize detector live-time and efficiency. The models to

which the result are to be compared were used to generate simulated data using

a Monte Carlo technique. Though the simulated data are used in a manner as

similar as possible to that collected using the real detector, several steps differ; the

steps unique to the real data collection and simulation are described in secs. 5.1

and 5.2, respectively, and the calibrations that are applied to both, irrespective of

their origin, are then elaborated in sec. 5.3.

5.1. Data acquisition and unpacking

5.1.1. DAQ, run control, operator procedures

During the run period corresponding to this analysis, calibration read-outs—high-

voltage pedestal measurements and light from calibrated LEDs directly injected

into the clear fibers—were interspersed in the time between Main Injector spills.

(The calibration done with these measurements will be discussed further in sec.

5.3.) Gates were recorded in blocks of order 1000 consisting of the same trigger

pattern (NuMI spills alternating with pedestals, NuMI spils alterating with light

injection, or NuMI spills only), called “sub-runs;” sub-runs of varying trigger

pattern but identical detector conditions were further grouped into “runs” lasting

up to a maximum of roughly 24 hours. When no errors requiring operator or expert

intervention were encountered in the read-out hardware or network apparatus, the
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supervisory run control software maintained continuous operation with an average

live-time of over 99% compared to the time the accelerator was delivering protons

to the target.

5.1.2. On-line monitoring

Whenever the accelerator is delivering beam, an operator oversees the collection of

data by monitoring certain fundamental and reconstructed quantities calculated

from the secondary on-line data stream noted in sec. 4.3.4. Technically, the

information the operator monitors is not exactly real-time because, as discussed

in sec. 5.1.3, a significant amount of unpacking and, in some cases, preliminary

calibration must be applied to the data read out by the DAQ before it is in a

form digestible by a human. This processing delays arrival of on-line information

from a few minutes to several hours depending on the nature of the information in

question.

The general data flow is as follows. The raw data stream from the DAQ is first

duplicated to a subsidiary server also housed in the detector hall. There, a process

unpacks it as it is received (see sec. 5.1.3) and performs the very lightweight

pedestal suppression process (sec. 5.1.4), followed by the generation of a handful

of low-level histograms (charge distributions read off the PMTs for each gate,

distributions of hit times relative to the gate start, the deviations of PMT voltages

from their setpoints, the time the detector spent reading out after each gate, etc.)

which are then fed back to the operator through a shared disk system. Because

the unpacking procedure is too slow to keep pace with the rate of data acquisition,

a pre-scaling is applied such that only 20-30% of incoming gates are represented in

these histograms. Typical end-to-end delay for this chain between data acquisition

and histogram update is a few minutes.

Further processing begins after the data acquisition for an entire sub-run has
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completed (sec. 5.1.1). The compressed data file is distributed to a server farm

consisting of four workers where, in addition to unpacking every gate with no

prescaling, the pedestal suppression and full calibration chain (sec. 5.3) are applied.

Following this is basic event reconstruction (sec. 6.1). Finally, a number of

higher-level diagnostic histograms are generated (e.g., number of candidate rock

muon tracks per proton on target, number of time bunches in each gate, etc.);

these are relayed back to the operator. Normally this process requires several

hours altogether for each sub-run. Operators review these plots and make initial

judgments about a sub-run’s data quality, which inform the choice of canonical

data set for analysis later on.

5.1.3. Unpacking

Data arrives from the DAQ in a continuous stream of frames which correspond

to the FPGA register settings, discriminator content, and digitized ADC counts

in each channel. (Note that the FPGA registers are read out only once per gate,

rather than once per discriminator push, since the information in them does not

change during the gate.) Unpacking them involves first separating the stream into

separate gates; then, within each gate, the discriminator and ADC information are

collected together to form so-called “raw hits,” where each raw hit corresponds

to a single charge bucket on a single channel of one FEB’s digitized charge.1 The

unpacking procedure opens a new data stream, divided into gates this time, each

of which is composed of the FPGA information and a collection of raw digits.

1Hereafter, a “hit” will always refer conceptually to an energy deposition in a scintillator strip.
Types of hits are distinguished by the amount of calibration to which they have been subjected
(“raw” vs. ”calibrated”), their location in the detector (“ID” vs “OD”), and their provenance
(“MC hits” thus hailing from the Monte Carlo simulation).
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5.1.4. Pedestal suppression

The analog-to-digital converters (ADCs) described in sec. 4.3.2 report a modestly

stable nonzero number of “ADC counts” (the output unit of the ADC) even when

no current is incoming off the PMT. This offset is known as the “ADC pedestal.”

And even though the discriminator circuits described in sec. 4.3.2 are tuned to

ensure that very few hits are made of zero-content readouts, the ADC counter can

occasionally fluctuate to large enough values that a “pedestal hit” is created.

The post facto removal of such pedestal activity from the data stream requires

dedicated measurements of the pedestal offsets for each gain range of each each

channel, since the pedestal value is a function of environmental factors like temper-

ature and can therefore drift over time. As was presaged in sec. 5.1.1, dedicated

readouts in between neutrino gates during normal running—as well as dedicated

subruns when the neutrino beam is not operating—are collected for this purpose.

Since real activity not induced by the neutrino beam (e.g., cosmic rays, residual

radioactivity in the detector materials or detector hall, etc.) can be captured by

the detector during the pedestal readout, we apply a method based on Peirce’s

Criterion [68] to remove outlier gates from the distribution. A sample outlier

pedestal measurement, consisting of the measured pedestal values for a single gate,

is shown in fig. 5.1; notice the inconsistent channel roughly 100 ADC counts above

the pedestal level.

After scrubbing the measurements of outlier gates, tables of characteristic

pedestal values (consisting of the mean pedestal value and the standard deviation

of the distribution) of each gain range for each channel are created (for intervals of

roughly one day) and stored in a database. These tables are then retrieved during

the offline calibration procedure, and hits whose high gain ADC value is either

below the pedestal mean value or within 3 standard deviations of the mean are

removed. (The medium- and low-gain ranges are not considered during suppression
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Figure 5.1: A sample pedestal measurement distribution from a gate containing an
outlier. From ref. [63].

because any hit from real activity whose medium- or low-gain pipeline contains

activity above threshold will also have above-threshold activity in the high-gain

range.) The medium- and low-gain channel pedestal values are used separately in

a quality-assurance check of the pedestal tables performed before they are inserted

into the database.

5.2. Data simulation via Monte Carlo

5.2.1. Neutrino interaction simulation (GENIE)

The simulation chain begins with the GENIE neutrino interaction generator [32],

of which we use version 2.6.2 for this analysis. Based on the characterization of

the incoming neutrino flux described in 3.1, a model of the detector based on the

description in sec. 4, and its internal neutrino interaction model, GENIE produces

an ensemble of neutrino interaction “stubs” appropriate to a requested exposure of
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protons on target. Loosely, each of these outgoing “stubs” (thrown randomly from

GENIE’s library of available interaction types according to the distributions of

their various cross-sections multiplied by the MINERvA flux prediction described

in ch. 3) captures the incoming and outgoing particle content and kinematics of a

reaction in which a neutrino consistent with the flux interacted with one of the

particles in the detector.

GENIE’s collection of interaction models span most—but, significantly, not

all—of the cross-section models popularly used by the neutrino physics community.

The description of the signal reaction, the charged-current quasi-elastic reaction

of electron neutrinos with carbon nuclei, is, as presented in the introduction,

nearly the same as that for νµ CCQE on carbon. For this, GENIE uses (in the

formalism of Lewellyn Smith, discussed in sec. 1.3.3) a dipole-form axial form

factor with the parameter mA = 0.99 GeV/c. The vector form factors are fixed via

CVC to electron scattering results, and the pseudo-scalar form factor used is that

suggested by the PCAC hypothesis (on both of which again see sec. 1.3.3). The

cross-section expressed by this model is then modified to adjust for the smaller

cutoff in transferred momentum due to the much smaller mass of the final state

lepton (me ∼ 0.5 MeV vs. mµ ∼ 106 MeV), as discussed in ref. [33]. (A much

more detailed treatment of the νµ CCQE model in GENIE is given in ref. [32].)

GENIE’s model of the nuclear medium in version 2.6.2 treats nucleons as quasi-

independent entities under the assumption that they exist in a relativistic Fermi

gas (RFG) inside the nucleus. Therefore, as presented in sec. 1.3.3, the nucleon

momenta are distributed in energy levels appropriate to the nuclear binding

potential up to the cutoff at the Fermi momentum pF . GENIE’s RFG model

modifies the upper end of this spectrum according to the short-range correlation

effects parameterized by Bodek and Ritchie [23] (the so-called “Bodek-Ritchie tail”),

which allow for momenta larger than the Fermi momentum. GENIE furthermore
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attempts to model the interactions of final-state particles (as of version 2.6.2, only

pions and nucleons) with other spectator nucleons as the former exit the nucleus

using a third-party library called INTRANUKE (see op. cit. in ref [32]).

There are numerous background processes relevant to this analysis also modeled

by GENIE. Among them are two major classes: first, non-CCQE νe interaction

types where additional hadrons are absorbed in the nucleus or lost in the ensuing

electron shower (chiefly resonant and coherent single charged pion production,

though deep-inelastic scattering—DIS—contributes as well); and second, νµ inter-

actions which produce a neutral pion that subsequently decays to two photons,

one of which is lost or is incorrectly reconstructed (again typically resonant or

coherent production). Resonant and coherent pion production (again, computed

for muon neutrinos and extended via theoretical corrections to electron neutrinos)

are both treated by the Rein-Sehgal model [69], while DIS is simulated according

to the Bodek-Yang model [70]. The implementation of these and other processes is

further elucidated in ref. [32].

5.2.2. Particle propagation simulation in MINERνA

(GEANT4)

For each event, GENIE produces only a list of outgoing particles and their associated

four-momenta. The next necessary step is to determine the detector’s response to

each of these particles, which we do by employing the GEANT4 simulation package

noted first in sec. 3.1. GEANT performs this by stepping particles through the

geometry model 0.1 mm at a time until they exit the simulated detector volume,

decay, interact inelastically in such a way that they are destroyed, or have exhausted

their momentum in non-destructive interactions. The interactions, decays, and

energy loss experienced by a particle are governed by modular collections of

physics models, denoted “physics lists.” MINERνA’s choice of physics list for the
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detector geometry simulation (as distinct from that used in g4numi, sec. 3.1) is

QGSP BERT.

In addition to the above, GEANT also records the amount of energy deposited

in each geometry volume designated “active.” In the MINERνA geometry used for

this analysis, these volumes comprise the inner- and outer-detector scintillator bars,

which fluoresce when ionizing particles pass through them. A mapping from active

volumes to energy deposited in them is passed to the next stage of the simulation,

described in sec. 5.2.3.

5.2.3. Detector read-out simulation

The final step in the simulation chain is to simulate the response of the detector to

energy deposited within it. There are a handful of models which are used in series

to accomplish this.

Optical model

MINERνA’s optical model is responsible for predicting the number of photons

that arrive at at the photomultiplier tube for each channel based on the predicted

energy deposited in each active volume of the detector from GEANT4.

As noted in sec. 5.2.2, the dopant fluor material in the detector’s scintillator

strips responds to charged particle passage by emitting ultraviolet radiation ac-

cording to a formula known as Birks’s Law [11, 71], which accounts for a known

saturation effect at higher energy depositions. (We use the value of Birks’s con-

stant used by the MINOS collaboration for their detectors, which use the same

scintillator material: kB = 0.133± 0.040 mm/MeV [72]; the effect of uncertainty in

this parameter is addressed in a systematic uncertainty in sec. 7.10.) The optical

model begins, therefore, by calculating, for each energy deposition in an active

geometry volume, the mean number of photons created by such a deposition. A
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photon pulse object is then constructed to match the appropriate photo-statistics

for the detector’s optical response. Specifically, we record a bunch of photons

with size drawn from a Poisson distribution; this distribution has mean equal to

the number of photons given by Birks’s Law, modified by the light yield factor

computed in the global energy calibration (sec. 5.3.4), further multiplied by a value

drawn from a Gaussian with mean 0 and standard deviation 0.0557 (our measured

smearing). Though it is physically inaccurate to do so, we assume that all photons

in the pulse were created at the same moment (that is, when GEANT reported the

parent particle to have traversed the active volume); we compensate for the actual

spread due to the non-negligible fluor decay times in a later step of the simulation.

Pulses so created are first smeared according to a scale factor keyed to the

strip in which they were created. This scale factor is drawn from a Gaussian of

mean 0 whose width was chosen to obtain agreement between the simulated and

data distributions of photoelectrons after all other calibrations were applied; in

this analysis, the smearing is roughly 6% (σ = 0.0557). The scale factor for a

channel is chosen randomly at the beginning of a simulation job and is fixed for the

remainder of the job; as one job typically corresponds to 1017 P.O.T., each channel

samples approximately 18,900 independently-chosen scale factors throughout the

entire simulation sample.

Once scaled, the pulse is then reduced in magnitude by the values measured in

various calibration efforts to better model the physical behavior of the detector: the

mean attenuation lengths in the wavelength-shifting fiber within the strip and the

clear fibers which connect to the PMT; and the strip response factor measured in the

calibration described in sec. 5.3. Thus two new average numbers of photoelectrons

are constructed (one modeling a cohort of photons traveling directly from the

interaction point towards the photomultiplier, and another modeling a second

cohort traveling to the mirrored end of the fiber and reflected back), and are used as
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the means of Poisson distribution from which new integer numbers of photons are

drawn. The pulse henceforth is regarded as being the sum of these two. Similarly,

we correct the pulse time for the time spent propagating in the fibers.

PMT model

The PMT model simulates the response of the photomultipliers to the light arriving

at the end of the optical chain and produces a prediction of the outgoing current

on their anodes.

We begin by attempting to model the phenomenon of optical cross-talk (first

described in sec. 4.3.1). The simulation of optical cross-talk is based on bench

measurements inherited from MINOS (described in detail in ref. [73]). The model

employed in the measurement assumed that optical cross-talk photons are produced

according to a Poisson distribution whose mean the tests purported to measure.

Accordingly, in the MINERνA simulation, we introduce additional pulses in each

cross-talking channel in keeping with the number of optical cross-talk photons

produced according to the model. That is, for each neighbor pixel, given the charge

(due to physics activity) simulated in a particular illuminated pixel, we randomly

sample from a Poisson distribution with mean given by the MINOS measurement’s

measured cross-talk strength to that neighbor. However, we find that this is not

sufficient to model the cross-talk, so we use the in situ calibration results from

sec. 5.3.7 to further tune the simulation. In this procedure, we examine the muon

data on a channel-by channel basis and compute the ratio between the cross-talk

fraction as measured in the data to what was measured in the unscaled simulation.

The resulting scale factor is then applied to the Poisson mean for the channel pair

as returned by the MINOS measurement. This does not completely account for

the difference between the distributions, as shown in fig. 5.2, but the disagreement

in the mean is largely resolved (they differ by 1.5% instead of the nearly 5% before
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Figure 5.2: Cross-talk fractions measured via the algorithm described in sec. 5.3.7,
before and after applying the calibration noted in that section.

the second tuning), and the shape matches much better in the high-side tail.

Each pulse (either from physics or from optical cross-talk) then undergoes a

simulation of the amplification process. Because the details of the electron shower

development in the first two stages of the dynode chain dominate the result, we

simulate them individually. This is done by drawing the number of electrons in
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the subsequent stage from a Poisson distribution with mean equal to the number

at the current stage multiplied by a factor gn modeling the gain due to the voltage

ratios between dynodes, according to Rademacker’s model [74]:

gn = g0

(
rn
r0

)α
(5.1)

with

g0 = G1/ND

(
1

rND−1
0

ND−1∏
i=1

ri

)−α/N
(5.2)

where the ri are the voltage ratios on the dynodes (3:2:2:1:1:1:1:1:1:1:1:2), G is

the overall channel gain measured in the calibration of sec. 5.3.2, ND is the total

number of dynodes (in MINERνA, 12), and α is a value provided by the PMT

manufacturer (0.75).

Once these two stages of the acceleration chain have been simulated in their

entirety, the remainder are simulated together using a Gaussian approximation

where the final number of electrons is drawn from a Gaussian with mean and

standard deviation given by the following:

µ = n2

ND∏
i=3

gi (5.3)

σ = µ

√√√√n2

ND∑
i=3

(
i∏

j=3

gj

)−1

(5.4)

(where n2 is the number of electrons in the channel at stage 2, and the other

parameters are as before).

Within the simulation of the dynodes, we also account for dynode-chain cross-

talk (again see sec. 4.3.1) using the following model. Once again we begin with

mean leakage fractions measured in MINOS PMT bench testing [73]. Their model
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Dynode stage original channel cross-talk channel

0 (input) P 0

1 g1P fP

2 g1g2P g2(fP ) + f(g1P ) = (g1 + g2)fP

3 g1g2g3P g3 ((g1 + g2)fP ) + f(g1g2P ) = (g1g3 + g2g3 + g2g3)fP
...

...
...

N P
∏N

i=1 gi (g1g2 · . . . · gN + g1g3 · . . . · gN + . . .)fP

Table 5.1: Number of electrons in each stage of the dynode-chain cross-talk model used
in the simulation. P is the original number of photoelectrons illuminating
the channel, the gi are the gain ratios for the dynodes, and f is the constant
leakage fraction that is to be determined according to eq. 5.6.

assumes that during the acceleration of electrons from dynode to dynode, secondary

electrons created at one dynode may be ejected in such a direction that they end

up in a neighboring channel. The result is then a smaller cascade in the non-

illuminated channel and therefore a weak charge signal on the corresponding

anode. To implement such a model within the simulation, we make two further

assumptions: first, that the leakage fraction is constant from dynode to dynode2;

second, that electrons leaked to an adjacent channel do not create a large enough

pulse to generate significant cross-talk in the originally illuminated channel3. Under

these assumptions, the number of electrons in the original channel and a cross-talk

channel as the simulation progresses are illustrated in tab. 5.1.

The measured total cross-talk fraction for the channel F (from the MINOS

measurements) is then the ratio of the cross-talk electrons to the original channel

2This assumption is suspect, particularly because the voltage ratios between successive dynodes
are not constant. However, dynode-chain cross-talk is a small enough effect that the model
used is ultimately somewhat unimportant. This one was chosen because it is simple to work
with.

3Given the magnitudes of the measured cross-talk fractions, this assumption is certainly true
within the tolerances of the measurement.
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electrons at the end of the simulation, or

F = f

N∑
i=1

(gi)
−1 (5.5)

which makes

f = F

(
N∑
i=1

(gi)
−1

)−1

. (5.6)

The calculated f is then used to simulate the number of cross-talk electrons for

each dynode stage, for each channel.

Finally, after all the amplication stages and cross-talk simulation are complete,

the resultant number of electrons is converted to a charge, at which point it is

passed to the next phase of simulation.

FEB model

Simulation of the FEBs’ charge digitization scheme described in sec. 4.3.2 takes

place in four separate phases. In the first, simulation begins with the amplification

of charge incoming from each PMT anode according to the three gain ranges of

the FEB system (which amplify by factors of 1, 4, and 16 from “low” to “high”

gain). After amplification, extra charge from a rudimentary simulation of cross-talk

between the channels within the FEB is then inserted into the channels. Because

the strength of FEB cross-talk is very low, we simulate it only in nearest- and

next-to-nearest-neighbor channels; moreover, the measurements on which its scale

is based were of very limited statistics. Fortunately, in nearly every case, FEB

cross-talk does not ultimately produce charges of any real consequence.

