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This dissertation presents the searches on sterile neutrinos using the

data collected in MINOS+ Experiment from September 2013 to September

2014, and the full data set of MINOS Experiment collected from 2005 to 2012.

Anomalies in short baseline experiments, such as LSND and MiniBooNE,

showed hints of sterile neutrinos, a type of neutrino that does not interact

with the Standard Model particles. In this work, two models are considered:

3+1 and large extra dimension (LED). In the 3+1 model, one sterile neutrino

state is added into the standard oscillation scheme consisting of three known

active neutrino states νe, νµ and ντ . In the LED model, sterile neutrinos arise

as Kaluza-Klein (KK) states due to assumed large extra dimensions. Mixing

between sterile and active neutrino states may modify the oscillation patterns

observed in the MINOS detectors. Both searches yield null results. For 3+1,

a combined fit of MINOS and MINOS+ data gives a stronger limit on θ24 in

the range of 10−2 eV2 < ∆m2
41 < 1 eV2 than previous experiments. For LED,
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with the complete MINOS data set, the size of extra dimensions is constrained

to be smaller than ∼ 0.35 µm at 90% C.L. in the limit of a vanishing lightest

neutrino mass.
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Chapter 1

Neutrino Physics

Since its proposal in 1930, a large amount of knowledge has been ac-

cumulated about neutrinos. They are the most abundant fundamental con-

stituents of the Universe. They are neutral, weakly interacting, and spin 1/2

particles created with three definite flavors: electron, muon and tau. Their

small yet non-vanishing mass allows the phenomenon of neutrino oscillations.

This chapter lays the background and theoretical foundation of this disserta-

tion. Firstly, a brief history on the discovery of the neutrinos is given, followed

by an introduction of a series of experiments leading to the establishment of

the neutrino oscillation theory. The formalism of neutrino mixing is outlined

in the last section of this chapter.

1.1 Discovery of Neutrinos

In 1914, James Chadwick measured a continuous energy spectrum of

electrons from beta decay using a magnetic spectrometer [1]. To explain this,

in 1930, Wolfgang Pauli proposed the emission of a neutrino [2] in beta decay

n→ p+ e− + ν, (1.1)
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where the neutrino shares part of the decay energy resulting in a continuous

electron energy spectrum. In 1956, Frederick Reines and Clyde Cowan re-

ported the discovery of the electron antineutrino νe at Savanah River Plant,

using the inverse beta decay

νe + p→ n+ e+. (1.2)

The events were selected based on the coincidence of the signals from neutron

capture on cadmium and positron annihilation [3].

In 1959, the muon neutrino νµ was predicted by Bruno Pontecorvo [4]

and was discovered by Leon Lederman, Melvin Schwartz and Jack Steinberger

in 1962 at Brookhaven National Laboratory [5] using the first-ever neutrino

beam. In their experiment, a 15 GeV proton beam striking a beryllium target

was used to create pions, which subsequently decayed into muon neutrinos.

Muons from muon neutrinos interacting with matter were then observed in a

spark chamber.

The tau neutrino ντ was postulated after the discovery of the tau lepton

in 1975 [6]. It was discovered in 2000 by the DONUT experiment at Fermilab

where four tau neutrino events with an estimated background of 0.34 events

were observed in the nuclear emulsion detectors [7].

The number of light neutrino species is determined to be 2.9840±0.0082

by the measurements performed at the SLAC Linear Collider and the Large

Electron-Positron collider at CERN, in agreement with the three observed

generations of fundamental fermions [8]. Comparing the total width of the
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Z boson resonance to the width from its decays to visible particles yields the

width for its decay to neutrinos. Assuming equal coupling strengths of the Z

to all neutrino types, the fit to the number of light neutrino species is shown

in Figure 1.1.

On the other hand, combining Planck observations on the cosmic mi-

crowave background radiation with other astrophysical data gives Neff =

3.15 ± 0.23 for the effective number of relativistic degrees of freedom, con-

sistent with the value from the Z boson decay, and the sum of neutrino masses

is constrained to mν < 0.23 eV [9]. Additionally, in Reference [10], combin-

ing WMAP (Wilkinson Microwave Anisotropy Probe) with other data yields

Neff = 3.55+0.49
−0.48, which is consistent with the Planck result, and mν < 0.44 eV.

All neutrinos are left-handed and all antineutrinos are right-handed

assuming they are Dirac particles like all other fermions. Chirality (left-handed

or right-handed) of a particle is a Lorentz invariant property related to helicity.

The latter is defined as

s · p
|s| |p|

, (1.3)

where s and p are the particle’s spin and momentum, respectively. In the

limit of small mass, such as that of neutrinos, chirality is equal to helicity, i.e.,

right-handedness corresponds to positive helicity, and vice versa. The first

hint of neutrino helicity came from Chien-Shiung Wu’s experiment in 1956

[11]. The result of observing β decay of polarized 60Co suggested a preference

of the antineutrinos to take positive helicity (s · p > 0, right-handed). This
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Figure 1.1: Measurements of the hadron production cross-section around the
Z resonance. The data consist of 17 million Z decays accumulated by the
ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z
decays by the SLD experiment using a polarized beam at SLC. The curves
represent the predicted cross-section for two, three and four neutrino species
with Standard Model (SM) couplings and negligible mass. The plot is taken
from Reference [8].
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proved parity violation in weak interactions since s · p changes sign under

parity transformation. In 1958, Maurice Goldhaber, Lee Grodzins and An-

drew Sunyar measured the polarization of the neutrino in the electron capture

e−+152 →152 Sm∗ + νe, with the subsequent decay 152Sm∗ →152 Sm + γ. They

found that the measured polarization of the photon implies that the electron

neutrino takes negative helicity (s · p < 0, left-handed) [12].

1.2 Neutrino Oscillations

Neutrino oscillation was first proposed by Bruno Pontecorvo in 1957

[13, 14], and he pursued this work over many years. Independently, in 1962,

Ziro Maki, Masami Nakagawa and Shoichi Sakata also arrived at the idea

of neutrino masses and mixing [15]. In the past few decades, the oscillation

theory has been established through various experiments that measure solar,

atmospheric, reactor and beam neutrinos.

1.2.1 Solar Neutrinos

Solar neutrinos are produced by some of the fusion reactions in the

pp chain or CNO cycle occurring in the Sun. The combined effect of these

reactions is written as

4p+ 2e− →4 He + 2νe. (1.4)

The average energy carried away by neutrinos is ∼ 0.6MeV [16]. The most

elaborate standard solar model (SSM) calculations have been developed by
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Figure 1.2: The solar neutrino spectrum predicted by the BS05(OP) standard
solar model [17]. The plot is taken from Reference [18].

John Bahcall and his collaborators. The solar-neutrino spectra calculated

with the BS05(OP) model by Bahcall is shown in Fig. 1.2.

A pioneering solar neutrino experiment was performed by Ray Davis

and his collaborators at Homestake Mine in late 1960’s. The first result was

published in 1968, and it showed that the detected flux of solar neutrinos

was about 2-3 times smaller than the flux predicted by the standard solar

model [19]. This effect was called “the solar neutrino problem”. In 1989,

the Kamiokande experiment made the first directional counting observation

of solar neutrinos and confirmed the deficit [20]. SAGE [21] and GALLEX
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[22] confirmed the solar neutrino deficit in radiochemical experiments in 1991

and 1992, respectively. In 2001 and 2002, SNO announced the observation of

neutral currents from solar neutrinos, along with charged currents and elastic

scatters, providing convincing evidence that neutrino oscillations are the cause

of the solar neutrino problem [23, 24]. In 2008, with a detection threshold as

low as 250 keV, the flux of monochromatic 0.862 MeV 7Be solar neutrinos was

observed by the Borexino experiment using a liquid scintillation detector [25].

Then in 2014, the Super-Kamiokande experiment reported a 2.7σ indication of

non-zero day-night asymmetry of 8B solar neutrinos, which implies the Earth

matter effects on flavor oscillations of solar neutrinos [26].

1.2.2 Atmospheric Neutrinos

Atmospheric neutrinos are produced as decay products in hadronic

showers resulting from collisions of cosmic rays with nuclei in the upper at-

mosphere. Production of electron and muon neutrinos is dominated by the

processes

π± → µ± + νµ/νµ, (1.5)

µ± → e± + νe/νe + νµ/νµ. (1.6)

The expected ratio of the (νµ + νµ) flux to the (νe + νe) flux at low energies

(1 GeV) is approximately

φ(νµ + νµ) : φ(νe + νe) ≈ 2 : 1. (1.7)
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More detailed flux calculations for a broader energy range can be found in

Reference [27–30].

The first compelling evidence for atmospheric neutrino oscillation was

presented by the Super-Kamiokande Collaboration in 1998 [31] from the ob-

servation of atmospheric neutrinos. The zenith-angle distributions of the

µ-like events which are mostly muon neutrino and muon antineutrino ini-

tiated charged-current interactions, showed a clear deficit compared to the

no-oscillation expectation.

1.2.3 Reactor Neutrinos

Nuclear power plants are the most intense man-controlled sources of

neutrinos. With an average energy of about 200 MeV released per fission

and 6 neutrinos produced along the β-decay chain of the fission products, one

expects some 2 × 1020ν/s to be emitted in a 4π solid angle from a 1 GW

reactor. Since unstable fission products are neutron-rich nuclei all β-decays

are of β− type and the neutrino flux consists purely of electron antineutrinos

(νe) [32].

KamLAND was a long-baseline (flux-weighted average distance L ∼

180 km) neutrino oscillation experiment that measures νe emitted from nu-

clear power reactors. In 2002, KamLAND began operations in January and

announced in November the detection of a deficit of νe from reactors [33]. With

a much shorter baseline (L ∼ 1 km), the three reactor neutrino experiments

Double Chooz [34], Daya Bay [35], and RENO [36] reported their first results
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on reactor νe disappearance in 2012.

1.2.4 Beam Neutrinos

Neutrino beams generated at accelerator facilities provide another source

to study neutrino oscillations. The technique is to collide a high-energy proton

beam with a nuclear target to derive a beam of pion and kaon secondaries,

whose decays in turn yield a neutrino beam. The precise selection and manip-

ulation of the pion/kaon beam control the energy spectrum and type of the

neutrino beam [37].

K2K (KEK-to-Kamioka) is the first accelerator-based experiment with

a neutrino path length extending hundreds of kilometers. Data taken in K2K

between 1999 and 2004 confirmed neutrino oscillation through νµ disappear-

ance [38]. MINOS is the second long-baseline neutrino oscillation experiment

which ran from 2005 to 2012. The combined analysis of νµ disappearance

and νe appearance using beam and atmospheric data is reported in Reference

[39]. Additionally, MINOS observed muon antineutrino disappearance with

the NuMI beam line optimized for νµ production [40, 41]. The T2K experiment

is the first off-axis long-baseline neutrino oscillation experiment. A narrow-

band νµ beam with a peak energy of 0.6 GeV, produced by 30 GeV protons

from the J-PARC Main Ring, is directed 2.5◦ off-axis to Super-Kamiokande

[42]. The only experiment to identify ντ appearance event by event is OPERA,

with a target mass of 1290 tons, a neutrino source at CERN and a detector

at Gran Sasso with a baseline distance of 730 km. As of July 2013, OPERA
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found three ντ candidate in the τ → µ channel [43].

1.3 Oscillations Formalism

This section gives a brief introduction on the formalism of the neutrino

oscillations. Following a general form of the oscillation formula, the three flavor

mixing case, also referred to as the standard oscillation model, is applied to

the case of νµ disappearance as measured by MINOS.

1.3.1 Generic Formula

One can define a unitary matrix U as

|νi〉 =
∑
α

Uiα|να〉 or |να〉 =
∑
i

U∗αi|νi〉, (1.8)

where |να〉 and |νi〉 are the flavor and mass eigen states, respectively. Given

the time evolution of a flavor state

|να(t)〉 =
∑
i

U∗αie
−i(Eit−piL)|νi〉, (1.9)

where t and L are the time and distance for which the neutrino travels, and E

is the neutrino energy, the oscillation probability between two flavors, α and
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β, can be written as

P (να → νβ) = |〈να|νβ(t)〉|2

=

∣∣∣∣∣
(∑

i

Uαi〈νi|

)(∑
j

U∗βje
−i(Ejt−pjL)|νj〉

)∣∣∣∣∣
2

= δαβ − 4
∑
i>j

<
[
UαiU

∗
αjU

∗
βiUβj

]
sin2 (∆ij/2)

+ 2
∑
i>j

=
[
UαiU

∗
αjU

∗
βiUβj

]
sin ∆ij. (1.10)

where

∆ij ≡ (Ei − Ej)t− (pi − pj)L. (1.11)

The average neutrino speed v can be approximated as (pi + pj)/(Ei + Ej)

using v = p/E where the natural unit is applied. Inserting the time of flight

t = L/v ≈ L(Ei + Ej)/(pi + pj) in Equation 1.12, one has

∆ij = (Ei − Ej)t− (pi − pj)L

≈
E2
i − E2

j

pi + pj
L−

p2
i − p2

j

pi + pj
L

≈
m2
i −m2

j

2

(
L

E

)
=

∆m2
ij

2

(
L

E

)
, (1.12)

where pi ≈ pj ≈ E is applied, and ∆m2
ij ≡ m2

i −m2
j . The factor of 2 in the

denominator is treated more rigorously in Reference [44] using wave packets

rather than plane waves. A more detailed derivation of the formalism can be

found in Appendix B.1.
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Assuming there are N flavor and mass eigenstates, the unitary matrix

U has dimension N . Following Reference [45], a N ×N unitary matrix can be

parameterized as a matrix product

U = (ΩN−1,NΩN−2,NΩN−3,N · · ·Ω1,N)

× (ΩN−2,N−1ΩN−3,N−1ΩN−4,N−1 · · ·Ω1,N−1)

× · · · × Ω1,2 (1.13)

where

Ωij =



1
. . .

1
cos(θij) sin(θij)
− sin(θij) cos(θij)

1
. . .

1


(1.14)

for j − i = 1, and

Ωij =



1
. . .

1
cos(θij) 0 . . . 0 sin(θij)e

−iδij

0 1 0
...

. . .
...

0 1 0
− sin(θij)e

iδij 0 . . . 0 cos(θij)
1

. . .

1


(1.15)
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for j − i ≥ 2. Note that the order of the factors in Equation 1.13 is critical.

The N = 3 case will be given in the next section.

1.3.2 Standard Three Flavor Oscillation Model

It is known that the standard three flavor model works well describing

most of the experimental data to date. In this case, in Equation 1.8, α repre-

sents e, µ or τ , i runs from 1 to 3, and U is a 3 × 3 matrix. Using Equation

1.14 and 1.15, we have

Ω1,2 =

 cos (θ12) sin (θ12) 0
− sin (θ12) cos (θ12) 0

0 0 1

 ,

Ω1,3 =

 cos (θ13) 0 e−iδ13 sin (θ13)
0 1 0

−eiδ13 sin (θ13) 0 cos (θ13)

 ,

Ω2,3 =

 1 0 0
0 cos (θ23) sin (θ23)
0 − sin (θ23) cos (θ23)

 . (1.16)

δ13 is also written as δCP representing the CP violating phase . Using Equation

1.13, the matrix U can be written as

U = Ω1,2Ω1,3Ω2,3

=

 c12c13 c13s12 e−iδCP s13

−c23s12 − eiδCP c12s13s23 c12c23 − eiδCP s12s13s23 c13s23

s12s23 − eiδCP c12c23s13 −eiδCP c23s12s13 − c12s23 c13c23

 ,

(1.17)

where sij ≡ sin(θij) and cij ≡ cos(θij). This matrix is called the PMNS matrix

to acknowledge the pioneering ideas of Pontecorvo and Maki and Nakagawa

and Sakata. For example, the MINOS experiment is designed to measure
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νµ → νµ, and according to Equation 1.10, we have

P (νµ → νµ) = 1− 4
∑
i>j

<
[
UµiU

∗
µjU

∗
µiUµj

]
sin2 (∆ij/2)

+ 2
∑
i>j

=
[
UµiU

∗
µjU

∗
µiUµj

]
sin ∆ij

= 1− 4 |Uµ3|2
(
|Uµ2|2 + |Uµ1|2

)
sin2 (∆32/2) , (1.18)

where the approximations of ∆31 ≈ ∆32 and sin2 (∆21/2) ∼ 0 are used due to

∆21 � ∆31, and

|Uµ1|2 = cos2 (θ23) sin2 (θ12)

+ cos2 (θ12) sin2 (θ13) sin2 (θ23)

+
1

2
cos (δCP ) sin (2θ12) sin (θ13) sin (2θ23) ,

|Uµ2|2 = cos2 (θ12) cos2 (θ23)

+ sin2 (θ12) sin2 (θ13) sin2 (θ23)

− 1

2
cos (δCP ) sin (2θ12) sin (θ13) sin (2θ23) ,

|Uµ3|2 = cos2 (θ13) sin2 (θ23) . (1.19)

Equation 1.18, along with the oscillation probabilities of νµ → νe and νµ → ντ ,

are plotted as a function of L/E (a factor of ∆ij as shown in Equation 1.12)

in Figure 1.3 using the baselines and the neutrino energy range of MINOS.

So far most of the oscillation parameters have been precisely measured

using neutrinos from solar, atmospheric, accelerator and reactor sources. The

global fit result from Reference [47] is shown in Table 1.1. Three pieces of

information remain unknown:
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Figure 1.3: Oscillation probabilities as a function of L/E in MINOS at the
near and far detectors (ND and FD). The simulated energy spectra are shown
as the gray bands.

Figure 1.4: Schematic of the two neutrino mass hierarchies. The color coding
indicates the fraction |Uαi|2 of each flavor να (α = e, µ, τ) contained in each
mass eigenstate. The plot is taken from Reference [46].
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1. The value of the CP violating phase δCP .

2. The sign of ∆m2
31. This is known as the mass hierarchy problem. The

case of normal hierarchy (NH, ∆m2
31 > 0) and inverted hierarchy (IH,

∆m2
31 < 0) are demonstrated in Figure 1.4.

3. Octant of θ23. It is not clear whether θ23 is smaller or larger than π/4.

Parameter Hierarchy Best fit 1σ range

δm2/10−5 eV2 NH or IH 7.54 7.32− 7.80

sin2 θ12/10−1 NH or IH 3.08 2.91− 3.25

∆m2/10−3 eV2 NH 2.43 2.37− 2.49

∆m2/10−3 eV2 IH 2.38 2.32− 2.44

sin2 θ13/10−3 NH 2.34 2.15− 2.54

sin2 θ13/10−3 IH 2.40 2.18− 2.59

sin2 θ23/10−3 NH 4.37 4.14− 4.70

sin2 θ23/10−3 IH 4.55 4.24− 5.94

δCP/π NH 1.39 1.12− 1.77

δCP/π IH 1.31 0.98− 1.60

Table 1.1: Global fit result of the standard three flavor oscillation model from
Reference [47]. Note that δm2 ≡ ∆m2

21 and ∆m2 ≡ m2
3 − (m2

1 −m2
2)/2, with

+∆m2 for NH and −∆m2 for IH.
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Chapter 2

Sterile Neutrinos

Although the mixing of the three flavor neutrino states has been ex-

perimentally well established, there have been hints of the presence of addi-

tional neutrino states with masses at the eV scale. Since the number of active

neutrino states is constrained to be three as discussed in Chapter 1, these ad-

ditional neutrinos are not allowed to interact with Standard Model particles.

They are called sterile neutrinos, terminology introduced by Pontecorvo in

1969 [48].

The motivations to search for sterile neutrinos are outlined in the first

section, followed by the introduction of two sterile neutrino models: 3+1 and

large extra dimension (LED). These models will be tested by the powerful and

unique data collected in MINOS/MINOS+ in this dissertation.

2.1 Experimental Anomalies

There is growing evidence for short-baseline neutrino anomalies occur-

ring at an L/E ∼ 1 m/MeV, where E is the neutrino energy and L is the

distance that the neutrino traveled before detection. Such evidence has come

from the LSND (Liquid Scintillator Neutrino Detector) νµ → νe appearance
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experiment at the Los Alamos Neutron Science Center [49], MiniBooNE (Mini

Booster Neutrino Experiment) at Fermilab [50, 51], the reactor anomaly [52],

and radioactive source calibrations of the GALLEX (Gallium Experiment)

[53, 54] and SAGE (Russian-American Gallium Experiment) [55, 56] solar neu-

trino experiments.

2.1.1 LSND

The primary search in LSND is for νµ → νe oscillations. νµ arise

from the decay at rest of µ+, which are produced by directing a 798 MeV

proton beam on a target. The νe are identified through the reaction νep →

e+n in a tank of liquid scintillator surrounded by 1220 8-inch Hamamatsu

photomultiplier tubes (PMTs). This reaction allows a coincidence of signals

from positron annihilation and a correlated 2.2 MeV γ from neutron capture

on a free proton. The center of the detector is located 30 m from the neutrino

source.

A total excess of 87.9 ± 22.4 ± 6.0 νep → e+n events with e+ energy

between 20 and 60 MeV is observed above the expected neutrino-induced back-

grounds. A fit to all of the LSND neutrino processes, including the νµ → νe

oscillation where νµ comes from π+ decay-in-flight, determines the allowed os-

cillation parameters in a two-flavor model. The result is shown in Figure 2.1.

Together with other available neutrino oscillation limits, the LSND data sug-

gest that neutrino flavor oscillations occur with a ∆m2 in the range 0.2−10 eV2.

This is much higher than the results obtained from the atmospheric and beam

18



neutrino experiments (see Table 1.1), and is therefore called an anomaly.

Figure 2.1: A sin2 2θ−∆m2 oscillation parameter fit for the entire data sample,
20 < Ee < 200 MeV. The fit includes primary νµ → νe oscillations and
secondary νµ → νe oscillations, as well as all known neutrino backgrounds.
The allowed region is shown in blue (90% C.L.) and yellow (99% C.L.). Other
curves are 90% CL limits from the Bugey reactor experiment [57], the CCFR
experiment at Fermilab [58], the NOMAD experiment at CERN [59], and the
KARMEN experiment at ISIS [60]. The plot is taken from Reference [49].
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2.1.2 MiniBooNE

MiniBooNE was designed to search for νµ → νe and νµ → νe oscil-

lations by detecting νe and νe charged-current quasi-elastic (CCQE) events

in a 40-foot diameter sphere filled with 806 tons of pure mineral oil. Neu-

trino interactions in the detector produce charged particles (electrons, muons,

protons, pions, and kaons) which in turn produce scintillation and Cherenkov

light. This light is detected by the 1520 8-inch PMTs that line the interior of

the detector and an optically isolated outer veto region.

The νµ (νµ) flux is produced by colliding 8 GeV protons from the

Fermilab Booster with a beryllium target placed inside a magnetic focusing

horn set at positive (negative) polarity. The target is located 541 m from the

detector.

The MiniBooNE experiment observed a total excess of 240.3± 62.9 νe

and νe events (3.8σ) in the neutrino oscillation energy range 200 < EQE
ν <

1250 MeV. The allowed regions from a two-flavor fit to the data, shown

in Figure 2.2, are consistent with the allowed region reported by the LSND

experiment [49, 61–64] and the limits from the KARMEN experiment [65].

2.1.3 Reactor Anomaly

The reactor neutrino anomaly [52] results from a re-analyses of the

short baseline (SBL) reactor neutrino oscillation data using the results of a

new and very detailed calculation of the reactor νe fluxes [32]. The new fluxes

are found to be larger than the fluxes widely used in the past by approximately
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Figure 2.2: MiniBooNE allowed regions in combined neutrino and antineutrino
mode for events with 200 < EQE

ν < 3000 MeV within a two-neutrino νµ → νe
and νµ → νe oscillation model. Also shown is the νµ → νe limit from the
KARMEN experiment [65]. The shaded areas show the 90% and 99% C.L.
LSND νµ → νe allowed regions. The black star shows the best fit point. The
plot is taken from Reference [51].

3.5%. With the old flux, the synthesis of published experiments at reactor-

detector distances smaller than 100 m led to a ratio of observed event rate to

predicted rate of 0.976± 0.024. With the new flux evaluation, this ratio shifts

to 0.943± 0.023, leading to a deviation from unity at 98.6% C.L. This shows
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a possible disappearance of the reactor νe, as illustrated in Figure 2.3.

Figure 2.3: Illustration of the short baseline reactor antineutrino anomaly.
The red line shows a possible three active neutrino mixing solution, with
sin2(2θ13) = 0.06. The blue line displays a possible solution including a new
neutrino mass state, with |∆m2| � 1 eV2 and sin2(2θ) = 0.12. The plot is
taken from Reference [52].

2.1.4 Gallium Anomaly

Radioactive source calibrations of the GALLEX [53, 54] and SAGE [55,

56] solar neutrino experiments also showed a deficit in the measured fluxes

compared to the expected fluxes. This is called the Gallium Anomaly, as both

experiments use gallium as the medium for neutrino detection. The results

may be interpreted as hints for νe disappearance at short distances which is

not predicted by the standard three flavor oscillation model.

