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Abstract

The thesis presents studies of vacuum pair productions and its applications in early

universe cosmology and high energy astrophysics. Vacuum often becomes unstable

and spontaneously decays into pairs of particles in rapidly expanding universes or

under strong external electromagnetic �elds. Theoretically, spontaneous pair produc-

tions due to such non-trivial backgrounds of spacetimes or electromagnetic �elds are

well-understood. However, the e�ect of particle productions has not been observed so

far because of experiemtal di�culties in obtaining large curvatures of space-times or

strong electric �elds. Although it may be impossible to observe the pair productions

directly via laboratory experiments, there are still powerful sources of space-time cur-

vatures or electric �elds in cosmology and astrophysics, which result in observations.

In Part I, we explore the in�ationary models in early universe utilizing pair produc-

tions through gravity. We study observable signatures on the cosmic microwave back-

ground, such as isocurvature perturbations and non-Gaussianities, generated from the

particle production of WIMPzillas and axions during or after in�ation. In Part II,

we investigate the electron-positron pair production in the magnetosphere of pulsars

whose electromagnetic �elds are expected to close to or even greater than the pair

production threshold. In particular, we demonstrate that the pair production may

be responsible for giant pulses from the Crab pulsar.
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Particle Production in the Early

Universe
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Chapter 1

Introduction

In this part of the thesis, we present a study of gravitational particle production

and the isocurvature models of in�ation. This introductory chapter provides a short

review for the in�ation (See also Refs. [1�4]) and the gravitational particle produc-

tion (See Refs. [5�7]), which are the main themes of the study. In Chapter 2, we

discuss isocurvature perturbations and non-Gaussianties originated from the particle

production of a massive scalar �eld, which is stable and very weakly interacting. In

Chapter 3, we investigate a model that the particle production of a spin-1/2 �eld

generates isocurvature perturbations. In Chapter 4, we estimate the cross-correlation

between curvature perturbations and isocurvature perturbations from QCD axions

and WIMPzillas using a Ward identity of di�eomorphism. In this part, we will use

the metric signature (−,+,+,+) and the natural units c = ~ = 1 if it is not speci�ed.

1.1 Standard Big-Bang Model

One of the basic ideas of modern cosmology is that the universe is homogeneous and

isotropic on large scales. The general line element of the homogeneous and isotropic
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universe, called the Friedmann-Robertson- Walker (FRW) universe, takes the form

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (1.1)

where a(t) is the scale factor, and k = −1, 0,−1 denotes the global curvature of the

spatial hyper-surfaces. We refer to r, θ, and φ as the co-moving coordinates. An

observer at rest remains at �xed co-moving coordinates r, θ, and φ, while proper

distances between two co-moving coordinates scale as a(t).

The Einstein equation describes how the space-time evolves by matter and energy

in the universe

Rµν −
1

2
Rgµν = 8πG Tµν , (1.2)

where G is the Newton's constant, Rµν is the Riemann tensor, R is the Ricci scalar,

and Tµν is the energy-momentum tensor. For a general perfect �uid, the energy-

momentum tensor can be written as

Tµν = (ρ+ p)uµuν + pgµν , (1.3)

where ρ and p are the energy density and the pressure, and u is the four velocity of

the �uid. uµ satis�es uµuµ = −1. For the FRW space-time, the Einstein equation

yields the Friedmann equation

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.4)

and the conservation equation

ρ̇+ 3H(ρ+ p) = 0. (1.5)

If each era of the Big-Bang model is parametrized by the equation of state

p = wρ, (1.6)
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we �nd

ρ ∝ a−3(1+w) =


a−3 for matter (w = 0),

a−4 for radiation (w = 1/3),

constant for cosmological constant (w = −1)

, (1.7)

As it can be seen from the above equation, one �nds that the universe was more

energetic in the past. Extrapolating further back in time, the universe eventually

reaches a �Big Bang� singularity, where all of space collapses to a single point at a

�nite time in the past. Although this singularity arises from a naive extrapolation

to the limit that the classical equations of motion break down, the singularity pro-

vides a formal marker in the spacetime evolution. Starting from the discovery of the

expansion of the universe in accordance with the Hubble's law in 1920s, numerous

measurements including the cosmic microwave background (CMB) radiation, the rel-

ative abundances of light elements, and more recently the observation of large scale

structures provide strong observational evidence of the Big Bang model.

1.2 In�ation

Although the Big-Bang model explains many aspects of the observation, rather special

initial conditions seem to be required for a universe similar to ours at present. Some

of the most important issues in the initial conditions are the followings:

The Flatness Problem

Introducing the relative energy density

Ωtot ≡
∑

i ρi
ρc

, (1.8)
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where ρc is the critical energy density de�ned by ρc ≡ 3H2/8πG, we can rewrite the

Friedmann equation (1.4) as

k

a2
= H2 [Ωtot − 1] . (1.9)

Taking the time-derivative, we �nd that

d

dt
|ΩK | ≡

d

dt
|Ωtot − 1| = −2 |k| ä

ȧ3
. (1.10)

This implies that unless k = 0 the curvature tends to grow in time in a decelerating

universe, such as matter or radiation dominated. The current observation indicates

ΩK = −0.042+4.3
−4.8, and the curvature should be even smaller at the early epoch, which

requires an enormous �ne-tuning of the initial �atness condition of the universe.

The Horizon Problem

In the FRW universe, the particle horizon is de�ned by the maximum distance from

which light could have reached an observer by a speci�c time:

RH(t0) =

ˆ t0

0

a(t0)

a(t)
dt. (1.11)

For a matter or radiation dominated universe, the particle horizon is given by

RH(t0) =


2t0 for radiation

3t0 for matter

, (1.12)

where the scale factor behaves as

a(t) ∝


t1/2 for radiation

t2/3 for matter

.

This implies that any length scale inside the horizon today was outside the horizon in

past. In other words, in a matter or radiation dominated universe the di�erent regions
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of the universe today were not in causal contact in the early universe. Nevertheless,

the observed universe today looks highly isotropic. For example, the CMB experi-

ments shows that causally disconnected regions on the last scattering surface have

temperature anisotropies of the same order of magnitude δT/T ∼ 10−5. The horizon

problem is about how causally disconnected regions of the early universe could have

evolved to the nearly homogeneous and isotropic universe today.

The topological defect problems

Suppose the standard model arises due to spontaneous symmetry breaking from a

larger gauge theory. Phase transitions due to symmetry breaking may produce topo-

logical defects, such as monopoles, domain-walls, and cosmic strings, in the early uni-

verse. For example, nearly every sensible grand uni�ed theory predicts the existence of

such defects. Typically, monopoles are stable and very heavy m ∼MGUT ∼ 1016GeV ,

and thus their energy density decays as a−3. If they are produced at high tempera-

ture T ∼MGUT , they should have persisted until now and their energy density should

overwhelm that of ordinary particles. However, their existence is inconsistent with

the evolution of the universe that we observe today.

A natural solution to these problems is provided by the in�ationary paradigm

[8�11]. It postulates a period in the early universe called in�ation during which

the universe undergoes an accelerated expansion ä > 0. From (1.10), the curvature

tends to decrease to zero. Furthermore, because the expansion of the universe during

in�ation grows faster than the horizon, causally connected regions would be stretched

to super-horizon scales. Also, the universe cools down and its monopoles, if it has

them, dilute away during in�ation. However, whether in�ation completely solves the

problems, in particular, the topological defect problems, is still questionable [12, 13],

and so are the naturalness and the predictability of in�ation (For example, see [14�16]
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for recent criticisms).

Such an expansion is often achieved by a scalar �eld φ called the in�aton. As long

as φ dominates the total energy density and it slowly rolls down a potential hill, the

universe will expand almost like the de-Sitter universe. This accelerated expansion

lasts long enough to resolve the initial condition problems until the in�aton φ reaches

the minimum of the potential or close to it. Once in�ation is over, the in�aton

energy is eventually converted to ordinary standard model particles, which reheats the

universe. After the reheating, the universe follows the standard Big Bang cosmology.

The simplest single �eld in�ationary model has a Lagrangian

L = −1

2
(∂φ)2 − V (φ), (1.13)

and the Friedmann equations (1.4) and the conservation equation (1.5) are written

as

H2 =
8πG

3

[
1

2
(∂φ)2 + V (φ)

]
, (1.14)

φ̈+ 3Hφ̇+
∂

∂φ
V (φ) = 0. (1.15)

As long as the slow-roll conditions

ε ≡ 4πG

(
∂V/∂φ

V

)2

� 1, (1.16)

η ≡ 8πG

(
∂2V/∂φ2

V

)
� 1, (1.17)

are satis�ed, the equations can be approximated as

H2 ' 8πG

3
V (φ), (1.18)

3Hφ̇ ' − ∂

∂φ
V (φ). (1.19)

Note that ε and η are called the slow-roll parameters, and in�ation ends when ε ' 1.



8

One of the remarkable results of in�ation models is that it provides the initial

�uctuations responsible for the inhomogeneities of the universe, such as the CMB

anisotropies. During in�ation, quantum �uctuations of the in�aton are ampli�ed and

become classical once their wavelengths are stretched beyond the horizon. These

�uctuations give rise to the primordial density perturbations, which eventually gives

predictions for the CMB anisotropies. Single �eld in�ationary models lead to almost

Gaussian, adiabatic, and scale-invariant perturbations.

1.3 Primordial Density Perturbations

The inhomogeneities were generated from quantum �uctuations and stretched to the

super-horizon scales due to the extremely rapid expansion of the universe during

in�ation. As the in�aton decays during the radiation era, these inhomogeneities

provide the initial perturbations at this epoch, called primordial perturbations. The

subsequent evolution of the perturbations is described by a set of di�erential equations

from the Einstein equation combined with the Boltzmann equation. Integrating the

equations one can relate the in�aton perturbations to the CMB anisotropies or the

inhomogeneities of large scale structures.

Adiabatic and Isocurvature Perturbations

One of interesting features of a single scalar �eld in�ation is that it yields only adi-

abatic primordial perturbations. Once the in�aton decays to various components of

the universe during the radiation era, the initial density �uctuations of these compo-

nents of the in�aton decay naturally inherit that of the in�aton, and they follow the

relation

δρφ
ρφ + pφ

=
δργ
ργ+pγ

=
δρν
ρν+pν

=
δρb
ρb+pb

=
δρc
ρc+pc

, (1.20)
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where the subscript φ, γ, ν, b and c denote the in�aton, photon, neutrino, baryon,

and cold dark matter (CDM), respectively. This is called adiabatic initial condi-

tion. Although this is a quite restrictive condition, it is in good agreement with the

observations.

However, the primordial perturbations do not necessarily satisfy the adiabatic

condition a priori. For instance, if there are additional degrees of freedom, such as

auxiliary scalar �elds, during in�ation, the perturbations in each �eld do not have to

satisfy the adiabatic condition. Therefore the perturbations from the �elds can lead

to isocurvature perturbations. Intuitively, isocurvature perturbations correspond to

setting nonzero the di�erence of the number over-densities of at least one pair of �uid

element species while setting to zero the total energy density inhomogeneity on long

wavelength scales, and they are de�ned by

Sij =
δρi
ρi+pi

− δρj
ρj+pj

, (1.21)

where i, j = γ, ν, b and c. We often consider the CDM isocurvature, which corresponds

to Scγ.

From the CMB experiments, pure isocurvature is strongly ruled out. However,

sub-dominant isocurvature perturbations mixed with adiabatic perturbations are still

allowed, and the parameter bounds of isocurvature perturbations are sensitive to

correlation with adiabatic perturbations. The detail discussion is given in 4.2.

1.4 Particle Production in an Expanding Universe

In this section, we develop the necessary tools for studying gravitational particle

production in an expanding universe. To be concrete, we quantize matter �elds,

whereas we treat the space-time background purely classically. For demonstration,

we use a scalar �eld. Most of discussion in this section follows Ref. [6].
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Quantization

We begin with the action

S =

ˆ
dnx

1

2

√−g
[
− (∂φ)2 −

(
m2 + ξR

)
φ2
]
, (1.22)

where R is the Ricci scalar. Varying the action with respect to φ yields the �eld

equation for φ [
−2x +m2 + ξR

]
φ(x) = 0, (1.23)

where

2xφ(x) ≡ 1√−g∂µ
[√−ggµν∂ν]φ(x). (1.24)

To decompose the �eld by modes, we de�ne the scalar product of φ

(φ1, φ2) ≡ −i
ˆ

Σ

φ1(x)
←→
∂µφ

∗
2(x)
√−gdΣµ, (1.25)

where Σ denotes a space-like hyper-surface, and φ
←→
∂ µψ = φ∂µψ−(∂µφ)ψ. Then using

a complete set of mode solutions {ui} of (1.23) satisfying the orthonormal conditions

(ui, uj) =
(
u∗i , u

∗
j

)
= δij,

(
ui, u

∗
j

)
= 0, (1.26)

φ can be expanded as

φ(x) =
∑
i

[
aiui(x) + a†iu

∗
i (x)

]
, (1.27)

and φ is quantized by promoting ai and a†i to the creation and the annihilation

operators for a vacuum state |0〉 satisfying the commutation relation[
ai, a

†
j

]
= δij, [ai, aj] =

[
a†i , a

†
j

]
= 0. (1.28)

Ambiguity of a Vacuum

For Minkowski space, ∂t is a time-like Killing vector, orthogonal to the space-like

hyper-surfaces t = constant, and the modes are eigenfunctions of this Killing vector
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with constant eigenvalues that allow to de�ne positive and negative modes associated

with a and a†, respectively. However, unlike the Minkowski space-time, there is no

natural positive and negative modes in a curved space-time because of absence of such

a Killing vector. Therefore any set of modes satisfying the above basic requirements

may be used in setting up the Fock space of the quantum �eld theory, and the notion

of particles depends on the choice of a set of modes.

For example, suppose a second complete set of modes {ũi} de�ning new creation

and annihilation operators ãi, ã
†
i and a vacuum state

∣∣0̃〉. As both sets are complete,

they are related by

ũj =
∑
i

(αjiui + βjiu
∗
i ) , (1.29)

ai =
∑
i

(
αjiãj + β∗jiã

†
j

)
, (1.30)

where αij and βij are called Bogoliubov coe�cients. Then the expectation value of

the operator Ni ≡ a†iai for the number of i mode particles in the state
∣∣0̃〉 is

〈
0̃ |Ni| 0̃

〉
=
∑
j

|βji|2 , (1.31)

which means the vacuum
∣∣0̃〉 contains ∑j |βji|

2 particles de�ned on the vacuum
∣∣0̃〉.

Then a natural question to ask is which set of modes furnishes the best description

of the physical vacuum. To answer the question, it is necessary to specify the quantum

measurement process. Especially, the state of motion of the particle detecting device

can a�ect the presence of quanta. For example, an inertial and an accelerated observer

may not generally agree upon the presence of particles, even in Minkowski space.

Although all inertial observers measure the same vacuum in Minkowski space, in

general this will not hold in a curved space-time as there is no preferred coordinate

system. Here we present ways to give a notion of particles in the FRW space-time.
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Hamiltonian Diagonalization

For convenience, we introduce the conformal time

η =

ˆ
1

a
dt, (1.32)

and the rescaled �eld

φ = aϕ, (1.33)

and set ξ = 0. Substituting these into Eq. (1.23), we obtain

ϕ′′ −∇2ϕ+

(
a2m2 − a′′

a

)
ϕ = 0, (1.34)

which has a similar form with the Klein-Gordon equation in Minkowski space with

the time-dependent e�ective mass

meff (η) = a2m2 − a′′

a
. (1.35)

Following the procedure described above, we expand ϕ using the Fourier modes

ϕ(x) =

ˆ
d3k

(2π)3

[
a~kuk(t)e

i~k·~x + a†~ku
∗
k(t)e

−i~k·~x
]
, (1.36)

where

[
a~k, a

†
~k′

]
= δ3(~k − ~k′), (1.37)

u′ku
∗
k − uku

′∗
k = −i, (1.38)

and u~k satis�es

u′′k +

(
k2 + a2m2 − a′′

a

)
uk = 0. (1.39)

Because the Hamiltonian for ϕ is given by

H(η) =
1

2

ˆ
d3x

[
π2 + (∇ϕ)2 +m2

eff (η)ϕ2
]
, (1.40)
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where π is the conjugate momentum of ϕ, π ≡ ϕ′, using Eqs. (1.36), (1.37), and

(1.39), it is rewritten as

H(η) =
1

2

ˆ
d3k

[
εk

(
a~ka

†
~k

+ a†~ka~k

)
+ fka

†
~k
a†
−~k

+ f ∗ka~ka−~k

]
, (1.41)

where

εk(η) = |u′k|2 + ωk(η)2 |uk|2 , (1.42)

fk(η) = u′2k + ωk(η)2u2
k,

ωk(η)2 ≡ k2 +m2
eff (t). (1.43)

One can �nd that the non-diagonal terms in the Hamiltonian at η0 vanish if

u′k(η0) = −iωkuk(η0), (1.44)

and the Wronskian condition (1.38) gives

|uk(η0)|2 =
1

2ωk(η0)
. (1.45)

This allows to uniquely de�ne an instantaneous vacuum at time η = η0.

Adiabatic Expansion

Although the Hamiltonian diagonalization provides a way to de�ne a unique vacuum,

it has been strongly criticised by [17] because the procedure over-estimates produced

particle numbers and it often does not lead to the cut-o� in particle spetra at high

energies. On the other hand, one wants to capture the notion of vacuum being a state

devoid of particles, which results in a particle de�nition for which there is minimal

particle production by the changing geometry. We expect that the geometry of space-

time has little e�ect on the notion of particles and the particle number should remain

nearly constant if the Compton wavelength of a particle is much smaller than the
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scale of the variation of the geometry, i.e., if k2 + a2m2 is large with respect to the

quantity associated with the space-time curvature, which corresponds to (a′′/a) or

(a′/a)2 in the FRW space-time . Thus the de�nition of particles can be consistently

expanded in term of the Compton wavelength and the space-time curvature.

We can construct this idea based on the WKB-type solutions

uk(η) =
1√

2Wk(η)
exp

(
−i
ˆ η

Wk(η
′)dη′

)
, (1.46)

where Wk satis�es

W 2
k (η) = ω2

k(η)− 1

2

(
W ′′
k

Wk

− 3

2

W ′2
k

W 2
k

)
. (1.47)

Then we can iteratively approximate the solution of Eq. (1.47) using the slowness of

the Wk changes. For example, as a zeroth order approximation, we have

W
(0)
k (η) = ωk(η), (1.48)

and to the next order,

W
(2)2
k (η) = ω2

k(η)− 1

2

(
ω′′k
ωk
− 3

2

ω′2k
ωk2

)
. (1.49)

Example

To complete the demonstration, we provide a toy model calculation for particle pro-

duction. We consider the time dependent e�ective mass

meff (η)2 = m2
(
c2 + d2η2

)
, (1.50)

and calculate the Bogoliubov coe�cient between two sets of modes de�ned by the

adiabatic expansion in the asymptotic past and future, {uink } and {uoutk }.

Although the space-time is not static in the asymptotic past and future, it is

varying slowly

dl

dηl
ω′k
ωk
→ 0 as η → ±∞ for l ≥ 0. (1.51)
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Using the adiabatic expansion at the zero order, we have

uk(η) ∝ exp

[
∓i
(

1

2
dmη2

)
+

i

2dm

(
k2 + c2m2

)
ln η

]
as η → ±∞. (1.52)

Then we may construct the exact solution of (1.39) using this in the asymptotic

limits:

uink (η) = (2dm)−1/4 e−πλ/8D−(1−iλ)/2

[
(i− 1) (dm)1/2 η

]
, (1.53)

uoutk (η) = uink (−η)∗, (1.54)

where λ = k2/dm+ c2m/d, and Dν(z) is the parabolic cylinder function D.

From the result, we �nd

uink =
i(2π)1/2e−πλ/4

Γ(1
2
- i

2
λ)

uoutk − ieπλ/2uout∗k . (1.55)

This indicates that if the state of the system is chosen to be |0〉, an observer at the

asymptotic future would detect a particle number spectrum

|βk|2 = exp
{
−π
[(
k2/dm

)
+mc2/d

]}
, (1.56)

which falls exponentially fast at high energies. Note that this spectrum is the same

as that for non-relativistic thermal particles.
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Chapter 2

Isocurvature Perturbation from

Boson Production

Gravitational particle production naturally occurs during the transition from the

in�ationary phase to the non-in�ationary phase. If the particles are stable and very

weakly interacting, they are natural nonthermal dark matter candidates. We show

that such nonthermal dark matter particles can produce local non-Gaussianities large

enough to be observed by ongoing and near future experiments without being in

con�ict with the existing isocurvature bounds. Of particular interest is the fact that

these particles can be observable through local non-Gaussianities even when they

form a very small fraction of the total dark matter content.

This work was performed in collaboration with Daniel Chung. It was published

in the journal Physical Review D in January of 2013 [18].
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2.1 Introduction

Standard slow-roll in�ationary models with a single dynamical �eld degree of freedom

(e.g. see the review article [2]) cannot generate large local non-Gaussianities (NGs)

[19�22], which have been widely discussed and speculated upon in the context of the

cosmic microwave background (CMB) data (e.g. [23�29]) and large scale structure

data (e.g. [30�39]). Many multi�eld mechanisms have been proposed to generate

observably large local NGs (e.g. [40�64]). Most of these models utilize coherent

condensate �eld degrees of freedom instead of incoherent many-particle states.

In this work, we explore the possibility that nonthermal dark matter (DM) par-

ticles gravitationally produced during the phase transition out of the quasi-de-Sitter

phase of in�ation [65,66] generate observably large NGs.1 These dark matter particles

can be viewed as the remnants of de Sitter (dS) temperature driven radiation during

in�ation, and no non-standard ingredients are needed for the in�ationary scenario for

the purposes of this work. The only nontrivial model requirement is that the dark

matter either be very heavy and/or superweakly interacting.

This class of scenarios e�ectively possesses only three important independent di-

mensionful parameters: the Hubble expansion rate during in�ation, the reheating

temperature, and the dark matter mass. Hence, the physics is dominantly controlled

by only two of these parameters since the third converts the other two into dimen-

sionless numbers. We choose these to be the dark matter mass mX and the reheating

temperature TRH. The existing cosmological data constraining the isocurvature per-

turbation amplitude and the dark matter abundance place bounds on the allowed

parametric range for these parameters. We �nd that to generate large observable

local non-Gaussianities characterized by an e�ective fNL parameter of around 30,

there is an upper bound of mX . 4He, where He is the expansion rate at the end

1These particles are sometimes called gravitationally produced WIMPZILLAs.
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of in�ation. We also �nd that fNL will be suppressed if TRH & 106 GeV if the dark

matter is absolutely stable.2 Somewhat surprisingly, even when theX particles make

up a small fraction of the total dark matter content while thermal relics make up the

rest of the dark matter, observably large non-Gaussianities may be imprinted.

The isocurvature perturbations in this class of scenarios have been studied previ-

ously [67]. We note that this was also brie�y considered in [40], which arrived at a

pessimistic conclusion. However, that paper did not consider the model as carefully

as [67], which reached a more realistic conclusion regarding the viability of such sce-

narios. The purpose of this work is to point out that within this framework, large

local non-Gaussianities can be generated with a single O(10−1) tuning of the dark

matter mass.

The order of presentation is as follows. In Sec. II, we discuss the class of dark

matter and in�ation models for which the current non-Gaussianity computation is rel-

evant. In Sec. 2.3, we present a computation of the two-point function, including the

cross-correlation function between the isocurvature and the curvature components.

The computation of the bispectrum and a presentation of detailed arguments as to

how the local non-Gaussianity can be large is given in Sec. 2.4. In Sec. 2.5, we check

our general analytic arguments by computing in detail numerically the observables

in the context of an m2φ2/2 in�ationary model. We then close the main body of

the work with a summary and conclusions in Sec. 2.6. In Appendix 2.7, we present

an analytic approximation to the mode function during in�ation that accounts for

the small deviation from the pure dS phase. Finally, in Appendix 2.8, we justify how

the e�ective classical background variable about which the classical perturbations are

de�ned is given by the expectation value of the quantum operator.Throughout this

work, our metric convention is (+,−,−,−).

2This mass scale has part of its origins from the maximum dark matter abundance today.
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2.2 Class of dark matter and in�ationary models

We begin by de�ning the class of dark matter and in�ationary models considered in

this work. One requirement is that the dark matter �eld X be su�ciently long lived

to be a viable dark matter candidate. Since we are considering an isocurvature dark

matter scenario, another requirement is that X is very weakly interacting with ther-

malized Standard Model (SM) particles that are assumed to arise from the in�aton

decay chain. Although it is straightforward to include dark matter interactions that

allow transformations to di�erent particles, we will assume that the self-annihilation

(or coannihilation) interactions of the dark matter are too weak to change the dark

matter number density appreciably after it is produced at the end of in�ation. Next,

we note that even if X is su�ciently weakly interacting as not to thermalize, it may

be a byproduct of a slow-roll in�aton decay with a strength larger than gravitational

strength. In such situations, the isocurvature nature of theX particles produced

gravitationally will be made impure by the in�aton decay contribution. To keep the

analysis simple for the purposes of this work, we will assume that the decay contri-

bution is negligible. Finally, we will assume thatX is a boson minimally coupled to

gravity. We will explore the complexities that arise when some of these requirements

are relaxed in future work.

The simplest model that satis�es the above criteria has two scalar �elds minimally

coupled to gravity as follows:

S =

ˆ
d4x
√
g

1

2

[
(∂φ)2 − 2U(φ) + (∂X)2 −m2

XX
2
]

= +SSM[gµν , {ψSM}] + SRH[gµν , φ, {ψSM}], (2.1)

where SSM is the SM sector, SRH is responsible for reheating, andφ is the in�aton

realizing a slow-roll in�ationary scenario with U(φ) = m2φ2/2. We note that since
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particle production during the dS to non-dS phase leads to a dS horizon temperature

population of SM one-particle states, one might naively expect a minimum reheating

temperature of TRH & He/(2π), where He is the Hubble expansion rate the end

of in�ation. However, this is incorrect since during the coherent oscillations period

between the end of the in�ation and the radiation dominated epoch, the SM radiation

dilutes with respect to the in�aton energy density.

Since we will carry out numerical analysis of the mode equations, this simple

model is useful. Furthermore, it is clear that the results generalize to a large class

of models where the interactions are very small. We note also that the requirement

of the interactions being weak enough to avoid thermalization does not require a

particularly stringent limit on the interaction couplings. For example, for typical

O(1) coupling strengths for self-annihilations, it is well known that large values of

mX will naturally lead to the nonthermal DM behavior desired in this work if(
200TeV

mX

)2(
Tmax

mX

)
. 1, (2.2)

where Tmax & TRH is the maximum e�ective temperature reached during reheating

[68]. Of course, one possible model-building obstacle with large masses is that in

situations with accidental global symmetries protecting the stability of the particles,

higher-dimension operators must be suppressed to avoid early decay. Nonetheless,

many viable beyond SM (BSM) models that contain superheavy DM candidates have

been proposed [69�81].

Given that the X particles have negligible non-gravitational interactions and min-

imal couplings to gravity, they can only be produced gravitationally or through initial

conditions. We consider the dynamics of an in�ationary patch whose Bunch-Davies

vacuum [82] satis�es

lim
k→∞

α̂k|BD, 0〉 = 0, (2.3)
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where α̂k is the annihilation operator associated with the curvature perturbations

which is approximately dominated by the in�aton. This vacuum is also assumed to

satisfy the �no-particle� condition of the adiabatic vacuum during in�ation [65,83�85]:

âk|BD, 0〉 = 0, (2.4)

where âk is the annihilation operator associated with the X �eld. The stress-energy

tensor is renormalized such that

〈BD, 0|T̂ (X,ren)
µν |BD, 0〉 = 0, (2.5)

which in practice is accomplished by the normal ordering of the creation-annihilation

operators in the adiabatic vacuum basis. This means that the classical initial condi-

tion dependent DM density vanishes.

Nonetheless, because the transition from quasi-dS phase of in�ation to the non-

dS phase after in�ation represents a non-adiabatic transition, it is well known that

non-negligible particle production occurs through Bogoliubov mixing of the creation-

annihilation operators, giving rise to a signi�cant DM abundance today [65,86]. The

physics of this particle production mechanism is similar to that of Hawking radiation.

In the intermediate mass case where mX ∼ He with minimal gravitational couplings,

we �nd numerically that the X energy density at the end of in�ation can be approx-

imated as ρx(te) ≈ 10−2H4
e , which leads to the relic abundance of X particles today

to be

ΩXh
2 ≈ 10−1

(
He

1012 GeV

)2(
TRH

106 GeV

)
. (2.6)

What is interesting about this scenario is that although the classical picture of particle

production occurs at the end of in�ation, the correlations that are relevant at the CMB

scale are set long before the bulk of the particle production occurs. This is intuitively

self-consistent from the Heisenberg time-energy uncertainty considerations. Although
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Eq. (2.6) yields the simplest possible scenario, we later generalize the situation to the

case of mixed dark matter contributions in which the total cold dark matter (CDM)

abundance is given by

ΩCDM = Ωtherm + ΩX , (2.7)

where Ωtherm are thermal relics that have only adiabatic perturbations and ΩX are

relics that have dominantly isocurvature perturbations. In this case, we de�ne

ωX ≡
ΩX

ΩCDM

, (2.8)

and will scale some of our computations to generalize our results to a wider class of

scenarios.

We now comment further on the in�ationary model relevant for the above DM

scenario. The main features of the in�ationary model that are numerically important

for the isocurvature and non-Gaussianity analyses are H∗ (the Hubble expansion rate

when the modes of interest leave the horizon), He, and TRH (the reheating tempera-

ture). As we will see, the primary role of H∗ is to determine the spectral index of the

isocurvature spectrum, He < H∗ controls the particle production, and TRH partially

controls the map between the comoving wave vector and the physical momentum. We

assume that there are curvature perturbations from the in�aton sector with the right

magnitude to approximately explain the CMB spectrum. As we will see and as is well

known, the current observational limits require that the isocurvature contribution is

subdominant.

Finally, it has been noted [40] that this class of models su�er from the boundary

condition of 〈X̂〉 = 0 being an unnatural expansion point of the �uctuations of X

for mX � H. Although it certainly is true that in this limit the H dependent

radiative corrections lift the �atness of the potential, there are no radiative tadpoles

that are generated. Furthermore, although it is true that once the non-decaying mode
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decoheres as the wavelength is stretched outside the horizon, acting like a classical

background with 〈X̂〉 6= 0 over the patch of the size of that wavelength, there is no

strong tuning in choosing a patch that has 〈X̂〉 = 0 as long as the in�ation did not

last many orders of magnitude in efolds longer than what is needed to explain the

CMB data. Indeed, because of the slight blue tilt, there is no infrared divergence in

this class of models. As we will see, the blue tilt of signi�cant isocurvature amplitudes

is still compatible with observations.

For completeness, let us also explicitly state the cuto�s of our theory. Since the

spectral index of the correlator (2.29) is related to 3 − 3
√

1− 4m4
X/9H

2 and our

scenario has m2
X > 0, the correlator has a blue spectrum (as we will see explicitly

in Sec. 2.3), and thus the loop integrals (see for example Eqs. (2.28) and (2.33)) for

the two-point function of isocurvature is independent on IR cut-o�. Therefore, an

IR cut-o� is not necessary unlike the correlators in the massless case [87]. The UV

cuto� of our theory is set to be the horizon scale at the end of in�ation: kUV = Heae.

Finally, we note that we use the scalar metric perturbation parameterization

ds2 = (1 + E)dt2 − 2a∂iFdtdx
i − a2 [δij + Aδij + ∂i∂jB] dxidxj. (2.9)

We make the usual choice for the gauge invariant variable that describes the in�aton

dynamical degree of freedom:

ζ ≡ A

2
−Hδρφ

˙̄ρφ
. (2.10)

In terms of this variable, the nearly scale invariant slow-roll in�aton power spectrum

is given as

∆2
ζ(k) ≡ k3

2π2
Pζ(k), (2.11)

where to leading order in the slow-roll parameter

ε(φk) =
M2

p

2

(
U ′(φk)

U(φk)

)2

, (2.12)
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we have

Pζ(k) =
1

12k3ε(φk)

U(φk)

M4
p

. (2.13)

the above, φk denotes the �eld value when the modek leaves the horizon. We will

give more details about theX �uid variable when discussing the two-point function

in the next section.

In summary, the class of dark matter models that is relevant for this work corre-

sponds to cases with gravitationally produced bosonic dark matter that never fully

thermalizes with the reheating radiation produced from the in�aton decay. The slow-

roll in�ationary model produces the dominant curvature perturbation spectrum and

couples to the dark matter sector only gravitationally.

2.3 Two-Point Function

Although isocurvature perturbations have been previously computed for this class of

models [67], here we redo the analysis with more careful attention to cross-correlations

between the curvature perturbations and the isocurvature perturbations because the

observational constraints have become increasingly stringent.

To begin, consider the energy momentum tensor of X:

T (X)
µν = ∂µX∂νX − gµν

[
1

2
∂αX∂

αX − V (X)

]
(2.14)

where V (X) = m2
XX

2/2. Comparing this to

T (perfect fluid)
µν ≡ (ρ

(p)
X + P

(p)
X )uµuν − gµνP (p)

X , (2.15)

we see that if we de�ne [88]

uµ ≡ ∂µX√
gαβ∂αX∂βX

, (2.16)
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we can satisfy the equality

T (X)
µν = T (perfect fluid)

µν , (2.17)

if

ρ
(p)
X ≡ uµuνT (perfect fluid)

µν =
1

2
∂αX∂αX + V (X) (2.18)

and

P
(p)
X ≡

1

2
∂αX∂αX − V (X). (2.19)

We note that to identify Eq. (2.16) with the �uid velocity, ∂µX has to be timelike.

This is consistent with the fact that any wave packet made of on-shell 1-particle states

can be decomposed in terms of mode functions characterized by timelike 4-momenta.

Unlike the coordinate dependent T
(X)
00 , ρ

(p)
X is a di�eomorphism scalar. We also note

that even though Eq. (2.18) looks like it has the wrong sign between the (∂0X)2 and

|~∇X|2, the sign is correct and ρ(p)
X is positive de�nite whenever the �uid interpretation

is valid (whenever ∂µX is timelike).

We now quantize X by promoting it to an operator X̂.explained in Appendix 2.8,

this allows us to identify

ρ
(p)
0 = 〈: ρ̂(p)

X :〉, (2.20)

where the normal ordering is with respect to the operators de�ning the X̂ vacuum

state during the quasi-dS era. After Bogoliubov transforming : ρ̂
(p)
X : to operators of

1-particle states relevant for non-dS spacetime, 〈: ρ̂(p)
X :〉 will develop a nonzero value

at that later time. We note that 〈: ρ̂(p)
X :〉 is homogeneous as long as the vacuum state

is spatially translation invariant. (Here the in�aton/scalar perturbations are treated

as operators, which means that as long as the vacuum governing these are spatially

translation invariant, 〈: ρ̂(p)
X :〉 will be spatially translation invariant as well.) Next,

we consider the semi-classical variable

δρ
(p)
X ≡ ρ

(p)
X − ρ

(p)
0 (t). (2.21)
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We can then de�ne the usual �uid variable associated with ρX

ζX ≡
A

2
−H δρ

(p)
X

d
dt
ρ

(p)
0 (t)

, (2.22)

where we parameterize the spatial scalar metric perturbation as be hSij = −a2(t)(Aδij+

∂i∂jB) with ḡµν = diag{1,−a2,−a2,−a2}. Under the di�eomorphism t→ t− ξ0, we

have

A → A+ 2Hξ0 (2.23)

δρ
(p)
X → δρ

(p)
X + ξ0 d

dt
ρ

(p)
0 , (2.24)

which makes ζX �rst order gauge invariant, as expected. Similarly, we can de�ne

gauge invariant variables ζ,ζφ, andζR associated with total energy density ρ, in�aton

energy density ρφ, and radiation energy density ρR, respectively. Since the gauge

invariant isocurvature variable that describes the di�erence between the dark matter

and the radiation, which is an in�aton descendant, is conventionally de�ned as [89]

δSX ≡ 3 (ζX − ζR) . (2.25)

Note that the in�aton eventually decays into radiations and matters, while curvature

perturbation ζ ≈ ζφ remains a conserved quantity on long wavelengths even after the

in�aton decay and it is adiabatically matched to ζR ≈ ζ, since the dark matter is

energetically subdominant at the primordial epoch.

In the comoving gauge de�ned by the coordinate system in which the in�aton

�uctuations vanish (i.e., δφ = 0), we have ζR = ζφ = A(c)/2. Hence,

δSX = δ
(c)
X =

δρ
(p)(c)
X

ρ
(p)
0 (t)

, (2.26)

where the (c) superscript refers to the comoving gauge quantity and we have used

the fact that ρ0 behaves as a
−3 once the Hubble scale is su�ciently smaller compared
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~k1

~k1 − ~k

~k ~k

Figure 2.1: A diagrammatic representation of the 2-point function of a composite
operatorδX . The open circle corresponds to external momentum �owing out, and the
shaded circle to external momentum �owing in. The slashes on the legs indicate that
theX propagators are on-shell.

to the mass mX � H. Therefore, correlator combinations involving δ
(c)
X and A(c) are

of primary physical interest. To compute them, we quantize δρ
(p)(c)
X by promoting

ρ
(p)(c)
X → ρ̂

(p)(c)
X (through the quantization of X̂) and promoting ρ

(p)
0 (t) to an identity

operator (since this was already de�ned semi-classically as a matrix element according

to Eq. (2.89)) as follows:

δρ̂
(p)(c)
X =: ρ̂

(p)(c)
X : −1̂ρ

(p)
0 (t). (2.27)

This can be used to compute 〈δρ̂(p)(c)
X (t, ~r)δρ̂

(p)(c)
X (t, 0)〉 and then can be divided by

ρ2
0(t) after this quantity settles down to give an expression for 〈δ̂(c)

X (t, ~r)δ̂
(c)
X (t, 0)〉.

