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ABSTRACT

Clusters of galaxies gravitationally lens the Cosmic Microwave Background (CMB) leading

to a distinct signal in the CMB on arcminute scales. Measurement of the cluster lensing effect

offers the exciting possibility of constraining the masses of galaxy clusters using CMB data

alone. Improved constraints on cluster masses are in turn essential to the use of clusters as

cosmological probes: uncertainties in cluster masses are currently the dominant systematic

affecting cluster abundance constraints on cosmology. To date, however, the CMB cluster

lensing signal remains undetected because of its small magnitude and angular size. In this

thesis, we develop a maximum likelihood approach to extracting the signal from CMB tem-

perature data. We validate the technique by applying it to mock data designed to replicate

as closely as possible real data from the South Pole Telescope’s (SPT) Sunyaev-Zel’dovich

(SZ) survey: the effects of the SPT beam, transfer function, instrumental noise and cluster

selection are incorporated. We consider the effects of foreground emission on the analysis

and show that uncertainty in amount of foreground lensing results in a small systematic

error on the lensing constraints. Additionally, we show that if unaccounted for, the SZ effect

leads to unacceptably large biases on the lensing constraints and develop an approach for

removing SZ contamination. The results of the mock analysis presented here suggest that a

4σ first detection of the cluster lensing effect can be achieved with current SPT-SZ data.
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INTRODUCTION

Cosmic Microwave Background (CMB) photons interact with the matter that fills our Uni-

verse as they make the journey from the last scattering surface to our detectors. These in-

teractions can induce subtle distortions to the observed pattern of fluctuations in the CMB.

While such distortions may be considered obstacles to the measurement of the primordial

CMB, these secondary anisotropies can also be used as tools to probe the matter respon-

sible for the distortions. Early work on distortions to the CMB induced by gravitational

lensing suggested that measurement of this effect could be used to study galaxy formation

[Blanchard and Schneider, 1987]. Subsequent analysis has shown that gravitational lensing

allows the CMB to be used as a probe of large scale structure (LSS), enhancing the ability

of CMB-only measurements to constrain e.g. the neutrino mass [Kaplinghat et al., 2003]

and the properties of dark energy [Seljak and Zaldarriaga, 1999, Acquaviva and Baccigalupi,

2006]. In recent years, CMB experiments have achieved the necessary sensitivity to measure

distortions caused by gravitational lensing [e.g. Smith et al., 2007, Dunkley et al., 2011,

Keisler et al., 2011, Das et al., 2011, van Engelen et al., 2012, Planck Collaboration et al.,

2013c]. To date, all measurements of gravitational lensing of the CMB have been related to

lensing caused by LSS.

Clusters of galaxies – the most massive gravitationally bound structures in the Universe

– are also expected to gravitationally lens the CMB. While the physical and mathematical

descriptions of lensing of the CMB by galaxy clusters is largely identical to that of lensing

by LSS, the distinction between the two different regimes is important. CMB cluster lensing

is caused by individual objects rather than by LSS, and to date has not been detected. As

pointed out by Seljak and Zaldarriaga [2000], CMB cluster lensing leads to a distinctive signal

in the CMB in the vicinity (within tens of arcminutes) of galaxy clusters. The magnitude

of this signal (roughly ten µK at peak) is near or below the current sensitivities of CMB

telescopes, a fact that makes detection around individual clusters difficult. As we will see,

though, it should be possible to detect this signal with current data by stacking constraints
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from many clusters. The low noise levels of upcoming CMB experiments promise to make

constraints on the CMB cluster lensing signal much tighter, and to make measurement of

the signal for individual clusters an exciting and realistic possibility.

The CMB cluster lensing signal is a potentially powerful probe of the masses of galaxy

clusters [e.g. Seljak and Zaldarriaga, 2000, Dodelson, 2004a, Holder and Kosowsky, 2004,

Vale et al., 2004, Hu et al., 2007a]. Because lensing is sensitive only to mass, measurement

of CMB cluster lensing does not depend on the details of complicated cluster physics. Other

observables used to measure cluster masses – such as the Sunyaev-Zel’dovich Effect (SZE),

galaxy counts (richness) and X-ray temperature – are only indirectly sensitive to the cluster

mass. The use of these observables as proxies for mass requires the calibration of mass-

observable relations, which may have large systematic uncertainties owing to our incomplete

understanding of e.g. galaxy formation and cluster gas physics. Consequently, even if a CMB

experiment is not sensitive enough to measure the CMB cluster lensing signal for a single

cluster, measurement of the combined (stacked) effect from many clusters is still very useful

because it can be used to tighten the error bars on mass-observable relationships. This is

a particularly exciting possibility for CMB surveys attempting to find clusters via the SZE.

Currently, such surveys must rely on external data sets (such as X-ray) to calibrate the

relationship between the SZE-observable and the cluster mass. With CMB cluster lensing

measurements, the same data that is used to measure the SZE can be used to constrain the

cluster mass.

Improvements in cluster mass constraints are essential to extracting the maximum amount

of cosmological information from cluster observations. The cluster abundance per comoving

volume element, dN/dV , is sensitive to the growth of structure (through dN) as well as the

expansion history of the Universe (through dV ). This dual sensitivity means that cluster

abundance measurements are uniquely qualified to distinguish between dark energy models

and modified gravity [Huterer et al., 2013]. Assuming General Relativity and a Dark Energy

model, measurement of the expansion history of the Universe determines the growth rate;
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measurement of the growth rate can then be used as a test of General Relativity vs. modified

gravity. Measurement of the expansion history alone is insufficient to distinguish between

dark energy and modified gravity because dark energy models can generally be tuned to

reproduce any expansion history predicted by a modified gravity model [e.g. Koyama and

Maartens, 2006].

In order to extract constraints on a cosmological model from cluster abundance measure-

ments, one must use the model to make a prediction for the cluster abundance as a function

of mass and redshift. However, because clusters are extremely massive objects that live at

the tails of an exponentially falling mass function, these abundance predictions are highly

sensitive to cluster masses. As a result, uncertainties in cluster masses are currently the

dominant systematic affecting cluster abundance constraints on cosmology [e.g. Rozo et al.,

2010]. With reduced mass uncertainties, clusters can potentially be used to place tighter

constraints on the properties of dark energy and modified gravity than any other probe of

large scale structure [Albrecht et al., 2006].

Recent results from the Planck satellite highlight the importance of accurately estimat-

ing cluster masses. Cosmological constraints derived from the Planck team’s measured CMB

temperature power spectrum [Planck Collaboration et al., 2013a] are in tension with cos-

mological constraints derived from Planck team’s measurement of the abundance of clusters

detected via the SZE [Planck Collaboration et al., 2013b]. Planck detected fewer clusters via

the SZE than would be expected based on the cosmological parameters derived from their

measurement of the primary CMB anisotropy. One possible resolution to this tension is the

introduction of massive neutrinos into the cosmological model; neutrinos tend to wash out

structure and would therefore reduce the predicted number of clusters [Planck Collaboration

et al., 2013b]. However, the tension can also be resolved by allowing for systematic uncer-

tainty in the relation between SZE- and X-ray-derived cluster masses [Planck Collaboration

et al., 2013b]. Resolving the apparent tension (and potentially measuring the masses of

neutrinos) therefore requires better calibration of cluster mass-observable relations.
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CMB cluster lensing also offers several important advantages over other measures of

weak gravitational lensing around clusters. Traditional probes of weak lensing by clusters

rely on measuring the gravitational distortion of galaxy shapes in the vicinity of clusters

[see Hoekstra and Jain, 2008, for a review]. While these measurements have been conducted

with much success, they also have significant limitations. For one, measuring the shapes of

galaxies at high redshift is difficult, which in turn makes obtaining masses for high redshift

clusters difficult. The CMB cluster lensing signal, on the other hand, is relatively insensitive

to redshift. Galaxy distortion measurements are also affected by several sources of systematic

error. For example, the redshifts of distorted galaxies are often determined photometrically;

incomplete understanding of the photometric redshift error distribution can lead to biased

cluster masses [Ma et al., 2006]. Additionally, galaxies can be be preferentially oriented along

certain directions as a result of the galaxies living in the tidal field of some larger structure.

These so-called intrinsic alignments can again result in biased cluster mass constraints [e.g.

Croft and Metzler, 2000]. CMB cluster lensing is largely complementary to weak lensing

shear measurements because it does not suffer from these sources of systematic error. Of

course, CMB cluster lensing has its own associated systematics, as discussed in more detail

below.

The above discussion is somewhat premature as the CMB cluster lensing signal has yet

to be detected. It is unlikely that a first detection of the effect will have significant power

to place cosmologically useful constraints on cluster masses. Furthermore, it may be the

case that for low redshift clusters, CMB cluster lensing constraints on cluster masses will

never be tighter than constraints based on measurement of galaxy lensing. Only at high

redshift (z & 1) will future CMB experiments begin to be competitive with other probes of

weak lensing [e.g. Lewis and King, 2006]. At this point in time, we view measurement of the

CMB cluster lensing as worthwhile simply because it has never been observed before. In the

future, measurement of CMB cluster lensing will allow for improved understanding of weak

lensing systematics and will generate cosmologically useful constraints on cluster masses.
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Additionally, if both CMB lensing and galaxy lensing measurements can be attained around

individual clusters, one can measure cosmographic distance ratios which in turn can be used

to constrain cosmological parameters [Hu et al., 2007b].

The CMB cluster lensing signal is on the order of several µK and extends over several

arcminutes; detecting this signal requires a low noise CMB experiment with fine angular

resolution. Large survey area is also desirable as it means that more clusters are detected. Of

the currently operating CMB telescopes, the South Pole Telescope is perhaps best qualified

to make a first detection of the CMB cluster lensing signal. The SPT has recently completed

the 4 year long SPT-SZ survey with the aim of constraining cosmology and detecting galaxy

clusters via the SZE. The high angular resolution (roughly 1 arcminute), low noise levels

(roughly 18 µK-arcmin at 150 GHz), and large sky coverage (2500 sq. deg.) achieved over

the course of the SPT-SZ survey make this dataset well suited to detecting the cluster lensing

effect. For this reason, we have tailored our discussion to data from SPT.

The goal of this thesis is to present a methodology for obtaining a first detection of the

CMB cluster lensing signal and to make realistic projections for the strength of the detection

that can be obtained with data from the SPT and future CMB experiments. We develop a

maximum likelihood approach to constraining the lensing signal for a single cluster and for

combining constraints from multiple clusters. By generating and analyzing mock data, we

establish that the approach developed here is robust and we constrain the levels of expected

systematics. While previous work [e.g. Dodelson, 2004a, Holder and Kosowsky, 2004, Vale

et al., 2004, Lewis and King, 2006, Hu et al., 2007a] has explored the potential for constraining

cluster masses using the CMB cluster lensing effect, the projections made therein have relied

on a Fisher matrix approach or highly idealized data. Here, we significantly extend the

accuracy of projections by generating and analyzing highly realistic mock data. To that end,

we use a realistic cluster catalog and apply instrumental noise models, beam and transfer

functions, and pixelization that are taken directly from SPT data. We consider a practical

approach to eliminating SZ contamination, and study the effects of lensed and unlensed
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foreground emission on the CMB cluster lensing constraints. One of our primary results is

to show that with current data from the SPT-SZ survey we should be able to detect the

cluster lensing effect at ∼ 4σ significance.