Once amplified, pulse objects are next funneled into a simulation of the discrim-

inator circuits, where simulated charge is divided into the “buckets” mentioned

in sec. 4.3.2. To perform the segregation, we employ a scanning algorithm which
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recursively subdivides the charges in the high gain range into “windows” in time.

We begin by creating a discriminator window object which corresponds to the

entire gate. Following this, we iteratively examine simulated PMT anode charge

objects, sequentially in time order, until all of them are dispatched, using the

following procedure. For each charge, we first add it to whichever discriminator

window contains it in time. Then we ask if this charge, added together with all

the other charge contained in the window, crosses the discriminator threshold; if

it does, then the window is marked as corresponding to a discriminator having

“fired,” and all this charge together is considered to have occurred at the time when

the discriminator threshold was first surpassed (which mirrors the behavior of the

hardware). In this case the end of the discriminator window is moved to occur at

the end of the “push time” (the discriminator latch time + 16 system ticks, as

described in 4.3.2), a window for “dead time” is created, and a new readout window

is created spanning from the end of the dead time window until the beginning of

the next window (or the end of the gate if there are no more windows). If, on

the other hand, the charge falls in a window which already has its “discriminator

fired” flag set, the charge is merely added to the window, though in this case its

full timing information is retained (since it occurred during a dedicated readout

window). Finally, charge that is assigned to a “dead time” window is masked from

further propagation through the simulation chain.

The next stage in the FEB model is for these now-discretized charge buckets

to be collected together and summed. Thus, each channel’s discriminator window

objects and their charge are considered, and summed pulse objects are formed

with time information based on the discriminator flag status: in windows for which

the discriminator fired, the hit time is equal to the discriminator fire time (or

precise later time within the discriminator window); and in windows for which the

discriminator did not fire, the hit time is equal to the end of the discriminator

window (which, in the case of the last discriminator window, is the end of the
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gate). Once again this is consistent with the means by which times are assigned to

hits in the real detector data stream. The resultant containers correspond to the

analog quantity of charge pushed out of the FEB pipelines.

Finally, “hit” objects (in the sense of sec. 5.1.3) are formed by simulating the

analog-to-digital converters of the FEBs. As onboard a real FEB, the incoming

analog charge is “amplified” once more—though in this case, the gain factor

actually reduces the charge by a factor of 1/16—and then added to a value drawn

from a Gaussian which models the ADC’s baseline pedestal (see sec. 5.1.4). (The

parameters for this Gaussian are chosen by examining the mean and RMS of the

measured pedestal distributions in data; typical choices are µ = 440.0 and σ = 8.0.)

Hereafter, however, the model diverges somewhat from the actual workings of the

hardware: instead of creating an ADC-digitized charge for every channel served by

a discriminator that latched (and then deferring pedestal suppression to a later

step), as is done with data (on which again see sec. 5.1.4), in the simulation

we immediately remove all charges except those which, when digitized, lie above

a so-called “sparsification threshold” of 3σADC designed to mimic the pedestal

suppression process. This method significantly reduces the size of the output data

stream. The timing information propagated from the discriminator simulation is

then attached, and the charge is assigned a “hit number” corresponding to the

discriminator pipeline push sequence. All of this information together—digitized

charge and discriminator status, along with timing information—comprises so-

called “raw hits” which correspond to the data read out of the DAQ on the real

detector. Subsequently, all of the calibrations described in sec. 5.3 below are

applied to the raw hits to produce calibrated hits which can be directly compared

to those from the data.
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Overlay of data onto simulation

Thus far we have adopted a more or less “first principles” approach to the simulation

of interactions in the detector. But there are a handful of phenomena remaining

which impact the data stream in ways that make them difficult to simulate with

this a priori technique. First and foremost among these is the nature of the beam

as containing bunches of neutrinos which must traverse several hundred meters of

material between production and the detector itself; the resultant copious flux of

particles which enter the detector from the outside—as opposed to the products

of a neutrino interaction within the detector—requires vast computing resources

to simulate in sufficient detail. But the effect of externally-produced particles

(particularly muons produced in the rock upstream of the detector) cannot be

ignored, because they are a primary source of the dead time described in sec. 4.3.2.

Other incidental activity like radioactive decays within the detector materials

or the occasional cosmic ray passage can be mostly negligible but may provide

backgrounds for certain classes of events. To cope with these challenges in a

time- and labor-effective manner, we have chosen to augment our simulation by

overlaying each simulated neutrino event with a gate drawn from the data.

Implementation of this overlaying procedure is fairly straighforward. After

simulation of a neutrino event completes, we select fully calibrated data gates from

the same running period as the simulation is intended to model. To conserve disk

space, we choose hits from the data with time no less than 50 ns before and no more

than 200 ns after the extent of the hits from the simulated event. After inserting

the data hits into the stream, we retroactively mask hits which fall into a dead-time

window (induced either by the simulation or the overlaid data as appropriate),

irrespective of their origin in data or simulation, using the same principle as in the

simulation of dead time described above.

At this point a simulated event is ready for reconstruction.
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5.3. Data calibration

A series of calibrations is necessary to convert the digitized measurement of charge

read off the anode of a channel on a PMT to a measurement of energy actually

deposited in a scintillator strip. This section describes each calibration in the

sequence, along with the procedure for obtaining the relevant constants. The full

calibration chain primarily serves to convert ADC counts from the FEB (for digits

surviving the pedestal suppression step of sec. 5.1.4) into an estimate of the energy

deposited in a scintillator strip, according to the following rule:

E = Qi(ADC)× 1

gi(t)
× exp

(
− li
λ

)
× ηi × Si(t)× C(t) (5.7)

with:

Qi The FEB’s ADC response function, described in “FEB calibration”;

gi(t) The value of channel i’s gain measured closest to the time of the event t, as

described in “PMT gain calibration”;

li Channel i’s clear optical fiber length;

λ The clear optical fiber attenutation length (measured ex situ [63]);

ηi The attenuation factor within the scintillator strip, described in “strip response

calibrations”;

Si(t) The value of strip i’s relative response measured closest to event time t, as

described in “strip response calibrations”;

C(t) The value of the overall energy scale constant closest to event time t, described

in “global energy scale calibration”.

Two other calibrations apply to the raw data (a calibration of hit times, and a

calibration for the cross-talk subtraction procedure), as well as a calibration which
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determines the actual installed hardware alignment, which are also described here.

Though the FEB and PMT gain calibrations are applied only to the data (for

technical reasons discussed in sec. 5.2.3 above), all of the remaining calibrations

apply equally to the data and the simulation samples.

5.3.1. FEB calibration

The individual responses of each FEB’s ADC chip to incoming analog charge from

the discriminator pipelines vary somewhat, thus requiring a calibration to anchor

ADC response (which is what is actually reported by the FEB) to the anode

charge output by the PMT. Therefore, before installing them on the detector, we

perform an ex situ calibration on each FEB in which a known amount of charge is

injected into the FEB and the response in each of the three gain channels is fit

to a three-piece linear spline function (called a “trilinear function” in MINERνA

jargon); the result is Qi in eq. 5.7. We store the output of these fits (whose free

parameters include the slopes and intercepts of the three line segments and the

ADC values where they intersect) in a database for use during offline reconstruction

of data.

5.3.2. PMT gain calibration

The gain function of a photomultiplier is influenced by environmental factors such

as temperature in addition to evolving over time as the PMT ages. Therefore,

MINERνA collects dedicated calibration data on the PMT gains on a daily basis.

(Because temperature in the detector hall is well controlled, and the time dependence

of the gains on age is characterized by a scale of weeks to months, this is a sufficient

granularity to correct for the effects we observe.)

We employ an in situ technique to measure the gains of the PMTs installed on

the detector. Light from 23 blue (472 mm) LEDs is fed into an optical distribution
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system which delivers light from two independent fibers to each PMT box. Because

pulses and the subsequent readout are short—less than 1s—they can be interleaved

between beam spills, as noted in sec. 5.1.1; this allows us to collect as many LED

flashes as we require for the calibration to be successful. Now, the light injected

into the optical fibers that couple to the LEDs is not uniform from fiber to fiber,

so we require a method of calibration that is insensitive to the number of photons

collected during calibration readouts. Rademacker’s model for PMT gains [74]

admits such a procedure, assuming that the rate of photon incidence is constant in

time: the gain g is given by

g =
σ2
Q − σ2

p

Qe(1 + w(g)2)
(5.8)

where Q and σQ are the mean and standard deviations of the measured anode

charges, respectively, σp is the standard deviation of the ADC pedestal, e is the

electron charge, and the function w(g) is defined such that

w2 =

ndynodes∑
j=1

(
j∏
i=1

1

gi

)
(5.9)

(with gi from eq. 5.1). (This procedure is explained in further detail in ref.

[63].) The values of g so calculated for each channel i on a daily basis yield the

gi(t) in eq. (5.7).

5.3.3. Strip response calibrations

There are two calibrations applied to correct the response seen at the photodetector

to an ideal absolute response value directly proportional to the energy deposited
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in the strip. The first is a correction for the attenuation of the scintillator light

as it propagates down the strip and then the optical fibers which couple the strip

to the PMT. Owing to their varying distances from the PMTs, different strips

are connected to different length fibers, and thus the correction for the clear fiber,

exp
(
− li
λ

)
in eq. (5.7), is a function of the channel i. For the attenuation in the

strip, by contrast, the information available in the initial calibration phase is not

sufficient to determine the longitudinal distance from the strip end to the location

where the energy was deposited, so we apply the same attenuation correction (half

strip length) to each hit. After the tracks of sec. 6.1.3 have been reconstructed, we

make further corrections to the actual point of traversal (using the 3D information

from the track fit) for those hits that were able to be identified with a track, which

is why the correction η is written as a function of channel, ηi, in eq. (5.7).

The second calibration is intended to correct for the differing response of the

detector strips to a fixed amount of energy deposited in them. In particular,

manufacturing and assembly effects like voids (bubbles) in the epoxy used to glue

the optical fibers into the strips, minor inconsistencies in the material composition

of the scintillator material, and couplings in the optical systems result in light

yields that vary from strip to strip. Therefore, we construct correction factors for

each strip which adjust each strip’s response such that the mean correction factor

is 1.0.

As the relative strip response calibration is an in situ calibration, we require a

mechanism by which as many strips as possible are illuminated with an identical

amount of light (which must furthermore be within the tolerances of the ampli-

fication system). An ideal source for this is the flux of external particles which

originate from interactions of the neutrino beam with the rock upstream of the

detector hall. Because muons are produced in every charged-current muon neutrino

interaction, and are comparatively long-lived and interact only electroweakly, they
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are the dominant externally-incident particle, and are, in fact, abundantly present

in the data stream (we typically observed several per neutrino bunch during the

running period of this analysis). Moreover, at energies typical to those created by

the NuMI beam (several GeV), muons interact with matter primarily by ionization

of atomic electrons, leaving behind energy deposits very near the minimum of their

well-known energy-loss distribution (e.g., Fig. 30.1 in ref. [11]). (This behavior

makes them the prototype of what is known as a “minimum-ionizing particle,” or

“MIP”). Thus we can use the minimum energy deposited (per unit areal density)

by these “rock muons” as they traverse the detector as the standard candle we

need for the strip response calibration.

We thus begin with a sample of rock muons, which we select by examining events

where the long track reconstruction of sec. 6.1.3 has found a track, and further

require that the track entered from the front of the detector. Obtaining sufficient

statistics in every single channel of the inner detector region typically requires of

order 105 rock muons within the sample, which corresponds to roughly 2-4 weeks’

worth of data taking. Once this sample is assembled, the energy deposited in each

strip must be corrected for the estimated length of the muon’s path through that

strip, because rock muons can pass through MINERνA at different angles, and

the energy deposited by a MIP depends directly on the amount of matter with

which it interacts. (This requires that procedurally, we must finalize the alignment

correction of sec. 5.3.5 first, to ensure that the path length estimate is reliable.)

The reconstructed track parameters are used to perform this correction. The peak

of the resultant energy distribution for each channel is then fitted with an iterative

truncated mean technique, and the final constant for channel i, Si in eq. (5.7), is

calculated from the following formula:

Si =

(
Ei

)−1

1
N

∑
j

(
Ej

)−1 (5.10)
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where Ei is the peak (truncated mean) energy observed in strip i. This procedure is

repeated roughly monthly to follow the time dependence of the constants, yielding

Si(t).

As before, much more detail on this procedure is given in ref. [63].

5.3.4. Global energy scale calibration

The final step in the energy calibration of eq. 5.7 is the determination of C(t), the

global energy scale, which relates the best estimate of light in a channel (after all

the previous corrections) to an absolute energy in physical units.

For this calibration we once again make use of the rock muon sample described

in sec. 5.3.3. This time, however, we also require a corresponding simulation

sample for comparison. The latter is generated by using only muons from the

data rock muon sample which pass into the MINOS detector, where they can be

charge- and momentum-analyzed. After adding back an estimate of the energy lost

within the MINERνA detector during their traversal, the momentum vectors of

this sample of rock muons can be used as a seed for the simulation, resulting in a

set of simulated muons with similar kinematics to the rock muon sample.

We apply the basic reconstruction techniques described in sec. 6.1 to both

samples, obtaining spatially contiguous clusters of illuminated strips (sec. 6.1.2)

which can be fit to straight-line tracks (sec. 6.1.3). For muons in which the

tracking succeeds (which is to say, muons for which exactly one track object

was reconstructed, and for which the track spans the detector and matches to a

track reconstructed in the MINOS detector), we proceed to compare the energy

distributions of clusters calculated with a trial C. In particular, we fit both the

peak regions of each distribution with a fifth-order polynomial. (Disagreements

between these quantities are postulated to be due to the optical response of the

scintillator—the “light level”—and are corrected by the tuning of a light yield
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parameter which is fed back into the simulation such that the fitted peak of both

distributions agree.) The value of the simulated reconstructed cluster energy

distribution is plotted against the distribution of the true energy deposited in the

illuminated strips, and fitted to a line; the slope of this line is the global energy

scale C (see fig. 5.3).
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Figure 5.3: Reconstructed cluster energies vs. true cluster energies, fitted to a line.
Courtesy A. Mislivec (MINERνA).

Because the light output of scintillator is known to degrade as a function of

time [75], we must repeat the global energy scale calibration periodically to account

for it, making C actually C(t).

As previously, further detail on this calibration beyond what is given in this

section is described in full detail in ref. [63].



95

5.3.5. Alignment calibration

Variations in the positioning of the detector elements relative to the detector axis

are inevitably introduced during the installation process. We expect the largest

variance to be between the positioning of the individual planes, which are pre-

assembled and then installed using a crane. We apply a calibration procedure to

correct for two types of plane misalignments: transverse variation (perpendicular

to a plane’s strip direction) and rotation. Between these we can completely

characterize any misorientation of a detector plane in the x− y coordinate space.

To compute the corrections necessary, we once again turn to the rock muon

sample of sec. 5.3.3. By plotting the energy observed in a strip as a function of its

reconstructed transverse position, we are able to fit for the actual location of the

triangle peak. The displacement of this fitted peak from its expected position is

identically the transverse correction. Similarly, the rotation correction is deduced

by performing the above correction in bins along the longitudinal strip direction.

Since a strip that is perfectly aligned with the expectation will produce an identical

shift in all the bins, a rotation can be determined by fitting the calculated shift as

a function of longitudinal position. We average these over all the strips in a plane

to obtain the corrections for the plane. Illustrations of both of these fits are given

in fig. 5.4. As usual, further details are given in ref. [63].

5.3.6. Timing calibration

Light generated in a scintillator strip in the detector must traverse several meters

of optical fiber (both within the strip and without) before it reaches a photosensor.

Since the amount of optical fiber between the strip end and the corresponding

PMT varies from channel to channel, we must account for this delay as part of the

calibration chain. In addition, the daisy-chain system used to connect the detector

FEBs in serial (described in sec. 4.3.3) introduces a measurable offset due to the
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Figure 5.4: Sample fits to the plane displacement and rotation for two different planes:
at left, reconstructed energy as a function of displacement along expected
triangle base position (averaged over many muons); at right, reconstructed
energy as a function of both triangle base position and longitudinal position.
In both cases, fits are illustrated with solid lines. From ref. [63].

transport time of information through the electronics. Finally, the relaxation time

of the fluoror compound used to dope the scintillator strip polystyrene (making
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it scintillate in the presence of ionizing radiation as particles pass through) is of

the order of nanoseconds, which is comparable to the timing resolution of the

electronics, so again, we must compensate for it. (The non-linear time response

of the scintillator as a function of incident light is often known as “time slewing,”

jargon which will be adopted throughout the remainder of this section.)

Transport time in the fiber is corrected based on the measured index of refraction

of the fibers (from which the speed of light therein can be calculated) and the

measured lengths of the fibers. Taking this adjustment into account, we compute

the remaining corrections using an iterative procedure which takes as input the

distributions of the calibrated number of photoelectrons estimated in strips (see

secs. 5.3.2-5.3.4) and the corresponding times in rock muon events. In these events,

the distribution of hit times (corrected for muon time-of-flight and fiber transport)

for hits occurring in a particular FEB—effectively a distribution of the time slewing

as a function of pulse height—is fitted to a third-order polynomial in 1/
√

hit PE.

These distributions are then compared and provisional offsets are calculated to

make them agree. In successive iterations, the offsets are applied as corrections

and fine-tuned. The calibrated offsets necessary are in some cases as large as 30 ns.

5.3.7. Cross-talk calibration

A number of processes can cause a signal in one PMT channel to produce a signal

in another channel. These are collectively known as “cross-talk”. While these can,

in principle, be differentiated by tests on the bench, once the detector components

are assembled and installed it is virtually impossible to separate them from one

another with any significant confidence, particularly at large pulse-heights. The

dominant types of cross-talk in MINERνA, as noted in sec. 4.3.1, are optical

(fiber-to-PMT coupling) and PMT internal (dynode chain).

The ideal probe for a measurement of either type of cross-talk in the detector
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would be one in which individual pixels were illuminated with a light pulse of

well-known energy. Unfortunately, once a PMT is mounted on the detector there

is no system available to MINERνA that can accomplish this goal. (In particular,

the light injection system used for the gain calibration of sec. 5.3.2 cannot be used

because it illuminates all of the pixels of a PMT simultaneously.) The next best

option is to use data generated by neutrino interactions. For this measurement,

we once again sample from the rock muon data set.

As in the preceding sections, we rely on basic reconstruction of rock muons into

time slices and spatial tracks. Hits falling within a rock muon’s time slice are then

classified as signal or noise based on whether or not they have been associated to

the track by the track reconstruction software, since the fiber weave described in

sec. 4.3.1 displaces cross-talk hits far enough away from the track that they are

not associated to it. Cross-talk hits can be further distinguished from other noise

by assuming that such hits occur in the same PMT as on-track activity; we then

assume each cross-talk candidate hit to be associated with the on-track hit that is

nearest to it on the PMT pixel grid. A sketch of how this process would work for

a typical muon event is shown in fig. 5.5.

Once hits have been identified as signal or cross-talk and the rest discarded, an

average cross-talk fraction fxt for the PMT is defined as the ratio of the summed

energy of cross-talk hits associated to that PMT to the energy of the on-track

hits. Various permutations of this metric are also used (most notably the “nearest-

neighbor” pixel cross-talk fxt,NN average for each PMT, because the strongest

cross-talking pixels are generally nearest-neighbors).