Diagramatically, the 2-point function is as shown in Fig. 2.1. Hence, the 2-point

power spectrum is

∆2
δSX

(k) =
k3

2π2

ˆ
d3re−i

~k·~r〈δ̂(c)
X (t, ~r)δ̂

(c)
X (t, 0)〉

≈ k3

2π2
2

ˆ aeHe

ΛIR

d3k1

(2π)3
PX(k1)PX(|~k − ~k1|), (2.28)

in which

PX(k) ≡ m2
X

2ρ
(p)
0

|Xk|2, (2.29)

δ̂
(c)
X is approximated as m2

XX̂
2/2ρ

(p)
0 , and Xk is the solution to the mode equation in

Appendix 2.7.mX/H < 3/2 and k/(aH) � 1, we can express PX(k) approximately
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as

PX(k) = AX

(
k

k0

)γX(H∗)

k−3, (2.30)

where

γX(H) = 3− 3

√
1− 4m2

X

9H2
> 0. (2.31)

H∗ is allowed a wave vector dependence; however, this e�ect is a subdominant correc-

tion to the already small (mX/H∗)
2. It is important to note that for the parameter

range of interest γX � 1 such that k3PX is nearly scale invariant, the amplitude AX

is given by the approximate formula

AX ∼ 102|Γ(3
2
− γX(H∗)

2
)|2

2γX(H∗)π

mXH
2
∗

H3
e

× exp

[
1

ε
<
{
γX(H∗)− γX(He) + 3 ln

(
1− 1

3
γX(H∗) + H∗

mX

1− 1
3
γX(He) + He

mX

)}]
(2.32)

where ε =
M2
p

2

(
U ′(φ)
U(φ)

)2

is the usual in�aton slow-roll parameter. The complicated

exponential factor arises from considering the time evolution of the mode function Xk

to a time beyond the time when k/a < ε/H∗. We see that with a tuning of the mass

parameter to O(0.1) precision, AX can be a small number despite the exponential

factor containing ε−1 � 1. For the dark matter abundance to be compatible with

cosmological observations, it is important that H∗ > He while mX/He ∼ O(1). Using

these approximations and Eq. (2.30), we �nd that Eq. (2.28) yields

∆2
δSX

(k) ≈ k3

2π2
A2
X

(
k

k0

)2γX 1

k3
× 2

ˆ aeHe/k

ΛIR/k

d3u

(2π)3
uγX−3 |1− ~u|γX−3

≈ 4

γX

[
1−

(
ΛIR

k

)γX] [AX
2π2

(
k

k0

)γX]2

≈ 4

γX

(
k3

2π2
PX(k)

)2

, (2.33)

where we have used that γX � 1 in the second line. Note that IR cuto� ΛIR depen-

dence does not appear because of the blueness of PX (i.e. γX(H∗) > 0), and ∆2
δSX
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~k − ~p

~k

~p ~p

Figure 2.2: A diagrammatic representation of the cross-correlator 〈ζδS〉, where the
leading interaction vertex is proportional to m2

X . The wavy propagator corresponds
to the on-shell 〈ζζ〉 correlator. The open circle corresponds to external momentum
�owing out, and the shaded circle to external momentum �owing in. The slashes on
the legs indicate that theX propagators are on-shell.

inherit a spectrum of k3PX(k). On the other hand, we will see in the next section

that the key to obtaining large non-Gaussianities is that (k3PX(k))
2
is much smaller

than k3PX(k).

Thus far, we have focused on only theX isocurvature perturbations. In the mixed

scenario described near Eq. (2.7), we can rescale Eq. (2.33) to obtain the total CDM

isocurvature perturbations as

∆2
δS

(k) = ω2
X∆2

δSX
(k), (2.34)

since the rest of the dark matter contribution has no isocurvature perturbations.

As we will see in the next section, the bispectrum is maximized in the parameter

region in which ∆2
δSX

(k) is large. The observational bound on ∆2
δS

is stringent unless

the cross-correlation between curvature and isocurvature is negligible, i.e. [24,90�92]

∆2
ζδS
� ∆ζ∆δS , (2.35)

where ∆2
ζδS

is the power spectrum of the cross-correlation.left hand side 〈ζ̂ δ̂S〉 corre-

sponding to the diagram shown in Fig. 2.2 can be computed using the in-in formal-
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ism [19,93] using the trilinear interaction Hamiltonian in the comoving gauge

HI(t) 3 −
ˆ
d3x a3(t)

[
T̂ ijX (t, ~x)a2(t)δij ζ̂(t, ~x)

]
, (2.36)

where T µνX is the stress energy tensor ofX. Note that other interaction Hamilto-

nian contributions are derivatively suppressed. As will be shown elsewhere [94], the

curvature-isocurvature cross correlation is

β ≡
∆2
ζδS

∆ζ∆δS

.
∆ζ

2
∼ 2.5× 10−5, (2.37)

which shows that the cross-correlation is negligible. This fact is understood by the

soft-ζ theorem [19,95], which allows to factorize
〈
ζ̂ ζ̂
〉
from

〈
ˆδρX ζ̂
〉
, i.e.〈

δρ̂X ζ̂~p

〉
∼
〈
ζ̂−~pζ̂~p

〉 ∂

∂ ln a
〈ρ̂X〉 (2.38)

up to a momentum conserving delta function. Physically, the curvature perturbationζ

can a�ect the energy density ρX and generate correlation only at its horizon cross-

ing, because after the perturbationζ crosses the horizon and then freezes, it can be

e�ectively treated as a gauge mode, which corresponds to the spatial dilation in the

general coordinate transform.

Because the isocurvature is of the uncorrelated type in this scenario, the current

observational bound on the adiabaticity in terms of the parameterα from WMAP,

BAO, and SN combined [24,96] becomes

α =
∆δS(k0)

∆ζ(k0) + ∆δS(k0)
< 0.064, (2.39)

where k0 = 0.002Mpc−1. Note the contraint is considered under the assumption

that the isocurvature perturbation is scale-invariant, while our model predicts the

blue-tiled spectrum. However, we expect that the bound should not be either altered

signi�cantly (or more severely constrained) since the spectral index is less than 1.2

within the parameter range of interest. Furthermore, recent analyses [91, 92] show
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~k −~p1 − ~k

~k − ~p2

~p1, ~x

~p2, ~y ~p3, ~z

Figure 2.3: A diagrammatic representation of the 3-point function of a composite
operatorδX . The slashes indicate that the X propagators are on-shell. The spatial
variables {~x, ~y, ~z} indicate the insertion points of the external momenta~pi.

that the best CMB �t favors a blue-tilted isocurvature perturbation, which relaxes

the isocurvature constraints. Therefore, we will use the contraint as a conservative

bound. In the next section, we will see that this implies the maximum fNL ≈ O(35).

2.4 Bispectrum

In this section, we now compute the bispectrum BδS(~p1, ~p2, ~p3) de�ned by

(2π)3δ(3)(
∑
i

~pi)BδS(~p1, ~p2, ~p3) = ω3
X

ˆ
d3x1d

3x2d
3x3e

−i
∑
n ~pn·~xn

×〈δ̂(c)
X (t, ~x1)δ̂

(c)
X (t, ~x2)δ̂

(c)
X (t, ~x3)〉, (2.40)

where we recall from the previous section that δ
(c)
X in the comoving gauge can be iden-

ti�ed with the gauge invariant quantity δSX . With the diagrammatic representation

given by Fig. 2.3, we �nd

BδS(~p1, ~p2,−(~p1 + ~p2)) ≈ 8ω3
X

ˆ
d3k

(2π)3
PX(|~k|)PX(|~p1 + ~k|)PX(|~p2 − ~k|), (2.41)
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which gives the analytic estimate of the primordial bispectrum for di�erent triangle

con�gurations �xed by ~p1 and ~p2.

As large non-Gaussianities are di�cult to obtain in slow-roll in�ation in the

squeezed triangle limit, we will focus on that limit in this work. Using the one-pole

approximation, we estimate the isocurvature bispectrum (written in a symmetrized

form in the wave vectors) in the limit that one of the |~pi| is much smaller than the

others as follows:

BδS(~p1, ~p2, ~p3) ≈ 8

γX(H∗)

p3
min

2π2
PX(pmin)ω3

X

× [PX(p1)PX(p2) + PX(p2)PX(p3) + PX(p3)PX(p1)] (2.42)

where pmin = min{|~pi|}. Since the energy density of X is quadratic in X, the

density correlator scales as P 2
X and not just PX , which means that the coe�cient

p3
minPX(pmin) is not quite the power spectrum. Nonetheless, because of the blueness

of PX ,p
3
minPX(pmin) can be strongly suppressed if γX(H∗) is large, and hence mX has

to be smaller than H∗ for a non-negligible bispectrum. On the other hand, if mX is

too small compared to H∗, we saw in the previous section that the isocurvature per-

turbations are larger than what is allowed by current data. Hence, there is a window

for which the non-Gaussianities can be large and the isocurvature perturbations are

consistent with the existing data.

To see why the bispectrum composed of quadratic �elds is larger than the bispec-

trum composed of linear �elds (such as for ordinary in�atons), consider the following

ratio of isocurvature bispectrum to a �ducial local bispectrum de�ned with fNL = 1

fSNL ≡
BS

Bζ |fNL=1

=
5

6

BδS(~p1, ~p2, ~p3)

Pζ(p1)Pζ(p2) + Pζ(p2)Pζ(p3) + Pζ(p3)Pζ(p1)
, (2.43)

where Pζ is a two-point function of adiabatic perturbation. On large scales, the δS

contribution to the temperature perturbation ∆T/T compared to the ζ contribution
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is di�erent by factor 2 due to the Sachs-Wolfe e�ect, i.e.

∆T

T
= −1

5
ζ − 2

5
δS. (2.44)

However, on scales smaller than 1/keq,transfer function of the isocurvature perturba-

tions during radiation domination is suppressed by an additional factor keq/k com-

pared to that of adiabatic perturbations. One can understand this intuitively in the

Newtonian gauge in terms of how isocurvature perturbations source the gravitational

potential which in turn is proportional to the temperature perturbations.adiabatic

initial conditions, the gravitational potential on superhorizon scales are frozen.initial

conditions e�ectively �x the superhorizon gravitational potential to be zero during the

early radiation domination period when the dark matter energy density is negligible.

As the fraction of dark matter energy density grows during the radiation domination

period, the dark matter perturbations carrying the isocurvature information source

the gravitational potential until the dark matter becomes the dominant energy com-

ponent or until the modes enter the horizon. Thus, contrary to the temperature

perturbations sourced by the adiabatic perturbations, those sourced by the isocurva-

ture perturbations are proportional to the matter fraction at the horizon entry, which

yields the additional suppression factor of keq/k in the transfer function.

Because the isocurvature transfer function has di�erent features from the adiabatic

one,isocurvature bispectrum leads to CMB temperature imprints distinct from that of

the adiabatic bispectrum. A careful treatment of the transfer function incorporating

the e�ects just discussed leads to an approximate relationship on large scales [59]

which can be summarized as3

fNL ≈ 4fSNL (2.45)
3As mentioned in Ref. [59], the isocurvature bispectrum is enhanced by factor 4 instead of 8

due to the destructive contribution of the small scale modes. Although the scale-invariant isocur-
vature power spectrum has been used in their numerical analysis, their argument still applies to
the slightly blue-tilted spectrum because the transfer function e�ect of small scales arises from

b
(iso)
NL,l ≡ 2

π

´
dk k2g

(iso)
Tl (k)jl(kr), which is independent of the spectra index of isocurvature.
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where fNL approximately coincides with the usual local fNL de�nition.4 Thus, in the

squeezed triangle limit, fNL is analytically estimated to be

fNL =
80

3

ω3
X

γX

(
p3

min

2π2
PX(pmin)

)
PX(p1)PX(p2) + PX(p2)PX(p3) + PX(p3)PX(p1)

Pζ(p1)Pζ(p2) + Pζ(p2)Pζ(p3) + Pζ(p3)Pζ(p1)
.

(2.46)

The large numerical factor of 80/3 can be traced to the factor of 8× 8/2 that arises

from the product of the contraction permutations, the relative weight of the ζ and

δS contributions to ∆T/T , and the transfer function. As p3
minPX(pmin) is suppressed

partly from the smallness of the PX amplitude as well as the blue tilt (causing p3
min

to be a suppressor), a large ratio of PX/Pζ is required for an unsuppressed fNL. As

we will now argue, a PX/Pζ will arise from the fact that δS is quadratic in X.

To understand how to obtain a large PX/Pζ , we �rst note that since δ
(c)
X is a

quadratic functional of X (see Eq. (2.33)), we have

PX ≈ π2k−3
√
γX∆2

δS

1

ωX
. (2.47)

If we de�ne [97]

α

1− α ≡
∆2
δS

∆2
ζ

, (2.48)

we �nd for α� 1 that

PX
Pζ
∼ 1

2

√
αγX
∆2
ζ

1

ωX
∼ 104√αγX

1

ωX
. (2.49)

Hence, if ωX = 1, as long as α � 10−8/γX , there is a large ratio of PX/Pζ because

∆2
ζ �

√
∆2
ζ and ∆2

δS
∝ P 2

X . Combining Eq. (2.46) and Eq. (2.49), we see

fNL ∼ 6× 103α3/2√γX . (2.50)

Hence, if we can achieve α ≈ 0.07 [24] and γX ∼ 0.1 in our model, we can achieve

fNL ≈ O(35) (2.51)

4This relationship is obtained by comparison between the reduced bispectrums b
(adi)
l1l2l3

and b
(iso)
l1l2l3

only at large angular scales (l1, l2, l3 . 10). Thus, fSNL should not be interpreted as f localNL in
Refs. [24, 96], which is obtained by the full analysis involving large and small scales.
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on large scales. Although this fNL cannot be directly interpreted as f localNL of Ref. [24,

96] (as discussed in footnote4), a similar result which is obtained through a full

numerical analysis in Ref. [90]

f localNL ≈ 30
( α

0.07

)3/2

(2.52)

gives a consistency check to our analytic argument leading to Eq. (2.51). This level of

non-Gaussianity is clearly observable according to the forecasts of Planck and large

scale structure experiments (see e.g. [98,99]). Remarkably, this result is independent

ofωX . Hence, even when the dark matter composition of the X particles is small,

non-Gaussianities associated withX may be observable. We note that hidden in this

analytic estimate is the implicit assumption thatα can remain �xed as ωX → 0.

However, Eqs. (2.33) and (2.34) show perturbation theory would break down ifα

needs to be �xed as ωX → 0 limit is literally taken. For example,have large local

non-Gaussianities, the CDM isocurvature should be Hence in the case ωX . 10−5,

the perturbativity bound of δX < 1 is violated.the next section, we will compute

the relevant quantities more precisely in the context of a simple U(φ) = m2
φφ

2/2

in�ationary model.

2.5 Numerical Results

As shown in Sec. 2.4, a local non-Gaussianity value of fNL ∼ 30 is achievable as long

as the parameters of the model result in α ≈ 0.07 and γX ≈ 0.1. The identi�cation of

these parameters requires the computation of |Xk|2 associated with the mode function.

Although an analytic approximation exists in Appendix 2.7, it is still di�cult to

identify the parametric dependence because of the fact that the massive �eldX, unlike

the variable ζ, evolves during in�ation even when the mode wavelength is superhorizon

in magnitude. Its evolution depends on the variable γX , whose slow time dependence
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is di�cult to account for analytically. Hence, to check the phenomenological viability

of this isocurvature model, we now compute the necessary mode functions numerically

within a U(φ) = m2
φφ

2/2 model.

in�ation, the energy density ρX (as investigated analytically and numerically in

[66,100]) is estimated to be

ρX
ρφ
≈ 10−10mX

mφ

( mφ

1013 GeV

)2

exp(−2πmX/mφ). (2.53)

To obtain thek that appears in the mode function Xk, we use the pivot scale k0 =

0.002 Mpc−1 and the standard reheating relationships [101]

k =
ak
a0

k0 (2.54)

ak
a0

=
ak
ae

ae
a0

(2.55)

≈ 2× 10−31

(
ak
ae

)(
H(te)

1013GeV

)−2/3(
TRH

109GeV

)1/3

. (2.56)

The scale factor ratio ak/ae is computed directly from the solution of φ with the

potential U(φ). The mode function Xk is then obtained by solving the equation of

motion

Ẍk + 3HXk +
k2

a2
Xk +m2

XXk = 0 (2.57)

with the Bunch-Davies initial condition.

In Fig. 2.5, we plot the allowed parameter space given the isocurvature perturba-

tion and relic abundance constraints. We see that large local non-Gaussianities by the

superheavy dark matter with a small isocurvature power spectrum are attainable in

the vicinity of the thick dashed line of α = 0.07. Thus, the upper left parameter region

of the dashed line is ruled out due to overproduction of isocurvature perturbations.

Furthermore, the region above of the solid line is excluded by the relic abundance

condition ΩX < ΩM . 0.2. These conditions for large local non-Gaussianities yields
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Figure 2.4: The right bottom of the parameter space under the thick lines is allowed
by constraints: the current matter density (the solid line) and the upper limit (α ∼
0.07) of the isocurvature power spectrum (the dashed line). The background color
shows the power spectrum amplitude and the labels on the thin lines represents the
spectral index of the isocurvature nX . The right y-axis shows the spectral index of
the curvature perturbation ns.

a robust bound on the reheating temperature of

TRH . 106 GeV, (2.58)

as well as a bound on the mass of the superheavy dark matter of

mX

mφ

. 2.3, (2.59)
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which corresponds t omX . 4He. We see once again that large observable non-

Gaussianities can come from dark matter particles that only compose a small fraction

of the total dark matter. In Fig. 2.5, this region corresponds to the region along the

dashed curve that is far below the solid curve. This means that the CMB non-

Gaussianities are sensitive to bosonic stable particles that are negligible as far as

their contribution to the gravitational energy budget today. As discussed in Sec. 2.4,

the dashed curve in Fig. 2.5 does not continue inde�nitely as mX/mφ → 0 since

perturbation theory for the primordial spectrum breaks down when ωX is less than

around 10−5. Parametrically, this breakdown point occurs for mX/mφ ≈ 1.4, which

corresponds to mX ≈ 3He.

From Fig. 2.5, we can also see that γ = nX−1 ≈ 0.1 from the isocurvature spectral

index nX . This yields the advertised result that the isocurvature non-Gaussianities

can reach fNL ≈ 30.

In this chaotic in�ationary model that realizes large non-Gaussianities, the low re-

heating temperature TRH � He implies a long period of matter domination that may

lead to nontrivial dark matter and in�aton condensate clustering phenomenology (see

e.g. [102�104]). As demonstrated in Sec. 2.4, a lower in�ationary scale model that

still realizes α ∼ O(1) and γ ∼ O(0.1) would allow for an evasion of any phenomeno-

logically undesirable features that may arise from the long duration of clustering.

2.6 Conclusions

In this work, we have analyzed the e�ect of nonthermal dark matter consisting of

weakly interacting gravitationally produced X bosons on the two and three point

functions of the primordial CMB spectrum. We have demonstrated that large local

non-Gaussianities characterized by fNL ≈ 30 can result for a particular set of masses
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and reheating temperatures without violating isocurvature bounds. The conditions

that result in large fNL yield a bound on the reheating temperature of around 106

GeV, as well as a bound on the dark matter mass of around 3He . mX . 4He. For

lower allowed values of mX masses, the X bosons can generate a large fNL value

despite the fact that they are an essentially negligible fraction of the dark matter in

the universe.

Although explicit numerical computations were carried out to �nd the phenomeno-

logically viable region only in the chaotic m2
φφ

2/2 in�ationary model, we have pre-

sented analytic arguments to demonstrate that a similar semi-quantitative behavior

is expected for most slow-roll in�ationary models, including models with lower in�a-

tionary scales. The agreement between the analytic considerations and the numerical

results represents a nontrivial self-consistency check.

The mechanism presented in this work connects nonthermal dark matter phe-

nomenology to in�ationary phenomenology. The possibility that a future discovery

of large local non-Gaussianities may provide support for the existence of a nonthermal

dark matter component is indeed intriguing. This may even be considered one of the

several generic string phenomenological signatures associated with nonthermal dark

matter components such as those considered in [105,106], although a careful general-

ization of our work is required to apply the results in that context. We look forward

to studying further hints nature may be willing to reveal in this direction through

observations at the on-going Planck mission and other experiments that probe large

scale structure.
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2.7 Appendix: Mode functions beyond the dS

approximation

To calculate the correlation function or the energy density, it is necessary to solve the

following mode equation (2.57). In dS space, where H ≡ ȧ/a is constant, this has a

well known solution with the Bunch-Davies boundary condition

XdS

k (t) =

√
π

2a3/2
√
H
ei
π
2

(ν+1/2)H(1)
ν

(
k

aH

)
, (2.60)

in which ν =
√

9/4−m2
X/H

2 and H
(1)
ν is a Hankel function. In the long-wavelength

limit, k/a� H, this solution behaves as

XdS

k (t) ≈ − 1√
π

(−1)3/42−1+νeiνπ/2
(
k

aH

)−ν
Γ(ν)√
Ha3

, (2.61)

in which the decaying solution has been dropped. For mX/H > 3/2, |Xds
k |2 ∝ a−3

dilutes like pressureless dust.

However, in a quasi-dS spacetime in which H varies slowly, this solution fails to be

a good approximation after many efolds past the horizon crossing: ∆t ≡ t−t∗ . 1/εH,

where ε ≡ −Ḣ/H2. Conversely, Eq. (2.60) is a good approximation up to the time

t∗ just after the horizon crossing. (2.57) can be approximated for t > t∗ as

Ẍk(t) + 3H(t)Xk(t) +m2
XXk(t) ≈ 0 (2.62)

and hence we can use the following ansatz for the non-decaying mode for small ε� 1.

Xk(t) = XdS

k (t∗)

(
a(t∗)

a(t)

)3/2

exp

[ˆ t

t∗

dt1H(t1)ν(t1)

]
. (2.63)

Now consider a quasi-dS spacetime with the constant slow-roll parameter ε,ε̇ = 0, for

which

1

H(t)
− 1

H(t∗)
= ε(t− t∗), (2.64)

a(t) = a(t∗)(1 + εH∗t)
1/ε. (2.65)



41

Hence, we �nd

ˆ t

t∗

dt′H(t′)ν(t′) =
1

ε

[
ν(t)− 3

2
tanh−1

(
3

2ν(t)

)
− ν∗ +

3

2
tanh−1

(
3

2ν∗

)]
.(2.66)

We note that the mode function Xk is oscillatory for imaginaryν, but that is not

re�ected in Eq. (2.66) because we have kept only the non-decaying mode in Eq. (2.61).

To see the oscillatory behavior of the mode, the decaying mode should be taken into

account when the real to imaginary transition of ν occurs. We thus arrive at

|Xk(t)|2 ≈ |XdS

k (t∗)|2
(
a∗
a(t)

)3

× exp

[
3

ε
<
{

2ν(t)

3
− tanh−1

(
3

2ν(t)

)
− 2ν∗

3
+ tanh−1

(
3

2ν∗

)}]
=

2−2+2ν∗

π

(
k

a∗H∗

)−2ν∗ |Γ(ν∗)|2
H∗a3(t)

× exp

[
1

ε
<
{

2ν(t)− 2ν∗ + 3 ln

[ (
ν∗ + 3

2

)
H∗
mX(

ν(t) + 3
2

) H(t)
mX

]}]
, (2.67)

in which the subscript∗ indicates the variable is evaluated at t∗ and ν∗ is a positive

real number.

2.8 Appendix: Justi�cation of the background

In situations in which quantum operators Ô(q)
ε do not have classical expansion �eld

values O(q)
0 , it is necessary to justify how the O(q)

0 are to be identi�ed. In such cases,

the typical procedure is to solve for Ô(q)
ε directly in the presence of linear metric

�uctuations because quantum operators are generically not spatially homogeneous

even in Minkowski space while their matrix elements can be. Hence, it is convenient

to construct O(q)
0 from matrix elements of Ô(q)

ε . Here we outline how to extract O(q)
0

through a spatial average in both the classical and the quantum case. In the quantum

case, the procedure is to construct a semiclassical quantity that corresponds to the
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most probable semi-classical con�guration computed from a quantum expectation

value. As explained below, this semiclassical construction is meaningful when the

quantity has a classical interpretation.

Let us de�ne the perturbation δO(q) through O(q)
ε = O(q)

0 + δO(q). If O(q)
0 is

independent of spatial coordinates for some given �xed coordinate choice and δO(q)

satis�es the condition

lim
L→∞

1

VL

ˆ
VL

d3xδO(q) = 0, (2.68)

then we have

O(q)
0 ≈ lim

L→∞

1

VL

ˆ
VL

d3xO(q)
ε . (2.69)

Here we do not use a 3-di�eomorphism invariant measure such that metric pertur-

bations need not be included in the spatial average. Since unperturbed quantum

operators are intrinsically inhomogeneous, spatial averaging cannot be used to ex-

tract Ô(q)
0 .

On the other hand, for the quantum case, we are only interested in using it to

obtain stochastic boundary conditions. For a large class of operators, for any �xed

time slice Σ, there exists a probability functional pΣ({O(q)
ε }) such that

〈Ô(q1)
ε ...Ô(qr)

ε 〉 =

ˆ ∏
q

DO(q)
ε pΣ({O(q)

ε })O(q1)
ε ...O(qr)

ε , (2.70)

where the left hand side is computed in a �xed vacuum.5 Since we are computing

this at a �xed time, the right hand side functional measure DO(q)
ε is only discretized

over the 3-space of Σ. It is important to think of an {O(q)
ε } element in the ensemble

(governed by pΣ) as a classical con�guration only for a �xed time slice. The time

evolution of {O(q)
ε } may not be governed by classical equations starting from that

initial condition. Furthermore, if pΣ is sharply peaked, then the system is essentially in

5This argument requires generalization when the operators involve time derivatives. This argu-
ment will apply for the case of our interest for correlators ofX̂2.
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a single con�guration (i.e., most elements in the ensemble are similar). This is one way

of reaching classicality. Suppose there exists a such very probable �eld con�guration

on a �xed time slice. It is convenient to express this probable con�guration (to use

for O(q)
ε in Eq. (2.69)) using matrix elements.

To construct this probable con�guration, we start with the following question:

if there areN samples drawn from a quantum governed ensemble, how many would

have exactly homogeneous con�gurations compared to those with inhomogeneous

con�gurations. The set of exactly homogeneous con�gurations form a set of measure

zero even though it can be the peak of thepΣ functional (unless this functional diverges

at that �eld con�guration point). Most of the N samples would be inhomogeneous.

Having oriented ourselves, the next question that is relevant for us is what is the most

probable value of Eq. (2.69) given N samples in the ensemble governed by pΣ. The

number of con�gurations with a given characteristic Γ is given by

NΓ = N

ˆ ∏
q

DO(q)
ε pΣ({O(q)

ε })δ(Γ)det
δΓ

δOε
, (2.71)

where δ(Γ) represents an appropriately generalized delta-function in the functional

space and the determinant is there for the appropriate normalization. For a �xed

spatial average we have the regularized constraint

ΓO(q)
0 ,VL

≡ 1

VL(Σ)

ˆ
VL(Σ)

d3xO(q)
ε −O(q)

0 , (2.72)

in which case NΓ
O(q)

0 ,VL

gives the number of elements in theN sample that realize the

homogeneous value of O(q)
0 within the volume VL. We will in the end take L→∞ if

the infrared regulator removal is meaningful. Hence, we �nd

δΓO(q)
0 ,VL

δOε
=

1

VL(Σ)
, (2.73)

which is independent of Oε. The functional derivatives are taken only with respect
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to functions of 3-spatial variable. Incorporating this into Eq. (2.71), we �nd

NΓ
O(q)

0 ,VL

=
N

VL(Σ)

ˆ ∏
q

DO(q)
ε pΣ({O(q)

ε })δ
(

1

VL(Σ)

ˆ
VL(Σ)

d3xO(q)
ε −O(q)

0

)
. (2.74)

Now, the maximum of NΓ
O(q)

0 ,VL

is obtained by taking a derivative with respect to

O(s)
0 (t) (since we are working on a single time slice, this derivative need not be func-

tional):

0 =
∂

∂O(s)
0 (t)

NΓ
O(q)

0 ,VL

= − N

VL(Σ)

ˆ ∏
q

DO(q)
ε pΣ({O(q)

ε })δqs

×δ′
(

1

VL(Σ)

ˆ
VL(Σ)

d3xO(q)
ε −O(q)

0 (t)

)
, (2.75)

where the prime on the delta-function corresponds to the derivative with respect to

the functional argument of the delta function. The functional argument of the delta

function can be considered to be a function of the variation

δ

[
1

VL(Σ)

ˆ
VL(Σ)

d3xO(q)
ε

]
=

δO(q)
ε

VL(Σ)
. (2.76)

Hence, an integration by parts will yield a solvable equation to the problem of maxi-

mizing NΓ
O(q)

0 ,VL

as

ˆ ∏
q

DO(q)
ε

δ

δO(q)
ε

pΣ({O(q)
ε })δ

(
1

VL(Σ)

ˆ
VL(Σ)

d3xO(q)
ε −O(q)

0

)
= 0. (2.77)

If O(q)
0 is chosen to be O(q)

∗ such that th eO(q)
ε con�gurations that satisfy

O(q)
∗ =

1

VL(Σ)

ˆ
VL(Σ)

d3xO(q)
ε (2.78)

also satisfy

δ

δO(q)
ε

pΣ({O(q)
ε }) = 0, (2.79)

we have a solution O(q)
∗ . Hence, we must look for the peak of pΣ({O(q)

ε }).
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Consider

〈Ô(s)
ε 〉 =

ˆ ∏
q

DO(q)
ε pΣ({O(q)

ε })O(s)
ε . (2.80)

Assuming pΣ({O(q)
ε }) is sharply peaked, consider

f ≡ ln pΣ({O(q)
ε }). (2.81)

The peak is located at δf

δO(q)
ε

= 0 corresponding to the �eld con�guration that satis�es

δpΣ({O(q)
ε })

δO(s)
ε

∣∣∣∣∣
O(q)
P

= 0. (2.82)

Hence, the quadratic expansion of f about the peak con�guration is

f = f(O(q)
P ) +

1

2

ˆ
dx3

1dx
3
2

δ2f

δO(q1)
ε (x1)δO(q2)

ε (x2)

∣∣∣∣∣
O(q)
P

×
(
O(q1)
ε (x1)−O(q1)

P (x1)
)(
O(q2)
ε (x2)−O(q2)

P (x2)
)
, (2.83)

where the repeated qi indices are summed. O(s)
ε can be raised in Eq. (2.80) using the

usual trick of introducing a source

O(s)
ε →

δ

δJ
exp

[ˆ
d3xJO(s)

ε

]
J=0

(2.84)

and carrying out the leading saddle-point approximation integral to obtain

〈Ô(s)
ε (x)〉 = O(s)

P (x), (2.85)

where we used

1 =

ˆ ∏
q

DO(q)
ε pΣ({O(q)

ε }) (2.86)

≈ ef(O(q)
∗ )

ˆ ∏
q

DO(q)
ε ×

exp

1

2

ˆ
dx3

1dx
3
2

δ2f

δO(q1)
ε (x1)δO(q2)

ε (x2)

∣∣∣∣∣
O(q)
P

. (2.87)

×
(
O(q1)
ε (x1)−O(q1)

P (x1)
)(
O(q2)
ε (x2)−O(q2)

P (x2)
)]
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We note that if we use a spatially translation invariant state to take the expectation

value, O(q)
P (x) is automatically spatially translation invariant and thus

O(q)
∗ = O(q)

P (2.88)

in Eq. (2.78). Hence, Eqs. (2.85) and (2.88) combine to give the most probable

spatially averaged con�guration to be

O(s)
∗ = 〈Ô(s)

ε 〉 (2.89)

to leading order in saddle-point approximation (an expansion in the peakedness of

the distribution functionpΣ).

Hence, when matching to the classical �uid, it is appropriate to consider the

homogeneous background quantity associated with the quantum operator to be 〈Ô(s)
ε 〉.

It is important to remember that since O(s)
∗ (in Eq. (2.78)) is being identi�ed with

O(q)
0 (in Eq. (2.69)), we are now assuming that the ε = 0 solution of perturbation

theory is governed by equations that depend only on time for the coordinate system

that we have chosen.
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Chapter 3

Isocurvature from Fermion

Production

Isocurvature perturbations in the in�ationary literature typically involve quantum

�uctuations of bosonic �eld degrees of freedom. In this work, we consider isocurvature

perturbations from fermionic quantum �uctuations during in�ation. When a stable

massive fermion is coupled to a non-conformal sector di�erent from the scalar metric

perturbations, observably large amplitude scale invariant isocurvature perturbations

can be generated. In addition to the computation of the isocurvature two-point

function, an estimate of the local non-Gaussianities is also given and found to be

promising for observations in a corner of the parameter space. The results provide a

new class of cosmological probes for theories with stable massive fermions. On the

technical side, we explicitly renormalize the composite operator in curved spacetime

and show that gravitational Ward identities play an important role in suppressing

certain contributions to the fermionic isocurvature perturbations.

This work was performed in collaboration with Daniel Chung and Peng Zhou.
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3.1 Introduction

The Cosmic Microwave Background (CMB) measurements [96,107�116] and the Large

Scale Structure (LSS) observations [117,118] are consistent with single �eld in�ation-

ary models which can seed approximately adiabatic, scale-invariant, and Gaussian

primordial density perturbations [8, 10, 11, 119�124]. However, from the multi-�eld

nature of the Standard Model of particle physics, one may naturally guess that there

would be more than one light degrees of freedom during in�ation which may be re-

sponsible for generating isocurvature primordial perturbation initial conditions. In-

deed, in any slow-roll in�ationary scenario, non-in�aton degrees of freedom must

eventually turn on in order to reheat successfully.1 Hence, isocurvature scenarios are

theoretically well motivated.

Isocurvature perturbations have been studied in various scenarios, such as double

in�ation [125�128], curvaton scenario [41,56,129�141], axions [142�151] and gravita-

tionally produced superheavy dark matter [18,40,65,67]. Isocurvature perturbations

also can generate rich density perturbation phenomenology. For example, unlike stan-

dard single �eld in�ationary scenarios, isocurvature perturbations are able to gener-

ate large primordial local non-Gaussianities [18,40,47,51,59,132,152�174]. However,

most previous studies of isocurvature perturbations focused on bosonic degrees of

freedom such as axions and curvatons. Fermionic isocurvature degrees of freedom

such as gravitinos were only discussed in the literature associated with the decay

products of the in�aton or other scalars [57, 175�181]. Furthermore, these fermions

discussed in the literature were characterized only by their dependence on the entropy

temperature �uctuation δT which was assumed to be directly linked to the curva-

ture perturbation ζ, in a manner consistent with the �separate universe� picture of

1Even though the reheat degrees of freedom do not need to be dynamically important during
the quasi-dS era, multiple �elds are certainly lurking in the scenario.
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δN formalism [182�184]. Such previously discussed fermionic isocurvature scenarios

lead to strong correlation or anticorrelation with the curvature perturbation ζ. One

can intuitively characterize these previous fermionic isocurvature works as having no

fermionic quantum �uctuation information from the in�ationary era.

In contrast, we examine in this work a fermionic isocurvature scenario that is

not (signi�cantly) correlated with ζ and has fermionic quantum �uctuation infor-

mation during in�ation encoded in the isocurvature correlator. In our scenario, the

horizon length scale interaction dynamics of the fermion particles is important, in

sharp contrast with the �separate universe� picture of δN formalism. As we will

show, although classical gravitational �eld interactions alone are su�cient to gener-

ate enough fermions during the exit process of in�ation to saturate the phenomeno-

logically required cold dark matter abundance [66, 185, 186], fermion propagators in

the classical FRW background is insu�cient to produce any observable isocurvature

perturbations because of the fact that massless fermions enjoy a classical conformal

symmetry.2 Hence, any large fermion isocurvature correlator must involve couplings

to a conformal symmetry breaking sector.

For illustrating the existence of such fermionic isocurvature perturbations, we

minimally extend the single �eld in�ation by adding a stable massive fermion �eld

coupled through a Yukawa coupling to a light non-in�aton scalar �eld whose mass is

much lighter than the fermion �eld (hence, there are no decays of the scalars to the

fermions). The light non-in�aton scalar �eld (which is minimally coupled to gravity)

serves as a conformal symmetry breaking sector through which the fermions will attain

appreciable correlations. We compute the isocurvature two-point function of fermions

that are gravitationally produced during in�ation and identify the phenomenologically

viable parameter space. We also estimate the local non-Gaussianity and show that

2Even with the massive fermions, we will be naturally concerned with light fermions where
mψ/H � 1.
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it may be observationally large in a particular parametric regime.