The thesis is organized as follows. In §1 we provide the necessary background for under-

standing the CMB cluster lensing signal; in §2 we develop a maximum likelihood approach

to constraining this signal; §3 describes the generation and analysis of mock data, the re-

sults of which are presented in §4. Conclusions are given in §5. Throughout, we assume a

flat-ΛCDM cosmology with h = 0.7 and ΩM = 0.276.
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CHAPTER 1

BACKGROUND

1.1 The Unlensed CMB

The primordial CMB is thermal radiation originating from the end of the epoch of recom-

bination, during which protons and electrons came together to form neutral atoms. Before

recombination, the photon and electron plasmas were tightly coupled due to Thompson

scattering. As the Universe cooled and became neutral, the mean free path of CMB pho-

tons increased dramatically. Although the Universe has since become ionized, the majority

of CMB photons that we observe today have traveled without significant electromagnetic

interaction since they last scattered at the end of recombination. It is the gravitational

interactions experienced by CMB photons since the time of last scattering that concerns us

here.

The CMB has a uniform temperature to one part in 105 owing to the homogeneity of

the primordial plasma. Small fluctuations in the temperature of the CMB are the result of

acoustic oscillations in this plasma. The theory of Inflation [Guth, 1981, Linde, 1982] posits

that the perturbations that initially sourced these oscillations (long before recombination)

are drawn from a very-nearly Gaussian distribution. As these perturbations grow essentially

linearly until well after the time of last scattering, the anisotropies in the CMB are also

predicted to be very close to Gaussian. And indeed, observations to date have found no

evidence for departures from Gaussianity [Planck Collaboration et al., 2013]. To a very high

level of accuracy the primordial unlensed CMB can be treated as a Gaussian random field.

All of the information about a Gaussian random field is captured in its power spectrum.

As a result of photon diffusion (Silk Damping) at the time of recombination, power on scales

below about 14’ – corresponding to multipole l ∼ 800 – is highly suppressed in the primordial

CMB. Several generations of CMB experiments have jointly measured the power spectrum

of the CMB with impressive accuracy out to l . 10000 [e.g. Hinshaw et al., 2013, Planck
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collaboration et al., 2013, Keisler et al., 2011, George et al. in prep., 2014]. Therefore,

over the multipole range at which it has significant power, the statistical properties of the

primordial CMB are known with exquisite precision. This fact is essential to our ability to

detect slight distortions in this random field due to gravitational lensing. The CMB power

spectrum is shown in Fig. 1.2.

1.2 Gravitational Lensing of the CMB

Gravitational lensing results in a remapping of CMB photons to new (lensed) positions on

the sky. Since the shape of the null geodesics along which photons travel is independent

of frequency, so too is the remapping caused by gravitational lensing. Furthermore, for our

purposes, gravitational lensing does not change photon energies. A photon falling into a

gravitational potential well will gain energy, but if the potential does not evolve significantly

during the photon’s traversal, the photon will lose an equivalent amount of energy on its

way out of the well; the net result is no energy change. We are primarily interested in

lensing by galaxy clusters which are sufficiently compact that their potential wells do not

evolve significantly during photon crossing and so the photon energy remains constant1. As

a consequence of Liouville’s theorem and the fact that gravitational lensing does not change

photon energies, the remapping caused by gravitational lensing preserves surface brightness.

As a result, for a perfectly uniform CMB the effects of lensing are entirely unobservable.

It is the presence of small anisotropies in the CMB that make measurement of the lensing

effect possible. Gravitational lensing of the CMB has been covered in great detail in the

literature [for an excellent review see Lewis and Challinor, 2006]. Here we concentrate on

the formalism necessary to model CMB cluster lensing.

Lensing alters the directions of photons so that a photon that is observed at direction n̂

would have been observed at direction n̂− ~δ(n̂) in the absence of lensing, where ~δ(n̂) is the

1. When the potential well is very large, significant evolution can occur during photon crossing and a
significant distortion to the CMB can result, i.e. the integrated Sachs-Wolfe Effect [Sachs and Wolfe, 1967]
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deflection field. With this sign convention, the deflection field takes unlensed positions to

lensed positions. For the most part, we will work in the flat sky approximation under which

the temperature field, T (~θ), can be considered a function of the two-dimensional vector ~θ.

As we will be interested in gravitational lensing of the CMB in small patches on the sky near

galaxy clusters, this approximation is well motivated. The lensed temperature field, T len(~θ),

can then be related to the unlensed temperature field, Tunlen(~θ), via

T len(~θ) = Tunlen(~θ − ~δ(~θ))

≈ Tunlen(~θ)− ~δ(~θ) · ∇Tunlen(~θ), (1.1)

where in the second line we have Taylor expanded the temperature field to first order in the

angular coordinate.

Fourier transforming Eq. 1.1 results in

T len(~l) ≈ Tunlen(~l)− i

2π

∫

d2l~l′ · ~δ(~l −~l′)Tunlen(~l′), (1.2)

where ~l is the Fourier conjugate to ~θ. Eq. 1.2 shows that the observed temperature at one

multipole is related to the temperature at all other multipoles through the deflection field,

~δ. Thus we see that lensing induces correlations between different l modes on the sky and

the lensed temperature field is therefore no longer Gaussian (for a Gaussian random field

different l-modes are uncorrelated). Note, however, that the lensed temperature field is just

a remapping of a Gaussian field; if the deflection field is known, the lensed CMB can still be

described by a Gaussian likelihood as long as positions in the map are adjusted to account

for the deflections.

Eq. 1.1 shows that the lensed temperature field correlates the unlensed temperature

field with its gradient. This fact has been exploited to develop estimators for the deflection

field, many of which are based on the optimal quadratic estimator of Hu [2001] and Hu

and Okamoto [2002]. Quadratic estimators effectively estimate the lensing potential φ(~θ)
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(defined such that ~δ(~θ) = ∇φ(~θ)) by forming the product of a measured CMB map with

its gradient, filtered and weighted in such a way as to make an unbiased estimate of φ with

minimal variance. It should be emphasized that while the estimator of Hu [2001] and Hu

and Okamoto [2002] is the minimum variance quadratic estimator for the lensing potential,

it is not necessarily the true minimum variance estimator.

In principle, CMB lensing quadratic estimators could be applied to the CMB in the

vicinity of clusters to extract constraints on the cluster lensing potential.2 These lensing

potential constraints could then be used to place constraints on the masses of clusters by

e.g. fitting to a model mass distribution. As we discuss in more detail below, we have chosen

a different approach to constraining the CMB lensing signal that relies on identifying the true

maximum likelihood estimator for the cluster mass given a model for its mass distribution.

1.3 Galaxy Clusters

Galaxy clusters are the largest bound structures in our Universe, having masses roughly in

the range 1014M⊙ to 2× 1015M⊙. The majority of the cluster mass (typically about 90%)

is in the form of a halo of weakly interacting dark matter that extends considerably beyond

the visible galaxies in the cluster. Because clusters are so massive, intracluster gas (which

makes up about 10% of the cluster mass) is virially heated to temperatures on the order of

kT ∼ GMmp

2R
= 7 keV

(

M

3× 1014M⊙

)(

1Mpc

R

)

(1.3)

where M is the mass of the cluster, R is its effective radius and mp is the mass of a proton.

This hot, ionized gas is responsible for the Sunyaev-Zel’dovich effect, which will be discussed

in more detail in §1.5. Note that Eq. 1.3 is slightly misleading as it hides the dependence of

2. As discussed in Hu et al. [2007a], applying the standard quadratic estimator of Hu [2001] and Hu and
Okamoto [2002] to the CMB near clusters can result in a bias caused by assuming that the deflection is
a small perturbation to the source field. This bias can be removed, however, with an appropriate filtering
scheme [Hu et al., 2007a].

10



R on M .

Dark matter-only N-body simulations suggest that cluster mass profiles are reasonably

well fit by the Navarro-Frenk-White (NFW) profile, first proposed in Navarro et al. [1996].

The NFW profile is given by

ρ(r) =
δcρcrit(z)

(rc/r200)(1 + rc/r200)2
, (1.4)

where ρ(r) is the mass density at distance r from the center of the cluster and ρcrit(z) =

3H2(z)/(8πG) is the critical density for closure of the Universe at redshift z. r200 is the

virial radius of the cluster, defined such that average mass density enclosed with r200 is equal

to 200ρcrit(z). The total mass enclosed within r200 is then

M200 =
800π

3
ρcrit(z)r

3
200. (1.5)

For the analysis presented here we consider M200 to be the parameter of interest rather than

r200. The concentration parameter, c, controls how centrally concentrated the density profile

is. Fits to simulations suggest that c is a slowly varying function of the cluster mass and

redshift; for a M = 5× 1014M⊙ cluster, the expected concentration is c ∼ 2.7 [Duffy et al.,

2008]. δc is fixed to

δc =
200

3

c3

ln(1 + c)− c/(1 + c)
(1.6)

by the requirement that M200 and r200 are related as in Eq. 1.5.

While the NFW profile is a common choice for parameterizing the mass distributions of

clusters, it is well known that such profiles provide only an approximate description of real

clusters [e.g. Merritt et al., 2006, Duffy et al., 2010]. High resolution simulations, for instance,

suggest that the density profiles of the inner cores of clusters are flatter than predicted by

the NFW profile (which diverges as r−1 for small r) [e.g. Merritt et al., 2006, Navarro et al.,
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2010]. Furthermore, while baryons make up only a small fraction of the total cluster mass,

their ability to cool efficiently allows them to condense towards the cluster center, which in

turn can increase the dark matter density in these regions [e.g. Gnedin et al., 2004, 2011];

other baryonic effects such as supernovae and AGN feedback may further impact the density

profile [Duffy et al., 2010]. Finally, simulations also suggest that halos of galaxy clusters are

triaxial, rather than spherically symmetric as assumed in the NFW profile [Jing and Suto,

2002]. Still, despite these qualifications, the NFW profile has proven an excellent fit to the

observed density profiles of clusters obtained via weak lensing measurements [Newman et al.,

2013]. The NFW profile is more than adequate for our purposes since we are interested here

in only a first detection of the CMB cluster lensing signal and do not expect to be sensitive

to the details of the halo shape. Future work may attempt to improve upon the accuracy of

the halo modeling presented here.