The neutrino capture rate measured by SAGE is well below that pre-

dicted by solar models. To guarantee the reliability of the experimental tech-
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niques and test the neutrino oscillation hypothesis, the response of the ex-

periment to low-energy neutrinos was calibrated by a 517 kCi (19.1 PBq)

source of 51Cr which mainly emits monoenergetic 747 keV neutrinos. The

source was placed at the center of a 13.1 ton target of liquid gallium and

the cross section for the production of 71Ge by the inverse beta decay reac-

tion 71Ga(νe, e
−)71Ge was measured to be [5.55 ± 0.60 (stat) ± 0.32 (syst)] ×

10−45 cm2. This is a few percent smaller than the model predictions. The

ratio of this cross section to the theoretical cross section of Bahcall for this

reaction is 0.95± 0.12 (expt) +0.035
−0.027 (theor) and to the cross section of Haxton

is 0.87± 0.11 (expt)± 0.09 (theor).

For the same reason, GALLEX performed an investigation with two

intense 51Cr neutrino sources (> 60 PBq) that were produced in the Siloé

nuclear reactor and used at the Gran Sasso National Laboratory. The ratio,

R, of the the neutrino source strength derived from the measured rate of 71Ge

production, divided by the directly determined source strength is R = 1.01+0.12
−0.11

for the first source and R = 0.84+0.12
−0.11 for the second one. The combined value

of R for the two source experiments is R = 0.93± 0.08.

2.2 3+1 Model

Among various models of sterile neutrinos, 3+1 is the simplest, with

one sterile neutrino state νs added to the standard three flavor oscillation

picture. In this model, U in Equation 1.8 is a 4× 4 unitary matrix accounting

for four neutrino flavor states: νe, νµ, ντ , and νs. Detailed calculations on
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the oscillation probabilities can be found in Appendix B. Two channels are

relevant to this dissertation, P (νµ → νµ) and P (νµ → νs). In the MINOS

detectors, the former, also referred to as the νµ disappearance probability, is

measured from the charged current events. The latter, on the other hand, is

measured from the neutral current events.

For the νµ disappearance, Equation 1.10 takes the form

P (νµ → νµ) = δµµ − 4
∑
i>j

<
(
UµiU

∗
µjU

∗
µiUµj

)
sin2 (∆ij/2)

+ 2
∑
i>j

=
(
UµiU

∗
µjU

∗
µiUµj

)
sin ∆ij

= 1− A31 sin2 (∆31/2)

− A41 sin2 (∆41/2)

− A43 sin2 (∆43/2) , (2.1)

where

A31 = 4 |Uµ3|2
(
1− |Uµ3|2 + |Uµ4|2

)
,

A41 = −4 |Uµ4|2
(
1− |Uµ3|2 + |Uµ4|2

)
,

A43 = −4 |Uµ4|2 |Uµ3|2 . (2.2)

In deriving Equation 2.1 and 2.2, the unitary condition |Uµ1|2+|Uµ2|2+|Uµ3|2+

|Uµ4|2 = 1 is used, as well as the approximation of m1 ≈ m2 which leads to

∆21 = 0, ∆41 = ∆42, and ∆32 = ∆31. Note that by definition, ∆41 = ∆43+∆31.

The matrix U can be parameterized according to Equation 1.13. In the analysis

of this dissertation, θ14 is set to 0 due to the strong constraints from reactor
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experiments. For example, Reference [66] gives sin2 θ14 < 0.04 at 90% C.L.

Relevant terms in Equation 2.2 are

|Uµ3|2 = cos2 (θ13) cos2 (θ24) sin2 (θ23) ,

|Uµ4|2 = sin2 (θ24) . (2.3)

In the case of νµ → νs, Equation 1.10 gives

P (νµ → νs) = −4
∑
i>j

<
(
UµiU

∗
µjU

∗
siUsj

)
sin2 (∆ij/2)

+ 2
∑
i>j

=
(
UµiU

∗
µjU

∗
siUsj

)
sin ∆ij

= 1−B31 sin2 (∆31/2)

−B41 sin2 (∆41/2)

−B43 sin2 (∆43/2) , (2.4)

where

B31 = 4 |Uµ3|2 |Us3|2 + 4<
(
Uµ4U

∗
µ3U

∗
s4Us3

)
+ 2=

(
Uµ4U

∗
µ3U

∗
s4Us3

)
B41 = 4 |Uµ4|2 |Us4|2 + 4<

(
Uµ4U

∗
µ3U

∗
s4Us3

)
− 2=

(
Uµ4U

∗
µ3U

∗
s4Us3

)
B43 = −4<

(
Uµ4U

∗
µ3U

∗
s4Us3

)
+ 2=

(
Uµ4U

∗
µ3U

∗
s4Us3

)
(2.5)
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In addition to Equation 2.3, relevant terms in Equation 2.5 are

=
(
Uµ4U

∗
µ3U

∗
s4Us3

)
=

1

4
cos2 (θ13) cos2 (θ24) sin (δ24) sin (2θ23) sin (θ24) sin (2θ34)

<
(
Uµ4U

∗
µ3U

∗
s4Us3

)
= − cos2 (θ13) cos2 (θ24) cos (θ34) sin (θ23) sin (θ24)

× [cos (θ34) sin (θ23) sin (θ24) + cos (δ24) cos (θ23) sin (θ34)]

|Us4|2 = cos2 (θ24) cos2 (θ34) ,

|Us3|2 =
1

2
cos (δ24) sin (2θ23) sin (θ24) sin (2θ34) cos2 (θ13) .

+ cos2 (θ34) sin2 (θ23) sin2 (θ24) cos2 (θ13)

+ cos2 (θ23) sin2 (θ34) cos2 (θ13) . (2.6)

The individual effect of the parameters (∆m2
32, ∆m2

41, θ23, θ24, θ34, and

δ24) appearing in the oscillation probabilities, Equation 2.1 and Equation 2.4,

is demonstrated in Figures 2.4 to 2.9 with default values listed in Table 2.1.

For example, in Figure 2.5, each curve corresponds to a value of ∆m2
41 while

the rest of the parameters are set to the values in Table 2.1. Each plot in the

figure is divided by a dashed line, with the near detector baseline 1.04 km for

the left part and the far detector baseline 735 km for the right part.

The model will be tested with 10.56 × 1020 POT νµ running data of

MINOS and 2.99× 1020 POT νµ running data of MINOS+ in Chapter 8.

2.3 Large Extra Dimension Model

There are at least two seemingly fundamental energy scales in nature,

the electroweak scale mEW ∼ 103 GeV, which is a typical energy of processes
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Parameter Value

∆m2
21 7.54× 10−5 eV2

∆m2
32 2.37× 10−3 eV2

∆m2
41 0.5

θ12 0.554
θ13 0.149
θ14 0
θ23 0.695
θ24 0.2
θ34 0.5

δ13 0
δ14 0
δ24 0

Table 2.1: Default 3+1 model parameters used in Figures 2.4 to 2.9.

described by the electroweak theory, and the Planck scale mP = G−1/2 ∼

1018 GeV (in natural unit), where gravity becomes as strong as the gauge

interactions. The large gap between the two energy scales is referred to as

the gauge hierarchy problem. The large extra dimension model was initially

proposed by Nima Arkani-Hamed et al [67] to solve this problem. The authors

suggested that mEW is the only fundamental scale and the large mP is caused

by n extra compact spatial dimensions of radius a. According to Newton’s

law of universal gravitation, the gravitational potential between two masses

M1 and M2 separated by a distance r is

V = G
M1M2

r
=
M1M2

m2
P r

. (2.7)
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Figure 2.4: Effect of ∆m2
32 on P (νµ → νµ) (top) and 1−P (νµ → νs) (bottom).

Other parameters are set to the values listed in Table 2.1. The simulated
energy spectra for the near and far detectors (ND and FD) are shown as the
gray bands.
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Figure 2.5: Effect of ∆m2
41 on P (νµ → νµ) (top) and 1−P (νµ → νs) (bottom).

Other parameters are set to the values listed in Table 2.1. The simulated
energy spectra for the near and far detectors (ND and FD) are shown as the
gray bands.
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Figure 2.6: Effect of θ23 on P (νµ → νµ) (top) and 1 − P (νµ → νs) (bottom).
Other parameters are set to the values listed in Table 2.1. The simulated
energy spectra for the near and far detectors (ND and FD) are shown as the
gray bands.
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Figure 2.7: Effect of θ24 on P (νµ → νµ) (top) and 1 − P (νµ → νs) (bottom).
Other parameters are set to the values listed in Table 2.1. The simulated
energy spectra for the near and far detectors (ND and FD) are shown as the
gray bands.
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Figure 2.8: Effect of θ34 on P (νµ → νµ) (top) and 1 − P (νµ → νs) (bottom).
Other parameters are set to the values listed in Table 2.1. The simulated
energy spectra for the near and far detectors (ND and FD) are shown as the
gray bands.
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Figure 2.9: Effect of δ24 on P (νµ → νµ) (top) and 1 − P (νµ → νs) (bottom).
Other parameters are set to the values listed in Table 2.1. The simulated
energy spectra for the near and far detectors (ND and FD) are shown as the
gray bands.
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On the other hand Gauss’s law in (4 + n) dimensions, where 4 refers to the

usual 4-dimensional spacetime, requires that

V ∼


M1M2

mn+2
P (4+n)

rn+1 (r � a),

1
mn+2
P (4+n)

an
M1M2

r
(r � a),

(2.8)

where mP (4+n) is the Planck scale in (4+n) dimensions. Comparing Equa-

tion 2.7 and Equation 2.8 for r � a, and denoting mD ≡ mP (4+n) as the

fundamental scale, we have

m2
P ∼ mn+2

D an. (2.9)

Setting mD ∼ mEW , for n = 1, we have a ∼ 1013 cm. Considering that the

distance from the Earth to the Sun is 1.5 × 1013 cm, n = 1 should cause

observable deviations from Newtonian gravity, so this case is empirically ex-

cluded. For n ≥ 2, the modification of gravity only becomes noticeable at

distances smaller than those probed by current experiments. For example, for

n = 2, a ∼ 200 µm. However, while this model has not been ruled out by

any direct measurement on gravity, it creates a problem for the neutrino mass.

Traditionally small neutrino masses are explained by a seesaw model assuming

neutrinos are Majorana particles. In this case, the Lagrangian contains the

mass term

(νL, NR)

(
0 m
m M

)(
νL
NR

)
, (2.10)

where νL and NR are the left and right-handed neutrino states. The mass

eigenstates are found by diagonalizing the matrix. With the eigenvalues

λ =
M ±

√
M2 + 4m2

2
≈

{
2M

−m2/M2
, (2.11)
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the diagonalized matrix takes the form(
−m2/M 0

0 2M

)
. (2.12)

From this, it follows that a large sterile neutrino mass M gives rise to a small

active neutrino mass m2/M . In models with LEDs, the seesaw model cannot

be used, since physics at energy scales well above a TeV (such as M) is no

longer part of the theory.

There is, however, an alternative mechanism as described in Reference

[68], for either Dirac or Majorana neutrino masses. For Dirac masses, the basic

idea is that any fermionic state that propagates in 4 + n dimensions must, by

definition, be a Standard Model singlet and, furthermore, that it couples to

the Standard Model states which are confined to the 4-dimensional spacetime

precisely as a right-handed neutrino with a naturally small coupling. The

small coupling is a result of the large relative volume of the “bulk” manifold

(4 + n dimensions) compared to the thin “brane” (4-dimensional spacetime)

where Standard Model states propagate. The interaction probability of the

Kaluza-Klein (KK) zero mode of the bulk right-handed neutrino state νR with

the “brane localized” Higgs and lepton doublet fields is thus small, resulting in

a greatly suppressed coupling. For the Majorana case, small neutrino masses

can be obtained using the generic mechanism of Reference [69] for generating

small couplings by breaking symmetries on distant branes in the bulk.

This dissertation focuses on the scenario with Dirac masses. Based on
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the model, Reference [68] gives the following expression for neutrino mass

mν = κ
v√
anmn

D

. (2.13)

where v ∼ 102 GeV is the vacuum expectation value of the Higgs, κ is a

dimensionless coefficient, and an is the volume spanned by n extra dimensions.

Writing an in terms of mP using Equation 2.9, Equation 2.13 becomes

mν = mDκ
v

mP

∼ 10−16mDκ. (2.14)

For mDκ ∼ 1− 100 TeV, this prediction for the neutrino masses is roughly in

the right range to explain the atmospheric and solar neutrino observations.

Constraints on this model based on the data of neutrino oscillation

experiments including SNO, Super-Kamiokande, and various reactor and ac-

celerator experiments are discussed in Reference [70]. The authors provide a

bound of a < 0.82 µm on the largest extra dimension size assuming that the

manifold on which the extra dimensions are compactified is highly asymmet-

ric, with one dimension much larger than the rest. Note that this is different

from most collider, astrophysical and cosmological bounds, which are largely

independent of the compactification manifold’s shape and only constrain its

volume.

Given by Reference [70], the mass terms in the Lagrangian for this

model take the form

Lmass = mαβ

(
ν
α(0)
R ν

β(0)
L +

√
2
∞∑
n=1

ν
α(n)
R ν

β(0)
L

)
+
∞∑
n=1

n

a
ν
α(n)
R ν

α(n)
L + h.c.,

(2.15)
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where α, β = 1, 2, 3. ν
β(0)
L represents the “brane-localized” Standard Model

neutrino states νe, νµ or ντ . ν
α(n)
L and ν

α(n)
R are the KK states living in the

“bulk”. They do not carry any Standard Model charges (singlets), and there-

fore are sterile. mαβ is the Dirac mass matrix

καβmD
v

mP

, (2.16)

where καβ is a matrix of dimensionless coefficients. Note that Equation 2.16

is a version of Equation 2.14 with three mass eigen states. After a diagonal-

ization procedure, the oscillation amplitude among active neutrino states can

be written as

A (να → νβ) =
3∑

i,j,k=1

+∞∑
n=0

UαiU
∗
βkW

(0n)∗
ij W

(0n)
kj ei

(λ(n)j /a)
2
L

2E . (2.17)

where E is the neutrino energy, and L is the baseline. λ
(n)
j are the eigenvalues

of the Hamiltonian based on Equation 2.15. U and W are the mixing matrices

for the active and KK neutrino modes, respectively. A detailed derivation of

Equation 2.17 can be found in Appendix C. Squaring the amplitude gives the

oscillation probability

P (να → νβ) = |A(να → νβ)|2 . (2.18)

In addition to the extra dimension size a, the oscillation probabilities

also depend on the three active neutrino masses m1, m2, and m3 coming

from the eigenvalues of the mass matrix mαβ in Equation 2.15. They can

be calculated from the lightest mass m0 and the mass splittings of active

neutrinos.
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Using the same approach, but by a different group, the sensitivities of

CHOOZ, KamLAND, MINOS are calculated in Reference [71]. A combined

limit of a < 1.0(0.6) µm at 99% C.L. is obtained for normal (inverted) mass

hierarchy. Their result for MINOS 7.24 × 1020 POT νµ running is shown in

Figure 2.10. The same authors also tried to explain the reactor anomaly using

this model [72].

Figure 2.10: Excluded regions in a−m0 plane based on the simulated charge
current sample of 7.24 × 1020 POT νµ running in MINOS by Reference [71].
m0 is the lightest neutrino mass and a is the extra dimension size.

To calculate the oscillation probability in Equation 2.18, GNU Scientific

Library is used to find eigenvalues and eigenstates of the N ×N Hamiltonian

matrix shown in Appendix C. The size of the matrix N is equal to three times

the number of orders of KK states for there are three neutrinos in each order.
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In principle N → ∞ as there are infinite orders of KK states. However, as a

good approximation, the maximum order of KK states is limited to 5 to reduce

the computing time. Together with the zeroth order, we have N = 3×6 = 18.

Similar to the 3+1 model, two oscillation probabilities are measured

in the MINOS detectors: P (νµ → νµ) by the charged current events, and

P (νµ → νs) by the neutral current events. Note that the νs represents all

sterile neutrinos arising from KK states. In practice, P (νµ → νs) is calculated

as

P (νµ → νs) = 1− P (νµ → νe)− P (νµ → ντ ). (2.19)

A few examples of P (νµ → νµ) at the MINOS far detector are shown in

Figure 2.11. The wiggles associated with large a are the original motivation

to study this model, because in the far detector data some wiggles have also

been observed and may be caused by an exotic model like LED. Oscillation

probabilities as a function of L/E are useful to demonstrate the oscillations

at the near detector in addition to those at the far detector. An example is

shown in Figure 2.12, where the simulated energy spectra in the near and far

detectors are represented by the gray bands. The darker bands contain 68%

of the data and the lighter bands contain 90% of the data. For demonstration

purpose, the oscillation probabilities shown in Figure 2.12 have been smeared

using the charge current event energy resolution

Psmeared(E) =

∫
P (x)

1

σ
√

2π
e
− (x−E)2

σ2(x) dx, (2.20)
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Figure 2.11: P (νµ → νµ) at MINOS far detector.

The total energy resolution is the sum of the track energy resolution and the

shower energy resolution

σ(E) = σ(Etrk)⊕ σ(Eshw), (2.21)

where

σ(Eshw) = 0.257 GeV⊕ 40.4%
√
Eshw ⊕ 8.6%Eshw, (2.22)

σ(Etrk) = 5.1%
√
Etrk ⊕ 6.9%Etrk. (2.23)

Equation 2.22 and 2.23 are the parameterized functions taken from [73].

As additional examples, the oscillation probabilities for a large a are

shown in Figure 2.13 and those for a large m0 are shown in Figure 2.14.
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Figure 2.12: LED oscillation probabilities as a function of L/E for a = 0.5 µm
and m0 = 0 eV. The simulated energy spectra for the near detector (ND)
and far detector (FD) are represented by the gray bands. The darker bands
contain 68% of the data and the lighter bands contain 90% of the data.

Since δCP remains unknown, its effect has been tested and is shown

in Figure 2.15, where the curves with different δCP overlap, implying small

dependence of oscillation probabilities on this parameter.

As mentioned earlier, oscillation probabilities depend on the three neu-

trino masses m1, m2 and m3. For this reason, the effect of neutrino mass

hierarchy should also be considered, and this is shown in Figure 2.16. How-

ever, the MINOS sensitivities in Reference [71] show little dependence on the

choice of mass hierarchy (see Figure 2.10), unlike the results for other experi-

ments in the paper. To reduce the computing time, only normal hierarchy is

considered in this dissertation.
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Figure 2.13: LED oscillation probabilities as a function of L/E for a = 1 µm
and m0 = 0 eV.

The model will be tested with 10.56 × 1020 POT νµ running data of

MINOS in Chapter 9.
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Figure 2.14: LED oscillation probabilities as a function of L/E for a = 0.5 µm
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Figure 2.15: LED oscillation probabilities as a function of L/E for different
values of δCP . Curves of different δCP have different line styles. The blue
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Figure 2.16: LED oscillation probabilities as a function of L/E for normal
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2

is set to negative.
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Chapter 3

MINOS and MINOS+ Experiments

This chapter gives a brief review of the MINOS and MINOS+ exper-

iments. Following a general introduction on the experiments, descriptions

about the neutrino beam and the detectors are provided. Neutrino interac-

tions in the detectors are discussed in the last section.

3.1 MINOS

MINOS (Main Injector Neutrino Oscillation Search) is a long base-

line neutrino oscillation experiment, designed to measure νµ/νµ disappearance

from the νµ/νµ beam produced by the NuMI (Neutrinos at the Main Injector)

facility at Fermilab. MINOS uses two detectors, the near detector (ND) and

the far detector (FD). The ND is located 1.04 km from the beam source at

Fermilab to characterize the beam. The FD is located 735 km away in the

Soudan mine in northern Minnesota to measure the disappearance of νµ/νµ.

The beamline is illustrated in Figure 3.1.

The experiment ran from March 2005 to April 2012, collecting both νµ

and ν̄µ beam data. The beam exposure is shown in Figure 3.2. Most of the

data was gathered in the low energy beam mode, with an energy peak around
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Figure 3.1: The MINOS neutrino beamline. The νµ/νµ beam is produced in
the NuMI facility at Fermilab. It passes through the ND at Fermilab and the
FD in the Soudan mine in northern Minnesota. The baseline is 735 km. The
figure is taken from Reference [73].
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Figure 3.2: MINOS accumulated an exposure of 15.6× 1020 protons-on-target
between 2005 and 2012. Most of the data is taken in the low energy νµ-beam
mode (in green) and in the ν̄µ-beam mode (in orange). The special runs with
the higher energy mode or the magnetic horn turned off are shown in red. The
plot is taken from Reference [74].

3 GeV. A summary of all runs taken since 2005 is shown in Table 3.1.

MINOS has provided the best measurement to date of ∆m2
32 and a

competitive measurement on θ23. Combining the analysis from νe appearance,

νµ disappearance and atmospheric neutrinos, the final result on ∆m2 and θ23

is shown in Figure 3.3.

3.2 MINOS+

MINOS+ is an experiment that uses the same two MINOS detectors

and a medium energy beam designed for NOνA, a long baseline experiment

designed to measure νe/νe appearance. While for NOνA the beam energy
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Run Configuration Horn polarity
Good data

POT(×1018)

1 LE Forward 126.93
1 pHE Forward 15.31
2 LE Forward 194.27
3 LE Forward 388.71
4 LE Forward 8.84
4 LE Reverse 170.85
5 LE Forward 45.89
6 LE Forward 61.62
7 LE Reverse 124.08
8 LE Forward 12.58
9 LE Reverse 40.80
10 LE Forward 238.31

Total good physics data 1428.19

νµ beam run periods (1, 2, 3, 5, 6, 10) 1071.04
νµ LE beam run periods (1, 2, 3, 5, 6, 10) 1055.73

ν̄µ beam run periods (4, 7, 9) 335.73

Table 3.1: Summary of the data collected in MINOS in terms of the POT
exposure. The majority of the data comes from a low energy beam (LE) with
an energy peak around 3 GeV. A small fraction of the data comes from a
pseudo high energy beam (pHE) with an energy peak around 7 GeV.
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ance using its complete set of accelerator and atmospheric neutrino data. The
plots are taken from Reference [39].
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centers around 2 GeV, the energy peak in MINOS+ is at about 6 GeV. This is

because MINOS detectors measure neutrinos at the beam center while NOνA

detectors are 14.6 milliradians off the beam axis. A comparison between the

low energy beam used in MINOS and the medium energy beam used in MI-

NOS+ is shown in Figure 3.4.

MINOS+ further exploits the potential of the NuMI beam. In addition

to improving the accuracy on the standard parameters, it offers unique op-

portunities to explore physics beyond the three-neutrino mixing model. High

statistics neutrino data can be collected in the FD to test the existence of non-

standard neutrino interactions, sterile neutrinos, and extra dimensions among

others [75].

The first run of MINOS+, Run 11, started in September 2013 and

ended on September 5, 2014. A total of 2.99× 1020 protons on target (POT)

worth of data has been collected [76]. The beam exposure as a function of time

is shown in Figure 3.5. MINOS+ will continue to take data at least through

2016.

3.3 NuMI Beam

A schematic of the NuMI beamline is shown in Figure 3.6. 120 GeV

protons from Fermilab’s Main Injector are directed to a graphite target, cre-

ating pions and kaons. The neutrino beam is produced by the decay of pions,
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Figure 3.5: MINOS+ accumulated an exposure of 2.99 × 1020 protons-on-
target between September 2013 and September 2014. The plot is taken from
Reference [78].

kaons and muons in the decay pipe:

π± → µ± + νµ/ν̄µ, (3.1)

K± → µ± + νµ/ν̄µ, (3.2)

µ± → e± + ν̄µ/νµ + νe/ν̄e. (3.3)

Detailed calculations of these three decay processes can be found in Appendix

D. The energy spectrum and content of the neutrino beam is controlled by

two magnetic horns, as illustrated in Figure 3.7. The relative distance between

the target and the first horn controls the energy peak. In MINOS+, the target

is placed closer to the horn than in MINOS, resulting a higher energy beam.

The current direction in the horn determines the fractions of νµ in the beam.

In the forward horn current (FHC) configuration, π+ and K+ are focused and
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νµ is the dominant component in the beam as shown in Figure 3.4. This is

referred to as the νµ running. Most of the data in MINOS (10.71× 1020 POT)

and all the data so far in MINOS+ (2.99×1020 POT) were taken in this mode.

In the reversed horn current (RHC) configuration, π− and K− are focused to

increase the νµ fraction in the beam.

3.4 Detectors

The ND and FD are designed to be as similar as possible in order to

reduce systematic errors. For example, in the analyses of this dissertation, the

fitting is performed on the ratio of the FD spectrum over the ND spectrum.

While the simulated ND and FD spectrum is subject to the systematic error

of the neutrino interaction cross sections, the ratio is not.