At the technical level, treating fermionic isocurvature �uctuations during in�a-

tion requires composite operator renormalization in quasi-dS spacetime because the

fermionic energy-momentum tensor is a composite bilinear operator (i.e. fermions

cannot get VEVs) and the leading two-point function contribution involves a one

loop 1PI diagram. To our knowledge, this work is the �rst one to apply compos-

ite fermion operator renormalization in in�ationary spacetime to treat isocurvature

perturbations. Indeed, an improper treatment of the operator renormalization can

in principle lead to answers that are many orders of magnitude o� as we pointed

out with bosonic composite operators [94]. We also show that a gravitational Ward

identity plays an important role in suppressing the scalar metric perturbation in-

teraction contribution to the isocurvature two-point function (thereby justifying our

introduction of another scalar sector).

This work is presented in the following order. In Sec. 3.2, we motivate and discuss

the fermion isocurvature model. Next, we review the de�nition of the gauge-invariant

variables and the quantum operator associated with the cold dark matter (CDM)

isocurvature in Sec. 3.3. In subsection 3.3, we present the regulator and the renor-

malization conditions for our isocurvature operator. We explain the constraints on

the Yukawa coupling coming from the self-consistency of our simpli�ed scenario in

Sec. 3.4. In Sec. 3.5, we compute the isocurvature 2-point function. The leading

order and the next leading order results are given in subsection 3.5 and 3.5, and the

power spectrum is presented in subsection 3.5. In Sec. 3.6, we discuss the numerical

implications of our results and non-Gaussianities. Afterwards in Sec. 3.7, we discuss

the explicit computation of how a di�eomorphism Ward identity plays a role in sup-

pressing the scalar metric perturbation contribution to the isocurvature two-point

function. Finally, in Sec. 3.8 we summarize and conclude. Some technical details of
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the computations are given in the Appendices.

3.2 Fermion Isocurvature Model

As is well known, if any small mass fermion �eld degrees of freedom exist during in�a-

tion which is usually assumed to be a Bunch-Davies vacuum state, fermion particles

will be produced gravitationally (see e.g. [6,66,185�187]). The inhomogeneities of the

gravitationally produced fermions will generically not align with the inhomogeneities

of the in�aton, depending on its interactions. If most of the radiation in the universe

comes from the in�aton decay, then the misalignment of the inhomogeneities of the

fermions and the in�aton will lead to isocurvature perturbations [3, 188,189].

Now, to motivate our fermion model with Yukawa interactions, it is important to

understand why interactions to conformal symmetry breaking sector is required. It is

also well known that massless fermion classical action enjoys a conformal symmetry:

gµν → e2σ(x)gµν (3.1)

ψ → e−3σ(x)/2ψ. (3.2)

Since FRW spacetime can be written as a conformal transformation of the Minkowski

space (i.e. a = exp(σ)), we would expect for a tree level fermion propagating on an

FRW spacetime without any interactions with a conformal symmetry breaking sector

〈ψ̄ψ(t, ~x)ψ̄ψ(t, ~y)〉conn = 〈ψ̄MψM(t, ~x)ψ̄MψM(t, ~y)〉conna−6 (3.3)

where ψM is the Minkowski fermion. At leading order, there are no other scales in

this function except |~x− ~y|. Hence, we conclude

〈ψ̄ψ(t, ~x)ψ̄ψ(t, ~y)〉conn ∼
1

a6|~x− ~y|6 (3.4)
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in the massless limit.3 We expect this to be the dominant contribution in the limit

that mψ/H � 1. When mψ/H � 1, we also expect there can be factors multiplying

this that vanishes exponentially fast as mψ/H → ∞ (we show this explicitly in

Sec. 3.5). Hence, we expect Eq. (3.4) to be the leading order of magnitude composite

correlator if the theory is approximately conformally invariant. As we will show

below, the comoving gauge isocurvature perturbations is proportional to

〈
δρ

(C)
ψ

ρ̄ψ

δρ
(C)
ψ

ρ̄ψ
〉 ∼ 〈ψ̄ψ(t, ~x)ψ̄ψ(t, ~y)〉conn〈

ψ̄ψ
〉2 . (3.5)

where one sees the appearance of the suppressed correlator computed in Eq. (3.4).

Because of this suppression, fermionic isocurvature perturbations require nontrivial

interactions with a conformal symmetry breaking sector.

If the conformal symmetry breaking sector is just the ζ sector of the in�aton, then

its e�ective coupling to the fermions is suppressed because there is an in�nitesimal

shift symmetry of the ζ coming from a residual di�eomorphism symmetry in the

comoving gauge. (We will explain this explicitly in Sec. 3.7 in terms of a Ward

identity.) Hence, to generate an observable fermionic correlator during the horizon

exit, another conformal symmetry breaking sector must be introduced which does

not su�er from derivative coupling suppression similar to ζ.4 We thus introduce a

Yukawa coupling to a light non-in�aton scalar and demonstrate that this interaction

can induce observable isocurvature �uctuations.5

Given this motivation, let us now specify the model studied in this work. We

use one real scalar φ slow-roll in�aton degree of freedom that dominates the energy

3The scaling behavior of the two-point correlator is similar to that of correlators considered in
Ref. [190] in the context of conformal �eld theories.

4Although we have not investigated the suppression for the tensor perturbation interactions with
a full computation, we expect a similar suppression of the tensor perturbation interactions.

5 Note that this introduction of a light scalar is not particularly attractive from a model building
perspective since we provide no explicit mechanism to protect its light mass. We defer the challenge
of building an attractive model to a future work since the purpose of this work is to demonstrate
the basic physics mechanism.
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density during in�ation and then perturbatively decays to the SM sector to reheat

the universe. We also introduce another minimally coupled light real scalar degree

of freedom σ which has no coupling to φ or the SM sector (necessary for reheating)

stronger than gravity.6 As we explained, the main role of σ is to provide a conformal

symmetry breaking sector which can couple to the Dirac fermions ψ through a Yukawa

coupling. We assume ψ is charged under a conserved discrete charge such that the

one particle states are stable and can act as dark matter. Note that since we do not

require all of the dark matter to come from the fermions, this system is consistent

with the existence of the weakly interacting massive particle (WIMP) dark matter.

Because ψ is too weakly interacting with the SM to be produced directly, gravitational

production of ψ during and after in�ation is signi�cant and gives rise to non-thermal

cold dark matter (CDM) and its isocurvature perturbations.

Such a model is described by the action7

S =

ˆ
(dx) {Linf [gµν , φ] + LSM+CDM [gµν , {Ψ}] + LRH [gµν , φ, {Ψ}]

+− 1

2
gµν∂µσ∂νσ −

1

2
m2
σσ

2 − y

4!
σ4 + ψ̄(iγa∇ea −mψ)ψ − λσψ̄ψ

}
, (3.6)

where M2
p = 1

8πG
= 1, (dx) ≡ √−gd4x, and Linf and LSM+CDM are the Lagrangians

for the in�aton and the SM+CDM sectors, and LRH describes the sector responsi-

ble for reheating. Because an interesting parameter region exists for our scenario

in which the ψ constitute a tiny fraction of the total dark matter content, the La-

grangian LSM+CDM describes the CDM sector di�erent from ψ to make the scenario

phenomenologically viable. Note that natural heavy dark matter candidates for ψ

exist in the context of string phenomenology [69, 70]. Furthermore, many exten-

sions of the Standard Model also possess superheavy dark matter candidates (see,

6For now, we will consider this as a tuning and will not address serious model building issues in
this work. It is plausible that this kind of scenario can be realized in the context of SUSY hidden
sector.

7Our metric convention is (−,+,+,+) .
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e.g., [71�81]). Since there are many scalar �eld degrees of freedom in typical BSMs,

the possibility of identifying one of these scalars with σ is also plausible. Although the

cosmological phenomenology of weakly interacting dark matter on large scales have

been investigated already in literature (see, e.g., [18,40,41,67,129,149�151,164,191]),

our work is the �rst to describe fermionic �uctuation correlations during in�ation.

Note that although Eq. (3.6) has a quartic term σ4, we will focus on the paramet-

ric region in which the quartic coupling y will be small and tuned against radiative

generated quartic couplings from the Yukawa interaction to keep the e�ects of the σ

interactions to a minimum. Hence, our e�ective parametric domain will be controlled

by {λ,mσ,mψ}.

We focus on a particular parametric region of {λ,mσ,mψ} such that σ only assists

in generating large scale density perturbations of ψ, and the density perturbations

and the relic abundance from the σ particles vanish or are suppressed compared to

those from the ψ particles. For example, requiring the correlator 〈σσ〉|t∗ relevant for

the isocurvature perturbations not be suppressed gives the condition mσ/H(t∗) < 1

where t∗ is the time at which the fermion production ends. This implies mσ <

mψ is the relevant parameter region. Furthermore, in order to prevent any large

isocurvature perturbations and relic abundance of σ, we assume that the σ particles

decay before σ becomes an important �uid component of the evolution of the universe

(e.g. before matter-radiation equality). Note however that this restriction is a matter

of simplicity. In general, we note that a weakly interacting and stable σ may also be

phenomenologically allowed without problems regarding the relic abundance and the

isocurvature from σ. Moreover, for simplicity, we restrict λ such that 1) σσ → ψ̄ψ

via the Yukawa interactions is suppressed compared to the gravitational process in

producing ψ̄ψ 2) any σ + gravity → ψ̄ψ processes are estimated to be unimportant.

This restriction is approximately equivalent to being in a parametric region where
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tree-level propagator neglecting resumption of the Yukawa interactions is valid.

In addition, in order to detach our model from the details of the in�ationary

model of φ, we focus on the light fermion ψ, such that mψ < He, where He is

the Hubble scale at the end of in�ation. This is because the gravitational particles

production is generally sensitive to how the in�ation ends in a such way that an

extra suppression factor exp
(
−cm2

ψ/H
2
e

)
(where c is a number depending on how the

in�ation connected with the post in�ationary era) appears in the estimation of the

gravitationally produced particle number density nψ. (Throughout the work, we will

sometime distinguish He from Hinf which is de�ned to be the expansion rate during

in�ation.) On the other hands, if mψ < He, the factor becomes simply an O(1)

number, and particularly, for fermions we can estimate the number density nψ(t∗) as

O(0.1)m3
ψ at H(t∗) ∼ mψ regardless of how the in�ation ends [185]. The physics of

this universality is tied to the conformal symmetry of the fermions in the massless

limit.

At this point, we emphasize that our model is di�erent from other fermionic (e.g.,

gravitino) isocurvature models in literature (e.g. [57,181,192]). We explicitly predict

the amplitudes of fermion density perturbations from a joint e�ect of the gravita-

tional particle production and σ modulation on mψ via the matter loop diagrams.

In contrast, in Refs. [57, 181, 192] the fermions are produced from the on shell in-

�atons and/or curvatons (the latter has the closest identi�cation in our model with

σ) after the end of in�ation. A sharp observable contrast of our model with these

other models is that our scenario predicts an uncorrelated type of isocurvature (i.e.

curvature-isocurvature cross correlation is negligible) while these other models pur-

portedly generate correlated type of isocurvature. This is a consequence of the fact

that these other models do not describe any fermionic �uctuations during in�ation

while in our model, the expansion during in�ation imparts work to virtual fermionic
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�uctuations to put them on shell.

3.3 Operator for Isocurvature Perturbation

Recall that the scalar perturbation of the metric is parametrized as

δg(S)
µν =

 −E aF,i

aF,i a2[Aδij +B,ij]

 . (3.7)

The gauge-invariant variables are constructed by combining metric perturbations and

other perturbations, such as density perturbations. For example, the conventional

�rst-order gauge-invariant perturbation associated with the energy density of a �uid

a is de�ned (see, e.g., [1, 3] and references therein) by

ζa ≡
A

2
−Hδρa

˙̄ρa
. (3.8)

In particular, we de�ne the conventional curvature perturbation as

ζ ≡ A

2
−Hδρtot

˙̄ρtot
, (3.9)

where

δρtot =
∑
i

δρi, ρ̄tot =
∑
i

ρ̄i. (3.10)

This quantity ζ is conserved when modes are stretched out of the horizon even through

the reheating era as long as it is set by the adiabatic initial condition, i.e., ζ = ζa

for any �uid a. Furthermore, if perturbations are generated solely by in�aton during

in�ation, such as the single �eld in�ation, superhorizon perturbations automatically

satisfy the adiabatic initial condition and the perturbations are conserved so that we

can match them with those during the early radiation dominated (RD) era, ζφ(tinf ) =

ζγ(tRD) = ζm(tRD) = · · · .
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On the other hand, an isocurvature perturbation is de�ned by a relative density

perturbation between two di�erent �uids

δSij ≡ 3 (ζi − ζj) = −3H

(
δρi
˙̄ρi
− δρj

˙̄ρj

)
. (3.11)

In general, it may arise during in�ation if there are more than one degree of freedom.

Although their mixing with perturbations of di�erent �uids can lead to the failure

of the conservation of the curvature perturbation ζ, such e�ects are negligible as for

any species i whose ρ̄i + P̄i is su�ciently smaller than ρ̄tot + P̄tot until the Universe

reaches radiation domination. Particularly, for gravitationally produced fermions, we

have

ρ̄ψ + P̄ψ
ρ̄tot + P̄tot

∣∣∣∣
t∗

∼ ρ̄ψ
ρ̄tot

∣∣∣∣
t∗

∼
m2
ψ

M2
p

� ∆2
ζ , (3.12)

where t∗ is the time that the gravitational fermion production ends, H(t∗) ∼ mψ.

Hence, we expect the superhorizon curvature perturbation to be approximately con-

served through the reheating, ζ(tRD) ≈ ζφ(tinf ).

The dominant fraction of the produced fermions are non-relativistic.8 Then the

fermion energy density behaves as 9

d

dt
ρ̄ψ(t) ≈ −3Hρ̄ψ for t > t∗, (3.13)

and from Eq. (3.11) a general CDM isocurvature is written as

δS =
δρCDM
ρ̄CDM

− 3

4

δργ
ρ̄γ

. (3.14)

As discussed in Sec. 3.2, the CDM may include decay products of the in�aton φ.

Thus the CDM density perturbation is generally expressed as

δρCDM
ρ̄CDM

= ωψ
δρψ
ρ̄ψ

+ (1− ωψ)
δρm
ρ̄m

, (3.15)

8This is a valid assumption because gravitationally excited fermion modes that contributions
to the energy density are less than the fermion mass, i.e., |βk|2 for k/a . mψ, where βk is the
Bogoliubov coe�cient. See Appendix 3.10 for the detail.

9One can �nd that ρ̄ψ ∝ a−3(t) for t > t∗ if ρ̄ψ is renormalized by the adiabatic subtraction.
See Appendix 3.10 and Ref. [6]. Then we can treat ψ as a pressure less matter.
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where the subscript m denotes the CDM component associated with the in�aton

decay products (such as WIMPs of minimal supersymmetric models), and

ωψ ≡ ρ̄ψ/ (ρ̄ψ + ρ̄m) . (3.16)

In particular, in the comoving gauge (δρφ/ ˙̄ρφ = δρm/ ˙̄ρm = δργ/ ˙̄ργ = 0), the CDM

isocurvature becomes

δ
(C)
S ≈ ωψ

δρ
(C)
ψ

ρ̄ψ
, (3.17)

where the superscript denotes the gauge choice.

Under the non-relativistic assumption, we also approximate the fermion mass term

mψψ̄ψ as its energy density10

ρψ ≈ mψψ̄ψ, (3.18)

and then the the fermion isocurvature perturbation becomes

δ
(C)
S ≈ ωψ

ρψ − 〈ρψ〉
〈ρψ〉

= ωψ
ψ̄ψ −

〈
ψ̄ψ
〉〈

ψ̄ψ
〉 . (3.19)

Notice that as it is a quantum composite operator, we renormalize it with regulators

and counter-terms invariant under the underlying gauge symmetry, di�eomorphism in

this case. In the following subsection, we present the technical detail of the composite

operator renormalization. From now on, we will use the comoving gauge in calculating

the correlation function and drop the superscript (C) for convenience.

10Using the adiabatic vacuum prescription, the renormalized energy density is approximated in
the non-relativistic case as 〈

(ρψ)r
〉
≈ mψ 〈Nψ〉 = 2mψ

ˆ
d3k

(2π3)

1

a3
|βk|2 ,

where Nψ is a fermion number operator, and the subscript r denotes that the operator is a renor-
malized composite operator. This quantity is in accord with

mψ

〈(
ψ̄ψ
)
r

〉
= 2mψ

ˆ
d3k

(2π3)

mψ

ωp
|βk|2 ≈ 2mψ

ˆ
d3k

(2π3)
|βk|2 .

In particular,
(
ψ̄ψ
)
has an advantage in constructing gauge-invariant variables because it is mani-

festly 4-scalar, but Nψ.
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Regularization and Renormalization for Isocurvature

Perturbation

In this subsection, we explain our regularization procedure and renormalization scheme

that determines the counter-terms. The most crucial renormalization condition that

the isocurvature perturbations are sensitive to is Eq. (3.38).

For the convenience of preserving covariance and incorporating the adiabatic vac-

uum boundary condition, we use Pauli-Villars (PV) regularization [193, 194]. This

involves the replacements

ψ → ψ +
∑
n

ψn, σ → σ +
∑
n

σn, (3.20)

and the addition of the Pauli-Villars part in the free Lagrangian

LPV =
∑
n=1

Cn(−1

2
gµν∂νσn∂νσn −

1

2
M2

nσ
2
n) (3.21)

+
∑
n=1

Dnψ̄n(iγa∇a −mn)ψn. (3.22)

For notational simplicity, we let C0 = 1, M0 = mσ and D0 = 1, m0 = mψ, and let

index N = 0, 1, · · · and n = 1, 2, · · · . We require the following constraints for scalar

regulators ∑
N

C−1
N = 0,

∑
N

C−1
N M2

N = 0,
∑
N

C−1
N M4

N = 0, · · · (3.23)

and the following constraints for fermion regulators

∑
N

D−1
N = 0,

∑
N

D−1
N mN = 0,

∑
N

D−1
N m2

N = 0, · · · (3.24)

where we need to introduce su�cient numbers of PV �elds and constraints to cancel

all the divergences. Notice that the additional constraints in the fermions with odd

powers of mN .
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Figure 3.1: Diagrams determining counter-terms where the solid line corresponds
to the fermion line and the dashed lines corresponds to σ lines. It is convenient to
truncate the external σ legs on diagrams c), d), and e) with zero momentum insertion,
making these mass insertions.

With the operator dimension and the symmetry considered, the renormalized

operator is written as

(ψ̄ψ)x,r = (ψ̄x)r(ψx)r(1 + δZ1) + δZ2(σx,r)
3 + δZ3(σx,r)

2

+δZ4σx,r + δZ5 + δZ6�σx,r + δZ7R + δZ8Rσx,r (3.25)

where each �eld operator should be understood as including a sum of the PV �elds as

in Eq. (3.20). Then we give the renormalization conditions to determine the counter

terms. For δZi which are not coupled to R,Rµν , R
α
βµν and their derivatives, we can

go to the Minkowski space and impose the renormalization conditions there. (Of

course, we do not need to separate the curved space contribution and the �at space

contribution with two computations, but we present this here this way here for clarity
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in the physical partition.) We de�ne the renormalized operator ψ̄ψ at one-loop order,

such that it measures the number density of the fermion particles. First, we require

its expectation value in the �at space vacuum to vanish:

〈vac|ψ̄ψ(x)|vac〉flat +
∑
n=1

〈vac|ψ̄nψn(x)|vac〉flat + δZ5 = 0 (3.26)

⇒ −
ˆ

d4p

(2π)4

∑
N

D−1
N Tr

{
1

i

−/p+mN

p2 +m2
N − iε

}
+ δZ5 = 0. (3.27)

This corresponds to the evaluation of diagram (a) in Fig. 3.1.

Next, we impose the renormalization condition consistent with the fact that as far

as the fermion sector is concerned, a shift of σ by a constant in the tree-level action

is equivalent to a shift in the mass of the fermion. More explicitly, we demand that

if σ is shifted as σ → σ + c, the one-point function satis�es

〈vac|(ψ̄ψ)x,r|vac〉flat = 〈vac|
[
(ψ̄ψ)x,r + ∆(ψ̄ψ)x,r

]
|vac〉flat,LI=−λcψ̄yψy (3.28)

where ∆(ψ̄ψ)x,r corresponds to a shift in the σ dependent composite operator counter-

terms and LI corresponds to c dependent mass shift Lagrangian term. This leads to

diagrams (c)-(e) in Fig. 3.1 with the external σ propagators truncated and �xes

δZ2, δZ3, δZ4:

−(−iλ)3

ˆ
d4k

(2π)4
Tr


(∑

M

D−1
M

1

i

−/k +mM

k2 +m2
M − iε

)4
+ δZ2 = 0 (3.29)

−(−iλ)2

ˆ
d4k

(2π)4
Tr


(∑

M

D−1
M

1

i

−/k +mM

k2 +m2
M − iε

)3
+ δZ3 = 0, (3.30)

and

−iλ
ˆ
d4y〈(ψ̄ψ)x(ψ̄ψ)y〉+ δZ4 = 0 (3.31)

⇒ −iλ
ˆ

d4k

(2π)4
(−)Tr


(∑

M

D−1
M

1

i

−/k +mM

k2 +m2
M − iε

)2
+ δZ4 = 0. (3.32)
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Furthermore, we require ψ̄ψ to have no loop corrections when contracted with on-shell

fermion. This leads to the diagram (b) of Fig. 3.1 (where we have set the composite

operator momentum to be 0 for convenience) and �xes δZ1:

δZ1 + (iλ)2

ˆ
d4k

(2π)4

∑
L,M,N

C−1
L D−1

M D−1
N

1

i

1

k2 +M2
L − iε

×1

i

[−/k − /p+mM ]

(k + p)2 +m2
M − iε

× 1

i

[−/k − /p+mN ]

(k + p)2 +m2
N − iε

= 0. (3.33)

Similarly, we demand ψ̄ψ to have no loop corrections when contracted with on-shell

scalar line. Explicitly, the diagram corresponds to the diagram (e) of Fig. 3.1 deter-

mining δZ6 :

−iλ
ˆ
d4y〈(ψ̄ψ)x(ψ̄ψ)y〉eip·y + δZ4 − p2δZ6 = 0 (3.34)

⇒ iλ

ˆ
d4k

(2π)4
Tr

{∑
M

D−1
M

1

i

−/k +mM

k2 +m2
M − iε

×
∑
N

D−1
N

1

i

−/k − /p+mN

(k + p)2 +m2
N − iε

}
+ δZ4 − p2δZ6 = 0, (3.35)

where p2 = −m2
σ.

For δZi that depend on curved spacetime nature, we match the renormalized result

to that from the adiabatic subtraction. In order to �x δZ7, we impose the number

density 〈in|(ψ̄ψ)r,x|in〉 to be the density de�ned by the adiabatic prescription (See,

e.g., [6, 65,66,86,100,185,186]):

nψ ≡ 〈in|ψ̄ψ(x)|in〉+
∑
n=1

〈in|ψ̄nψ(x)n|in〉+ δZ5 + δZ7R(x) (3.36)

= 〈in|ψ̄ψ(x)|in〉 − 〈WKB, vac, tx|ψ̄ψ(x)|WKB, vac, tx〉, (3.37)

where |WKB, vac, tx〉 is the WKB vacuum de�ned at tx by the adiabatic prescription.

The diagram of interest is diagram (a) of Fig. 3.1, and the divergent part of δZ7

determined this way is linear in the fermion mass.
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In order to determine δZ8, we repeat the consideration analogous to Eq. (3.32) on

a background �eld σ(x) = c, where c is an in�nitesimal constant. Since a constant σ

shift is equivalent to a shift of the fermion mass, we want to choose δZ8 to get

λ∂mnψ(x) = −iλ
ˆ
CTP

(dy)
∑
N,M

〈in|P{ψ̄M(x)ψN(x)ψ̄N(y)ψM(y)}|in〉conn

+δZ4 + δZ8R(x), (3.38)

where the subscript CTP denotes closed-time-path, and P is the path-ordering op-

erator for a �in-in� exception value. (For example, see Refs. [195, 196]). Note that

diagram of interest corresponds to (e) of Fig. 3.1. As we will see later, this renormal-

ization condition plays a crucial role in determining the isocurvature correlator. The

solution for all the δZi can be expressed in terms of Feynman parameter integrals.

However, such explicit expressions are not relevant to determine the isocurvature

correlation function. In contrast the left hand side of Eq. (3.38) is important.

To summarize, we have given a prescription to regularize and renormalize the

composite operator ψ̄ψ. The renormalization conditions ensure that 〈in|(ψ̄ψ)r,x|in〉

agrees with that de�ned by the adiabatic prescription in curved spacetime, and they

also ensure that a constant shift in σ is equivalent to a constant shift in the fermion

mass. Note that because the gravitational production of fermions are still in �ux

when mψ < H , we evaluate the number density nψ later than t∗, where H(t∗) ∼ mψ,

as far as the renormalization conditions are concerned.

3.4 Scenario Constraints on Scalar Field σ

In this section, we explain the constraints on the Yukawa coupling λ that comes from

requiring σ to behave as an unscreened long range force carrier whose on-shell particle

states do not signi�cantly participate in ψ production.
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We will �nd that 〈σσ〉|t∗ power spectrum relevant for the isocurvature perturba-

tions is not suppressed ifmσ/H(t∗) < 1 where t∗ is the time at which H(t∗) = mψ (i.e.

t∗ is the time at which the fermion + anti-fermion number freezes [185]). This implies

mσ < mψ is the relevant parameter region for the scenario of this work. Furthermore,

in order to prevent any large isocurvature perturbations and relic abundance of σ, we

assume that 〈σ〉 = 0 and the σ particles decay before σ becomes an important �uid

component of the evolution of the universe (e.g. before matter-radiation equality).

Note however that this restriction is a matter of simplicity. There exist parameter

regions in (mσ, λ) such that σ survives as a long-lived weakly interacting particle (i.e.

a dark matter). However, in such cases, the constraints from the relic abundance

and the isocurvature of σ restrict the σ mass to be very small, e.g., mσ . 10−6eV

for Hinf ∼ 1013GeV. (See, e.g, [148, 149, 151, 197] for the parametric bounds for the

QCD axion produced by in�ation.) In principle, it is possible to build a model that

has such small mσ with help of some underlying symmetry, such as a shift symmetry.

Although we assume that mσ < mψ, σ would generally acquire a plasma mass

correction through interactions with an ensemble of ψ particles. Thus we consider the

e�ect of the produced ψ on the σ correlator and show that the e�ect is negligible. We

expect the fermions do not a�ect scalar modes before horizon exit because the mass

correction by the fermion is still small compared to the Hubble friction during in�a-

tion. After the scalar mode exits the horizon, the fermions exert a tiny computable
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drag on σ. The equation of motion of σ from the action (3.6)11 is written as

0 =
〈[

(�−m2
σ)σx − λψ̄ψx

+δZ0 + δZRRx + δZσ�σx − δm2
σσx + δZξRxσx

]
[· · · ]

〉
(3.39)

= (�x −m2
σ) 〈σx [· · · ]〉

+iλ2

ˆ x

(dz)〈[ψ̄ψx, ψ̄ψz]〉 〈σz [· · · ]〉+
(
δZσ�x − δm2

σ + δZξRx

)
〈σx [· · · ]〉

+
(
δZ0 + δZRRx − λ〈ψ̄ψx〉

)
〈[· · · ]〉+O(λ3, y), (3.40)

where [· · · ] denotes any quantum operators in the correlation function. We choose the

counter term δZ0 and δZR such that the tadpole 〈σ〉 vanishes, i.e., (δZ0 + δZRR −

λ
〈
ψ̄ψ
〉
) = 0, where the PV regulator is assumed. Moreover, when σ varies very

slowly outside the horizon, we factor 〈σz [· · · ]〉 out of the integral in Eq. (3.40), and we

renormalize the integral using the counter terms (δZσ�x − δm2
σ + δZξRx) 〈σx [· · · ]〉

such that the result is consistent with that obtained by the adiabatic subtraction12:

iλ2

ˆ x

(dz)〈[ψ̄ψx, ψ̄ψz]〉+
(
−δm2

σ + δZξRx

)
= −λ2

(
∂nψ
∂mψ

)
, (3.41)

where nψ is the renormalized fermion number density de�ned by Eq. (3.37), and we

have used Eq. (3.38) in the derivation. Therefore, we �nd the e�ective mass of σ

when it slowly varies (i.e., k/a� H and mσ � H)

meff
σ = m2

σ + ∆m2
σ(t) ≈ m2

σ + λ2∂nψ(t)

∂mψ

. (3.42)

11The counter-terms appearing in the action includes

Sc.t. 3
ˆ

(dx)

[
−1

2
δZσ (∂σ)

2 − 1

2
δm2

σσ
2 + δZ0σ + δZRRσ + δZξRσ

2

]
.

Note that the the linear σ terms exist in the action because the action does not preserve the Z2

symmetry due to the Yukawa coupling.
12In other words, we identify −δm2

σ and δZξ with δZ4 and δZ8 in Eq. (3.38), and δZσ� is
neglected since σ is slowly varying.
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Because we estimate nψ . O(0.1) (mψH)3/2 when mψ . H,13 based on dimensional

analysis, we expect that the mass correction by the ψ loop is

∆m2
σ(t) ≈ λ2∂nψ(t)

∂mψ

∼


O(0.1 or less)λ2m

1/2
ψ H3/2 for mψ < H(t)

O(0.1)λ2m2
ψ for mψ > H(t)

. (3.43)

Therefore, in general, before the fermion production ends mψ < H, this scalar mass

correction ∆m2
σ does not ruin the stability of our scenariom

2
σ+∆m2

σ(t) < m2
ψ < H2(t)

as long as m2
σ < m2

ψ.

Next, we ask the question of which parametric region would be consistent with the

simplifying assumption that ψ particles are primarily produced gravitationally and

not by σ. To this end, we �rst consider the annihilation σσ → ψ̄ψ. The annihilation

is the most signi�cant at the end of in�ation because ψ particles produced from σ

before the end of in�ation are diluted, and σσ → ψ̄ψ after the end of in�ation is also

limited because the allowed kinematic phase space is redshifted. Thus we compare

the number density of the produced ψ from σ at the end of in�ation, nσ→ψ with that

of gravitationally produced ψ, nψ(t∗) ∼ m3
ψ, and we require their ratio to be small:(

ae
a(t∗)

)3
nσ→ψ(te)

nψ(t∗)
∼

(
ae
a(t∗)

)3 nσΓ(σσ → ψψ)∆t|te
nψ(t∗)

(3.44)

∼
(
H(t∗)

He

)2 H3
e · λ4

16π2He · 1
He

H3(t∗)
∼ λ4

16π2

He

mψ

. 1, (3.45)

where the subscript e means a variable is evaluated at the end of in�ation te.

Even though mσ < mψ, the decay production of ψ through σ → ψ̄ψ may still be

possible if σ is su�ciently o� shell due to its interactions with �nite density of ψ in
13Note that the adiabatic prescription to determine the number density nψ does not apply for

modes mψ < k/a <
√
mψH when mψ < H because vacuum varies non-adiabatically, i.e., the

adiabaticity parameter εk ≡ mψkpH
ωk

& 1, where kp = k/a and ωk =
√
k2p +m2

ψ. See Appendix 3.10

for detail. However, we can estimate the upper bound of the number density as

nψ(t) =

ˆ
d3kp
(2π)3

|βk|2 .
ˆ √mψH d3kp

(2π)3
1

2
∼ O(0.1) (mψH)

3/2
for t < t∗.
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the subhorizon region (the subhorizon physics here is di�erent from the superhorizon

physics considered in Eq. (3.42)). To turn o� this channel, we require that the σ

mass corrections from the fermion number density at the time of end of in�ation be

small. This requires

λκ
He/(2π)

mψ

. 1 (3.46)

where κ & O(1). To see how κ & O(1) can come about, consider the following estimate

of subhorizon thermal e�ect. The maximum e�ective number density of fermions at

the end of in�ation is

nψ(te) . 4mψ

(
He

2π

)2

. (3.47)

The energy density associated with these fermions is

∆V ∼ nψ(te)

√(
He

2π

)2

+ λ2σ2 (3.48)

where we neglected mσ � He/(2π). This leads to an e�ective mσ correction of

∆m2
σ ∼ nψ(te)

λ2

He/(2π)
. 4λ2mψ

(
He

2π

)
. (3.49)

Kinematically blocking the σ decay into ψ, we �nd

4λ2

(
He

2π

)
< mψ (3.50)

which corresponds to κ = 2. Note that this condition is more restrictive than

Eq. (3.45).

In sum, requiring σ to behave as an unscreened long range force carrier whose on-

shell particle states do not signi�cantly participate in ψ production gives a constraint

on λ. The strongest condition is given by Eq. (3.46) with κ & O(1).
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3.5 Isocurvature two-point function

In this section, we evaluate the two-point function of the renormalized isocurva-

ture operator δS, given by Eq. (3.19). The average number density was computed

in [185], the result is summarized in Appendix 3.10. We only need to evaluate

〈(ψ̄ψ)x,r(ψ̄ψ)y,r〉c. Since we want to use the quantum computation to set the ini-

tial condition for the subsequent classical �uid evolution, we will choose the time of

the evaluation such that both the quantum and the classical �uid descriptions apply.

We take x0 = y0 = ηf at time after the particle production ends, since the �uid

description cannot describe the particle production process. We will take the sepa-

ration |~x − ~y| to be large enough such that the intersection of their past light-cone

I−(x) ∩ I−(y) lives deep within the in�ationary era. This ensures that the contri-

butions from late-time short distance physics (e.g. reheating, phase transition) are

minimized. The relevant diagrams for 〈(ψ̄ψ)x,r(ψ̄ψ)y,r〉c are given in Fig. (3.2). The

crossed dot represent (ψ̄ψ)x,r insertion, the solid dot represent the Yukawa interaction

vertex, the dashed line represent the scalar σ propagator, and the solid line represent

the fermion propagator.

Leading order result

We �rst consider the leading order diagram (a) in Fig (3.2). The diagram is explicitly

written as

〈ψ̄ψxψ̄ψy〉(a) = −Tr
[
〈ψxψ̄y〉〈ψyψ̄x〉

]
=
∑
i,j

V̄i,xUj,xŪj,yVi,y (3.51)
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Figure 3.2: The leading order and the next leading order contribution to
〈
ψ̄ψxψ̄ψy

〉
, the cross-dot vertices corresponds to ψ̄ψ insertion. By comparing the large r (r ≡
|~x− ~y|) behavior of the equal-time correlator of the fermion and the scalar �eld, we
want to show that diagram (b) dominates in the limit r →∞.

Using a contour integration technique, we can evaluate the mode-sum analytically.

The details are in given Appendix 3.11. The result14 is

〈ψ̄ψxψ̄ψy〉LO =


1

π4a6
x|~x−~y|6

(
1 +O

[(
mψ
Hinf

)2
])

(mψ � Hinf )

1
π4a6

x|~x−~y|6
(4π)

(
mψ
Hinf

)3

exp(−2π
mψ
Hinf

) (mψ � Hinf )

(3.52)

where Hinf is the expansion rate during in�ation. We can understand this result by

backtracking the two points x, y to the time when they were deep inside the horizon,

and see what happened as they grow apart.

In the heavy mass case (mψ � Hinf ), the Compton radius m−1
ψ is smaller than the

horizon radius H−1
inf . The physical separation rphys will �rst grow to the Compton

wavelength, and trigger the exponential suppression factor exp(−2mψrphys) in the

correlator.

〈ψ̄ψxψ̄ψy〉flat,mψrphys>1 ∼
m3
ψ

4π3r3
phys

exp(−2mψrphys) (3.53)

14Note that we do not consider the the heavy mass case, mψ � Hinf where Hinf is the expansion
rate during in�ation, for the isocurvature because the estimation of the particle production depends
on how the in�ation ends as described in Section 3.2. However, we provide the leading order of the
two-point function to develop better intuition for the behavior of super horizon modes of ψ.
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As the physical separation rphys grows further to exceed the horizon radius H−1
inf , the

correlator would freeze and start decreasing as (ar/aη)
6, where ar = 1/(Hinfr) denote

the scale factor at the horizon crossing. Substituting ar = 1
Hinf r

and rphys = H−1
inf , we

recover the heavy mass formula:(
ar
aη

)6 m3
ψ

4π3r3
phys

exp(−2mψrphys) ∼
1

a6
xr

6

(
mψ

Hinf

)3

exp(−2
mψ

Hinf

). (3.54)

In the light mass case (mψ � Hinf ), the physical distance will cross the horizon

radius �rst, without the exponential suppression of exp(−2mψrphys). From the �at

space UV limit result 1
r6
phys

,

〈ψ̄ψxψ̄ψy〉flat,mrphys<1 ∼
1

r6
phys

(3.55)

we use ar = 1
Hinf r

and rphys = H−1
inf to obtain(
ar
aη

)6
1

r6
phys

∼ 1

a6
xr

6
(3.56)

Thus we recover the light mass result.