1.4 The Lensing Signal from Galaxy Clusters

As argued by Seljak and Zaldarriaga [2000], regardless of the detailed form of ~δ(~θ), cluster

lensing leads to a characteristic imprint in the CMB near galaxy clusters. Since the primor-

dial CMB has little power below scales of ∼ 10 arcminutes due to diffusion damping and

the deflections are ∼ 1 arcminute (as we will see below), the CMB can be considered a pure

gradient in the vicinity of the cluster. Eq. 1.1 then suggests several important features of

the CMB cluster lensing signal. First, the size of the signal is proportional to the gradient of

the CMB; if the gradient vanishes, so does the lensing signal. Second, consider the fact that

photons passing near the cluster will be deflected towards the cluster so that they appear

farther away from the cluster; ~δ(~θ) will therefore in general point away from the cluster.

Consequently, from Eq. 1.1 we see that the lensed temperature field will be decreased on

the positive side of the gradient and will be increased on the negative side. The result is

the characteristic dimple pattern shown in Fig. 1.1. For this figure we have assumed a

M = 1015M⊙ cluster at z = 1 that is described by an NFW profile with c = 3. We place
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Figure 1.1: Difference between lensed and unlensed CMB for a M = 1015M⊙ cluster at
z = 1 sitting on top of a pure gradient in the CMB with amplitude 13µK/arcmin. We
assume an NFW mass profile for the cluster with c = 3.

this cluster on top of a pure gradient with amplitude 13µK/arcmin. Since the CMB has an

RMS of ∼ 115µK and a coherence length of about 10 arcminutes, this value of the gradient

is fairly typical.

For even the most massive galaxy clusters, gravitationaly lensing causes the CMB to be

deflected by at most an arcminute. It is appropriate, then, to assume the Born approximation

under which the gravitational potential experienced by a photon is evaluated along the

undeflected photon path. Furthermore, as the distance over which a photon feels the effects

of gravitational lensing by a cluster is small compared to the total distance traveled, it is

also appropriate to make a thin lens approximation, under which the three-dimensional mass
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distribution of the cluster can be replaced by a projected two-dimensional mass distribution.

Finally, for simplicity, we consider a rotationally symmetric mass distribution. Making these

approximations, the deflection angle due to the cluster is

~D(~θ) = −8πG
~θ

|~θ|
(χS − χL)

χS

[

1 + zL
θχL

∫ χLθ/(1+zL)

0
dRRΣ(R)

]

, (1.7)

where χS = 1.4× 104 Mpc and χL are the comoving distances to the last scattering surface

(source) and the cluster (lens), respectively, and Σ(R) is the 2D projected mass distribution

of the cluster [Dodelson and Starkman, 2003]. Note that there is a subtle distinction between

the ~D(~θ) of Eq. 1.7 and the ~δ(θ) considered previously. Consider a photon that originates at

position ~θ0 but – because of lensing – appears at position ~θ. From our previous definition, we

have ~δ(θ) = ~θ−~θ0. On the other hand, with the definition in Eq. 1.7 we have ~D(θ0) = ~θ−~θ0.

In other words, ~D should be evaluated at unlensed positions, while ~δ should be evaluated at

lensed positions.

As described above, a reasonable cluster mass distribution to assume is the NFW profile

of Eq. 1.4. For an NFW mass distribution located at angular diameter distance dL =

χL/(1+zL) from the observer, photons originating from a source at angular diameter distance

dS = χS/(1 + zS) and angle ~θ with respect to the source will be deflected by an angle

~D (θ) =
16πGA

cr200

~θ

θ

dSL
dS

g(dLθc/r200), (1.8)

where dSL = (χS − χL)/(1 + zS) is the angular diameter distance between the source and

the lens [Dodelson, 2004a]. The function g(x) is given by

g(x) =
1

x















ln(x/2) +
ln
(

x/[1−
√
1−x2]

)

√
1−x2

, if x < 1

ln(x/2) +
π/2−arcsin(1/x)√

x2−1
, if x > 1

(1.9)
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and the constant A is related to M200 and c via

A =
M200c

2

4 [ln(1 + c)− c/(1 + c)]
. (1.10)

We have chosen here to parameterize the deflection angle model in terms of M200 and c (r200

in Eq. 1.8 is related to M200 via Eq. 1.5). For a c = 3 cluster with mass M200 = 5×1014M⊙

located at z = 1, the peak deflection is ∼ 0.5 arcmin at about 2 arcmin away from the cluster.

Note that in our analysis we allow the cluster mass to be negative; a negative cluster mass

simply means that the deflection vector is pointed in the opposite direction as it would be

for a positive cluster mass.

1.5 The Sunyaev-Zel’dovich Effect

Gravitational lensing is not the only source of distortion to the primordial CMB. The

Sunyaev-Zel’dovich effect (SZE) is the distortion of the CMB induced by inverse-Compton

scattering of CMB photons and energetic electrons [for a review see Birkinshaw, 1999]. This

effect is especially pronounced in the directions of massive galaxy clusters as these objects

are reservoirs of hot, ionized gas. The magnitude of the CMB distortion induced by the SZE

effect can be significantly greater than that induced by CMB cluster lensing. SZ surveys

such as the South Pole Telescope SZ Survey, for instance, routinely detect individual clusters

[e.g. Staniszewski et al., 2009] via the SZE (this is, after all, one of the primary goals of such

surveys); the CMB cluster lensing signal, on the other hand, has not been detected and is

unlikely to be detected for single clusters in the near future. Because of the large magnitude

of the SZE and the fact that the SZE and CMB cluster lensing signals overlap spatially (they

are both most pronounced within several arcminutes of galaxy clusters), the SZE is a po-

tentially serious contaminant for measurement of CMB cluster lensing and warrants careful

consideration.

The SZE from clusters can be divided into two parts: the thermal SZE and the kinematic
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SZE. The thermal SZE results from inverse-Compton scattering of CMB photons with hot

cluster gas. An interesting feature of the thermal SZE (and one that makes the SZE partic-

ularly interesting as a cosmological probe) it that the amplitude of the signal is independent

of cluster redshift. Unlike gravitational lensing, the inverse-Compton scattering process that

gives rise to the SZE results in a spectral distortion of the CMB. Because the cluster elec-

trons have temperatures far in excess of the CMB, the scattering process typically causes

CMB photons to gain energy, leading to a decrease in the CMB intensity in the Raleigh-

Jeans regime and an increase in the Wien regime. More explicitly, the spectral shape of the

distortion is given by

f(x) =

(

x
ex + 1

ex − 1
− 4

)

(1 + δSZ(x, Te)), (1.11)

where x = hν/kBTCMB is a dimensionless version of the frequency of observation, ν, Te is the

electron temperature in the cluster and δSZ is a relativistic correction [Plagge et al., 2010].

In the non-relativistic limit, the spectral shape of the distortion is independent of Te, having

a minima at roughly 130 GHz, a maxima at 370 GHz and no distortion at approximately 220

GHz. The frequency-dependence of the effect will be essential to our attempts to eliminate

SZE contamination of our cluster lensing analysis.

The temperature change in the CMB due to the SZE is related to the Compton y-

parameter, which is a measure of the integrated pressure along the line of sight:

∆T

TCMB
= f(x)y =

f(x)σT
me

∫

P (l)dl, (1.12)

where P (l) = neTe is the cluster pressure at line of sight position l, equal to the product of the

electron number density, ne, and temperature. Building on the work of Nagai et al. [2007],

Arnaud et al. [2010] fit a well-motivated pressure profile to a combination of observational

data and simulations. Their best fit model, expressed as a function of distance from the
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cluster center, r, is:

P (r) = 1.65 eV cm−3E8/3(z)

(

M500

3× 1014M⊙

)0.79

p(r/r500), (1.13)

where M500 is the mass enclosed in a sphere of radius r500, defined such that the mean mass

within the sphere is equal to 500 times the critical density (i.e. exactly analogous to r200).

p(x) is a dimensionless pressure profile that is assumed to follow the generalized NFW form

introduced in Nagai et al. [2007]:

p(x) =
8.403

(c500x)γ [1 + (c500x)α]
δ
, (1.14)

where c500 = 1.177, α = 1.051, γ = 0.3081 and δ = 4.931 [Arnaud et al., 2010]. With this

profile, an NFW cluster with M200 = 5 × 1014M⊙ and c = 3 causes a decrement in the

CMB with magnitude ∆T = −400µK when observed at 150GHz. This means that the SZE

is about an order of magnitude larger than the cluster lensing signal we are attempting to

detect.

The kinematic SZE results from the inverse-Compton scattering of CMB photons with

electrons that have bulk velocities relative to the Hubble flow. Here we consider the kinematic

SZE due to electrons residing in a galaxy cluster. Bulk motions of cluster electrons could

be due, for instance, to the cluster falling towards nearby superstructures or because the

cluster is rotating. In the rest-frame of the moving electrons, Doppler shifting causes the

CMB to appear non-isotropic; scattering then slightly re-isotropizes this radiation. To a

distant observer, the effect results in a distortion to the CMB spectrum. The magnitude of

the effect, ∆T/T , is proportional to τevz/c, where τe is the optical depth of the electrons and

vZ is the velocity of the bulk flow along the line of sight direction [Sunyaev and Zeldovich,

1972]. For high mass clusters with M & 1015M⊙, the thermal SZE is expected to dominate

over the kinematic SZE by a factor of ∼ 20; for clusters with M ∼ 1013M⊙ the two effects

should have comparable magnitudes [Hand et al., 2012]. The kSZ has only recently been
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detected via cross-correlation with data from the Atacama Cosmology Telescope and the

Baryon Oscillation Spectroscopic Survey [Hand et al., 2012]. Unlike the thermal SZE, the

kinematic SZE preserves the blackbody form of the CMB spectrum while only changing

its temperature [Sunyaev and Zeldovich, 1972]; in the non-relativistic limit, the maximum

intensity of the kinematic SZE corresponds to the null of the thermal SZE [Birkinshaw,

1999].

1.6 Foregrounds

CMB telescopes observe a combination of radiation from the CMB and foreground sources.

Foreground emission must be taken into account when searching for the cluster lensing signal.

Some sources – like active galactic nuclei and bright dusty star forming galaxies (DSFGs)

– are bright enough that they can be detected as point sources in the data and masked

[Mocanu et al., 2013]. Faint sources that are too dim to be detected individually contribute

to the Cosmic Infrared Background (CIB) which must be considered as an additional source

of noise to the measurement of CMB cluster lensing. The dominant contribution to the

CIB comes from UV and optical photons that are absorbed by dust and re-emitted in the

infrared (i.e. DSFGs). The contributions from these unresolved sources can be divided into

two components: a Poisson part and a clustered part [Keisler et al., 2011]. Another source of

foreground power considered in Keisler et al. [2011] is the SZE from large scale structure and

unresolved sources. As we discuss in §2.3, the SZE foreground contribution is removed using

frequency information so it not necessary to consider the unresolved SZE as an additional

foreground.