We use the calculated values of fxt,NN to provide the tuning for the simulation

of cross-talk described in sec. 5.2.3. Furthermore, we attempt to subtract cross-

talk from both simulated and real data events based on a model where the null

hypothesis corresponds to cross-talk for a given channel based on fxt,NN. The
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Figure 5.5: Schematic depiction of how cross-talk on the PMT face maps to scintillator
strips. The darkest blue and red (stars on the PMT diagram; strips 65 and
66 in the scintillator sketch) are the original signal from a muon track; the
cross-talk energy is colored according to which original signal hit it will
be associated with by the algorithm described in the text (darker means
stronger cross-talk). Purple represents cross-talk that will be associated to
either hit at random since it is ambiguous.

p-values calculated for hits in 2500 simulated neutrino events as a function of the

true cross-talk fraction of those hits is shown in fig. 5.6. We tag any hits with

p > 0.0001 (i.e., log10(p) > −4) as cross-talk candidates; they are not used by the

reconstruction algorithms of ch. 6.
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Figure 5.6: Cross-talk p-values for hits in simulated neutrino events as a function of
true cross-talk fraction, where the p-value is calculated as described in the
text.
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6 νe CCQE event reconstruction

Reconstruction of neutrino events begins with the fully calibrated (strip, energy,

time) multiplets which are the output of the lengthy calibration procedure of sec.

5.3. These are commonly referred to as “Digits” (short for “digitizations”), jargon

which we will employ below. Digits are grouped first by time, then further by spatial

proximity, and finally, into higher-level reconstructed objects like particle-trajectory

tracks.

6.1. Generic reconstruction1

Event reconstruction begins with a number of algorithms that perform generic

reconstruction tasks designed to help isolate neutrino interactions irrespective of

the reaction channel.

6.1.1. Time bunch separation

Because the MINERνA detector’s time resolution is very good (∼ 3 ns) compared

to the mean time between neutrino interactions in MINERνA in this data set

(typically hundreds of ns), we begin isolating neutrino interactions by grouping

Digits into so-called “Time Slices” according to their reconstructed time. The

peak-finding algorithm we employ to do the grouping is based on a scanning

method in which Digits are first sorted by time and then examined in sequential

order. In particular, we require Time Slices to contain a minimum of roughly

1In this discussion, the names of specific reconstructed objects—e.g., “Cluster,” “Track,” etc.—
will be capitalized so as to distinguish them from the generic usage of the terms.
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2 MeV worth of energy (on the order of 70% of the expected energy deposited by a

minimum-ionizing particle in one scintillator plane of MINERνA) by searching for

80 ns “windows” of Digits which cumulatively surpass this energy threshold. If any

such windows overlap, they are then merged, subject to the constraint that the

first 30 ns and last 50 ns of the merged distribution are excluded from the resultant

Time Slice (which prevents overlap of close Time Slices with a true valley between

them).

Digits whose discriminators did not latch are excluded from the creation phase

of Time Slice construction since their times are unreliable (see sec. 4.3.2). However,

because such a Digit can stem from a read-out cycle induced by activity in another

channel within the same TRiP-t whose discriminator did latch, when we find an

undiscriminated Digit that falls within the same TRiP-t and read-out cycle as a

discriminated Digit, we attach such Digits to the Time Slice of the Digit which

exceeded the threshold.

6.1.2. Spatial clustering

Once collected into Time Slices, we proceed to group Digits sharing a slice into

groupings known as “Clusters,” collecting them by spatial proximity. Clusters so

formed are first of all required to be contained entirely within a single detector plane

(in the inner detector region) or module (in the outer detector region). Further,

Digits within a Cluster always must be immediately adjacent; no transverse gaps

between Clusters are allowed. In the OD, this requirement implies that Clusters

always consist of either a single Digit or the two neighboring scintillator bars in

a single story. For ID Clusters, we additionally classify Clusters by the following

patterns:

Cross-talk candidate Cluster A single Digit which was identified by the cross-talk

rejection scheme (see sec. 5.3.7) as likely cross-talk. (Cross-talk Digits are
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therefore disallowed from being used in any other types of Clusters.)

Low-activity Cluster Any collection of a nonzero number of Digits whose energies

sum to less than 1 MeV.

Trackable Cluster A collection of Digits whose energies sum to between 1 and

12 MeV, so long as:

(a) there are four or fewer Digits;

(b) at least one Digit contains 0.5 MeV or more; and

(c) any Digits with more than 0.5 MeV of energy are contiguous.

Heavily-ionizing Cluster Any otherwise Trackable Cluster which exceeds the

12 MeV cutoff for total Digit energy.

Super-Cluster Any Cluster containing five or more Digits; also, any Cluster which

is not Low-activity and does not satisfy the requirements for Trackable or

Heavily-ionizing Clusters.

The clustering procedure’s primary purpose is to ease the recognition of trajec-

tories, and these definitions reflect that aim. In particular, Trackable Clusters are

intended to correspond primarily to the energy deposition pattern of minimum-

ionizing particles as they traverse the inner detector, while Heavily-ionizing Clusters

tend to collect the energy from stopping particles which do not initiate cascades.

Super-Clusters and Low-activity Clusters are “catch-all” designations created to

collect other activity that does not fit these patterns; most showering activity (for

example) produces some of each type.

6.1.3. Track formation

We attempt to reconstruct single-trajectory objects called Tracks in the inner-

detector region of the detector using a multi-stage line segment fitting-and-merging

algorithm.
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Track seeding

The initial stage of the track finding algorithm consists of forming track “seeds”

out of triplets of Trackable Clusters which share a Time Slice. In this phase, we

search for groups of three Clusters lying within three consecutive planes of the same

detector view (X, U, or V; see sec. 4.1). If the Clusters within such a grouping

can be fit to a line segment, we consider them a potential piece of a track, and

therefore classify them together as a track “seed.” As we consider all possible

triplets satisfying these criteria, a single Cluster is allowed to contribute to multiple

seeds. (This does not result in double-counting since seeds will be merged together

in the next step of the algorithm.)

It should be noted that the threefold combination of (first) the requirement of

a straight-line fit, (second) the finite width of scintillator strips and finite plane

pitch in MINERνA, and (finally) the insistence on Trackable Clusters containing

no more than four Digits, all taken together, result in an upper limit of about 70◦

for the angle between the detector z-axis and the seed, which propagates through

to a similar constraint for the resulting Track object. Though this is a potential

limitation of the tracking technique, the kinematics of NuMI neutrinos impinging

upon the MINERνA detector result in the vast majority of neutrino interaction

products traveling within reasonably shallow angles to ẑ. The marginal impact

that this weakness has on the analysis will be discussed in sec. 6.2.

Seed merging to form track candidates

Once we have obtained a set of seeds in each of the three detector views, we next

attempt to combine them into longer trajectories. Seeds within the same view

are examined pairwise for consistency in slope and overlap in z, and if a pair

should satisfy those criteria, a “Track Candidate” is formed from the union of their

Clusters. This Track Candidate is then compared pairwise to all the remaining
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seeds within its view, absorbing any that are consistent according to the test noted

above. This procedure is repeated with any unused seeds until no candidates are

formed or no seeds remain.

After the seed merging step, we also attempt to merge Track Candidates together

so as to provide the minimum number of inputs to the final step. Candidates are

combined with very similar criteria to those for seeds; notably, however, we do not

require Candidates to overlap to be merged. This allows the resulting tracks to

span portions of the detector containing dead strips.

Candidate merging to form three-dimensional tracks

So far we have three independent sets of two-dimensional Track Candidates sepa-

rated by detector view. At this point, we sequentially apply two separate strategies

to combine as many of them as possible into three-dimensional trajectories in the

detector.

The first strategy searches through the Candidates to find triplets which contain

one from each detector view and which substantially overlap along the detector

z-axis. Next, a Kalman filter-based fitter [76] attempts to fit them to a three-

dimensional line, allowing for mild scattering along the track. If the fitting

procedure converges, a reconstructed trajectory known as a Track is constructed

out of line segments between a series of nodes, each of which corresponds to the

fitted position at one of the input Clusters. (Triplets of Candidates corresponding

to a subdominant toplogy where a significantly longer Candidate matches to two

pairs of shorter Candidates in other views—corresponding to the case where a

particle undergoes a scattering parallel to the orientation of one view—are found

by this search as well. In their case, the longer Candidate is broken such that

two sets of three shorter Candidates result. These Candidates are then formed

into tracks by the procedure described above.) Because it requires at least one
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Track Candidate—and therefore one track seed—in each view, and because the

arrangement of views (on which see sec. 4.1) is such that there are twice as many

X-view Clusters as U-view or V-view Clusters, this approach requires a minimum

of 11 sequentially illuminated planes to obtain a Track.

Once all of the Tracks that can be found by the above technique have been

exhausted, any Track Candidates that have not been thus used are passed to the

second Track creation algorithm. In this case, we search for doublets (instead of

triplets) of Candidates in differing views that substantially overlap in z. For each

doublet, we then search in the remaining detector view for Clusters not part of any

Track Candidate that are consistent in three-dimensional position with the three-

dimensional trajectory formed from the Track Candidates. If sufficiently many

are found, a Track object is made from the combination of the Track Candidate

pair and these Clusters. As with the three-Candidate version, Tracks found this

way are also subjected to a fitting procedure based on a Kalman filter, which is

required to converge in order for the Track to be retained.

After both of these algorithms have formed as many Tracks as they can, any

remaining Track Candidates are discarded and their constituent Clusters are

released for use in other reconstruction algorithms.

6.2. νe CCQE-specific reconstruction

Broadly speaking, events which will pass the signal selection described in more

detail in sec. 7.1.1 can be characterized as containing an electron or positron,

no muons, and “not much else” (the precise definition of which is elaborated

later). Therefore, the task of the reconstruction detailed in the following sections is

primarily to locate events containing electrons and no muons. Further requirements

spelled out in ch. 7 will be used to enforce the remainder of the signal selection.



107

6.2.1. Data reduction

We begin our reconstruction by attempting to reject events that are obvious

background events, since our signal is a rare process in a beam dominated by muon

neutrinos. We demand that candidate events contain at least one reconstructed

Track (as constructed in sec. 6.1.3) and that no Tracks exit the back of the

MINERνA detector as muons are much more likely to do. At this stage, we remove

any activity from candidate events consistent with cross-talk by eliminating any

cross-talk candidate Clusters (cf. sec. 6.1.2) present in the event.

6.2.2. Electron candidate reconstruction

Cone construction

Once we have identified an event containing at least one Track (with no exiting

Tracks), we attempt to determine whether any of its activity is of electromagnetic

origin. The basic philosophy of this step is to construct a cone around each Track in

succession and apply particle identification techniques to the collection of Clusters

contained within it (including the Track).

We iterate through the Tracks and consider each in turn. To construct a cone

about a Track, we need an estimate for its vertex and its main direction, which will

become the cone vertex and axis. Here, we identify the vertex and axis of a Cone

object with the location and direction of the fitted position and direction of the

first node of the Track. We studied the effect of using various opening angles for

the cone; because above 7.5◦ the fraction of electron energy contained in the cone

did not improve substantially (fig. 6.1), we chose a cone opening angle of 7.5◦.

Using the Cone just constructed, we examine all other reconstructed objects in

the event and decide whether they are contained within the Cone. Any objects

that are deemed inside the Cone are consolidated together with it. After every
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Figure 6.1: Fraction of true electron energy retained by cones of various opening angles
as measured in (simulated) particle cannon samples.

other unused reconstructed object has been considered for addition to the Cone, we

enforce a post facto limitation on the separation between energy along the Cone’s

(longitudinal) axis, since we do not expect electromagnetic cascades to propagate

very far in the detector without depositing any energy. To do this, we first sort the

Clusters within the Cone in order of their projection onto the Cone’s axis. (This

projection is performed in three dimensions for any Clusters which have been refit

during the Tracking process, and which therefore have a three-dimensional position;

for all other clusters, the projection is two-dimensional, onto the projection of the

Cone’s 3D axis into the Cluster’s detector view.) We then calculate the distance

between neighboring Clusters along the projection, in units of radiation length. If

anywhere there is a gap of 3 radiation lengths or more, any Clusters beyond the

gap are removed from the Cone.

At this point, we have determined the final set of Clusters which will be
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considered as part of this Cone for the purposes of particle identification. Because

we may have added a substantial number of clusters to the Cone since its original

creation as a Track, our initial guess for the Cone axis may no longer be the best

estimate for the energy we now have reconstructed. Therefore, we attempt to re-fit

the Cone axis. To do so, we create a collection of single-use Clusters, each of which

corresponds to all the Digits within a single plane inside the Cone; from each of

these we create a track Node. Then, we use the same Kalman filter used for Track

correction in the common reconstruction (sec. 6.1.3) to estimate the best Track

through these Clusters. If the Kalman filter’s fit succeeds, we update the Cone’s

axis vector and vertex. Furthermore, we also use the three-dimensional information

from the new Cone axis to determine the longitudinal position of all the (original)

Clusters within the Cone along the strips in the detector. This information is

used to provide the best estimate of energy attenuation within the strips for these

Clusters.

Energy reconstruction

An estimate of the incident energy of the particle represented by the Cone object

of the previous section is an observable that contributes significantly to the particle

identification (and will furthermore feature centrally in the cross-section analysis

of ch. 7). We assign each Cone object an energy reconstructed according to the

hypothesis that the Cone originated from an electromagnetic cascade.

The reconstructed energy is assembled by summing the energies of the Clusters

various regions of the detector, then multiplying them by a set of scale factors that

compensate in an average way for energy lost in the passive materials therein.2

2The various multiplicative factors applying to the different ECAL regions owe to the difference
in geometry between the downstream ECAL region (where sheets of lead completely interleave
with sheets of scintillator) and the tracker region (where a hexagonal “collar” of lead obscures
parts of some strips and all of others). Their precise derivation is given in ref. [62].
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Parameter Description value

αscale Overall scale (compensates for passive fraction of scintillator) 1.326

αE ECAL constant (extra passive material: lead) 2.205

αH HCAL constant (extra passive material: steel) 9.540

Table 6.1: Calibration constants used for calorimetric energy reconstruction.

The particulars of this calculation are laid out in eq. 6.1:

EEM
reco = αscale

(
ET + αEEE + (2αE − 1)EX view

SE + (4αE1)EUV view
SE + αHEH

)
(6.1)

Here, the aggregate calibrated visible energies in the Tracker, ECAL, Side ECAL

(X-view Clusters), Side ECAL (U- and V-view Clusters), and HCAL are represented

by ET , EE, EX view
SE , EUV view

SE , and EH , respectively. The values of the calibration

constants α are shown in table 6.1. These constants were computed by minimizing

the residuals between the reconstructed and true energies in a simulation of electrons

in the detector volume, as shown in fig. 6.2.
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Figure 6.2: Residuals between reconstructed (eq. 6.1) and true energy for electrons
in simulation. The calibration constants used to build the reconstructed
energy are those given in fig. 6.1.

Electromagnetic cascade identification

The judgment of whether the energy collected in a Cone represents an electromag-

netic cascade is performed by examining a multivariate analysis (MVA) classifier

that combines information from three measures of its energy deposition pattern.

Before describing them, however, a preliminary word about lengths is appropriate.

Because MINERνA is a heterogeneous detector, it is challenging to devise variables

which compare in an unbiased way when particle tracks span multiple material

types. To help (though not completely alleviate) this difficulty, where a particle

identification variable uses a length as a parameter, we will usually use one of two

alternatives depending on which is the more natural scale based on the problem at

hand: the radiation length (on which see ref. [11]) or integrated columnar density

(i.e.,
∫
ρdx along the path), the latter of which will usually be denoted as “range.”

Secondly, we will consider the performance of these variables by examining their
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separation of different particle types as simulated in the MINERνA detector in

single-particle samples (which we will refer to using the jargon “particle cannon”).

We use samples of electrons and photons (both considered signal for the purposes

of this section), as well as pions, protons, and muons (considered backgrounds).

All particles were generated with initial momenta of 0-10 GeV, in the central part

of the MINERνA Tracker region, with angles to the z-axis of less than 45◦.

Finally, we will evaluate the accuracy of the simulation to predict the response

of the variables we choose by comparing distributions selected by various techniques

used to select signals in other analyses within MINERνA. For muons, we will

compare rock muons to simulated front-entering muons (see sec. 5.3.3); for pions,

we will use those selected by a charged pion cross-section analysis [77]; for protons,

we compare protons selected in a νµ CCQE analysis [78]; for photons, we examine

the decay products of neutral pions in a charged-current neutral pion analysis [79].

Endpoint energy fraction The first of the three variables incorporated into

the MVA examines the fraction of the Cone’s energy deposited closest to the end

(along the Cone axis). When most particles stop in MINERνA primarily due

to ionization-type energy loss, the characteristic signature is a fractionally large

deposition of energy at the end of the particle track. Muons, protons, and pions

often manifest themselves this way. An electromagnetic cascade, by constrast, is

different: typically its longitudinal energy profile rises to a maximum some distance

from either end of the cascade and then decays away more slowly as the cascade

dies out. Therefore, we construct a measure fendpoint examining how much of the

Cone’s energy is deposited at the end:

1. Project the Cone’s energy into bins of range (size 10 g/cm2) along the Cone

axis.

2. Remove any Clusters off the end off the Cone in bins with less than 2 MeV.

(This reduces the algorithm sensitivity to detector noise.)
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3. Determine the median bin energy (excluding the last bin) Emedian.

4. Compute fendpoint = EN/Emedian (where EN is the last bin energy).

The performance of the endpoint energy fraction variable is shown in fig. 6.3.

Comparisons of simulation and data are shown in fig. 6.4; agreement is very good

except for in the muon sample, but because there are very few muons in the signal

sample, this is not significant.
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Figure 6.3: Performance of the endpoint energy fraction variable as a function of
calorimetrically reconstructed energy. Error bars on each point represent
the smallest interval containing 68% of the distribution in that bin.
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Figure 6.4: Data-simulation comparisons of the endpoint energy fraction variable for
various particle types. All plots are unit normalized.

Mean dE/dx Another way to exploit the different longitudinal energy profile

between particles that stop in MINERνA due to ionization energy loss and those

that initiate electromagnetic cascades (as discussed above) is to consider the

amount of energy deposited per unit range, dE/dx. We use the mean dE/dx (total

reconstructed energy divided by total integrated density traversed along Cone axis)

to reduce sensitivity to fluctuations in the plane-by-plane energy loss.

The performance of the mean dE/dx variable is shown in fig. 6.5. Comparisons

of simulation and data are shown in fig. 6.6. We find the agreement to be

exceptional.



115

Reconstructed particle energy (GeV)
0 0.5 1 1.5 2 2.5 3

M
ea

n
 d

E
/d

x 
o

ve
r 

co
n

e 
(M

eV
/c

m
)

0

2

4

6

8

10

12

14

16

18

20
±e
+p
±µ

γ
±π

±e
+p
±µ

γ
±π

Figure 6.5: Performance of the mean dE/dx variable as a function of calorimetrically
reconstructed energy. Error bars on each point represent the smallest
interval containing 68% of the distribution in that bin.
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Figure 6.6: Data-simulation comparisons of the mean dE/dx variable for various parti-
cle types. All plots are unit normalized.
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Median transverse width One of the most recognizable features of an electro-

magnetic cascade is the extent to which it spreads transverse to its direction of

propagation as the cascade progresses. (This behavior arises from the increasing

number of particles of which the cascade is composed, none of which carry exactly

the same longitudinal and transverse components of the original particle’s momen-

tum.) Our attempt to characterize this “width” is by computing a variable we call

“median transverse width”:

1. Sort Digits by plane.

2. Search for pairs of neighboring Digits in each plane. If the two Digits with

the largest energy in a plane are neighbors, merge them into one pseudo-

Digit. (This significantly improves the differentiation between cascade- and

single-particle-like energy profiles.)