Unfortunately, the fractional relic density �uctuation at CMB scale15 is too small

〈δρxδρy〉
〈ρ̄ψ〉2

∼
m2
ψ/(π

4a6r6
CMB)

m2
ψm

6
ψ(a6

∗/a
6)
∼
(

1

a∗mψrCMB

)6

. (3.57)

where rCMB is the comoving distance for typical CMB observation scale and the

subscript ∗ denotes the time when fermion production ends. Let aCMB denotes the

scale factor when CMB scale exits the horizon then we have

r−1
CMB ∼ aCMBHinf (3.58)

Assuming the fermion production ends during reheating when mψ = H(t∗), and

H ∝ a−α during reheating, then we have

aeHinf

a∗mψ

∼ aeHe

a∗H∗
∼
(
ae
a∗

)1−α

∼
(
He

H∗

)1− 1
α

(3.59)

15Since 〈δρδρ〉 is frozen as long as the two points are outside of horizon, we can extrapolate this
large spatial separation result obtained at the end of in�ation to the recombination time.



71

Assuming that in�ation ends 50 efolds after the CMB scale exits horizon and a MD-

like reheating, i.e., α = 3/2, then we have

〈δρxδρy〉
〈ρ̄ψ〉2

∼
(
aCMBHinf

a∗mψ

)6

∼
(
aCMB

ae

aeHinf

a∗mψ

)6

∼ e−300

(
He

mψ

)2

(3.60)

Using the fermion relic abundance formula (for TRH = 109GeV and g∗ = 100 case)

ωψ ∼ (mψ/1010GeV)2, we obtain

〈δρxδρy〉
ρ2
tot

∼ ω2
ψ

〈δρxδρy〉
〈ρ̄ψ〉2

∼ e−300

(
He

1010GeV

)2

(3.61)

We thus �nd that generically the pure fermion isocurvature is very small on scales

relevant for the CMB.

Next leading order result

We consider the diagrams (b)-(e) in Fig. 3.2, which contain the e�ects of the Yukawa

interaction to the fermion production. We can perturbatively compute the diagrams

using the �in-in� formalism (e.g. see Refs. [93, 198] and references therein).

Firstly, we estimate which diagram gives the largest contribution when x and

y have large spatial separations. From the fact that equal-time correlator 〈σxσy〉

scales as r2ν−3 where ν2 = 9/4 −m2
σ/H

2 from Eq. (3.105) and 〈ψxψ̄y〉 scales as r−3,

we expect that diagrams that have fewer fermion lines stretched between x and y

decreases slower as r → ∞. Thus, we conclude diagram (b) gives the dominant

contribution to the two-point function.
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For diagram (b), we expand it using commutators

Ib(x, y) = 〈(ψ̄ψ)x,r(ψ̄ψ)y,r〉c,diag(b) (3.62)

= 4(iλ)2

ˆ x

(dz)

ˆ y

(dw)〈ψ̄ψ[xψ̄ψz]〉〈ψ̄ψ[yψ̄ψw]〉〈σ{zσw}〉

+4(iλ)2

ˆ x

(dz)

ˆ y

(dw)〈ψ̄ψ{xψ̄ψz}〉〈ψ̄ψ[yψ̄ψw]〉〈σ[wσz]〉Θ(w0 − z0)

+4(iλ)2

ˆ x

(dz)

ˆ y

(dw) (x↔ z and w ↔ z ) (3.63)

≈ (iλ)2

ˆ x

(dz)

ˆ y

(dw)〈[ψ̄ψx, ψ̄ψz]〉〈[ψ̄ψy, ψ̄ψw]〉〈σ{zσw}〉 (3.64)

where (dz) =
√
−det (gµν)d

4z, [· · · ] means anti-symmetrization and {· · · } means

symmetrization, and we have implicitly assumed the PV regulator. From the scalar

and fermion mode functions in de Sitter spacetime, we know 〈[σx1 , σx2 ]〉 is suppressed

by a−2ν relative to 〈{σx1 , σx2}〉, whereas 〈[ψ̄ψx1 , ψ̄ψx2 ]〉 is suppressed by a−1 relative to

〈{ψ̄ψx1 , ψ̄ψx2}〉. The last line is obtained by keeping only the dominant contribution.

Since the fermion particle production ends at t∗ and the previously produced

particles have been diluted away, we expect the z and w integrals to peak around the

time t∗. For late time and large spatial separations, the scalar correlator 〈σ{zσw}〉 is

slowly varying with respect to changes in z and w. Thus we may approximately take

〈σ{zσw}〉 = 〈σ{z0σw0}〉, where z0 = (t∗, ~x) and w0 = (t∗, ~y), and factor it outside of the

z, w integral:

Ib(x, y) ≈ (iλ)2〈σ{z0σw0}〉[
ˆ x

(dz)〈[ψ̄ψx, ψ̄ψz]〉][
ˆ y

(dw)〈[ψ̄ψy, ψ̄ψw]〉] (3.65)

The remaining fermion integral
´ x

(dz)〈[ψ̄ψx, ψ̄ψz]〉 is quadratically divergent. The

counter-terms δZ4σ+δZ8Rσ in (ψ̄ψ)r is in place to cancel such divergences. Further-

more, our choice of the renormalization conditions given in Section 3.3 ensures that

a constant shift in σ is equivalent to a shift of the fermion mass (see Eq. (3.38)). An

explicit computation of the fermion loop integral using the adiabatic subtraction is
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given in Appendix 3.12. Thus we have

〈(δS)r,x(δS)r,y〉NLO ≈ ω2
ψλ

2[∂m lnnψ|x][∂m lnnψ|y]〈σ{(~x,t∗)σ(~y,t∗)}〉 (3.66)

where t∗ is the time when fermion production ends (i.e. mψ ∼ H(t∗)) and ∂m denotes

the derivative with respect to mψ. Note that 〈(δS)r,x(δS)r,y〉NLO freezes for t > t∗

since ∂mnψ and nψ behaves as a−3 after the fermion production ends. We will discuss

the numerical implications of this result below.

To summarize, we computed the isocurvature correlation function to the next

leading order, as in Eq. (3.66). Intuitively, the light scalar's quantum �uctuation

modulate the fermion's mass, which a�ect the fermion relic abundance. In the same

line of thought, we may extrapolate this result to estimate higher order corrections

〈(δS)r,x(δS)r,y〉full ≈ ω2
ψ

〈nψ (mψ + λσ(~x, t∗))nψ (mψ + λσ(~y, t∗))〉σ
n2
ψ

(3.67)

where we have treated nψ to be a function of its mass and the expectation value is

taken with respect of the σ �eld.

Isocurvature Power Spectrum

In the long wavelength limit, which corresponds to the low multipoles in the angular

CMB anisotropy, the temperature �uctuations dominantly come from the Sach-Wolfe

term [127], which is expressed as

∆T

T
= −1

5
ζ − 2

5
δS. (3.68)
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Then the power spectrum of the temperature �uctuations

∆2
∆T
T

(k) ≡ k3

2π2

ˆ
d3x

〈
∆T

T
(t, ~x)

∆T

T
(t,~0)

〉
e−i

~k·~x (3.69)

=
1

25
∆2
ζ(k) +

4

25
∆2
δS

(k), (3.70)

∆2
ζ(k) ≡ k3

2π2

ˆ
d3x

〈
ζ(t, ~x)ζ(t,~0)

〉
e−i

~k·~x, (3.71)

∆2
δS

(k) ≡ k3

2π2

ˆ
d3x

〈
δS(t, ~x)δS(t,~0)

〉
e−i

~k·~x, (3.72)

where the cross-correlation contribution 〈ζδS〉 has been neglected because of the rea-

son explained in Section 3.7. When the leading term approximation (3.66) is valid,

Eq. (3.66) yields the isocurvature power spectrum

∆2
δS

(t, k) = ω2
ψ(t)λ2

(
∂mnψ(mψ)

nψ

)2

∆2
σ(t∗, k) +O(λ4), (3.73)

which includes the extra factor ω2
ψ due to the thermal relics. Furthermore, when

the mass of scalar �eld σ is su�ciently light such that σ does not start its coherent

oscillation until the fermion particle production ends, i.e., mσ < H(t∗) < Hinf , the

power spectrum for σ is

∆2
σ(t∗, k) ≈ H2(tk)

4π2
(3.74)

where tk is the time when the scale k exits horizon. Note that we have already

shown that the correction of mσ due to the fermion loop is negligible in Section 3.4.

Therefore, the isocurvature power spectrum becomes

∆2
δS

(k) ≈ ω2
ψλ

2

(
∂mnψ(mψ)

nψ

)2
H2(tk)

4π2
. (3.75)

The currently known parametric bounds for this isocurvature power spectrum is pre-

sented in Section 3.6.
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3.6 Result and Discussion

Parameter bounds

In this subsection, we present the allowed parameter region in the fermion isocurva-

ture model from the observational constraints using the dark matter relic abundance

and the CDM isocurvature power-spectrum. In this scenario, there are 5 indepen-

dent parameters: mψ, Hinf , λ, TRH and mσ, where Hinf is the Hubble scale during

in�ation and TRH is the reheating temperature. We assume Hinf and TRH are free

parameters governed entirely by the in�aton and the reheating sector. As discussed

in Section 3.2, as long as mσ � mψ, the exact value of the scalar mass mσ is numeri-

cally unimportant in this model. Therefore, we are basically left with two parameter,

namely λ and mψ.
16

For the light fermion, mψ < Hinf , the fermion particle number freezes when

H(t∗) ∼ mψ as reviewed in Appendix 3.10. In particular, the Yukawa coupling works

e�ectively as a mass shift in our scenario meff = |mψ + λσ(t∗)|. The fermion relic

abundance (3.128) becomes

Ωψh
2 ∼ 3r

( meff

1011GeV

)2
(

TRH
109GeV

)
, (3.76)

where the extra factor r comes from the di�erence in the e�ective masses at t∗ and

later time, at which the energy density of ψ is not negligible, such as the MD era.

For example, if σ is treated as a Gaussian random variable with
√
〈σ2〉 ∼ Hinf/2π,

16Note that we implicitly assume that if mψ and TRH are such that the dark matter relic abun-
dance is not saturated by the ψ energy density, the other CDM sector in Eq. (3.6) is adjusted to
provide the rest of the dark matter. Note that when the ψ dark matter abundance is small, no
large tuning is needed to make this occur since the well known WIMP miracle can saturate the dark
matter abundance.
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we can approximate r ≈ mψ/ 〈meff〉 and write

Ωψh
2 ∼


(

mψ

1011GeV

)2 (
TRH

109GeV

)
if mψ > λHinf/2π

2πmψ
λHinf

(
λHinf

1011GeV

)2 (
TRH

109GeV

)
if mψ < λHinf/2π

, (3.77)

where O(1) factors are neglected.

Furthermore, from the result (3.75) in Sec. 3.5, the fractional isocurvature ampli-

tude [199] becomes

αS ≡
∆2
δS

∆2
ζ + ∆2

δS

∼ λ2

2

( mψ

104GeV

)2
(

H

1013GeV

)2(
TRH

109GeV

)2

, (3.78)

where we have used

∂mnψ
nψ

∼


m−1
ψ for mψ > λHinf/2π

2πλ−1H−1
inf for mψ < λHinf/2π

, (3.79)

because the number density nψ at the time t∗ is determined by only one dimensionful

scale meff ∼ H(t∗). The current observational bound [108, 109, 199�202] of the

isocurvature for the uncorrelated case, i.e. 〈ζδS〉 = 0, is αS < 0.016 (95% CL) from

the Planck+WP9 combined data, which yields the constraints on the parameters λ

and mψ. Combining the above consideration, we have the parameter plot shown in

Fig. 3.3. We emphasize that the parameter region beyond the (left diagonal) bound

from the σ annihilation, Eq. 3.50, is not necessarily excluded. Due to the uncertainty

of the σ annihilation e�ect, we provide it as a conservative bound of this model.

The case that mψ < λHinf/(2π) (which we will refer to as large mass correction

regime) is potentially the most interesting case because the fermion number density

nψ depends on |mψ + λσ|, not mψ + λσ as the sign of the fermion mass is irrelevant

for particle production17. This may lead to interesting features such as large non-

Gaussianities when the e�ective mass varies from negative to positive depending

17The sign of the fermion mass changes under a chiral transformation.
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Figure 3.3: Bounds on the fermion mass and Yukawa coupling for various in�ation-
ary Hubble scales. The vertical bound corresponds to the total dark matter relic
density constraint, the right diagonal and the left diagonal bounds correspond to
the constraints from the CDM isocurvature and the σ annihilation using Eq. (3.50),
respectively. The splitting dashed lines in each region separates the small mass and
large mass correction regime. In this plot, we set TRH = 109GeV.

on the local Hubble patches at t∗. However, this parametric region has couple of

problems: 1) the perturbative calculation of nψ may be unsuitable since we are not

resuming the large mass corrections; 2) Eq. (3.46) may not be satis�ed. Hence, for

the rest of this section, we primarily focus on the case that mψ > λHinf/(2π), which

we will refer to as the small mass correction regime.

Non-Gaussianities

In this subsection, we compute the bi-spectrum BS(~p1, ~p2, ~p3) de�ned by

(2π)3 δ(3)(
∑
i

~pi)BS(~p1, ~p2, ~p3) =

ˆ
d3x1d

3x2d
3x3e

−i
∑
i ~pi·~xi 〈δS(~x1)δS(~x2)δS(~x3)〉 .

(3.80)
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Figure 3.4: The leading order diagrams to 3-point function 〈δSδSδS〉 is shown. The
cross-dot vertices corresponds to ψ̄ψ/nψ insertions.

The fermion density �uctuation is intrinsically non-Gaussian since nψ is the non-linear

function of σ, which is treated as a Gaussian random variable. When the e�ective

mass �uctuation due to λσ is small, we can Taylor-expand the number density with

respect to λσ,

nψ (mψ + λσ) = nψ (mψ)+λ
(
∂mψnψ(mψ)

)
σ+

1

2
λ2
(
∂2
mψ
nψ(mψ)

)
σ2 +O(λ3). (3.81)

Then the bispectrum is written as

BS(~p1, ~p2, ~p3) = λ4ω3
ψ

(∂mnψ)2 (∂2
mnψ)

n3
ψ

[
∆2
σ(p1)∆2

σ(p2) + 2 perms
]

+O(λ6),(3.82)

which is shown diagrammatically in Fig. 3.4. Now we compare this with the observa-

tional non-Gaussianities using the conventional non-Gaussian parameter fNL de�ned

by

Bζ(~p1, ~p2, ~p3) ≡ 6

5
fNL

[
∆2
ζ(p1)∆2

ζ(p2) + 2 perms
]
. (3.83)

Identifying Bζ as the bispectrum of the temperature �uctuation using Eq.(3.68)

and comparing it with BS, we �nd in the squeezed triangle limit

fSNL =
8BS

Bζ |fNL=1

= 8
5

6
λ4ω3

ψ

(∂mnψ)2 (∂2
mnψ)

n3
ψ

∆2
σ(p1)∆2

σ(p2) + 2 perms.

∆2
ζ(p1)∆2

ζ(p2) + 2 perms.
. (3.84)

The factor 8 arises because the radiation transfer function for isocurvature is twice

larger than that for adiabatic perturbation for the low multipoles of the CMB anisotropy

as shown in Eq. (3.68). Although the isocurvature non-Gaussianities parameter fSNL
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should not be compared directly with fNL de�ned by the curvature perturbation [203],

this can be done with the extra O(1) correction factor [18, 59, 90, 181, 204, 205]. The

reason why ∂2
mnψ appears instead of a �rst derivative is because of the squeezed tri-

angle limit allows the short distance propagator to become important. Furthermore,

subhorizon physics via the Yukawa interaction, in principle, gives rise to the non-

Gaussianities of other types, e.g., the equilateral type. We postpone this study for

future work.

In order to obtain the functional structure of nψ(m,H; t), which relies on the

background behavior, we specialize to the case of the in�aton coherent oscillation

reheating scenarios, in which the total fermion number freezes during the reheating.

During the early stage of the reheating when the in�aton �eld oscillates coherently,

the equation of state of the in�aton is zero and the background behaves like the

matter dominated (MD) era. After approximating the early stage of the reheating to

the MD-like era (i.e. in�aton coherent oscillations period), we get (see Eq. (3.127))

nψ(t) ∼
m3
ψ

3π2

(
a(tm)

at

)3

∼ mψH
2
e

(
ae
at

)3

(3.85)

However, this leading order result gives ∂2
mψ
nψ = 0 which renders fSNL = 0 via

Eq.(4.31).

To �nd the non-zero result of fSNL, we need to study the mass dependence of nψ

in more detail, which in turn requires the knowledge of |βk(t;m)|2. To this point, we

have approximated our spectrum by |βk(t;m)|2 ∼ 1/2Θ(k∗ − k), where k∗ = a(t∗)m

and t∗is the time when m = H. However, in general the spectrum should contain

more than one characteristic scale, such as ke = a(te)He where te marks the end of

in�ation. Thus, in general, the number density should contain a correction factor

f( m
He

) i.e.

nψ ∼ mψH
2
e

(
ae
at

)3

f(
mψ

He

) (3.86)
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and f(0) = 1. This higher order correction to nψ would render ∂2
mnψ 6= 0 for the

MD-like reheating scenario.

For simplicity, if we assume that f(x) = 1 + a1x
18, then in the limit where

∆2
σ, ∆2

ζ , and ∆2
δS

are scale invariant, we �nd

fSNL ∼ a1

(
αS(λ,mψ, He, TRH)

0.02

)2(
Ωψh

2(mψ, TRH)

10−7

)−1(
mψ/He

10−1

)
. (3.87)

Although we would naively guess a1 ∼ O(1), the justi�cation of the Taylor expansion

for f(x) and the estimation of the coe�cient a1 will be left for future work since the

main thrust of this work is the computation of isocurvature perturbations and not

the non-Gaussianities. The maximum fNL for the mψ & λHinf/(2π) case (consistent

with small mass correction case) is achieved when this inequality is saturated and αS

is at its phenomenological maximum. We �nd this maximum to be at

fSNL,max ∼ O(100)a1
mψ

Hinf/(2π)
. (3.88)

Recall that our scenario assumes that 2πmψ/Hinf < 1. Hence, although fSNL cannot

be made arbitrarily large, there may exist a parametric regime in which fSNL is ob-

servable depending on a1. Note that this extremum value corresponds to making the

inhomogeneities O(1) while staying consistent with phenomenology through the ωψ

dilution factor: i.e. at this parametric point, the fermion abundance is Ωψh
2 ≈ 10−6

while most of the CDM is made up of assumed dark matter di�erent from ψ.

18On very general grounds, nψ cuts o� exponentially at very large masses, mψ & He, and we
qualitative estimate the correction factor f from this exponential cut-o�, which gives an O(1) value
for a1.



81

3.7 Natural Suppression of Gravitational Coupling

to the In�aton

As brie�y discussed in 3.2, the gravity induced coupling of the fermion to the in�aton

give a suppressed contribution to the isocurvature correlation function. We would

like to consider this in more detail in this section. In addition, the argument below

also shows that 〈ψ̄ψζ〉 cross-correlation is negligible, justifying the classi�cation of

this fermionic isocurvature perturbations as uncorrelated.

First, consider the ζψψ interaction given by Eq. (3.213) following the argument

given in Ref. [94]. In this case, the most important coupling term is a2ζδijT
ij
ψ ∈ Hint

because the other interactions are derivatively suppressed, and decays as O(1/a2) or

faster. Since ζ also freezes outside the horizon, using the similar argument given

surrounding Eq. (3.65) we can factor the ζ correlation function out of the dominantly

contributing integral, which corresponds to the diagram (b). Then we have

Iζψψ(x, y) ≈ (i)2〈ζ{z0ζw0}〉[
ˆ t

tr

dtz

ˆ
d3z a3(tz)〈[ψ̄ψx, T i

ψ i(z)]〉]

×[

ˆ t

tr

dtw

ˆ
d3w a3(tw)〈[ψ̄ψy, T i

ψ i(w)]〉] +O

(
a2(tr)

a2(t)

)
(3.89)

where z0 = (t∗, ~x), w0 = (t∗, ~y), t = x0 = y0, and tr denotes the time that the

comoving distance r = |~x− ~y| crosses the horizon during in�ation. In the integral,

we have assumed the PV regulator. Note that λ
´

(dz)T i
ψ i is a generator of the spatial

dilatation, xi → (1 + λ)xi which is an element of di�eomorphism. Thus, we have

ˆ t

−∞
dtz

ˆ
d3z a3(tz)〈[ψ̄ψx, T i

ψ i(z)]〉 = 0 (3.90)

because ψ̄ψ is a di�eomorphism invariant scalar. Indeed, this is a Ward identity

similar to that of Ref. [94]. Although the integral in Eq. (3.89) does not completely

vanish (because of the time integral limit being tr and not −∞), the mode function
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of ψ decays as 1/a3 (as shown Appendix 3.11) because of the classical conformal

symmetry characterizing the massless fermionic sector19, we have

ˆ t

tr

dtz

ˆ
d3z a3(tz)〈[ψ̄ψx, T i

ψ i(z)]〉 ∼ O

(
a3(tr)

a3(t)

)
. (3.91)

In a similar manner, we can have

〈
ζx
(
ψ̄ψ
)
y

〉
∼ O

(
a2(tr)

a2(t)

)
. (3.92)

Therefore, we can conclude that large scale density perturbations of ψ particles gen-

erated by ζ interaction and the curvature and isocurvature cross-correlation via the

ζψ̄ψ are negligible.

3.8 Summary and Conclusion

In this work, we have presented a fermionic isocurvature scenario which contains

fermionic �eld �uctuation information during in�ation. To our knowledge, this is

the �rst work that describes isocurvature inhomogeneities of fermionic �elds during

in�ation. Because massless free fermions have a tree-level conformal symmetry, such

isocurvature models must couple to a conformal symmetry breaking sector. Because

the ζ sector coupling to fermion ψ is suppressed due to the dilatation symmetry, an

additional scalar sector σ is coupled to ψ (with mass mψ) through a Yukawa coupling

with strength λ. Composite operator renormalization in curved spacetime plays an

important role in determining the isocurvature perturbations. We have computed the

19Thus, the result is di�erent for a scalar case, which is minimally coupled to gravity. In particular,
the cross-correlation for the light scalar case is computed in Ref. [94] and is

〈
ζ (t, ~x)σ2 (t, ~y)

〉
∼ O

((
a(tr)

a(t)

)3−2ν

,

(
a(tr)

a(t)

)2
)
,

where ν ≡
√

9
4 −

m2
σ

H2 .
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fermion isocurvature two point correlation function which has its dominant contribu-

tion in the long wavelength limit coming at one loop 1PI level. We have also estimated

the local non-Gaussianity and found a value that is promising for observability for a

particular corner of the parameter space.

As far as the existence proof inspired �minimal� model of this work is concerned,

a large phenomenologically viable parameter region spanned by {λ,mψ} exists for

various in�ationary models controlled by {Hinf , TRH}. The large λ parameter region

is bounded either by current CMB constraints on isocurvature perturbations or the

constraint of σ not decaying to ψ. The large mψ region is constrained by the relic

abundance non-overclosure. The small mψ region is constrained by requiring that σ

not decay to ψ (for a �xed λ and Hinf ). The large non-Gaussianity parametric region

is associated with largest λ consistent with isocurvature bounds and the simplifying

assumption mψ & λHinf/(2π). This intuitively corresponds to a large fermion inho-

mogeneity (i.e. δρψ/ρ̄ψ ∼ O(1)) with a tiny ρ̄ψ/(ρ̄ψ + ρ̄m) where ρ̄m corresponds to

an adiabatic cold dark matter component that helps saturate the phenomenologically

measured cold dark matter abundance.

Our results regarding the gravitational fermion production give good dynamical

intuition on many models with dynamical fermions existing during in�ation. One

shortcoming of the explicit model used in the current work is the tuning of the σ sector

imposed to keep it light and to prevent any σ decay into ψ. In addition to model

building issues, it would be interesting to consider in the future non-Gaussianities

from such models more completely and carefully beyond the estimation presented

in this work. It may also be interesting to see what UV model fermionic sector

built independently of cosmological motivation can be constrained using the analysis

presented in this work.
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3.9 Appendix: Scalar and Spinor �elds in Curved

spacetime

First we list the relevant results about scalar �eld. Consider the following action

S =

ˆ
d4x
√
|g|
{
−1

2
gαβ∂αφ∂βφ−

1

2
m2φ2 − 1

2
ξRφ2

}
, (3.93)

This gives rises to equation of motion

1√
|g|
∂µ(gµν

√
|g|∂νφ)− (m2 + ξR)φ = 0 (3.94)

Scalar product between two solutions are de�ned as

(φ1, φ2) = −i
ˆ

Σ

[φ1∂µφ
∗
2 − φ2∂µφ

∗
1]
√
|gΣ|dΣµ (3.95)

where Σ is a spacelike hypersurface.

For FRW metric, we can use mode decomposition

φ(x) =

ˆ
d3k(c~ku~k(x) + c†~ku

∗
~k
(x)) (3.96)

with the normalization condition

[c~k, c
†
~p] = δ3(~k − ~p) (3.97)

(u~k, u~p) = δ3(~k − ~p) (3.98)

The mode functions can be written explicitly as

u~k(x) =
ei
~k·~x

(2π)3/2a(η)
fk(η) (3.99)

fk∂ηf
∗
k − f ∗k∂ηfk = i (3.100)

The time-part of the mode function obeys the di�erential equation

d2

dη2
fk,η + {k2 + a2

η[m
2 + (ξ − 1

6
R(η))]}fk,η = 0 (3.101)
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where R(η) = 6a−1∂2
ηa, and η is the conformal time. For de Sitter spacetime, the

mode solution for a minimally coupled scalar (ξ = 0) is

fk(η) =
1√
2k

√
π

2

(
k

aH

)
ei
π
2

(ν+ 1
2

)H(1)
ν (

k

aH
) (3.102)

where ν2 = 9
4
− m2

H2 .

The following relations of �rst kind of Hankel functions are useful

H(1)
ν (z) → −iΓ(ν)

π

(
2

z

)ν
(z → 0) (3.103)

H(1)
ν (z) →

√
2

πz
e−i

π
2

(ν+ 1
2

)eiz (z →∞) (3.104)

From the mode expansion, we may construct the equal-time correlator in dS space-

time. In particular, we are interested in the large separation limit. For light scalar,

when ν is real, we have

〈σxσy〉 ≈
H2

8π

Γ(3
2
− ν)

Γ(3
2
)Γ(1− ν) sin(νπ)

(aHr)2ν−3 (3.105)

For heavy scalar, when ν = iα and if α ∼ m
H
� 1, then

〈σxσy〉 ≈
H3/2m1/2

π3/2
e−

m
H
π sin[2

m

H
ln(aHr)− 1

4
π](aHr)−3 (3.106)

Next, we give the result for spinor �eld. Consider the free Dirac �eld ψ action

S =

ˆ
(dx)

(
iψ̄γµ∇µψ −mψ̄ψ

)
. (3.107)

where (dx) = d4x
√
|gx| and γµ ≡ γaeµa with vierbein eµa . The covariant derivatives

for ψ is de�ned by

∇µψ = ∂µψ +
1

2
ωabµ Σabψ (3.108)

and the spin-connection is de�ned by

ωabµ = eaν∇µe
bν (3.109)
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and the Lorentz generator on the spinor �eld is given by

Σab = −1

4
[γa, γb], (3.110)

where the γ matrices satisfy the {γa, γb} = −2ηab with η ≡ diag(−1, 1, 1, 1). Note

that the sign convention is chosen such that [Σ12,Σ23] = Σ13.

Extremizing the action with respect to δψ̄ and δψ yields the equations of motion:

(iγµ∇µ −m)ψ = 0, ∇µψ̄(−iγµ)− ψ̄m = 0. (3.111)

The solution space can be endowed with a scalar product as

(ψ1, ψ2)Σ =

ˆ
dΣnµψ̄1γ

µψ2 (3.112)

in which Σ is an arbitrary space-like hypersurface, dΣ is the volume 3-form on this

hypersurface computed with the induced metric, and nµ is the future-pointing time-

like unit vector normal to Σ. The current conservation condition

∇µ(ψ̄1γ
µψ2) = 0 (3.113)

implies the integral in the scalar product is independent of the choice of Σ.

If we adopt the Dirac basis for the γ matrices, i.e.

γ0 =

 I 0

0 −I

 , γi =

 0 σi

−σi 0

 (3.114)

the mode functions can be written as

U~k,r(x) =
1

a
3/2
x

ei
~k·~x

(2π)3/2

 uA,k,x0

r uB,k,x0

⊗ hk̂,r (3.115)

V~k,r(x) = −iγ2U∗~k,r(x) =
1

a
3/2
x

e−i
~k·~x

(2π)3/2

 r u∗B,k,x0

−u∗A,k,x0

⊗ (−iσ2)h∗
k̂,r

(3.116)
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where hk̂,r is eigenvector of k̂ · ~σ. The normalization conditions requires

h†
k̂,r
hk̂,s = δrs (3.117)

|uA,k,η|2 + |uB,k,η|2 = 1. (3.118)

The time dependent parts of the mode functions obey the following equation

i
d

dη

 uA

uB

 =

 am k

k −am


 uA

uB

 . (3.119)

In the special case of the de Sitter background with Bunch-Davies boundary condition,

we have  uA

uB


in

k,η

=


√

π
4
( k
aHe

)ei
π
2

(1−i m
He

))H
(1)
1
2
−i m

He

( k
aH

)√
π
4
( k
aHe

)ei
π
2

(1+im
H

))H
(1)
1
2

+i m
He

( k
aH

)

 (3.120)

if |kx0| � 1 −→

 1√
2π
e
π
2
m
H e−im(t−te)+imH ln(2k/aeH)Γ(1

2
− im

H
)

1√
2π
e−

π
2
m
H e+im(t−te)−imH ln(2k/aeH)Γ(1

2
+ im

H
)

 (3.121)

Since the interaction picture operator ψ(x) obeys the same classical equations,

Eq. (3.111), we can expand the operator using {Ui, Vi} as the basis:

ψ(x) =
∑
i

aiUi(x) + b†iVi(x) (3.122)

and the normalization conditions on Ui, Vi gives the usual canonical anti-commutation

relations of the creation and annihilation operators.

The �rst order WKB approximation is de�ned as uA

uB


WKB

k,η

=


√

ω+am
2ω√

ω−am
2ω

 e−i
´ η ωdη′ (3.123)

In the following, when we talk about fermion particle, we are implicitly referring to

the WKB-mode.
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Thus one can introduce the time-dependent Bogoliubov coe�cients {αk,η, βk,η}

between the in-modes and WKB-modes: uA

uB


in

k,η

= αk,η

 uA

uB


WKB

k,η

+ βk,η

 u∗B

−u∗A


WKB

. (3.124)

Clearly, (α, β) → (1, 0) as η → −∞ . We may also note that the Bogoliubov coe�-

cients obey normalization condition as

|αk,η|2 + |βk,η|2 = 1. (3.125)

in agreement with fermion statistics.

Using Eq. (3.124), (3.123) and (3.119), we can derive the evolution equation for

the Bogoliubov coe�cients, as shown in Eq. (3.126).

3.10 Appendix: Review of fermion particle

production

In this section, we give a brief review of the main result about fermion production

during in�ation [185]. The fermion number density can be obtained by solving this

equations of Bogoliubov coe�cients

∂η

 αk,η

βk,η

 =
a2mkH

2ω2

 0 e2i
´ η ωdη′

−e−i
´ η ωdη′ 0


 αk,η

βk,η

 (3.126)

We de�ne the non-adiabaticity for a mode k as εk,η = mkpH

ω3
p

, where subscript p stand

for �physical�, ωp = ω/a etc. As the system evolves from an initial vacuum condition

of (αk,η, βk,η) = (1, 0), βk,η will only increase signi�cantly when εk,η ∼ O(1). This

implies the following results,
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1. In the heavy mass limit (mψ � Hinf ), εk,η is always suppressed by H
mψ

, we get

|βk,η|2 ∼ exp[−C mψ
H(ηk)

] � 1, where C is some order one constant and H(ηk) is

the Hubble rate at the most non-adiabatic moment for mode k.

2. In the light mass limit (mψ � Hinf ), εk,η is largest when kp ∼ mψ, we call

this time ηk. If mψ < H(ηk), we have |βk|2 ∼ 1
2
, otherwise it is suppressed by

exp[−C mψ
H(ηk)

] as well.

Since the heavy fermion production is always exponentially suppressed by mψ/H

ratio, we focus on the light fermion case. The energy density at time t is given by

ρ(t) ∼
m4
ψ

3π2

(
a(t∗)

a(t)

)3

, (3.127)

where t∗ is the time when H(t) = mψ. If t∗ occurs during reheating, one get the relic

abundance today time as

Ωψh
2 ∼ 3

( mψ

1011GeV

)2
(

TRH
109GeV

)
. (3.128)

3.11 Appendix: Asymptotic behavior of 〈ψxψ̄y〉 at

large r

In this section we derive the result about leading order contribution to 〈nψ,xnψ,y〉,

i.e. Eq. (3.52). By Wick contraction, this reduces to computing the �eld correlator

〈ψxψ̄y〉. The standard way to compute the correlator is to plug in the mode decom-

position Eq. (3.122) and compute the mode functions {Ui, Vi}. The di�culties lie in

how to obtain the mode functions on a curved spacetime. For in�ationary background

spacetime, one can use the de Sitter spacetime as an approximation and obtain exact

analytic solutions. However, it is unclear how do these mode solutions evolve after
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in�ation ends. Such postin�ationary solutions are relevant for our computation be-

cause the particle production freezes out after the end of in�ation. Here we give an

approach that answers this question.

First, we plug in the mode decomposition to the equal-time correlator:

〈ψxψ̄y〉 =

ˆ
d3k

1

a3
x

ei
~k·~r

(2π)3

×

 |uA,k,x0|2 ⊗ I2 −uA,k,x0u∗B,k,x0 ⊗ (k̂ · ~σ)

uB,k,x0u∗A,k,x0 ⊗ (k̂ · ~σ) −|uB,k,x0|2 ⊗ I2

 (3.129)

where we have performed the spin-sum in the last step. Since

ˆ
d3k

ei
~k·~r

(2π)3
|uA,k,x0|2 =

ˆ
d3k

ei
~k·~r

(2π)3
(1− |uB,k,x0|2) (3.130)

= δ3(~r)−
ˆ
d3k

ei
~k·~r

(2π)3
|uB,k,x0|2 (3.131)

and ~r 6= 0, we see the diagonal elements are the same. Then we perform the angular

integral d2k̂. Recall that

ˆ
d3k ei

~k·~rf(k) =

ˆ
4πk2dk

sin(kr)

kr
f(k) (3.132)

ˆ
d3k ei

~k·~rk̂if(k) = (−ir̂i∂r)
ˆ

4πk2dk
sin(kr)

kr

f(k)

k
(3.133)

After the angular integral, we have

〈ψxψ̄y〉 =

ˆ
4πk2dk

(2π)3

 A B

B∗ C

 (3.134)

A = |uA,k,η|2 ·
sin(kr)

kr
(3.135)

B = (ir̂ · ~σ)uA,k,ηu
∗
B,k,η · ∂r

sin(kr)

kr

1

k
(3.136)

C = −|uB,k,η|2 ·
sin(kr)

kr
(3.137)
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It is su�cient to study these two integrals for the diagonal and o�-diagonal elements.

I11 = I22 =

ˆ ∞
0

4πk2dk

(2π)3
|uA,k,η|2 ·

sin(kr)

kr
(3.138)

I12 = I∗21 = ∂r

ˆ ∞
0

4πk2dk

(2π)3
uA,k,ηu

∗
B,k,η

sin(kr)

kr

1

k
(3.139)

Now, we only need to �nd the mode function uA, uB, and perform the mode sum.

Let's consider the mode functions �rst. Since we are interested in evaluating the

fermion �eld correlator at a time when the fermion production has ended, i.e. when

m� H(x0) and in the limit r →∞, we can make the following approximations about

the mode functions {uA,k,x0 , uB,k,x0}. First, since the particle production has stopped,

the non-adiabatic parameter is suppressed by H(t)
m

, thus we can approximately replace

the Bogoliubov coe�cients by their late time asymptotic values, i.e.

αk,x0 ≈ αk, βk,x0 ≈ βk. (3.140)

Second, since we want to capture the particle production e�ect on the correlator and

the produced particles are non-relativistic at the time of production, by the time x0

which is su�ciently long after the production has ended, we may approximate the

produced modes all have k � a(x0)m. Thus, the WKB modes can be approximated

by  uA

uB


WKB

k,η,IR

=


√

ω+am
2ω√

ω−am
2ω

 e−i
´ η ωdη′ →

 1√
2

0

 e−i
´ η ωdη′ . (3.141)

Combining these two approximations, we have

 uA

uB


in

k,η,IR

≈

 αk
1√
2
e−i

´ η ωdη′

−βk 1√
2
ei
´ η ωdη′

 (3.142)

Thus we can easily evaluate I11, I12:

2π2I11,IR =
1

r
Im

ˆ ∞
0

kdk
1

2
[1− n(k)] · eikr (3.143)
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We note that for the contribution from 1 vanishes

1

r
Im

ˆ ∞
0

kdk [1] · eikr =
1

r
Im

ˆ ∞
0

(is)ids [1] · e−sr = 0 (3.144)

For the contribution from n(k) , we may assume it to be a real analytic function

on R+and can be analytically continuated to upper-right quadrant of the complex k

plane. The location of singularity of n(k) determines contour of k. For example, we

may consider the n(k) for heavy fermion case (m > Hinf ):

n(k)heavy = exp

[
−4(k/anad)

2

mH
− 4m

H

]
(3.145)

where anad is at the non-adiabatic time point. In this case, the non-adiabatic time is

the transition from de Sitter era to the reheating era, i.e. anad = ae. One can apply

steepest descent to �nd that

2π2I11,heavy,IR

≈ −1

r
exp[−4m

H
− 1

16
mHr2](a2

emH)Im[−i1
4

√
mHaer

1

2

√
π] (3.146)

=
1

8

√
πa3

e(mH)
3
2 exp[−4m

H
− 1

16
a2
emHr

2] (3.147)

For light fermion, we may approximate the number density spectrum as

n(k)light =
1

1 + exp( k2

(anadm)2 )
(3.148)

where the non-adiabatic point occurs when H drops below m, i.e. anad = a(η∗) = a∗.