The Poisson foreground is due to Poisson fluctuations in the number of unresolved sources

across the sky. For the faint sources that we are concerned with here, there are many sources

per square arcminute (roughly the scales of interest to our measurement of CMB cluster

lensing) so it is reasonable to model the Poisson contribution as Gaussian with Cl = CPoisson,

where CPoisson is independent of l. No physical contribution to the sky can have power to
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arbitrarily large l; the Poisson power must be cut off at some lPoissonmax that corresponds to the

sizes of the sources contributing to this background. Since these sources are predominantly

DSFGs the cutoff scale corresponds to the angular size of a galaxy, which is roughly 1

arcsecond or l ∼ 6.5 × 105. As will be discussed in more detail later, the telescope beam

function cuts off power at scales significantly below lPoissonmax so the precise value of lPoissonmax is

unimportant. At high l, CPoisson dominates the total measured power spectrum so the value

of CPoisson can be determined directly from the data, as we discuss in §2.4. The Poisson

power spectrum is shown in Fig. 1.2.

Clustering of the emissive point sources (DSFGs) introduces additional correlated fore-

ground noise to the data that is not captured by Cl = CPoisson. Following Shirokoff et al.

[2011], Millea et al. [2012] and Keisler et al. [2011] we assume that the contribution from

clustered point sources is described by Dl ≡ l(l+1)Cl/(2π) =
D3000

f(3000)
f(l), where f(l) = 1 for

l < 1500 and f(l) =
(

l
1500

)0.8
for l ≥ 1500. D3000 sets the normalization of this component

at l = 3000 and has units of µK2. This template for the clustered power spectrum captures

contributions from both linear and non-linear regimes. Fig. 1.2 shows the power spectrum

of the clustered component.

The foreground models described above were derived from studying the observed CIB

emission away from clusters. Consequently, while these models may incorporate the effects

of gravitational lensing by large scale structure, they do not include any effects of lensing by

the cluster. Whether or not the foregrounds are lensed by a cluster depends on the redshift

from which the foreground emission emanates relative to the redshift of the cluster; fore-

ground emission from in front of the cluster, for instance, will not be lensed. Unfortunately,

because it is difficult to resolve the CIB into individual sources, the redshift distribution of

these sources has proved difficult to constrain. Not surprisingly, the redshift distribution

of sources contributing to the CIB also varies with frequency. An analysis of data from

the Herschel Multi-tiered Extragalactic Survey by Béthermin et al. [2012] suggests that the

redshift distribution of sources contributing to the CIB is quite broad, with support across
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Figure 1.2: The power spectra of the components in our model.

z = 0 to z & 3, although the observation frequencies in Béthermin et al. [2012] were higher

than those of interest here. A recent (and preliminary) analysis of Planck data by Schmidt

et al. [2014] suggests that for frequencies between about 200 GHz and 550 GHz, the redshift

distribution of the CIB is again broad (covering a redshift range from z = 0 to z = 4) with

a peak near z ∼ 1.5. Since the majority of clusters we are interested in have redshifts in the

range z = 0.5 to z = 1.5, it is reasonable to assume that some fraction of the Poisson and

clustered foreground emission will be lensed and some will remain unlensed.
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CHAPTER 2

ANALYSIS

We adopt a maximum likelihood approach to measuring the CMB cluster lensing signal.

Below, we derive the full pixel-space likelihood for the lensed CMB given a model for the

lensing deflections. By evaluating the likelihood for the observed data as a function of our

model parameter, M200, we obtain CMB-lensing constraints on the cluster mass. Because

this approach uses the exact likelihood for the data given our model, it necessarily contains

all the available information about gravitational lensing in the data and therefore is the

optimal way of extracting the signal.

2.1 The Unlensed CMB

We first review the calculation of the likelihood function for the primordial, unlensed CMB.

In this context, the likelihood refers to the probability of measuring some set of pixelized

temperature values on the sky, ~d, given an underlying model for the data. The Gaussian

nature of the primordial CMB means that the likelihood can be written as

L(~d;C) =
1

(2π)Npix/2
√

det(C)
exp

[

−1

2
~dTC−1~d

]

, (2.1)

where ~d is an Npix element data vector and C is the Npix × Npix covariance matrix that

is predicted by a model. The covariance matrix can in general be split into two parts,

C = CS + CN , where CS is the covariance of the underlying sky signal and CN is the

instrumental noise covariance added by the telescope. The data are assumed to be mean-

subtracted so that 〈~d〉 = 0.

We now turn to calculating CS , following somewhat closely the derivation presented in
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Dodelson [2003]. The signal covariance matrix elements CS,ij are defined such that

CS,ij = 〈sisj〉 − 〈si〉〈sj〉 (2.2)

= 〈sisj〉, (2.3)

where the expectation value should be taken over different realizations of the sky signal.

Again, we are assuming that the mean signal has been subtracted so that 〈si〉 = 0. The

signal in a single pixel, si, depends on the true temperature field across the sky, Θ(n̂), how

the true sky signal gets processed into a map by the telescope and data reduction, and the

pixelization that is applied by the analyst. Prior to the pixelization, the processing of the

sky signal can be divided into a part due to the telescope beam (the ‘beam function’), and a

part due to filtering applied to the data timestream (the ‘transfer function’). For the most

part, the beam and transfer functions can be lumped together into a single transformation

that acts on the data. For ease of notation we will follow this approach below.

The application of the telescope beam (really the beam and transfer function) to the sky

turns the field Θ(n̂) into a new field, Θbeam(n̂), given by

Θbeam(n̂) =

∫

dn̂′Θ(n̂′)B(n̂′, n̂)

=

∫

dn̂′Θ(n̂′)B(n̂′ − n̂), (2.4)

where B(n̂′, n̂) encapsulates the effects of the beam and transfer function. The second

equality follows from assuming that the beam is constant across the sky 1.

Pixelization causes the signal in a single pixel, si, to be equal to an integral across Θbeam

1. While the telescope beam remains fairly constant across the sky, the transfer function varies consider-
ably across different patches. We consider each patch separately so this assumption remains valid.
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weighted by the pixel window function Pi(m̂):

si =

∫

dm̂ θbeam(m̂)Pi(m̂)

=

∫

dm̂ θbeam(m̂)P (m̂− m̂i)

=

∫

dn̂′Θ(n̂′)
∫

dm̂P (m̂− m̂i)B(n̂′ − m̂)

≡
∫

dn̂′Θ(n̂′)R(n̂, m̂i), (2.5)

where in the last line we have defined the combined pixel-beam function:

Ri(n̂) =

∫

dm̂ P (m̂− m̂i)B(n̂− m̂), (2.6)

and we have assumed that the pixel window function does not vary across the sky. The

area-preserving projection scheme that we use for generating two-dimensional maps from

curved sky observations ensures that this approximation is a good one.

Having expressed the observed signal in terms of the true Θ(n̂), we now decompose Θ(n̂)

into a spherical harmonic basis:

Θ(n̂) =

∞
∑

l=1

l
∑

m=−l

almYlm(n̂). (2.7)

With this decomposition, the signal covariance matrix can be written as

CS,ij = 〈sisj〉

=

∫

dn̂

∫

dn̂′Ri(n̂)Rj(n̂
′)
∑

l,m

Ylm(n̂)
∑

l′,m′

Y ∗
l′m′(n̂

′)〈alma∗l′m′〉. (2.8)

The unlensed CMB has no preferred direction, which means that 〈alma∗l′m′〉 satisfies

〈alma∗l′m′〉 = δll′δmm′Cl. (2.9)
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The sums in Eq. 2.8 then collapse to give

CS,ij =

∫

dn̂

∫

dn̂′Ri(n̂)Rj(n̂
′)
∑

l

Cl

∑

m

Ylm(n̂)Y ∗
lm(n̂′)

=

∫

dn̂

∫

dn̂′Ri(n̂)Rj(n̂
′)
∑

l

Cl
(2l + 1)Pl

[

n̂ · n̂′
]

4π

≡
∑

l

2l + 1

4π
ClWl,ij (2.10)

where

Wl,ij ≡
∫

dn̂

∫

dn̂′Ri(n̂)Rj(n̂
′)Pl

[

n̂ · n̂′
]

, (2.11)

and Pl is the lth Legendre polynomial.

It is convenient at this point to introduce the flat-sky limit in which a small patch of the

sky is approximated as a two dimensional plane. This approximation is appropriate here

because we are interested in the small region of CMB around a galaxy cluster, on the scale

of tens of arcminutes. In this limit, n̂ · n̂′ can be replaced with cos(|~x − ~x′|) where ~x and

~x′ are two dimensional vectors specifying locations in the plane. Furthermore, in the limit

of large l, Pl(cosx) ≈ J0(lx) where J0 is the 0th order Bessel function of the first kin. The

window function can then be re-written as

Wl,ij ≈
∫

d2x

∫

d2x′Ri(~x)Rj(~x
′)J0

(

l|~x− ~x′|
)

. (2.12)

Appoximating the Legendre polynomial as a Bessel function has a negligible impact on our

analysis.

A more convenient form for the window function is found by expressing the Bessel function
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in its integral representation:

Wl,ij =
1

2pi

∫

d2x

∫

d2x′Ri(~x)Rj(~x
′)
∫ 2π

0
dφ e−il|~x−~x′| cosφ

=
1

2π

∫ 2π

0
dφ

∫

d2x

∫

d2x′Ri(~x)Rj(~x
′)e−i~l·(~x−~x′), (2.13)

where in the second line l has been promoted to a vector ~l such that the angle between ~l

and ~x− ~x′ is φ. The window function then becomes

Wl,ij =
1

2π

∫ 2π

0
dφ

[
∫

d2xRi(~x)e
−i~l·~x

] [
∫

d2x′R∗
j (~x

′)e−il·~x′
]∗

. (2.14)

The terms in square brackets are just the Fourier transform of Ri(x):

R̃i(~l) =

∫

d2xRi(~x)e
−i~l·~x

=

∫

d2xR(~x− ~xi)e
−i~l·~x

= e−i~l·~xi
∫

d2xR(~x)e−i~l·~x

= e−i~lR̃(~l). (2.15)

So finally, the window function can be written as

Wl,ij ≈
1

2π

∫ 2π

0
dφ |R̃(~l)|2e−i(~xi−~xj). (2.16)

To speed up the evaluation of the unlensed covariance matrix, we build up a table of CS,ij

as a function of |~xi − ~xj | and the angle between ~xi − ~xj and the x-axis. The covariance

matrix can then be evaluated quickly by interpolation. We compute the input CMB power

spectrum, Cl, using CAMB2; this power spectrum is shown in Fig. 1.2. Note that our Cl

model includes the effects of lensing by large scale structure..