3. For each plane, compute the weighted standard deviation of strip numbers,

using Digits’ energy as weights.

4. The output score is the median of the planes’ standard deviations from step

3.

The performance of the median transverse width variable is shown in fig. 6.7.

Comparisons of simulation and data are shown in fig. 6.8. Here the agreement is

tolerable.

We further examine the performance of the particle identification variables via

a metric known as their “separation,” 〈S2〉, which, as a function of the particle’s

reconstructed energy, is computed as follows [80]:

〈
S2
ξ

〉
=

1

2

∫
(sξ(E)− bξ(E))2

sξ(E) + bξ(E)
dE (6.2)

where sξ(E) and bξ(E) are the probability distribution functions of variable ξ as a

function of energy for signal and background, respectively. The separation of the
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Figure 6.7: Performance of the median transverse width variable as a function of
calorimetrically reconstructed energy. Error bars on each point represent
the smallest interval containing 68% of the distribution in that bin.

three variables described above is shown in fig. 6.9. Significantly, the separation

of two of the three variables (the mean dE/dx and the median transverse width)

is negligible at low energy and grows substantially with energy, while the third

(endpoint energy fraction) garners only moderate separation at all energies. This

results from the lower probability of electrons and positrons to initiate cascades at

lower energies, and makes it fundamentally more difficult to distinguish electrons

from other particle types in that regime. This difficulty will present one of the

central challenges in the analysis (ch. 7).
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Figure 6.8: Data-simulation comparisons of the median transverse width variable for
various particle types. All plots are unit normalized.
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Constructing the multivariate classifer To avail ourselves of the maximum

discrimination power inherent the variables chosen in the above sections, we

employ a k-nearest-neighbors discriminator [81] (kNN) trained on the input for

the distributions shown above using the TMVA package distributed with ROOT

[80]. The training of such a discriminator (when used to investigate N training

variables simultaneously) begins by creating an N -dimensional space populated

by the training signal and background points. From this, weights are constructed

for each region of that space which code for what fraction of the k nearest points

(using the Euclidean distance between points in N -space) are true signal events.

These weights can then be used to classify a candidate event; we will refer to the

output of the kNN algorithm as ζkNN below.

To actually employ the kNN output, we must choose a threshold in ζkNN (that

is, a threshold in the fraction of neighboring training events were signal) above

which events are retained. We began with the product of the efficiency ε and

purity π as our figure of merit. To ascertain the right value of ζkNN to cut on, we

studied ε× π in the sample selected by the cuts of sec. 7.2 with the requirement of

electromagnetic-likeness (which uses this classifier) removed; this sample (when

scaled to the full data P.O.T. exposure) contained 504 events where the electron

candidate was of electromagnetic cascade in origin and 6884 events where it was not.

The distribution of EM-like and non-EM-like events in ζkNN, and the corresponding

ε× π curve for cuts at various values of ζkNN, are shown in fig. 6.10.

Though the optimum cut for this sample suggested by the ε× π metric is about

ζkNN = 0.9, we relaxed it to ζkNN = 0.7 in order to retain more events at lower

candidate electron energies where, as noted in the discussion in the preceding

section, the separation of the PID variables is much poorer.

Thus, if a Cone has ζkNN ≥ 0.7, it is deemed to be an “EM-like” Cone, and it is

retained as reconstructed. If it does not, then it is dissolved, and any reconstructed
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Figure 6.10: Response to the kNN classifier (left) and efficiency-purity curve (right).

objects that were added into it during the Cone expansion step noted above are

freed to be used in expansion of the next candidate Cone. Every Track that exists

in an event is considered for expansion in this way.

6.2.3. Event-level reconstruction

Further event cleanup and reconstruction quality cuts

Signal events should have exactly one EM-like object. Therefore, at this stage, we

now require that candidate events contain exactly one Cone judged EM-like by the

PID above; this is the electron candidate. Events which meet this criterion can

then be subjected to further cleaning to aid in better reconstruction of the event

kinematics. We eliminate all reconstructed objects from the event whose times do

not lie in a [− 20,+35] ns window around the electron candidate’s time.

We also attempt to remove events from the sample where any non-electron

particles are obviously not nucleons or the event is obviously not CCQE-like. We

eliminate any events with more than two Tracks emanating from the electron

candidate vertex. Any events where non-electron-candidate Tracks exit the inner

detector or penetrate more than halfway through the downstream HCAL are

rejected.
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Finally, we absorb energy not part of the Cone but near the electron candidate

vertex into a separate group such that is excluded from calculations of the nuclear

recoil energy. Any activity within 30cm of the vertex is grouped together and set

aside.

Computation of variables used in selection cuts

There are three variables used in signal selection which can only be calculated after

reconstruction is fully complete.

1. Fiducial vertex: Whether the electron candidate’s source vertex is within

the fiducial volume prescribed in sec. 7.1.2 is determined at this juncture.

2. First-fire fraction: PMT afterpulsing in the detector (see sec. 4.3.1) can

cause phantom signal events composed mostly or entirely of afterpulse hits.

(For events that would otherwise pass the signal selection, the inducing event is

typically either a signal event or bremsstrahlung from a particularly energetic

muon.) Since there was no simulation of afterpulsing in the simulation chain

used for this analysis, it is imperative that these events be cut out from

the data sample. To measure what fraction of a candidate electron Cone

was likely due to afterpulsing, we examine all the Digits contained in the

Cone, and determine how many of them follow another hit (above pedestal

suppression threshold) in the same channel within the same gate. We call the

fraction of these that were the first in their channel in the gate the “first-fire

fraction;” the cut we make on it is detailed in sec. 7.2.

3. Extra energy fraction Ψ: As sec. 7.2 will demonstrate, the most powerful

selection criterion we have in our collection is one made on the amount of

energy in the recoil system. For CCQE-like events, we expect very little

energy not contained in the electron candidate Cone or the associated vertex

energy grouping. Therefore, we sum up all other energy in the event and



124

apply the calorimetric estimator described in sec. 6.2.2 to it; call this Eother.

Because the leakage of energy outside of the cone grows with increasing

shower energy, however, we do not cut on Eother directly. Instead, we form

the ratio of Eother to the calorimetrically reconstructed energy inside the

electron candidate (Ee) to form the “extra energy ratio” Ψ, which is stable

with increasing energy:

Ψ =
Eother

Ee
(6.3)

Once again, the cut we make on this variable is elaborated in sec. 7.2.

Energy and neutrino kinematics reconstruction

As we will see shortly, the most important observables in this analysis are the

electron angle θe and electron energy Ee. θe is taken directly from the refitted

electron Cone axis described in sec. 6.2.2. Similarly, the estimate of Ee was detailed

above (sec. 6.2.2).

For the reconstruction of the neutrino interaction kinematics, we make use

of the CCQE assumptions frequently used in the measurement of the νµ CCQE

process [20], in which the initial nucleon is assumed to be stationary within a

binding potential. Under those conditions, the neutrino energy can be estimated

from the electron’s measured kinematics noted above and a few constants (the

particle masses, me,n,p, and a binding energy Eb) alone:

EQE
ν =

m2
n − (mp − Eb)2 −m2

e + 2(mp − EbEe)
2(mp − Eb − Ee + pe cos θe)

(6.4)

We can furthermore use EQE
ν and the observables to infer the square of the four-
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momentum transferred to the nucleus, Q2
QE:

Q2
QE = 2EQE

ν (Ee − pe cos θe)−m2
e (6.5)

For this analysis, we use the same value of the binding energy, Eb = 34 MeV, as in

the published νµ CCQE result from MINERνA [21].

Plausibility of true event reconstruction (simulation only)

Finally, we are obligated to make one more concession to the nature of our

simulation. Since we overlay data information onto the simulation to approximate

the effect of multiple neutrinos interacting simultaneously (sec. 5.2.3), it is possible

for a signal candidate from the data to be reconstructed instead of the interaction

from the simulation. We wish to avoid events where this has occurred because

they will erroneously be classified as the background process from the simulation;

therefore, we exclude from consideration any simulation events where less than

50% of the electron candidate energy truly originated from the simulation. The

effect on the sample from this requirement is minimal; 99.4% of signal events are

retained.
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7 Measuring the differential

cross-section dσ
dQ2 for the νe

CCQE process

We calculate differential cross-sections in three variables (Ee, θe, and Q2
QE) and

a total cross-section vs. EQE
ν using neutrinos of energies 0-10 GeV.1 Generally,

the formula for computing a differential cross-section from an observable event

distribution Nevents in some variable ξ is:

(
dσ

dξ

)
i

=
1

εiΦTn (∆i)
×
∑
j

Uij

(
Ndata
j −Nbknd pred

j

)
(7.1)

Here, the index i refers to bins in ξ, ε represents signal acceptance, Φ is the flux

integrated over the energy range of the measurement, Tn corresponds to the number

of targets (CH molecules) in the target area (fiducial region), ∆i is the width of bin

i, and Uij represents a matrix correcting for detector smearing in the variable of

interest. (The formula for the total cross-section, which is computed as a function

of neutrino energy, differs only in that the flux is integrated only over the energy

of bin i, rather than the whole energy range, and that we therefore do not need to

divide by the bin width ∆i.) We will examine how each factor of this equation is

estimated in detail in the sections below.

1We use this upper threshold to remain in a regime where the uncertainties on the neutrino flux
are tolerable; see, e.g., fig. 3.6 and note the behavior of the uncertainties above 10 GeV.
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7.1. Signal and fiducial volume definitions

7.1.1. Signal definition

As was noted in sec. 1.3.3, a number of effects interfere with the basic CCQE

process to make the identification of precisely those events which interacted as

CCQE within a nucleus very difficult. Furthermore, the non-magnetization of the

MINERνA detector renders it impossible to distinguish on an event-by-event basis

between electrons and positrons, so that the νe and ν̄e processes’ final states are

identical. Because of these challenges, we elected to search for what we will term a

“νe CCQE-like” process, which is defined by the (observable) final state particles.

In particular, we require the final state to consist of:

� Exactly one lepton, either an electron or a positron

� Any number of nucleons (protons or neutrons)

� Exactly zero other hadrons

� Exactly zero photons with energies above 15 MeV (photons below this thresh-

old stem chiefly from nuclear de-excitation and are allowed)

� Any number of nuclear fragments

7.1.2. Fiducial volume

Our fiducial volume consists of the majority of the central plastic Tracker region,

which corresponds to a fiducial mass of approximately 5.57 tons. We leave the

following buffers of scintillator between the surrounding volumes:

� 25 cm in z between the upstream end of the fiducial volume and the most

downstream passive target;

� 26 cm in z between the upstream end of the fiducial volume and the most

upstream lead sheet in the downstream ECAL;
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� 6 cm radially between the outer edge of the fiducial volume and the innermost

edge of the side ECAL shielding (and 17 cm further of side ECAL before

reaching the outer edge of the ID).

In detector coordinates (see sec. 4.1) the set of points (x, y, z) enclosed by the

fiducial volume can be expressed by the following conditions:

5990.0 mm ≤z ≤ 8340.0 mm

a ≤ 850 mm

(where a is the apothem of the smallest regular hexagon contained in the x − y

plane, centered at (0, 0, z), and containing (x, y, z)).

7.2. Selection of events

Broadly, the event selection can be broken down into three phases: electromagnetic

cascade selection, electron-photon discrimination, and CCQE selection. The first

of these was discussed extensively in sec. 6.2.2, where it played a central role in

event reconstruction, but we apply further selections here to isolate an optimally

pure sample. We will also treat the others in full detail below.

7.2.1. Electromagnetic cascade selection

We make two selection cuts beyond the particle identification requirements of sec.

6.2.2, both of which attempt to further purify the sample at low reconstructed

electron candidate energies.



129

Fraction of energy in non-MIP-like-clusters

Low-energy electromagnetic cascades tend to burn themselves out before spreading

out significantly in the transverse direction. But because they still tend to consist

of a plurality of particles, fluctuations in the longitudinal energy profile of such

cascades are usually more frequent and more pronounced than in the profiles of

single particles traversing the detector (the primary background). This distinction

is roughly captured by the Cluster classification system used in the reconstruction,

which was described in sec. 6.1.2. Since “Trackable” clusters roughly correspond

to the deposited energy of single particles traversing a plane of the detector, we

construct a “non-MIP-cluster energy fraction” variable by dividing the total energy

of non-Trackable clusters within the electron Cone by the total Cone energy to

attempt a measure of these fluctuations.

The distribution in this variable and the cut threshold selected are shown in

fig. 7.2.
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Figure 7.1: Distribution of “non-MIP-cluster fraction” (with all other selection cuts
applied). The cut made on this variable is indicated by the dashed line
and arrow.
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Transverse Spread Score

The second variable used to help reduce contamination at low electron candidate

energies is a so-called “transverse spread score.” The primary backgrounds at

low electron candidate energy are single particles, usually from neutral current

interactions, and they tend to leave very narrow tracks of energy. In this variable,

such energy patterns produce substantially lower scores than signal-type events.

The basic principle is to sum energy-weighted strip numbers (which are a proxy

for the transverse coordinate). In detail:

1. Sort Digits (n.b. not Clusters) by plane and then by strip number.

2. Determine the energy-weighted mean strip number for each plane j,

N̄j =
1

(
∑

iEi)

∑
i

NiEi

3. Determine the median energy deposit for each plane j, Ẽj.

4. The score for each plane is summed over each digit i:

Sj =

(∑
i

Ej,i

)−1∑
i

∣∣N̄j −Nj,i

∣∣ ∣∣∣Ẽj − Ej,i∣∣∣ (7.2)

5. The final score S = 1/Nplanes

∑Nplanes
j Sj.

The distribution in this variable and the cut we make are shown in fig. 7.2. The

underprediction at low values of transverse spread score is largely due to activity

leaking in from the outer detector; the simulation sample used for this analysis was

generated using only the inner detector as the neutrino target, due to technical

constraints, and therefore does not model events whose interaction vertex is in the

outer detector but whose products can spill into the fiducial region. Spill-over that

would otherwise be accepted by this analysis is typically low in visible energy (less

than 500 MeV), at high angles, and very narrow in trajectory, somewhat like the
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neutral current events predicted by the simulation. The cut shown here is chosen

in a region where the agreement between the model and the data is reasonable.
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Figure 7.2: Distribution of “tranverse spread score” (with all other selection cuts
discussed in this section applied). The cut made on this variable is indicated
by the dashed line and arrow.

7.2.2. Electron-photon discrimination

At typical MINERνA energies ranging from several hundred MeV to several GeV,

photons interact with the detector primarily through pair production in the nuclear

field. [11] Because of their boost in the direction of travel, the resultant electron

and positron typically overlap, and therefore, the cascade that they produce begins

with a Track whose energy deposition rate is approximately twice that of a single

particle. Therefore, to reduce backgrounds from events in which a photon mimics

an electron or positron signal, we inspect the energy observed in the front the

electron candidate object.

We expect that in some signal events (as well as many background events where

an electron or positron is the primary particle), other charged particles exiting
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the nucleus may overlap in one or more views with the electron candidate. In

such a case, if we were to measure strictly the energy observed at the very front

of the electron candidate Cone, we could measure a dE/dx consistent with two

(or more) particles, and therefore erroneously classify the event as a photon-like

rather than an electron-like one. Therefore, we instead sequentially compute the

dE/dx of 100 mm blocks along the cone axis, progressing in 25 mm increments,

until the further end of the block reaches 500 mm from the reconstructed event

vertex (or the end of the Tracker region, whichever is first). We then select the

minimum dE/dx from this collection as our classifier. Using the minimum in this

way allows the algorithm to step over any overlapping nuclear activity towards the

front while still using the most upstream part of the cascade available to attempt

to differentiate between electrons and photons. Note that because of the stochastic

nature of shower development, even if there is no overlap from another particle,

the minimum dE/dx may occur some distance from the initial interaction point

(see fig. 7.3, but note that the radiation length in the Tracker material is roughly

400 mm).

Our choice for the cut threshold is optimized by using an ε× π figure of merit,

as was done for the particle identification (sec. 6.2.2). In this case, we use the

superior statistics of dedicated particle cannon simulations of electrons and photons

(but reconstructed with the same techniques as described in sec. 6.2) to perform

the optimization, which is illustrated in fig. 7.4. (The particle cannon sample

used for the tuning is described in more detail in section 6.2.2.) Our simulation

indicates that the search-based dE/dx method described above compares favorably

to one in which a fixed portion of the electron cone is used for the purposes of

separating electrons from photons. This is illustrated in fig. 7.4. The distribution

of the minimum front dE/dx variable in the beam data and simulation is in fig.

7.5.
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Figure 7.3: Distribution of the location of the minimum front dE/dx along the shower
axis (as described in the text) for simulated electrons and photons (sample
described in the text).

The disagreement between the simulation and the data above 2 MeV/cm in

fig. 7.5 suggests that there is substantially more photon-like background than is

predicted by the simulation. Candidate explanations for the origin of this data

excess are explored in app. B; our attempt to constrain and estimate the effect it

may have on this result is detailed in sec. 7.4.

7.2.3. CCQE selection

No Michel electron candidates

A substantial fraction of the predicted background events contain a charged pion in

them. While π− tend to capture on any of the detector materials, π+, by contrast,

in some cases will stop without an inelastic interaction, in which case the positron

from π+ → µ+X → e+X can be observed after a short (τ ∼ 2µs) delay. We search

for these Michel electrons (positrons) near the beginning and end vertices of every

track in the event.
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Figure 7.4: Distributions used to tune the mean front dE/dx cut, constructed from
the particle cannon sample noted in the text. The green lines indicate the
optimum cut chosen.

Requiring the absence of a Michel electron candidate for signal events results in

an increase in the predicted final sample purity of roughly 6 percentage points. The

events removed from the sample are precisely those contained in the Michel-match

sideband discussed in sec. 7.4; more detailed discussion of the event content can

be found there.
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Figure 7.5: Distribution of minimum 100 mm dE/dx over first 500 mm in events (with
all other selection cuts applied). The cut made on this variable is indicated
by the line and arrow.

Extra energy fraction

Our most powerful selection to separate CCQE-like events from other backgrounds

is a cut on the extra energy fraction Ψ described in sec. 6.2.3 as a function of the

visible energy in the event. This cut is optimized in the following bins of Evis (in

GeV): (0, 0.5), (0.5, 2), (2, 3), (3, 5), (5,∞). We optimize in each of these bins by

examining the efficiency (ε) and purity (π) of a cut at each bin edge in Ψ and find

the cut which maximizes ε× π; this procedure is depicted for a sample bin in fig.

7.6. The distribution of Ψ vs. Evis, along with the cuts optimized over the bins,

are shown in fig. 7.7. The final tunings (the black curve in fig. 7.7) are as follows:
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Figure 7.6: Efficiency, purity, and their product for various cuts on Ψ in the 0.5 GeV ≤
Evis < 2 GeV bin. The optimimum cut, indicated by the green line, is for
Ψ < 0.1.