This ansatz is only used to mimic the cut-o� of the spectrum at k ∼ anadm. The

singularity lies at

k2

a2
∗m

2
= (2n+ 1)πi, n = 0, 1, 2 · · · (3.149)

or k∗,n = a∗m
√

(2n+ 1)πe
π
4
i. Again, one can perform the steepest descent around

the n = 0 singularity k∗ = a∗m
√
πe

π
4
i. Let δ = (k − k∗)/a∗m, we have

2π2I11,light,IR = πa3
∗
m2

a∗r
exp[−

√
π

2
a∗mr] cos(

√
π

2
a∗mr) (3.150)
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For both the heavy and light fermion case, I11 ∝ exp(−a∗Mr), where a∗M is the scale

that n(k) cuts o�. We should also remind ourself that the UV vacuum contributions

also exist, which scales as

I11,UV ∝ exp[−aηmr] (3.151)

due to the singularity at k = aηm in the mode functions uWKB
A , uWKB

B . Thus we have

shown that the diagonal element of Eq. (3.134) is always exponentially suppressed.

Next, we turn to look at the o� diagonal element I12. Unlike the I11 case, whose

integrand |uA|2 has constant asymptotic value in the IR region, the I12's IR contri-

bution

uA,k,ηu
∗
B,k,η = αkβ

∗
ke
−2i
´ η ωdη′ (3.152)

contains e−2imt time dependence. Physically, if we decompose the in-state into WKB

vacuum and excitation state

|in,vac〉 =∼ |WKB,vac〉+ ∼ |WKB,2-particles〉+ ∼ |WKB,4-particles〉 (3.153)

then this term comes from the interference term

〈WKB, vac|ψxψ̄y|WKB, 2-particles〉 ∈ 〈in, vac|ψxψ̄y|in, vac〉. (3.154)

If we care about r large enough, for example corresponding to the CMB observation

scale at recombination, we may assume the relevant k scale exit horizon and become

non-relativistic during in�ation. Thus we may safely use the dS mode function to

evaluate I12,IR,CMB.

Recall that during dS era, we have Eq. (3.120), where we choose the end of in�ation

time te as the reference point. Thus

uA,k,ηu
∗
B,k,η =

1

2π
e−2im(t−te)+2im

H
ln(2k/aeH)Γ2(

1

2
− im

H
) (3.155)

Performing the integral using steepest descent, we �nd the leading contribution comes

from k ∼ 0 singularity in uA,k,ηu
∗
B,k,η. We note that the k dependent phase factor
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e2im
H

ln(2k/H) cannot be absorbed by a rede�nition of the mode functions uA,k,η, uB,k,η,

since this phase factor depends on the relative phase of uA,k,η, uB,k,η which is �xed by

the Bunch-Davies initial condition.

Plugging in the Eq. (3.139), we have

2π2I12,IR

= −e−2im(t−t(r))+iφ(m
H

)r−3

√
2πm

H

sinh(2πm
H

)

(
1 +

(m
H

)2
)

(3.156)

where φ(m
H

) = Arg(Γ(2 + ix)Γ(1
2
− ix)) and t(r) is the time when a(tr)Hr = 4. We

may consider the light mass limit

2π2I12,IR,light ≈ −e−2im(t−t(r))r−3 (3.157)

and the heavy mass limit

2π2I12,IR,heavy ≈ −(4π)
1
2

(m
H

) 3
2

exp(−πm
H

)e−2im(t−t(r))r−3 (3.158)

We may also consider the e�ect of having an IR cut-o� kIR, which is the scale

that exit horizon at the beginning of in�ation. Such an IR cut-o� will introduce a

exp(−kIRr) type of exponential suppression factor. However, for observable universe

with comoving radius Robs, as long as kIRRobs � 1, we may ignore this suppression

factor.

After evaluating the matrix element for the fermion correlators, we �nd that

1. For the light fermion case, i.e. m� Hinf , in the limit r →∞

〈ψxψ̄y〉 ≈
1

a3
x

1

2π2

 A B

B∗ A

 (3.159)

where

A =
1

2
πa3
∗
m2

a∗r
exp[−

√
π

2
a∗mr] cos(

√
π

2
a∗mr) (3.160)

B = −ir̂ · ~σe−2im(t−tr)r−3 (3.161)
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where a∗ in evaluated at η∗.

2. For the heavy fermion case, i.e. m � Hinf , in the limit r → ∞, we �nd in

Eq. (3.159)

A =
1

16

√
πa3

e(mHe)
3
2 exp[−4m

He

− 1

16
a2
emHer

2] (3.162)

B = −ir̂ · ~σ(4π)
1
2

(
m

He

) 3
2

exp(−π m
He

)e−2im(t−t(r))r−3 (3.163)

and ae is evaluated at the end of in�ation.

Finally, we plug in the �eld correlator to 〈nψ,xnψ,y〉, and drop the term that are

exponentially suppressed when r →∞, to get Eq. (3.52).

3.12 Appendix: Relative suppression of

Commutators

In this subsection, we want compare the dependence on the scale factor a(t) between

〈in|[Ox, Oy]|in〉 and 〈in|{Ox, Oy}|in〉, where Ox is a bosonic hermitian operator and

x, y are spacetime points located near the end of in�ation. For simplicity, we take H

as a constant. In particular, we are interested in the cases where O = σ, ψ̄ψ, ζ. We

want to show that the commutator of O su�ers from additional suppression factor

compared to the anti-commutator.

In general, the diagonal matrix elements of products of hermitian operator obeys

(〈in|OxOy|in〉)∗ = 〈in|OyOx|in〉 (3.164)

therefore

〈in|[Ox, Oy]|in〉 = 2iIm〈in|OxOy|in〉 (3.165)

〈in|{Ox, Oy}|in〉 = 2Re〈in|OxOy|in〉 (3.166)
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We can just study 〈in|OxOy|in〉. We may use the mode expansion of the �eld operator

to evaluate such an expression, and focus on modes that are outside of horizon at

both times ηx, ηy.

We shall �rst take O = σ, and we assume that the scalar is light, i.e. mσ <
3
2
H,

such that ν is real:

〈in|σxσy|in〉 =

ˆ
4πk2dk

[
´
d2k̂ei

~k·(~x−~y)]

(2π)3a
3/2
x a

3/2
y

× 1

H

π

4
[JxJy + YxYy + i(YxJy − JxYy)] (3.167)

where Jx = Jν(
k

axH
), Yx = Yν(

k
axH

) are the �rst and second kinds of Bessel functions

with real values. The d2k̂ is the angular integral with normalization
´
d2k̂ = 1, and

´
d2k̂ei

~k·(~x−~y) = sin(kr)/kr is real. If we focus on the k modes that are outside of

horizon, i.e. k/aH � 1, we may use the small argument expansion of the Bessel

function, i.e. when (0 < z <
√

1 + ν)

Jν(z) ≈ 1

Γ(α + 1)

(z
2

)ν
(3.168)

Yν(z) ≈ −Γ(α)

π

(
2

z

)ν
. (3.169)

Then, under the common scaling of ax → λax, ay → λay, with λ increasing, we see

the various term in the correlator scales as

a−3/2
x a−3/2

y JxJy ∝ λ−2ν−3 (3.170)

a−3/2
x a−3/2

y YxYy ∝ λ2ν−3 (3.171)

a−3/2
x a−3/2

y (YxJy − JxYy) ∝ λ−3 (3.172)

Thus, we see under this common scaling, the IR contribution to the two point func-
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tions are

〈in|{σx, σy}|in〉IR = 2

ˆ
IR

4πk2dk
[
´
d2k̂ei

~k·(~x−~y)]

(2π)3a
3/2
x a

3/2
y

1

H

π

4
(JxJy + YxYy) (3.173)

∝ λ2ν−3 (3.174)

〈in|[σx, σy]|in〉IR = 2i

ˆ
IR

4πk2dk
[
´
d2k̂ei

~k·(~x−~y)]

(2π)3a
3/2
x a

3/2
y

1

H

π

4
(YxJy − JxYy) (3.175)

∝ λ−3 (3.176)

Thus, we have shown under the scaling a→ λa, the commutator of σ is suppressed by

λ−2ν factor relative to its anti-commutator. For small mass scalar, λ−2ν ≈ λ−3+ 2m2

3H2 .

For the case of O = ζ, we have similar statements as the scalar case with ν = 3
2
, i.e.

〈[ζx, ζy]〉IR is suppressed by λ−3 relative to 〈{ζx, ζy}〉IR under the scaling of a→ λa.

Next, we consider the case of O = ψ̄ψ. Using the mode decomposition Eq.(3.122)

and mode functions Eq. (3.115,3.116), we have

〈ψ̄ψxψ̄ψy〉 =
∑
i,j

1

a3
xa

3
y

ei(
~ki+~kj)·(~x−~y)

(2π)6
[hTi (iσ2)hj][h

†
j(−iσ2)h∗i ]Fij,xF

∗
ij,y (3.177)

where

Fij,x = riuB,i,xuA,j,x + (i↔ j) (3.178)

Fij,xF
∗
ij,y = 2[riuB,i,xuA,j,x + (i↔ j)](riu

∗
B,i,yu

∗
A,j,y) (3.179)

= 2[uB,i,xuA,j,xu
∗
B,i,yu

∗
A,j,y + rirjuB,i,xuA,j,xu

∗
B,j,yu

∗
A,i,y]. (3.180)

We note that in Eq. (3.177), the factor ei(
~ki+~kj)·(~x−~y) after angular average is real, and

the factor [hTi (iσ2)hj][h
†
j(−iσ2)h∗i ] = |[hTi (iσ2)hj]|2 is also real, thus the imaginary and

real part of Fij,xF
∗
ij,y correspond to the commutator and anti-commutator respectively.

Next, we consider the two terms in Eq. (3.180) one by one, using explicit expression
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of Eq. (3.121) to get

uB,i,xuA,j,xu
∗
B,i,yu

∗
A,j,y =

√
π

4

ki
axH

√
π

4

kj
axH

√
π

4

ki
ayH

√
π

4

kj
ayH

×(J+,i,x + iY+,i,x)(J−,j,x + iY−,j,x)

×(J−,i,y − iY−,i,y)(J+,j,y − iY+,j,y) (3.181)

where

J±,i,x = J 1
2
±im

H
(
ki
axH

), Y±,i,x = Y 1
2
±im

H
(
ki
axH

). (3.182)

Using the small z expansion of Bessel function again, where Re (ν) = 1
2
in all the

cases, we can extract its scaling behavior under a→ λa,

(J+,i,x + iY+,i,x)(J−,j,x + iY−,j,x)(J−,i,y − iY−,i,y)(J+,j,y − iY+,j,y)

= Y+,i,xY−,j,xY−,i,yY+,j,y · · · · · · ∝ λ2, real

−iJ+,i,xY−,j,xY−,i,yY+,j,y − iY+,i,xJ−,j,xY−,i,yY+,j,y · · · · · · ∝ λ1, imaginary

+iY+,i,xY−,j,xJ−,i,yY+,j,y + iY+,i,xY−,j,xY−,i,yJ+,j,y · · · · · · ∝ λ1, imaginary

+terms subdominant in λexpansion. (3.183)

Thus the imaginary part is suppressed by λ−1 relative to the real part. We can do

similar analysis to the second part rirjuB,i,xuA,j,xu
∗
B,j,yu

∗
A,i,y in Eq. (3.180) and found

the same behavior. Thus, for ψ̄ψ operator, we have the following scaling law

〈{ψ̄ψx, ψ̄ψy}〉IR ∝ λ−6 (3.184)

〈[ψ̄ψx, ψ̄ψy]〉IR ∝ λ−7. (3.185)

Thus, we see the commutator for ψ̄ψ gives additional suppression of a−1 factor

compared with the anti-commutator, whereas the commutator for σ and ζ gives

additional suppression of a−3 factor.
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3.13 Appendix: Explicit check of the mass

insertion formula

In this section, we show that the particle production part of the following equation

holds using the adiabatic subtraction.

− i
ˆ y

(dw)〈[ψ̄ψx, ψ̄ψz]〉 = ∂m〈ψ̄ψx〉 = ∂mnΨ(x) (3.186)

Expressing both side of Eq.(3.186) using the mode sum, we see the left hand side

is

− i
ˆ y

(dw)〈[ψ̄ψx, ψ̄ψw]〉 =
16

a3
x

ˆ y0

dw0 aw

ˆ
d3k

(2π)3
Im[(uA,kuB,k)x(uA,kuB,k)

∗
w]

(3.187)

and the right hand side is

∂m〈ψ̄ψx〉 =
2

a3
x

ˆ
d3k

(2π)3
∂m(|uB|2 − |uA|2) (3.188)

Thus, we only need to check for each given k, the following equation is right

∂m(|uB|2 − |uA|2) = 8

ˆ y0

dw0 awIm[(uA,kuB,k)x(uA,kuB,k)
∗
w] (3.189)

From the left hand side, we have

∂m(|uB|2 − |uA|2) = −2Re

( u∗A u∗B

)
σ3

∂

∂m

 uA

uB


k,x

 (3.190)

and upon expressing mode function at time x0 in term of evolution operator acting

on the initial value, we have

∂

∂m

 uA

uB


k,x

= −i
ˆ x0

ηi

dz0 U(x0 ← z0)
∂

∂m

 am k

k −am


×U(z0 ← ηi)

 uA

uB


k,i

(3.191)
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Combining these two expression, we can obtain the desired result after some algebra.

However, the remaining d3k integrals in Eq. (3.187) and Eq. (3.188) are UV diver-

gent. To make them �nite, we express both side in terms of Bogoliubov coe�cients

and dropped the pure vacuum contribution to get

−i
ˆ x0

(dw)〈[ψ̄ψx, ψ̄ψw]〉 ≈ 16

ˆ
d3k

(2πax)3
(
am

ωk
)x

ˆ x

dηw aw(
am

ω
)w

×Im[(αβ)x(αβ)∗w] (3.192)

∂m〈ψ̄ψx〉 ≈
2

a3
x

ˆ
d3k

(2π)3
∂m[2|βk,x|2

axm

ωk,x
] (3.193)

≈ 4

a3
x

ˆ
d3k

(2π)3
(
axm

ωk,x
)∂m|βk,x|2 (3.194)

Now, we only need to check

∂m|βk,x|2 = 4

ˆ x

dηw aw(
am

ω
)wIm[(αβ)x(αβ)∗w] (3.195)

Suppose, x0 is late enough such that βk,x is constant and equals to its value at

asymptotic future βk, then we get

∂m|βk|2 = 4

ˆ x0

ηi

dz0az
am

ω
Im(αkβk)x(αβ)∗z (3.196)

Thus, Eq. (3.186) is compatible with the Bogoliubov projection.

3.14 Appendix: Gravitational Interaction

Here we derive the gravitational interaction. Consider the action

S = SEH + Sφ + Sσ + Sψ (3.197)

=

ˆ
(dx)

{
1

2
M2

pR + [−1

2
gµν∂µφ∂νφ− V (φ)] + [−1

2
gµν∂µσ∂νσ −

1

2
m2
σσ

2]

+ψ̄(iγµ∇µ −mψ)ψ − λσψ̄ψ
}
, (3.198)
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where M2
p = 1

8πG
= 1. The metric is given in ADM formalism20 [206] by

gµν =

 −N2 + hijN
iN j hijN

j

hijN
j hij

 , gµν =

 −N−2 N iN−2

N iN−2 hij −N iN jN−2

 ,

(3.199)

where hij is the metric tensor on the constant time hypersurface, and hij is the inverse

metric. We use Latin indices i, j · · · for objects on the 3-dimensional constant time

hypersurface, and we use hij and h
ij to raise and lower the indices. Then we use the

Hamiltonian and the momentum constraints to determine the lapse function N and

the shift vector N i:

0 =
1

N
[R(3) − 1

N2
(EijE

ij − E2)]− 2NT 00 (3.200)

0 =
2

N
∇(3)
i [

1

N
(Eij − Ehij)] + 2N jT 00 + 2T 0j, (3.201)

where T µν is the total matter stress tensor, R(3) is the Ricci scalar calculated with

the three-metric hij, and

Eij =
1

2
(ḣij −∇(3)

i Nj −∇(3)
j Ni). (3.202)

E = Eijh
ij. (3.203)

In order to consider the perturbation around the background con�guration

φ(0) = φ̄(t), σ(0) = 0, g(0)
µν =

 −1 0

0 a2(t)δij

 (3.204)

where the background �elds satisfy the background equations of motion

3H2 =
1

2
˙̄φ2 + V (φ̄) (3.205)

Ḣ = −1

2
˙̄φ2 (3.206)

¨̄φ+ 3H ˙̄φ+ V ′(φ̄) = 0, (3.207)

20We use (−+ ++) sign convention for the metric, and physical time t .
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we choose the comoving gauge, de�ned by 21

δφ = 0, γii = 0, ∂iγij = 0 (3.208)

where

hij = a2(t)[eΓ]ij, Γij = 2ζδij + γij. (3.209)

Then we solve the constraint equations (3.200) and (3.201) perturbatively using ζ

and γ, and putting their solutions for N and N i back into the action, we can get the

perturbed action:

S(C) = S
(C)
ζζ + S(C)

σσ + S
(C)
ψψ + S(C)

γγ + S
(C)
ζζζ + S

(C)
ζσσ + S

(C)
ζψψ + S

(C)
ζσσ · · · . (3.210)

For the interaction terms S
(C)
ζσσ and S

(C)
ζψψ, we need the solutions of N and N i up to

linear order in ζ

N (1,C) = 1 +
ζ̇

H
, N

(1,C)
i = ∂i[−

ζ

H
+ ε

a2

∇2
ζ̇], (3.211)

where ε ≡ Ḣ/H2. Hence, the metric perturbations becomes

δg(C)
µν =

 −2 ζ̇
H

(− ζ
H

+ ε a
2

∇2 ζ̇),i

(− ζ
H

+ ε a
2

∇2 ζ̇),i a2 (δij2ζ + γij)

 , (3.212)

and we have the ζ-matter cubic interaction action

S
(C)
ζσσ + S

(C)
ζψψ =

1

2

ˆ
d4x
√−g

(
T µνσ + T µνψ

)
δg(C)

µν , (3.213)

where T µνσ and T µνψ is the stress energy tensors for σ and ψ, respectively, which are

written as

T µνσ = gµαgνβ∂ασ∂βσ + gµνLσ, (3.214)

T µνψ = − i
2

[ψ̄γ(µ∇ν)ψ −∇(µ(ψ̄)γν)ψ] + gµνRe (Lψ) . (3.215)

Particularly, up to the cubic interaction, Lint = −Hint. Thus S
(C)
ζσσ+S

(C)
ζψψ = −

´
dtHζσσ(t)+

Hζψψ(t).

21In this section, Latin indices i, j are raised and lowered by δij , and repeated indices are con-
tracted.
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Chapter 4

Isocurvature Cross-correlation and

Ward Identity

Sources of isocurvature perturbations and large non-Gaussianities include �eld de-

grees of freedom whose vacuum expectation values are smaller than the expansion

rate of in�ation. The inhomogeneities in the energy density of such �elds are quadratic

in the �elds to leading order in the inhomogeneity expansion. Although it is often

assumed that such isocurvature perturbations and in�aton-driven curvature pertur-

bations are uncorrelated, this is not obvious from a direct computational point of

view due to the form of the minimal gravitational interactions. We thus compute the

irreducible gravitational contributions to the quadratic isocurvature-curvature cross-

correlation. We �nd a small but non-decaying cross-correlation, which in principle

serves as a consistency prediction of this large class of isocurvature perturbations.

We apply our cross-correlation result to two dark matter isocurvature perturbation

scenarios: QCD axions and WIMPZILLAs. On the technical side, we utilize a gravi-

tational Ward identity in a novel manner to demonstrate the gauge invariance of the

computation. Furthermore, the detailed computation is interpreted in terms of a soft-
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ζ theorem and a gravitational Ward identity. Finally, we also identify explicitly all

the counterterms that are necessary for renormalizing the isocurvature perturbation

composite operator in in�ationary cosmological backgrounds.

This work was performed in collaboration with Daniel Chung and Peng Zhou. It

was published in Physical Review D in March of 2013 [94].

4.1 Introduction

As physics beyond the Standard Model is expected to contain many �elds in ad-

dition to the in�aton, there are many candidates for isocurvature perturbations in

the context of in�ationary cosmology, including those of the dark matter. Indeed,

the current data is consistent with the existence of an O(2%) isocurvature compo-

nent [91, 97, 112, 200, 201, 207�209]. Furthermore, it is well known that quadratic

isocurvature perturbations (i.e. the vacuum expectation value of the �eld is much

smaller than the Hubble expansion rate) are one of the very few ways to generate

measurably large local non-Gaussianities [18,40,45,47,51,59,132,152�174,181,210] in

the context of the slow-roll in�ationary paradigm. The only nontrivial requirement

that the isocurvature �eld degree of freedom must possess is that it be light enough

to be excited by the in�ationary quasi-de Sitter (dS) background and that it not

be conformally invariant. In the literature [67, 150, 151], quadratic isocurvature per-

turbations are often assumed to have negligible cross-correlations with the curvature

perturbations (which corresponds to the in�aton �eld degree of freedom dressed by

gravity). However, the gravitational interactions lead to a minimum cross-correlation,

which in principle can be observationally important. We present a computation of

this minimal gravitational cross-correlation in this work.

As explained below, the form of the gravitational interaction between the cur-
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vature and isocurvature perturbations naively suggests that there can be cross cor-

relators which do not vanish in the long wavelength limit. If this was true, the

cross correlation can dominate over the isocurvature two-point function in the ob-

servables since the latter vanishes in the long wavelength limit for a massive �eld. By

an explicit rigorous computation, we show that the cross correlator vanishes in the

long wavelength in such a way that the cross correlation induced by gravity never

dominates over the isocurvature two-point function, given that the curvature inho-

mogeneity perturbation is characterized by a strength of order 10−5. We explain this

qualitatively as well using a combination of a soft-ζ theorem [19, 95, 211�226] and a

Ward identity associated with a spatial dilatation di�eomorphism. We also check the

gauge invariance of our computation using a Ward identity.

Among the possible isocurvature candidates, thermal dark matter is usually pro-

duced copiously by the in�aton decay products, which typically leads to a large

suppression of isocurvature e�ects. On the other hand, nonthermal dark matter that

is not produced by the in�aton decay can easily generate large isocurvature e�ects

that survive until today. Hence, as an illustration, we apply our computation of

the cross correlation to two di�erent nonthermal dark matter models: QCD axions

and WIMPZILLAs. In both cases, we �nd a cross-correlation characterized by the

parameter |β| ∼ O(10−5) (the parameter de�nition is given in Eq. (4.29)) which is

below the current observable sensitivity of 10−2. In principle, β can be measured and

is a generic consistency prediction of this class of nonthermal dark matter quadratic

isocurvature models. Note that even though the nonthermal dark matter �elds can

be identi�ed with the isocurvature degrees of freedom, this scenario is consistent with

the WIMP dark matter scenario since the isocurvature perturbations can be as small

as an order 10−5 fraction of the total dark matter and still leave an isocurvature

imprint on the CMB spectrum.
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The order of presentation is as follows. In Section 4.2, we present our assumptions

about the in�ationary cosmology, review gauge invariant variables in the perturbation

theory, and summarize the observational constraints on the isocurvature scenario rel-

evant to our work. One of the most important aspects of this section is our review of

features of the β variable that we compute. In Section 4.3, we �rst explain two naive

estimates, one leading to the wrong observationally large result, and the other leading

to the correct suppressed result. In explaining the correct estimate (which requires

assumptions that cannot be known without the justi�cation of a full computation),

we present the interpretation in terms of a soft-ζ theorem and the Ward identity. The

rigorous explicit computation at one loop is then presented, demonstrating how the

correct naive estimate result is achieved. We also present in this section how gauge

invariance is achieved for these quadratic isocuvature computations using the gravita-

tional Ward identity. Next, we apply these results to the axion and the WIMPZILLA

scenarios in Section 4.4. This section contains a detailed explanation for choosing

nonthermal dark matter to illustrate the computations of our work instead of ther-

mal dark matter. Finally, we summarize our results in Section 4.5. In appendices, we

collect technical details and also supplementary computational results: the radiation

transfer functions is derived in Appendix 4.6, the brief review of the gravitational

Ward Identity is given in Appendix 4.7, ADM formalism is reviewed in Appendix

4.8, the details about the Pauli-Villars regulator is explained in Appendix 4.9, and

the two point function computation in the uniform curvature gauge is presented in

Appendix 4.10.
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4.2 A Class of Curvature and Isocurvature

Perturbations

In�ation through quantum correlator dynamics generates �classical� initial conditions

for superhorizon cosmological �uid perturbations [8, 227�229]. The resulting initial

conditions for the classical equations governing classical �uid variables (which are set

during radiation domination before the CMB last scattering time) are categorized

into two types: adiabatic and isocurvature [3, 230�232]. An adiabatic initial condi-

tion is intuitively characterized by all species composing the �uid having the same

initial number overdensities. In the context of in�ation, if there is a single dynamical

degree of freedom φ during in�ation such that after a few efolds of in�ation, the quan-

tum vacuum boundary can be approximated as Bunch-Davies initial conditions (for a

discussion of number of efold requirement see e.g. [85]), and if all the degrees of free-

dom during radiation domination come from the in�aton decay, then this adiabatic

condition is the resulting approximate classical boundary condition during radiation

domination era of the universe. An isocurvature initial condition intuitively corre-

sponds to setting nonzero the initial di�erence of the number overdensities of at least

one pair of �uid element species while setting to zero the total energy density inho-

mogeneity on long wavelength scales. Because these two types of initial conditions

are linearly independent, a generic initial condition to the linearized perturbation

equations can be written as a linear combination of them.

In this work, we are concerned with the following physical system which is generic

for isocurvature scenarios. One real scalar slow-roll in�aton degree of freedom φ

dominates the energy density during in�ation. During this time period, there exists

also another light degree of freedom σ which has no coupling to φ stronger than

gravity. We assume that this system carries an approximately conserved discrete
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charge (such as Z2 broken at most by a model dependent non-renormalizable operator)

such that the one particle states are stable and can act as dark matter. Note that

since we do not require all of the dark matter to come from σ, this system is consistent

with the existence of the weakly interacting massive particle (WIMP) dark matter.

If WIMP dark matter exists, the parameter ωσ ≡ Ωσ/ΩCDM < 1 will play a role, and

this scenario can yield interesting isocurvature signatures for ωσ as small as 10−5 [18].

The action of this system can thus be written as

S[φ, σ, {ψ}] =

ˆ
(dx)

{
1

2
M2

pR + [−1

2
gµν∂µφ∂νφ− V (φ)] + [−1

2
gµν∂µσ∂νσ − U(σ)]

}
+Srh[φ, {ψ}] (4.1)

where R is the Ricci scalar, M2
p = 1

8πG
, (dx) = d4x

√
| det(gµν)|, and Srh corresponds

to the action of the reheating degrees of freedom {ψ}. We assume that {ψ} is heavy

during in�ation such that it can be integrated out or if {ψ} are light, they are confor-

mal such that they are not excited during in�ation. After in�ation ends, we assume

{ψ} �elds are light, leading to a successful reheating scenario. The only special initial

condition dependent assumption that we make in this isocurvature scenario is that

〈σ〉 � H/(2π) during in�ation even when ∂2U(σ)/∂σ2 � H.1 Because 〈σ〉 = 0

during in�ation, σ by itself does not spontaneously break time translation invariance

and therefore does not mix with δφ in forming the gauged time translation Nambu-

Goldstone boson ζ. Hence, we can treat the scalar �uid variable ζ(δgµν , δφ) as the

curvature degree of freedom and δS(σ, ζ) as the isocurvature degree of freedom. (As

we will show in detail below, the isocurvature degree of freedom δS will be quadratic

in σ and will involve ζ as a di�erence).

1Note that even with a Gaussian distributed values of 〈σ〉 on an in�ationary patch with a
Gaussian width H/(2π), there is about a 2/3 probability that such initial condition con�gurations
can be found. Also, an unbroken discrete symmetry such as Z2 : σ → −σ can stabilize the VEV. In
the context of supergravity, generic terms in the e�ective potential however can appear leading to
〈σ〉 6= 0 during in�ation. In the end, whether or not 〈σ〉 = 0 is model dependent, but it is not �ne
tuned.
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Thus, the basic physics picture of the classical �uid that we are concerned with

in this work is the following. To predict CMB temperature �uctuation 〈∆T∆T 〉,

we must compute the cross correlation 〈δSζ〉 since at the linearized level, Einstein-

Boltzmann equations give the relationship ∆T/T ∼ c1ζ + c2δS for computable order

unity (for long wavelengths) coe�cients ci. Up until this work, there has never been an

explicit computation of the 〈δSζ〉/
√
〈ζζ〉〈δSδS〉 coming from irreducible gravitational

interactions.2 What will emerge is a clean universal result that applies to a wide

range of isocurvature models including those of the QCD axions (in a particular initial

condition regime) and WIMPZILLAs. We �nd that 〈δSζ〉 contribution is generically

subdominant to 〈δSδS〉 in the case of pure gravitational interactions.

In the following, we establish our conventions in describing this isocurvature degree

of freedom carrying the non-adiabatic initial condition information. In the process,

we review the gauge invariant construction of these cosmological perturbations and

the current CMB observational constraint, which represents the strongest constraint

on the isocurvature initial condition derived from in�ation.

Gauge Invariant Construction

The cosmological inhomogeneity perturbation variables are generally spacetime coor-

dinate gauge-dependent because of the coordinate dependent de�nition of �ctitious

background metric slices. From the perspective of matching classical equation initial

conditions to in�ationary quantum correlator computations, identifying gauge invari-

ant combinations is helpful [233�235]. On the other hand, the gauge freedom involved

in computing gauge invariant quantities facilitates the quantum computation. Hence,

understanding the gauge dependences of the correlation computations is helpful. In

2As we will later explain, we do not compute 〈δSζ〉 analytically fully beyond the time of the end of
in�ation. However, the importance of the isocurvature cross correlation can be generically predicted
by 〈δSζ〉/

√
〈ζζ〉〈δSδS〉 which is insensitive to the post-in�ationary evolution for superhorizon modes.
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this subsection, we review the gauge invariant variable construction and establish our

notation. For a more general discussion, see for example [21,89,233,234,236�244].

In (t, ~x) coordinates, we parameterize the metric as gµν = ḡµν + δg
(S)
µν where the

scalar metric perturbation is

δg(S)
µν =

 −E aF,i

aF,i a2[Aδij +B,ij]

 , (4.2)

the background metric is ḡµν ≡ diag{−1, a2(t), a2(t), a2(t)}, and derivatives are de-

noted as usual as X,i ≡ ∂X/∂xi. Under the di�eomorphism x→ x+ ε where

εµ = (ε0, a−2∂i(ε
S)), (4.3)

the scalar metric perturbation components transform as

∆A = −2Hε0, ∆B = − 2

a2
εS, (4.4)

∆E = −2ε̇0, ∆F =
1

a
(ε0 − ε̇S + 2HεS) (4.5)

which is obtained from δg
(S)
µν → δg

(S)
µν + ∆(δg

(S)
µν ) with ∆(δg

(S)
µν ) = −Lεµ∂µ ḡµν .

Similarly, we parameterize the perfect �uid stress tensor for a �uid element a as

T (a)
µν = T̄ (a)

µν + δT (a)
µν (4.6)

where T̄
(a)
µν ≡ diag{ρ̄a, P̄a, P̄a, P̄a} contains the average energy density and pressure

seen by a comoving observer, δT
(a)
ij = P̄aδg

(S)
ij + a2δijδPa, δT

(a)
i0 = P̄(a)δg

(S)
i0 − (ρ̄a +

P̄a)δU
(a)
i (where δU

(a)
i is the velocity perturbation), and δT

(a)
00 = −ρ̄aδg(S)

00 + δρa.

Under the di�eomorphism of Eq. (4.3), the energy density perturbation transforms

as

∆δρa = −ε0 ˙̄ρa. (4.7)
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In practice, gauge-invariant variables are constructed by combining metric per-

turbations and other perturbations, such as densities. A popular choice is

ζa ≡
A

2
−Hδρa

˙̄ρa
. (4.8)

For example, the �rst-order gauge-invariant perturbation associated with the in�aton

φ is usually de�ned as

ζφ ≡
A

2
−Hδρφ

˙̄ρφ
(4.9)

(see for example Ref. [235] and references therein). Now, one can form a quantity

that is conserved through reheating by de�ning

ζtot ≡
∑
i

riζi (4.10)

where

ri ≡
ρ̄i + P̄i∑
n ρ̄n + P̄n

. (4.11)

Because there must be reheating dynamical degrees of freedom, ζtot must involve

at least 2 degrees of freedom by the end of in�ation of any single �eld slow-roll

model. In single �eld slow-roll scenarios, what is done in practice is to argue that the

reheating degrees of freedom are integrated out during in�ation and then integrated

back in at the end of in�ation due to the di�erent location of the in�aton VEV at

the end of in�ation. Alternatively, another often used assumption is that the main

reheating degree of freedom are conformal such that no isocurvature �uctuations are

appreciably excited during in�ation. This means that in single �eld models, we have

ζtot ≈ ζφ (4.12)

up to ambiguities in how one hides the reheating degrees of freedom.
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One reason why the combination of Eq. (4.10) is convenient is because the su-

perhorizon mode of this is approximately conserved through reheating if this mode

object can be shown to obtain an initial conditions of what is sometimes referred

to as the adiabatic solution [211, 235] and there are no non-adiabatic processes that

mix superhorizon modes of isocurvature degrees of freedom with ζtot. Such classi-

cal adiabatic solution initial conditions are generated by the Bunch-Davies quantum

�uctuations for ζφ, and we will restrict the couplings of the isocurvature degrees of

freedom (discussed below) such as to avoid non-adiabatic mixing. This means that

Eq. (4.12) ensures that ζtot is approximately conserved if ρ̄φ + P̄φ dominates over

others. More explicitly, as discussed in the introduction to this section, suppose

there exists only one isocurvature �eld degree of freedom which we call σ during the

in�ationary period.3 The total curvature perturbation can be written as

ζtot = ζφ + rσ(ζσ − ζφ) (4.13)

with the sum over n runs over φ and σ (assuming that ψ has been integrated out

during in�ation). However, one can estimate that the coe�cient of ζσ during in�ation

is

rσ .
1

(2π)2
∆2
ζ ∼ 10−11 (4.14)

which makes the approximation of ζtot ≈ ζφ accurate, just as in the single �eld

case of Eq. (4.12). Thus just as in the single �eld scenarios without σ, ζtot acquires

an approximately adiabatic boundary condition from the Bunch-Davies vacuum �eld

�uctuations.

To complete the examination of how ζtot is used in the scenario of concern in

this work, let's look at the time period surrounding the reheating transition when

3The species σ will later be identi�ed dark matter candidates such as the axions and WIMPZIL-
LAs.
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the universe reaches radiation domination. Near the time of the completion of the

reheating, the variable ζtot is approximately

ζtot ≈ rφζφ +
∑
i

rψiζψi (4.15)

such that after the in�aton decays, we have rφ = 0 and

ζtot ≈
∑
i

rψiζψi . (4.16)

4 (The approximation used in Eq. (4.15) neglects the rσ contribution because of

Eq. (4.14).) It is also a standard assumption that

ζψi = ζtot, (4.17)

which is rigorously true if one relativistic species dominate the �uid (e.g. rψ1 ≈ 1) or if

the decay process does not redistribute the spatial inhomogeneities of ψi in a distinct

con�guration from that of φ. 5 This justi�es the usual statement in the literature

that ζtot de�ned in Eq. (4.10) is primarily useful for arguing how a combination of

quantities involving the in�aton and the reheating decay products remain unchanged

through the reheating phase transition. Here, we have merely described how this

argument is not changed by the presence of σ because of the smallness of rσ in

Eq. (4.14) during the primordial periods of interest.