2. http://camb.info
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2.2 The Lensed Pixel-Pixel Covariance Matrix

As discussed above, lensing changes the directions of photons so that a photon that is

observed at n̂ originally came from a direction n̂unlen = n̂−~δ(n̂) where ~δ(n̂) is the deflection

field. This means that Eq. 2.7 must be replaced with

Θ(n̂) =

∞
∑

l=1

l
∑

m=−l

almYlm(n̂unlen)

=

∞
∑

l=1

l
∑

m=−l

almYlm(n̂− ~δ(n̂)). (2.17)

Therefore the lensed covariance matrix element is

CS,ij =

∫

dn̂

∫

dn̂′Ri(n̂)Rj(n̂
′)
∑

l

Cl

∑

m

Ylm(n̂− ~δ(n̂))Y ∗
lm(n̂′ − ~δ(n̂′))

=

∫

dn̂

∫

dn̂′Ri(n̂)Rj(n̂
′)
∑

l

Cl
(2l + 1)

4π
Pl

[

(n̂− ~δ(n̂)) · (n̂′ − ~δ(n̂′))
]

. (2.18)

Making a plane approximation we can write

n̂− ~δ(n̂) ≈ ~x− ~δ(~x) (2.19)

where ~x and ~δ(~x) are vectors in the plane. Then we have

CS,ij ≈
∫

d2x

∫

d2x′Ri(~x)Rj(~x
′)
∑

l

Cl
(2l + 1)

4π
Pl

(

cos
∣

∣

∣
(~x− ~δ(~x))− (~x′ − ~δ(~x′))

∣

∣

∣

)

≡
∫

d2x

∫

d2x′Ri(~x)Rj(~x
′)g(~x− ~δ(~x), ~x′ − ~δ(~x′)), (2.20)
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where we have defined

g(~x− ~δ(~x), ~x′ − ~δ(~x′)) =
∑

l

Cl
(2l + 1)

4π
Pl

(

cos
∣

∣

∣
(~x− ~δ(~x))− (~x′ − ~δ(~x′))

∣

∣

∣

)

≈
∑

l

Cl
(2l + 1)

4π
J0

(

l
∣

∣

∣
(~x− ~δ(~x))− (~x′ − ~δ(~x′))

∣

∣

∣

)

. (2.21)

Eq. 2.20 reduces to Eq. 2.10 in the limit that there is no deflection.

It is difficult to simplify Eq. 2.20 further as we did in the unlensed case because the

deflection vectors vary as a function of ~x. It is possible, though, to directly integrate Eq.

2.20 numerically to calculate the covariance matrix elements. To perform this integration

we rely on the VEGAS Monte Carlo integration algorithm, which uses importance sampling

to improve the accuracy of standard Monte Carlo integration [Lepage, 1978].

Unfortunately, direct integration of Eq. 2.20 is not practical for the purposes of actually

detecting CMB cluster lensing. As we will see, the covariance matrix must be computed many

times for each cluster, and each evaluation requires some 10000 evaluations of Eq. 2.20 (since

we use Npix ∼ 100). Rather than perform the full 4D integral in Eq. 2.20 to evaluate the

lensed covariance matrix, we instead rely on simulations of the lensed sky. Generating these

simulations requires generating many realizations of the unlensed covariance matrix (which

is easy to compute using Eq. 2.16) at high resolution, lensing these realizations by deflecting

pixels according to a deflection model, and applying the beam and transfer functions to these

lensed maps. Each of these steps are described in more detail in §3. We then compute a

lensed covariance matrix by computing the covariance matrix of the simulated data across

many realizations. To confirm that this process works, we compare the covariance matrix

computed from simulations to that computed by direct integration. This comparison is

shown in Fig. 2.1. The results of our likelihood analysis (§4) suggest that the accuracy of

the simulation method is sufficient for our needs.

For the deflection template we use the NFW deflection model given in Eq. 1.8. In our

analysis we keep the concentration fixed to c = 3 (close to the expected concentration of
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Figure 2.1: Comparison of two different methods for computing the lensed covariance matrix:
direct integration and simulations (realizations). The jaggedness of the curve computed via
direct integration is due to our use of a Monte Carlo method for evaluating the integral. The
jaggedness of the curve computed via simulations is due to the finite number of samples.
We prefer to compute the covariance matrix via simulations when possible as it is much less
computationally expensive.

28



a M = 5 × 1014M⊙ cluster at z = 1) and evaluate the likelihood as a function of a single

parameter, M200. Our use of the NFWmodel with fixed concentration is motivated primarily

by simplicity. Although the NFW profile may not be an exact match to the true cluster mass

distribution, because we are interested only in obtaining a first detection of the CMB cluster

lensing effect the NFW model should suffice for our purposes. In light of the problems with

the NFW profile discussed above, the mass constraints that we obtain from our analysis

should perhaps not be viewed as constraints on the true cluster mass, but rather constraints

on an NFW fit to the cluster mass distribution. We save a more detailed treatment of the

cluster mass distribution for future work.

2.3 Contamination from the Sunyaev-Zel’dovich Effect

As mentioned above, the thermal SZE results in a distortion to the CMB around galaxy

clusters that has a magnitude significantly in excess of the distortion caused by gravitational

lensing. As we demonstrate below (§4.2), simply ignoring the SZE results in a signficant

bias. It is therefore important to consider methods for removing the SZE contamination.

The CMB distortion resulting from the SZE differs in two significant ways from the cluster

lensing distortion. First, the morphology of the SZE on the sky differs from the lensing signal.

The lensing signal generically looks like a dipole in the temperature field across the cluster.

The thermal SZE, in contrast, looks like an overall increment or decrement in the temperature

field across the cluster, depending on the frequency of observation. The magnitude of the

thermal SZE (which dominates the total SZE signal) depends on the integral along the line

of sight of the electron pressure in the cluster. In principle, given a model for the pressure

distribution in the cluster – such as Eq. 1.13 – we can construct a model for the SZE that

can then be incorporated into the likelihood in Eq. 2.1. By performing a joint fit for the

parameters of both the SZE model and the lensing model we could extract constraints on

lensing that are robust to contamination from the SZE. In practice, however, considerable

variation in pressure profiles between different clusters makes this approach difficult. The
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SZE signal can by quite complicated, owing for instance, to triaxiality of the halo and non-

thermal pressure support. If the SZE model does not have sufficient freedom to fit these

complicated morphologies, there will be significant residuals to the fit which may lead to bias

in the lensing analysis. If, on the other hand, the SZE model does have sufficient freedom

to fit the true SZE signal, some of the lensing signal may be fit out by the SZE model.

A second approach to dealing with thermal SZE contamination is to use spectral infor-

mation. As discussed above, expressed in terms of brightness temperature fluctuations, the

SZE is frequency dependent while the lensing signal is not. With multi-frequency observa-

tions, therefore, these two effects can be disentangled. The simplest approach – and the one

we rely on here – is to create an ‘SZE-free’ map from a linear combination of multiband

observations. As will be discussed in more detail below, the SPT observes at frequencies of

90, 150 and 200 GHz. The SZE-free linear combination of these three observation channels

is created as follows. First, all three maps are smoothed to the resolution of the 90 GHz

map since that map has the lowest angular resolution. Next, a linear combination of the 90

and 150 GHz maps that cancels the SZE while preserving the primordial CMB is generated;

this is possible since the spectral weight of the SZE signal at both 90 and 150 GHz is known

(Eq. 1.11). Lastly, this linear combination map is added to the 220 GHz map (which is

assumed to be SZE-free already since 220 GHz corresponds to the null in the thermal SZE)

with inverse variance weighting to minimize the noise in the final map. In the limit that the

cluster electrons are non-relativistic, the map created in this way should be free of contami-

nation from the thermal SZ. While this process removes (most) of the SZE contamination, it

has two unfortunate consequences. For one, we have degraded the resolution of our maps to

match the map with the worst resolution. Second, the final SZE-free map has about twice

the noise level of the 150 GHz map (which is observed to greater depth than the 90 and 220

GHz maps).
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2.4 Accounting for Foregrounds

As discussed in §1.6, Poisson and clustered foregrounds make a significant contribution to

the measured data and should therefore be incorporated into our model covariance matrix.

Some of the Poisson and clustered foreground emission likely comes from behind the galaxy

clusters we are interested in, and is therefore lensed by these galaxy clusters. Accurately

modeling the extent to which the foregrounds are lensed would require a model for the

redshift distribution of the foregrounds. In the interest of simplicity, rather than attempt

to generate such a model, we assume that the foregrounds are unlensed in our analysis. By

analyzing mock data, we determine an upper limit to the bias introduced into our analysis

by this assumption (see §4.3).

Templates for the power spectra of the Poisson and clustered foregrounds were presented

in §1.6. The amplitude of the clustered foreground template is taken from Keisler et al. [2011],

after adjusting to account for the fact that we use a linear combination of the three frequency

maps (the SZE-free linear combination). The resultant normalization is D3000 = 47µK2.

The amplitude of the Poisson template is determined on a field-by-field basis from SPT-data.

The power spectrum is computed for each field in the range 5000 < l < 10000 and the pre-

dicted clustering template is subtracted. The remaining power is dominated by the Poisson

component and fitting a flat Cl model to the residual power yields its amplitude. Given

the properly normalized templates for the Cl’s of the Poisson and clustered foregrounds, we

compute their contribution to the model covariance matrix using Eq. 2.16.

2.5 Additional Systematics

Above, we have considered two potentially important sources of systematic error: contami-

nation from the SZE and uncertainty in the degree to which foregrounds are lensed. There

are, however, several additional potential sources of systematic error that warrant some

discussion: lensing by LSS, relativistic corrections to the SZE and the kinematic SZE.
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In general, the amount of lensing experienced by the CMB is sensitive to a weighted

integral of the matter distribution along the line of sight to the last scattering surface. This

means that large scale structure in principle also contributes to lensing in the direction of

clusters. On average, lensing by large scale structure should not bias the cluster lensing

measurements as deflections towards the cluster are equally likely as deflections away from

it. Since we consider stacking constraints from many clusters to achieve detection of the

cluster lensing effect, lensing by LSS should not lead to a bias in our results. However,

Metzler et al. [2001], Hoekstra [2003], Dodelson [2004b], Hoekstra et al. [2011] have argued

that in the context of weak lensing shear measurements, LSS contributes a significant amount

of noise to cluster mass constraints. Similar noise should be present in CMB cluster lensing

constraints. However, since the noise level introduced by LSS is small relative to the strength

of the expected stacked cluster lensing detection, we can safely ignore this effect [e.g. Seljak

and Zaldarriaga, 2000].

As discussed in §1.5, relativistic effects induce a correction to the thermal SZE spectrum,

f(x), that depends on the electron temperature in the cluster, Te. Since these effects are

ignored when we create the SZE-free linear combination maps, residual thermal SZE con-

tamination may result. However, the magnitude of the relativistic corrections is first order in

kTe/me [Itoh et al., 1998]. For typical cluster electron temperatures of 7 kev, the magnitude

of these corrections is only (7 keV/511 keV) ∼ 0.01 and can therefore be safely neglected in

this work.