Final cleanup

The remainder of the selection cuts are intended to guard against catastrophically

mis-reconstructed events that somehow managed to slip through all of the preceding

requirements. The first cut requires a positive reconstructed neutrino energy, EQE
ν ,

as defined in sec. 6.2.3.
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Figure 7.7: Distribution of Ψ vs. visible energy in events (with all other selection
cuts discussed in this section applied). Events below the black curve are
retained as signal candidates.

The final two cuts eliminate event misreconstruction due to known detector

effects; they do not affect the simulation. The first is a cut on a quantity which

quantifies whether activity upstream of a track has been obscured by the discrim-

inator dead time induced by previous activity (cf. sec. 4.3.2). (The quantity

itself is calculated by projecting the electron candidate track into the two mod-

ules upstream of the vertex and counting the number of discriminator pairs that

should be experiencing deadtime in the strips intersected by the projection or their

immediate neighbors, based on recorded activity immediately preceding the time

of the electron candidate.) The primary purpose of this cut for this analysis is to

eliminate events in which an upstream part of the seed Track has been lost, which
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would bias the vertex position reconstruction as well as possibly the reconstruction

of the energy.

The second detector effects cut we make is intended to remove fake signal

events that arise from afterpulsing. We make use of the “first-fire fraction” variable

calculated as described in sec. 6.2.3, and require ffirst−fire < 0.25. (This cut was

tuned by examining the distribution of ffirst−fire in candidate signal events which

were determined to be from afterpulsing using a hand scan of event displays.)

7.3. Selected event sample

The samples selected in the data and simulation by these cuts are shown as a

function of the two observables (electron angle and energy) and the two vari-

ables inferred from quasi-elastic kinematics (neutrino energy and Q2) in fig. 7.8.

Comments about each of the observables are in order:

Electron angle The electron angle used here is the angle with respect to the

neutrino beam, not the polar angle with respect to the detector z-axis. (The

latter is the θ calculated in detector coordinates and differs from the θ

reported here by ∼ 3.4◦.)

Electron energy The reconstructed electron energies for the simulated events are

multiplied by 1.05 here to account for a measured 5% electromagnetic energy

scale discrepancy between data and simulation in the π0 invariant mass

spectrum constructed for ref. [79].

We classify events as follows:

νe CCQE-like Signal as defined in sec. 7.1.1, with Eν < 10 GeV.

ν + e elastic Elastic scattering of any neutrino flavor from atomic electrons.

Other CC νe Charged-current νe interactions that are not quasielastic-like as per

sec. 7.1.1.
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NC Coh Coherent neutral-current interactions (which produce a single π0 in the

final state).

Other NC π0 Incoherent neutral-current scattering which produces a π0 and

possibly other particles in the final state.

CC νµ π0 Any muon neutrino charged-current process which produces a π0 in

the final state.

Other Anything else. (Includes, in particular, signal events that have Eν > 10

GeV.)
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Figure 7.8: Selected events after all cuts described in the text. (The background
categories are also described in the text.)
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7.4. Background model and constraints

From fig. 7.8 it is plain that a sizeable fraction of the remaining events in the

working samples actually result from background processes and must be subtracted

before any analysis on the signal distribution can be made. Moreover, fig. 7.5

suggests that the simulation either underestimates or is entirely missing one or

more processes that lie immediately adjacent to the signal region in front dE/dx;

and this may influence the background estimate in the signal region. Since the

sizes and shapes of the backgrounds subtracted will manifestly affect the final

results in a significant way, we require constraints from the data on the predicted

backgrounds before we subtract them from the data distribution.

The flux constraint of sec. 3.4 is in fact a data constraint for the ν+e scattering

background (green in fig. 7.8), since it consists of weights that were obtained

by matching the prediction in that channel to a direct measurement. Therefore,

once we have applied the flux constraint to that background category in each

distribution, we consider that class to be constrained by data. (Applying the flux

constraint results in a roughly 10% reduction in the normalization, as well as minor

changes in the shapes of various kinematic distributions.)

MINERνA’s own measurement of charged-current coherent pion production

found that the predicted normalization in GENIE is roughly correct [82], and the

same model (from Rein and Sehgal [83]) produces the neutral-current coherent

sample here. As shown in fig. 7.9, MINERνA found that the agreement between

the model and the measurement can be substantially improved by simply reducing

the cross-section for coherent pion production by 50% for Eπ < 450 MeV. We

apply that reweighting to the coherent events in our sample (both CC and NC)

and afterwards (along with the introduction of the uncertainties described in sec.

7.10.1) consider that process to be fully constrained.

The impact that the process responsible for the excess noted in sec. 7.2.2 has



141

Figure 7.9: The effect of reweighting GENIE’s coherent model down by 50% for pi-
ons with Eπ < 450 MeV. The data-simulation agreement is significantly
improved. Courtesy A. Mislivec (MINERνA).

in the signal region is estimated using an ad hoc sample of π0s whose kinematic

distributions are fitted to match those observed in a dE/dx region immediately

neighboring the signal region. (The selection of this model for the excess is the

subject of app. B.) The excess process is predicted to have very little effect on the

signal region, as can be seen in fig. B.20b. Nevertheless, we will subtract off the

minimal contribution along with the backgrounds predicted by GENIE after the

latter are constrained, as detailed below.

7.4.1. Construction of sidebands

We attempt to construct sidebands for the purposes of constraining the normaliza-

tions of three of the primary background classes: νe CC inelastics and incoherent

π0 production (both charged- and neutral-current). Both sidebands result from

the modification or inversion of a single selection cut:

“Extra energy” sideband For this sideband, we select events which do not

pass the cut from sec. 7.2.3, but otherwise have Ψ < 0.225, in addition to the

remainder of the signal selection cuts. (Here compare to the standard cut in fig.
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Figure 7.10: Distributions in the observables from events in the extra energy sideband.
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Figure 7.11: Distributions in the observables from events in the Michel-match sideband.

7.7.) This selection prefers events that are somewhat more inelastic than the signal,

and thus creates a sideband rich in the inelastic backgrounds. Distributions of the

observables in this sideband are shown in fig. 7.10.

Michel electron candidate sideband The final sideband’s criteria consist of

the usual signal selection criteria with the Michel electron rejection cut (sec. 7.2.3)

reversed. This sideband is almost entirely comprised of events from the νe inelastic

class, as seen in the distributions of the observables in fig. 7.11.
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Figure 7.12: True π+ multiplicity (left) and energy (right) in the signal and sideband
regions.

It is potentially worth considering whether the events in each background

category in the sidebands are compatible with the background events present in

the signal region. (If they are substantially different, then any constraints derived

in the sidebands may not be fully applicable to the signal region.) We examined

the multiplicity and energies of π+ in events falling into the “other νe” background

category in the signal region and Michel-match and extra energy sideband regions.

Since, as shown in fig. 7.12, the signal straddles the two sidebands’ distributions

in π+ energy, we conclude that our best chance to model the kinematics present in

the signal region is to use both sidebands together.

7.4.2. Signal process constraint

From the plots in figs. 7.10-7.11, it is evident that there is a non-negligible presence

of signal events in the extra energy sideband region. Flaws in the prediction of

the signal process may therefore influence any attempts to correct the background

distributions based on the sidebands, and uncertainties in the signal process will

also contribute to uncertainty in the background prediction. To combat this

problem, we apply constraints to the signal predictions—for the purpose of the
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background constraint calculation only—which are computed by simultaneously

fitting the normalizations of the four predicted cross-sections to the measured

data cross-sections shown in sec. 7.8. (We fit using exactly the same machinery

used for the backgrounds, described below in sec. 7.4.3.) Because the result of

this normalization constraint will affect the background prediction and thus the

cross-section measured in the end, we perform this process iteratively until the

scale factors for the signal process stabilize. As shown in fig. 7.13, this required

only three iterations.
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Figure 7.13: Fitted scale factors, and their fractional change from iteration to interation,
for the signal prediction for all the error band universes. Since there was
virtually no change from iteration 3 to iteration 4, we conclude that 3
iterations is sufficient.

We wish to stress again that these scale factors are used only during the

calculation of background scales in sec. 7.4.3, and are not propagated any further

or used anywhere else in the analysis.

7.4.3. Calculation of background normalizations

As was noted at the beginning of sec. 7.4.1, we intend to constrain the two

most important background classes for which we have reason to suspect the
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Background class scale factor

Other CC νe 0.89± 0.08

CC & NC incoherent π0 1.06± 0.12

Table 7.1: Fitted background scale factors. The uncertainties shown here include an
extra factor of

√
2 to account for the correlations between the distributions,

as described in the text.

normalizations may be incorrectly predicted: νe CC inelastics, and incoherent

π0 production. (In this scheme, we will constrain the CC and NC incoherent π0

categories together, because we have only two independent sets of events arising

from the two sidebands. In this way we have two unknowns and two constraints.)

To obtain our best estimate of the normalization of these backgrounds, we fit the

four histograms in figs. 7.10-7.11 simultaneously using a single free parameter for

each of the background classes we wish to constrain. (Since we apply the signal

constraint from sec. 7.4.2, the flux constraint of sec. 3.4 provides a constraint

for the ν + e scattering background, and as was pointed out in the introductory

material to sec. 7.4, MINERνA’s measurement of CC coherent production provides

an indirect constraint for NC coherent π0, the only background classes that will

remained unconstrained after this procedure are negligible.) Using the Minuit2

fitter within ROOT [84], we minimize the total χ2 between all four histograms’

data and MC distributions (where index n refers to the histogram, i to the bin

number, and α to the background class), universe by universe, to fit the best set

of scale factors {fα}:

M =
4∑

n=1

Nbins,n∑
i=1

(Hdata,n(i)−
∑

α f
αHα

n (i))2

σ2
data,n(i)

(7.3)

The fitted scale factors in the central value universe are noted in tab. 7.1.

Because we use the same events in each pair of Ee, θe distributions in the same

sideband, the four distributions are not all statistically independent; this means
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that the statistical uncertainties on the final parameters reported by the minimizer

are underestimated. However, we repeated the fitting procedure using all four of

the independent combinations of only two distributions (Ee in the extra energy

sideband and Ee in the Michel-match sideband; Ee in the extra energy sideband

and θe in the Michel-match sideband; and so on), where the uncertainties returned

by the minimizer are correct. In all these cases, the uncertainties were roughly
√

2 larger. We therefore have included an extra factor of
√

2 in the uncertainties

reported in tab. 7.1 to account for the effect of the correlations on the uncertainties.

The distributions after the best fit are given in fig. 7.14.
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(a) Extra energy sideband
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Figure 7.14: Observable distributions in the sidebands after the background fitting of
sec. 7.4.3. These distributions can be compared to figs. ??-7.11

The fα are then applied to the backgrounds in the signal region, and the
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estimated backgrounds subtracted from the data. The background-subtracted data

is compared to the signal prediction in fig. 7.15.
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Figure 7.15: Background-subtracted distributions compared to the signal prediction.
Data uncertainties are elaborated in fig. 7.16; MC uncertainties are
statistical only.
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Figure 7.16: Uncertainties on the background-subtracted data distributions. Further
detail on the uncertainties is given in sec. 7.10.

7.5. Unfolding in observables

After background subtraction is complete, we are left with our best estimate of

the signal rate in reconstructed quantities. Because we measure efficiency as a

function of true variables (as not every true signal event can even be reconstructed),

however, we attempt to correct the reconstructed values to their true values before

correcting for inefficiency. We do this using an unfolding procedure that relies

on the simulation to predict the migration of events from their true to their

reconstructed values due to detector effects like resolution.

We wish to avoid introducing dependence on the physics models of the neutrino

interactions used by GENIE through the unfolding. Therefore, we unfold only the

observable quantities Ee and θe (and since the inferred quantities EQE
ν and Q2

QE
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can both be calculated from these alone, we unfold EQE
ν and Q2

QE to the true EQE
ν

and Q2
QE calculated from true Ee and θe instead of to the true Eν and Q2 used by

the generator). The migration matrices as predicted by the simulation are shown

in fig. 7.17. Though it appears that there is a bias in the reconstructed electron

energy (systematically too large), this is due to the 5% energy scale correction

applied to the simulation to make it agree with the data (introduced in sec. 7.3).
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Figure 7.17: Migration matrices predicted by the simulation. Entries are normalized
by column (for a given reconstructed event, what are the probabilities of
it having a particular true energy?); values are in percent.

We unfold using the Bayesian unfolding method first proposed by d’Agostini

[85] and implemented in RooUnfold [86]. To determine the optimum number of

iterations of unfolding we should use, we examined the progression of the residuals

from the true value in the simulation as a function of unfolding iteration, and

compared them to the progression of statistical errors; these are shown in fig. 7.18.

(Note that the wild fluctuations in bin 1 of the electron angle distributions arise
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from the very small number of events in that bin; the uncertainties on this quantity

account for this behavior, as discussed further below.) Because the statistical

uncertainties and residuals both increase after a single iteration in most bins of

most distributions, we conclude that a single iteration is ideal. (As RooUnfold uses

the true distribution as its prior for the first iteration [86], this is not completely

unexpected.) The distributions resulting from one iteration of Bayesian unfolding

are shown in fig. 7.19.

Unfolding iteration
0 1 2 3 4 5 6 7 8

F
ra

ct
io

n
al

 r
es

id
u

al
 f

ro
m

 t
ru

e 
va

l

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Bin 6

Bin 7

Bin 8

Bin 9

Bin 10

Bin 11

Bin 12

Bin 13

Bin 14

Unfolding iteration
0 1 2 3 4 5 6 7 8

F
ra

ct
io

n
al

 s
ta

t.
 e

rr
o

r

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Bin 6

Bin 7

Bin 8

Bin 9

Bin 10

Bin 11

Bin 12

Bin 13

Bin 14

(a) Electron angle

Unfolding iteration
0 1 2 3 4 5 6 7 8

F
ra

ct
io

n
al

 r
es

id
u

al
 f

ro
m

 t
ru

e 
va

l

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Bin 6

Bin 7

Bin 8

Bin 9

Bin 10

Bin 11

Bin 12

Bin 13

Unfolding iteration
0 1 2 3 4 5 6 7 8

F
ra

ct
io

n
al

 s
ta

t.
 e

rr
o

r

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Bin 6

Bin 7

Bin 8

Bin 9

Bin 10

Bin 11

Bin 12

Bin 13

(b) Electron energy

Figure 7.18: Residuals from true value (left) and statistical uncertainties (right) as a
function of number of iterations of unfolding.

To further establish that 1 iteration is a sensible choice, we performed a

pseudodata study in which the simulated event distributions were warped to produce

a different reconstructed distribution. Comparing the result of the unfolding on the
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Figure 7.18: Unfolding residuals (left) and statistical uncertainties (right) as a function
of number of iterations of unfolding.

warped distribution to the underlying true distribution then provides a measure of

any bias introduced by the unfolding (though we expect that any such effect would

be unimportant anyway since the simulated distributions are very similar to the

data ones even before unfolding). We chose the reweighting function depicted in

fig. 7.20 based on an earlier version of the analysis in which there was a significant

difference in shape in electron angle. We then threw 1000 Poisson variations from

the resultant distributions, where the weighted central value was taken as the

Poisson mean in each bin. From these variations we calculated the pull g in each
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Figure 7.19: Distributions in the cross-section variables after unfolding.

bin i of each variable ξ:

gi =
ξunfolded
i − ξtrue

i

σξi
(7.4)

where σξi is the uncertainty on the unfolded value in bin i of variable ξ. If the

unfolding is unbiased, then the mean of the pull distribution in every bin should

be 0; if the (statistical) errors are correctly estimated by the unfolding procedure,

then the standard deviation of the pull distribution in every bin should be 1. Both

the pulls themselves and the moments of the pull distributions are plotted in fig.

7.21. Based on these plots, we conclude that the performance of the unfolding is

not significantly biased and that the errors are reasonable.
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Figure 7.21: Pull distributions after one iteration (left); mean and standard deviation
of pulls as a function of iteration (right). In the right plots, the mean (solid
curve) and standard deviation (dashed curve) will both make a straight
line at the bin number if the unfolding is unbiased and the uncertainties
are correctly estimated.
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Figure 7.21: Pull distributions after one iteration (left); mean and standard deviation
of pulls as a function of iteration (right). In the right plots, the mean (solid
curve) and standard deviation (dashed curve) will both make a straight
line at the bin number if the unfolding is unbiased and the uncertainties
are correctly estimated.
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7.6. Correction for inefficiency

Once the distributions have been unfolded to our best estimate of their values, we

then use the simulation to correct for events which were truly signal events but lost

by the reconstruction or selection cuts. We measure the efficiency in some variable

ξ, as predicted by the simulation, by dividing the predicted distribution of selected

true signal events in ξ by the predicted distribution of all true signal events in ξ.

The nominal efficiencies calculated in this way are shown in fig. 7.22.
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Figure 7.22: Efficiency predictions in the cross-section variables.

7.7. Normalization by flux and target number

The final steps in the calculation of the cross-section are normalization (the

remaining factors are in the denominator in eq. 7.1). First, we divide by an
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estimate of the number of scattering targets (Nt) available to neutrinos in the

fiducial volume of sec. 7.1.2. We will define our results to be given per CH molecule

in the fiducial volume. Therefore, we wish to know the number of CH molecules

inside a volume shaped like a hexagonal prism with apothem 850 mm and z-extent

from z = 5990 mm to z = 8340 mm; since these z-positions do not correspond

exactly to the edges of detector planes (z = 5990 mm contains only the latter 42%

of module 27, plane 1, and z = 8340 mm contains only 31% of module 79, plane

1), this corresponds to 103.73 inner detector planes.2 This results in 2.306× 1029

Carbon atoms (and therefore CH molecules) in the simulated detector volume, and

2.308× 1029 Carbon atoms in the actual detector volume. (The detector geometry

used in the simulation is slightly different than the current best estimate for the

actual detector, and we must be consistent with what was used to generate the

neutrino interactions.)

We have already examined the flux prediction, Φ, in detail in sec. 3. What

remains is to establish its manner of use. For the differential cross-sections, we

numerically integrate the flux histogram in fig. 3.7 across the entire energy range of

the measurement, that is, 0-10 GeV. The total cross-section, by contrast, requires

the flux in each bin of neutrino energy of the cross-section; so, we integrate fig. 3.7

in the region of each output bin, using a spline to interpolate when the bin edges

do not coincide.

Finally, each bin i of the differential cross-sections are normalized by their

bin widths ∆i (which effectively causes the flux we just computed to become the

average flux across 0-10 GeV). (As mentioned in the introductory material to ch.

7, we do not do this for the total cross-section since both numerator and the flux

in the denominator are measured as a function of neutrino energy.)

2Though it may seem unusual to choose a fiducial volume definition with partial planes in it,
this is the definition used by preceding MINERνA analyses, and we have retained it to be
consistent.
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7.8. Measured cross-sections

The cross-sections we obtain after all of the preceding steps are shown in fig. 7.23.
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Figure 7.23: Measured cross-sections.

7.8.1. Closure test

To ensure that the calculations described in secs. 7.1-7.7 were carried out correctly,

we performed a closure test in which we compared our measured cross-section

from the simulation to the cross-section that the generator used when generating

events. Because the ν + ν̄ CCQE-like cross-section is not a process for which the

generator has a closed-form cross-section, however, we used computed the effective

cross-section for this process by extracting all the true signal events generated by

the generator and normalizing by the flux and effective exposure.
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One important modification to the analysis was necessary to compare the two

cross-sections. The application of the flux constraint (sec. 3.4) is designed in such a

way that it can—and indeed, should—alter the shape of the distributions to which

it is applied. We therefore must not use it, either for the event rate distributions

or for the flux prediction, when comparing to the extracted GENIE cross-section.