In summary, as long as boundary conditions for the classical �uid equation are

evaluated at a time when rσ is small (compared to the accuracy desired), we can

neglect the rσ contribution from ζtot both through reheating and until the time

that boundary conditions for the classical �uid equations are imposed. Hence, if

ζtot remains constant on long wavelengths (due to the initial conditions set by the

4In the case that ψi is integrated back in at the end of in�ation, we have made the assumption
that this does not change ζtot

5However this need not be true for more general reheating scenarios.
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Bunch-Davies vacuum), Eqs. (4.13) and (4.14) imply that the e�ective curvature

perturbation during this early primordial epoch is given by Eq. (4.12). Hence, in the

discussion below, we will drop the φ subscript and write

ζ ≡ ζφ ≈ ζtot. (4.18)

During this radiation dominated early primordial time tp, the relationship between

super horizon A(tp, ~k) and the value of ζ(te, ~k) evaluated at the end of in�ation time

te is

A(tp, ~k)

2
≈ 2

3
ζ(te, ~k) (4.19)

in the Newtonian gauge (B = F = 0) and the presence of ζσ gives a small error

controlled by rσ.

At the same radiation dominated era6 when initial condition is set by ζtot ≈ ζ,

the inhomogeneity of the small mixture of dark matter component σ can be related to

the isocurvature perturbation ζσ. Conventionally, this information is parameterized

by the gauge-invariant isocurvature perturbation [3, 89,232]

δS(t,~k) ≡ 3
(
ζσ(t,~k)− ζtot(t,~k)

)
. (4.20)

The physical interpretation of this quantity can be see by noting that when σ par-

ticles are dominantly non-relativistic and the universe is radiation dominated, this

expression becomes

δS(t,~k) =
δρσ(t,~k)

ρ̄σ
− 3

4

δργ(t,~k)

ρ̄γ
(4.21)

where ργ represents the photon energy densities. This clearly represents the di�erence

in number densities of σ and γ.7 Assuming that the radiation inhomogeneity is

6During this time period, there is possibly a population of thermal dark matter components
such as thermal WIMPs.

7It is interesting to note that since number densities can diverge while gravitational physics does
not care about number densities (in favor of energy densities), this choice of variables is unfortunate
in situations when there are IR divergences. In this work, we stick to this convention which is
prevalent in literature.
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characterized by ζ as explained in Eqs. (4.17) and (4.18) during radiation domination,

we have

δS(t,~k) ≈ 3(ζσ(t,~k)− ζ(te, ~k)) (4.22)

Similarly to the case of ζtot, long wavelength limit of ζσ generated from Bunch-Davies

initial conditions simplify (partly because of causality) in the absence of non-adiabatic

processes mixing of ζσ with other superhorizon degrees of freedom. The ζσ mode for

a comoving wave vector ~k becomes constant once |~k/a| � H and mσ � H because

the mode functions involved in ζσ are governed by the Hubble friction once these

conditions are satis�ed.

Although the key correlator computation result of this work involving β evaluated

at the end of in�ation is independent of the transfer function evolving the isocurvature

degrees of freedom after the end of in�ation, because its immediate phenomenologi-

cal application to CMB requires a transfer function describing this post-in�ationary

evolution, we will restrict our illustration in Section 4.4 to the situation when the

chemical reaction rates that mix σ and the radiation components are negligible. We

will discuss in more detail the cross section constraint for this condition in Appendix

4.4.

Observational Constraints on Isocurvature Perturbation

The current observational data shows that the CMB power spectrum is consistent

with the adiabatic initial conditions. However, it does not rule out mixed boundary

condition contributions from CDM isocurvature perturbations. Schematically, the

temperature �uctuations depend linearly on ζ and δS initial conditions as

∆T

T
= c1ζ + c2δS (4.23)
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where ci ∼ O(1). Hence, the CMB temperature correlation data constrains

k3

2π2

ˆ
d3p

(2π)3
〈∆T (~p)

T

∆T ∗(~k)

T
〉 = ∆2

ζ(k)

[
|c1|2 + |c2|2

α

1− α − 2<
(
c∗1c2β

√
α

1− α

)]
(4.24)

where [97] ˆ
d3p

(2π)3
〈ζ(~p)ζ∗(~k)〉 = ∆2

ζ(k)
2π2

k3
(4.25)

ˆ
d3p

(2π)3
〈δS(~p)δ∗S(~k)〉 = ∆2

δS
(k)

2π2

k3
(4.26)

ˆ
d3p

(2π)3
〈δS(~p)ζ∗(~k)〉 = ∆2

ζδS
(k)

2π2

k3
(4.27)

α ≡ ∆2
δS

(k)

∆2
ζ(k) + ∆2

δS
(k)

, (4.28)

β ≡ −
∆2
ζδS

(k)√
∆2
ζ(k)∆2

δS
(k)

, (4.29)

8which are customarily evaluated in the primordial epoch when k corresponds to a

far superhorizon scale such that the ∆2
X(k) objects are constant in time. Typically

the data constraints are parameterized by evaluating α and β at a pivot scale k =

k0 [96, 200]. An important utility of this parameterization is the following fact: a

necessary and su�cient condition for the cross correlation to be a signi�cant part of

the isocurvature contribution is to have |β| & |c2/c1|
√
α for α < 1. For example,

in order to have approximately the same level of the angular power spectra from

both pure isocurvature correlation and and cross-correlation at the intermediate scale

l ∼ 200, i.e. Cpure iso
l ∼ Ccross cor

l , the fractional cross-correlation should satisfy |β| &

4× 10−2. Another utility of the β variable comes from the fact that when there are

non-trivial transfer functions governing ∆2
ζδS

and ∆2
δS

after the end of in�ation, the

8Our sign conventions are such that negative values for β correspond to a positive contribution
of the cross-correlation term to the Sachs-Wolfe component of the total temperature spectrum. See,
e.g., [96, 200].



117

transfer function factors can cancel in the expression for β. We will use this feature

later to compute β based on just the (quasi)-dS mode function behavior.9

As far as the experimental numbers are concerned, the isocurvature contribution to

the CMB temperature perturbation is expected to be roughly less than 10% compared

to the curvature contribution. More precisely, the Planck+WP limits [112, 201, 209]

are

α|β=0 < 0.016 (95% CL) and α|β=−1 < 0.0011 (95% CL), (4.30)

where the isocurvature power spectrum is assumed to be scale-invariant, i.e. niso =

1. The signi�cant di�erence in the upper-bound of α between uncorrelated and

totally (anti-)correlated cases can be explained by the ratio β/
√
α already discussed

above. The di�culty in improving the current isocurvature bound with data on short

wavelengths can be seen in Fig. 4.1, where one sees a fall-o� of the isocurvature

spectrum on short scales (l & 100). This fall-o� is generic and can be attributed to

the transfer function e�ect encoded by c1(k)/c2(k) in Eq. (4.24) for k & keq (where

keq/a0 ∼ 10−2 Mpc−1 is the wave vector associated with matter radiation equality).

To understand why c1(k)/c2(k) generically becomes large for k & keq, note that

isocurvature modes with k & keq enter the horizon during radiation domination.

Because the isocurvature e�ect on the temperature spectrum is gravitational, the

value of c1(k)/c2(k) is proportional to the ratio ρR(t(k))/ρσ(t(k)) of the radiation

energy density to the energy density in the isocurvature degree of freedom at the

time t(k) when mode k & keq enters the horizon. Since shorter wavelengths enter the

horizon earlier, ρR(t(k))/ρσ(t(k)) is larger for shorter wavelengths, making c1(k)/c2(k)

larger. For those readers not familiar with this physics, some of the details of the

9We will use the exact dS approximation for the massive σ and use the quasi-dS approximation
for only the massless scenario. The corrections coming from the the deviations away from the exact
dS background in principle can be absorbed into the transfer function multiplying the superhorizon
mode function which cancel out in β due to a common appearance in the numerator and the
denominator.
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Figure 4.1: Angular power spectra Cl from pure adiabatic(dotted), pure isocur-
vature(dashed), and cross-correlation(solid) contributions. The plotted pure adia-
batic perturbation has the spectral index ns = 0.96. For isocurvature perturba-
tions, the spectral index niso is 1 and the isocurvature fraction α = 0.067 de�ned at
k0 = 0.002Mpc−1, and the fractional cross-correlation β is 1.

transfer function are reviewed in Appendix 4.6.

Because of the large di�erences in the constraints between β = 0 and β = −1,

estimating the cross-correlation is crucial to restrict parameters and give observable

predictions of isocurvature models. In particular, the axion scenario with a neg-

ligible homogeneous vacuum misalignment angle (and similarly the WIMPZILLA

scenario with a negligible homogenous background �eld value) predicts detectable

non-Gaussianity [18,59,90]

fNL ∼ 30
( α

0.067

)3/2

(4.31)

provided the assumption the cross-correlation is zero, i.e. β = 0. However, as we

will explain, this assumption is not obvious for massive �eld quadratic isocurvature

scenarios, and the reexamination of this assumption is one of the goals of this work.
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4.3 Computation of Correlators

In order to provide the initial condition of the classical �uid equations, it is standard

to compute the quantum equal time correlators with the in�ationary background

approximated as a Bunch-Davies vacuum. In this section, we compute the correlators

using the �in-in� formalism (e.g. see Weinberg [93]). More speci�cally, in the context

of canonical quantization, we perturbatively compute the expectation value of an

operator Q̂(t)

〈
Q̂(t)

〉
=

∑
n

(−i)n
ˆ t

−∞
dt1

ˆ t1

−∞
dt2 · · ·

ˆ tn−1

−∞
dtn

×
〈[[[

Q̂I(t), ĤI(tn)
]
, ĤI(tn−1)

]
, · · · ĤI(t1)

]〉
, (4.32)

where the superscript I stands for the interaction picture and Q̂(t) represents a prod-

uct of canonically quantized operators.

In the scenario explained in Sec. 4.2, we consider the gravitational coupling whose

interaction Hamiltonian is derived from the ADM formalism with a given choice of

gauge. For the computation of the cross-correlation to leading order in gravitational

coupling, we need at least up to the cubic coupling HI
ζσσ, where σ is a spectator �eld

during in�ation. The interaction Hamiltonian is di�eomorphism gauge-dependent.

For two commonly used gauges, the comoving gauge(δφ = 0) and the uniform curva-

ture gauge(A = 0), we have

HI
ζσσ(t) = −1

2

ˆ
d3x a3(t)T µνσ (t, ~x)δgµν(t, ~x), (4.33)

δg(C)
µν =

 −2 ζ̇
H

(− ζ
H

+ ε a
2

∇2 ζ̇),i

(− ζ
H

+ ε a
2

∇2 ζ̇),i a2δij2ζ

 , (4.34)

δg(U)
µν =

 2εζ ε a
2

∇2 ζ̇,i

ε a
2

∇2 ζ̇,i 0

 , (4.35)
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where T µνσ is the stress energy tensor of the �eld σ, and δgµν is the metric perturbation

and the superscript (C) and (U) denote the comoving gauge and uniform curvature

gauge, respectively. A detailed derivation of the interaction Hamiltonian using the

ADM formalism is presented in Section 4.8.

The isocurvature perturbation δS should be also written in terms of quantum

operators associated with the energy density ρσ of the particle σ. Since the energy

density ρσ is written in bilinear form of σ and since the energy density of CDM are

often those of non-relativistic particles at the time of matching to classical equations,

we may approximate the energy density ρσ ≈ m2
σσ

2. We then promote �eld σ to a

quantum operator:

δσ ≡
δρσ
ρσ
≈ σ2 − σ̄2

σ̄2
→ δ̂σ =

σ̂2 − 〈σ̂2〉
〈σ̂2〉 . (4.36)

The �eld σ̂ can be decomposed into the classical homogeneous background and the

quantized perturbation, i.e. σ̂ = σ̄ + δσ̂. Unlike the in�aton φ whose classical

background is non-zero, because we consider the �eld σ̂ without classical background,

the leading density perturbation starts with the quadratic in the operator δσ̂2. As

with any quantum composite operator, we renormalize it with counter terms invariant

under the underlying gauge symmetry (here, it is di�eomorphism):

(
σ̂2
)
r

=

(
δσ̂ +

∑
i

χ̂i

)2

+ δZ0 + δZ1R, (4.37)

where the subscript r denotes that the operator is a renormalized composite operator,

R is the Ricci scalar, and χ̂i are Pauli-Villars �elds, which is described in Section 4.9.

We apply this to gauge-invariant isocurvature variable δS de�ned in Section 4.2. Then

we have

δ̂S
(C)

= − 3H

∂t〈(σ̂2)r〉
[(
σ̂2
)
r
− 〈
(
σ̂2
)
r
〉
]
, (4.38)

δ̂S
(U)

= − 3H

∂t〈(σ̂2)r〉
[(
σ̂2
)
r
− 〈
(
σ̂2
)
r
〉
]
− 3ζ̂ . (4.39)
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We will not write the hat explicitly from now on.

In the next subsection, we present how a non-di�eomorphism-invariant estimation

of the cross-correlation leads to an observationally attractive but grossly incorrect

result. In subsections after that, we identify the problems with the wrong estimate

and calculate the cross-correlation properly.

Plausible but Wrong Estimation of the Cross-Correlation

In this subsection, we present a plausible estimation of the cross correlation that

leads to a large value that is observationally interesting. Unfortunately, we will see in

later subsections that the estimate presented in this subsection can be many orders

of magnitude o� due to the explicit breaking of di�eomorphism invariance in the

treatment of the UV physics. Nonetheless, what is presented in this subsection is

interesting both as a lesson in �eld theory and as a motivation for the careful correct

computation that follows later.

The isocurvature cross-correlation in the comoving gauge is written as

〈
δ

(C)
S ζ

〉
≈ 〈(σ

2)r ζ〉
〈(σ2)r〉

, (4.40)

where we have used ∂t 〈(σ2)r〉 + 3H 〈(σ2)r〉 ≈ 0 for the isocurvature �eld number

density. For an order of magnitude estimation, we consider a non-derivatively coupled

part of the gravitational interaction, 2ζa2δijT
ij
σ ∈ HI

ζσσ. Then the two-point function,
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shown diagrammatically in Fig. 4.2, is written in the Fourier space as

˜〈(σ2)r ζ〉
C
p

∼
ˆ
d3x e−i~p·~x

ˆ t

d4z a3(tz)

〈[
σ2(t, ~x)ζ(t,~0),

i

2

(
2ζa2δijT

ij
σ

)
z

]〉
(4.41)

∼ −4

ˆ
d3k1

(2π)3d
3k2δ

3(~k1 + ~k2 − ~p)
ˆ t

−∞
dtz a

3
z

×Im
[
ζp(t)ζ

∗
p (tz)uk1(t)uk2(t)

×
{

1

2

~k1 · ~k2

a2
+ 3

(
1

2
∂

(1)
t ∂

(2)
t −

1

2
m2
σ

)}
u∗k1

(tz)u
∗
k2

(tz)

]
(4.42)

where

〈̃AB〉p ≡
ˆ
d3x e−i~p·~x 〈A(t, ~x)B(t, 0)〉 , (4.43)

ζp and uk are mode functions for ζ and σ, respectively, and ∂
(i)
t means the time

derivative with respect to u∗ki(tz).
10 This integral is UV divergent, and thus we

introduce the horizon scale UV cut-o�

ΛUV ∼ aHinf . (4.44)

Moreover, we neglect the contribution from the time range t < tp, where tp is the

time when the scale p exits the horizon since ζp is oscillatory before the horizon exit.

Using the super-horizon approximation for mode functions during in�ation

ζk(t) =
1√

4εMp

H

k
3
2

ei
k
aH (1− i k

aH
), (4.45)

uk(t) ≈ a−
3
2H−

1
2

{
2ν−1Γ(ν)

π
1
2

(
k

aH

)−ν
+ i

π
1
2

2ν+1Γ(1 + ν)

(
k

aH

)ν}
, (4.46)

10It is also helpful to remember that in terms of Fourier space operators/�elds, the tilde notation
is equivalent to

〈̃AB〉p =

ˆ
d3p2
(2π)3

〈A(t, ~p)B(t, ~p2)〉

where

A(t, ~p) ≡
ˆ
d3xe−i~p·~xA(t, ~x)

for generic operators/�elds A and B.
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where ν ≡
√

9/4−m2/H2, the cross-correlation at the end of in�ation time te is

approximately

˜〈(σ2)r ζ〉
C
p ∼

−1

8π2

∣∣ζop ∣∣2 H4

m2
σ

1−
(

p

aeH

) 2m2
σ

3H2

 (4.47)

where we used the relations m2
σ � H2 and

∣∣ζop ∣∣2 p3 = H2/4M2
p ε is the mode func-

tion behavior in the long wavelength limit. To understand the magnitude of this

expression, note that for physical CMB scale comoving momenta, we have

p

ae
= e−N(p)H (4.48)

for N(p) ∼ O(50). As long as

1� m2
σ/H

2 & 1/N(p), (4.49)

we can estimate

˜〈(σ2)r ζ〉
C
p ∼

−1

8π2

∣∣ζop ∣∣2 H4

m2
σ

(4.50)

which is an expression that is valid when the p is far outside of the horizon and a

constant H is a good approximation. Note that this does not vanish in the limit

p→ 0. We will soon see that this non-vanishing behavior is incorrect and is a signal

of explicit breaking di�eomorphism invariance coming from Eq. (4.44). Note that if

Eq. (4.49) is not satis�ed because mσ = 0, we have

˜〈(σ2)r ζ〉
C
p ∼ H2

12π2

∣∣ζop ∣∣2 ln
p

aeH
(4.51)

∼ −N(p)
H2

12π2

∣∣ζop ∣∣2 (4.52)

which again does not vanish and is negative.

As explained around Eq. (4.24), the importance of the cross-correlation in the

isocurvature bound depends on whether β is of order 10−2 or larger and not by

whether the cross correlation by itself is of the order of curvature perturbations. To
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compute β de�ned in Eq. (4.29), we need an estimate of (σ2)r correlator which we

can take from [18]:

˜〈(σ2)r (σ2)r〉
C
p ∼

1

2π2

H4

p3
f(mσ/H, p/aeH) (4.53)

where f is a function which can have an exponentially small value owing to the

functional behavior

f ∼ H2

m2
σ

(
p

aeH

) 4
3

m2
σ

H2

. (4.54)

Combining Eqs. (4.29), (4.47), and (4.53), we �nd

βwrong ∼
√

∆2
ζ

H

4mσ

(
p

aeH

)− 2
3

m2
σ

H2

(4.55)

∼ H

4mσ

e
2
3

m2
σ

H2 N−12 (4.56)

which after recalling that N ∼ O(50) and Eq. (4.49) gives some hope that a proper

computation would give a large value for β with mσ/H satisfying Eq. (4.49).11 For

example, if |β| = O(1), then any appreciable isocurvature perturbation would be

ruled out with the current data, a�ecting predictions of [18,59,90].

Recall from Eq. (4.24) that the role of the cross correlation can become impor-

tant if β can become sizable while keeping α also sizable. One may worry that the

enhancement factor in β of Eq. (4.53) which is approximately proportional to α may

make α negligible in the parameter regime in which β is enhanced. However, note

that α is controlled not just by Eq. (4.53) but by

˜〈δSδS〉p =

˜〈(σ2)r (σ2)r〉
C
p

[〈(σ2)r〉]
2 (4.57)

which has a one point function squared in the denominator proportional to the en-

ergy density squared of σ. One can straight forwardly check from Ref. [18] that
11It is important to keep in mind that we are making an assumption here about the isocurvature

evolution when identifying the primordial computations of Eqs. (4.47) and (4.53) with the CMB
observables of Eq. (4.29) where ci are computed according to the simple transfer treatment of
Appendix 4.6. We will discuss this assumption more in detail in subsection 4.4.
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the denominator of Eq. (4.57) can be tuned such that α can remain constant while

˜〈(σ2)r (σ2)r〉
C
p is su�ciently small as to enhance β as described in Eq. (4.56).

Given this generic possibility of ruling out a large class of isocurvature pertur-

bation models, we consider below the leading gravitational interaction contribution

to β carefully. We �nd that unlike the naive estimate given in Eq. (4.47), there is

a suppression in the limit p/(aH) → 0 for the mass in the range of Eq. (4.49). The

suppression in the numerator of β precisely cancels the denominator suppression fac-

tor coming from f in Eq. (4.54) such that no enhancement is obtained, contrary to

the naive expectation of Eq. (4.56). This suppression of the numerator in the proper

computation not seen in the naive estimate can be attributed to a Ward identity

associated with the di�eomorphism group element of constant scaling of the spatial

coordinates. Furthermore, a careful computation that we give below will show that

the sign of the cross-correlation will be opposite to the naive estimate, owing to the

fact that the cross correlation here is tied to particle production instead of volume

dilution.

The detailed computation will address also explicitly how same answer to the

gauge invariant correlator results in two di�erent gauges of comoving gauge and uni-

form curvature gauge (one can verify this is not obvious from the naive estimate

presented in this subsection). Another technical care that is taken in the computa-

tions below is to explicitly specify how di�eomorphism invariant counter terms are

introduced to renormalize the composite operators intrinsic to δS. Since the correct

answer relies on a gravitational Ward identity, identifying proper di�eomorphism in-

variant regulator and counter terms is important for a trustworthy computation. On

the other hand, note that the �nite parts of the counter terms that remain after the

divergences are canceled will not a�ect the results to the leading ~ expansion that we
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are concerned with.12

Plausible and Correct Estimation Using a Soft-ζ Theorem

Before we describe the actual computation, we give in this subsection a method akin

to the soft-ζ theorem used by [19, 212�217, 219�225] to estimate the correct answer

without a detailed computation. We will also point out what ad-hoc assumptions are

needed to make this estimate using this theorem. A rigorous computation will be

given in subsection (4.3).

In the soft-ζ theorem application to the correlators in in�ation, one factorizes N -

point function including at least one soft external ζ into (N −1)-point function times

the two point function 〈ζζ〉. The well-known example is the three-point function

〈ζζζ〉 in the squeezed limit in quasi-dS space:

ˆ
d3q

(2π)3

〈
ζ~qζ~kζ~p

〉 p→0−→ −
∣∣ζop ∣∣2 1

k3

∂

∂ ln k

[
k3〈̃ζζ〉k

]
∼ − (ns − 1)

∣∣ζop ∣∣2 |ζok |2 (4.58)

where the superscript on the ζ mode functions denote long wavelength parts. To use

this, note that if we neglect renormalization of the composite operators, we can write

ˆ
d3q

(2π)3
〈ζ~pσ2(~q)〉 =

ˆ
d3k2

(2π)3

ˆ
d3k1

(2π)3
〈ζ~pσ(~k1)σ(~k2)〉. (4.59)

Using Eq. (4.58) and replacing two ζ �elds with σ �elds, we can estimate

ˆ
d3q

(2π)3
〈ζ~pσ2(~q)〉 p→0−→ −

∣∣ζop ∣∣2 ˆ
p

d3k2

(2π)3

1

k3
2

∂

∂ ln k2

[
k3

2 〈̃σσ〉k2

]
(4.60)

where the comoving IR cuto� p is required to treat ζop as a constant background �eld.

This e�ective lower cuto� p cannot be justi�ed without explicit computation, but

this is physically plausible because 〈σσ〉 does not have any IR divergence as long as

m2
σ > 0. One can rewrite the integral in Eq. (4.60) as

ˆ
d3q

(2π)3

〈
ζ~pσ

2(~q)
〉 p→0−→

∣∣ζop ∣∣2 ∂

∂ ln a

〈
σ2(t, ~x)

〉
p

(4.61)

12Note that particle production is non-perturbative in ~.
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where the σ2 on the right hand side corresponds to spacetime �eld (and not its Fourier

transform), the p subscript on the bracket corresponds to the IR cuto� in the mode

function integral, and we assume that there is no contribution from the UV cuto�.

It is easy to prove that if p→ 0 is well de�ned and a UV cuto� is not required, then

the right hand side of Eq. (4.61) vanishes in the limit p→ 0. This is in contrast with

Eq. (4.47).

The vanishing of this function in the p→ 0 limit for m2
σ > 0 is intuitively under-

stood from the fact that in that limit, ζop acts as a spatial di�eomorphism

~x→ ~x(1 + ζ0
p ) (4.62)

(which in turn e�ectively rescales the scale factor a by a constant factor if we neglect

spatial derivatives on long wavelengths) which cannot change 〈σ2(t, ~x)〉 = 〈σ2(t, 0)〉 .

More explicitly, one can show that the explicit computation can be rewritten as

ˆ
d3q

(2π)3

〈
ζ~pσ

2(~q)
〉 p→0−→ |ζp|2

ˆ
p

d3k

(2π)3

ˆ
d3xi〈[Q̂(t), σ̂(t, ~x)σ̂(t, 0)]〉ei~k·~x (4.63)

where

Q̂(t) ≡
ˆ t

d4za2(tz)δijT
ij
σ (z) (4.64)

is the generator of the di�eomorphism associated with Eq. (4.62). Note that the right

hand side formally vanishes when the IR cuto� is removed (i.e. p = 0) because in

that limit, we �nd the commutator

〈[Q̂(t), σ̂2(t, 0)]〉 = 0. (4.65)

This can be interpreted also as a Ward identity. On the �ip side, as long as p 6= 0,

〈σ2(t, ~x)〉p is not invariant under the di�eomorphism Eq. (4.62). The crucial point

from this perspective is that di�eomorphism invariance is extremely important to see

that the cross correlation vanishes for p→ 0 for a massive scalar �eld. It is this that

one failed to preserve in Eq. (4.44).
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As we will show in detail, Eq. (4.61) is consistent with the explicit computation.

Note that a couple of assumptions that we already mentioned in deriving Eq. (4.61)

can only be justi�ed by an explicit computation: namely, the e�ective lower cuto� p in

Eq. (4.60) and UV cuto� details associated with renormalizing the composite operator

σ2. Such complications do not arise in isocurvature scenarios without composite

operators. Hence, one of the main technical merits of this work is to provide a explicit

justi�cation of Eq. (4.61). Note that because the di�eomorphism gauge invariance

plays a crucial role in obtaining the correct p dependence in Eq. (4.61) as explained

around Eq. (4.65), we choose a UV regulator that preserves di�eomorphism invariance

in the computation below.

Gauge Invariance of Correlators

Before we begin our explicit computation, we will check the setup of our computation

by demonstrating that the manifestly gauge invariant quantities 〈δSζ〉 and 〈δSδS〉 yield

the same values in comoving and in the uniform curvature gauges. To accomplish

this, we use a gravitational Ward identity.

We �rst note that the ζ dependent metric perturbations δg(C) and δg(U) di�ers by

a gauge transformation, i.e.

∆gµν = δg(U)
µν − δg(C)

µν =

 2 d
dt

( ζ
H

) (− ζ
H

),i

(− ζ
H

),i −a2δij2ζ

 = −[LX ḡ]µν , (4.66)

where

X0 = − ζ

H
, X i = 0. (4.67)

Their interaction actions di�er by

∆Sσσζ = S
(U)
σσζ − S

(C)
σσζ = −

ˆ tf

dtd3xa3
x T

µν(ḡ, σ)∇µXν (4.68)
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Their interaction Hamiltonians di�er by

∆Hζσσ(t) = H
(U)
ζσσ(t)−H(C)

ζσσ(t) =

ˆ
d3x a3(t)T µν(ḡ, σ; t, ~x)∇µXν(t, ~x) (4.69)

Then we compare 〈σ2
xζy〉 in the two gauges:

〈σ2(tf , ~x)ζ(tf , ~y)〉U − 〈σ2(tf , ~x)ζ(tf , ~y)〉C (4.70)

= −i
ˆ tf

dt
〈[
σ2
xζy,∆Hζσσ(t)

]〉
(4.71)

= −i
ˆ tf

dtd3z
〈[
σ2
xζy,∇µ

(
a3(t)T µν(ḡ, σ; t, ~x)Xν(t, ~x)

)]〉
(4.72)

where we have integrated by parts and used the quantum version of ∇µT
µν
σ = 0: i.e.

in-in formalism gravitational Ward identities

i∇µ〈in|T µν+
z σ+

x σ
+
y |in〉g =

1√
gx
δ4(x− z)gανx

∂

∂xα
〈in|σ+

x σ
+
y |in〉g

+
1
√
gy
δ4(y − z)gανy

∂

∂yα
〈in|σ+

x σ
+
y |in〉g (4.73)

i∇µ〈in|T µν−z σ+
x σ

+
y |in〉g = 0 (4.74)

whose the notation is explained in Section 4.7. Note that the remaining term in

Eq. (4.72) is a total derivative. Hence, we are left with the boundary contribution

〈σ2(tf , ~x)ζ(tf , ~y)〉U − 〈σ2(tf , ~x)ζ(tf , ~y)〉C (4.75)

= −i
ˆ
d3z a3(tf )

1

H

〈[
σ2
x, T

00
σ,z

]〉
〈ζzζy〉 (4.76)

= −∂t〈σ
2
x〉

H
〈ζxζy〉. (4.77)

To make these composite operator correlators well de�ned while maintaining di�eo-

morphism invariance (see the discussion surrounding Eq. (4.65)), we need a proper

covariant regulator, such as the Pauli-Villars (PV) regulator. It is straightforward to

use the PV regulator here because the above identity holds for PV �elds as well. See

Appendix 4.9 for a more detailed discussion of the prescription of the PV regulator.
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Using Eq. (4.77), it is now trivial to show that 〈δSζ〉U = 〈δSζ〉C and 〈δSδS〉U =

〈δSδS〉C . Because δS 3 σ2
x/〈σ2

x〉, the denominator of this expression also transforms:

∆δS 3 −
∆〈σ2

x〉
〈σ2

x〉
σ2
x

〈σ2
x〉

=
ζx
H

∂t〈σ2
x〉

〈σ2
x〉

σ2
x

〈σ2
x〉

(4.78)

which leads to a cancellation of Eq. (4.77) consistently to leading ~→ 0 approxima-

tion. Hence, we have a nontrivial consistency check of the computation that we are

setting up.

Two-point Functions

In this subsection, we present a rigorous computation of β de�ned in (4.29). To this

end, we need to calculate the two-point function 〈(σ2)r ζ〉 and 〈(σ2)r (σ2)r〉 where the

renormalized composite operator [3, 5, 6, 245�254] is

(σ2)r ≡ (σ +
∑
n

χn)2 + δZ0(Λ,mσ) + δZ1(Λ,mσ)R (4.79)

which is discussed in greater detail in Sec. (4.9). Here we are going to use the comoving

gauge for the computation because of its advantages that we state below.13 As shown

in Eqs. (4.33) and (4.34), the gravitational interactions in the comoving gauge are

derivatively (i.e. p2/a2) suppressed except the (ij)-components. In other words, the

contributions from T 00
σ δg

(C)
00 and T 0i

σ δg
(C)
0i interactions are O(p2/a2), where ~p is an ex-

ternal 3-momentum. Furthermore, all counter term contributions are also derivatively

suppressed in the comoving gauge: δZ0 〈ζ〉 = 0 and δZ1〈̃Rζ〉Cp = O(p2/a2). Therefore,

we don't need the counter terms to compute the non-derivatively suppressed contri-

butions, but we still need a regulator for UV divergences in the computation. The

13This computation has been done also in the uniform curvature gauge, which is presented in
Appendix 4.10. Particularly, in the massless limit, we explicitly calculate up to the next leading term
including all gravitational couplings. This shows that the next leading terms are indeed suppressed
by the factor p2/a2.
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(σ2)r ζ
~p

~k1

~k2 = ~p− ~k1

Figure 4.2: Two-point function at one loop order.

regulator dependences and the UV divergences will automatically disappear together

in our �nal result.

Now we compute the two-point function shown in Fig. 4.2, which is written in

the Fourier space as

˜〈(σ2)r ζ〉
C
p =

ˆ
d3x e−i~p·~x

〈(
σ2(t, ~x)

)
r
ζ(t,~0)

〉C
(4.80)

=

ˆ
d3x e−i~p·~x

ˆ t

d4z a3(tz)

×
s∑

N=0

〈[
σ2
N(t, ~x)ζ(t,~0),

i

2

(
2ζa2δijT

ij
σ

)
z

]〉
+O

(
p2

a2

)
, (4.81)

where we have introduced the Pauli-Villars (PV) regulator (see Appendix 4.9 for more

details) and

a2δijT
ij
σ = −3Lσ +

s∑
N=0

CN

(∇
a
σN

)2

, (4.82)

where σ0 and σn are the physical �eld σ and the PV �eld χn (here, n ∈ {1, 2, ..., s}),

respectively, and s is the number of introduced PV �elds.

Interestingly, this integral can be computed in any FRW space-time. We �rst

compute the second term contribution in Eq. (4.82) de�ned as

I
(2)
N (p) ≡

ˆ
d3x e−i~p·~x

ˆ t

d4z
√−gz

〈[
σ2
N(t, ~x)ζ(t,~0), iζzCN

(∇
a
σN

)2

z

]〉
(4.83)
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Expanding in mode functions, this becomes

I
(2)
N (p) = −4C−1

N

ˆ
d3k1

(2π)3d
3k2δ

3(~k1 + ~k2 − ~p)
ˆ t

−∞
dtza

3
z

(
−
~k1 · ~k2

a2
z

)
×Im

[
ζp(t)ζ

∗
p (tz)uN,k1(t)u∗N,k1

(tz)uN,k2(t)u∗N,k2
(tz)
]
, (4.84)

where uN are the mode functions for �elds σN . Because ζ oscillates before and

freezes after the horizon exit, we neglect the contribution before the horizon exit.

Furthermore, we can neglect the O(p2/a2) term and factor ζp out of the time integral.

We thus �nd

I(2)(p) ≈ 4
∣∣ζop(t)

∣∣2 ˆ d3k1

(2π)3d
3k2δ

3(~k1 + ~k2 − ~p)

×
ˆ t

tp

dtza
3
z

(
~k1 · ~k2

a2
z

)
Im
[
uk1(t)u∗k1

(tz)uk2(t)u∗k2
(tz)
]

+O

(
p2

a2

)
(4.85)

where tp is the time at which scale p exits the horizon. Note that we drop subscript N

and �eld normalization CN for convenience, but we will put it back later in the �nal

result. Moreover, we neglect the low momentum phase space, i.e. min{k1, k2} < p,

because of |uk|2 . O(k−3) and the spatial gradient factor ~k1 · ~k2/a
2.

ˆ
k1<p

d3k1

(2π)3d
3k2δ

3(~k1 + ~k2 − ~p)
ˆ t

tp

dtza
3
z

(
~k1 · ~k2

a2
z

)

×Im
[
uk1(t)u∗k1

(tz)uk2(t)u∗k2
(tz)
]
. O

(
p2

a2

)
. (4.86)

Then the main contribution of the integral comes from the phase space k1, k2 > p, and

thus p behaves as an IR cut-o� (see the importance of this IR cuto� in the discussion

surrounding Eq. (4.61)).

Since k1, k2 > p, we Taylor-expand the integrand with respect to p and take the

leading term. Then we have

I(2)(p) ≈ 4
∣∣ζop(t)

∣∣2 ˆ
p

d3k1

(2π)3

ˆ t

tp

dtza
3
z

(
−k

2
1

a2
z

)
Im
[
u2
k1

(t)u∗2k1
(tz)
]

+O

(
p2

a2

)
. (4.87)
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Now we are going to compute the time integral. Recall that the di�erential equation

for mode function uk is

ük + 3Huk +

(
k2

a2
+m2

)
uk = 0. (4.88)

Applying ∂
∂ ln k

to the equation, we obtain

ÿk + 3Hyk +

(
k2

a2
+m2

)
yk = −2

k2

a2
uk, (4.89)

where yk ≡ ∂
∂ ln k

uk. Note that the homogeneous solutions for yk are uk and u
∗
k. Thus,

we use the Green function method to �nd a solution

yk(t) =

ˆ t

dt′
a3(t′)

i
(u∗k(t)uk(t

′)− uk(t)u∗k(t′))
(
−2

k2

a2

)
uk(t

′). (4.90)

From this, we �nd

d

d ln k
|uk(t)|2 = 2Re [u∗k(t)yk(t)] (4.91)

= 4

ˆ t

−∞
dtza

3
z

k2

a2
z

Im
[
u2
k(t)u

∗2
k (tz)

]
(4.92)

=

[ˆ t

tp

dtz +

ˆ tp

−∞
dtz

]
4a3

z

k2

a2
z

Im
[
u2
k(t)u

∗2
k (tz)

]
. (4.93)

The second term is oscillatory with respect to k so that we can safely neglect it after

the momentum integral. Inserting this back to the integral (4.87), we obtain

I
(2)
N (p) ≈ −C−1

N

∣∣ζop(t)
∣∣2 ˆ

p

d3k

(2π)3

d

d ln k
|uN,k(t)|2 +O

(
p2

a2

)
(4.94)

= −C−1
N

∣∣ζop(t)
∣∣2 [− k3

2π2
|uN,k(t)|2

∣∣∣∣ΛUV
p

+ 3
〈(
σ2
N

)
p

〉]
+O

(
p2

a2

)
,(4.95)

where we have put the subscript N and the �eld normalization CN back, and〈(
σ2
N

)
p

〉
≡
ˆ
p

d3k

(2π)3 |uN,k(t)|
2 , (4.96)

where the subscript p stands for the comoving IR cut-o� of momentum. One can

then compute the contribution of the �rst term in Eq. (4.82) in a similar manner:
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I
(1)
N ≡

ˆ
d3xe−i~p·~x

ˆ t

d4z
√−gz

〈[
σ2
N(t, ~x)ζ(t,~0), i (−3)Lσ(z)ζ(z)

]〉
(4.97)

= 3C−1
N

∣∣ζop ∣∣2 〈(σ2
N

)
p

〉
+O

(
p2

a2

)
. (4.98)

Hence, we obtain

˜〈(σ2)r ζ〉
C
p =

s∑
N=0

I
(1)
N + I

(2)
N +O

(
p2

a2

)
(4.99)

=
∣∣ζop ∣∣2 p3

2π2
|up(t)|2 +O

(
p2

a2

)
(4.100)

where up is the mode function for physical �eld σ.