Finally, since the spectral shape of the kinematic SZE differs from that of the thermal

SZE, the kinematic SZE will still be present in the SZE-free linear combination map described

above. In fact, since the kinematic SZE preserves the blackbody form of the CMB (only

changing its temperature), frequency information alone cannot be used to disentangle the

kinematic SZE from primordial anisotropy. In principle, the morphology of the kinematic

SZE could be used to separate it from the lensing signal. Any kinematic SZE due to bulk

motion of the cluster relative to the Hubble flow should manifest itself as an overall increment
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or decrement in the CMB temperature across the cluster. However, if the cluster is rotating,

the kinematic SZE can appear as a dipole on the CMB, very similar to the expected signal

from cluster lensing. Furthermore, as we show in §4.2 for the case of SZE contamination,

just because a contaminant has a different morphology than the signal does not mean it

cannot bias the lensing constraints.

Fortunately, as discussed above, the kinematic SZE is expected to be more than an

order of magnitude below the thermal SZE and should therefore be smaller than the lensing

signal (although perhaps not much smaller). Additionally, the kinematic SZE should be

uncorrelated with the behvior of the CMB near the cluster, whereas the lensing signal will

be highly aligned with the direction of the CMB gradient. We therefore expect that kinematic

SZE contamination should not bias our lensing constraints, but rather introduce an extra

source of noise. We save a detailed treatment of the effects of kinematic SZE contamination

for future work.

2.6 Constraining CMB Cluster Lensing with the Likelihood

We now have all the ingredients necessary to constrain the masses of clusters using CMB

cluster lensing. For a vector of measured temperature values, ~d, around a single cluster we

evaluate

L(~d;M200; z) =
1

(2π)Npix/2
√

det [C(M200; z)]
exp

[

−1

2
~dTC−1(M200; z)~d

]

. (2.22)

The model covariance, C(M200; z), can be broken into three parts:

C(M200; z) = Cprimordial(M200; z) + Cforegrounds + Cnoise, (2.23)

where Cprimordial(M200; z) is given by Eq. 2.20 and depends on the cluster mass and redshift

through the deflection field template, ~δ(M200), given in Eq. 1.8. Cprimordial(M200; z) also
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depends on the cosmological parameters through the Cl’s. Since the cluster redshift is tightly

constrained by other observations we do not allow it to vary in our analysis. Cforegrounds

is the unlensed foreground covariance matrix. As discussed above, our use of the unlensed

foreground covariance matrix is not quite correct, but we will quantify the bias introduced

into our analysis by this assumption. Finally, Cnoise is measured from data as described in

§3.1.

To constrain the cluster mass, we evaluate the likelihood across a grid of M200. In

principle, the covariance matrix needs to be evaluated for every cluster redshift and for each

of the mass values that we explore. In practice, because the computation of the covariance

matrix is computationally expensive, we find it preferable to first evaluate the covariance

matrix across a relatively coarse grid of M200 and z. When evaluating the likelihood, we

interpolate this table of covariance matrices to the desired mass and redshift.

Some confusion may arise from the fact that we use a Gaussian likelihood in Eq. 2.22

despite the fact that we have stated above that the lensed CMB is non-Gaussian. The lensed

CMB is a remapped Gaussian random field. Given a known deflection field, our expression

for the likelihood effectively undoes the effects of lensing so that correlations between points

on the sky are evaluated in their unlensed positions. When written in this way, our use of a

Gaussian likelihood to describe the lensed CMB is correct. However, this approach ignores

the effects of lensing by LSS. The deflection angles caused by LSS are unknown and therefore

cannot be ‘undone’ in our model covariance matrix. While we do incorporate the effects of

lensing by LSS into our model Cl’s, it is not strictly correct to use a Gaussian likelihood.

We expect, though, that the error introduced into our analysis by this assumption is small.

Finally, because the CMB cluster lensing signal for a single cluster is well below the noise

level of SPT, it is unlikely that we can obtain a detection of the effect from a single cluster.

To obtain a detection, we must stack constraints from many (several hundred) clusters. We

perform this stacking at the likelihood level, and consider a single M200 for all clusters. In

34



other words, we compute

Ltotal({~di};M200) =

Nclusters
∏

i=1

L(~di;M200), (2.24)

where Nclusters is the total number of clusters in our dataset. This method of stacking

clusters is appealing because it is simple and because it depends only on the lensing signal.

Unfortunately, when the likelihood is computed in this fashion, the final likelihood will

necessarily be broadened by the inclusion of clusters with different masses.

Another approach to stacking the CMB cluster lensing constraints is to compute

Ltotal
joint({~di,Mi};M200/Mexternal) =

Nclusters
∏

i=1

L(~di;M200/Mexternal,i), (2.25)

where Mexternal,i is the mass of the ith cluster as inferred by some other means (such as

observed SZE decrement). Assuming that the lensing mass is related to the inferred mass by

some scaling relation, i.e. M200 = αMexternal,i, then the stacked likelihood considered as a

function of M200/Mexternal,i should be centered at α and will not be broadened by spread in

the true cluster masses. In other words, this approach to stacking the likelihoods measures a

scaling relation between the lensing mass and some other observable rather than the lensing

mass alone.

35



CHAPTER 3

MOCK DATA

To test the techniques that we have developed for extracting the cluster lensing signal, we

generate and analyze mock data. The mock data includes contributions from the lensed

CMB, foregrounds, and instrumental noise. We have attempted to make the mock data as

close as possible to data from the SPT-SZ Survey. To this end, we use realistic noise models,

beam and transfer functions, and cluster selection (in mass and redshift).

3.1 The South Pole Telescope

The SPT is a 10-meter diameter telescope located at the South Pole (more details about

the telescope can be found in Ruhl et al. [2004], Padin et al. [2008], Carlstrom et al. [2011]).

During the 2007 to 2011 observing season the SPT conducted the SPT-SZ survey with the

primary aims of measuring the CMB power spectrum to high l and detecting galaxy clusters

via the SZE. The SPT-SZ survey covers roughly 2500 sq. deg. of the southern sky at

frequencies of 90, 150 and 220 GHz. The final survey depths at each of these frequencies

are roughly 40µK-arcmin, 18µK-arcmin, and 80µK-arcmin respectively and the resolution

of the maps is roughly 1 arcminute.

SPT records sky observations as a sequence of time-ordered data (TOD) while the tele-

scope scans across the sky. Several filters are applied to the TOD to improve data quality

and reduce computational overhead. These filters translate into a complicated, non-isotropic

weighting pattern on the sky, i.e. the transfer function. Because of TOD filtering, the SPT

transfer function departs significantly from isotropy; we must therefore consider the full,

two-dimensional transfer function. The SPT-SZ Survey was divided into 19 fields across

the full survey area. As different filtering schemes and scanning strategies were applied to

different fields, the transfer function of SPT is field-dependent. Furthermore, the projection

of data from the curved sky to flat maps causes the transfer function to vary slightly across
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individual fields. Here, we ignore the intra-field variation of the transfer function, but do al-

low the transfer function to vary between fields. We use the transfer function measurements

by George et al. in prep. [2014]. The optical response of the SPT to sources on the sky – the

beam function – must also be characterized. Measurement of the beam function for SPT is

described in Keisler et al. [2011]. The Fourier transform of the combined SPT 2D beam and

transfer function – B(n̂, n̂′) in the notation introduced above – for a single field is shown in

Fig. 3.1.

Instrumental noise in SPT is approximately white but there is some correlated noise

structure. As the measurement of CMB cluster lensing relies on detecting small changes in

correlations between pixels, it is important to build an accurate noise model for SPT data

that takes these pixel correlations into account. The noise model can be built using SPT data

itself. SPT generally performs a left and right scan for each field that it observes. While

the sum of these two scans contains sky signal, the difference between the left and right

scan maps should provide a measure of instrumental noise. The noise covariance matrix is

calculated by sampling from these left-right difference maps1. In the sampling process we

skip over patches of the sky that are near point sources or clusters. As with the transfer

function, SPT’s noise covariance is a field dependent quantity and we treat it as such in our

analysis. The 2d noise covariance measured using the difference maps is shown in Fig. 3.2

for a single field.

SPT detects clusters via the SZE [e.g. Staniszewski et al., 2009]. To date, several hundred

clusters have been found in the SPT-SZ survey. As the SZE is redshift independent, the SZE

detection cannot be used to constrain the cluster redshift. Instead, redshifts of SZE-detected

clusters are obtained via follow-up optical observations. A preliminary catalog of clusters

detected at greater than 4.5σ significance with measured redshifts contains 523 clusters. For

our analysis of mock data we assume the same number of clusters.

1. Since our method of eliminating SZE contamination involves the creation of a new, SZE-free map from
a linear combination of three frequency maps, the left and right maps are also transformed via this linear
combination before the noise covariance is computed.
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Figure 3.1: Combined l-space beam and transfer function for SPT field RA6HDEC-62.5.
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3.2 Generation of Mock Data

There are several steps to the generation of the mock data, each of which are described

in detail below. The ultimate aim here is to generate a cutout of mock data around each

mock cluster that is as close as possible to real data from the SPT. In most of our analysis

we consider square cutouts that measure 5.5 arcminutes on a side, with square pixels 0.5

arcminutes on a side. This window is expected to contain the bulk of the CMB cluster

lensing signal [e.g. Holder and Kosowsky, 2004], but extensions to large angular scales may

be investigated in future work.

We first generate realizations of the CMB and foregrounds at 0.05 arcminute resolution

(well below the final 0.5 arcminute pixel scale of the mocks) that are 70 arcmin on a side.

The fine resolution is necessary to accurately capture the small deflections due to lensing,

which are typically less than 0.5 arcminutes. The large window size (70 arcmin) relative to

the final window size (5 arcmin) is necessary to correctly take into account the full effects of

the beam and transfer function which have support out to large scales.

To generate the CMB realizations, we compute the unlensed pixel-pixel covariance matrix,

Cunlen, at 1 arcminute resolution (Eq. 2.10). A Gaussian realization of Cunlen is then

generated in the following manner. First, we compute the Cholesky decomposition of Cunlen:

Cunlen = SST (3.1)

where S is a lower left triangular matrix. The existence of S is guaranteed by the fact that

Cunlen is necessarily positive definite; there are several fast routines available for numeri-

cally computing the Cholesky decomposition. We then generate an Npix-element vector ~n

that consists of random numbers independently drawn from a normal distribution with unit

variance. Computing ~x = S~n gives us the desired Gaussian random realization of Cunlen.
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This can be confirmed by computing

cov(~x, ~x′) = E
[

S~n(S~n′)T
]

= E
[

S~n~nTST
]

= SIST

= Cunlen.

To generate the high-resolution unlensed CMB map (0.05 arcminute resolution), we inter-

polate the low-resolution CMB map (1 arcminute resolution) generated from the covariance

matrix. The CMB is very smooth below scales of ∼ 10 arcminutes, so our interpolation from

1 arcminutes to smaller scales is justified.