The detectors are described in great detail in Reference [81]. Both

detectors are steel-scintillator sampling calorimeters with tracking, energy and

topology measurement capabilities. This is achieved by using alternate planes

of polystyrene scintillator strips and 2.54 cm thick steel plates.

Steel plates serve as a neutrino interaction target. Their high density

increases the probability for neutrinos to interact inside the detectors. Neigh-

boring steel plates are 5.95 cm apart.

Each scintillator strip is extruded to be 1 cm thick and 4.1 cm wide.

A double-clad wave-length-shifting (WLS) fiber with a diameter of 1.2 mm

is embedded in the strip to collect the scintillation light and guide it to a
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Figure 3.7: Focusing of pions and kaons using two magnetic horns. Horn 1
and 2 are separated by a distance of 10 m. A collimating baffle upstream of
the target protects the horns from direct exposure to misdirected proton beam
pulses. The target and baffle system can be moved further upstream of the
horns to produce higher energy neutrino beams. The vertical scale is 4 times
that of the horizontal (beam axis) scale. The figure is taken from Reference
[80].

pixel of a multi-anode PMT tubes. The WLS fiber is essential because it has

a much longer absorption length compared to that of the scintillator strip.

Additionally, with 175 ppm of Y11 (K27) fluor, it shifts the wavelength of the

scintillation light to a wavelength range that corresponds to a higher PMT

quantum efficiency. The strip surface is covered by a thin (0.25 mm) co-

extruded titanium-dioxide (TiO2)-loaded polystyrene layer that serves as a

diffuse reflector to minimize light loses. The structure of the strip and the

PMT readout is shown in Figure 3.8 and Figure 3.9.

Each scintillator plane is made of modules, which are groups of scintilla-

tor strips covered by flat aluminum sheets for light-tightness. The scintillator

strips in each module are close-packed to minimize inactive zones between

strips.
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Figure 3.8: Structure of a single scintillator strip. Light produced by an
ionizing particle is reflected multiple times inside the strip by the 0.25 mm-
thick outer reflective coating. Scintillation light absorbed by the WLS fiber is
re-emitted isotropically, and the wavelength-shifted photons whose directions
fall within the total internal reflection cones are transported along the fiber to
the edges of the strip. The figure is taken from Reference [81].

Both detectors are magnetized to allow charge separation, i.e. to dis-

tinguish νµ and νµ on a event by event basis.

3.4.1 Near Detector

The 980 ton MINOS near detector is located at the end of the NuMI

beam facility at Fermilab in a 100 m deep underground cavern. It has a cross-

section of a squashed-octagon (4.8 m by 3.8 m), as shown in Figure 3.10. The

ND magnetic field is generated by a current flowing through an off-center coil.

The beam axis is displaced 1.48 m horizontally from the coil, to limit the

number of events depositing energy in the hole.
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Figure 3.9: Illustration of the readout for a scintillator plane. The light pro-
duced in a strip (see Figure 3.8) is guided out of the module by a WLS fiber,
and routed through a clear optical fiber to a pixel of the PMT. The figure is
taken from Reference [81].
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Figure 3.10: End view of the near detector looking along the direction of the
beam. The drawing (left) identifies detector elements shown in the photograph
(right): “A” is the furthest upstream steel plane, “B” is the magnet coil, and
“C” is an electronics rack on the elevated walkway. The NuMI beam intersects
the near detector near the “A” label. The figure is taken from Reference [81].

Only 153 of the 282 planes ND planes are active. They are instrumented

with four distinct scintillation module patterns: full U-view (FU), full V-view

(FV), partial U-view (PU), and partial V-view (PV), as shown in Figure 3.11.

The U and V-view correspond to the X and Y axis rotated by 45◦. The detector

can be divided into two sections, the calorimeter and the spectrometer. The

first 120 planes make up the calorimeter section and are all interleaved with

planes of plastic scintillator strips in order to yield a high resolution view of

the neutrino interactions. In the spectrometer section, planes 121-281, a full-

view plane is included in every fifth plane only. This downstream section is

used solely to track muons created in neutrino interactions.

59



Figure 3.11: The four different configurations of planes used in the near detec-
tor, showing the different layouts of the scintillator modules. The upper two
figures show partially instrumented planes (calorimeter region) while the lower
two figures show the fully instrumented ones (tracking region). Strips oriented
in the U direction are on the left, and V, on the right. These orientations
alternate in the detector to provide stereo readout. The G-N notations denote
the different shapes of the scintillator modules. The U and V planes require
slight variations on each shape, leading to a total of 16 module types. The
beam is centered midway between the coil hole and the left side of the plane,
so that the scintillators only need to cover that area in the target region. The
figure is taken from Reference [81].
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Figure 3.12: End views of the second far detector supermodule, looking toward
Fermilab. The drawing (left) identifies detector elements shown in the photo-
graph (right): “A” is the furthest downstream steel plane, “B” is the cosmic
ray veto shield, “C” is the end of the magnet coil and “D” is an electronics
rack on one of the elevated walkways alongside the detector. The horizontal
structure above the detector is the overhead crane bridge. The figure is taken
from Reference [81].

3.4.2 Far Detector

The MINOS far detector laboratory is located 710 m below the surface,

735 km from Fermilab, in Soudan, MN. This 5400 ton detector comprises two

“supermodules” axially separated by a 1.15 m gap. The far detector consists of

486 octagonal steel planes (249 in the first supermodule and 237 in the second),

with an edge to edge dimension of 8 m, interleaved with planes of plastic

scintillator strips. The FD has a 1.3 T cylindrical magnetic field generated by

a current flowing through a coil along the center of the detector. A FD plane

consists of eight modules of different shape. The layout is illustrated in Figure

3.13.
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Figure 3.13: Layout of U (left) and V (right) modules in far detector planes. U-
and V-type planes are interleaved. A and B module types have 28 scintillator
strips and the other types have 20 strips. The first (upstream) scintillator plane
of each supermodule is of the V-type. The figure is taken from Reference [81].

3.5 Neutrino Interactions in the Detectors

There are two types of neutrino interactions, charge current (CC) in-

teractions which are mediated by W± bosons, and neutral current (NC) inter-

actions which are mediated by Z boson.

The final state of a CC interaction consists of a charged lepton and a

hadronic shower. An example of a simulated CC event in the MINOS detec-

tor is shown in Figure 3.14. In the neutrino energy range considered in this

dissertation, 0-40 GeV, CC interactions can be divided in dominant classes

[82].

1. Quasi-elastic scattering dominates below 1 GeV:

νµn→ µ−p,

νµp→ µ+n. (3.4)
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Figure 3.14: Top: Feynman diagram of a CC interaction between a νµ and
iron. Bottom: simulated CC event display. The colored dots represents signals
of different strength in the scintillator strips. The outgoing muon forms a long
track used to identify the CC interactions. The curvature of the track is caused
by the magnetic field in the detector, and is used to determine the charge sign.
The figures are taken from [82].
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In MINOS, quasi-elastic interactions result in little or no hadronic ac-

tivity. Typically only the muon track is visible in the detector.

2. At a few GeV, resonance production becomes important. In this process,

the struck nucleus (N) is excited to a baryon resonance (N∗) which most

likely decays to a nucleon-pion final state:

νµN → µ−N∗,

N∗ → πN ′. (3.5)

The pion can give a shower-like topology if it undergoes hadronic inter-

actions, or else a track-like signature in the case of the π±.

3. Deep inelastic scattering (DIS) dominates above a few GeV. In this pro-

cess, the neutrinos probe inside the nucleons and scatter off the con-

stituent quarks. In MINOS, DIS produces events with a large hadronic

shower.

The cross sections of these processes in MINOS detectors is shown in Figure

3.15.

The final state of a NC interaction consists of the scattered incoming

neutrino and a hadronic shower. A simulated NC event display is shown in

Figure 3.16.
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Figure 3.15: νµ and νµ CC interaction cross sections in the MINOS detectors.

Figure 3.16: Top: Feynman diagram of a NC interaction between a neutrino
and iron. Bottom: simulated NC event display. The figures are taken from
Reference [82].
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Chapter 4

Shower Energy Reconstruction

This chapter focuses on the hadronic shower energy reconstruction for

CC events in MINOS+. Both CC and NC events contribute to the two analyses

in this dissertation. Due to having a higher energy resolution, CC events play

a dominant role in constraining model parameters, as will be shown in Chapter

8 and Chapter 9. The total energy of a CC event is the sum of the track energy

and shower energy. MINOS detectors were designed to precisely measure muon

tracks, and the energy is reconstructed based on the track curvature caused

by the magnetic field in the detector or the track range. The energy resolution

of CC events is mainly limited by the shower energy reconstruction. In the

early stage of MINOS analysis, shower energy was simply the sum of the

charge collected from all strips in a shower. The energy reconstructed by

this approach is referred as calorimetric shower energy. A major improvement

was made in 2010 analysis by utilizing additional shower features, such as

the shower topology [83], which are passed to the k-Nearest-Neighbor (kNN)

algorithm [84] to better estimate the energy. In MINOS+, the same procedure

was followed, with the change of using MINOS+ MC samples.
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4.1 kNN Shower Energy

The basic idea of reconstructing shower energy using the kNN technique

is to find a group of closest matching MC events (k nearest neighbors) for a

given data event, and use the averaged true energy of these MC events as the

reconstructed energy for that data event.

To decide which MC events have the greatest similarity with a given

data event, it is necessary to find the shower features that are relevant to the

energy. In MINOS, a number of variables were studied and the combination

of the following three were considered to be the best in terms of improving the

standard oscillation sensitivity [85]:

1. The number of planes in the primary shower.

2. The deweighted energy within 1m of the track vertex.

3. The calorimetric energy in the first two showers if there are more than

one reconstructed shower.

The first one is related to the shower topology. The second one is a subset

of the total shower energy. A deweighting procedure is performed, where a

nonlinear function is applied to the calorimetric energy in order to account

for the nonlinear detector response to lower energy events [86]. The third one

comes from the fact that in a event, there are sometimes multiple showers as

identified by clusters of hits. The primary shower is used for the calorimetric

shower energy. This variable not only uses the primary shower, but also adds
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the second shower. A comparison of these variables in MC for MINOS and

MINOS+, along with the true shower energy is shown in Figure 4.1. For the

increased number of high energy neutrinos, the mean of these distributions are

shifted up in MINOS+.

Having obtained relevant shower features, the question becomes how

to decide the similarity or closeness of two events quantitatively. One natural

index is the Euclidean metric, which can be defined as

d =

√∑
i (xi − yi)

2

σ2
i

, (4.1)

where i = 1, 2, and 3 for the three shower variables considered. 1/σ2
i is the

importance weight of variable i. In this work, σi is chosen as the standard

deviation of the variable i distribution such that all the variables are treated

with equal importance.
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Figure 4.1: Distributions of kNN shower variables in MINOS and MINOS+.
The three variables used for the kNN shower energy are the number of planes
in a shower, energy of the first two showers, and deweighted shower energy
near the track vertex. True shower energy distributions are also shown.

Using Equation 4.1, for each data event, one can find k nearest MC

events in a very large set of MC events often referred to as the training set. In

this study, after simple cuts on fiducial volume, particle ID (see Chapter 6),

and charge sign (µ− for neutrino selection), a total of 961293 events are used in

the training set of FD and 1082125 for that of ND. To find k nearest neighbors

efficiently, in MINOS, the k-d tree algorithm [87] was used. In MINOS+, a

similar algorithm, v-p tree [88, 89] was employed with an improved search
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speed. The number of neighbors, k, cannot be too large, because events that

are far away have little relevance to the target data event. k cannot be too

small either, because it may result in biased results due to lack of statistics.

To find the optimal k, sensitivity to the standard oscillation model was used

as the criterion. This is because both sterile neutrino models considered in

this dissertation, 3+1 and LED, are treated as perturbations to the standard

oscillation model. A test point was chosen on the ∆m2 − sin2 2θ plane with

∆m2 = 2.88 × 10−3 eV2 and sin2 2θ = 0.72. It is located near the contour

of 90% C.L. (see Figure 4.6). χ2s at this point are calculated by comparing

the oscillated FD MC spectra reconstructed by different k to a simulated FD

spectrum. A larger χ2, which indicates a smaller contour around the best fit

point, corresponds to a better sensitivity. Note that in this simple approach,

the position of the best fit point is fixed and given by the input, as all oscillation

parameters are fixed and no systematics are included. The result of scanning

k is shown in Figure 4.2 and k = 440 was found to be the optimum value, in

comparison to k = 400 used in MINOS.
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Figure 4.2: Scanning the number of neighbors k. Y-axis is the χ2 at point
∆m2 = 2.88× 10−3 eV2 and sin2 2θ = 0.72. The highest point is at k = 440.

To avoid biases in neutrino energy spectrum, kNN shower energy was

further corrected by a logarithmic polynomial function [85]

f(E) =
N∑
n=0

Cn ln(E)n. (4.2)

The constants Cn are determined by performing a fit to the profile histogram

of EkNN/Etrue as the function Etrue, where EkNN and Etrue represent the

kNN shower energy and true shower energy, respectively. In order to obtain

a good fit, the polynomial order N was set to be 14. One fitting example is

shown in Figure 4.3. A corrected kNN shower energy is obtained after the

parameterized function f(E) is applied. Iterating this process three times

gives a small enough bias as shown in Figure 4.4.
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histogram in the top plot, is fitted with a 14th order logarithmic polynomial
function as shown in the bottom plot.
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Figure 4.4: The ratio of kNN shower energy EkNN to true shower energy Etrue
as a function of true shower energy Etrue before and after the three iterations
of energy corrections using 14th order polynomial functions.

4.2 Resolution Improvement

To evaluate the improvement of kNN shower energy over the calorimet-

ric shower energy, for each event, one can define [85]

R =
|Ecalo − Etrue|

Etrue
− |EkNN − Etrue|

Etrue
, (4.3)

where Ecalo is the calorimetric shower energy. Filling R event by event in

the bins of Etrue and normalizing each bin by the number of events, one can

observe the mean deviation improvement as a function of Etrue. This is shown

in Figure 4.5.

A more direct way to look at the improvement is to check the sensi-
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tivity to the standard oscillation model, for the previously mentioned reasons

applying to k optimization. In Figure 4.6, the contours of 90% C.L. for using

calorimetric shower energy, kNN shower energy, and true shower energy are

shown. In the true energy case, the energy resolution is perfect, i.e. the devi-

ation σE is zero. The contours of pulling calorimetric energy toward the true

shower energy by 10% and 20% event by event are also shown.
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Figure 4.5: Energy resolution improvement of kNN shower energy over calori-
metric shower energy as a function of true shower energy. Y-axis is the mean
deviation improvement as a fraction of true shower energy.
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Figure 4.6: MINOS+ sensitivities to the standard oscillation model with sta-
tistical error only assuming 18 × 1020 POT worth of data. Contours of 90%
C.L. for using the calorimetric shower energy, kNN shower energy, and true
shower energy are shown. For comparisons, the contours of pulling the calori-
metric energy toward the true shower energy by 10% and 20% event by event
are also plotted.

4.3 Considerations on Improving kNN Shower Energy

One challenge in using kNN is to find a good distance metric. The ap-

plication of Mahalanobis metric [90] was explored in this work. As the general

form of the Euclidean metric, Mahalanobis distance between two vectors x

and y takes the form

d =

√
(x− y)T M (x− y), (4.4)
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where M is a symmetric positive definite matrix that can be decomposed as

M = ATA, with A being a upper triangular matrix (Cholesky decomposition,

e.g., see Reference [91]). The Euclidean metric is recovered when M is equal

to identity. Due to a large number of degrees of freedom (for example 3 × 3

matrix A contains 6 non-zero entries) and fluctuations in MC samples, the

technique of simulated annealing (e.g., see Reference [92]) was employed in

optimizing A. On the other hand, the performance of kNN naturally depends

on the input variables. A list of new variables was reconstructed and tested,

such as the average hit MIP in a shower, angle of outgoing muon track, width

of transverse hit distribution, etc. Overall, a 5% improvement in sensitivity

was achieved with the modified kNN. This is on a similar level as the shower

energy scale uncertainty which will be discussed in Section 4.4. As a result,

the old kNN as detailed in the first section is still used in MINOS+ analysis.

In a parallel approach, the performance of the boosted decision tree

was evaluated using TMVA (Toolkit for Multivariate Data Analysis) package

[93]. The percentage gain is similar to that of the modified kNN described

above.

4.4 Systematic Error

The evaluation of the systematic error on the kNN shower energy in

MINOS+ follows the same procedure as described in Reference [85]. The

uncertainty in the calibration of the response of the MINOS detectors to

hadronic showers originating from single particles has been well determined

76



by test beam measurements at CalDet and by studies of cosmic ray events in

the two detectors. In Section 4.4.1, this uncertainty in kNN shower energy

is discussed. In Section 4.4.2 and Section 4.4.3, the mis-modeling of physical

processes in MINOS detectors, such as the neutrino interactions and the scat-

tering of hadrons, are evaluated by INTRANUKE reweighting which directly

comes from the weights stored in the MC output and special MC samples

where different shifts are applied in the simulation.

4.4.1 Absolute Energy Scale

The response of the MINOS detectors to the passage of single particles

(protons, pions and muons) was determined from the exposure of a calibration

detector (CalDet) to test beams at CERN [94]. Absolute energy scale system-

atic errors, which represent the uncertainty in tuning the MC energy response

to data, were evaluated mainly through CalDet: 2.5-5% from tuning hadron

(pion) MC to data; 2% from beam energy uncertainty; 1.4% from stopping-

muon calibration; 0.8% from tuning stopping-muon MC to data. Combining

the difference of 1.0% between the ND response for spill and cosmic muon

events, the total systematic error is about 5.7% [95]. This error propagates

through two calorimetric variables used by the kNN: shower energy near the

track vertex and the sum of the energy from the first two showers. The result

of shifting those two variables by 5.7% is shown in Fig. 4.7.
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4.4.2 Intranuclear Rescattering with INTRANUKE

In most neutrino interactions in MINOS, the produced hadrons have to

escape from an iron nucleus, with a significant chance of re-interaction, before

they can be seen in the detector. This re-scattering process is simulated by a

semi-classical intranuclear cascade model, INTRANUKE [96]. Sufficient infor-

mation is contained in the MC output events to enable the effect of varying IN-

TRANUKE parameters to be studied using a reweighting scheme [97]. Below

are listed the systematic shifts evaluated through INTRANUKE reweighting:

1. Pion cross section: Pion interaction cross-section is adjusted by ±10%.

2. Nucleon cross section: Total nucleon interaction cross-section is adjusted
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by ±15%.

3. Pion charge exchange: Branching ratio for π−p → π0n is varied by

±50%.

4. Pion elastic scattering: Branching ratio for elastic scattering is varied by

±10%.

5. Pion inelastic scattering: Inelastic scattering branching ratio is varied

by ±40%.

6. Pion secondary pion production: Fraction of pion interactions creating

a second pion is scaled by ±20%.

7. Nucleon secondary pion production: Fraction of nucleon interactions

that create a pion is scaled by ±20%.

8. Pion absorption: Pion absorption cross-section is adjusted by ±30%.

9. Nucleon knockout: Nucleon absorption cross-sections are shifted by±20%.

10. Formation time: Free traveling time of newly formed hadrons through

nucleus before a re-interaction happens is shifted by ±50%.

The reweighting results are shown in Fig. 4.8.
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4.4.3 Special MC Samples

For the systematic effects that cannot be studied through the reweight-

ing technique, a list of special Monte Carlo samples were generated for ND

using the the MINOS+ beam flux. In total, there are thirteen such sam-

ples, some representing a discrete model change, others, in pairs, reflecting

±σ shifts in model input parameters. Below are listed all the systematic shifts

considered:

1. Pion/nucleon absorption: Pion and nucleon absorption cross-sections are

shifted by ±30% and ±20%. This is the same as item 1 and 2 in the

INTRANUKE reweighting procedure.

2. Baryon xF selection: The AGKY model was implemented to model the

hadronization in MINOS [98]. When a neutrino strikes a constituent

quark of a nucleon, the final state baryon is most likely to form from

the remaining two quarks in the backwards hemisphere in the center of

mass frame. This leaves the pions to be formed in the forward hemi-

sphere and to thus have higher energies when boosting back to the lab

frame. The baryon xF distribution has been measured in bubble cham-

ber data, confirming this effect, and the AGKY model [98] draws from

this distribution. This effect is switched off in this sample.

3. Formation zone: Free traveling distance of newly formed hadrons through

nucleus before a re-interaction happens is shifted by ±50%. This is the

same as item 10 in the INTRANUKE reweighting procedure.
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4. INTRANUKE assumptions (absorption): Energy of the absorbed pion

is most often distributed between 3 or 4 nucleons. The numbers are

doubled in this sample.

5. INTRANUKE assumptions (de Broglie ring): The probability of low en-

ergy pion interacting with nucleus increases as its de Broglie wavelength

λ = hc/p decreases. Empirically, this is realized by increasing the size

of the nucleus. By default 0.5λ increase is used. In this sample, ±0.6λ

is used for ±σ shifts.

6. Charged/neutral particle correlations: AGKY model generates corre-

lated charged and neutral particles. This sample uses an updated model

where the multiplicities are chosen independently.

7. π0 probability: The relative probability for AGKY to produce a π0 pair

instead of π+π is 0.30. It is shifted by ±30% in this sample.

8. Two-body decays: In simulation, all decays to two-body hadronic final

states are made isotropically in the center of mass. These samples consist

of two extreme (unphysical) modifications. In one sample, the particles

are produced perpendicular to the direction of momentum transfer, in

the other they are produced in parallel.

The error bands evaluated by the special MC samples are shown in Fig. 4.9.
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4.4.4 Combined Errors

To combine the systematic errors together, a quadratic sum was taken,

and the result is shown in Figure 4.10. Note that since the items 1, 2, and

10 in the INTRANUKE reweighting procedure described in Section 4.4.2 are

covered by the special MC samples 1 and 3 described in Section 4.4.3, they

are excluded from the summation to avoid double counting. The red curve

in Figure 4.10 is a parameterized function based on the calorimetric shower

energy in MINOS [99]. It takes the form

6.6 + 3.5 exp (−Etrue/1.44). (4.5)

Since it still fully covers the MINOS+ the kNN shower energy error band, it

was decided to use the same function in MINOS+.
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Figure 4.10: Combined kNN shower energy systematics. The red curve is the
parameterization of the calorimetric shower energy systematics used in MINOS
[99].
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Chapter 5

NC Event Selection

This chapter focuses on the NC event selections in MINOS+. NC events

traditionally serve as a model independent probe in searching for sterile neu-

trinos. The same selection rules are applied in both MINOS and MINOS+,

as no significant changes in the selection variables are observed. Following the

definitions on the fiducial volume, comparisons between data and MC event

vertex distributions are presented. For the ND, the procedure of NC cleaning

for removing poorly reconstructed events is introduced, followed by the selec-

tion cuts that separate NC events from CC events. Lastly, two systematic

errors related to the event selections are discussed.

5.1 Acceptance

Fiducial volumes are defined in MINOS detectors to ensure a good

energy containment [100]. At ND, the XY-view of the event vertex distribution

is shown in Figure 5.1. The cut is made such that the event vertices are

0.5 m away from the edges of U or V planes. Event vertex Z positions satisfy

1.7 m < Z < 4.7368 m. Distributions of vertices X, Y and Z for data and MC

are shown in Figure 5.3, Figure 5.4 and Figure 5.5, respectively.
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Figure 5.1: XY-view of the NC event vertices at ND. The solid black shape
represents the accepted region, whose boundary is 0.5 m away from edges of
the partial U or V planes.

At FD, the XY-view of the event vertex are shown in Figure 5.2, where

the event vertices are kept 0.4 m away from the edges of the U or V planes, and

0.6 m from the coil hole center. Event vertex Z positions satisfy 0.21 m < Z <

13.72 m and 16.12 m < Z < 28.96 m for the two modules of FD. Distributions

of the event vertex X, Y and Z positions are shown in Figure 5.6, Figure 5.7

and Figure 5.8 respectively, where the standard oscillation is applied to MC.
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Figure 5.2: XY-view of the NC event vertices at FD.
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Figure 5.3: Distribution of event vertex X position at ND.

87



Vertex Y Position (m)
-1 0 1

E
ve

nt
s

Run 11
ND Data
Unoscillated Monte Carlo

MINOS+ Preliminary

Figure 5.4: Distribution of event vertex Y position at ND.
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Figure 5.5: Distribution of event vertex Z position at ND.
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Figure 5.6: Distribution of event vertex X position at FD.
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Figure 5.7: Distribution of event vertex Y position at FD.
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Figure 5.8: Distribution of event vertex Z position at FD.

5.2 NC Cleaning at ND

Low energy NC events are known to be difficult to reconstruct. This

motivated two cuts at ND to remove events that are poorly reconstructed,

which are defined as Ereco/Etrue < 0.3 where Ereco and Etrue are the recon-

structed and true energy.