Ratios of our calculated cross-section to that of GENIE are shown in fig. 7.24.

As is clear from the figure, we were not able to obtain perfect closure; we suspect

that there is some minor residual difference in the event selections that we were

not able to find. Since any potential error here is substantially smaller than the

uncertainties we will be quoting on the result (see sec. 7.10), we choose not to

pursue it any further.
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Figure 7.24: Closure tests comparing measured cross-section to the GENIE cross-
section the simulation began with. The error bars are not meaningful and
serve mainly to demarcate the location of the points.
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7.9. Ratios to νµ CCQE

We have presented the νe CCQE cross-section measurement as being of critical

importance because of its centrality in the neutrino oscillation arena. However, as

we noted in ch. 1, because of the strong expectation of lepton universality, current

experiments typically use the corresponding νµ cross-section as a placeholder.

Therefore, the ratio between the two cross-sections serves as a useful indication

of the potential effect that the substitution that is usually made could have on

oscillation results. Furthermore, if we can make a comparison to a measurement

that was made using the same detector and flux, we can potentially cancel some

of the systematic uncertainties discussed in sec. 7.10 that are common to the

measurements.

7.9.1. Ensuring consistency with νµ cross-section

We will compare to the previously-published measurement of νµ CCQE from

MINERνA [21]. To do so, we will need to make some alterations to the analysis to

ensure maximum consistency between the two results.

Signal definition

The prior νµ result was computed using the GENIE generator’s identification of

events as CCQE for its definition of signal. As a result, it contains no events

that originated as non-quasi-elastic events in GENIE (e.g., baryon resonances that

decayed to a final state including pions) and are phenomenologically identical

to CCQE because of the effect of final-state interactions. This has the effect of

reducing the signal component of the selected sample by about 10% from that

which would be expected for a “CCQE-like” definition; see fig. 7.25.

For the ratio to be meaningful, we must employ a νe cross-section using the
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Figure 7.25: The breakdown of events in the selected νµ (left) and νe (right) CCQE
samples, separated by their “quasielastic-likeness.” νµ version courtesy C.
Patrick (MINERνA).

same definition of CCQE in the numerator. Therefore, we re-perform the analysis

with this in mind; the background scale factors (secs. 7.4 and 7.4.3), the efficiency

corrections (sec. 7.6), and of course the end cross-section all change as a result.

Please see the plots in Appendix C (which can be compared to those in the sections

mentioned above).

Flux constraint and uncertainties

The flux constraint described in sec. 3.4 was not used for the νµ result. Because we

would like to benefit from the partial correlation of the νµ and νe fluxes, and thus

the partial cancellation of their uncertainties, we cannot apply the flux constraint

to the νe cross-sections either. Therefore we prepare a version of the result without

it.

Ratio and discussion

The measured ratio in dσ
dQ2 between the νe and νµ results, with the uncertainties

described in sec. 7.10 applied to the νe cross-section and those mentioned in ref.

[21] appplied to the νµ cross-section, is shown in fig. 7.26.
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Figure 7.26: The ratio dσνe
dQ2

QE
/
dσνµ
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QE
. The red line indicates the GENIE prediction,

while points represent the MINERνA measurement (inner errors statis-
tical; outer are statistical summed in quadrature with the systematic
uncertainties enumerated in sec. 7.10).



163

7.10. Systematic uncertainties

The uncertainties we estimate for this result can be grouped along three broad

categories: uncertainties in the primary neutrino interaction model, uncertainties

in the flux model, and uncertainties in our model of the detector’s response to

particle activity.

One special technique is used occasionally in the estimation of systematic

uncertainties in this analysis and warrants special attention here. We will term

it “many universes”; this strategy simultaneously varies multiple parameters {pα}

by throwing a large number (typically 1000) of collections of their values from

Gaussian distributions g(µα, σα) using pre-determined estimates for the means µα

and uncertainties σα of each parameter pα. Each throw of the parameters {pα}

is then used to compute the values of a set of fundamental variables {ξα} (for

example, a cross-section used at generation time), and events generated by those

parameters are assigned weights corresponding to (for example) the ratio of the

{ξα} to the nominal value. We can use the weights for each event to construct

alternate histograms for each derived quantity in which we are interested, and the

covariance of these many histograms provides our uncertainty estimate.

The manner in which the various systematics were evaluated is detailed below.

Summaries of their sizes (with respect to the final result) are shown in figs. 7.27

and 7.28.
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Figure 7.27: Uncertainties on the cross-section measurements given as fractions of the
central value bin content.
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Figure 7.28: Uncertainties on the cross-section measurements.
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7.10.1. Interaction model

A breakdown the uncertainties in the interaction model group is given in fig. 7.29;

further detail on how each band is computed is given in the sections below.
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Figure 7.29: Uncertainties on the cross-section measurements due to the neutrino
interaction model given as fractions of the central value bin content.
(Note that the “total” curve includes systematic uncertainties from all
groups, not just the interaction model.)

Primary interaction model: GENIE

Uncertainties in the GENIE generator’s model of neutrino interactions enter

primarily through the background prediction detailed in sec. 7.4 and the efficiency

correction of sec. 7.6. To estimate most of them, we use event-by-event weights

generated for ±1σ shifts for a number of uncertainties estimated by the GENIE

collaboration. The parameters being varied include shape and normalization knobs

for elastic and resonance productions (both charged- and neutral-current); nuclear



167

model parameters which principally affect deep inelastic scattering; and parameters

which control the strength and behavior of final-state interactions. A full list of

the parameters, their nominal values (where available), and the uncertainty used

for them is given in tab. 7.2. (Fuller discussion of each of these knobs is available

in the GENIE physics manual [87].)

Parameter Nominal
value

Uncertainty

NC elastic model uncertainties

Axial mass MA (GeV/c2) 0.99 ±25%

Strange axial FF parameter η 0.12 ±30%

CCQE model uncertainties

Axial mass MA (GeV/c2) 0.99 +25% / -15%

Vector form factor model — Changes model to dipole from
BBBA parameterization

Pauli-blocking momentum
cutoff

± 30 %

Resonant production model uncertainties

Axial mass M res
A (GeV/c2) 1.12 ± 20 %

Vector mass M res
V (GeV/c2) 0.84 ± 10 %

Non-resonant pion production / DIS model uncertainties

νn or νp→ 1π +X s.f. 0.3 ± 50 %

νn or νp→ 2π +X s.f. 1.0 ± 50 %

νn or νp→ 1π +X s.f. 0.1 ± 50 %

νn or νp→ 2π +X s.f. 1.0 ± 50 %

Bodek-Yang parameter AHT 0.538 ± 25 %

Bodek-Yang parameter BHT 0.305 ± 25 %

Bodek-Yang parameter CV 1u 0.291 ± 30 %

Bodek-Yang parameter CV 2u 0.189 ± 30 %

Hadronic system / FSI model uncertainties

Nucleon mean free path ± 20 %

Nucleon absorption
probability

± 20 %

Nucleon charge-exchange
probability

± 50 %

Nucleon elastic scattering
probability

± 30 %
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Parameter Nominal
value

Uncertainty

Nucleon inelastic scattering
probability

± 30 %

Pion mean free path ± 20 %

Pion absorption probability ± 30 %

Pion charge-exchange
probability

± 50 %

Pion elastic scattering
probability

± 10 %

Pion inelastic scattering
probability

± 10 %

Pion production probablity
from pions

± 20 %

Pion production probability
from nucleons

± 20 %

∆ decay isotropy — Change to non-isotropic

∆ photonic decay branching
ratio

± 50 %

xF distribution in AGKY
hadronization model

±20%

Table 7.2: Uncertainties on GENIE model parameters. Nominal values for for the FSI
parameters in GENIE are not published anywhere and so are not given here.

We also estimated the uncertainty due to a GENIE parameter that has no

associated event weights: the “effective nuclear radius,” which controls the distance

over which newly-formed hadrons traveling out from the neutrino interaction

vertex can undergo final-state interactions within that nucleus. To perform the

estimate, we generated a very large sample of GENIE events using alternate values

of this parameter. (The nominal values are 0.9 fm for nucleons and 0.6 fm for

pions; we used 0.4 fm and 0.0 fm for a downward variation, respectively, and 1.6 fm

and 1.1 fm for our upwards variation.) We then compared the true kinematics of

outgoing hadrons in the central value simulation to those in the modified simulation,

and generated reweighting functions from them; these reweighting functions are

illustrated in fig. 7.30. (The same smoothing technique discussed in appendix A.2.2

was applied to the two-dimensional plots here as well.) We applied these weights to
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the selected samples of sec. 7.3 to determine the effect on the cross-section result.
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Figure 7.30: Weights applied for the effective nuclear radius variations.

It is important to appreciate that all of the a priori GENIE uncertainties

computed above are significantly reduced by applying the background constraints

of sec. 7.4.

Background fitting (sideband model)

Our uncertainty budget must account for the statistical uncertainty associated with

the scale factors computed in sec. 7.4.3. To do so, we consider variations of the

background prediction where the scale factors are shifted relative to their nominal

values consistent with the uncertainties shown in tab. 7.1. To correctly account
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for the correlations between the scale factors, however, we obtain the variations in

the parameters from the eigenvectors of the statistical covariance matrix returned

by the fitter, multiplied by the eigenvalues and the factor of
√

2 explained in sec.

7.4.3.

Coherent neutrino interaction model

Based on the measurement uncertainties and the residual disagreement between

the data and the model after the corrections described in sec. 7.4, we assume a

flat 20% uncertainty on the NC coherent distributions predicted in the signal and

sideband regions. (Note that without this uncertainty, the coherent process would

not be ascribed any uncertainty, since GENIE’s uncertainty knobs, described in

sec. 7.10, do not vary the coherent cross-section at all.)

Excess process model

We selected the neutral pion model from sec. B.3 to model the excess process in

the central value prediction in sec. 7.4. Therefore, we consider the single photon

model as a variation to generate the uncertainty on the background due to the

excess. (As noted there, coherent η production is predicted not to exist; since it is

furthermore disfavored by the particle identification variables, we concluded that

it is not a sensible variation to use here.)

7.10.2. Flux model

Uncertainties in the flux model are estimated using the “many universes” method;

this is discussed in more detail in sec. 3.3. As noted above in sec. 3.4, these

uncertainties are somewhat reduced by the application of the flux constraint.
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7.10.3. Detector response

Uncertainties on the response of the detector to the passage of charged particles

can be further divided into a handful of categories. A summary is shown in fig.

7.31, and more detail on each individual band is given below.

 (deg)eθ
0 5 10 15 20 25 30 35

F
ra

ct
io

n
al

 U
n

ce
rt

ai
n

ty

0

0.1

0.2

0.3

0.4

0.5

0.6 Total Sys. Error
Angular resolution
Birks's constant
Cross-talk
EM energy scale
Michel electron energy scale
Target mass

Total Sys. Error
Angular resolution
Birks's constant
Cross-talk
EM energy scale
Michel electron energy scale
Target mass

 (GeV)eE
0 2 4 6 8 10

F
ra

ct
io

n
al

 U
n

ce
rt

ai
n

ty

0

0.1

0.2

0.3

0.4

0.5

0.6
Total Sys. Error
Angular resolution
Birks's constant
Cross-talk
EM energy scale
Michel electron energy scale
Target mass

Total Sys. Error
Angular resolution
Birks's constant
Cross-talk
EM energy scale
Michel electron energy scale
Target mass

 (GeV),QEνE
0 2 4 6 8 10

F
ra

ct
io

n
al

 U
n

ce
rt

ai
n

ty

0

0.1

0.2

0.3

0.4

0.5

0.6
Total Sys. Error
Angular resolution
Birks's constant
Cross-talk
EM energy scale
Michel electron energy scale
Target mass

Total Sys. Error
Angular resolution
Birks's constant
Cross-talk
EM energy scale
Michel electron energy scale
Target mass

)2 (GeVQE
2Q

0 0.5 1 1.5 2

F
ra

ct
io

n
al

 U
n

ce
rt

ai
n

ty

0

0.1

0.2

0.3

0.4

0.5

0.6
Total Sys. Error
Angular resolution
Birks's constant
Cross-talk
EM energy scale
Michel electron energy scale
Target mass

Total Sys. Error
Angular resolution
Birks's constant
Cross-talk
EM energy scale
Michel electron energy scale
Target mass

Figure 7.31: Uncertainties on the cross-section measurements due to the detector
model given as fractions of the central value bin content. (Note that the
“total” curve includes systematic uncertainties from all groups, not just
the detector model.)

Angular resolution modeling

Because the angle of the electron is identified with the angle of the reconstructed

Track that was first reconstructed, we associate any uncertainty in the modeling

of the resolution of the angle with the angular resolution of Tracks. This was

estimated to be 1 mrad [63]. To evaluate the impact of this uncertainty, we construct

1000 universes in which the electron angle is shifted by an amount drawn from a
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Gaussian centered at 0 and of width 0.057 deg (= 1 mrad)). (This accounts for

changes to EQE
ν and Q2

QE resulting from the difference in the angle.)

Birks’s constant

There was some uncertainty associated with the value of the independent parameter

used in the simulation of Birks’s Law (discussed further in sec. 5.2.3). We used a

central value of kB = 0.133 m/GeV, obtained from MINOS [72]; the uncertainty was

estimated to be 30%. To examine the effect of this uncertainty, we generated varied

samples where the energy depositions of particles not interacting via electromagnetic

cascades were varied ±30%. (The uncertainty in the energy scale constraint of sec.

7.10.3 includes any variation in Birks’s constant; therefore, we do not apply the

Birks’s constant uncertainty to EM activity here so as not to double-count.)

Cross-talk

Because cross-talk energy is dominated by optical cross-talk (see sec. 5.2.3) and

because assembly variations affect optical cross-talk most strongly, we assume

that the only significant cross-talk uncertainties are due to optical cross-talk. We

factorize our estimate into two separate components.

First, we have a large set of of PMTs that are both mounted on the detector

and which underwent cross-talk bench characterization prior to installation. We

compared the measurements in fig. 7.32. As noted in the figure, the best-fit slope

to this distribution differs from 1 at the 20% level; therefore, we conclude that a

20% uncertainty on the overall (optical) cross-talk scale is appropriate.

Secondly, careful inspection of fig. 7.32 reveals a handful of PMTs whose

muon-based measured muon cross-talk fraction substantially exceeds that from the

bench test. We inspected the difference between the nominal cross-talk fraction in

the simulation for a channel and what was actually seen in the in situ measurement,



173

Muon measurement

0.03 0.04 0.05 0.06 0.07 0.08 0.09

B
en

ch
 m

ea
su

re
m

en
t

0.05

0.10

0.15

0.20

0.25
Line with slope = 1

Fit with floating slope (m = 1.21)

PMT Average Cross­talk Fractions

1

Figure 7.32: Mean cross-talk fractions for PMTs as measured by the bench tests vs. the
measurement from the muon measurement. The 20% difference between
the best-fit slope and 1 implies that a 20% uncertainty on the overall
cross-talk scale is reasonable.

and constructed a scale factor from each difference. Then, during simulation, we

can randomly sample a smearing factor from the distribution of these scale factors

and apply it, in addition to the nominal scale factor, to simulate a pair whose

scaling factor was incorrectly measured too low. It was estimated that there is an

upper limit of about 2% of channels which could be mis-tuned in this fashion.

The combined effect of this re-smearing of 2% of the channels, in tandem with

the global scale shift, is illustrated in figure 7.33.

Detector mass

The detector mass and composition breakdowns are estimated to be uncertain at

the level of 1.4%. [63] We create an error band corresponding to this uncertainty

by varying the number of targets used in the denominator of eq. 7.1. (This means
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Figure 7.33: Distribution of pulse heights of hits identified as cross-talk, with a band
illustrating the variations described in the text.

that the uncertainty is fully correlated across all the bins of each cross-section

measurement.)

Electromagnetic energy scale

There is a 1.8% uncertainty associated with the extra 5% EM energy scaling we

apply to the simulation (sec. 7.3). We therefore construct alternate versions of the

result in which the electron energy is shifted by 3.2% and 6.8% on an event-by-

event basis and compute the difference in the result to estimate the effect on the

cross-sections.

Michel electron energy scale

The cuts made to eliminate any events with obvious Michel electrons (sec. 7.2.3)

depend on the reconstructed energy of Michel electron candidates. While the data
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energy scale for Michel electrons was determined to be about 3% larger than that

in the simulation [63], no formal uncertainty on this parameter has been published.

We assumed it to be uncertain at the level of 50% of itself; therefore, we evaluated

the difference in the results when the energies of candidate Michel electrons in

the simulation were multipled by 1.015 and 1.045 to estimate the effect on the

cross-sections.
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8 Conclusions

We have presented here the first-ever cross-section measurements made exclusively

of electron neutrino charged-current quasielastic scattering. A comparison of our

measurement to a cross-section measurement of muon neutrino CCQE scattering vs.

Q2 made in the same detector using the same beam finds them to be statistically

consistent, supporting the principle of lepton universality. We also compared the

νe cross-sections themselves to the predictions (based on the Standard Model) in

the GENIE generator, and found satisfactory agreement there as well. Given the

community’s reliance upon this correspondence in the neutrino oscillation campaign,

the agreement we report in this channel is significant. Other studies considering

different exclusive channels in electron neutrino scattering with MINERνA could

also be contemplated in order to bolster the verification of the cross-section models.

We have also observed an unpredicted π0-like process with similar characteristics

to the electron neutrino quasi-elastic process. While it does not substantially affect

this measurement, detectors for neutrino oscillation measurements which are unable

to differentiate between photon- and electron-initiated electromagnetic showers

(such as water Cherenkov detectors) could be susceptible to confusion from such a

reaction. Further study aimed at fully characterizing and identifying the process

in question in our event sample is ongoing.
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A Uncertainties due to

Feynman scaling

Though Feynman’s postulate is reasonably well substantiated in the literature, it

is also known to be at least partially violated at the high energy extreme [88]; this

implies that we need to quantify how reliable it is for our purposes here. We have

chosen to bracket the uncertainty on the correction to the invariant cross-section

as follows: we employ the scaling procedure to scale from the NA49 proton energy

(Ep = 158 GeV) down to the energy of the NA61 experiment (Ep = 31 GeV)—

which also measured p+C pion production [54]—and measure the difference, then

partially invert the scaling correction to return the error estimate to the NuMI

proton energy (Ep = 120 GeV). Once we have a systematic uncertainty estimate,

we insert it into the neutrino flux prediction and examine its effect.

A.1. Comparing NA61 and NA49

To quantify our systematic uncertainty on the scaling procedure, we wish to perform

it to scale NA49’s results for f (Ep = 158 GeV) to match the energy of NA61’s

results (Ep = 31 GeV), and examine the difference:

∆fNA49→NA61 = fNA61(31 GeV)− fNA49(158 GeV)× fFLUKA(31 GeV)

fFLUKA(158 GeV)
. (A.1)
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A.1.1. Translating 1
p
σ(p, θ) to f(xF , pT )

Unfortunately, while NA49 reports f in two-dimensional bins of xF , pT (ideal for

our purposes here, since this makes the results straightforward to use at any energy

assuming Feynman scaling), NA61 does not report f . Instead, they give dσ
dp

in bins

of p integrated over various ranges of θ, which we cannot apply directly (the p, θ

distributions are not invariant, nor is dσ
dp

)1. Therefore, we are obligated to convert

NA61’s results into invariant cross-sections to compare them with NA49.