Comparing the computation of Eq. (4.100) with the estimate in Sec. 4.3, we see

two crucial di�erences:

1. There is a cancellation of the 3C−1
N

∣∣ζop ∣∣2 〈(σ2
N)p

〉
term that is sensitive to mode

summation that extends to sub horizon modes.

2. The ΛUV dependent term in Eq. (4.95) in the present computation disappears

after accounting for the PV regulator �elds. In contrast, the estimate in Sec. 4.3

leaves behind a ΛUV = aHinf dependent contribution due to the ad hoc nature

of the UV cuto� which does not preserve di�eomorphism.

Finally, putting the results (4.95) and (4.98) together, the two-point function becomes

˜〈(σ2)r ζ〉
C
p

∣∣∣∣
te

=
∣∣ζop ∣∣2 ×


Γ2(ν)H2

π3

(
p

2a(te)H

)3−2ν

massive scalar in dS

H2
p

4π2 massless during quasi-dS

(4.101)

up to the O
(
p2

a2

)
correction where Hp denote the Hubble scale at which scale p exits

the horizon, ν =
√

9/4−m2/H2, and te reminds us that we are evaluating this at the
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end of in�ation. We have applied (quasi)-dS mode function in evaluating (4.101).14

One can easily check that Eq. (4.47) is consistent with Eq. (4.60).

As explained near Eq. (4.65), the vanishing of the cross-correlation in the limit

p → 0 is expected from the di�eomorphism Ward identity. For a nonvanishing p,

one might expect the cross-correlation should be O(p2/a2) by Taylor-expanding the

cross-correlation at p = 0. However, Eq. (4.101) interestingly shows that the leading

term of the cross-correlation is not analytic at p = 0 and thus not p2/a2-suppresed.

Indeed, for any small p/a(te), we can diminish the suppression by making 3−2ν → 0+

through the limit m/H → 0.

To �nish the computation of β, we also consider the two-point correlator 〈(σ2)r (σ2)r〉

showing up in the denominator. Again, the comoving gauge is convenient for this

computation. Although the correlator is UV divergent, because the counter terms as-

sociated with the divergence are derivatively suppressed, we do not need to include the

counter terms in computing the IR contributions and the non-derivative contribution

of the correlator is insensitive to renormalization. Furthermore, the IR contribution

using the super-horizon approximation is not UV divergent. That means the UV

contribution and the IR contribution are cleanly separated. Thus, we can estimate

˜〈(σ2)r (σ2)r〉 using only the super-horizon approximation unlike in the computation

of ˜〈(σ2)r ζ〉. We �nd

˜〈(σ2)r (σ2)r〉
C
p = 2

ˆ
ΛIR

d3k1

(2π)3d
3k2δ

3(~k1 +~k2− ~p) |uk1(t)|2 |uk2(t)|2 +O

(
p2

a2

)
(4.102)

14After in�ation ends at time te, the cross correlation is expressed as

˜〈(σ2)r ζ〉
C
p

= fT
˜〈(σ2)r ζ〉

C
p

∣∣∣∣
te

where fT accounts for the change in the mode-function behavior after the end of in�ation. As
alluded to in the discussion near Eq. (4.24), the factor fT cancels out of the expression in β due to

its appearance in the denominator
√

∆2
ζ∆

2
δS
. The factor fT can also account for the corrections in

the superhorizon mode function behavior during in�ation due to deviations away from the exact dS
background.
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where ΛIR is a comoving IR cuto�. Evaluating this with dS super horizon modes and

assuming m < 3H/2, we �nd the value at the end of in�ation to be

˜〈(σ2)r (σ2)r〉
C
p

∣∣∣∣
te

≈ 2

ˆ
ΛIR

d3k1

(2π)3d
3k2δ

3(~k1 + ~k2 − ~p)

×2−4+4ν |Γ(ν)|4
π2

1

a6(te)H2

(
k1

a(te)H

)−2ν (
k2

a(te)H

)−2ν

(4.103)

≈ 1

2π2

H4

p3

1

3− 2ν

(
p

a(te)H

)6−4ν
[

1−
(

ΛIR

p

)3−2ν
]
. (4.104)

In Eq. (4.102), we have introduced a comoving IR cuto� ΛIR which corresponds

to the statement that in�ationary era had a beginning in the �nite past. Explicitly,

we cannot use the Bunch-Davies vacuum boundary condition for modes that left the

horizon before the beginning of in�ation. This means that

ΛIR

p
∼ e−(Ntot−N(p)) (4.105)

where Ntot is the total number of efolds of in�ation, N(p) is the number of efolds

before the end of in�ation at which the mode p left the horizon: i.e. p/a(N) = H. This

cuto� is related to the box cuto� introduced in [87,90,255]. Numerically, ΛIR � p is

irrelevant when

m2
σ

H2
� 1

Ntot −N(p)
. (4.106)

For situations in which this condition is violated, IR e�ects are important, and our

computation is only qualitatively suggestive since ΛIR has to be resolved using more

detailed description of the beginning of in�ation. In particular, since we do not

physically expect Ntot = ∞, mσ = 0 situation is not accurately captured by our

computation. Of course, the IR sensitivity here is not important as far as the impor-

tance of the cross correlation is concerned since the qualitative behavior of having
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p/ΛIR → ∞ is to make the correlation even larger making the β parameter even

smaller. Finally, note that Eq. (4.106) can easily be more stringent than Eq. (4.49).

Hence, we conclude

β ≈


−mσ

H

√
∆2
ζ

6
massive scalar in dS

−
√

∆2
ζ

2

(
ln p

ΛIR

)−1/2

massless during quasi-dS

(4.107)

where for the massive scalar case is assume to satisfy Eq. (4.49). Although this in

principle is a generic prediction of isocurvature scenario, the magnitude of around

10−5 is di�cult to probe experimentally since the current sensitivity is at the level of

10−2.

4.4 Application

The β computation presented in Eq. (4.107) is not sensitive to ˙̄ρσ that is involved

in the de�nition of the isocurvature perturbation δS. Instead, it is a property of

quadratic nature of the scalar composite operator during in�ation. Since Eq. (4.107)

does depend on the masses, in this section, we motivate couple of the mass parame-

ters from well-motivated nonthermal dark matter models: WIMPZILLAs [65, 66, 68,

86, 100, 186, 256] and axions [257�259]. Although these two particles have di�erent

physical origins, they share some common properties as a cosmological component.

Firstly, since they are massive (at the CMB time at least) and weakly interacting,

they both are good CDM candidates. Also, they can be gravitationally produced

during or after in�ation, and this gives rise to isocuvature from their density pertur-

bations. Furthermore, when their background �eld values are negligibly small, the

isocurvature perturbation from these particles is approximated by quadratic form σ2.

In that case, they would present detectable non-Gaussianties [18, 59, 90] and their

cross correlation is characterized by Eq. (4.107).
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Weakness of σ Interactions with ψ

To connect our computation of β to observables, a post in�ationary isocurvature sce-

nario is necessary. For the illustrative situations of axions and WIMPZILLAs, it is

su�cient to assume that σ has an extremely weak interaction with the reheating de-

grees of freedom ψ and the in�aton φ such that the transfer function of σ is trivial after

in�ation: with su�ciently small interactions, α and β of Eqs. (4.28) and (4.29) com-

puted during in�ation can be directly matched without any further transfer function

computations to isocurvature initial condition for CMB codes such as CMBFAST. In

this section, we quantify the requisite weakness of the interactions and qualitatively

discuss the situation when the weakness assumption is invalid. For example, we will

show below that ordinary WIMPs are too strongly interacting with the reheating

degrees of freedom for this assumption to be valid while axions and WIMPZILLAs

are su�ciently weakly interacting. We also qualitatively describe what extra work

needs to be done to apply this work for observations in situations in which the dark

matter particles are not extremely weakly interacting.15

At the linearized classical equation of motion level, we have the gauge invariant

perturbations {ζj} being governed by a linear time evolution operator

O[{ζj}] = 0 (4.108)

where the initial condition for the isocurvature species j = σ16 is given by

ζσ(ti) = f(ti) (4.109)

15Because of the cross correlation result in this work is small, the discussion here is a bit academic
if this discussion applied only to the cross correlation result. However, the discussion here applies
to the isocurvature 2-point function found in the literature [18,40,67,142,149�151,255] which has a
realistic chance of being observable in near future experiments.

16In our scenario, the isocurvature species stand for the degrees of freedom constrast with the
radiation degrees of freedom.
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which in turn is set by the in�ationary physics. For example, the initial time ti can

be set to be the time of end of in�ation. The �nal ζσ(tf ) will contain contribution

which does not vanish in the limit f → 0. Hence, one can write

ζσ(tf ) = Gσ
tf

[f(ti), 0] +Gσ
tf

[0, ζj 6=σ(ti)] (4.110)

where Gσ
tf

[D] is the σ component of the Green's function derived from the linear

operator O which takes the initial data D and maps it to the �nal value of ζσ(tf ).

Note that we have implicitly assumed the boundary condition such that Gσ
tf

[0, 0] = 0

which means that Gσ
tf

[f(ti), 0] vanishes as f(ti)→ 0.

Now, we will consider two situations in which bound the picture of super weakly

interacting scenarios. In the �rst scenario, the thermal plasma generated by the

in�aton decay will interact with σ su�ciently strongly to make δS mix strongly with

ζ. In the second scenario, the in�aton decay to σ directly will realign σ �uctuations

during radiation domination to those of ζ, even though σ and reheating products are

not interacting appreciably.

First, consider the e�ects of radiation dominated thermal plasma on σ. The mixing

rate governing Gσ
tf

[0, ζj 6=σ(ti)] is the production rate of σ particles from the thermal

plasma. Typically a single channel involving particle y dominates the production of

the σ particle from the plasma. (If there are more channels, the discussion below can

easily be generalized.) We thus expect a qualitative behavior of

Gσ
tf

[0, ζj 6=σ(ti)] ∼
(

1 + tanh

[
Γ(yy → σσ, tmax)

H(tmax)

])
ζy (4.111)

where Γ(yy → σσ, tmax) is the reaction rate for this process at the time that the

production rate is maximum (in Γ(yy → σσ, t) is maximum at t = tmax where

tmax ∈ [ti, tf ]), H is the expansion rate, and ζy = O(ζtot).

Hence, one sees that the information about the isocurvature perturbations depend
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not only on

Γ(yy → σσ, tmax)/H(tmax)

but on tf since tmax is restricted to be in the range tmax ∈ [ti, tf ]. For example, the

usual CMB code is run starting with an initial condition at T � TBBN. This means

that tf � tBBN is required to use the in�ationary correlator computations in the

CMB code. A general computation of Gσ
tf
needed for the prediction of isocurvature

perturbation e�ect on CMB temperature is beyond the scope of current work. To be

able to trust the trivial transfer function of

Gσ
tf

[f(ti), 0] ≈ f(ti)� Gσ
tf

[0, ζj 6=σ(ti)], (4.112)

for superhorizon modes (where ti is say at the end of in�ation17), we can require

Γ(yy → σσ, tmax)

H(tmax)
� ζσ(ti)

ζtot
(4.113)

where tmax can be at any time between in�ation and the time at which boundary

conditions are set for the CMB code. This sets a bound on the cross section 〈σv〉 for

yy → σσ to be

〈σv〉 � ζσ(ti)

ζtot(ti)

g
3/4
∗

gy

(
TRH

106 GeV

)−1

4.2× 10−25 GeV−2 (4.114)

where the bound becomes more stringent for higher reheating temperatures.

This number should be compared to typical thermal WIMP DM candidate anni-

hilation cross section of 10−9 GeV−2 and a high energy s-channel scattering at TRH

mediated through a vector boson with a dimensionless coupling g =
√

4παg:

〈σv
yy→Aµ→light states〉 ∼

α2
g

T 2
RH

(4.115)

=
( α

10−1

)2
(

TRH
106 GeV

)−2

10−14 GeV−2. (4.116)

17Note that as discussed in footnote 14, α can also receive corrections from the departures from
the ideal dS mode function evolution as well as from the time when m/H becomes larger than unity.
As discussed there, the quantity β is not as sensitive to these corrections.
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Hence, one sees that WIMP dark matter cannot play the role of the isocurvature

perturbations. That is why if we are to identify our computation of α and β directly

to physical observables, we have to choose the isocurvature degree of freedom to be

nonthermal.18

Even though the current work applies most immediately without changes to non-

thermal dark matter scenarios having extremely weak interactions, Eq. (4.114) is still

much bigger than gravity mediated s-channel interactions

〈σvyy→gµν→σσ〉 ∼
1

16π2

T 2
RH

M4
p

(4.117)

∼
(

TRH
106 GeV

)2

10−64 GeV−2. (4.118)

For example, axion cross sections for gluon coannihilation behave as [261]

〈σvag→X〉 ∼
α2
s

8π2

1

f 2
a

(4.119)

∼
(

fa
1012 GeV

)−2

10−28 GeV−2 (4.120)

where fa is the PQ breaking VEV. Hence, there is a large class of weakly interacting

models for which this work directly applies without modi�cation. For models for

which Eq. (4.114) is not satis�ed, one needs to compute the transfer function associ-

ated with the mixing. Nonetheless, this work will still be useful in setting the initial

conditions for such computations.

Let's see qualitatively what happens when Eq. (4.114) is not satis�ed. In that

case, we expect mixing between isocurvature and curvature perturbations

ζσ(tf ) = Gσ
tf

[f(ti), 0] +Gσ
tf

[0, ζj 6=σ(ti)] ∼ O(ζσ) +O(ζtot). (4.121)

Since the curvature perturbations will analogously be

ζ(tf ) = GR
tf

[f(ti), 0] +GR
tf

[0, ζj 6=σ(ti)], (4.122)

18Similar arguments can also be made from unitarity [260].
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we would then have

δS = 3
({
Gσ
tf

[f(ti), 0]−GR
tf

[f(ti), 0]
}

+
{
Gσ
tf

[0, ζj 6=σ(ti)]−GR
tf

[0, ζj 6=σ(ti)]
})

.

(4.123)

Up to the accuracy that all species are equipartitioned, this quantity may vanish

since there is cancellation in each of the terms in the bracket. It is beyond the scope

of the current work to compute more precisely this cancellation we are focusing on

scenarios which satisfy Eq. (4.114).

Suppose there is a direct decay of the in�aton to σ, and suppose there is no other

appreciable interaction between σ and other decay products of the in�aton. In that

case, it is better to set the initial time ti to be at the time of in�aton decay completion

such that Gσ
tf

[f(ti), 0] is still trivial. In that case, we have

ζσ ≡ −A
2

+
δρ
(grav)
σ + δρ

(decay)
σ

3(ρ̄
(grav)
σ + ρ̄

(decay)
σ + P̄

(grav)
σ + P̄

(decay)
σ )

(4.124)

= r(grav)
σ ζ(grav)

σ + r(decay)
σ ζ(decay)

σ (4.125)

where ri has been de�ned in Eq. (4.11). Hence, we have

δS = 3(ζσ − ζR) (4.126)

= 3(r(grav)
σ ζ(grav)

σ + r(decay)
σ ζ(decay)

σ − ζR). (4.127)

If ζ
(decay)
σ = ζR is assumed, then

δS = 3
[
1− r(decay)

σ

] (
ζ(grav)
σ − ζR

)
. (4.128)

This equation says that if most of the in�aton energy density goes to σ, then the

isocurvature is negligible.

In the next two subsections, we now consider couple of mass motivations for

nonthermal dark matter isocurvature candidates.
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WIMPZILLA

The WIMPZILLA was originally proposed to avoid the restriction from the assump-

tion that the dark matter is a thermal relic. Thus, the WIMPZILLA is supposed to

either be very heavy and/or very weakly interacting. In particular, we consider the

possibility that the WIMPZILLA is gravitationally produced during the phase transi-

tion out of the quasi-de-Sitter phase of in�ation. In that case, the model is controlled

by two parameters: the ratio of mass to the Hubble scale of in�ation mX/Hinf , and

the reheating temperature TRH , where X denotes a massive scalar �eld. Since the

energy density is approximated as ρX ∼ m2
XX

2 the relic density of X is estimated as

ΩXh
2 ∼ 10−1

(
He

1012GeV

)2(
TRH

106GeV

)
, (4.129)

where we have assumed that mX ∼ He, because a priori we know that we can �nd

proper isocurvature and relic density in this mass range. (For a more detailed discus-

sion of the relic abundance, see for example [18].) The isocurvature power spectrum

depends on the details of the evolution of the background during in�ation because

the mode function of massive particle decays as a−3+2ν (see a related discussion in

footnote 17). However, we can generally obtain α ∼ 0.067 if mX . Hinf , where Hinf

is the Hubble expansion rate when the CMB scale crosses the horizon [18]. The WIM-

PZILLA isocurvature has also the quadratic form like the axion. It thus generates

the observable non-Gaussianities estimated as Eq. (4.31). Eq. (4.107) translates to

the fractional cross-correlation of

βWIMPZILLA ≈ −0.4
mX

Hinf

√
∆2
ζ (4.130)

which justi�es the constraint used in [18]. Since the naive estimate of Eq. (4.56) gives

a gross overestimate β, one of the merits of this work is to put such worries to rest

through the proper computation.
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Axion

In this subsection we assess the relevance of Eq. (4.107) to the axion scenario. Firstly,

we review the axion scenario. In 1997, Peccei and Quinn proposed the global U(1)PQ

symmetry in order to solve to the strong CP problem in the QCD. The axion is

the Nambu-Goldstone boson associated with the symmetry after it is broken spon-

taneously. Many mechanisms have been proposed to produce axions in the early

universe. We focus only on the �vacuum misalignment� mechanism here following

Refs. [143�149, 151, 197]. In early universe, the axions are e�ectively massless and

gain their mass when the QCD anomaly term (which explicitly breaks PQ symme-

try) becomes physical after the chiral symmetry breaking QCD phase transition.

After the universe cools down and the Hubble friction drops below the axion mass,

the axions begin to coherently oscillate and they contributes to the CDM component

of the universe because of their long lifetime.

Let us denote the PQ symmetry breaking scale by fa. Because na ∝ θ2 where θ is

the axion angle, the relic axion density is estimated as

Ωah
2 ∼


2× 104

(
fa/N

1016 GeV

)7/6

〈θ2〉 for Tosc & ΛQCD

5× 103
(

fa/N

1016 GeV

)3/2

〈θ2〉 for Tosc . ΛQCD,

(4.131)

where we have neglected O(1) factors due to di�usion, anharmonic correction, and

temperature-dependent mass correction, and Tosc is the temperature at which the

axion starts to oscillate. The axion isocurvature in comoving gauge is written as

δ(C)
s = ωa

θ2 − 〈θ2〉
〈θ2〉 = ωa

2θiδθ + δθ2 − 〈δθ2〉
〈θ2〉 , (4.132)

where ωa ≡ Ωa/ΩCDM , θi is the average of initial QCD vacuum angle θ over the

observable universe, and δθ is inhomogeneity of θ, i.e. θ(t, ~x) = θi(t) + δθ(t, ~x). Then
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the isocurvature power spectrum becomes

〈̃δsδs〉 ∼ ω2
a


3.5× 1010

(
fa/N

1016 GeV

)7/3

F̃ for fa/N & 6× 1017GeV

2× 109
(

fa/N

1016 GeV

)3

F̃ for fa/N . 6× 1017GeV,

(4.133)

where

F̃ = 4θ2
i 〈̃δθδθ〉+ ˜〈δθ2δθ2〉+ θi

[
〈δθδθ2〉+ 〈δθ2δθ〉

]
. (4.134)

Since our primary interest is in the cross correlation with θi ≈ 0, we set it to zero.

Therefore, the adiabaticity parameter α de�ned in Eq. (4.28) is estimated as

α ∼ ω2
a


1.3× 1019

(
fa/N

1016GeV

)7/3

∆2
θ for fa/N & 6× 1017GeV

8.1× 1017
(

fa/N
1016GeV

)3

∆2
θ for fa/N . 6× 1017GeV,

(4.135)

∆2
θ(p) =

p3

2π2
˜〈δθ2δθ2〉

=

(
fa
N

)−4(H2
p

2π2

)2

ln
p

ΛIR

, (4.136)

where Hp is the Hubble scale at the horizon exit of mode p, and ΛIR is an IR cut-

o�. Here we have used Eq. (4.104) with the assumption that the axion is e�ectively

massless during in�ation. In the case that θi � δθ, the isocurvature has the quadratic

form of gaussian variable δθ, and it naturally becomes non-Gaussian perturbation.

The isocurvature non-Gaussianity is estimated as Eq. (4.31).

These parameter constraints and predictions (4.131), (4.135) and (4.31) already

have been investigated in the literature [59,90,149,151] with the assumption that the

axion isocurvature and the curvature is uncorrelated. Our result from Eq. (4.107) is

βaxion = −

√
∆2
ζ

2

(
ln

p

ΛIR

)−1/2

. 2.5× 10−5 (4.137)

which is consistent with the assumptions made in the literature.
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4.5 Summary

In this work, we have presented the �rst explicit computation of the gravitational

interaction contribution to the cross-correlation between the curvature and quadratic

isocurvature perturbations (which include dark matter isocurvature candidates such

as the axion and the WIMPZILLA). Since the necessary and su�cient condition for

the cross-correlation to dominate over the isocurvature perturbations in observational

constraints is |β| & 4 × 10−2, we have explicitly computed β, which incidentally is

not sensitive to the background number density of the isocurvature degrees of free-

dom and post-in�ationary mode function changes on superhorizon scales. Although

a naive estimate of β based on a di�eomorphism violating UV cuto� leads to the

possibility β ∼ O(1) due to a large ratio that can appear between the numerator and

the denominator of the expression for β, our explicitly di�eomorphism invariant com-

putation leads to |β| . ∆ζ/2 ≈ 2.5× 10−5 because the numerator has a suppression

as a consequence of a di�eomorphism Ward identity. Unfortunately, this is far below

the current observational sensitivity of |β| & 10−2.

The smallness of the cross-correlation is explained by the fact that the super-

horizon mode of the curvature perturbation ζ can be smoothly connected to the

gauge mode, which is the spatial dilatation, in the zero external momentum limit.

Hence, Eq. (4.100) vanishes when p = 0 and m 6= 0. In other words, this can be seen

as a suppression due to a di�eomorphism Ward identity (i.e. uniform spatial rescaling

invariance). A nontrivial structure revealed through our explicit computation is the

suppression's non-analytic structure with respect to p: the cross correlation cannot

be Taylor-expanded at p = 0, and this contribution is not p2/a2-suppressed.

Our rigorous result which incorporates UV renormalization of the composite oper-

ator in the curved background is also shown to be consistent with an estimate based
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on a soft-ζ theorem, which allows one to factorize 〈ζζ〉 from 〈σ2ζ〉 as explained in

Eq. (4.61). However, Eq. (4.61) requires two assumptions that can only be justi�ed

by an honest computation such as what is presented in subsection 4.3:

1. There is an e�ective IR cuto� of p in evaluating 〈σ2〉 due to the external mo-

mentum p inserted into the composite operator.

2. The only UV renormalization property of 〈σ2〉 that is relevant to leading ~

approximation is the preservation of di�eomorphism invariance.

Note that the proper di�eomorphism invariant UV treatment also allowed us to

demonstrate that the cross-correlation is indeed gauge-invariant with one-loop correc-

tion through the gravitational coupling. This gauge invariance is checked explicitly

by computing our cross correlation in both the comoving gauge and the uniform

curvature gauge.

Physically, the curvature perturbation ζ can a�ect the particle density ρσ and

generate correlations only at its horizon crossing, because the perturbation ζ begins

to freeze after its horizon exit, and it can be e�ectively treated as a gauge mode after

the horizon exit. Positive cross correlation corresponds to the situation in which

the 1 + ζ enhancement in the expansion enhances the particle production (assuming

that this enhances inhomogeneity) while the negative cross correlation corresponds

to the situation in which the 1 + ζ enhancement in the expansion dilutes the particle

inhomogeneity. The latter dilution e�ect leads to β > 0, while the particle production

enhancement e�ect corresponds to the quadratic scenario that we were interested in

this work. This explains the sign β < 0 of our result.

Given the robustness of the smallness of β, the gravitational interaction contri-

bution to the cross correlation should be negligible in most nonthermal dark matter

isocurvature scenarios. In addition to giving a concrete computation supporting this,
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our work serves as an interesting lesson in computing correlators of composite oper-

ators in curved spacetime in the context of in�ationary cosmology.

4.6 Appendix: Transfer functions for Adiabatic and

Isocurvature initial condition

The CMB temperature �uctuation with the leading order approximation (the inte-

grated Sachs-Wolfe term is neglected) in the Newtonian gauge (B = F = 0, E = 2Φ,

A = −2Ψ) is

∆T

T
≈ 1

4
δγ|r + Φ|r , (4.138)

where the perturbations on the rhs are evaluated at the recombination. We can

obtain these perturbations by solving the Einstein and Boltzmann equations with

given initial conditions. A projection from a given initial condition to the �nal CMB

temperature �uctuation is called transfer function. In the following subsections, we

calculate that the k-dependence of the transfer functions for the adiabatic and the

isocurvature initial conditions. In particular, we show that the isocurvature transfer

function has the additional suppression factor keq/k compared to the adiabatic one

for small scale k � keq. Here we basically follow the calculation by Ref. [262,263].

Perturbation Equations

For explicit computation, we choose the Newtonian gauge for the scalar metric per-

turbation (4.2). For simplicity, we consider only photon and CDM �uids, which are

denoted in the following equations by subscript γ and m, respectively. This assump-

tion is valid for the sake of identifying the di�erence between transfer functions for
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adiabatic and isocurvature initial conditions, although baryon and neutrino should

be taken into account for accurate description for transfer functions.

The conservation equations for dark matter and photon �uids in Fourier space are

δ′m = k2Vm + 3Ψ, (4.139)

V ′m = −HVm − Φ, (4.140)

δ′γ =
4

3
k2Vγ + 4Ψ′, (4.141)

V ′γ = −1

4
δγ − Φ, (4.142)

where ' denotes the time derivative with respect to conformal time η, H ≡ a′/a,

δa ≡ δρa/ρa. Note that Φ = Ψ since they are perfect �uids. VX is the peculiar

velocity for �uid X. These four equation are combined by eliminating VX , and we

have

(a (δ′m − 3Φ′))
′

= ak2Φ, (4.143)

δ′′γ = 4Φ′′ − k2

3
(δγ + 4Φ) . (4.144)

The evolution of the metric perturbation is encoded in the Einstein equations. (00)

and (ii) components are

k2Φ + 3H (Φ′ +HΦ) = − 1

2M2
p

a2 (ρmδm + ργδγ) , (4.145)

Φ′′ + 3HΦ′ +

(
2
a′′

a
−H2

)
Φ =

1

6M2
p

a2ργδγ. (4.146)

Combining with other components, we also �nd the Poisson equation

−k2Φ =
3

2
H2

[
Ωmδm + Ωγδγ − 3H

(
ΩmVm +

4

3
ΩγVγ

)]
. (4.147)

With the de�nition of isocurvature (4.20) in Section 4.2

δS = δm −
3

4
δγ, (4.148)
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where we have used pγ = ργ/3 and pm = 0, we rewrite the di�erential equations of

�uid and metric perturbations in terms of Φ and δS

Φ′′ + 3H
(
1 + c2

s

)
Φ′ +

[
2H′ +H2

(
1 + 3c2

s

)]
Φ

+k2c2
sΦ = −2

3

c2
s

M2
p

a2ρmδS, (4.149)

1

3c2
s

δ′′S +
a′

a
δ′S +

k2y

4
δS = −1

6
y2k4τ 2

eqΦ, (4.150)

where

y ≡ a

aeq
=
ρm
ργ
, τeq =

√
2

aeqHeq

, c−2
s ≡ 3

(
1 +

3

4
y

)
. (4.151)

In η → 0 limit, Eqs. (4.149) and (4.150) admit two linearly independent solutions

Φ(k, η → 0) = Φi(k), δS(k, η → 0) = 0, and Φ(k, η → 0) = 0, δS(k, η → 0) = δiS(k),

which corresponds to adiabatic initial condition and isocurvature initial condition,

respectively.

Adiabatic Initial Condition

For large scale perturbations, which enters the horizon later than the recombination.

δS remains zero according to Eq. (4.150), and thus Eq. (4.149) is rewritten as

d2Φ

dy2
+

21y2 + 54y + 32

2y(y + 1)(3y + 4)

dΦ

dy
+

Φ

y(y + 1)(3y + 4)
= 0, (4.152)

where is called as Kodama-Sasaki equation. This di�erential equation can be exactly

solved, and we �nd

Φ(kl, y � 1) =
9

10
Φi(kl), (4.153)

where the subscript l stands for �super-horizon�. For photon energy density δγ, Eq.

(4.141) in the long wavelength limit yields

1

4
δγ − Φ = const. (4.154)
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and also Eq. (4.145) gives

δγ(kl,η → 0) = −2Φ(kl, η) = −2Φi(kl). (4.155)

For small scale perturbation, which enter the horizon during the radiation domi-

nated(RD) era, in the early RD limit η � ηeq, Eq. (4.149) becomes

Φ′′ +
4

η
Φ′ +

k2

3
Φ = 0, (4.156)

and its solution with the adiabatic initial condition

Φ(ks, η < ηeq) =
3

(wη)3 (sinwη − wη coswη) Φi(ks), (4.157)

where w = k/
√

3. After the perturbation enters the horizon,

Φ(ks, η < ηeq) ≈ −3 coswη

(wη)2 Φi(ks), (4.158)

δγ(ks, η < ηeq) ≈ −2M2
p

ργa2
Φ(ks, η) = 6Φi(ks) coswη, (4.159)

where the subscript s means �sub-horizon�, and the second equation is obtained by

the Poisson equation (4.147). Plugging this solution into Eq. (4.143), we �nd that

δm(ks, η < ηeq) ≈ −9Φi(ks)

(
lnwη + γ − 1

2

)
, (4.160)

where γ is the Euler Gamma constant. This shows that the dark matter density

perturbation grows logarithmically during the RD era.

Now we should match this with the solutions in the matter dominated (MD) era.

Because the time derivatives of Φ is negligible compared to the spatial derivatives,

Eq. (4.143) is approximated as

δ′′m +Hδ′m ≈ −k2Φ ≈ 3

2
H2Ωmδm, (4.161)

where we have used the Poisson equation (4.147). Then, it is rewritten as

y(1 + y)
d2δm
d2y

+

(
1 +

3

2
y

)
dδm
dy
− 3

2
δm = 0, (4.162)
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and its general solution is

δm = c1

(
1 +

3

2
y

)
+ c2

[(
1 +

3

2
y

)
ln

√
1 + y + 1√
1 + y − 1

− 3
√

1 + y

]
. (4.163)

Matching this solution with Eq. (4.160) at y � 1, we �nd

δm(ks, η > ηeq) = −9Φi(k)

(
ln 2wη∗ + γ − 7

2

)(
1 +

3

2
y

)
+9Φi(k)

[(
1 +

3

2
y

)
ln

√
1 + y + 1√
1 + y − 1

− 3
√

1 + y

]
(4.164)

→ −27

2
yΦi(k)

(
ln 2wη∗ + γ − 7

2

)
when y � 1. (4.165)

where η∗ ≡ ηeq/
(√

2− 1
)

= 2τeq. Note that we have used the results from the Fried-

man equation

H2 =
a2
eqH

2
eq

2

(
1

y
+

1

y2

)
, (4.166)

y =
η2

(2τeq)
2 +

η

τeq
, (4.167)

and Eq. (4.165) corresponds to Eq. (150) in Ref. [263].

Then using Eqs. (4.147) and (4.165), we get

Φ(ks, η > ηeq) ≈
ln (0.15ksηeq)

(0.27ksηeq)
2 Φi(ks). (4.168)

This shows that the gravitational potential is frozen after the matter-radiation equal-

ity. Similarly, we �rst �nd the general solution of Eq. (4.144) for sub-horizon modes

δγ = c1 coswη + c2 sinwη − 4Φ, (4.169)

where we have neglected that time derivatives of Φ. Then matching this with Eq.

(4.159), we get

δγ(ks, η > ηeq) ≈
[

6 cos (wη)− 4
ln (0.15ksηeq)

(0.27ksηeq)
2

]
Φi(ks). (4.170)
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Now we return factors due to the Silk damping and the acoustic sound speed

δγ(ks, η > ηeq) ≈
[
35/4
√

4cs cos

(
ks

ˆ η

cs(η
′)dη′

)
e−(ks/kD)2

− 4

3c2
s

ln (0.15ksηeq)

(0.27ksηeq)
2

]
Φi(ks), (4.171)

which is Eq. (153) in Ref. [263]. Notice that the the �rst term is dominant for the

scales we are interested in. However, the second term becomes important for very

small scales where the di�usion damping is not negligible, k & kD.

Finally, the SW term (4.138) becomes

∆T

T
≈


6Φi(k) coswη if k > keq

3
10

Φi(k) if k < η−1
r .

(4.172)

Note that

ζ i ≈ ζ iR = −Φi +
1

4
δiγ = −3

2
Φi. (4.173)

Isocurvature initial condition

For large scale perturbations, δS remains constant, and Eq. (4.149) has the solution

Φ(kl, η) = −
(x

5

) x2 + 6x+ 10

(x+ 2)3 δiS(kl), (4.174)

where x ≡ η/ηeq. In the MD era, Eq. (4.174) gives

Φ(kl, η � ηeq) = −1

2
δm(kl, η � ηeq) =

1

4
δγ(kl, η � ηeq) = −1

5
δiS(kl), (4.175)

where the last two equations are obtained from Eq. (4.145).

Now, we will see how the perturbations evolve during the RD era, and how they

are connected small scale perturbations. In the early RD era, the source term and

the last term on the left hand side of Eq. (4.150) is negligible because they are higher
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order in y. Thus, the solution δS remains constant even inside the horizon. In that

case, Eq. (4.149) becomes Eq. (4.156) with the source term δS/2yη
2
eq. Then we �nd

its solution that matches with Eq. (4.174)

Φ(k, η < ηeq) = − η

ηeq

1

(wη)4

[
1 +

(wη)2

2
− (coswη + wη sinwη)

]
δiS(k). (4.176)

Furthermore, in the wη → 0 limit, we have

Φ(kl, η < ηeq) ≈ −
1

8
δiS(kl)

(
1− (wη)2

18

)
y, (4.177)

and putting this into Eq. (4.145), we �nd that

δγ(kl, η < ηeq) ≈ −1

2
δiS(kl)

(
1− 7

18
(wη)2

)
y, (4.178)

δm(kl, η < ηeq) ≈ δiS(kl)

(
1− 3

8
y

)
+

7

48
δiS(k)y (wη)2 . (4.179)

As explained in Section 4.2, we have that Φ and δγ grows like a during the RD era,

meanwhile δm decreases.

For sub-horizon modes, Eq. (4.176) becomes

Φ(ks, η < ηeq) ≈ − y

(wη)3

(wη
2
− sinwη

)
δiS(ks), (4.180)

and again plugging this into Eq. (4.145) yields

δm(ks, η < ηeq) ≈ −
(

3

2

sinwη

wη
y − 1

)
δiS(ks), (4.181)

δγ(ks, η < ηeq) ≈ −2 sinwη

wη
yδiS(ks). (4.182)

Matching these with general solutions of perturbations (4.163) and (4.169), and also

using Poisson equation (4.147) in the MD era, we get

δm(ks, η > ηeq) ≈
(

1 +
3

2
y

)
δiS(ks), (4.183)

δγ(ks, η > ηeq) ≈
[
− 1

0.35ksηeq
sin (wη) + 4

1

(0.8ksηeq)
2

]
δiS(ks), (4.184)

Φ(ks, η > ηeq) ≈ − 1

(0.8ksηeq)
2 δ

i
S(ks), (4.185)
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Then the SW term becomes

∆T

T
≈


− 1

0.35kηeq
δiS(k) sin (wη) if k > keq

−2
5
δiS(k) if k < η−1

r .

(4.186)

Now we see from Eqs. (4.172) and (4.186) that the isocurvature transfer function has

the additional suppression factor keq/k compared to the adiabatic one for small scale

k > keq.

4.7 Appendix: Review of Di�eomorphism

Invariance

A symmetry in a classical �eld theory is preserved at the quantum level, if the reg-

ulator preserves this symmetry and if the functional measure is invariant under the

symmetry transformation. The quantum symmetry is re�ected in the transformation

of the correlation functions.

For example, consider a scalar �eld σ on a �xed manifold (M, g). The two point

function is

〈σ(x)σ(y)〉g =

ˆ
DφeiS(σ;g)σ(x)σ(y) (4.187)

The two point function only depends on the metric �eld g and points x, y. Intuitively,

the symmetry says for any di�eomorphism ϕ : M 7→ M, the metric �eld and the

points changes as

g 7→ g̃ = (ϕ−1)∗g, x 7→ x̃ = ϕ(x), y 7→ ỹ = ϕ(y) (4.188)

then the two-point function should remain invariant, i.e.

〈σ(x)σ(y)〉g = 〈σ(x̃)σ(ỹ)〉g̃. (4.189)
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The Ward identity is the in�nitesimal version of this relation.