The first cut requires the fraction of the event pulse height in a slice,

later referred to as pulse height fraction, to be larger than 50%. A slice is

made in the initial stage of the reconstruction to roughly group together hits

that possibly belong to one event based on space and time. An event is re-

constructed from these hits with the possibility that some hits are left out.

Pulse height of an event is therefore a subset of that in a slice. This cut is
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demonstrated in Figure 5.9.

The second cut requires the maximum number of planes consecutively

hit by an event, later referred as maximum consecutive planes, to be larger

or equal to 3. When a shower develops longitudinally, it deposits energy in

successive planes. Poorly reconstructed events, as caused by reconstruction

failures, have a small number of maximum contiguous planes as shown in

Figure 5.10. The systematic errors associated with these two cleaning cuts are

discussed in Section 5.4.
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Figure 5.9: Slice pulse height fraction variable in the ND, as used in the
cleaning, for Run 11. The black points are the data, the red lines are the total
MC and the hatched histograms are the poorly reconstructed events that are
to be removed by the cleaning. The arrows are oriented to indicate which
regions of the plots are accepted by the cuts.
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Figure 5.10: Maximum consecutive planes variable in the ND, as used in the
cleaning, for Run 11. The black points are the data, the red lines are the total
MC and the hatched histograms are the poorly reconstructed events that are
to be removed by the cleaning. The arrows are oriented to indicate which
regions of the plots are accepted by the cuts.

5.3 Separation of NC Events from CC Events

The cuts that separate NC events from CC events are the same for both

ND and FD. First of all, the event length needs be smaller than 47 planes.

This is shown in Figure 5.12 for ND and Figure 5.14 for FD. Secondly, in

the case that a track is reconstructed in an event, the track length cannot be

longer than the shower length by more than 5 planes. This is illustrated in

Figure 5.11 for ND and Figure 5.13 for FD.

Selector performance can be evaluated through purity and efficiency.
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The former is defined as

number of selected true signal events

total number of selected events
, (5.1)

and the latter is defined as

number of selected true signal events

total number of signal events before selection
. (5.2)

In this case, the denominator for the efficiency is the total number of true NC

events before the two NC selection cuts (event length and track extension).

The results for the NC selections are shown in Figure 5.15 for ND and Figure

5.16 for FD.

Integrating over the energy window used in the fitting in Chapter 8 and

9, the efficiency is 79.9% and the purity is 60.3% for the ND; the efficiency

is 86.5% and the purity is 64.9% for the FD. The simulated NC event energy

spectra combining both MINOS and MINOS+ samples are shown in Figure

5.17 and Figure 5.18 for ND and FD, respectively.

5.4 Systematic Errors

Two of the systematic errors related to the NC event selections, accep-

tance and NC cleaning, were studied for this dissertation. They correspond to

the selection cuts described in Section 5.1 and Section 5.2, respectively.

5.4.1 Acceptance

Spatial uniformities of the event reconstructions in MINOS detectors

have been studied in Reference [101], where the energy spectra of data and MC
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Figure 5.11: Track extension cut at ND. The selected events are to the left of
the blue line.
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Figure 5.12: Event length cut at ND. The selected events are to the left of the
blue line.
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Figure 5.13: Track extension cut at FD. The selected events are to the left of
the blue line.
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Figure 5.14: Event length cut at FD. The selected events are to the left of the
blue line.
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Figure 5.15: Efficiency and purity for the NC selections at ND.
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Figure 5.16: Efficiency and purity for the NC selections at FD.
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Figure 5.17: Simulated NC event energy spectrum at ND combining both
MINOS and MINOS+ samples. The main backgrounds are CC events, along
with a small amount of beam νe.
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Figure 5.18: Simulated NC event energy spectrum at FD combining both
MINOS and MINOS+ samples. In addition to the CC events, there are also
backgrounds from the νe and ντ appearance.
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from different quadrants, radial annuli and Z-segments of ND are compared.

A good agreement can be seen within the limit of statistical fluctuations. As

small as they are, two spatial variations are taken as the systematic errors for

the analyses of this dissertation:

1. The plus and minus shifts correspond to the events originating on the

left and right half of the fiducial volume.

2. The shifted distribution is constructed by tightening the fiducial z cut

from 4.7368 m to 2.5 m.

The fractional errors on the data-MC ratio as a function of the reconstructed

energy are shown in Figure 7.21 and Figure 7.22 in Chapter 7. Overall it is

less than 0.5% for both shifts.

5.4.2 NC Cleaning

The basic technique of evaluating the NC cleaning systematic error is

to find a pair of shifted cleaning cuts (pulse height fraction and maximum

consecutive planes) so that the MC could best match with data at ND [100].

Since the reconstructed energies of the poorly reconstructed events are mostly

smaller than 2 GeV, three reconstructed energy bins are considered: Ereco <

0.5 GeV, 0.5 GeV < Ereco < 1 GeV, and Ereco > 1 GeV. The evaluation

follows a two-step procedure:

1. For each energy bin, free scale the poorly reconstructed components so
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that the MC best matches with data in terms of the distributions of the

two cleaning variables.

2. After the scaling, a shifted cut is chosen such that it rejects the same

number of events in data and MC. The fractional change in the energy

spectra caused by the shifted cuts is taken as the systematic error. In

other words,

error =
energy spectrum based on the shifted cut

energy spectrum based on the nominal cut
. (5.3)

However, in the analysis of the 3+1 model (see Chapter 8), problems

arise when the oscillations at ND are considered. More specifically, with the

baseline of 1.04 km at ND, the oscillation of νµ → νs as measured by the NC

events are affected by three model parameters, θ34, θ24 and ∆m2
43, as shown

in Figure 5.19. For this reason, the procedure described above is no longer

valid, because the results of matching the MC with data vary depending on

the oscillation parameters. This is demonstrated in Figure 5.20, 5.21 where

the distributions of the pulse height fraction and max consecutive planes in

the energy bin of 0.5 GeV < Ereco < 1 GeV are shown with and without ND

oscillations. The resultant best fit scaling factors are shown in Figure 5.22.

In addition, the oscillation effect on the energy spectra with and without the

preselection cuts are shown in Figure 5.23 and Figure 5.24, respectively. In

Figures 5.20 to 5.24, ND oscillations are applied to the right plot with θ34 = 0,

θ24 = 0.272 and ∆m2
43 = 11.2 eV2. The values for θ24 and ∆m2

43 correspond

to point 21 in Figure 5.19.
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Figure 5.20: Pulse height fraction distribution for energy bin 0.5 GeV <
Ereco < 1 GeV.
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Figure 5.21: Maximum consecutive planes distribution for energy bin
0.5 GeV < Ereco < 1 GeV.
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Figure 5.22: χ2 of data-MC difference from re-scaling the poorly reconstructed
components in the three energy bins. X-axis is the scaling factor reduced by
1.

There are two possible solutions for this problem. One is to completely

cut off low energy NC events. This would remove all the poorly reconstructed

events, and the cleaning cuts are no longer needed. However, the drawback is

that good events are also removed along the way. This is not ideal because

significant statistics of the NC sample lie in the low energy bins.

The other solution, which is adopted in this dissertation, is to match

oscillated MC with data. Due to a large parameter space spanned by θ34,

θ24 and ∆m2
43, the strategy was to try only a limited set of the oscillation

parameters in the sensitive region and take the largest resultant error as a

conservative measure. In practice, 120 sets of parameters, which come from

5 different values for θ34 in combination with 24 different values for θ24 and

∆m2
43 as shown in Figure 5.19, are used to generate 120 different error bands

(see Fig. 5.25 for an example). To combine these error bands into one, for
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Figure 5.23: NC event energy spectra without the preselection cuts.
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Figure 5.24: NC event energy spectra with all cuts applied.
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each energy bin, the largest error is adopted, and the result is shown in Figure

5.26, where the function

1 +
0.98

1 + (E/0.54)2
, (5.4)

is used to provide a parameterization of the band for fast generation of the

shifted MC sample.
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Chapter 6

CC Event Selection

This chapter focuses on the CC event selection in MINOS+. To avoid

double counting, the CC sample and the NC sample are made to be exclusive.

In practice, NC selections are applied first. For the events not selected by the

NC selector, the CC selector picks up the CC-like events for the CC sample.

Due to historical reasons, the CC and NC selectors took different approaches.

The former uses a kNN-based method, with the latter employing a simple

cuts-based method described in Chapter 5.

Having the same goal of selecting more CC events and less NC events,

the study of the CC event selection is shared between the sterile neutrino

and the standard oscillation analyses. Following a brief description of the

fiducial volume cuts which are critical to ensure good energy containment, the

retraining of the PID used for CC and NC event separation is discussed. The

systematic errors associated with the selection cuts are presented in the last

section.
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6.1 Acceptance

At the ND, the XY-view of the event vertices is shown in Figure 6.1,

where beam neutrinos are traveling along positive Z direction pointing to-

ward the reader, and Z = 0 is defined to be the front surface of the de-

tector. The disk formed by the event vertices centers at the beam spot

(X0 = 1.4828 m, Y0 = 0.2384 m) with a radius R = 0.8 m. Event Z positions

lie within 0.81 m < Z < 4.08 m which gives the fiducial volume a cylinder

shape as shown in Fig. 6.2.

The coil hole is not well modeled in the simulation of the ND. Events

with a track ending in the calorimeter and 0.6 m from the coil hole center are

not selected. This is referred to as the coil hole cut.

At the FD, the XY-view of the selected CC event vertices is shown in

Figure 6.3. They are contained in a disk with 0.5 m < R < 3.74 m, where the

lower limit accounts for the coil hole cut. Z-axis is defined in the same way as

that of ND, and there are two sections in this direction, 0.49 m < Z < 14.29 m

and 16.27 m < Z < 27.98 m, accounting for the two modules of FD.

6.2 Separation of CC Events from NC Events

To select a CC event, the minimum requirement is that it contains at

least one reconstructed track. Events that pass this criterion can be a real

charged current event (signal) for which the track is formed by an outgoing

muon, or it can be a neutral current event (background) for which the track is
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Figure 6.1: XY-view of the CC event vertices at ND (black disk).

Figure 6.2: Fiducial volume for CC events at ND.
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Figure 6.3: XY-view of the CC event vertices at FD (black dot).

reconstructed from the hits created by the hadronic shower. For this reason,

further identification is needed. In MINOS, kNN algorithm was adopted to

separate charge current events from neutral current events that contain recon-

structed track(s). Two particle identification indices (PIDs) were developed

based on this technique: roID [102] and jmID [103]. The latter was motivated

by selecting more low energy events to improve the sensitivity to the models

of neutrino decay and decoherence. The final PID cut takes an “or” of the

two: (roID > 0.25 ‖ jmID > 0.5). In MINOS+, due to very low statistics of

the low energy events, jmID was dropped. This section focuses on retraining

roID (referred as PID in the later text) in MINOS+, which involves applying

MINOS+ MC samples in the training sets and reoptimizing the PID cut.

Similar to the kNN shower energy, the basic idea of using kNN algo-
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rithm for PID is to find k closest matching MC events (k nearest neighbors)

for a given data event, and take the fraction of the signal events to be the PID.

Thus, the PID can be defined as

kS
kS + kB

=
kS
k
. (6.1)

where kS and kB are the number of signal events and the number of background

events, respectively. The neighborhood is determined by the Euclidean metric

defined in Equation 4.1. Four event parameters are involved [102]

1. Number of scintillator planes in a track.

2. Mean pulse height of the track hits.

3. Ratio of the mean of low pulse height hits over the mean of high pulse

height hits. Low and high pulse height hits are separated by a threshold

tuned in a sensitivity optimization procedure [102].

4. Ratio of the pulse height of the track hits to that of the event hits.

Distributions of the four variables using MINOS+ MC samples are shown in

Figure 6.4, where the histograms are filled with equal numbers of signal and

background events used in the training sets. More precisely, there are 221,778

signal or background events in the ND training set and 187,288 in the FD

training set.

The computed PID distribution at ND is shown in Figure 6.5, where

the number of neighbors is set to k = 80, the same with that used in MINOS.

112



Number of planes in a track
0 1 2 3 4

210

310

410

510

Signal
Background

Mean pulse height of the track hits
0 2 4

210

310

410

510

Signal
Background

Low/high pulse height ratio
0 0.5 1 1.5 2 2.5

210

310

410

510

Signal
Background

Fraction of track hits

0 1 2 3

210

310

410

510

Signal
Background

Figure 6.4: Variables used in kNN PID. Histograms are filled with an equal
number of signal events and background events used for the training set.
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The systematic error of the NC background in the CC sample is partially based

on the difference between data and MC in the PID distribution, as shown in

the bottom plot of Figure 6.5, and will be discussed in the last section of this

chapter. A similar PID distribution was obtained for FD.

An optimization of the PID cut was performed based on the same crite-

rion as that used for kNN shower energy, i.e. the sensitivity to the standard os-

cillation model. More specifically, a test point was chosen in the ∆m2−sin2 2θ

plane with ∆m2 = 2.88× 10−3 and sin2 2θ = 0.72. It is located near the con-

tour of the 90% C.L. for MINOS+ (see Figure 6.7 for an example). For each

cut between 0 and 1, a χ2 is computed. The result of performing the scan on

the cut is shown in Figure 6.6. Because a larger χ2 corresponds to a better

sensitivity, PID > 0.3 is found to be optimal. The improvement brought by

the retraining is shown in Figure 6.7, where the old PID uses MINOS MC

samples as the training set, together with the MINOS PID cut.

The purity and the efficiency, which are respectively defined in Equation

5.1 and Equation 5.2, are shown in Figure 6.8 for the ND, and Figure 6.9 for

the FD. The denominator for the efficiency in this case is the total number of

true νµ/νµ CC events that contain at least one track and originate inside the

fiducial volume. Integrating over the energy window, the efficiency is 56.4%

and the purity is 99.1% at ND. At FD, the efficiency is 85.1% and the purity

is 99.3%. The CC event energy spectra by MC combining both MINOS and

MINOS+ samples are shown in Figure 6.10 and Figure 6.11 for ND and FD,

respectively.
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PID distribution for all events.
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Figure 6.8: Efficiency and purity for the ND CC events.
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Figure 6.9: Efficiency and purity for the FD CC events.
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Figure 6.10: Simulated CC event spectrum at ND.

 (GeV)recoE
0 10 20 30 40

E
ve

nt
s 

/ G
eV

0

200

400

600

selected CC events

NC

 POT MINOS+20 10×2.99 
 POT MINOS and2010×10.56

MINOS+ Preliminary

Figure 6.11: Simulated CC event spectrum at FD.
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6.3 Systematic Error

The systematic errors due to the acceptance cuts and the CC/NC sepa-

ration cuts are discussed in this section. For the acceptance systematic errors,

the considerations are restricted to ND since FD has inadequate statistics.

6.3.1 Acceptance

Similar to the NC case discussed in Chapter 5, a list of systematic errors

comes from shifting the acceptance cuts as follows:

1. Plus and minus shifts correspond to the events originating on the left

and right half of the fiducial volume.

2. Shifted distribution is constructed by tightening the fiducial z cut from

4.07710 m to 2.5 m.

3. Shifted distribution is constructed by tightening the fiducial radius from

80 cm to 60 cm.

4. Shifted distribution is constructed by turning off the coil hole cut.

5. Shifted distribution is constructed by removing all events with a track

ending within 10 planes of the start of the spectrometer.

6. Shifted distribution is constructed by turning off the cut on events with

a track exiting the side of the calorimeter.

7. Shifted distribution is constructed by removing all events with a track

ending within 10 planes of the end of ND.
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The fractional errors on the data-MC ratio based on these shifts are shown in

Figures 7.1 to 7.7 for the combined MINOS and MINOS+ samples.

It should be noted that the shifts in item 2-7 are one-sided and consid-

ered as the plus shifts in Figures 7.2 to 7.7. The minus shifts are taken as the

mirror of the plus shifts.

6.3.2 NC Background

The NC background systematic error was evaluated by two indepen-

dent methods for the standard oscillation analysis in MINOS [104]. In the

first method, muon removed charged currents (MRCC) events from data were

used to imitate the NC data events. After letting them go through the recon-

struction chain, and comparing the results with that from the simulated NC

events, a systematic error of 15% was identified. The second method relies on

the PID distributions in data and MC (see Figure 6.5). By freely scaling the

CC component and the NC component in MC to best match MC with data,

a scaling factor of 11% on the NC component was obtained and used as the

systematics error. Combining the results from the two methods, a total of

20% was adopted for MINOS NC background systematics.

In the sterile analysis, oscillations at the near detector may occur for

large ∆m2
43. This creates a difficulty for the second method described above.

For a better treatment, oscillations should be applied to MC before the com-

parison with data. Similar to the case of evaluating the NC cleaning sys-

tematics in Chapter 5, a total of 120 oscillation parameter sets were tested.
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Figure 6.12: Distribution of the best fit points for 120 oscillation parameters.
The largest absolute value on the NC scaling factor (Y-axis) is 0.756, and is
used for calculating the NC background systematics.

Examples for θ34 = 0 and various values for θ24 and ∆m2
43 are shown in Figure

6.13, where each plot corresponds to a point in Fig. 5.19. The best fit results

are summarized in Figure 6.12, together with a point from the case of no ND

oscillations. The largest NC scaling factor (Y-axis) away from unity is 0.756.

For a conservative estimation, this leads to a systematic error of 24.4%. Tak-

ing a quadratic sum with the 15% from the MRCC method [104], the total

systematic error is set to 30% for MINOS+.
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Figure 6.13: Free scaling CC (X-axis) and NC components (Y-axis) to best
match MC with data. Each plot corresponds to a different point in Figure
5.19 for different values of θ34 and ∆m2

43. θ34 is set to π/4.
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Chapter 7

Systematic Error Bands and Covariance

Matrices

A blind analysis procedure was adopted for this dissertation. Before

looking at the real data, we examined the effect of all possible systematic

uncertainties that may impact the result, as they can well fake or bury a

physics signal. This chapter gives the complete list of the systematic errors

that have been considered.

The systematic error bands as a function of reconstructed energy, to-

gether with the corresponding covariance matrices, are built with the combined

MINOS and MINOS+ samples. They will serve as inputs to the analysis of

the 3+1 model in Chapter 8.

For the analysis of the LED model in Chapter 9, only MINOS data are

used. The error bands and the covariance matrices are taken from Reference

[105], where the results are calculated with the MINOS sample only. They are

not very different from the ones presented in this chapter, because so far there

are not as much data collected in MINOS+ as in MINOS.
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7.1 Overview

A list of systematics for CC and NC samples (except for the beam

related ones) is shown in Table 7.1 grouped by category. It follows the system-

atics considered in References [105] and [100]. Between MINOS and MINOS+,

the systematics in the list are treated as correlated quantities, i.e a +1σ shift

in MINOS corresponds to a +1σ shift in MINOS+, and vice versa. To gener-

ate error bands for the combined MINOS and MINOS+ samples, +1σ shifted

MINOS MC energy spectra are added to the +σ shifted MINOS+ MC energy

spectra, and the same for the −σ shift.

7.1.1 Fractional Error

As will be discussed in Chapter 8 and 9, the fit is performed on the

ratio of FD energy spectra to ND energy spectra. This is referred to as the

far-over-near fit. Computing the fractional error on the far-over-near ratio is

needed to provide necessary inputs to the fit. The acceptance systematics,

which are evaluated using ND data as discussed in Chapter 5 and 6, concern

the mis-modeling of MC in terms of the event selections. Due to the possible

oscillations at ND, the ratio of the shifted and nominal data-MC ratio, i.e.

double ratio

(data/MC)shifted

(data/MC)nominal

− 1. (7.1)

is used as a handle on the systematics. The shifted sample is associated with

a modified acceptance cut which makes it a subset or superset of the nominal
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Category Event
type

Systematic error Reference

acceptance

CC

left/right fiducial volume

Chapter 5, 6

tightened fiducial Z

tightened fiducial R

cut spectrometer join region

no containment cut

no coil hole cut

back exiting cut

NC
tightened fiducial Z

left/right fiducial volume

energy scale

CC
shower energy scale Chapter 4

track energy scale [106]

NC
NC absolute hadronic calibration scale

[100]
NC relative hadronic calibration scale

normalization
CC CC normalization [104]

NC NC normalization [100]

background
CC NC background Chapter 6

NC CC background [107]

NC cleaning NC

ND cleaning Chapter 5

FD cleaning
[108]

FD cosmics

cross sections CC/NC

νµ KNO multiplicity 2

[109]

νµ KNO multiplicity 3

νµ resonance cross section

νµ quasi-elastic cross section

νµ total CC cross section

νµ KNO multiplicity 2

νµ total CC cross section

νµ quasi-elastic cross section

νµ resonance cross section

Table 7.1: List of systematics by categories.
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sample. The errors, as will be shown in later plots, are treated as binomial.

Equation 7.1 can be used as the percentage error on 1/(near detector MC),

and is therefore equal to the percentage error of far-over-near ratio since the

far detector MC is kept unshifted.

Other systematics, which include that of the energy scale, normaliza-

tion, background, NC cleaning, and cross sections are evaluated using both

ND and FD MC samples:

(far/near)shifted

(far/near)nominal

− 1. (7.2)

7.1.2 Covariance Matrix

The fitting in Chapter 8 and 9 uses the approach of covariance matrix.

The dominant term in χ2 takes the form ∆Λ−1∆, where ∆ is a vector with

each element representing a reconstructed energy bin and is evaluated as the

difference between MC prediction and data. Λ is the covariance constructed

from the fractional errors in the bins of the reconstructed energy. Before

constructing a covariance matrix, a smoothing procedure is applied to remove

the effect of random fluctuation in MC samples.

Based on its definition, the covariance matrix Λ can be calculated nu-

merically. Let X be a vector with each element Xi equal to the error in energy

bin i. The covariance matrix can be written as

Λij = cov(Xi, Xj) = E [(Xi − µi)(Xj − µj)] , (7.3)
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where E[·] represents the operation of taking the expectation value, and µi =

E(Xi) is the mean of Xi. Fluctuation of Xi is correlated to that of Xj. The

correlation, as well as the magnitude of the fluctuation is given by the error

band. Λij is evaluated as the average of (Xi − µi)(Xj − µj) for 1000 random

Xs. Each random X is obtained by scaling the error band, which is the ±1σ

case of X, with a random number drawn from a Gaussian distribution with

the mean of 0 and the standard deviation of 1.

7.1.3 Cross Sections

Systematic errors due to the uncertainties in the knowledge of the neu-

trino interaction cross sections are common to both CC and NC samples.

Neutrino cross sections are simulated by the NEUGEN package [110]. At low

energies (less than 1 GeV), quasi-elastic scattering and resonant production

dominate. The KNO parameters in NEUGEN are scaling parameters that

change the multiplicity distributions of the hadronization in the final state.

The details are listed in Table 7.2 as given by Reference [109]. The error bands

and the associated covariance matrices are shown in Figures 7.12 to 7.20 for

the CC sample and Figures 7.30 to 7.38 for the NC sample.

7.2 Systematics for CC Sample

In addition to cross section systematics, other CC systematics are listed

in Table 7.3. More specifically:

1. The acceptance systematics has been discussed in Chapter 6. The error
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bands and their covariance matrices are shown in Figures 7.1 to 7.7.

2. The shower energy scale systematics has been discussed in Chapter 4.

The calculated error band and the covariance matrix are shown in Figure

7.8.

3. The NC background systematics has been evaluated to be 30% for MI-

NOS+ in Chapter 6, in comparison to 20% used for MINOS [104]. The

error band and the covariance matrix is shown in Figure 7.10.

4. The track energy scale systematics comes from factors common to both

detectors. A 2% adjustment is made to energies measured by range, with

a fully correlated 3% shift for tracks whose energies are measured from

curvature. The range-based error is calculated from the combination

of known uncertainties in the detector simulation and particle propaga-

tion. The curvature-based error includes an additional component from

observed differences in the range and curvature measurements for indi-

vidual tracks [106]. The error band and the covariance are shown in

Figure 7.9.