We must also generate unlensed realizations of the foregrounds. The procedure described

above is not feasible for the foregrounds since the foregrounds have most of their power at

very small scales. This would entail a prohibitively large Cunlen. Instead, realizations

of the foregrounds are generated starting with a realization of Gaussian white noise with

unit variance at the high-resolution pixel scale. Fourier transforming this white noise map,

multiplying by the desired power spectrum and Fourier transforming back gives us a map

with the desired properties. Note that this method does not capture power at scales larger

than 70 arcminutes (the size of the realization), hence our decision to use a different method

for generating the CMB realizations. At scales larger than 70 arcminutes, however, the

foreground power is dwarfed by the primordial CMB so this method is sufficient for generating

foreground realizations.

With the unlensed CMB and foreground realizations generated, the next step is to com-

pute the deflection angles across the high-resolution map. The deflection angles are computed

using the NFW template from Eq. 1.8, assuming values of M200, zcluster, zS , and c. Note

that zS = 1089 for the CMB, but as described previously, there is no single zS for the fore-

grounds; our approach to dealing with this issue is discussed below. For our analysis we will
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fix c = 3. While the true cluster profile may not be perfectly described by an NFW profile

with c = 3, this is largely irrelevant to our aims here. We are interested in whether or not

the analysis extracts the correct input model. Any failings of the NFW profile to fit true

clusters is a more generic problem that is outside the scope of this work.

At this point it is important to again emphasize the distinction between the deflection

field, δ(~θ), and the NFW deflection profile expressed as D(~θ); the former takes photons

observed at ~θ to their unlensed positions, while the later takes photons originating from ~θ

to ~θ +D(~θ). Since D(~θ) is rotationally invariant and the deflection vectors always point in

the radial direction, we compute D(~θ) as a function of |~θ| and interpolate this function at

the lensed positions to get δ(~θ).

Given a deflection field δ(~θ), the value of the lensed map at ~θ is then computed by in-

terpolating the unlensed map at ~θ − δ(~θ). This procedure is well defined as long as the

fluctuations in the unlensed map are well-sampled; if, on the other hand, there are fluc-

tuations in the map below the pixel scale (0.05 arcminutes for the high resolution map),

then interpolating the map at new pixel positions will yield nonsensical results. Both the

CMB and the clustered foreground meet this requirement: the primordial CMB is smooth

over scales of about 10 arcminutes and the clustered foreground becomes subdominant to

the other components at about 2 arcminutes. The Poisson foreground, however, is not well

sampled in the unlensed map because it has power down to very small scales. To get around

this, we generate a realization of the lensed Poisson foreground directly from the covariance

matrix in Eq. 2.20. This realization is computed at the final pixel scale (0.5 arcminutes).

Next, the mock data are binned to 0.5 arcminutes to match the resolution at which the

SPT beam and transfer function were computed. The beam and transfer function are then

applied via Fourier space multiplication and a 5.5 arcminute window around the cluster

center is then extracted (our final cutouts have 11 × 11 pixels, with the cluster occupying

the central pixel). Finally, a realizations of the instrumental noise is generated from the

measured noise covariance matrix and added to the mock data.
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To generate an SPT-like catalog of cluster masses and redshifts we use the N-body simu-

lations described in van Engelen et al. [2014]. Since the SPT-SZ survey covers roughly 2500

deg2 while the simulations fill an octant on the sky, clusters were randomly selected from

the simulation with probability 2500/5156.62 ∼ 0.48. The most massive 523 clusters were

then selected from this reduced set of clusters. In reality, SPT identifies clusters based on

their observed SZE decrement; since the decrement increases with mass, our selection of the

most massive clusters is a reasonable proxy for the true SPT selection. The distribution of

cluster masses in the mock survey is shown in Fig. 3.3.

Fig. 3.4 shows cutouts of the lensed and unlensed CMB with and without the beam

applied; to make the effects of gravitational lensing more obvious, here we consider lensing

by a M200 = 1016M⊙ cluster. The cluster – which is located at the center of the image –

has z = 1 and an NFW mass distribution with c = 3. Comparing the upper two panels of

Fig. 3.4 makes it clear that the effect of gravitational lensing is to magnify the CMB near to

the cluster center. Even for a M200 = 1016M⊙ cluster, though, the effect is relatively small.

The lower panels in Fig. 3.4 show that the beam has a significant impact on the observed

temperature pattern on the sky. Since most of the power in the CMB is at large scales, the

beam acts as a high-pass filter to the roughly 1.5 arcminute beam size, and therefore reduces

its overall power.

Fig. 3.5 shows cutouts of the mock Poisson and clustered foregrounds with and without

the beam applied. These figures make it clear that the foregrounds have significantly more

small-scale power than the CMB. As a result, for the foregrounds the beam acts as a low

pass filter to the roughly 1.5 arcminute beam size.
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Figure 3.4: Cutouts from the mock data. Top left: unlensed CMB with no beam/transfer
function; top right: lensed CMB with no beam/transfer function; lower left: unlensed CMB
with beam/transfer function; bottom right: lensed CMB with beam/transfer function. To
more clearly show the effects of gravitational lensing we assume a cluster mass of M200 =
1016M⊙. The resolution of cutouts with the beam/transfer function has been degraded to
the final pixel scale of 0.5 arcminutes.
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Figure 3.5: Cutouts from the mock data. Top left: unlensed Poisson foreground with no
beam/transfer function; top right: unlensed Poisson foreground with beam/transfer function;
lower left: unlensed clustering foreground with no beam/transfer function; bottom right:
unlensed clustering foreground with beam/transfer function. The resolution of cutouts with
the beam/transfer function has been degraded to the final pixel scale of 0.5 arcminutes.
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CHAPTER 4

RESULTS OF ANALYSIS OF MOCK DATA

We now consider the results of analyzing the mock data described above. Our goal here is

two-fold. First, we show that using the techniques presented above, the true cluster mass

can be extracted with minimal bias; this is done by considering clusters of a single mass and

redshift in a single field (i.e. single noise covariance, beam and transfer function). Second,

we consider the analysis of a set of clusters with realistic masses and redshifts, to show the

projected detection significance for data from the SPT-SZ survey. In both cases, we assume

that the technique described above for eliminating SZE contamination has been applied

(except when we consider the effects of SZE contamination in §4.2).

In order to establish the robustness of a detection of CMB cluster lensing, it is essential

that we obtain no detection when the analysis is applied to the unlensed CMB. This null test

ensures that if a lensing signal is observed, it is actually coming from lensing. In the mock

data it is easy to simply turn off lensing. In the real data, this test can be performed by

analyzing random patches of the CMB that are not near to clusters. Below, we show both

the results of the null test (‘Off cluster’) as well as the results of the ‘On cluster’ analysis.

4.1 Single Field, Single Mass, Single Redshift

Fig. 4.1 shows the results of our analysis applied to mock data generated entirely from the

CMB, without foregrounds or instrumental noise. We consider here clusters with z = 1,

M = 5 × 1015M⊙ and concentration c = 3. The beam and transfer functions are those

corresponding to SPT field RA6HDEC-62.5, which was chosen as representative of the other

fields. Each dashed black curve corresponds to the likelihood computed from the data for

a single mock cluster. We see that even in this highly idealized no-noise and no-foreground

scenario, the lensing signal from a single cluster may not always be detected. This is because

the ability to detect the signal depends on the behavior of the CMB behind the cluster: if
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the CMB gradient behind the cluster is small, the CMB cluster lensing signal will also be

small. On the other hand, if there is a large gradient behind a massive cluster, it may be

possible to detect the lensing signal for a single cluster. The dashed curves in Fig. 4.1 also

make it clear that the constraints on M200 for a single cluster are highly non-Gaussian. As a

consequence of the central limit theorem, with many stacked clusters the constraints become

more Gaussian.

The solid black curves in Fig. 4.1 corresponds to the combined likelihood from 523

clusters (since the true SPT sample has this many clusters) and the different curves are

different realizations of the CMB for each of these 523 clusters. The solid blue curve is the

combined constraint from all realizations of all clusters. It is clear from Fig. 4.1 that when

the only source of sky signal is the lensed CMB, we recover the correct cluster mass with

no measurable bias. Furthermore, we correctly recover M = 0 in the ‘off cluster’ case as

expected.

Fig. 4.2 adds in the effects of unlensed foregrounds, both Poisson and clustered. These

constitute an additional source of noise to the CMB cluster lensing measurement, so it is

not surprising that the likelihood is broader in this case. It is interesting to note that the

noise added by the foregrounds is large enough that detection of the cluster lensing effect

for a single M = 5 × 1014M⊙ cluster is unlikely. The stacked constraint from 523 clusters

is strong enough, though, to yield a many-σ detection. Again, we see that the true cluster

mass is recovered with essentially no bias, and that M = 0 is recovered off-cluster.

Fig. 4.3 adds in the effects of instrumental noise. Comparing to Fig. 4.2, it is clear

that instrumental noise significantly degrades our ability to constrain CMB cluster lensing.

This is not unexpected since the level of instrumental noise is well above the magnitude

of the cluster lensing signal for a single cluster. Detection of cluster lensing for a single

M = 5 × 1014M⊙ cluster is impossible in this case. Again, though, we see that there is

no apparent bias to the stacked results, on- or off cluster. It is also exciting to see that a

detection of the cluster lensing effect is highly likely for 523 stacked clusters. We also note
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that the shape of the likelihood is not invariant under shifts in M200; the likelihood generally

becomes narrower as M200 → 0. This is not too surprising, as it is clear from Eq. 1.8 that

the deflection angle scales roughly with M200/r200 ∝ M2/3 (ignoring the dependence of g(x)

on the mass). Thus, at small mass, constant shifts in mass correspond to larger fractional

changes in deflection angle.

4.2 The Effects of Contamination from the SZE

The SZE results in an increment or decrement (depending on the frequency of observation)

in the CMB at the locations of galaxy clusters. As discussed previously, the magnitude of

this effect can be well in excess of the CMB cluster lensing signal. We explore the effects of

this contamination on our analysis by introducing an artificial SZE into our mock data. We

construct the mock SZE signal by integrating Eq. 1.12 using the pressure profile given in

Eq. 1.13. As above, we assume a NFW cluster with M200 = 5× 1014M⊙, z = 1 and c = 3.

The mock SZE signal is introduced into the mock data at high resolution and prior to the

application of the beam.