To do this, we begin by noting that, by definition (applying a Lorentz transfor-

mation to the center-of-momentum frame),

xF =
2p∗L√
s

=
2γCM (pπ,z − βCMEπ)√

2M2
p +MpEp

(A.2)

pT = p sin θ (A.3)

where pπ,z refers to the z-component of the outgoing pion’s momentum in the lab

frame, γCM and βCM are the Lorentz transformation parameters to the center-of-

momentum frame, and Mp and Ep are the proton mass and incoming energy in

the lab frame, respectively.

Then, also by definition, NA61’s result (denoted hereafter as g([plow, phigh], [θlow, θhigh]))

1This parameterization of the results is convenient for T2K, NA61’s primary data consumer,
however, who use a replica target in a basically identical beam.
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can be rewritten as follows:

g([plow, phigh], [θlow, θhigh]) =
1

∆p
σ([plow, phigh], [θlow, θhigh]) (A.4)

=
1

∆p

∫∫∫
d3σ

dp3
d3p (A.5)

=
1

∆p

∫∫∫ (
1

E

)(
E
d3σ

dp3

)
d3p (A.6)

=
1

∆p

∫ phigh

plow

∫ θhigh

θlow

∫ 2π

0

1

E
f(xF , pT )p2 sin θdpdθdφ

(A.7)

Now we can find a bin-averaged (over the p, θ bin) fNA61 in terms of g. The

bin average of 1
E
f is:

〈
1

E
f(xF , pT )

〉
=

2π
∫ phigh
plow

∫ θhigh
θlow

1
E
f(xF , pT )p2 sin θdpdθ

2π
∫ phigh
plow

∫ θhigh
θlow

p2 sin θdpdθ
(A.8)

(where the denominator is the phase space volume element, necessary to get the

average); noting that the numerator is just g∆p (see eq. A.7),

〈
1

E
f(xF , pT )

〉
=

g∆p

2π
∫ phigh
plow

∫ θhigh
θlow

p2 sin θdpdθ
(A.9)

=
g∆p

2π∆(cos θ)∆ (p3/3)
(A.10)

after doing the integrals.

Now, if we assume that the covariance of f and 1/E isn’t extreme over the

kinematic bin (since the bins are relatively small), then

〈
1

E
f(xF , pT )

〉
≈
〈

1

E

〉
〈f(xF , pT )〉 , (A.11)
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which means

〈fNA61(xF , pT )〉 ≈ ∆p〈
1
E

〉 1

2π∆(cos θ)∆ (p3/3)
g(∆p,∆θ)

with xF = xF (〈p〉 , 〈θ〉) and pT = pT (〈p〉 , 〈θ〉).

A.1.2. Phase space coverage

The region of kinematic (xF , pT ) space sampled by NA49 and NA61 differs signif-

icantly: as illustrated in figure A.1, NA49’s bin choices span a broader range of

the available coordinate area, while NA61’s data points partition a smaller region

much more finely. We can thus only report the difference ∆fNA49→NA61 (eq. A.1)

in regions where the data from the two experiments overlap.

With this in mind, figure A.2 presents the fractional residuals between scaled

NA49 and translated NA61 (∆fNA49→NA61

fNA61
, with the numerator from eq. A.1). A

comparison plot of the expected kinematic distributions for neutrinos in two energy

bins from π+ parents in the le010z185i (forward horn current, low-energy horn and

target settings) configuration mentioned previously is in figure A.3. Notice that

the regions of strongest disagreement between NA49 and NA61 do not in general

overlap with the region sampled by the majority of NuMI pions.

A.2. Estimating a systematic uncertainty for

NuMI

To compute an uncertainty appropriate for the pions which create neutrinos in

NuMI, we must remove the extra contribution in figure A.2 due to the scaling

between NuMI energy and the NA61 lower bound. (Recall that for NuMI, Ep =
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Figure A.1: Bin centers of the data points from NA49’s pion results [53], NA61 [54],
and Barton et al. [55].

120 GeV, which is not nearly as far from NA49’s Ep = 158 GeV as NA61’s Ep =

31 GeV is; this means the uncertainty should be smaller than fig. A.2 would imply.)

Once we have a result that is has been corrected to the NuMI energy, we must

correct for two further flaws: first, the data we have been working with to this

point covers only a limited subset of the range of (xF , pT ) that pions producing

neutrinos in NuMI occupy (compare figs. A.2 and A.3); second, the fluctuations

between adjacent bins in fig. A.2 imply that uncertainties in the NA49 and NA61

measurements themselves (which have not been controlled for here) are contributing

to the differences in a non-insignificant way.
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Figure A.2: Fractional residuals in the invariant cross-section (∆fNA49→NA61
fNA61

, where the

numerator is defined in eq. A.1) for p+C → π+X (left) and p+C → π−X
(right).
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Figure A.3: Simulated xF , pT distributions for neutrinos from pions creating neutri-
nos in NuMI which strike the MINERνA detector. Courtesy L. Aliaga
(MINERνA).
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A.2.1. “Unscaling” back to NuMI energy

To “undo” the extra scaling between 120 and 31 GeV, we begin by assuming that

the fractional scaling error ∆fEi→Ef/fEi→Ef
is linear with the scaling factor SEi→Ef :

∆fEi→Ef
fEi→Ef

∼ kSEi→Ef + b (A.12)

= k

(
fFLUKA,Ef

fFLUKA,Ei

)
+ b (A.13)

= k

(
1−

fFLUKA,Ef

fFLUKA,Ei

)
(A.14)

(where in the last step the intercept was chosen such that for zero scaling, where

SEi→Ei = 1, the scaling error ∆fEi→Ei = 0).

Now, since the maps in figure A.2 correspond to ∆f158GeV→31GeV

fNA61
for π+ and π−,

for each case we can use it as the constraint needed to fix k, and then compute

∆f158 GeV→120 GeV:

∆f158 GeV→120 GeV

f158 GeV→120 GeV

=
∆f158 GeV→31 GeV

f158 GeV→31 GeV

 1

1− fFLUKA,31GeV

fFLUKA,158GeV

(1− fFLUKA,120 GeV

fFLUKA,158 GeV

)
(A.15)

∆fNA49→NuMI

fNA49→NuMI

=
∆fNA49→NA61

fNA49→NA61

(
fFLUKA,158 GeV − fFLUKA,120 GeV

fFLUKA,158 GeV − fFLUKA,31 GeV

)
(A.16)

= α(xF , pT )
∆fNA49→NA61

fNA49→NA61

(A.17)

with the additional definition of

α(xF , pT ) ≡
(
fFLUKA,158 GeV − fFLUKA,120 GeV

fFLUKA,158 GeV − fFLUKA,31 GeV

)
(A.18)

for notational convenience. The values of α as a function of (xF , pT ) are plotted in

figure A.4.
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Figure A.4: The FLUKA correction factors (α in eq. A.18) for π+ (left) and π− (right)
plotted as a function of (xF , pT ).
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A.2.2. Smoothing

We have chosen to deal with the fluctuations in the measurements by smoothing

the histograms in a systematic way: the so-called “Gaussian blur” technique, which

is widely used in image processing. Gaussian blurring uses a weighted average to

combine the signals from neighboring pixels in an image. In particular, if f(x, y)

is some function that is plotted as a function of pixels numbered (x, y) relative to

a given origin, then the transformation applied by blurring is:

f(x, y)→ f ′(x, y) =

∑
i,j

f(i, j)G(x, y; i, j)∑
i,j

G(x, y; i, j)
(A.19)

where the Gaussian weights are defined in terms of the “Cartesian distance” between

the pixel in question (x, y) and its neighbor pixels (i, j), r =
√

(x− i)2 + (y − j)2:

G(x, y; i, j) = N exp

(
− r2

2σ2

)
. (A.20)

In this formulation, σ is a tunable parameter (which then controls the ‘width’ of

the blur filter). To ensure that the computation does not become inordinately

expensive for little gain, we also truncate the summations in eq. A.19 such that

they are performed only over pixels (i, j) within a tunable distance rmax of (x, y).

Furthermore, the blurring transformations were applied iteratively to achieve a

satisfactory level of smearing.

Blurring is applied both to the distributions in fig. A.2, both to account for

the neighboring-bin fluctuations and as a cheap means of interpolating between

the bins data in them. The parameters σ, rmax, and N (number of iterations)

were chosen by trial-and-error, attempting to preserve as much of the structure
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Variable Fig. number rmax σ N

∆fNA49→NA61

fNA61
A.2 4.0 2.0 10

α A.4 5.0 3.0 10

Table A.1: Gaussian blur parameters (explained in the text) applied to the distributions
feeding into a systematic uncertainty result.

as possible while simultaneously flatten out the large, unphysical ridges in the

distributions. The values ultimately selected for each of the distributions are listed

in table A.1.

The results of applying the blurring procedure with the parameters listed in

table A.1 are in figures A.5 (for the cross-section residuals) and A.6 (for α).

A.2.3. The systematic uncertainty result

The distributions of the systematic uncertainty, which are the product of the

distributions in figures A.5 and A.6 according to the particle species, are presented

in figure A.7. It is plain that there are some residual minor peaks and troughs that

were not smoothed out in this result; further tuning of the parameters in table A.1

could be applied to minimize these. However, in view of the negligible effect the

systematic uncertainty has on the neutrino flux prediction (as described below),

we judged that these distributions were sufficient.

A.3. Effect on the neutrino flux prediction

To evaluate the effect that the systematic uncertainty calculated above has on

the neutrino flux prediction, the uncertainties from fig. A.7 are used to generate

300 universes in which the weights applied by the NA49 correction are multiplied

by a random number drawn from a Gaussian with standard deviation equal to
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Figure A.5: Distributions of ∆fNA49→NA61
fNA61

after the blurring described in the text has
been performed. Compare to fig. A.2.
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Figure A.6: Distributions of α after the blurring described in the text has been per-
formed. Compare to fig. A.4.
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the uncertainty. The systematic change to the le010z185i (low-energy, ν rich

beam) flux prediction is shown in figure A.8. Since the largest contribution to the

uncertainty budget is about 1%, and this at energies well outside the focusing peak

region (which in le010z185i is roughly 2-5 GeV), we conclude that the effect on the

neutrino flux prediction is negligible.
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B Photon-like data excess

Fig. 7.5 indicates that the prediction from GENIE in the two-particle minimum

front dE/dx region (that is, 2.2 < dE/dx < 3.4 MeV/cm) falls significantly short of

what is observed in the data. (As observed in sec. 7.2.2, in this sample, that region

is predominantly composed of events where the showers of one or more photons

together form the electron candidate.) While the identity of the process responsible

for the missing events in data is not essential to this analysis per se, processes that

dominate in the two-particle region can be expected to also contribute at a lower

level in the signal region as well, as fig. 7.5 makes clear. Therefore, an accurate

estimate of the characteristics of any such events falling in the signal region is vital

to the background prediction used in sec. 7.4. With that in mind, we attempt

to characterize the properties of the excess in sec. B.1. We then consider several

possible hypotheses for the origin of the excess in sec. B.2. Finally, in sec. ?? we

summarize our findings and present the model selected for use in the background

estimate of sec. 7.4.

B.1. Characterization of the excess

In the same manner as sec. 7.4.1, for the purposes of characterizing the excess,

we form a “two-particle” sideband by selecting events that would otherwise pass

all of the selection cuts of sec. 7.2 but have minimum front dE/dx within the

two-particle range noted above: 2.2 < dE/dx < 3.4 MeV/cm. We may then form

comparisons like those in the other sidebands (figs. 7.10 and 7.11). As illustrated

in fig. B.1, while it is not especially notable vs. electron candidate angle, the
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Figure B.1: Distributions in the observables from events in the two-particle sideband.

excess tends to be dominated by events of much higher electron candidate energy

than the bulk of the predictions from GENIE.

Plots in the style of fig. B.1 do not directly yield information about the shape

of the excess itself, which is important in the evaluation we wish to do. To better

characterize the shapes, we subtracted the prediction from the data after having

applied the flux constraint of sec. 3.4 and the background constraints from sec.

7.4.3. The shape of the resulting distribution may then be compared to shapes

of the various background classes predicted by GENIE in any variable of interest.

The shapes in the observables, for instance, are shown in figs. B.2-B.3. (These

plots reinforce the inferences about the excess made above.)

In addition to the kinematics, a full characterization of the excess region will

include information about the amount and location of non-electron-candidate

energy in these events. Based on the comparisons in figs. B.4-B.5, it is apparent

that typical excess events have little non-shower activity, either near the vertex

of the shower (fig. B.4) or upstream of and in-line with the shower (fig. B.5).

Energy elsewhere in these events is also consistent with the shower being the only

energy (fig. B.6. All of these together imply a neutral-current process, though its

particular identity remains unknown (see the further discussion of the implications
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Figure B.2: Shape of the excess compared to MC categories in the electron candidate
angle from events in the two-particle sideband.
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Figure B.3: Shape of the excess compared to MC categories in the electron candidate
energy from events in the two-particle sideband.
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Figure B.4: Vertex-attached energy in the two-particle sideband.

of these distributions in sec. B.2).
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Figure B.5: Energy inside a 7.5◦ cone along the shower axis but pointing upstream, in
the two-particle sideband.
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Figure B.6: Energy outside the electron cone and vertex region, in the two-particle
sideband.
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Finally, in order to ensure that some pathology in the reconstruction or sim-

ulation is not responsible for the excess, we also examine where the events are

reconstructed as originating. Figs. B.7-B.9 demonstrate that the reconstructed

vertex position and shower direction are consistent with real events originating

inside the detector fiducial volume. (This point will be further elaborated in sec.

B.2.)
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Figure B.7: Vertex R2 (= x2 + y2) of events in the two-particle sideband.
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Figure B.8: Vertex z position of events in the two-particle sideband.
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B.2. Candidate explanations for the excess

We have considered several hypotheses for the origin of the excess. They are each

treated in turn below.

B.2.1. Non-fiducial/externally-entering particles

We first sought to understand whether the excess could be caused by neutrino

interactions outside of our chosen fiducial volume. Although we expect that the

data overlay procedure described in sec. 5.2.3 should result in externally-entering

events in the simulation, the plausibility requirement of sec. 6.2.3 will remove any

selected event where the electron candidate originates from data. Since we simulate

only neutrino interactions within the inner detector and rely on our selection cuts

to remove other interactions from the data sample, therefore, outside-detector

neutrino interactions constitute (prima facie) an important candidate for the

excess.

However, when we examine the distributions of the reconstructed vertex posi-

tions in the excess region, the evidence disfavors this hypothesis. The z position of

the reconstructed vertices, shown in fig. B.8, is consistent with the the simulated

processes that arise inside the fiducial volume; anything arising upstream would

develop earlier in z, and we see no such behavior. Furthermore, events entering

the side of the detector from the outside should preferentially interact towards

the outer edges of the detector, resulting in the excess being concentrated towards

larger reconstructed R2 = x2 + y2; but we observe in fig. B.7 that the excess is

distributed uniformly in R2.

To further establish that the excess process cannot be explained by side-entering

events, we examined one other characteristic of the direction of events in the excess

region. If we were to superimpose a cylindrical coordinate system on the detector,
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where the axis of the cylinder coincides with the z-axis of the detector, then the

radial coordinate ρ̂ points directly outward in the x-y plane. The projection of the

electron candidate trajectory r onto ρ̂, that is, the quantity

πρ̂ =
~r · ρ̂
||~r||

(B.1)

should differentiate between events entering from the exterior (which will always

point inward, and thus have negative projection onto ρ̂) and events originating

inside the detector (which should be distributed on both sides of 0 in πρ̂). As

shown in fig. B.9, the excess is consistent with events inside the detector.

Based on this evidence, we rule out the hypothesis that the excess arises from

externally-entering events.
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Figure B.9: Projection of shower axis onto radial coordinate for events in the two-
particle sideband. (Projection of +1 means pointing directly outward from
z-axis; −1 is directly inward.)
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B.2.2. Charged-current interaction model

A second potential explanation for the origin of the excess posits that the detector

simulation significantly mismodels the front dE/dx distribution of electron pro-

cesses, and that the excess events are really electron events in which the shower

begins to develop earlier than GEANT predicts (c.f. the cartoon in fig. B.10).

(The same effect would apply to positrons with no modification.)

In this scenario, both the signal process and the “other CC νe” background

should be equally affected because both yield electrons (or positrons) as the primary

showering particle in the final state, and this hypothesis supposes that the effect is

due entirely to a process affecting only the final state. Therefore, we must consider

them together when considering whether this conjecture is consistent with the

excess. However, we observe (fig. B.4) that the excess prefers very litte shower

vertex-attached energy, in contrast to the νe events (which have nucleons and

frequently other charged particles originating from the shower vertex). Moreover,

there is no corresponding excess observed in the Michel-match sideband (fig. B.11),

which is a sample strongly dominated by νe events. We will also notice in passing

that it is difficult to understand how the photon backgrounds would not also be

γ e+

e-

e±

??

γ e+

e-

e±

~1 X
0

??

Figure B.10: Schematic illustration of how mismodeling of electron showers could result
in the excess process. At left: the model in the simulation, where the first
Bremsstrahlung photon (initiating the cascade) is radiated (on average)
after about 1 radiation length (1 X0) of travel, permitting measurement
of the initial dE/dx over that range. Right: postulated true behavior,
in which the initial radiation is emitted sooner than expected; this
results in a dE/dx corresponding to more than one particle for some
of the measurement range, and could therefore (on average) lie in the
two-particle region.
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Figure B.11: Data-simulation comparison in Michel-match sideband.

affected by the kind of effect considered here, and there does not appear to be any

of the broadening of the data “two-particle” peak in fig. 7.5 relative to that of

the simulation that we would expect if a photon-initiated cascade developed more

quickly than the simulation predicts.

Therefore, we conclude that the excess does not arise from a catastrophic

mismodeling of the electron shower of electron final-state processes.

Additionally, the argument regarding vertex-attached energy from nucleons

made above applies also to charged-current neutral pion production, and the latter

process is therefore ruled out equally well.

An alternative way in which the charged-current model could be responsible for

the excess is via the non-shower activity associated with an event. In particular,

MINERνA has found that in muon neutrino scattering, GENIE’s model system-

atically underestimates the energy observed near the muon vertex [21, 20], and,

by lepton universality, it is expected that a similar phenomenon should happen

for electron neutrino CCQE. When this activity overlaps with the beginning of
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the electron shower, as it is bound to do at least some fraction of the time, it

could bias the dE/dx measurement. The sliding nature of the way the front

dE/dx is measured (see sec. 7.2.2) is specifically intended to minimize the impact

that unsimulated nucleons could have on the front dE/dx, but nevertheless, we

sought to quantify its potential contribution. To do so, we added an extra proton

of kinetic energy sampled uniformly from 0-225 MeV to 25% of our simulated

events, consistent with the findings in muon neutrino scattering [21]. Because those

results provided no insight into the angular distribution of the extra proton, we

performed the study twice: once with the protons distributed uniformly in angle

with respect to the electron, and one in which the proton was constrained to lie

in the same hemisphere as the electron. We compared the shape of the nominal

dE/dx distribution (with all other selection cuts applied) to that of the samples

with extra protons, shown in fig. B.12. As can be readily seen there, the effect is

minimal, and cannot be responsible for an excess of the magnitude we observe.
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Figure B.12: Shape of front dE/dx distribution with: nominal simulated sample
(black); extra protons distributed uniformly in angle w.r.t. the elec-
tron (red); extra protons constrained to lie in the same hemisphere as
the electron (blue).