5. The relative normalization systematics comes from the differences be-

ween ND and FD, including steel thickness, scintillator thickness, FD

live time, ND fiducial volume bias, and selection bias. A 1.54% scale

factor is applied to the far detector spectrum [111]. The error band is

shown in Figure 7.11.
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Figure 7.1: An examination of the mis-modeling across the CC fiducial volume.
The plus and minus shifts correspond to the CC events originating on the left
and right half of the fiducial volume. The top four plots are the error bands
for the CC sample. The bottom plot is the corresponding covariance matrix.
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Figure 7.2: An examination of the mis-modeling of the CC fiducial volume.
The shifted distribution is constructed by tightening the fiducial radius from
80 cm to 60 cm. The top four plots are the error bands for the CC sample.
The bottom plot is the corresponding covariance matrix.
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Figure 7.3: An examination of the mis-modeling of the CC fiducial volume.
The shifted distribution is constructed by tightening the fiducial Z cut from
4.07710 m to 2.5 m. The top four plots are the error bands for the CC sample.
The bottom plot is the corresponding covariance matrix.
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Figure 7.4: An examination of the mis-modeling of the coil hole. The shifted
distribution is constructed by turning off the coil hole cut. The top four plots
are the error bands for the CC sample. The bottom plot is the corresponding
covariance matrix.
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Figure 7.5: An examination of the mis-modeling of the spectrometer join re-
gion. The shifted distribution is constructed by remove all events with a track
ending within 10 planes of the start of the spectrometer. The top four plots
are the error bands for the CC sample. The bottom plot is the corresponding
covariance matrix.
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Figure 7.6: An examination of the mis-modeling of side exiting tracks. The
shifted distribution is constructed by turning off the containment cut. The
top four plots are the error bands for the CC sample. The bottom plot is the
corresponding covariance matrix.
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Figure 7.7: An examination of the mis-modeling of back exiting tracks. The
shifted distribution is constructed by removing all events with a track ending
within 10 planes of the end of the near detector. The top four plots are
the error bands for the CC sample. The bottom plot is the corresponding
covariance matrix.
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Figure 7.8: CC shower energy scale systematic error. The shower energy is
scaled 5−10% depending on the energy. The top four plots are the error bands
for the CC sample. The bottom plot is the corresponding covariance matrix.
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Figure 7.9: CC track energy scale systematic error. The track energy is scaled
by 2 or3% depending on whether the range or the curvature is used [106]. The
top four plots are the error bands for the CC sample. The bottom plot is the
corresponding covariance matrix.
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Figure 7.10: NC background systematic error. The NC background is scaled
by ±20% for MINOS and ±30% for MINOS+. The top four plots are the error
bands for the CC sample. The bottom plot is the corresponding covariance
matrix.
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Figure 7.11: Normalization systematic error. The FD normalization is varied
by ±1.54% [111]. The top four plots are the error bands for the CC sample.
The bottom plot is the corresponding covariance matrix.
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Figure 7.12: νµ KNO multiplicity systematic error. rij2 NEUGEN parameters
are shifted by ±0.1. The top four plots are the error bands for the CC sample.
The bottom plot is the corresponding covariance matrix.
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Figure 7.13: νµ KNO multiplicity systematic error. rij3 NEUGEN parameters
are shifted by ±0.2. The top four plots are the error bands for the CC sample.
The bottom plot is the corresponding covariance matrix.
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Figure 7.14: νµ quasi-elastic cross section systematic error. MQE
A is scaled by

±15%. The top four plots are the error bands for the CC sample. The bottom
plot is the corresponding covariance matrix.
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Figure 7.15: νµ resonance cross section systematic error. MRes
A is scaled by

±15%. The top four plots are the error bands for the CC sample. The bottom
plot is the corresponding covariance matrix.
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Figure 7.16: Total νµ CC cross section systematic error. The total νµ CC cross
section is scaled by ±3.5%. The top four plots are the error bands for the CC
sample. The bottom plot is the corresponding covariance matrix.
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Figure 7.17: νµ KNO multiplicity systematic error. ri(3,4)2 NEUGEN param-
eters is shifted by ±0.2. The top four plots are the error bands for the CC
sample. The bottom plot is the corresponding covariance matrix.
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Figure 7.18: Total νµ CC cross section systematic error. The total νµ CC
cross section is scaled by ±4%. The top four plots are the error bands for the
CC sample. The bottom plot is the corresponding covariance matrix.
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Figure 7.19: νµ quasi-elastic cross section systematic error. νµ quasi-elastic
cross section is scaled by ±8%. The top four plots are the error bands for the
CC sample. The bottom plot is the corresponding covariance matrix.
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Figure 7.20: νµ resonance cross section systematic error. νµ resonance cross
section is scaled by ±8%. The top four plots are the error bands for the CC
sample. The bottom plot is the corresponding covariance matrix.
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7.3 Systematics for NC Sample

NC systematics are listed in Table 7.4. Details are described below.

1. A list of acceptance systematic errors is discussed in Chapter 5. The

error bands are shown in Figures 7.21 and 7.22.

2. The ND cleaning systematic error is studied in Chapter 5 and the error

band is shown in Figure 7.27.

3. The systematic errors associated with the FD cleaning and cosmics re-

moval are described in [108]. The former removes noise at low energies

with a systematic error up to 4.9%. The later cuts off cosmic events with

a systematic error up to 2.7% depending on the energy range. The error

bands are shown in Figure 7.25 for the FD cleaning and Figure 7.26 for

the FD cosmics removal.

4. The absolute hadronic calibration scale uncertainty is evaluated in a

procedure similar to that of the CC kNN shower energy as described

in Chapter 4. It reaches 10% at lower shower energies and becomes

approximatively asymptotical to 6.6% at higher shower energies [100].

The error band is shown in Figure 7.23.

5. The relative hadronic calibration scale uncertainty comes from the con-

version of the detector response to hadronic energy in the calibration

chain. It has been evaluated to be 2.1% [112]. The error band is shown

in Figure 7.29.
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6. The uncertainty of CC background selected in NC spectra is evaluated

by using different beam configurations to reduce the impact of the wrong

modelling of the MC neutral current and charged current cross sections

[107]. It is 15% at all energies. The error band is shown in Figure 7.24.

7. The normalization systematic error due to the difference between ND

and FD is found to be 2.2% constant over the whole energy spectrum in

Reference [113]. The error band is shown in Figure 7.28.
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Figure 7.21: An examination of the mis-modeling of the NC fiducial volume.
The shifted distribution is constructed by tightening the fiducial Z cut from
4.7368 m to 2.5 m. The top four plots are the error bands for the NC sample.
The bottom plot is the corresponding covariance matrix.
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Figure 7.22: An examination of the mis-modeling the across the NC fiducial
volume. The plus and minus shifts correspond to the events originating on
the left and right half of the fiducial volume. The top four plots are the error
bands for the NC sample. The bottom plot is the corresponding covariance
matrix.
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Figure 7.23: Absolute hadronic calibration scale systematic error. The event
energy is scaled by ±6.6 − 10% depending on the energy [100]. The top four
plots are the error bands for the NC sample. The bottom plot is the corre-
sponding covariance matrix.
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Figure 7.24: CC background systematic error. CC background is scaled by by
±15% The top four plots are the error bands for the NC sample. The bottom
plot is the corresponding covariance matrix.
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Figure 7.25: FD cleaning systematic error. The event energy is scaled by upto
±4.9% at low energies [108]. The top four plots are the error bands for the
NC sample. The bottom plot is the corresponding covariance matrix.
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Figure 7.26: FD cosmic removal systematic error. The event energy is scaled
by ±0− 2.7% depending on the energy [108]. The top four plots are the error
bands for the NC sample. The bottom plot is the corresponding covariance
matrix.
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Figure 7.27: ND cleaning systematic error. The event energy is scaled by upto
±8.2% for MINOS [114] and upto ±50% for MINOS+ at low energies. The
top four plots are the error bands for the NC sample. The bottom plot is the
corresponding covariance matrix.
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Figure 7.28: Normalization systematic error. The FD energy spectrum is
scaled by ±2.2%. The top four plots are the error bands for the NC sample.
The bottom plot is the corresponding covariance matrix.
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Figure 7.29: Relative hadronic calibration scale systematic error. The FD NC
event energy is scaled by ±2.1%. The top four plots are the error bands for
the NC sample. The bottom plot is the corresponding covariance matrix.
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Figure 7.30: νµ KNO multiplicity systematic error. rij2 NEUGEN parameters
is shifted by ±0.1. The top four plots are the error bands for the NC sample.
The bottom plot is the corresponding covariance matrix.
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Figure 7.31: νµ KNO multiplicity systematic error. rij3 NEUGEN parameters
is shifted by ±0.2. The top four plots are the error bands for the NC sample.
The bottom plot is the corresponding covariance matrix.
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Figure 7.32: νµ quasi-elastic cross section systematic error. MQE
A is scaled by

±15%. The top four plots are the error bands for the NC sample. The bottom
plot is the corresponding covariance matrix.
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Figure 7.33: νµ resonance cross section systematic error. MRes
A is scaled by

±15%. The top four plots are the error bands for the NC sample. The bottom
plot is the corresponding covariance matrix.
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Figure 7.34: Total νµ CC cross section systematic error. The total νµ CC cross
section is scaled by ±3.5%. The top four plots are the error bands for the NC
sample. The bottom plot is the corresponding covariance matrix.
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Figure 7.35: νµ KNO multiplicity systematic error. ri(3,4)2 NEUGEN param-
eters is shifted by ±0.2. The top four plots are the error bands for the NC
sample. The bottom plot is the corresponding covariance matrix.
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Figure 7.36: Total νµ CC cross section systematic error. The total νµ CC
cross section is scaled by ±4%. The top four plots are the error bands for the
NC sample. The bottom plot is the corresponding covariance matrix.

170



0 10 20 30 40
-40

-20

0

20

40
-310×

plus shift
raw smoothed

0 10 20 30 40
-40

-20

0

20

40
-310×

minus shift
raw smoothed

0 10 20 30 40
-40

-20

0

20

40
-310×

before smoothing
plus minus

0 10 20 30 40
-20

-10

0

10

20
-310×

after smoothing
plus minus

E
rr

or
 o

n 
F

ar
 / 

N
ea

r 
(%

)
E

rr
or

 o
n 

F
ar

 / 
N

ea
r 

(%
)

 (GeV)recoE  (GeV)recoE

 (GeV)recoE
0 10 20 30 40

 (
G

eV
)

re
co

E

0

10

20

30

40

5

10

15

20
-910×

Figure 7.37: νµ quasi-elastic cross section systematic error. νµ quasi-elastic
cross section is scaled by ±8%. The top four plots are the error bands for the
NC sample. The bottom plot is the corresponding covariance matrix.
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Figure 7.38: νµ resonance cross section systematic error. νµ resonance cross
section is scaled by ±8%. The top four plots are the error bands for the NC
sample. The bottom plot is the corresponding covariance matrix.
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7.4 Combined Systematic Errors

In addition to the systematic errors discussed in the previous two sec-

tions, the systematic errors coming from the beam should also be considered,

including those from hadron production and those from beam optics. The total

hadron production uncertainty for MINOS is evaluated in Reference [115] and

that for MINOS+ is done by the same authors. The aim is to vary hadron

production parameters within reasonable limits, and use the shifted hadron

production to create a population of shifted flux histograms from which a co-

variance matrix is constructed. The covariance matrices for the CC and NC

samples are shown in Figure 7.39.

The beam optics systematic errors in MINOS come from the uncer-

tainty in horn current distribution, horn current miscalibration, and the un-

certainty in magnetic horn position [80, 116]. For MINOS+, additional factors

are included, namely the uncertainties from beam position, beam width, tar-

get Z position and material density. The errors in MINOS and MINOS+

are summed together assuming they are not correlated [117]. The covariance

matrices for the CC and NC samples are shown in Figure 7.40.

The combined fractional errors on the far-over-near ratios are shown

in Figure 7.41 where the error in each bin is the square root of the diagonal

elements of the combined covariance matrices.
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Figure 7.39: Covariance matrix from hadron production uncertainty for the
CC sample (top) and the NC sample (bottom). This is calculated by the
authors of [115].
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Figure 7.40: Covariance matrix from beam optics uncertainty for the CC sam-
ple (top) and NC sample (bottom).
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Figure 7.41: Total fractional errors on the far-over-near ratio for the CC (top)
and the NC (bottom) samples.
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Chapter 8

The 3+1 Sterile Neutrino Analysis

This chapter presents the analysis of the 3+1 sterile neutrino model

based on the full 10.56×1020 POT νµ running data of MINOS and 2.99×1020

POT νµ running data of MINOS+. Given the far-over-near ratio, the ex-

pression of χ2 and the binning scheme in the first section, the χ2 surfaces of

sensitivity and data are shown along with the effect of individual systematic

uncertainty described in Chapter 7. The Feldman-Cousins procedure is intro-

duced and the corrected 90% C.L. contour is given as the final result of this

analysis. Discussions are made on the best fit point in the final section.

8.1 Strategy

The basic idea is to fit to the ratio of the FD spectrum over the ND

spectrum, i.e. far-over-near ratio, with a covariance-matrix-based χ2. In or-

der to make model predictions, oscillations are applied to the reconstructed

true energy conversion matrices. To combine MINOS and MINOS+ data,

the spectra are simply added together. The NC and CC samples are fitted

simultaneously, i.e. the total χ2 is the sum of the χ2s of the two samples.
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8.1.1 Far-over-near Ratio

The fit is performed on the far-over-near ratio as shown in Figure 8.1

where the energy window is set to 0-40 GeV. The method was first adopted in

the 2014 sterile analysis [118]. In previous MINOS sterile analyses, the fitting

was performed on the FD spectrum only and the model prediction was then

made based on the ND data [107] assuming that there is no oscillations hap-

pening at ND. The beam simulation is tuned so that the MC and data spectra

match at ND. In the new far-over-near fit approach, the most important im-

provement is that the parameter space with ND oscillations is also covered.

This especially concerns the space with large ∆m2
41 and large θ24 (e.g. see

Figure 5.19). Since the tuning of the beam simulation is no longer valid in

the presence of the ND oscillations, the untuned beam simulation is taken as

the nominal in this analysis. When taking the far-over-near ratio, the beam

systematics are largely canceled out.

8.1.2 Expression of χ2

The χ2 to be minimized in the fit takes the form

χ2 = ∆C−1∆ +

(
Ndata −NMC

σN

)2

+
(|∆m2

32| −∆m2)2

σ2
∆m2

. (8.1)

The first term makes use of the shape information in the ND and FD energy

spectra. ∆ ≡ (far/near)MC − (far/near)data is a vector with each element

corresponding to a reconstructed energy bin. C is the sum of covariance ma-
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Figure 8.1: Far-over-near ratios for the CC sample (top) and the NC sample
(bottom) using the combined data of MINOS and MINOS+. The error bars
represent the statistical uncertainty. The standard oscillation predictions are
shown as the red histograms along with the systematic uncertainty.
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trices

C = Cstat +
∑
i

Csyst
i , (8.2)

where Cstat is the statistical covariance matrix and Csyst
i is the covariance ma-

trix for systematics i discussed in Chapter 7. Given that there is no correlation

in statistical fluctuation among different energy bins, the Cstat takes the form

of a diagonal matrix

Cstat =


σ2

1

σ2
2

. . .

σ2
N

 (8.3)

where σi is the square root of the number of events in bin i following the

Poisson distribution, and N is the total number of energy bins.

The second term in Equation 8.1 provides a constraint based on the

absolute neutrino beam flux. NMC and Ndata represent the number of MC

and data events at ND, respectively. The flux uncertainty σN is not precisely

known, and σN = 50%NMC is adopted as the typical agreement between

hadron production measurements and MC calculations [119].

The last term in Equation 8.1 provides a weak constraint on ∆m2
32 to

keep its value centered around the standard oscillation result in the fit. This

is based on the idea of treating the four-flavor oscillation as the perturbation

of the standard three-flavor oscillation which can already describe the MINOS

data well. The center value ∆m2 = 2.5× 10−3 eV2 is adopted from Daya Bay
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three-flavor analysis [120], and σ∆m2 = 0.5 eV2 is roughly 2× the uncertainty

in the Daya Bay result.

It is worth mentioning that there are two main techniques commonly

used in performing the fit with correlated systematics. One is the covariance

matrix method as described above. The other is the nuisance parameters

method, where each systematic error is assigned with a free floating nuisance

parameter playing the same role as the physics model parameters. Assuming

Gaussian fluctuations, the two methods are equivalent as demonstrated in

Appendix E.

8.1.3 Binning Scheme

Covariance matrix approach essentially uses the multivariate Gaussian,

which assumes that the statistical and systematics fluctuation follows Gaussian

distributions. The binning schemes are chosen such that the minimum number

of events in a bin is about 20 for a good Gaussian approximation. The binning

scheme for NC and CC are shown in Figure 8.2.

8.2 Performing the Fit

The Minuit package [121] is used to minimize the χ2 defined in Equation

8.1. To map out the χ2 surface in the ∆m2
41 − θ24 plane, for each grid point

with with a fixed pair of ∆m2
41 and θ24, θ23 ∈ [0, π/2], θ34 ∈ [0, π/2], and ∆m2

32

are set free in the fit. Two initial values of θ23 for the two octants, and two

initial values of ∆m2 for the two possible mass hierarchies, are attempted in
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Figure 8.2: Simulated FD spectra with the binning scheme defined for the
fitting. There are 74 bins for the CC sample (top), and 38 bins for the NC
sample (bottom).
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Parameter Fixed value

∆m2
21 7.54× 10−5 eV2

θ12 0.554
θ13 0.149
θ14 0

δ13 0
δ14 0
δ24 0

Table 8.1: Fixed parameters used in the 3+1 model fit.

the fit.

The fixed parameters in the fit are listed in Table 8.1. Of those, ∆m2
21,

θ12, θ13 and θ14 are precisely constrained by other experiments. δ13 and δ14 do

not affect the oscillation probabilities. δ24 does have effect on P (νµ → νs) as

shown in Figure 2.9. However, to reduce the complexity of the fit, this analysis

is limited to the case of δ24 = 0.

8.2.1 χ2 Surface

The χ2 surface in ∆m2
41 − θ24 plane based on data is shown in Figure

8.3. The corresponding sensitivity surface is shown in Figure 8.4 for which the

fake data is generated assuming three-flavor oscillations. Assuming a Gaussian

probability density function, 90% C.L. contour is drawn at ∆χ2 = χ2−χ2
best =

4.61, where χ2
best is the χ2 at the best fit point. A comparison between the

sensitivity and the data contours is shown in Figure 8.5. The data contour

will be further corrected through the Feldman-Cousins procedure in the next

section.
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Figure 8.3: χ2 surface based on data.
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Figure 8.4: χ2 surface based on the fake data assuming three-flavor oscillations.
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Figure 8.5: A comparison between the data contour and the sensitivity con-
tour.

Common to both Figure 8.3 and Figure 8.4, there are three regions with

low χ2 in the bottom right of the plots. They roughly correspond three different

values of ∆m2
41. The explanation goes back to Equation 2.1 as discussed in

Reference [122]:

1. ∆m2
41 = ∆m2

31. In this case, ∆41 = ∆31 and ∆43 = 0. Equation 2.1

simplifies to P (νµ → νµ) = 1− (A31 +A41) sin2 (∆31/2). For a given θ24,

the fitter will find values of θ23 such that (A31 + A41) is the same with

that of the three-flavor oscillation case leading to a small χ2.

2. ∆m2
41 = 2∆m2

31. In this case, ∆43 = ∆31. Equation 2.1 becomes P (νµ →

νµ) = 1− (A31 + A43) sin2 (∆31/2)− A41 sin2 (∆31). For a given θ24, the

185



fitter will find values of θ23 such that the probability is the same with

that of the three oscillation case.

3. ∆m2
41 � ∆m2

31. In this case, ∆43 = ∆31 and ∆41 = 0, Equation 2.1

reduces to P (νµ → νµ) = 1 − (A31 + A43) sin2 (∆31/2). For a given θ24,

the fitter will find values of θ23 such that A31 + A43 has the same value

with that of the three oscillation case.

8.2.2 Effect of the Systematics

To show the effect of the systematics, a comparison of the sensitiv-

ity contours made with and without the systematics covariance matrices is

shown in the top plot of Figure 8.6. The individual effect of the systematics

is presented in two ways. In one way, the systematic covariance matrices are

added one by one showing the cumulative effects on the sensitivity as shown in

the bottom plot of Figure 8.6. Alternatively, only one systematic covariance

matrix is used at a time and the result is shown in Figure 9.10.

8.3 Feldman-Cousins Correction

The 90% C.L. contour shown in Figure 8.3 is drawn at ∆χ2 = 4.61 based

on the assumption that measurements follow a Gaussian distribution around

the true value. However, if one takes a brute force approach, as suggested

by Gary Feldman and Robert Cousins in Reference [123], ∆χ2 = 4.61 may

not be the correct value to use. As an example, Figure 8.8 shows the ∆χ2

distribution from 1000 fake experiments generated at θ24 = 0.2 and ∆m2
41 =
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Figure 8.6: Top: 90% C.L. sensitivity contours with and without systematics
included. Bottom: Cumulative effect of the systematics on the 90% C.L. sen-
sitivity contour. The systematics covariance matrices are added individually
for each contour.
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Figure 8.7: Individual effect of systematics on the 90% C.L. sensitivity contour.
The bottom plot is a scaled version of the top plot.

188



20 eV2 using Gaussian statistical and systematic fluctuations (see Figure 8.9

for an illustration of the fluctuated fake data). 90% of the fake experiments

give ∆χ2 < 5.78, indicating that ∆χ2 = 4.61 should be replaced by ∆χ2 = 5.78

for 90% C.L. at that grid point. There are many factors responsible for this

difference, as discussed in Reference [123]. For example, given the sinusoidal

nature of the oscillation probabilities, for a set of fluctuated fake data, it is

very easy for the fitter to find a global minimum away from the true oscillation

parameters, resulting in a lower χ2
best and a higher ∆χ2.

Performing the same procedure at other grid points, one can build a

∆χ2 surface, as shown in Figure 8.10. Note that not the whole surface is cov-

ered due the large computing power required. It is nonuniform, in comparison

to a homogeneous surface with a global ∆χ2 = 4.61. The 90% C.L. contour

is drawn where the ∆χ2 from data in Figure 8.3 is equal to the ∆χ2 on this

surface.

The final 90% C.L. is shown in Figure 8.11 where the limit from the

MINOS only and other νµ disappearance experiments are shown.

8.4 Combining with Bugey

As discussed in Chapter 2, the anomaly seen in LSND or MiniBooNE is

based on a two-flavor fit, involving only one mass splitting ∆m2 and one angle

θ. In the 3+1 model, the θ there is equivalent to θµe, which can be expressed
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in terms of θ14 and θ24 satisfying

sin2 2θµe = sin2 2θ14 sin2 θ24, (8.4)

as shown in Appendix B.

In order to address the LSND and MiniBooNE anomaly, the limit on

θ24 from MINOS and MINOS+ can be combined with the constraint on θ14

from Bugey experiment [57]. Bugey experiment performed high statistics mea-

surements of neutrino energy spectra carried out at 15, 40 and 95 meters from

a 2800 Megawatt reactor, using detection modules filled with 6Li-loaded liquid

scintillator. For each ∆m2
41 and θµe, the combined χ2 is the smallest possible

sum of the χ2 from each experiment by iterating through all combinations of
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θ14 and θ24. Based on the Bugey limit evaluated by Patrick Huber using the

new reactor flux mentioned in the reactor anomaly in Chapter 2, the combined

contour is shown in Figure 8.12. One intriguing observation is that the com-

bined limit only agrees with LSND and MiniBooNE results at ∆m2
41 ∼ 60 eV2

which is around the best fit of MINOS and MINOS+.

8.5 Discussions

The position of the minimum around ∆m2
41 = 60 eV2 and θ24 = 0.36 as

shown in Figure 8.3 has not yet been fully understood at the time of writing
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this dissertation. It may be caused by some unknown systematics, or by the

model. Preliminary investigations have been performed, where the full data set

is divided in two ways. In the first, MINOS and MINOS+ data are separated,

and in the second, NC and CC samples are separated.

The best fit points by fitting to the MINOS and MINOS+ data sep-

arately are shown in Table 8.2, along with the result from the combined fit.

Note that when fitting to the MINOS+ data, only the statistical covariance

matrix is used since the systematic covariance matrices were not available, but

this should not have a significant effect on the best fit point. The far-over-near

ratio for the data and that for the best fit prediction are shown in Figure 8.13,

8.14, and 8.15 for MINOS only, MINOS+ only, and the combined, respectively.

The two ratios are both divided by the standard oscillation prediction which

is shown as the blue dashed line at 1 on the Y-axis. The error bars are for the

statistical uncertainty only.

The best fit points by fitting to the CC and NC samples separately

are shown in Table 8.3, along with the result from the combined fit. The χ2

surface are shown in Figure 8.16.