Fig. 4.4 shows the effect of the mock SZE on our likelihood analysis. For this figure we

include contributions from both Poisson and clustered foregrounds, as well as instrumental

noise. Even though the shape of the SZE on the sky differs significantly from the cluster

lensing signal, Fig. 4.4 makes it clear that the SZE significantly impacts the likelihood

analysis. Simply ignoring the SZE leads to a very large bias in the lensing constraints on

M200. This is somewhat surprising given the very different morphologies of the SZE and

cluster lensing signals. Apparently, the difference in morphology is not sufficient to prevent

our analysis from being contaminated by the SZE. This motivates our decision to remove

SZE contamination using frequency information as discussed above.
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Figure 4.1: Likelihood constraints on M200 resulting from our analysis of mock data. The
mock data analyzed for in this figure contains only lensed CMB (i.e. there is no instrumental
noise or foreground contributions). The input cluster mass is M200 = 5× 1014Modot, shown
as the vertical green line. Each black curve represents the combined likelihood from 523
mock clusters; the different black curves correspond to different realizations of the CMB
behind these clusters. The blue curve is the combined constraint from all clusters and all
CMB realizations.
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Figure 4.2: Same as Fig. 4.1 except that now unlensed foregrounds (both Poisson and
clustered) have been added to the mock data.
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Figure 4.3: Same as Fig. 4.2 except that now instrumental noise has been added to the mock
data.
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Figure 4.4: The impact of the SZE on the detection of CMB cluster lensing. Simply ignoring
the SZE in our analysis causes us to reject the true cluster mass (and to prefer a negative
mass) at high significance.
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4.3 Lensing of the Foregrounds

As discussed in §1.6, the degree to which Poisson and clustered foreground emission will be

lensed by the cluster is not very well constrained. The CIB is thought to originate from

redshifts z ∼ 0.5 to 4; since our cluster sample has z ∼ 0.1 to 1, the amount of lensing

that the foregrounds experience will likely vary from cluster to cluster. Fig. 4.5 shows how

the diagonal elements of the Poisson covariance matrix change with gravitational lensing

depending on the redshift from which the foreground originates. As described above, we

consider an 11× 11 pixel window around the cluster, so that Npix = 121 and pixel 60 is on

the cluster center. The effects of lensing on the Poisson covariance matrix are computed by

directly integrating Eq. 2.20. From Fig. 4.5 it is clear that lensing can significantly alter

the Poisson covariance matrix, changing the variance of pixels near the cluster center by a

factor of ∼ 2 (this is consistent with e.g. Hezaveh et al. [2013]). It is also clear that the

covariance matrix changes more for larger foreground redshift. This is a simple consequence

of Eq. 1.7: the deflection angles increase with increasing source redshift.

To investigate the effects of cluster lensing of the foregrounds on our analysis, we consider

two extremes: no lensing of the foregrounds, and lensing of the foregrounds assuming fore-

ground emission originates from z = 4. We have already considered the case of no foreground

lensing above. Since the CIB is not expected to have significant contributions from z > 4,

setting z = 4 gives an upper bound to the effects of gravitational lensing on the foregrounds.

We generate lensed realizations of the foregrounds using the techniques discussed in §3.2.

Since the clustering foreground has little small-scale power, we can simply interpolate an

unlensed map of this foreground at the lensed positions. This is not possible for the Poisson

foreground (since it has very small scale power), so we instead directly generate realizations

of the lensed Poisson covariance matrix.

The results of analyzing mock data with lensed foreground emission originating from

z = 4 are shown in Fig. 4.6. We emphasize that the analysis still assumes that the fore-

grounds are unlensed. The top panel considers the effects of lensing of the Poisson foreground
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only (with no clustered foreground), the middle panel considers the effects of lensing of the

clustered foreground (with no Poisson foreground) and the bottom panel considers the effects

of lensing both foregrounds. In each panel, the curves represent a stacked constraint from 24

realizations of 523 mock clusters. Apparently, lensing of the Poisson foreground at this level

causes the M200 constraint to be biased high by ∼ 10%. This is not too surprising as lensing

of the Poisson foreground induces changes to the covariance structure of the data that are

not accounted for in the model; these changes are similar to those induced by CMB lensing,

and so the best fit M200 shifts up. Lensing of the clustered foreground, on the other hand,

apparently has little effect on our CMB lensing constraints. The net result of lensing of both

foregrounds is a roughly 10% shift of our lensing constraint to higher mass. Since this shift is

well below the statistical error bars associated with the cluster lensing constraints presented

here, we ignore this effect below.

4.4 Multiple fields, Multiple Masses, Multiple redshifts

Now we consider the analysis of more realistic mock data for which the cluster masses and

redshifts are designed to approximate those in the SPT-SZ survey (see §4.2). Further, we

allow the noise covariance, beam and transfer function to vary between clusters as it does in

the SPT-SZ survey due to the clusters residing in different fields. Having already addressed

the various systematics that may affect the CMB cluster lensing measurement, we restrict

our attention here to unlensed foregrounds with no additional contaminants.

Fig. 4.7 shows the results of analyzing the realistic mock survey data. The range of

cluster masses in the sample leads to a corresponding spread in the likelihood. Even with

this spread, though, Fig. 4.7 suggests that we will likely obtain a detection of cluster lensing

if our analysis assumes a single mass for the entire cluster sample. Since the likelihoods are

moderately non-Gaussian, we evaluate the detection significance by compute the integrated

probability of M200 > 0. Averaged over the different realizations of the full cluster sample,

the projected detection significance is 3.9σ. We also see that the lensing constraint agrees
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Figure 4.5: Effects of lensing on the Poisson covariance matrix, computed by direct integra-
tion of using Eq. 2.20. We consider here a cluster located at z = 1.
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Figure 4.6: The effects of foreground lensing on the CMB cluster lensing likelihood con-
straints. The foreground emission is assumed to originate from z = 4, which should overes-
timate the effects of foreground lensing on the data. Each curve corresponds to the stacked
likelihood of 24 realizations of 523 mock clusters that include lensed CMB and the indi-
cated foreground. The lensed clustered foreground maps are generated using the simulation
technique described in §3.2; the lensed Poisson maps are generated using the technique de-
scribed in §4.3. It is apparent from the figure that lensing of the Poisson foreground leads to
a less than 10% bias in our analysis. The effect is overestimated here as most of the Poisson
foreground emission comes from z < 4.
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well with the average mass of the cluster sample in our mocks (the vertical purple line).

As discussed in §2.6, one way to account for the spread in cluster masses is to evaluate the

likelihood as a function of M200/Mexternal,i, where Mexternal,i is some mass proxy for the ith

cluster. In the actual data, Mexternal,i could be derived, for example, from a scaling relation

between some SZE observable and mass. In the mock data, since we know the true cluster

mass, it makes sense to evaluate the likelihood as a function of M200/Mtrue. These results

are shown in Fig. 4.8; as expected the likelihood peaks at M200/Mtrue = 1. Furthermore,

these results show a slightly stronger detection of the cluster lensing effect than in Fig. 4.7

because the likelihood is not broadened by the spread in cluster mass. When the likelihood

is evaluated in this way, the mean detection significance is 4.1σ.
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Figure 4.7: Constraints onM200 resulting from analysis of mock data designed to replicate as
closely as possible data from the SPT. Each black curve corresponds to stacked constraints
from an SPT-like survey that detects 523 clusters; the blue curves are combined constraints
from six such surveys. The cluster mass and redshift distributions are dervied from the N-
body simulations described in van Engelen et al. [2014]. The vertical purple line represents
the mean mass of this sample; the full mass distribution is shown in Fig. 3.3.
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Figure 4.8: Same as Fig. 4.7 except that the likelihood for each cluster is now evaluated as
a function of M200/Mtrue, where Mtrue is the true cluster mass.
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CHAPTER 5

CONCLUSION

Gravitational lensing of the CMB by galaxy clusters can potentially be used as a powerful

probe of cluster mass. Improved constraints on cluster masses are in turn essential for the

use of galaxy clusters as cosmological probes. To date, however, the CMB cluster lensing

signal remains undetected. In this thesis we have developed a maximum likelihood approach

to constraining the CMB cluster lensing signal and have applied this analysis to mock data

designed to mimic real data from the SPT-SZ survey. We have considered two important

potential sources of systematic error: contamination from the SZE and lensing of the fore-

grounds. The SZE is shown to lead to significant bias in the recovered mass constraints, but

it can be removed with the use of frequency information. Lensing of the Poisson foreground

leads to at most a 10% bias in the lensing mass constraints and can therefore be safely ig-

nored in a first detection. With the analysis of mock data we have shown that the projected

detection significance for SPT is at the 4σ level when the likelihood constraints are stacked

across ∼ 500 clusters.

The future of CMB cluster lensing is bright. The noise levels of currently available

CMB data are significantly above the cluster lensing signal. Ongoing and future CMB

experiments such as SPTPol [Bleem et al., 2012], ACTPol [Naess et al., 2014], SPT-3G

[Benson et al., 2014] and so-called Stage IV CMB experiments [e.g. Abazajian et al., 2013]

will have significantly lower noise levels than the SPT-SZ survey, allowing them to obtain

significantly stronger detections of the CMB cluster lensing signal. Fig. 5.1 shows the

projected measurement of the CMB cluster lensing signal in a SPT-3G-like survey that has

noise levels of 4.2, 2.5, 4.0 µK-arcmin noise in the 90, 150 and 220 GHz channels, respectively.

The SPT-3G curve shows the stacked constraint for 1250 clusters, normalized to the true

cluster masses. Given its low noise levels, SPT-3G will likely have the ability to measure

the CMB cluster lensing signal for some very massive individual clusters that are on top of

large gradients in the CMB. The Stage IV goal of attaining 1µK-arcmin depth over 50%
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Figure 5.1: Projected constraints on the ratio of Mlens/Mtrue for the SPT-SZ survey and
the SPT-3G survey.

of the sky would almost certainly enable study of the CMB cluster lensing effect for many

individual clusters.

Another exciting improvement to CMB cluster lensing measurements offered by ongoing

and future experiments is the addition of polarization information. Because correlation

between temperature and polarization B modes, or between polarization E and B modes, is

not expected to be present in the primordial CMB at small angular scales, these correlations

offer a direct and high signal-to-noise measure of gravitational lensing [e.g. Hu and Okamoto,

2002]. In general then, polarization measurements should result in improved constraints on

CMB lensing and in particular the cluster lensing signal. Furthermore, polarization offers
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another handle on eliminating contamination from the SZE. The polarized SZE (both thermal

and kinematic) from clusters is expected to be significantly smaller than the unpolarized

effect, so polarization observations in principle offer a less-contaminated window into CMB

cluster lensing [e.g. Holder and Kosowsky, 2004].

As the precision of CMB cluster lensing measurements improves, such measurements will

become an essential tool for probing cluster masses. Early detections of the cluster lensing

signal will likely be at the few sigma level, as we have seen above. Such measurements

are very interesting, but they do not provide very much information on the cluster masses

themselves. With higher quality data, CMB cluster lensing can provide powerful constraints

on cluster masses. These mass constraints will serve several valuable purposes. First, they

will provide a way of calibrating cluster masses detected via the SZE using CMB data alone.

Second, these mass constraints can be used to improve cluster mass-observable relationships

that are essential for using clusters as cosmological probes. Finally, because the systematics

associated with CMB cluster lensing measurements are so different from those of other weak

lensing measurements, CMB cluster lensing provides a cross-check on these measurements

and a possible avenue for studying weak lensing systematics.

This work has addressed some of the important systematics for measurement of the

CMB cluster lensing signal, including contamination from the thermal SZE and uncertainty

in the redshift distribution of foreground emission. As discussed above, however, there are

additional systematics that are deserving of more consideration, including residual thermal

SZE contamination and kinematic SZE contamination. Future work will attempt to study

the effects of these sources of contamination in more detail.
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