B.2.3. Neutral-current π0 model

Due to the extremely different spectra — particularly in shower energy (fig. B.3),

but also in angle (fig. B.2) — we already expect that the excess is very unlikely

to be due to a mismodeling of the NC π0 models GENIE offers. To confirm or

disprove this hypothesis, however, we wish to examine other properties of these

classes of events which depend less on the neutrino interaction model than the

kinematics do, as we did in the sections above. As noted in sec. B.1 above, the

consistency of the vertex-attached energy (fig. B.4) and in-line upstream energy

(fig. B.5) criteria with both NC event classes indicate that the excess process is

very likely neutral-current.

However, we expect that the amount of non-shower, non-vertex energy in the

event should differentiate between NC coherent events (in which no other particle

is produced in the final state besides the π0) and NC incoherent events (which,
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Figure B.13: Extra energy fraction (as defined in sec. 6.2.3), in the two-particle
sideband.

in general, will have other particle activity). Fig. B.6, at first glance, seems to

indicate that the excess is more like the incoherent process than the coherent one.

However, as was noted in sec. 6.2.3, the energy leaked outside of the reconstructed

cone by EM showers increases with energy. Since the excess occupies a much higher

range of shower energy, on average, than the NC processes simulated by GENIE,

the extra energy distributions are not directly comparable. On the other hand, the

Ψ variable of sec. 6.2.3 was designed to combat precisely this problem. Examining

fig. B.13, we in fact come to the opposite conclusion: the excess process appears

to be coherent-like.

To further evaluate the consistency of the excess with a coherent process,

we investigated one other quantity. Based on the work of Lackner [89] and

Rein and Sehgal [83] on neutral-current coherent π0 production, experiments

attempting to observe NC coherent production traditionally work in the variable

Eπ0(1− cos θπ0) ≈ Eπ0θ2
π0 (refs. [90, 91, 92, 93, 94, 95]; others in narrow neutrino

energy ranges sometimes use just θ2
π0 , e.g., ref. [96]). Because it is constrained by

the requirement that the wavelength corresponding to the momentum transfer t be

greater than a constant r0 (roughly the inverse of the nuclear size), this variable
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Figure B.14: Eθ2
shower, in the two-particle sideband.

obeys the relation E(1 − cos θ) . 1/r0 [89]. Thus in this variable, the coherent

process tends towards much smaller values than the incoherent (resonant, DIS)

ones, where it is does not obey the same condition. It also has the virtue of being

an approximately energy-independent measure of the coherence of the reaction,

a vital characteristic in the current analysis (where the excess occupies a much

different energy regime than the predicted coherent process and is thus difficult to

compare directly). Accordingly, we compared the shape of the excess in Eθ2
shower

to the processes simulated by GENIE. As shown in fig. B.14, the process is again

most consistent with a coherent process.

All this evidence appears to indicate a coherent neutral-current process, produc-

ing a final state with at least one (and possibly more) electromagnetic shower(s),

which has a much harder shower energy spectrum than the neutral-current π0 pro-

duction predicted by the Rein-Sehgal model as implemented in GENIE. However,

we feel that it is very unlikely our excess arises from that process since, as argued

in sec. 7.4, this same model predicts charged-current coherent production of pions

as well, and the excellent MINERνA measurement of this process [82] agrees very

well with the model at pion energies above 0.5 GeV. Furthermore, to approach

the magnitude of disagreement evidenced in fig. 7.5, the normalization of the NC
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coherent π0 process would need to be incorrect at the level of a factor of two, and

such a disagreement would be in strong tension with the charged-current results.

Thus, we conclude that none of the models incorporated into the simulation are

good candidates for the origin of the excess.

B.2.4. Diffractive NC scattering from H

Since MINERνA’s tracker material is a CH-based hydrocarbon, it contains approximately-

free protons in abundance. Therefore, we expect that neutral pions originating

from a diffractive process occurring on the hydrogen (analagous to the coherent

process on carbon and the other heavy nuclei in the detector) should be present in

our data sample. However, given that in diffractive scattering, the proton absorbing

the momentum transferred from the neutrino is much less massive than an entire

nucleus, it often recoils substantially. This has an important consequence: the

proton will often receive enough kinetic energy to make it visible in MINERνA,

resulting in visible energy away from the shower vertex.

Some quantitative evaluation of diffractive production as a candidate for the

excess is clearly desirable. GENIE in fact contains an implementation of a model

for charged-current diffractive scattering from D. Rein [97], but it is disabled by

default since it has not been subjected to the detailed benchmarking against data

that GENIE’s default models are required to undergo. We nevertheless attempted

to use it to estimate the characteristics of diffractive production by modifying it

such that in its output events, charged pions were replaced with neutral pions and

the outgoing charged lepton with a neutrino. We also multiplied the cross-section

by 0.5 in accordance with the expectation for the CC/NC ratio from coherent

production [98]. (These changes result in slightly incorrect kinematics for values

of true Q2 near and below the sum of the muon and pion masses, which is the

threshold for the charged-current process; but since we observe showers with an
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order of magnitude more energy than that, should this be the correct explanation

for the excess, we expect that the threshold effects will be unimportant.) We then

generated events using this model in the predicted NuMI flux (see ch. 3) with the

MINERνA detector model (see ch. 4).

The spectra in front dE/dx, electron candidate angle, and electron candidate

energy, where the diffractive prediction is added to the constrained nominal predic-

tion, are compared to the data spectra in figs. B.15. Though it fills in the excess

region in dE/dx nicely, the combined prediction with the diffractive piece included

significantly overpredicts the rate at high angles and low energies.

Regardless of the particulars of the kinematics, as noted above, there is one

feature that will be present regardless of the implementation, and that is the

recoiling proton. We examined the energy contained in a cone beginning at the

reconstructed shower vertex and pointing directly backwards along the shower

axis. The comparison of the shape in this variable between the diffractive events

and the data excess is presented in fig. B.16. Though qualitatively the behavior

is correct—both the model and the excess have a large number of events where

the visible energy upstream is consistent with zero, with a long tail up to tens of

MeV—the diffractive model consistently produces more of it.

Thus, while we cannot reject the diffractive hypothesis out of hand (given the

qualitative similarities to the excess, including in the “coherence” variable Eθ2

in fig. B.17), we are forced to conclude that the model we have available cannot

simulate the excess well enough to use it in a subtraction in the signal region.
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Figure B.15: Comparisons of the properties of the diffractive model against the excess.
Top: front dE/dx distribution with all cuts except the dE/dx cut applied
(diffractive contribution shown with solid orange line and gray shading).
Bottom: kinematic variables with the diffractive model added to the
constrained nominal prediction, compared to the data.
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Figure B.16: Shape comparison in upstream inline energy (defined in the text), diffrac-
tive model vs. data excess.
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Figure B.17: Shape comparison in Eθ2, diffractive model vs. data excess.
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B.3. Ad hoc models for extrapolating into the

signal region

B.3.1. Construction of samples

As detailed above, we were unable to find any candidate process among those

included in our simulation which appears to correctly predict the spectra of the

excess. Therefore, in order to estimate the effect that the excess process may

have in the signal (i.e., 1-particle dE/dx) region, we are forced to turn to an

ad hoc model engineered explicitly to match the measured final-state kinematics

and content. Because the evidence as presented thus far does not conclusively

differentiate between single- and multiple-photon showers, we constructed several

alternatives: single photons, neutral pions (which decay to two photons 99% of

the time with a very short lifetime), and etas (which decay into two-photon or

three-π0 states about 70% of the time, also very quickly).1 As is explained in the

summary below, we chose from among them to form the predicted contribution of

the excess process in the signal region in sec. 7.4.

All of our ad hoc models were constructed in the same fashion. We began

with simulations of 500,000 single particles of each type in our detector, where the

initial spectra were very broad: kinetic energies were sampled uniformly from 0

to 20 GeV, angles with resepect to the beam axis were sampled uniformly from

0 to π/2, and the azimuthal angle φ was unconstrained (uniformly sampled from

1These choices were inspired in part by the particles expected to be produced in coherent
neutrino interactions and in part by the requirement that the particle should quickly decay
to a final state involving only photons. We were unable to find any higher-mass predicted
coherent processes that match our observations: ρ0 and ρ± decays nearly always involve a
charged pion (ruled out by the extra energy this would produce), and three-pion coherent
production mediated by the a1 [98] occurs only via the charged current, which would result in
a charged lepton in the final state (ruled out by the significant non-vertex energy this would
entail, regardless of which particle was chosen as the shower). Though coherent η production
is predicted not to exist [92], we included the η as an example of a heavier mass state decaying
to photons.
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0 to 2π). These samples were fed into the reconstruction and analysis chain of

chs. 6 and 7. We then formed sets of weights for the events reconstructed into

the two-particle sideband such that the weighted reconstructed shower energy

and angle distributions for the simulation matched the distributions observed in

the data. Because the correlations between the angle and energy are important

(presumably only certain combinations are allowed based on the allowed kinematics

of the reaction, like in the interactions we have models for), but the statistics of

the excess in the data are not sufficient for a simple bin-by-bin reweighting in the

two-dimensional energy-angle space, we constructed a bin-by-bin weight function

in the energy and a set of one bin-by-bin function in angle for each energy bin:

w(E0, θ0) = CiwE(E0)wiθ(θ) (B.2)

(where the index i corresponds to the bin of the wE function that energy E0 falls

into, and the Ci are normalization constants). The functions interpolate linearly

between the ratios calculated in the bin centers. Example weight functions (drawn

from the photon sample) are shown in fig. B.18. To verify that kinematics of

the resulting reweighted samples match the excess, we compare them in fig. B.19.

The front dE/dx distributions with the various ad hoc models (after fitting to the

excess) included are presented in fig. B.20.

With these samples in hand, we can make comparisons of a similar form to

those considered in sec. B.1. We will exploit this capability repeatedly in the next

section.
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Figure B.18: Sample weight functions from among those used to achieve agreement
between the photon ad hoc single-particle sample and the data excess.
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Figure B.19: Comparisons of the shapes of the reweighted ad hoc samples with the
measured excess.
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Figure B.20: Front dE/dx distributions comparing the fitted ad hoc samples added to
the constrained GENIE prediction with the data. The topmost (shaded
gray) histogram is the ad hoc model in each case.
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B.3.2. Differentiating between particle hypotheses

Particle identification variables

Our primary objective is to select a single candidate model we can use to extrapolate

into the νe CCQE signal region. Selecting from the ad hoc models we constructed

in sec. B.3.1 requires us to differentiate between single-photon showers and multi-

photon particle decays where the photons are significantly boosted in the forward

direction and the resulting showers have substantial overlap. This is a challenging

proposition, even in a fine-grained detector like MINERνA. Nevertheless, we have

managed to find a few variables which provide some degree of separation. Two of

them will be familiar from sec. 6.2.2.

Extra energy When a particle decaying to multiple photons does so at low to

moderate kinetic energies (i.e., it has relativistic β . 25), the photon showers

will frequently receive little enough boost to be fully separated. In that case we

may hope to observe the photon that was not chosen as the reconstructed shower

as “extra energy” (in the sense of sec. 6.2.2); we can contrast this behavior with

that of single photons. Fig. B.21 illustrates this point (using the flat-spectrum

original sample that the reweighted ad hoc samples were constructed from): note

the separation in extra energy ratio between photons and neutral pions in the

lower energy range, and the separation from etas for much of the energies shown.

Intriguingly, though fig. B.1 appears to indicate that although the excess events

prefer an energy range that is in large part above the separation power of this

variable, the excess is nevertheless more consistent with single photons or neutral

pions than etas.

Shower width Above the range in kinetic energy where separate photon showers

begin to merge, there is still some range of energy where it is possible to distinguish
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Figure B.21: Left: profile of extra energy ratio Ψ (defined in sec. 6.2.3) for various
particle types in single-particle events. Each point represents the mean
of the range of Ψ for that energy, while the error bars correspond to the
standard deviation. Right: shapes of distributions of ad hoc samples in
Ψ compared to that of the excess.

between single- and multi-photon showers based on their transverse size. That

is, because a multi-photon shower in this “transition regime” in energy will have

partial but not total overlap, the shower will appear to be broader in its transverse

dimension. While we enforced a minimum shower width via the median plane

shower width criterion of sec. 6.2.2 to find electromagnetic showers in the main

selection, we can also contemplate examining its upper bound. Fig. B.22 this

time indicates that the excess is more consistent with a multi-photon origin than a

single-photon one, though here we are unable to differentiate between the neutral

pion and eta hypotheses.

Transverse asymmetry The transverse energy distribution of multi-photon

showers has one additional feature besides its width that can potentially be used

to discriminate between the various particle types. Because the conversion of

photons into electron-positron pairs is stochastic, and the radiation length in the

MINERνA plastic is large (X0 ∼ 40 cm) compared to the longitudinal resolution of

the detector (σz ∼ 2 cm), an event containing multiple photons will frequently see

them convert far enough apart longitudinally that the track reconstruction (sec.
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Figure B.22: Left: profile of median plane shower width (defined in sec. 6.2.2) for vari-
ous particle types in single-particle events. Right: shapes of distributions
of ad hoc samples in shower width compared to that of the excess.

6.1.3) effectively follows the earlier conversion. And since the direction of the track

determines the reconstructed Cone axis (sec. 6.2.2), if the opening angle between

the two photons is more than a degree or two, then the energy will (on average)

be distributed asymmetrically around the cone axis. It is this asymmetry that we

seek to measure.

We calculate the asymmetry of the event around the reconstructed axis as

follows. The hits inside the reconstructed Cone object are first sorted according to

the detector view (sec. 4.1) they appear in. The reconstructed Cone axis is then

projected into each plane where a strip was illuminated and the strip it intersects

recorded. Computing the energy-weighted mean of the difference between the

illuminated strips xi and the projected intersection point of the axis xp yields an

asymmetry score for the view (where i runs over the strips in the view):

AX,U,V =
1∑
iEi

∑
i

Ei(xi − xp) (B.3)

Now, though we have three values here, they are not all independent: we have

summed across the detector ẑ-coordinate, leaving us with only two degrees of

freedom. To make this explicit, we recall from sec. 4.1 that the unit vectors for
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the U and V directions are, respectively, 1
2
(x̂ ±

√
3ŷ). Thus, we can recover the

Cartesian coordinates with the combinations:

x̂ = û+ v̂ (B.4)

ŷ =
1√
3

(û− v̂) (B.5)

So we may as well represent the two measurements of asymmetry that we have

represented here as an x-coordinate asymmetry and a y-coordinate asymmetry.

However, to combine additive functions FX , FU , and FV into an x-coordinate one

Fx̂, we should take into account the fact that the X planes sample this coordinate

twice as frequently as the combination (U+V), and therefore the estimator from

the X view should have error 1√
2

of that of the estimator from (U+V). So, using

an error-weighted mean, we have

Fx̂ =
1(

1
2

)−2
+ 1−2

(
FX

(
1√
2

)−2

+ (FU + FV )(1)−2

)
(B.6)

=
1

3
(2FX + (FU + FV )) (B.7)

Fŷ =
1√
3

(FU − FV ) (B.8)

Therefore, we can construct the x- and y-coordinate asymmetries as:

Ax̂ =
1

3
∑

all strips Ei

(
2
∑

X strips

Ei(xi − xp) +

( ∑
U strips

Ei(xi − xp) +
∑

V strips

Ei(xi − xp)

))
(B.9)

Aŷ =
1√

3
∑

U,V strips Ei

( ∑
U strips

Ei(xi − xp)−
∑

V strips

Ei(xi − xp)

)
(B.10)

To obtain a single metric describing the asymmetry, we can add Ax̂ and Aŷ as we
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Figure B.23: Left: profile of transverse shower asymmetry (defined in the text) for
various particle types in single-particle events. Right: shapes of distri-
butions of ad hoc samples in transverse shower asymmetry compared to
that of the excess.

would to get a distance in Cartesian coordinates:

A =
√

(Ax̂)2 + (Aŷ)2 (B.11)

The values of A for different particle species, as well as a comparison of their shapes

to the excess, are given in fig. B.23. Once again, we observe a preference for the

multi-photon states over the single-photon.

Conclusions

Because the distributions in extra energy ratio rule out the η hypothesis, and the

distributions in shower width and transverse asymmetry rule out the γ hypothesis,

we conclude that the π0 hypothesis is the most appropriate for modeling of the

excess.
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C Alternate analysis used for

ratio to νµ CCQE

In order to compare the νe CCQE cross-section measured in ch. 7 to the existing

MINERνA measurement of νµ CCQE [21] in a consistent way, it was necessary to

construct a version of the cross-section measurement which used an alternate signal

definition (events which were CCQE according to the event generator), which used

a smaller range of neutrino energy acceptance (1.5 ≤ Enu ≤ 10 GeV), and which

did not use the flux constraint of sec. 3.4. (The reasoning is further discussed in

sec. 7.9.)

The observable distributions in the sidebands (figs. C.1-C.2), the efficiency

corrections (fig. C.3), and the final result for this alternate analysis (fig. C.4) are

shown below. (Though they contain different content because the distributions

just listed are different, the background-subtracted and unfolded distributions are

not shown here because the methodology for producing them is the same, and the

differing signal distribution does not have a direct effect on them.)
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Figure C.1: Distributions in the observables from events in the extra energy sideband
for the alternate analysis (app. C).
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Figure C.2: Distributions in the observables from events in the Michel-match sideband
for the alternate analysis (app. C).
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Figure C.3: Efficiency predictions in the cross-section variables, after correcting for
the shape of the data, in the alternate analysis (app. C).
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Figure C.4: Measured cross-sections in the alternate analysis (app. C).
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L. Aliaga, J. Devan, M. Kordosky, J.K. Nelson, A. Norrick, J. Walding, D. Zhang

College of William and Mary


	Biographical Sketch
	Acknowledgments
	Abstract
	Contributors and Funding Sources
	List of Tables
	List of Figures
	Introduction and motivation
	The Standard Model
	Beyond the Standard Model: neutrino oscillations
	Neutrino interactions and scattering

	Creating a high-intensity neutrino beam
	Proton acceleration
	Protons to neutrinos

	Characterizing the neutrino flux
	g4numi: GEANT4 simulation
	External constraints from hadron production experiments
	Flux uncertainties
	In situ constraint: neutrino-electron elastic scattering
	Final flux prediction

	The MINERA detector
	Subdetector arrangement and function
	Active plane composition and instrumentation
	Readout electronics and data acquisition system

	Data collection and simulation
	Data acquisition and unpacking
	Data simulation via Monte Carlo
	Data calibration

	e CCQE event reconstruction
	Generic reconstruction
	e CCQE-specific reconstruction

	Measuring the differential cross-section ddQ2 for the e CCQE process
	Signal and fiducial volume definitions
	Selection of events
	Selected event sample
	Background model and constraints
	Unfolding in observables
	Correction for inefficiency
	Normalization by flux and target number
	Measured cross-sections
	Ratios to  CCQE
	Systematic uncertainties

	Conclusions
	Bibliography
	Uncertainties due to Feynman scaling
	Comparing NA61 and NA49
	Estimating a systematic uncertainty for NuMI
	Effect on the neutrino flux prediction

	Photon-like data excess
	Characterization of the excess
	Candidate explanations for the excess
	Ad hoc models for extrapolating into the signal region

	Alternate analysis used for ratio to  CCQE
	List of MINERA collaborators