From Table 8.2 and Table 8.3, one can see that the best fit point does

not have a strong dependence on how the data are divided. This is very

intriguing. Between MINOS and MINOS+, a major difference is the neutrino

spectrum: the former uses a low energy beam, and the latter uses a medium

energy beam, as shown in Figure 3.4. Between the NC and the CC samples, the

energy reconstruction is different: for the former, the event energy is the sum
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parameter
best fit values

MINOS MINOS+ combined

∆m2
32 (10−3eV2) 2.39608 2.82671 2.48836

∆m2
41 (eV2) 64.5825 55.0124 60.3199

θ23 0.744 0.584549 0.685746

θ24 0.380744 0.43161 0.361625

θ34 0.0356045 0.130066 0.054325

Table 8.2: Best fit values by fitting to MINOS only, MINOS+ only and the
combined fit.
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Figure 8.13: Far-over-near double ratios for MINOS only. The CC sample is
shown on the left and the NC sample is shown on the right.
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Figure 8.14: Far-over-near double ratios for MINOS+ only. The CC sample is
shown on the left and the NC sample is shown on the right.
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Figure 8.15: Far-over-near double ratios for the combined fit of MINOS and
MINOS+. The CC sample is shown on the left and the NC sample is shown
on the right.

parameter
best fit values

CC only NC only CC + NC

∆m2
32 (10−3eV2) -2.52908 2.7324 2.48836

∆m2
41 (eV2) 60.3199 55.0124 60.3199

θ23 0.912045 0.736413 0.685746

θ24 0.331011 0.500171 0.361625

θ34 0.000187863 0.0593616 0.054325

Table 8.3: Best fit values by fitting to CC only, NC only, and CC+NC. Note
that θ34 should not affect CC so the best fit value is close to its initial value 0.
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of the track energy and kNN shower energy; for the latter, the event energy is

directly from the calorimetric shower energy. Additionally, many systematics

are different between the CC and the NC samples as shown in Table 7.1,

including those from the NC cleaning, which are unique to the NC sample,

the acceptance, and the background contamination. The understanding of this

result is still being pursued by the MINOS+ collaboration.
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Chapter 9

Large Extra Dimension Analysis

This chapter presents the analysis of the large extra dimension model

based on the full data set of 10.56 × 1020 POT νµ running in MINOS. The

approach is very similar to that used in the 3+1 model analysis, i.e. a far-

over-near fit in combination with a covariance-matrix-based χ2. One major

challenge in this analysis is that the oscillation probability calculation is com-

plicated and therefore slow. To solve this problem, the Ghost Fitter method,

a term adopted in the MINOS collaboration, is used to perform the fit. The

final 90% C.L. contour is obtained after a Feldman-Cousins correction in the

last section.

9.1 Strategy

In the early development of this analysis, the beam matrix method used

in the MINOS standard oscillation analysis was adopted. In this method, the

fit was performed on the FD CC spectrum. A beam matrix which allows a ND

neutrino flux to be converted into a FD neutrino flux is constructed using the

decay kinematics of the neutrino parent particles (see Appendix D). The model

prediction of the energy spectrum at the FD is based on the ND spectrum and
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the beam matrix. While perfectly suited for the standard oscillation analysis,

it was later realized that for the LED model, this method suffers from two

deficiencies:

1. The NC sample which can be used to measure νµ → νs channel is not

used. The standard oscillation analysis solely considers the CC sample.

2. ND data is used to constrain the FD prediction based on the assumption

that there are no oscillations at the ND. However, this is only true for

small m0 (< 30 meV) in the LED model.

By adopting the framework used in the 3+1 model analysis described in Chap-

ter 8, both of these problems are solved.

9.1.1 Far-over-near Ratio

The fit is performed on the far-over-near ratio which is shown in Figure

9.1. By taking the far-over-near ratio, the assumption of no ND oscillations

is no longer required. The analysis can be extended to a broader region,

especially for high m0. The difference between the beam matrix method and

the far-over-near fit method is shown in Figure 9.2, where one can clearly see

the two contours diverge at high m0, with the far-over-near fit result being

more correct.

Both CC and NC samples are used in the far-over-near fit. The total

χ2 is the sum of the χ2 from each sample. The sensitivities of fitting to the

individual sample are shown in Figure 9.3. One can see that including NC
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sample clearly provides a better sensitivity while the dominant contribution is

still from the CC sample.

9.1.2 Expression of χ2

Similar to Equation 8.1, the χ2 to be minimized in the fit is written as

χ2 = ∆C−1∆ +

(
Ndata −NMC

σN

)2

, (9.1)

where ∆, C, Ndata, and NMC have the same definition as before. Unlike

in Equation 8.1, there is no penalty term for ∆m2
32. Instead, a range of 0 <

∆m2
32 < 5×10−3 eV2 is used to reduce the difficulty of the fitting, as discussed
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in Section 9.2. The flux uncertainty σN is taken as 50%NMC for the same

reason described in Chapter 8. The effect of using different σN is shown in

Figure 9.4. No significant change is observed once the flux is above 20%,

meaning that the flux constraint has very little effect on the result.

9.2 Performing the Fit

In performing the fit, the energy window is limited from 0 to 40 GeV.

In minimizing the χ2 in the plane of m0 − a, ∆m2
32 and θ23 are set free in

the fit. The parameters that are fixed are listed in Table 9.1 along with their

values. Two initial values for θ23 are attempted: one in the lower octant,

0 < θ23 < π/4, and the other in the upper octant, π/4 < θ23 < π/2. Only
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Fixed parameters ∆m2
21 θ12 θ13 δCP

value 7.59× 10−5 eV2 0.6 0.155806 0

Table 9.1: Fixed oscillation parameters used in the fit.

normal hierarchy ∆m2
32 is considered as mentioned in Chapter 2.

9.2.1 Ghost Fitter

The oscillation probability is calculated by solving for the eigenvalues

and eigenstates of the Hamiltonian matrix, as shown in Appendix C. Since

there is an infinite number of KK states, the matrix has an infinite dimension.

However, using only the lowest 5 KK states, which results in a 18×18 matrix,

provides a good approximation, as mentioned in Reference [71]. In this analy-

sis, the matrix is solved by the GNU Scientific Library. Compared to the case

of the 3+1 analysis, the fitting requires a tremendous amount of time simply

because the Hamiltonian matrix is significantly larger.

To reduce the computation time, the Ghost Fitter method, which had

its successful application in the three flavor analysis in MINOS, is adopted.

The idea is to save all possible oscillated predictions in a library before per-

forming the fit. During the fit, instead of calculating the the model predictions,

the fitter simply looks it up in the library.

Since all the variables are continuous, the predictions can only be saved

at discrete grid points. In the later text, these predictions are referred to as

templates (for an example, see Figure 9.6). In the LED model, the parameter
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parameter number of grid points range
a 51 10−8 − 10−6 m
m0 51 10−3 − 2.5 eV
θ23 26 0− π/2

∆m2
32 51 0− 5× 10−3 eV2

total 3,448,926

Table 9.2: Discrete grid points used in the Ghost Fitter.

space is spanned by four variables: m0, a, θ23, and ∆m2
32. The four-dimensional

grid used for the current analysis is shown in Table 9.2. The total size of the

templates is 3.9 gigabytes. To get a reasonable template size, ∆m2
32 is limited

to 0− 5× 10−3 eV2, in the spirit of treating the LED model as a perturbation

of the standard oscillation model.

For the parameter set that does not fall onto those grid points, a linear

interpolation is performed. An example of two-dimensional linear interpolation

is shown in Figure 9.5. In this case, the interpolated value of ZE for point E

is a weighted average of the Z values of its four neighboring points

ZE =
∑

α=A,B,C,D

WαZα, (9.2)

where the weight Wα is equal to the normalized area of the diagonally opposite

sub-rectangle. For instance, the weight for point A is

WA =
SD

SA + SB + SC + SD
=

(X2 −X1)(Y2 − Y0)

(X1 −X0)(Y1 − Y0)
. (9.3)

The two-dimensional linear interpolation is generalized to higher dimensions

by replacing the rectangle areas with volume of hyperrectangles. The fitting

time is decreased by a factor of about 100 by using the Ghost Fitter.
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Figure 9.5: An illustration of 2D linear interpolation. The value at point E is
weighted average of the values at the neighboring four points A,B,C, and D.
The weight for each point is equal to the area of the sub-rectangle on the
opposite end. For example the weight for point A is SD/(SA + SB + SC + SD)
as in Equation 9.3.
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Figure 9.6: An example of a template used in the Ghost Fitter. It consists of
the far-over-near ratio for the CC sample (top) and the NC sample (bottom).
The two histograms are computed based on the parameters of a grid point in
the four dimensional space spanned by m0, a, θ23, and ∆m2

32.
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9.2.2 χ2 Surface

The χ2 surface for MINOS data is shown in Figure 9.7. The sensitivity

surface is shown in Figure 9.8, where the fake data is calculated based on

the standard oscillation. A comparison between the data and the sensitivity

is shown in Figure 9.9. The data contours will be further corrected by the

Feldman-Cousins procedure in the next section.

9.2.3 Effect of Systematics

The effect of the systematics is shown in the same way as in Chapter

8. In Figure 9.10, the individual systematics is used for each contour, while

in Figure 9.11 the systematics are added one by one for each contour. The

X-axis is shown in linear scale so that the separation becomes clearly visible.

9.3 Feldman-Cousins Correction

For the same reasons mentioned in Chapter 8, a Feldman-Cousins pro-

cedure is also performed for this analysis. Figure 9.12 shows an example of the

fluctuated fake data considering the statistical and systematic fluctuations. In

Figure 9.13, the top plot is an example of the distribution of ∆χ2, and the

bottom plot is the ∆χ2 surface based on which the corrected contour is made.

The final result of this analysis is shown in Figure 9.14.
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9.4 Limits from Other Experiments

Constraints on the possible large extra dimensions primarily come from

torsion balance experiments, collider experiments, astrophysics, and cosmol-

ogy. An extensive review on the global search results can be found in Reference

[16]. A global picture provided by Machado, Nunokawa and Zukanovich Fun-

chal is shown in Figure 9.15, which includes the limit of MINOS based on the

authors’ simulation. Various constraints are described in the caption of Figure

9.15.
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Figure 9.15: World’s search for extra dimensions. The plot is provided by
Machado, Nunokawa and Zukanovich Funchal. MD, R and δ have the same
definitions as those of mD, a and n in Equation 2.9, representing the fundamen-
tal scale, extra dimension size and number of extra dimensions respectively.
The left green dashed line (MD > 1700 TeV for δ = 2) is the limit from re-
quiring that neutron stars are not excessively heated by KK graviton decays
into photons [129]. The right green dashed line (MD > 100 TeV for δ = 2)
is the cosmological constraint based on the restriction on the amount of relic
gravitons in the universe [130]. The solid blue line (MD > 27 TeV for δ = 2)
is the limit from supernova SN1987A requiring that the graviton luminosity
agrees with certain stellar models [131]. It is also the limit of MINOS based
on the simulations done by the authors of this plot. The purple dashed line
(a < 37 µm at 95% CL for n = 2) is the limit from torsion balance experiments
[132]. The right-most red circle (MD > 1.60 TeV for δ = 2) is the limit from
a combination of the LEP results on graviton emission [133, 134].
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Chapter 10

Summary and outlook

In an effort to search for sterile neutrinos using MINOS and MINOS+

νµ running data, two relevant models have been tested, 3+1 and LED. No

evidence for the sterile neutrinos has been found, nor that of the large extra

dimensions. With the 3+1 model, in the range of 10−3 eV2 < ∆m2
41 < 1 eV2,

the limit on θ24 placed by this dissertation is significantly stronger than the

previous νµ disappearance experiments. With the LED model, to the limit of

the lightest neutrino mass equal to zero (m0 = 0), the extra dimension size

is constrained to be smaller than 0.35 µm at 90% C.L. While it is a model-

dependent result, the limit is very competitive compared to that from other

search, such as the torsion balance experiment and collider experiments.

In the future, MINOS+ will continue to take data through year 2016.

With more statistics of high energy neutrinos, the constraint on those two

models will be further improved. The sensitivity of 10×1020 POT MINOS+ to

the 3+1 model is shown in Figure 10.1. Additionally, NOνA, as the successor

of MINOS, began taking data with a 14 kiloton far detector. The methods

developed in this dissertation can be easily applied to the sterile neutrino

searches in NOνA.
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Figure 10.1: Sensitivity of 10× 1020 POT MINOS+ to the 3+1 model.

On the front of νe appearance measurement in short baseline neutrino

experiments, MicroBooNE with the state-of-the-art Liquid Argon Time Pro-

jection Chamber will start to take data in 2015. It will probe the anomaly

seen in the MiniBooNE and LSND experiments.

The potential of the NuMI and the booster neutrino beam will con-

tinue to be exploited by current and future experiments. Discovering sterile

neutrinos, if they exist, would be revolutionary and open the door to many

questions. Along with the search for δCP and mass hierarchy, the sterile neu-

trinos search will continue to be one of the main focuses in the field for years

to come.
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Appendix A

Strip-to-strip Calibration

A.1 Calibration Chain

The calibration chain of MINOS detectors is illustrated in Figure A.1.

It consists of the following steps:

1. ADC: This is the raw signal before any calibration procedure is applied.

2. sigLin: This is the result after the calibrations on

• PMT non-linearity

• drift, such as the PMT gain caused by the temperature change.

3. sigCor: This is the result after the strip-to-strip calibration, which nor-

malizes the variations among scintillator strips caused by the defects in

wavelength shifting fibers, and differences on the scintillator light yield,

optical connectors and readout cables. The calibration is based on cosmic

ray muons because they are abundant and similar amount of energy is

deposited in each plane. The results and the systematics of strip-to-strip

calibration are shown in the next section.

4. sigMap: This is the result after the calibration on fiber attenuation.
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5. MEU (Muon Energy Unit). This is the median of sigMap distribution

for the selected hits. 1 MEU is equal to the detector response to a

perpendicular 1 GeV muon traversing 1 plane of scintillator.

The results of the full calibration procedure are shown in Figures A.2 to A.5.

Figure A.1: Calibration chain of the MINOS detectors. The plot is taken from
Reference [95].
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Figure A.2: Response of Near Detector as a function of detector position for
U planes using MINOS+ cosmic data. Pre-Calibration plot shows raw ADC
distribution. Mid-Calibration plot shows the effect of linearity, drift and strip-
to-strip calibrations (sigCor). Post-Calibration plot shows the effect of fiber
attenuation (sigMap) calibration.
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Figure A.3: Response of Near Detector as a function of detector position for
V planes using MINOS+ cosmic data. Pre-Calibration plot shows raw ADC
distribution. Mid-Calibration plot shows the effect of linearity, drift and strip-
to-strip calibrations (sigCor). Post-Calibration plot shows the effect of fiber
attenuation (sigMap) calibration.
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Figure A.4: Response of Far Detector as a function of detector position for
U planes using MINOS+ cosmic data. Pre-Calibration plot shows raw ADC
distribution. Mid-Calibration plot shows the effect of linearity, drift and strip-
to-strip calibrations (sigCor). Post-Calibration plot shows the effect of fiber
attenuation (sigMap) calibration.
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Figure A.5: Response of Far Detector as a function of detector position for
V planes using MINOS+ cosmic data. Pre-Calibration plot shows raw ADC
distribution. Mid-Calibration plot shows the effect of linearity, drift and strip-
to-strip calibrations (sigCor). Post-Calibration plot shows the effect of fiber
attenuation (sigMap) calibration.

226



A.2 Results of Strip-to-strip Calibration
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Figure A.6: Mean (top) and median (bottom) of the strip-to-strip calibration
constant distribution at ND as a function of time.
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Figure A.7: Systematics of the strip-to-strip calibration at ND. Top: Ratio
of the mean and the median (as shown in Figure A.6). Bottom: Ratio of the
median for the full detector (nominal) to the median for the fiducial volume.
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Figure A.8: Mean (top) and median (bottom) of the strip-to-strip calibration
constant distribution at FD as a function of time.
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Figure A.9: Systematics of the strip-to-strip calibration at FD. Top: Ratio of
the mean and the median (as shown in Figure A.8). Bottom: Ratio of the
median for the full detector (nominal) to the median for the fiducial volume.
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Appendix B

Formulas of 3+1 Model

B.1 Generic Formulas

One can define a unitary matrix U as

|να〉 =
∑
i

U∗αi|νi〉, (B.1)

where |να〉 and |νi〉 are the flavor and mass eigen states, respectively. In 3+1

scenario (3 active neutrinos and 1 sterile neutrino), U is a 4 × 4 matrix. Its

complex conjugate can be written as

〈να| =

(∑
i

U∗αi|νi〉

)†
=
∑
i

Uαi〈νi| (B.2)

Given |νi(t)〉 = e−i(Eit−piL)|νi〉, the time evolution of a flavor state can

be written as

|να(t)〉 =
∑
i

U∗αie
−i(Eit−piL)|νi〉 (B.3)
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The oscillation probability can be written as

P (να → νβ) = |〈να|νβ(t)〉|2

=

∣∣∣∣∣
(∑

i

Uαi〈νi|

)(∑
j

U∗βje
−i(Ejt−pjL)|νj〉

)∣∣∣∣∣
2

=

∣∣∣∣∣∑
ij

δijUαiU
∗
βje
−i(Ejt−pjL)

∣∣∣∣∣
2

=

∣∣∣∣∣∑
i

UαiU
∗
βie
−i(Eit−piL)

∣∣∣∣∣
2

=

(∑
i

UαiU
∗
βie
−i(Eit−piL)

)(∑
j

UαjU
∗
βje
−i(Ejt−pjL)

)∗
=
∑
ij

UαiU
∗
αjU

∗
βiUβje

−i[(Ei−Ej)t−(pi−pj)L]

=
∑
ij

UαiU
∗
αjU

∗
βiUβje

−i∆ij , (B.4)

where in the last step ∆ij ≡ (Ei − Ej)t− (pi − pj)L. Since

∑
ij

UαiU
∗
αjU

∗
βiUβj

=
∑
i

UαiU
∗
αj

∑
j

U∗βiUβj

= δαβδαβ

= δαβ. (B.5)
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Adding and subtracting this term in P (να → νβ) we have

P (να → νβ) =
∑
ij

UαiU
∗
αjU

∗
βiUβje

−i∆ij +
∑
ij

UαiU
∗
αjU

∗
βiUβj −

∑
ij

UαiU
∗
αjU

∗
βiUβj

= δαβ +
∑
ij

UαiU
∗
αjU

∗
βiUβj

(
e−i∆ij − 1

)
. (B.6)

The second term can be evaluated in terms of i > j, i = j and i < j.

When i = j it gives 0. When i < j,∑
i<j

UαiU
∗
αjU

∗
βiUβj

(
e−i∆ij − 1

)
=
∑
j<i

UαjU
∗
αiU

∗
βjUβi

(
e−i∆ji − 1

)
=
∑
i>j

[
UαiU

∗
αjU

∗
βiUβj

(
e−i∆ij − 1

)]∗
. (B.7)

Plugging this into Equation B.6 gives

P (να → νβ) = δαβ +
∑
i>j

{
UαiU

∗
αjU

∗
βiUβj

(
e−i∆ij − 1

)
+
[
UαiU

∗
αjU

∗
βiUβj

(
e−i∆ij − 1

)]∗}
= δαβ +

∑
i>j

2<
[
UαiU

∗
αjU

∗
βiUβj

(
e−i∆ij − 1

)]
= δαβ + 2

∑
i>j

<
[
UαiU

∗
αjU

∗
βiUβj

]
(cos ∆ij − 1)

+ 2
∑
i>j

=
[
UαiU

∗
αjU

∗
βiUβj

]
sin ∆ij. (B.8)

Considering cos ∆ij = 1− 2 sin2 (∆ij/2), the result can be rewritten as

P (να → νβ) = δαβ − 4
∑
i>j

<
[
UαiU

∗
αjU

∗
βiUβj

]
sin2 (∆ij/2)

+ 2
∑
i>j

=
[
UαiU

∗
αjU

∗
βiUβj

]
sin ∆ij. (B.9)
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∆ij can be expressed as a function of the neutrino mass splitting. Since

average neutrino speed v can be approximated as (pi + pj)/(Ei + Ej) given

β = v = p/E, the time of flight becomes t = L/v ≈ L(Ei +Ej)/(pi + pj), and

∆ij = (Ei − Ej)t− (pi − pj)L

=
E2
i − E2

j

pi + pj
L−

p2
i − p2

j

pi + pj
L

=
m2
i −m2

j

2E
L, (B.10)

where pi ≈ pj ≈ E was used. E is the initial neutrino energy.

B.2 νµ → νe Channel

The oscillation probability of νµ → νe can be written as

P (νµ → νe) = δµe − 4
∑
i>j

<
[
UµiU

∗
µjU

∗
eiUej

]
sin2 (∆ij/2)

+ 2
∑
i>j

=
[
UµiU

∗
µjU

∗
eiUej

]
sin ∆ij. (B.11)

The Kronecker delta δµe gives 0. The sum in the second term can be
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broken down

∑
i>j

<
[
UµiU

∗
µjU

∗
eiUej

]
sin2 (∆ij/2)

= <
(
Uµ2U

∗
µ1U

∗
e2Ue1

)
sin2 (∆21/2)

+ <
(
Uµ3U

∗
µ1U

∗
e3Ue1

)
sin2 (∆31/2)

+ <
(
Uµ4U

∗
µ1U

∗
e4Ue1

)
sin2 (∆41/2)

+ <
(
Uµ3U

∗
µ2U

∗
e3Ue2

)
sin2 (∆32/2)

+ <
(
Uµ4U

∗
µ2U

∗
e4Ue2

)
sin2 (∆42/2)

+ <
(
Uµ4U

∗
µ3U

∗
e4Ue3

)
sin2 (∆43/2) . (B.12)

Assuming a large mass splitting between the sterile neutrino and active

neutrinos, we have ∆41 ≈ ∆42 ≈ ∆43 and sin2 ∆21 ≈ sin2 ∆31 ≈ sin2 ∆32,

therefore

− 4
∑
i>j

<
(
UµiU

∗
µjU

∗
eiUej

)
sin2 (∆ij/2)

= −4 sin2 (∆41/2)<
(
Uµ4U

∗
µ1U

∗
e4Ue1 + Uµ4U

∗
µ2U

∗
e4Ue2 + Uµ4U

∗
µ3U

∗
e4Ue3

)
= −4 sin2 (∆41/2)<

[
Uµ4U

∗
e4

(
U∗µ1Ue1 + U∗µ2Ue2 + U∗µ3Ue3

)]
= 4 sin2 (∆41/2)<

(
Uµ4U

∗
e4U

∗
µ4Ue4

)
= 4 sin2 (∆41/2) |Uµ4|2|Ue4|2, (B.13)

where the unitary condition of U was used

Uµ1U
∗
e1 + Uµ2U

∗
e2 + Uµ3U

∗
e3 + Uµ4U

∗
e4 = 0. (B.14)
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Similarly The third term in Equation B.11 is evaluated as

2
∑
i>j

=
(
UµiU

∗
µjU

∗
eiUej

)
sin ∆ij

= −4 sin(∆41)=
(
|Uµ4|2|Ue4|2

)
= 0. (B.15)

νµ to νe oscillation probability is now simplified to

P (νµ → νe) = 4 sin2 (∆41/2) |Uµ4|2|Ue4|2

≡ 4 sin2 (∆41/2) sin2 θµe, (B.16)

where sin2 θµe ≡ |Uµ4|2|Ue4|2.

B.3 νµ → νµ Channel

In the case of νµ → νµ, Equation B.9 takes the form

P (νµ → νµ) = δµµ − 4
∑
i>j

<
(
UµiU

∗
µjU

∗
µiUµj

)
sin2 (∆ij/2)

+ 2
∑
i>j

=
(
UµiU

∗
µjU

∗
µiUµj

)
sin ∆ij

= 1− 4
∑
i>j

<
(
|Uµi|2 |Uµj|2

)
sin2 (∆ij/2)

+ 2
∑
i>j

=
(
|Uµi|2 |Uµj|2

)
sin ∆ij

= 1− 4
∑
i>j

|Uµi|2 |Uµj|2 sin2 (∆ij/2) (B.17)

Using the approximation m1 ≈ m2, we have ∆21 = 0, ∆41 = ∆42,
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∆32 = ∆31. The probability becomes

P (νµ → νµ) = 1− 4 |Uµ3|2
(
|Uµ1|2 + |Uµ2|2

)
sin2 (∆31/2)

+ 4 |Uµ4|2
(
|Uµ1|2 + |Uµ2|2

)
sin2 (∆41/2)

+ 4 |Uµ4|2 |Uµ3|2 sin2 (∆43/2)

= 1− 4 |Uµ3|2
(
1− |Uµ3|2 + |Uµ4|2

)
sin2 (∆31/2)

+ 4 |Uµ4|2
(
1− |Uµ3|2 + |Uµ4|2

)
sin2 (∆41/2)

+ 4 |Uµ4|2 |Uµ3|2 sin2 (∆43/2) , (B.18)

where in the last step the unitary condition |Uµ1|2 + |Uµ2|2 + |Uµ3|2 + |Uµ4|2 = 1

was used. In the case of m4 � m1, sin2 (∆41/2) and sin2 (∆43/2) can be taken

as 0.5 (e.g. MINOS sterile paper in 2010 [107]). However including them may

explain the wiggles that appears in the FD data. Note that ∆41 = ∆43 + ∆31.

B.4 νµ → νs Channel

In the case of νµ → νs, Equation B.9 gives

P (νµ → νs) = −4
∑
i>j

<
(
UµiU

∗
µjU

∗
siUsj

)
sin2 (∆ij/2)

+ 2
∑
i>j

=
(
UµiU

∗
µjU

∗
siUsj

)
sin ∆ij

(B.19)

Using the approximation that m1 ≈ m2, we have ∆21 = 0, ∆41 = ∆42,
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∆32 = ∆31, the sum in the first term can be computed as

∑
i>j

<
(
UµiU

∗
µjU

∗
siUsj

)
sin2 (∆ij/2)

= <
(
Uµ2U

∗
µ1U

∗
s2Us1

)
sin2 (∆21/2)

+ <
(
Uµ3U

∗
µ1U

∗
s3Us1

)
sin2 (∆31/2)

+ <
(
Uµ4U

∗
µ1U

∗
s4Us1

)
sin2 (∆41/2)

+ <
(
Uµ3U

∗
µ2U

∗
s3Us2

)
sin2 (∆32/2)

+ <
(
Uµ4U

∗
µ2U

∗
s4Us2

)
sin2 (∆42/2)

+ <
(
Uµ4U

∗
µ3U

∗
s4Us3

)
sin2 (∆43/2)

= <
[
Uµ3U

∗
s3

(
U∗µ1Us1 + U∗µ2Us2

)]
sin2 (∆31/2)

+ <
[
Uµ4U

∗
s4

(
U∗µ1Us1 + U∗µ2Us2

)]
sin2 (∆41/2)

+ <
(
Uµ4U

∗
µ3U

∗
s4Us3

)
sin2 (∆43/2)

= −<
[
Uµ3U

∗
s3

(
U∗µ3Us3 + U∗µ4Us4

)]
sin2 (∆31/2)

−<
[
Uµ4U

∗
s4

(
U∗µ3Us3 + U∗µ4Us4

)]
sin2 (∆41/2)

+ <
(
Uµ4U

∗
µ3U

∗
s4Us3

)
sin2 (∆43/2)

= − |Uµ3|2 |Us3|2 sin2 (∆31/2)− |Uµ4|2 |Us4|2 sin2 (∆41/2)

+ <
(
Uµ4U

∗
µ3U

∗
s4Us3

) [
sin2 (∆43/2)− sin2 (∆41/2)− sin2 (∆31/2)

]
(B.20)

Similarly,

∑
i>j

=
(
UµiU

∗
µjU

∗
siUsj

)
sin (∆ij)

= =
(
Uµ4U

∗
µ3U

∗
s4Us3

) [
sin2 (∆43/2)− sin2 (∆41/2) + sin2 (∆31/2)

]
. (B.21)

238



Adding the two terms above gives νµ → νs oscillation probability

P (νµ → νs) = 4 |Uµ3|2 |Us3|2 sin2 (∆31/2) 4 |Uµ4|2 |Us4|2 sin2 (∆41/2)

− 4<
(
Uµ4U

∗
µ3U

∗
s4Us3

) [
sin2 (∆43/2)− sin2 (∆41/2)− sin2 (∆31/2)

]
+ 2=

(
Uµ4U

∗
µ3U

∗
s4Us3

) [
sin2 (∆43/2)− sin2 (∆41/2) + sin2 (∆31/2)

]
.

(B.22)
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Appendix C

Formulas of Large Extra Dimension Model

C.1 From Action to Lagrangian

In Reference [70], the action of the LED model in (4 + 1) dimensions

is given as

S =

∫
d4xdyiΨ

α
ΓA∂AΨα

+

∫
d4x

(
iν̄
α(0)
L γµ∂µν

α(0)
L + λαβHν̄

α(0)
L ψβR(x, 0) + h.c.

)
. (C.1)

Various notations appearing above will be explained throughout this chapter.

Starting from the first term, α is the flavor index running over e, µ and τ . ΓA

(A = 0, 1, · · · , 4) are 5 dimensional gamma matrices. Using chiral basis [135],

we have

Γ0 =

(
−I2

−I2

)
, Γi =

(
σi

−σi
)

and Γ5 =

(
I2

−I2

)
, (C.2)

where I2 is the 2× 2 identity matrix and σi (i = 1, 2, 3) are Pauli matrices

σ1 =

(
1

1

)
, σ2 =

(
−i

i

)
, σ3 =

(
1
−1

)
. (C.3)

According to [136], Γ4 can be constructed as

Γ4 = iΓ5 =

(
iI2

−iI2

)
. (C.4)
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in order to satisfy the Clifford algebra
{

ΓM ,ΓN
}

= 2ηMN where η is the metric

tensor. Using these definitions, we have the following equivalences

Γ0Γ0 =

(
−I2

−I2

)(
−I2

−I2

)
= I4, (C.5)

Γ0Γi =

(
−I2

−I2

)(
σi

−σi

)
=

(
σi
−σi

)
, (C.6)

Γ0Γ4 =

(
−I2

−I2

)(
iI2

−iI2

)
=

(
iI2

−iI2

)
. (C.7)

Left-handed and right-handed states are defined as

ψL =
1

2

(
1− Γ5

)
Ψ =

(
0 0
0 I2

)
Ψ, (C.8)

ψR =
1

2

(
1 + Γ5

)
Ψ =

(
I2 0
0 0

)
Ψ, (C.9)

and one can write

Ψ ≡
(
ψR
ψL

)
. (C.10)

The integrand of the first term in the action decomposes as

Ψ
α
ΓA∂AΨα = Ψ

α
Γµ∂µΨα + Ψ

α
Γ4∂4Ψα. (C.11)

The second term above can be written as

Ψ
α
Γ4∂4Ψα = Ψ

α†
Γ0Γ4∂4Ψα

=
(
ψα†R , ψ

α†
L

)( iI2

−iI2

)(
∂4ψ

α
R

∂4ψ
α
L

)
= −iψα†L ∂4ψ

α
R + iψα†R ∂4ψ

α
L. (C.12)
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Periodicity of the field in the curved dimension Ψ(y) = Ψ(y+ 2πR) allows for

a Fourier expansion [68, 136]

ψαL(x, y) =
+∞∑

n=−∞

1√
2πR

ψ
α(n)
L e−i

ny
R ,

ψαR(x, y) =
+∞∑

n=−∞

1√
2πR

ψ
α(n)
R e−i

ny
R . (C.13)

Inserting Equation C.13 into C.12, we have its first term∫
d4xdy

(
−iψα†L ∂4ψ

α
R

)
= −i

∫
d4xdy

(
+∞∑

n=−∞

1√
2πR

ψ
α(n)†
L ei

ny
R

)(
+∞∑

m=−∞

1√
2πR

ψ
α(m)
R

(
−im
R

)
e−i

my
R

)

= − 1

2πR

∫
d4x

∑
m,n

m

R
ψ
α(n)†
L ψ

α(m)
R

∫
dye−i

(m−n)y
R

= − 1

2πR

∫
d4x

∑
m,n

m

R
ψ
α(n)†
L ψ

α(m)
R (2πRδmn)

= −
∫
d4x

+∞∑
n=−∞

n

R
ψ
α(n)†
L ψ

α(n)
R

= −
∫
d4x

+∞∑
n=1

n

R

(
ψ
α(n)†
L ψ

α(n)
R + ψ

α(−n)†
L ψ

α(−n)
R

)
, (C.14)

and the second term is simply the Hermitian conjugate of Equation C.14. By

defining a few new states

ν
α(n)
R ≡ 1√

2

(
ψ
α(n)
R + ψ

α(−n)
R

)
, (C.15)

ν ′R
α(n) ≡ 1√

2

(
ψ
α(n)
R − ψα(−n)

R

)
, (C.16)

ν
α(n)
L ≡ 1√

2

(
ψ
α(n)
L + ψ

α(−n)
L

)
, (C.17)

ν ′L
α(n) ≡ 1√

2

(
ψ
α(n)
L − ψα(−n)

L

)
, (C.18)
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where n > 0, the integrand of Equation C.14 becomes
+∞∑
n=1

n

R

(
ψ
α(n)†
L ψ

α(n)
R + ψ

α(−n)†
L ψ

α(−n)
R

)
=

+∞∑
n=1

n

R

(
ν
α(n)†
L ν

α(n)
R + ν ′L

α(−n)†
ν ′R

α(−n)
)

(C.19)

This is the first mass term that appears in the Lagrangian and the rest comes

from the Higgs coupling term λαβHν̄
α
Lψ

β
R(x, 0) in Equation C.1. Setting the

Higgs field to its vacuum expectation value (VEV) and expanding ψβR(x, 0)

gives

mαβ ν̄
α(0)
L ψβR(x, 0)

= mαβ ν̄
α(0)
L

[
ψ
β(0)
R +

+∞∑
n=1

(
ψ
β(n)
R + ψ

β(−n)
R

)]

= mαβ ν̄
α(0)
L

[
ν
β(0)
R +

√
2

+∞∑
n=1

ν
β(n)
R

]
, (C.20)

where the following definitions were used

ν
β(0)
R ≡ ψ

β(0)
R , (C.21)

ν
β(0)
L ≡ ψ

β(0)
L . (C.22)

Combining Equation C.19 and Equation C.20, we have

L =
+∞∑
n=1

n

R

(
ν
α(n)†
L ν

α(n)
R + ν ′L

α(−n)†
ν ′R

α(−n)
)

+mαβ ν̄
α(0)
L

[
ν
β(0)
R +

√
2

+∞∑
n=1

ν
β(n)
R

]
+ h.c. (C.23)

Since ν ′L
α(−n)†ν ′R

α(−n) are decoupled from the rest of the terms and we are only

interested in the active neutrino states, the Lagrangian can be simplified to

L =
+∞∑
n=1

n

R

(
ν
α(n)†
L ν

α(n)
R

)
+mαβ ν̄

α(0)
L

[
ν
β(0)
R +

√
2

+∞∑
n=1

ν
β(n)
R

]
+ h.c. (C.24)
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C.2 From Lagrangian to Oscillation Probabilities

Following Reference [70], the mass terms in the Lagrangian of the LED

model take the form

mαβ

(
ν̄
α(0)
R ν

β(0)
L +

√
2
∞∑
n=1

ν̄
α(n)
R ν

β(0)
L

)
+
∞∑
n=1

n

R
ν̄
α(n)
R ν

α(n)
L + h.c., (C.25)

where α, β = 1, 2, 3. ν
β(0)
L are the active neutrino states, i.e. νe, νµ and ντ .

ν
β(n)
L are the excited KK states which do not have standard model charges and

therefore are considered as sterile neutrinos. m is the Dirac mass matrix

m =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 , (C.26)

which can be diagonalized as UmdU
−1 where U is the PMNS matrix and

md =

m1

m2

m3

 . (C.27)

Defining

ν̄
(n)
R ≡

ν̄
1(n)
R

ν̄
2(n)
R

ν̄
3(n)
R

 and ν
(n)
L ≡

ν
1(n)
L

ν
2(n)
L

ν
3(n)
L

 where n = 0, 1, 2, · · · , (C.28)

Equation C.25 can be written in the matrix form

(
ν̄

(0)
R ν̄

(1)
R ν̄

(2)
R · · · ν̄

(N)
R

)


m√
2m 1

R
I3√

2m 2
R
I3√

2m 3
R
I3

...
. . .√

2m N
R
I3




ν

(0)
L

ν
(1)
L

ν
(2)
L
...

ν
(N)
L

 ,

(C.29)
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where N takes the limit of +∞ (the same for the rest of this note) and I3 is

the 3× 3 unit matrix

I3 =

1
1

1

 . (C.30)

This can be simply expressed as ν̄RMνL by defining

ν̄R ≡
(
ν̄

(0)
R ν̄

(1)
R ν̄

(2)
R · · · ν̄

(N)
R

)
, νL ≡


ν

(0)
L

ν
(1)
L

ν
(2)
L
...

ν
(N)
L

 (C.31)

and

M ≡



m√
2m 1

R
I3√

2m 2
R
I3√

2m 3
R
I3

...
. . .√

2m N
R
I3


. (C.32)

The strategy is to diagonalize M and find the matrix that connects mass

eigenstates and flavor eigenstates. Firstly, diagonalizing m within M gives

M = PMdP
−1 where

P =


U

U
U

. . .

U

 and Md ≡



md√
2md

1
R
I3√

2md
2
R
I3√

2md
3
R
I3

...
. . .√

2md
N
R
I3


.

(C.33)
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The second step is to diagonalize Md. To do this, it is convenient to diagonalize

R2M †
dMd which is a Hermitian matrix that takes the form

R2M †
dMd =



ξ2(N + 1/2) ξ 2ξ 3ξ . . . Nξ
ξ I3

2ξ 22I3

3ξ 32I3
...

. . .

Nξ N2I3


, (C.34)

where

ξ ≡
√

2Rmd =

√2Rm1 √
2Rm2 √

2Rm3

 ≡
ξ1

ξ2

ξ3

 . (C.35)

Note that ξi ≡
√

2Rmi and ξ2 ≡ ξξ. As a Hermitian matrix, R2M †
dMd can be

diagonalized by a unitary matrix L, i.e.

R2M †
dMd = LM2

DL
−1, (C.36)

where M2
D ≡ MDMD is a real diagonal matrix with its non-zero diagonal

elements being the eigen values of R2M †
dMd and the columns of L are the

corresponding eigen states. Introducing a unitary matrix V allows us to rewrite

Equation C.36

R2M †
dMd = LM2

DL
−1

= LMDV
†VMDL

−1

=
(
VMDL

−1
)† (

VMDL
−1
)
. (C.37)

V can always be defined such that

RMd = VMDL
−1 (C.38)
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or

Md = V (MD/R)L−1. (C.39)

Therefore

ν̄RMνL = ν̄RPMdP
−1νL

= (ν̄RPV ) (MD/R)
(
L−1P−1νL

)
= (ν̄RPV ) (MD/R)χL, (C.40)

where χL ≡ L−1P−1νL is the mass eigen state. MD and L−1 can be found by

solving R2M †M for its eigen values and eigen states. Eigen value λ2 should

satisfy the characteristic equation∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ2(N + 1/2)− λ2 ξ 2ξ 3ξ . . . Nξ
ξ (12 − λ2) I3

2ξ (22 − λ2) I3

3ξ (32 − λ2) I3
...

. . .

Nξ (N2 − λ2) I3

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(C.41)

Shifting the rows and columns that contains the same ξi together, we have∣∣∣∣∣∣∣∣
Ξ1

Ξ2

Ξ3

∣∣∣∣∣∣∣∣ = 0, (C.42)
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where

Ξi =



ξ2
i (N + 1/2)− λ2 ξi 2ξi 3ξi . . . Nξi

ξi 12 − λ2

2ξi 22 − λ2

3ξi 32 − λ2

...
. . .

Nξi N2 − λ2


.

(C.43)

Equation C.42 is equivalent to

|Ξ1| |Ξ2| |Ξ3| = 0 (C.44)

and |Ξi| = 0, i.e.∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ2
i (N + 1/2)− λ2 ξi 2ξi 3ξi . . . Nξi

ξi 12 − λ2

2ξi 22 − λ2

3ξi 32 − λ2

...
. . .

Nξi N2 − λ2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (C.45)

gives us all the eigen values. Expanding |Ξi| by the first column, the first term

is

[
ξ2
i (N + 1/2)− λ2

]
∣∣∣∣∣∣∣∣∣∣∣

12 − λ2

22 − λ2

32 − λ2

. . .

N2 − λ2

∣∣∣∣∣∣∣∣∣∣∣
=
[
ξ2
i (N + 1/2)− λ2

] (
12 − λ2

) (
22 − λ2

) (
33 − λ2

)
· · ·
(
N2 − λ2

)
. (C.46)
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The second term is

(−1)ξi

∣∣∣∣∣∣∣∣∣∣∣

ξi 2ξi 3ξi . . . Nξi
22 − λ2

32 − λ2

. . .

N2 − λ2

∣∣∣∣∣∣∣∣∣∣∣
= −ξ2

i

(
22 − λ2

) (
33 − λ2

)
· · ·
(
N2 − λ2

)
. (C.47)

The third term is

2ξi

∣∣∣∣∣∣∣∣∣∣∣

ξi 2ξi 3ξi . . . Nξi
12 − λ2

32 − λ2

. . .

N2 − λ2

∣∣∣∣∣∣∣∣∣∣∣
= 2ξ2

i

∣∣∣∣∣∣∣∣∣
0 0 . . . 0

32 − λ2

. . .

N2 − λ2

∣∣∣∣∣∣∣∣∣− 2ξi(1
2 − λ2)

∣∣∣∣∣∣∣∣∣
2ξi 3ξi . . . Nξi

32 − λ2

. . .

N2 − λ2

∣∣∣∣∣∣∣∣∣
= −(2ξi)

2
(
12 − λ2

) (
33 − λ2

)
· · ·
(
N2 − λ2

)
. (C.48)
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The fourth term is

(−3)ξi

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξi 2ξi 3ξi 4ξ . . . Nξi
12 − λ2

22 − λ2

42 − λ2

. . .

N2 − λ2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 3ξi(1

2 − λ2)

∣∣∣∣∣∣∣∣∣∣∣

2ξi 3ξi 4ξ . . . Nξi
22 − λ2

42 − λ2

. . .

N2 − λ2

∣∣∣∣∣∣∣∣∣∣∣
= −3ξi(1

2 − λ2)(22 − λ2)

∣∣∣∣∣∣∣∣∣
3ξi 4ξ . . . Nξi

42 − λ2

. . .

N2 − λ2

∣∣∣∣∣∣∣∣∣
= −(3ξi)

2
(
12 − λ2

) (
23 − λ2

) (
43 − λ2

)
· · ·
(
N2 − λ2

)
. (C.49)

The (n+ 1) term is

−(nξi)
2
(
12 − λ2

) (
23 − λ2

) [
(n− 1)3 − λ2

] [
(n+ 1)3 − λ2

]
· · ·
(
N2 − λ2

)
.

(C.50)
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Therefore

|Ξi| =
[
ξ2
i (N + 1/2)− λ2

] (
12 − λ2

) (
22 − λ2

) (
33 − λ2

)
· · ·
(
N2 − λ2

)
− ξ2

i

(
22 − λ2

) (
33 − λ2

)
· · ·
(
N2 − λ2

)
− (2ξi)

2
(
12 − λ2

) (
33 − λ2

)
· · ·
(
N2 − λ2

)
− (3ξi)

2
(
12 − λ2

) (
23 − λ2

) (
43 − λ2

)
· · ·
(
N2 − λ2

)
.

· · ·

− (Nξi)
2
(
12 − λ2

) (
23 − λ2

)
· · ·
[
(N − 2)2 − λ2

] [
(N − 1)2 − λ2

]
= 0. (C.51)

Dividing (12 − λ2) (22 − λ2) (33 − λ2) · · · (N2 − λ2) on both sides gives

ξ2
i

(
N +

1

2
+

1

λ2 − 12
+

2

λ2 − 22
+

3

λ2 − 32
+ · · ·+ N2

λ2 −N2

)
= λ2. (C.52)

Since

N +
1

λ2 − 12
+

2

λ2 − 22
+

3

λ2 − 32
+ · · ·+ N2

λ2 −N2

=
N (λ2 − 12) (λ2 − 22) · · · (λ2 −N2) + (λ2 − 22) (λ2 − 32) · · · (λ2 −N2) + · · ·

(λ2 − 12) (λ2 − 22) · · · (λ2 −N2)

=
λ2

λ2 − 12
+

λ2

λ2 − 22
+

λ2

λ2 − 32
+ · · ·+ λ2

λ2 −N2

= λ2 lim
N→∞

N∑
n=1

1

λ2 − n2

= λ2

[
π cot(πλ)− 1

λ

]
1

2λ

=
λπ

2
cot(πλ)− 1

2
. (C.53)
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we have

πξ2
i

2
cot(πλ) = λ. (C.54)

It has solutions λ
(0)
i , λ

(1)
i , λ

(2)
i , · · · , λ(N)

i where i = 1, 2, 3 and N → ∞.

Therefore,

M2
D =



(
λ(0)
)2 (

λ(1)
)2 (

λ(2)
)2

. . . (
λ(N)

)2

 (C.55)

and

MD =


λ(0)

λ(1)

λ(2)

. . .

λ(N)

 , (C.56)

where

λ(n) =

λ
(n)
1

λ
(n)
2

λ
(n)
3

 . (C.57)

Given a eigen value λ
(n)
i , one can calculate the corresponding eigenstate

by solving

ξ2(N + 1/2)− λ2 ξ 2ξ 3ξ . . . Nξ
ξ (12 − λ2) I3

2ξ (22 − λ2) I3

3ξ (32 − λ2) I3
...

. . .

Nξ (N2 − λ2) I3





ζ(0)

ζ(1)

ζ(2)

ζ(3)

...
ζ(N)


= 0.

(C.58)
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where

ζ(n) =

ζ1(n)

ζ2(n)

ζ3(n)

 . (C.59)

Define

ζ i ≡


ζ i(0)

ζ i(1)

ζ i(2)

...
ζ i(N)

 , (C.60)

Solving Equation C.58 is equivalent to solveΞ1

Ξ2

Ξ3

ζ1

ζ2

ζ3

 = 0. (C.61)

For λ
(n)
i , we have

Ξi

(
λ

(n)
i

)
ζ i = 0, (C.62)

and Ξj

(
λ

(n)
i

)
ζj = 0 gives ζj = 0 for j 6= i. Writing Equation C.62 apart,


ξ2
i (N + 1/2)−

(
λ

(n)
i

)2

ξi . . . Nξi

ξi 12 −
(
λ

(n)
i

)2

...
. . .

Nξi N2 −
(
λ

(n)
i

)2



ζ i(0)

ζ i(1)

...
ζ i(N)

 = 0.

(C.63)
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we get a set of linear equations

Nξiζ
i(0) +

[
N2 −

(
λ

(n)
i

)2
]
ζ i(N) = 0,

...

2ξiζ
i(0) +

[
22 −

(
λ

(n)
i

)2
]
ζ i(2) = 0,

ξiζ
i(0) +

[
12 −

(
λ

(n)
i

)2
]
ζ i(1) = 0,[

ξ2
i (N + 1/2)−

(
λ

(n)
i

)2
]
ζ i(0) + ξiζ

i(1) + · · ·+Nξiξiζ
i(N) = 0. (C.64)

This gives us

ζ i(N) =
−Nξ0

N2 −
(
λ

(n)
i

)2 ζ
i(0),

...

ζ i(2) =
−2ξ0

22 −
(
λ

(n)
i

)2 ζ
i(0),

ζ i(1) =
−ξ0

12 −
(
λ

(n)
i

)2 ζ
i(0),

0 =

ξ2
i (N + 1/2)−

(
λ

(n)
i

)2

+
N∑
i=1

(nξi)
2(

λ
(n)
i

)2

− n2

 ζ i(0). (C.65)

The last equation does not constrain ζ i(0) since

ξ2
i (N + 1/2)−

(
λ

(n)
i

)2

+
N∑
i=1

(nξi)
2(

λ
(n)
i

)2

− n2

= 0 (C.66)

according to Equation C.52, but it can be computed from the normalization
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condition (ζ i)
2

= 1, in other words,

(
ζ i(0)

)2

1 + ξ2
i

N∑
i=1

n2(
λ

(n)
i

)2

− n2

 = 1, (C.67)

(
ζ i(0)

)2
=

1

1 + ξ2
i

∑N
i=1

n2(
λ
(n)
i

)2
−n2

=
1

1 +
πξ2i

4λ
(n)
i R

[
− cot

(
πλ

(n)
i R

)
+ πλ

(n)
i R csc2

(
πλ

(n)
i R

)] , (C.68)

where the last step is proved in the Appendix. The non-zero component of

the mass eigen state χ
i(n)
L corresponding to the eigen value λ

(n)
i is ζ i(0)

(
λ

(n)
i

)
,

ζ i(1)
(
λ

(n)
i

)
, ζ i(2)

(
λ

(n)
i

)
, · · · , ζ i(N)

(
λ

(n)
i

)
. L−1 corresponding to Equation C.55

can be written as

L−1 =


(L−1)

(11)
(L−1)

(12)
. . . (L−1)

(1N)

(L−1)
(21)

(L−1)
(22)

. . . (L−1)
(2N)

(L−1)
(31)

(L−1)
(32)

. . . (L−1)
(3N)

...
...

...
...

(L−1)
(N1)

(L−1)
(N2)

. . . (L−1)
(NN)

 (C.69)

where

(
L−1

)(ij)
=


ζ1(i)

(
λ

(j)
1

)
ζ2(i)

(
λ

(j)
2

)
ζ3(i)

(
λ

(j)
3

)
 . (C.70)

After getting L, the flavor eigenstate can now be expressed in terms of the

mass eigenstate as shown in Equation C.40

νL = PLχL. (C.71)
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If we write χL as

χL =


χ

(0)
L

χ
(1)
L

χ
(2)
L
...

χ
(N)
L

 , where χnL =

χ
1(n)
L

χ
2(n)
L

χ
3(n)
L

 , (C.72)

the mass of χ
i(n)
L is λ

(n)
i /R according to Equation C.40 and C.56. In component

form

ν
(m)
L = PmjL

(jn)χ
(n)
L

= PmmL
(mn)χ

(n)
L

= UL(mn)χ
(n)
L . (C.73)

The two sides are 3× 3 matrices, which means

ν
α(m)
L = UL(mn)χ

(n)
L

= UαiL
(mn)
ij χ

j(n)
L (C.74)

where α, i, j = 1, 2, 3 and m,n = 0, 1, 2, · · · ,∞. Using the bra-ket notation,

the oscillation amplitude from ν
α(m)
L to ν

β(n)
L can be calculated as

A
(
ν
α(m)
L → ν

β(n)
L (t)

)
= 〈να(m)

L |νβ(n)
L (t)〉

=
∑
i,j,k,l

∑
r,s

〈χj(r)L |χ
l(s)
L (t)〉U∗αiL

(mr)∗
ij UβkL

(ns)
kl e

−i
(
E

(s)
β t−p(s)β L

)

=
∑
i,j,k,l

∑
r,s

δjlδrsU
∗
αiL

(mr)∗
ij UβkL

(ns)
kl e

−i
(
E

(s)
β t−p(s)β L

)

=
∑
i,j,k

∑
r

U∗αiL
(mr)∗
ij UβkL

(nr)
kj e

−i
(
E

(r)
j t−p(r)j L

)
, (C.75)
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where

E
(r)
j =

[(
p

(r)
j

)2

+
(
λ

(r)
j /R

)2
] 1

2

= p
(r)
j

1 +

(
λ

(r)
j /R

p
(r)
j

)2
 1

2

≈ p
(r)
j

1 +
1

2

(
λ

(r)
j /R

p
(r)
j

)2


= p
(r)
j +

(
λ

(r)
j /R

)2

2p
(r)
j

(C.76)

Let E be the neutrino energy and L be the baseline length. Using t ≈ L and

p
(r)
j ≈ E, the exponent becomes

e
−i
(
E

(r)
j t−p(r)j L

)
= e

−i

(λ(r)j /R)
2

2p
(r)
j

t+p
(r)
j (t−L)


= e−i

(λ(r)j )
2
L

2ER2 (C.77)

The oscillation amplitude is now

A
(
ν
α(m)
L → ν

β(n)
L (t)

)
=
∑
i,j,k

∑
r

U∗αiL
(mr)∗
ij UβkL

(nr)
kj e−i

(λ(r)j )
2
L

2ER2 . (C.78)

Active neutrino states νe, νµ, ντ correspond to ν
1(0)
L , nu

2(0)
L , ν

3(0)
L and

ν
i(n)
L (n 6= 0) are considered as sterile neutrinos. Oscillations among active

neutrino states can be written as

A (να → νβ(t)) = A
(
ν
α(0)
L → ν

β(0)
L (t)

)
=
∑
i,j,k

∑
n

U∗αiUβkL
(0n)∗
ij L

(0n)
kj e−i

(λ(0)β )
2
L

2ER2 .

(C.79)

257



Oscillation amplitude A(νµ → νµ) as measured by MINOS charged current

deficit can be written as

A (νµ → νµ(t)) = A
(
ν

1(0)
L → ν

1(0)
L (t)

)
=
∑
i,j,k

∑
n

U∗1iU1kL
(0n)∗
ij L

(0n)
kj e−i

(λ(0)1 )
2
L

2ER2 . (C.80)

Oscillation amplitude from νµ to sterile neutrinos A(νµ → νs) as measured by

MINOS neutral current deficit takes the form

A (νµ → νs(t)) =
+∞∑
n=1

3∑
β=1

A
(
ν

1(0)
L → ν

β(n)
L (t)

)

=
+∞∑
n=1

3∑
β=1

∑
i,j,k

∑
r

U∗1iL
(0r)∗
ij UβkL

(nr)
kj e−i

(λ(r)j )
2
L

2ER2 . (C.81)
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Appendix D

Neutrino Production

Neutrinos flying through the MINOS near detector (ND) and far de-

tector (FD) are the decay products of pions, kaons and muons:

π± → νµ/ν̄µ + µ±, (D.1)

K± → νµ/ν̄µ + µ±, (D.2)

µ± → e± + νe/ν̄e + ν̄µ/νµ. (D.3)

To make predictions of the FD flux based the near detector flux, it is

crucial to know the decay cross section. Pions and kaons have 0 spin and in

the frame of themselves, there is no preference in any particular direction, i.e.

the decay process is isotropic. Energies of the progenies can be computed from

kinematics. Muon is different, however, for it is a spin 1/2 particle. Its spin

can be either parallel or anti-parallel to the direction of travel. This requires

more consideration from electroweak theory.

D.1 Decays of π± and K±

In the rest frame of decaying pions or kaons, the isotropy requires

dN

dΩ
= C, (D.4)
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where C is a constant and can be calculated by integrating the equation above

on both sides

dN = CdΩ

N = 4πC

C = N/(4π) (D.5)

Considering dΩ = d cos θdφ, Equation D.4 can be rewritten as

d2N

d cos θ∗dφ∗
=
N

4π
,∫

d2N

d cos θ∗dφ∗
dφ∗ =

∫
N

4π
dφ∗,

dN

d cos θ∗
=
N

2
, (D.6)

where the asterisks represent the rest frame. Making a normalization of N = 1,

one has the decaying probability in a particular direction

dN

d cos θ∗
=

1

2
(D.7)

This can be boosted to the lab frame

dN

d cos θ
=

dN

d cos θ∗
d cos θ∗

d cos θ
, (D.8)

where θ is the angle between the momentum of the parent particle and the

neutrino as shown in Figure D.1. Let the Lorentz boost of the parent particle

(one dimensional) be β = |pp|/Ep and γ = Ep/mp, we have(
E∗ν
p∗‖

)
=

(
γ −γβ
−γβ γ

)(
Eν
p‖

)
=

(
γEν − γβp‖
−γβEν + γp‖

)
. (D.9)
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p∥

p⟂

pp

pμ

pν

θ

Figure D.1: Schematic of pion/kaon decay in the lab frame.

therefore

cos θ∗ =
p∗‖
E∗ν

=
−γβEν + γp‖
γEν − γβp‖

=
−β + p‖/Eν
1− βp‖/Eν

=
−β + cos θ

1− β cos θ
. (D.10)

where cos θ = p‖/|pν | = p‖/Eν was used. This gives

d cos θ∗

d cos θ
=

1

1− β cos θ
− −β + cos θ

(1− β cos θ)2
(−β)

=
1− β cos θ − β2 + β cos θ

(1− β cos θ)2

=
1

γ2(1− β cos θ)2
(D.11)

Combining Equation D.11 and D.7 gives the angular distribution of the neu-

trino

dN

d cos θ
=

1

2γ2(1− β cos θ)2
. (D.12)

It should be noted that θ has an one-to-one correspondence with the neutrino

energy. In the rest frame of the parent particle, let qp, qν and qµ be the four
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momentum of the parent particle (pion or kaon), the neutrino and the muon,

i.e.

qp = (E∗p ,0),

qν = (E∗ν ,p
∗
ν), (D.13)

qµ = (E∗µ,p
∗
µ),

They obey

qp = qν + qµ, (D.14)

The neutrino energy is uniquely determined, i.e.

qµ = qp − qν

qµ · qµ = (qp − qν) · (qp − qν)

E2
µ − p2

µ = qp · qp + qν · qν − 2qν · qp

m2
µ = m2

p +m2
ν − 2E∗νE

∗
p

E∗ν =
m2
p −m2

µ

2mp

. (D.15)

To boost it to the lab frame, consider the Lorentz scalar

q∗p · q∗ν = qp · qν

E∗pE
∗
ν = EpEν − |pp||pν | cos θ

Eν =
mpE

∗
ν

Ep − |pp| cos θ

Eν =
E∗ν

γ − β cos θ
(D.16)
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Combining Equation D.15 and D.16, we have

Eν =
1

γ − β cos θ

m2
p −m2

µ

2mp

(D.17)

D.2 Decays of µ±

Due to its spin, the decaying of a muon is not isotropic and therefore

more complicated. The treatment involves computations with electroweak

theory. Instead of only considering

µ− → e− + ν̄e + νµ, (D.18)

following Reference [137], this note presents a more general case of three-body

purely leptonic decay of a spin 1/2 lepton la

l−a (p1, sa)→ ν̄b(p2) + νa(p3) + l−b (p4, sb), (D.19)

The correspondence is shown in Table D.1.

µ− e− ν̄e νµ

symbol l−a l−b ν̄b νa

state u1 u4 v2 u3

mass ma mb 0 0

momentum p1 p4 p2 p3

Table D.1: Correspondence between the general notations for leptons used in
Equation D.18 and the notations of a special case used in Equation D.19.

According to the Feynman diagram shown in Figure D.2, two vertices
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la

W
μ ν

νb
-

νa lb
-

p1, sa

p4, sbp3

p2

Figure D.2: Feynman diagram of a lepton decaying into another lepton plus
two neutrinos.

give

− ig

21/2
γµ

1− γ5

2
, − ig

21/2
γν

1− γ5

2
. (D.20)

The propagator represents

i(gµν + qµqν/M2
W )

q2 −M2
W

, (D.21)

where q = p1 − p3 = p2 + p4. Multiplying all the elements together, we have

Mfi =
−ig2

8

[
ū3γµ(1− γ5)u1

] [−gµν + qµqν/M2
W

q2 −M2
W

] [
ū4γν(1− γ5)v2

]
=

−ig2

8(q2 −M2
W )

[−ū3γµ(1− γ5)u1ū4γ
µ(1− γ5)v2

+ ū3γµ(1− γ5)u1(qµqν/M2
W )ū4γν(1− γ5)v2] (D.22)

Using Dirac equations

(/q −ma)u1 = 0,

ū4(/q −ma) = 0, (D.23)
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the second term in the bracket can be rewritten as

ū3γµ(1− γ5)u1(qµqν/M2
W )ū4γν(1− γ5)v2

= 1/M2
W ū3(1 + γ5)(γµq

µu1)(ū4q
νγν)(1− γ5)v2

= (mamb/M
2
W )ū3(1 + γ5)u1ū4(1− γ5)v2 (D.24)

where {γµ, γ5} = 0 was used. This leads to

Mfi =
−ig2

8(q2 −M2
W )

[−ū3γµ(1− γ5)u1ū4γ
µ(1− γ5)v2+

+ (mamb/M
2
W )ū3(1 + γ5)u1ū4(1− γ5)v2] (D.25)

Considering the mass of the W boson MW = 80.385 GeV, we can take

q2 �MW and mamb �M2
W . The equation above becomes

Mfi =
−ig2

8(q2 −M2
W )

[−ū3γµ(1− γ5)u1][ū4γ
µ(1− γ5)v2] (D.26)

Its complex conjugate is

M∗
fi =

ig2

8(q2 −M2
W )

[−ū3γµ(1− γ5)u1]∗[ū4γ
µ(1− γ5)v2]∗. (D.27)

The first bracket is evaluated as

[−ū3γµ(1− γ5)u1]∗ = [−ū3γµ(1− γ5)u1]†

= −u†1(1− γ5)†γ†µū
†
3

= (ū1γ0)(1− γ5)(γ0γµγ0)(γ0u3)

= ū1γν(1− γ5)u3, (D.28)
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where the following relations were used

ū = u†γ0,

u† = ūγ0, (D.29)

γ†0 = γ0.

Thus

M∗
fi =

ig2

8(q2 −M2
W )

[ū1γν(1− γ5)u3][v̄2γ
ν(1− γ5)u4]. (D.30)

The differential rate is given by

dω = (2π)4 δ
4(pi − pf )|Mfi|2d3p2d

3p3d
3p4

2E1(2π)98E2E3E4

. (D.31)

Multiplying Mfi and M∗
fi gives

|Mfi|2 =
g4

64M4
W

[−ū3γµ(1− γ5)u1][ū1γν(1− γ5)u3]

× [ū4γ
µ(1− γ5)v2][v̄2γ

ν(1− γ5)u4]

≡ g4

64M4
W

LµνM
µν . (D.32)

Using the trace technology,

Lµν = [ū3γµ(1− γ5)u1][ū1γν(1− γ5)u3]

= tr[(u3ū3)γµ(1− γ5)(u1ū1)γν(1− γ5)] (D.33)

Consider the dependence on the spin of the parent particle and there only

exists right-handed neutrino

u1ū1 = (/p1
+ma)(1 + γ5/sa) (D.34)

u3ū3 = /p1

1

2
(D.35)
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Lµν becomes

Lµν =
1

2
tr[/p3

γµ(1− γ5)(/p1
+ma)(1 + γ5/sa)γν(1− γ

5)]. (D.36)

Using the property that the trace of odd number of γµ is zero, Lµν can be

simplified to

Lµν =
1

2
tr[/p3

γµ(1− γ5)(/p1
+maγ

5/sa)γν(1− γ
5)]

= tr[/p3
γµ(/p1

+maγ
5/sa)γν(1− γ

5)]

= tr[/p3
γµ(/p1

−ma/sa)γν(1− γ
5)]

= pα3 (p1 −masa)
βtr[γαγµγβγν(1− γ5)] (D.37)

where γ5γ5 = 1 was used. Similar we obtain

Mµν = (p4 −mbsb)θ(p2)φtr[γθγµγφγν(1− γ5)]. (D.38)

Using the following property

T = tr[γαγµγβγν(C1 − C2γ
5)]tr[γθγµγφγν(C3 − C4γ

5)]

= 32[C1C3(δαθ δ
β
φ + δαφδ

β
θ ) + C2C4(δαθ δ

β
φ − δ

α
φδ

β
θ )] (D.39)

In the case of C1 = C2 = C3 = C4 = 1,

T = 64δαθ δ
β
φ . (D.40)

Therefore we have

|Mfi|2 =
g4

64M4
W

64pα3 (p1 −masa)
β(p4 −masa)αp2β

=
g4

M4
W

[p3 · (p4 −masa)][p2 · (p1 −masa)]. (D.41)
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Following Reference [137], first we get the rate for the electrons and then

discuss that of the neutrinos. For electrons, we should integrate out the part

involving the neutrinos

dω = (2π)4 δ
4(pi − pf )|Mfi|2d3p2d

3p3d
3p4

2E1(2π)98E2E3E4

=
g4

16(2π)5M4
W

(p4 −mbsb)
α(p1 −mbsa)

βd3p4

E1E4

×
∫
p2βp3αδ

4(p1 − p2 − p3 − p4)

E2E3

d3p2d
3p3

≡ g4

16(2π)5M4
W

(p4 −mbsb)
α(p1 −mbsa)

βd3p4

E1E4

Iαβ (D.42)

where

Iαβ ≡
∫
p2βp3αδ

4(p1 − p2 − p3 − p4)

E2E3

d3p2d
3p3. (D.43)

p2β and p3α can indeed be pulled out of the integral. For example, for p20 it

is obvious since it is not involved in the integral. For p2i where i = 1, 2, 3 we

have ∫
p2iδ(pi − p2i − p3i)dp2i =

∫
p2iδ(pi − p2i − p3i)dp2i

= pi − p3i

= p2i

= p2i

∫
δ(pi − p2i − p3i)dp2i (D.44)

In the rest frame of two neutrinos where |p2| = |p3| = E3 = E3, we can
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evaluate the quantity

I =

∫
δ4(p− p3 − p4)

E2E3

d3p2d
3p3

=

∫
δ3(p− p3 − p4)δ(E − E3 − E4)

E2E3

d3p2d
3p3

=

∫
d3p2δ(E − 2E2)

E2
2

=

∫
p2

2dΩdp2δ(E − 2E2)

E2
2

= 4π

∫
dp2δ(E − 2E2)

= 2π. (D.45)

Since dω is a scalar, the only way to construct Iαβ is the following

Iαβ = gαβA(p2) + pαpβB(p2). (D.46)

we have

gαβIαβ = 4A+ p2B = (p2/2)I,= πp2,

pαpβIαβ = p2A+ p4B = (p4/4)I = p4π/2, (D.47)

where p2 = 2p2 · p3 was used. By solving A and B we have

A =
π

6
p2, (D.48)

B =
π

3
p4. (D.49)

Thus

Iαβ =
π

6
(gαβp

2 + 2pαpβ) (D.50)
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The rate can now be written as

dω =
g4[(p4 −mbsb) · (p1 −masa)p

2 + p · (p4 −mbsb)p · (p1 −masa)]

192(2π)4M4
WE1E4

.

(D.51)

To evaluate this, it is convenient to use the rest frame of the decaying lepton,

in which we have

p1 = (ma,0) (D.52)

sa = (0, ŝa) (D.53)

p4 = (E4,p4) (D.54)

sb =

(
p4 · ŝb
mb

, ŝb +
(p4 · ŝb)p4

mb(E4 +mb)

)
, (D.55)

where sb was obtained from a boost in arbitrary direction. In a general case

consider a particle of mass M at rest, P=(M,0). Under a Lorentz boost β it

acquires four-momentum

P ′ = (E ′,P′) = (γM, γβM). (D.56)

For a general four momentum p = (ε,p), the boost gives

ε′ = (εE ′ + p ·P′)/M, (D.57)

p′ = p + P′(ε+ ε′)/(E ′ +M). (D.58)

In the sb case, we boost from the rest frame of electron (0, ŝb) to the rest frame

of the parent particle where the electron travels with p4 = (E4,p4), i.e.

sb =

(
p4 · ŝb
mb

, ŝb +
(p4 · ŝb)p4

mb(E4 +mb)

)
. (D.59)
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Together with p = p1 − p4 = (ma − E4,−p4) and p2 = m2
a +m2

b − 2maE4, we

have

(p4 −mbsb) · (p1 −masa)p
2

= (m2
a +m2

b − 2M − aE4)

×
[
ma(E4 − p4 · ŝb) +ma

(
p4 −mbŝb −

(p4 · ŝb)p4

mb(E4 +mb)

)
· ŝa
]

(D.60)

Define n̂ to be the unit vector along p4 and cos θ = ŝa · n̂. Neglecting the

electron mass mb gives

(p4 −mbsb) · (p1 −masa)p
2

=
m4
a

2

x(1− x)

2
(1− ŝb · n̂)(1 + cos θ), (D.61)

where x = E4/E
max
4 and Emax

4 = ma/2 is the maximum allowed value of E4.

Similarly,

p · (p4 −mbsb)p · (p1 −masa)

= m4
ax
[
1− x

2
(1 + cos θ)

]
(1− ŝb · n̂) (D.62)

Writing d3p4 = p2
4dΩdp4, the rate becomes

dω =
g4p4dE4dΩ

192(2π)4M4
WE1E4

×
{
m4
a

2

x(1− x)

2
(1− ŝb · n̂)(1 + cos θ) +m4

ax
[
1− x

2
(1 + cos θ)

]
(1− ŝb · n̂)

}
=

g4p4dE4dΩ

192(2π)4M4
WE1E4

[
m4
a

x(3− 2x)

2
(1− ŝb · n̂)

(
1 +

1− 2x

3− 2x
cos θ

)]
.

(D.63)
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n(x) = 2x2(3− 2x), (D.64)

α(x) = (1− 2x)/(3− 2x), (D.65)

we have

dω =

(
g4

32M4
W

)
m5
a

192π3
n(x)[1− α(x) cos θ]

[
1− ŝb · n̂

2

]
dxd cos θdφ

4π
. (D.66)

Note that

∑
ŝb

1− ŝb · n̂
2

=
1− 1/2

2
+

1 + 1/2

2
= 1 (D.67)∫

(1 + α(x) cos θ)
d cos θdφ

4π
= 1. (D.68)

Summing over the spin states and integrate over the solid angle, we get

dω

dx
=

(
g4

32M4
W

)
m5
a

192π3
n(x). (D.69)

Summing over the spin states and integrate over dφ only, we get

d2ω

dxd cos θ
=

1

2

(
g4

32M4
W

)
m5
a

192π3
n(x)[1− α(x) cos θ]

dxd cos θdφ

4π
. (D.70)

If we make a normalization such that Equation D.69 is equal to one (number

of events in a particular energy bin), we have

d2ω

dxd cos θ
=

1

2
[1− α(x) cos θ],

=
1

2
[1− 1− 2x

3− 2x
cos θ] (D.71)
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Since the muons are the decay products of pions, for l+a we simply make a

change of

θ → 180 − θ. To change from the rest frame of l−a to the lab from, a factor

1/γ2(1− β cos θ)2 from Equation D.11 should be applied, i.e.

d2ω

dxd cos θ
=

1

2γ2(1− β cos θ)2

(
1− 1− 2x

3− 2x
cos θ

)
(D.72)

This is sketched in Figure D.3. Considering the Equation D.51 and the ap-

proximation we made that mb = 0, this rate is exactly the same for the νa

(νµ).
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Figure D.3: Sketch of d2ω/dxd cos θ as a function of cos θ for a 50 GeV µ− and
x = 0.5. θ is the angle between the momentum of νµ and that of µ− in the lab
frame.
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Appendix E

Fitting with Correlated Systematics

E.1 Two Methods

There are two ways to include correlated systematic uncertainties in

χ2. One is the best-fit method where for each systematic uncertainty source

there is a free parameter associated with it in the fit. Its χ2 can be written as

χ2 =
N∑
i=1

(
di − ti −

∑K
j=1 αjsji

)2

σ2
i

+
K∑
j=1

α2
j , (E.1)

where N is the number of bins, K is the number of systematic sources, σi is the

statistical uncertainty for bin i, αj is the free parameter (nuisance parameter)

for systematic source j, sji is the uncertainty in bin i caused by systematic

source j.

The other way is the covariance matrix method for which

χ2 = ∆TC−1∆, (E.2)

where ∆i ≡ di− ti and C is the covariance matrix. Reference [138] shows that

the approaches are equivalent. This will be detailed in the next section.
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E.2 Equivalence

Starting from the best-fit approach, with the following definition

Rji ≡
sji
σi
, (E.3)

ui ≡
di − ti
σi

, (E.4)

where R is a K ×N matrix and u is a N vector, χ2 can be rewritten as

χ2 = (ui − αjRji)(ui − αjRji) + αjαj

= (u−RTα)T (u−RTα) + αTα

= (uT − αTR)(u−RTα) + αTα

= uTu− uTRTα− αTRu+ αTRRTα + αTα. (E.5)

To minimize χ2, αmin should satisfy ∂χ2/∂α = 0, i.e.

∂χ2

∂αk
=

∂

∂αk
(−αTi Rijuj − uTi RT

ijαj + αTi RijR
T
jlαl + αTi αi)

= −δikRijuj − uTi RT
ijδjk + δikRijR

T
jlαl + αTi RijR

T
jlδkl + 2δkiαi

= −Rkjuj − uTi RT
ik +RkjR

T
jlαl + αTi RijR

T
jk + 2αk

= −Rkjuj − uTj Rkj +RkjRljαl + αlRljRkj + 2αk

= 2(−Rkjuj +RkjRljαl + αk)

= 0. (E.6)

Written in matrix form, this is

−Ru+RRTαmin + αmin = 0. (E.7)
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Solving for αmin gives

αmin = (1 +RRT )−1Ru

= (1 +RRT )−1R(1 +RTR)(1 +RTR)−1u

= (1 +RRT )−1(1 +RRT )R(1 +RTR)−1u

= R(1 +RTR)−1u, (E.8)

where 1 +RRT is invertible according to Woodbury Formula

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 (E.9)

(A, U , C and V all denote matrices of the correct size). Inserting αmin in

Equation E.5 gives us χ2
min, the minimized χ2. As a shortcut, multiplying

Equation E.7 with αTmin on the left gives

−αTminRu+ αTminRR
Tαmin + αTminαmin = 0. (E.10)

This indicates the sum of the last three terms in Equation E.5 are equal to 0.

This leaves us

χ2 = uTu− uTRTαmin

= uTu− uTRTR(1 +RTR)−1u

= uT (1 +RTR)−1u. (E.11)

Recall that

ui ≡
di − ti
σi

, (E.12)

∆i ≡ di − ti, (E.13)
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we have ∆i = uiσi. Defining the matrix

S ≡


σ1

σ2

. . .

σN

 , (E.14)

or Sij = σiδij (no sum on i), we can write ∆ = Su or u = S−1∆. Therefore

χ2
min = ∆T

(
S−1

)T (
1 +RTR

)−1
S−1∆

= ∆T
[
S
(
1 +RTR

)
ST
]−1

∆

= ∆TC−1∆, (E.15)

where C ≡ S
(
1 +RTR

)
ST . Writing C in component form, we have

Cij = Sil
(
δlk +RT

lmRmk

)
STkj

= σiδil
(
δlk +RT

lmRmk

)
δjkσj

= σi
(
δij +RT

lmRmk

)
σj

= σiσjδij +RT
lmRmkσiσj

= σiσjδij +
smi
σi

smj
σj

σiσj

= σiσjδij + smismj. (E.16)

Given sij, covariance matrix C can be computed according to Equation E.16.
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