Let ϕ = exp(εX), then

g̃ = exp(−εX)∗g = g − εLXg + · · · (4.190)

S(g̃, σ) = S(g, σ)− ε
ˆ
d4x
√
g

1

2
T µνσ LX(g)µν + · · · (4.191)

σ(x̃) = σ(x) + εLXσ(x) + · · · (4.192)

Plugging this into Eq. (4.189) and Taylor expand with respect to ε, one get

− i
ˆ
d4z
√
g

1

2
LX(g)µν(z)〈T µνz σxσy〉g + 〈LX(σ)xσy〉g + 〈σxLX(σ)y〉g = 0. (4.193)

Or equivalently, using

LX(g)µν = ∇µXν +∇νXµ (4.194)

and perform integration by part, we obtain

i∇µ〈T µνz σxσy〉g =
1√
gx
δ4(x−z)gαν

∂

∂xα
〈σxσy〉g+

1
√
gy
δ4(y−z)gαν

∂

∂yα
〈σxσy〉g (4.195)

which is the Ward identity for the path ordered vacuum expectation value. We can

then write down the in-in expectation value Ward identity as

i∇µ〈in|T µν+
z σ+

x σ
+
y |in〉g =

1√
gx
δ4(x− z)gανx

∂

∂xα
〈in|σ+

x σ
+
y |in〉g

+
1
√
gy
δ4(y − z)gανy

∂

∂yα
〈in|σ+

x σ
+
y |in〉g (4.196)

i∇µ〈in|T µν−z σ+
x σ

+
y |in〉g = 0 (4.197)

where we kept the external operator inserted on the forward branch. The fact that

Eq. (4.197) has no contact term is easy to understand, since T µν−z is inserted on the

backward time branch of the manifold, it can never contact points x and y.
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4.8 Appendix: ADM formalism and Interaction

Hamiltonian

We consider an in�ationary model with the in�aton φ and an extra free massive scalar

σ, where σ is only gravitationally coupled with φ.

S =

ˆ
(dx)

1

2
M2

pR + [−1

2
gµν∂µφ∂νφ− V (φ)] + [−1

2
gµν∂µσ∂νσ − U(σ)] (4.198)

where M2
p = 1

8πG
= 1 and (dx) = d4x

√
| det(gµν)|. The metric can be parametrized

using ADM formalism [206]19,

gµν =

 −N2 + hijN
iN j hijN

j

hijN
j hij

 , gµν =

 −N−2 N iN−2

N iN−2 hij −N iN jN−2

 ,

(4.199)

where hij is the metric tensor on the constant time hyper-surface, and hij is the

inverse metric. We use Latin indices i, j · · · for objects on the 3-dimensional constant

time hyper-surface, and we use hij and h
ij to raise and lower the indices. Then the

action (4.198) is rewritten as

S =
1

2

ˆ
(dx)
√
h
[
NR(3) − 2NV (φ)− 2NU(σ) (4.200)

+N−1
(
EijE

ij − E2
)

+N−1
(
φ̇−N i∂iφ

)2

−Nhij∂iφ∂jφ

+N−1
(
σ̇ −N i∂iσ

)2 −Nhij∂iσ∂jσ
]
,

where Eij and E are given by

Eij =
1

2
(ḣij −∇(3)

i Nj −∇(3)
j Ni). (4.201)

E = Eijh
ij. (4.202)

19We use (−+ ++) sign convention for the metric, and physical time t .
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Consider the background solution driven by the in�aton,

φ(0) = φ̄(t), σ(0) = 0, g(0)
µν =

 −1 0

0 a2(t)δij

 , (4.203)

where they satisfy the background equations of motion

3H2 =
1

2
˙̄φ2 + V (φ̄) (4.204)

Ḣ = −1

2
˙̄φ2 (4.205)

¨̄φ+ 3H ˙̄φ+ V ′(φ̄) = 0. (4.206)

The action for the perturbations can be obtained by Taylor-expanding the full action

around the background solution. However, we may reduce the number of variables

by imposing the ADM constraints:

0 =
1

N
[R(3) − 1

N2
(EijE

ij − E2)]− 2NT 00 (4.207)

0 =
2

N
∇(3)
i [

1

N
(Eij − Ehij)] + 2N jT 00 + 2T 0j (4.208)

where

T µν = T µνφ + T µνσ , (4.209)

T µνφ = −gµν
[

1

2
(∂φ)2 + V (φ)

]
+ ∂µφ∂νφ, (4.210)

T µνσ = −gµν
[

1

2
(∂σ)2 + U(σ)

]
+ ∂µσ∂νσ, (4.211)

and choose a gauge.

One commonly used gauge is the comoving gauge, de�ned by 20

δφ = 0, γii = 0, ∂iγij = 0 (4.212)

where

hij = a2(t)[eΓ]ij, Γij = 2ζδij + γij (4.213)
20In this section, Latin indices i, j are raised and lowered by δij , and repeated indices are con-

tracted.
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The solution of N and N i is

N (1,C) =
ζ̇

H
, N

(1,C)
i = ∂i[−

ζ

H
+ ε

a2

∇2
ζ̇]. (4.214)

We �nd the scalar metric perturbations are

δg(C)
µν =

 −2 ζ̇
H

(− ζ
H

+ ε a
2

∇2 ζ̇),i

(− ζ
H

+ ε a
2

∇2 ζ̇),i a2δij2ζ

 , (4.215)

where ε ≡ Ḣ/H2. Plugging in the linear metric perturbation back to the action

(4.200), we can get the perturbed action action up to cubic order

S(C) = S
(C)
ζζ + S(C)

σσ + S(C)
γγ + S

(C)
ζζζ + S

(C)
ζσσ + · · · (4.216)

where

S
(C)
ζζ =

ˆ
dtd3xa3

xε(ζ̇
2 − (

∇
a
ζ)2) (4.217)

S
(C)
ζσσ =

ˆ
d4xa3

x[T
ij
σ a

2δijζ + T 0i
σ (− ζ

H
+ ε

a2

∇2
ζ̇),i − T 00

σ

ζ̇

H
]. (4.218)

The ζ cubic interaction and graviton actions can be found in [19].

Another commonly used gauge is the uniform curvature gauge, in which

hij = a2(t) [eγ]ij , γii = 0, ∂iγij = 0. (4.219)

In this gauge, the in�aton degree of freedom is in δφ. However, this degree of freedom

can be represented using the gauge-invariant variable

ζ = −H
˙̄φ
δφ(U) (4.220)

In this gauge, the ADM constraint renders

N (1,U) = −εζ, N
(1,U)
i = ∂i[ε

a2

∇2
ζ̇] (4.221)
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We get the linear metric perturbation as

δg(U)
µν =

 2εζ ε a
2

∇2 ζ̇,i

ε a
2

∇2 ζ̇,i 0

 (4.222)

The free action is the same as in Eq.(4.217), and σ-ζ cubic interaction action is

S
(U)
ζσσ =

ˆ
d4xa3

x[T
00
σ εζ + T 0i

σ ε
a2

∇2
ζ̇,i]. (4.223)

From these perturbed actions, we can obtain the interaction Hamiltonian. Particu-

larly, note that up to the cubic interaction, Lint = −Hint. Thus Sζσσ = −
´
dtHζσσ(t).

4.9 Appendix: Renormalization of Composite

Operators

In renormalized perturbation theory, one requires a regulator and renormalization

condition. In order to preserve the di�eomorphism invariance, we need to adopt

a covariant regulator. Here we choose Pauli-Villars (PV) regulator, following [193,

194]. We will �rst review PV regularization in subsection 4.9, and renormalize σ2 in

subsection 4.9. For correlators involving time integrals, we describes the adiabatic

expansion of time integral in subsection (4.9).

Pauli-Villars Regularization

We introduce a set of scalar regulator �elds χn for n = 1, · · · , s with the following

free Lagrangian

LPV =
s∑

n=1

Cn

(
−1

2
gµν∂νχn∂νχn −

1

2
M2

nχ
2
n

)
. (4.224)

The number of regulator �elds s depends on how many independent divergences one

need to remove. In order to eliminate UV divergences up to some even order 2D,we
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must take the Cn and regulator masses Mn to satisfy

s∑
N=0

C−1
N = 0 ,

s∑
N=0

C−1
N M2

N = 0, · · · (4.225)

s∑
n

C−1
n M2D

n = −m2D
σ (4.226)

where we used the notation M2
0 = m2

σ and C0 = 1, and let σ0 = σ and σn = χn. We

use Λ to represent the set of Mn, and the regulator dependence should be removed

by counter terms when Mn goes to ∞ together.

On a homogeneous FRW background, the physical and regulator scalar �eld can

be quantized as

[σN , σ̇M ] = ia−3(t)δ3(~x− ~y)δNMC
−1
N (4.227)

with the following mode decomposition

σN(~x, t) =

ˆ
d3k

(2π)3 (aN,~kuN,~k(t) + c.c) (4.228)

[aN,~p, a
†
M,~k

] = (2π)3C−1
N δNMδ

3(~k − ~p), (4.229)

where uN,~p(t) satis�es the usual equation of motion

üN,k + 3Hu̇N,k +

(
k2

a2
+M2

N

)
uN,k = 0 (4.230)

with the Bunch-Davies initial condition

uN,k(t)→
1√

2ka(t)
exp

(
−i
ˆ t k

a(t′)
dt′
)

for t→ −∞ (4.231)

and Wronskian conditions21

uN,ku̇
∗
N,k − u̇N,ku∗N,k = −i/a3. (4.232)

21 Our treatment here di�ers from [194] in that the physical scalar �eld φ here has no background
solution, and the regulator �eld χn does not mix with φ by mass term.
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Because Mn � H, Eq.(4.230) possesses the WKB-type solution

un,k(t) =
1√

2ωk(t)a3(t)
exp

(
−i
ˆ t

ωk(t
′)dt′

)[
1 +

f1(t)

ωk(t)
+
f2(t)

ω2
k(t)

+O(ω−3
k )

]
,

(4.233)

where ωk =
√
k2/a2 +M2

n and fi are of zeroth order in ωk. Since we have to regulate

up to quadratic divergence in correlator computations, we need to know

|un,k(t)|2 =
1

2ωk(t)a3(t)

[
1 +

2Ref1(t)

ωk(t)
+
|f1(t)|2 + 2Ref2(t)

ω2
k(t)

+O(ω−3
k )

]
(4.234)

up to second order. Due to the equation of motion (4.230), f1 should satisfy

d

dt

(
f1

k

)
=

i

2ωk

Ḣ + 2H2 +
1

2

(
Ḣ + 3H2

)
M2

n

ω2
k

− 5

4

H2M4
n

ω4
k

 . (4.235)

Also, the Wronskian condition (4.232) yields

Ref1 = 0, |f1|2 + 2Ref2 = ωk
d

dt

(
Imf1

ωk

)
. (4.236)

Then plugging these two results to Eq.(4.234) gives

|un,k|2 =
1

2ωka3

1 +
Ḣ + 2H2

2ω2
k

+

(
Ḣ + 3H2

)
M2

n

4ω4
k

− 5H2M4
n

8ω6
k

+O(ω−3)

 . (4.237)

Renormalization of Composite Operator

The renormalization of composite operators in curved space-time is the same as in

�at space-time(see e.g. [5, 6, 193]) , just with new possible counter-terms made from

curvature tensor. For an operator of dimension n, one need to consider all possible

counter-terms of dimension n or less. In our example model with free massive scalar

σ, we renormalize σ2 as

(σ2)r = (σ +
∑
n

χn)2 + δZ0(Λ,mσ) + δZ1(Λ,mσ)R, (4.238)

where R is the Ricci scalar.
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Next, we compute δZi's divergent part. For example, let us consider the one point

function

〈(
σ2
)
r

〉
=

s∑
N=0

C−1
N

ˆ
d3k

(2π)3
|uN,k|2 + δZ0 + δZ1R. (4.239)

In order to determine the counter terms δZ0 and δZ1, we introduce a comoving scale Q

such that H � Q/a�Mn to break the Fourier space into the UV and the IR sector.

Then we use the WKB solution (4.237) for k � Q. Furthermore, the contribution

from the PV �elds for k � Q vanishes since it is suppressed by 1/Mn.

∑
N

C−1
N

ˆ
d3k

(2π)3
|uN,k|2 =

ˆ Q d3k

(2π)3
|u0,k|2 +

s∑
N=0

C−1
N

ˆ ΛUV

Q

d3k

(2π)3
|ui,k|2(4.240)

=

ˆ Q d3k

(2π)3
|u0,k|2 +

1

48π2
R

(
ln

a

2Q
+

10

12

)
− 1

96π2
R

s∑
N=0

C−1
N lnM2

N

+
1

16π2

s∑
N=0

C−1
N M2

N lnM2
N . (4.241)

Note that the arbitrary comoving scale Q in the �rst two terms should cancel each

other.

In order to absorb the PV regulator dependence, we need

δZ0 =
1

16π2

[
−
∑
N

C−1
N M2

N lnM2
N + µ2

0

]
, (4.242)

δZ1 =
1

96π2

[∑
N

C−1
N ln

M2
N

µ2
1

]
, (4.243)

where µ0and µ1are unknown mass scales determined by renormalization conditions.

We set µ0 = 0 to have 〈(σ)2
r〉 = 0 for �at space-time.
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Adiabatic Expansion of Time Integral

In order to compute some correlators using the in-in formalism (4.32), such as two-

point function 〈σ2ζ〉, we need to integrate PV �eld contributions over time. In this

subsection, we present how to calculate the time integral of PV �elds by adiabatically

expanding the integral.

For simplicity, consider a diagram with one internal vertex. Using the WKB

solution (4.237) of a PV �eld, the general form of the time integral is

I(k1, k2, · · · , tf ) =

ˆ tf

−∞
dtG(k1, k2, · · · ; tf , t)e

−i
´ tf
t ω(t′)dt′ , (4.244)

where ω(t) = ωk1(t) + ωk2(t) + · · · and G(k1, k2, · · · ; tf , t) = O(ωn). Because the

integrand is a rapidly oscillatory function, the dominant contribution comes near the

�nal time tf . Thus, using integration by parts we expand the integral with respect

to ω:

I(k1, k2, · · · , tf ) =
G(k1, k2, · · · ; tf , tf )

iω(tf )

−
ˆ tf

−∞
dt

(
d

dt

G(k1, k2, · · · ; tf , t)

iω(t)

)
e−i

´ tf
t ω(t′)dt′ (4.245)

=
G(k1, k2, · · · ; tf , tf )

iω(tf )
−
(

1

iω(t)

d

dt

G(k1, k2, · · · ; tf , t)

iω(t)

)∣∣∣∣
t=tf

+

[
1

iω(t)

d

dt

(
1

iω(t)

d

dt

G(k1, k2, · · · ; tf , t)

iω(t)

)]∣∣∣∣
t=tf

(4.246)

+O(ωn−4).

Note that the mode functions un,k and u
∗
n,k appear in pairs because of Wick contrac-

tion. Hence, the �nal result should be written in terms of |un,k(tf )|2 and their time

derivatives, and we can compute the time integral up to arbitrary order of ω. It is

straightforward to generalize this to the cases with any number of internal vertices.
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4.10 Appendix: Two-Point Function
〈(
σ2
)
r
ζ
〉
in the

Uniform Curvature Gauge

In this section, we compute 〈(σ2)r ζ〉 using the uniform curvature gauge in the quasi-

de Sitter(dS) background, where the slow-roll factor ε is constant. Then we will show

that the results in the both gauges are consistent with each other. Particularly, for

the massless limit, the next leading order term in the uniform curvature gauge that

indeed decays as p2/a2.

The two-point function is the same as in the comoving gauge except that the

counter term contribution appears in the leading order.

˜〈(σ2)r ζ〉
U
p =

ˆ
d3x e−i~p·~x

ˆ t

d4z a3(tz)
n∑

N=0

〈[
σ2
N(t, ~x)ζ(t,~0),

i

2

(
T µνσ δg(U)

µν

)
z

]〉
+δZ1〈̃Rζ〉p, (4.247)

where R is the Ricci scalar. After taking non-derivate interaction term T 00
σ δg

(U)
00 only,

factoring ε and ζ out from the integral, we get

˜〈(σ2)r ζ〉
U
p = i

∣∣ζop ∣∣2 εˆ t

d4z a3(tz)
n∑

N=0

〈[
σ2
N(t, ~x),

(
T 00
σ

)
z

]〉
+24εH2

∣∣ζop ∣∣2 δZ1 +O

(
ε̇, ε2,

p2

a2

)
, (4.248)

where we have used the perturbed curvature in the uniform curvature gauge

R = 12H2 − 6εH2 + 24εH2ζ + 4εHζ̇ + · · · , (4.249)

where · · · denotes O(ε̇, ε2) terms or terms proportional to the equation of motion of

ζ.

Since T 00
σ = Lσ+

∑
N

[(∇
a
σN
)2

+M2
Nσ

2
N

]
, together with the identities (4.95),(4.98),

and

i

ˆ t

d4z a3(tz)
〈[
σ2
N(t, ~x), σ2

N(z)
]〉

= −2
∂

∂M2
N

〈(
σ2
N

)
p

〉
, (4.250)



166

with T 00
σ = Lσ +

∑
N

[(∇
a
σN
)2

+M2
Nσ

2
N

]
, we have

˜〈(σ2)R ζ〉
U
p +

1

H

d

dt

〈(
σ2
)
R

〉
〈̃ζζ〉p =

∑
N

FN(t) +O

(
ε̇, ε2,

p2

a2

)
, (4.251)

FN(t) = 2ε
〈(
σ2
N

)
p

〉
− εZ−1

N

k3

2π2
|uN,k|2

∣∣∣∣ΛUV
p

−2ε
∂

∂ lnM2
N

〈(
σ2
N

)
p

〉
+

1

H

d

dt

〈
σ2
N

〉
.(4.252)

Although the rhs of Eq.(4.247) is well-de�ned and regulator independent, individual

terms are not. Thus, we insert counter terms to have each term regulator independent∑
N

FN(t) = ε

(
2
〈(
σ2(t)

)
r,p

〉
+

p3

2π2
|up(t)|2 − 2m2

σ

∂

∂m2
σ

〈(
σ2(t)

)
r,p

〉)
+

1

H

d

dt

〈(
σ2
)
r

〉
, (4.253)

where we have put the counter terms δZ0 and δZ1R into each one-point function, and

the PV �eld contribution from the third term cancels with those from the other terms.

Then, using the relation (4.77) one can �nd the rhs of Eq.(4.253) is consistent with

the result (4.101) in the comoving gauge in the quasi-dS background after explicitly

computing renormalized one-point function
〈

(σ2(t))r,p

〉
. On the other hand, the

rhs does not depend on the renormalization as all counter terms cancel. Hence, we

can arrive at the same conclusion using the one point function using super-horizon

approximation in the dS space-time,〈(
σ2(t)

)
r,p

〉
≈
ˆ caH

p

d3k

(2π)3 |uk(t)|
2 ≈
ˆ caH

p

d3k

(2π)3

|Γ(ν)|2
4πHa3

(
k

2aH

)−2ν

, (4.254)

where the arbitrary constant c . O(1). Note that the UV boundary of the integral

should be a comoving scale in order to to keep the spatial dilatation symmetry.

Massless Limit

For the massless limit m2
σ/H

2 � ln p/aH, we can compute the two-point function

explicitly without neglecting any gravitational couplings. We calculate up to the next
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leading term here. We decompose Eq. (4.247) as

˜〈(σ2)r ζ〉
U
p = I0(p, t) +

s∑
n=1

In(p, t) + Ic.t.(p, t), (4.255)

where I0, In, and Ic.t. are the contributions from the physical �eld σ, the PV �eld

χi and the counter terms, respectively. Since all the gravitational couplings are O(ε)

(See Eq. (4.223)), we may use the mode functions ζp and uk in the pure dS for O(ε)

correction to the two-point function. Then a long but straightforward calculation

gives

I0(p, t) =

ˆ
d3x e−i~p·~x

ˆ t

d4z a3(tz)

×
n∑

N=0

〈[
σ2(t, ~x)ζ(t,~0),

i

2

(
T µνσ δg(U)

µν

)
z

]〉
(4.256)

=
εH2

4π2

∣∣ζop ∣∣2 [−1

3

p3

a3H3

Λ

aH
+ 2 log

Λ

p
+

5

3

p2

a2H2
log

Λ

p
+ 1− p2

a2H2

]
+O

(
p4

a4H4

)
+O(ε2, ε̇). (4.257)

The PV �eld contribution In requires some more technical explanation. If we write

the WKB solution (4.234) as

un,k(t) = αk(t)e
−i
´ t wk(t′)dt′ , (4.258)

the PV �eld contribution In is written as

In(p, t) = C−1
n

ˆ
Q

d3k1

(2π)3
d3k2δ

(3)(~k1 + ~k2 − ~p)

×Im
[ˆ t

dtze
i
´ tz
t (ωk1

(t′)+ωk2
(t′))dt′Gn(k1, k2; t, tz)

]
, (4.259)
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where

Gn(k1, k2; t, tz) = −2a3
zζp(t)αk1(t)αk2(t)

(∑
i

Ôi

)
ζ∗p (tz)α

∗
k1

(tz)α
∗
k2

(tz),(4.260)(
Ô1

)
= ε

[(
iωk1(tz) + ∂

(1)
tz

)(
iωk2(tz) + ∂

(2)
tz

)
−
~k1 · ~k2

a2
z

+M2
n

]
, (4.261)

(
Ô2

)
=

[
~k2 · ~p
a2
z

(
iωk1(tz) + ∂

(1)
tz

)
+
~k3 · ~p
a2
z

(
iωk2(tz) + ∂

(2)
tz

)]

×
(
ε
a2
z

p2
∂ζtz

)
, (4.262)

where ∂
(i)
tz and ∂ζtz denotes the time derivative with respect to α∗ki(tz) and ζ

∗
p (tz), re-

spectively, and
(
Ô1

)
and

(
Ô1

)
correspond to the (00) and the (i0) components of the

gravitational couplings, respectively. Notice that αk = O
(
ω−1/2

)
andG(k1, k2; t, tz) =

O(ω0), and thus In has quadratic divergences super�cially. However, the quadratic

divergences arising from
(
Ô1

)
vanish in the Mn →∞ limit. E�ectively, the integral

(4.259) is linearly divergent. That means we have to adiabatically expand the integral

to the second order. Similarly, the integral of the two-point function in the comoving

gauge is quadratic divergent, and thus one need to expand the integral to the third

order. This makes the computation easier in the uniform curvature gauge. Using

|αk(t)|2 =
1

2ωka3

[
1 + β2(k, t) +O(ω−3

k )
]
, (4.263)

αk(t)α̇
∗
k(t) =

1

2ωka3

[
γ0(k, t)− iωkβ2(k, t) +O(ω−2

k )
]
, (4.264)

αk(t)α̈
∗
k(t) =

1

2ωka3

[
−3iH − 2iγ0(k, t) + i

k2/a2

ω2
k

H +O(ω−1
k )

]
, (4.265)

where

γ0(k, t) = −3

2
H +

1

2

k2/a2

ω2
k

H, (4.266)

β2(k, t) =
Ḣ + 2H2

2ω2
k

+

(
Ḣ + 3H2

)
M2

n

4ω4
k

− 5H2M4
n

8ω4
k

, (4.267)
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which are obtained by combining Eq. (4.237) with Eq. (4.258), the integral (4.259)

becomes

In(p, t) =
C−1
n

4π2
εH2

∣∣ζop ∣∣2 [−1

3

p3

a3H3

Λ

aH
+ 2 log

2Λ

aMn

+
5

3

p2

a2H2
log

2Λ

aMn

− 5

3

−25

18

p2

a2H2
+O

(
p4

a4H4

)]
+O(ε2, ε̇). (4.268)

Note that all Λ dependent terms in I0 +
∑

n In vanishes by the PV �eld normalization

conditions (4.226).

Putting Eqs. (4.257) and (4.268) together into Eq. (4.255), we have

˜〈(σ2)R ζ〉
U
p =

1

4π2
εH2

∣∣ζop ∣∣2 [2 log
aµ1

2p
+

5

3

p2

a2H2
log

aµ1

2p
+

8

3

+
7

18

p2

a2H2
+O

(
p4

a4H4

)]
+O(ε2, ε̇). (4.269)

We still need to compute one-point function d
dt
〈(σ2)r〉 up to O(ε) in order to compare

the results in both gauges. Because mode functions for a massless scalar �eld are

O(ε0), we need O(ε) correction on it. In a quasi-dS background, we take an ansatz

for the mode function

uk(t) =

(
1√

2ka(t)
+ i

H(t)√
2k3

)
ei

k
a(t)H(t) +

ε(t)√
2ka(t)

fk(t)e
i k
a(t)H(t) , (4.270)

where fk(t) = O(ε0) so that it recovers the dS solution in the ε→ 0 limit. Applying

this to the di�erential equation

ük(t) + 3Hu̇k(t) +
k2

a2
uk(t) = 0, (4.271)

we get

f̈k +

(
H(t)− 2i

k

a(t)

)
ḟk −H(t)2fk = 3H(t)2− 2i

k

a(t)
H(t)− 2

k2

a(t)2
+O(ε), (4.272)

whose solution is

fk (t) = −3

2
+ iq +

i

2

1

q
+

(
1− i

q

)
e−2iqEi(2iq)

+c1

(
1 +

i

q

)
+ c2

(
1− i

q

)
e−2iq (4.273)
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where q = k
a(t)H(t)

, and Ei is the exponential integral function

Ei(z) = −
ˆ ∞
−z

e−t

t
dt (4.274)

Ei(±ix→∞) → ±iπ + e±ix
(

0!

(±ix)
+

1!

(±ix)2
+

2!

(±ix)3
+ · · ·

)
. (4.275)

Matching this solution with the Bunch-Davies initial condition (4.231) and the Wron-

skian condition (4.232) respectively give

c2 = −iπ and c1 =
1

2
. (4.276)

Then the mode function with O(ε) correction in a quasi-dS space-time becomes

uk(t) =

(
1√
2ka

+ i
H√
2k3

)
ei

k
aH

+
ε√
2ka

[
−1 + i

k

aH
+ i

aH

k
+

(
1− iaH

k

)(
−iπ + Ei(2i

k

aH
)

)
e−2i k

aH

]
ei

k
aH

+O(ε2, ε̇). (4.277)

Now we calculate the one-point function using this mode function as shown in Sub-

section 4.9, and we get

d

dt

〈(
σ2
)
r

〉
=
H3

4π2
+
εH3

2π2

(
log

H

µ1

+
1

6
− γ
)

+O(ε2, ε̇). (4.278)

Finally, we �nd

1

H

d

dt

〈(
σ2
)
r

〉
〈̃ζζ〉p + ˜〈(σ2)r ζ〉

U
p

=
H2(t)

4π2
|ζp(t)|2 +

εH2

2π2

∣∣ζop ∣∣2 [log
aH

2p
+

3

2
− γ
]

+
εH2

4π2

∣∣ζop ∣∣2 p2

a2H2

[
13

18
− 2γ +

5

3
log

aµ1

2p
+ 2 log

H

µ1

]
+O

(
ε2, ε̇,

p4

a4H4

)
. (4.279)
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The non-p2/a2-suppressed terms are rewritten as

H2(t)

4π2

∣∣ζop ∣∣2 +
εH2

2π2

∣∣ζop ∣∣2 [log
aH

2p
+

3

2
− γ
]

≈ H2(t)

4π2

∣∣ζop ∣∣2(1 + 2ε log
aH

p

)
(4.280)

≈ H2(t)

4π2

∣∣ζop ∣∣2 ( p

aH

)−2ε

(4.281)

≈ H2
∗

4π2

∣∣ζop ∣∣2 . (4.282)

As expected, this is the result (4.101) in the comoving gauge. The other terms are

suppressed by the factor p2/a2. This explicitly proves that the next leading terms for

the two-point function 〈(σ2)r ζ〉 are O(p2/a2).
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Part II

Particle Production under

Electromagnetic Fields
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Chapter 5

Introduction

In this part of the thesis, we investigate the vacuum e± pair production (the Schwinger

e�ect) and we suggest a toy model that may be responsible to the intermittent strong

emissions, called nanoshots, from the Crab pulsar. The following sections in this

chapter present short reviews for non-perturbative calculations for the pair produc-

tion under strong electromagnetic �elds. Unlike the previous part, we shall use the

(+,−,−,−) metric signature with the natural units c = ~ = ε0 = 1.

5.1 Operator Approach

Under an strong external electric �eld, the quantum vacuum is unstable because the

virtual electron-positron pairs gain energy and momentum from the external �eld,

and once they obtain energy more than the pair creation threshold 2m, they �nally

become real pairs. The decay rate is calculated by Schwinger in 1951 in the language

of quantum electrodynamics [264]. Here we present the calculation of the vacuum

decay rate under the homogeneous electric and magnetic �elds [264�266]. In the

following derivation, we shall assume that the electric �eld ~E and the magnetic �eld
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~B are parallel. 1

The QED e�ective action under an external vector potential Aµ is given by

eiW [A] =

ˆ
DψDψ̄ exp

[
i

ˆ
dx4LQED

]
, (5.5)

LQED = ψ̄ (iγµ∂µ − eγµAµ −m)ψ − 1

4
FµνF

µν + gauge-�xing term, (5.6)

where γµ are the Dirac matrices, and Fµν = ∂µAν −∂νAµ. Then the amplitude of the

vacuum to vacuum transition is

|〈out, 0|0, in〉|2 = 2ImW [A], (5.7)

where we have neglected the �uctuations of Aµ. Formally the e�ective action is

written as

W [A] = −iTr ln

[
iγµ∂µ − eγµAµ −m+ iε

iγµ∂µ −m+ iε

]
. (5.8)

= − i
2
Tr ln

[
(i∂ − eA)2 + e

2
σF −m2 + iε

−∂2 −m2 + iε

]
. (5.9)

1This is because we can almost always choose a frame in such a way that the electric and
magnetic �elds are parallel for general uniform static electromagnetic �elds. For example, under the
Lorentz boost the �elds transform as

~E′ = γ
(
~E + ~β × ~B

)
− γ2

γ + 1
~β
(
~β · ~E

)
, (5.1)

~B′ = γ
(
~B − ~β × ~E

)
− γ2

γ + 1
~β
(
~β · ~B

)
. (5.2)

Then we can �nd ~β such that ~E′ × ~B′ = 0. Notice that the solution is not unique because even if
~E ‖ ~B, we can still boost the frame along the ~E (or ~B) direction while keeping they are parallel.

Thus we choose the boost direction is perpendicular to the E and B directions, i.e., ~β = α
(
~E × ~B

)
.

From the above equations, we have

~E′ × ~B′ = γ
(
~E × ~B

)(
1− α

(
E2 +B2

)
− α2

(
~E × ~B

)2)
= 0, (5.3)

which gives
α

1 + α2
(
~E × ~B

)2 =
1

E2 +B2
. (5.4)

Note that there is one exceptional case such that ~E ⊥ ~B and E = B.
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where σµν ≡ i
2

[γµ, γν ]. It is convenient to express the log in form of a Frullani

integral:

W [A] ≡
ˆ
d4xLeff =

i

2

ˆ ∞
0

ds

s
e−is[m

2−iε]Tr
〈
x
∣∣∣eis[(i∂−eA)2+ e

2
σF−m2] − e−is∂2

∣∣∣x〉 ,
(5.10)

where |x〉 is the eigenvector of the coordinate operator X̂ |x〉 = x |x〉 normalized by

〈x|x′〉 = δ4(x− x′),
ˆ
d4x |x〉 〈x| = I.

We can calculate the exponential term in Eq. (5.10) explicitly when the electric and

magnetic �elds are time-independent and uniform, and we obtain〈
x
∣∣∣eis[(i∂−eA)2+ e

2
σF−m2]

∣∣∣x〉 = − ie
2

4π2
EB coth (seE) cot (seB) . (5.11)

When we put this back into Eq. (5.10), it is necessary to subtract the small s-

divergence terms, which corresponds to the terms in the F → 0 limit

− i

s2

[
1 +

e2s2

3

(
E2 −B2

)]
. (5.12)

Finally we get

Leff =
1

8π2

ˆ ∞
0

ds

s3
e−is[m

2−iε]
[
e2s2EB coth (seE) cot (seB)− 1− e2s2

3

(
E2 −B2

)]
,

(5.13)

and we �nd the decay rate of the vacuum per unit volume

Γ

V
= 2ImLeff =

1

4π2
Im

ˆ ∞
0

ds

s3
e−is[m

2−iε] (5.14)

×
[
e2s2EB cot (seB) coth (seE)− 1− e2s2

3

(
E2 −B2

)]
.(5.15)

This integral can be calculated by taking a integration contour to enclose the negative

imaginary axis and picking up the contribution of the poles at s = n π
eB

and −in π
eE
,

n = 1, 2, · · · . Then we �nd the decay rate

Γ

V
=
e2EB

4π2

∞∑
n=1

1

n
coth

(
n
πB

E

)
e−nπm

2/eE. (5.16)
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5.2 Quantum Vlasov Equation

Although the operator approach is an elegant way to calculate the decay rate, it is

limited to the time-independent uniform electromagnetic �elds, and the back-reaction

is ignored. On the other hand, the quantum-Vlasov equation [267], which consists of

a set of non-linear di�erential equations, can naturally employ time-dependent �elds

with back-reactions. Here we derive the Quantum-Vlasov for a charged fermion in

uniform time-dependent electric �elds E(t)ẑ.

The fermion �eld is quantized as

ψ(x) =
∑
s=−1,1

ˆ
d3p

(2π)3

[
a~p,su~p,s(t)e

i~p·~x + b†~p,sv−~p,s(t)e
−i~p·~x

]
, (5.17)

with the commutation relation{
a~p,s, a

†
~p′,s′

}
=
{
b~p,s, b

†
~p′,s′

}
= (2π)3 δ(3) (~p− ~p′) δss′ , (5.18)

and the wave function normalization

u†~p,s(t)u~p,s′(t) = v†~p,s(t)v~p,s′(t) = δss′ , (5.19)

where the mode functions2 are written in the gauge A0 = 0 as [268,269]

u~p,s(t) = (D +m)φ+
~p (t)εs, (5.20)

v~p,s(t) = (D +m)φ−~p (t)εs, (5.21)

and

D ≡ iγ0∂t − γ1px − γ2py − γ3(pz − eAz(t)), (5.22)

ε1 =



1

0

1

0


, ε−1 =



0

1

0

−1


. (5.23)

2We have used the Dirac representation for spinors.
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The scalar functions φ± are positive and negative modes that correspond to mode

functions for particle and anti-particle, respectively, and they satisfy

(
∂2
t + p2

x + p2
y + (pz − eAz(t))2 +m2 + ieE

)
φ±~p (t) = 0. (5.24)

Note that the �eld normalization (5.19) is insu�cient to determine φ±~p . Thus we

put extra information to �x the positive and negative modes following the adiabatic

prescription. We use an WKB (adiabatic) mode function

φ±~p (t) =
1√

2ω (ω ∓ πz)
e∓iΘ, (5.25)

Θ(t, t0) =

ˆ t

t0

ω(t′, ~p)dt′, (5.26)

ω2(t, ~p) = p2
x + p2

y + (pz − eAz(t))2 +m2, (5.27)

πz(t, pz) = pz − eAz(t), (5.28)

to choose the positive and negative mode functions for a given time t. In the asymp-

totic limit, t → −∞(or ∞), they correspond to ± mode functions for the �in� (or

�out�) vacuum. Also, when E → 0, the mode functions are equivalent with those

in the usual vacuum solutions. However, this choice is not unique, and even the

parametrization itself is arbitrary as long as mode function recovers to a vacuum

mode function as external �elds vanish. We denote mode functions and creation and

annihilation operators associated with the �in� vacuum by superscript �in�. Other-

wise, they are associated with the WKB (adiabatic) vacuum |0; t〉. Using the adiabatic

mode functions, we can write �eld ψ as

ψ(x) =
∑
s=−1,1

ˆ
d3p

(2π)3

[
ain~p,su

in
~p,s(t)e

i~p·~x + bin†~p,s v
in
−~p,s(t)e

−i~p·~x
]

(5.29)

=
∑
s=−1,1

ˆ
d3p

(2π)3

[
a~p,s(t)u~p,s(t)e

i~p·~x + b†~p,s(t)v−~p,s(t)e
−i~p·~x

]
. (5.30)
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The mode functions are related by the Bogoliubov coe�cients

uin~p,s(t) = α~p(t)u~p,s(t) + β∗~p(t)v~p,s(t), (5.31)

a~p(t) = α~p(t)a
in
~p + β~p(t)b

in†
−~p , (5.32)

b†−~p(t) = α∗~p(t)b
in†
−~p + β∗~p(t)a

in
~p , (5.33)

where the spin indexes are suppressed because spins do not a�ect the relation when

B = 0. The �eld normalization (5.19) and the adiabatic vacuum choice automatically

yield the relation ∣∣α2
~p(t)
∣∣+
∣∣β2
~p(t)
∣∣ = 1. (5.34)

Furthermore, the �eld equation (5.24) gives

α̇~p(t) =
eEε⊥
2ω2

β~p(t)e
2iΘ, (5.35)

β̇~p(t) = −eEε⊥
2ω2

α~p(t)e
−2iΘ, (5.36)

where ε⊥ ≡
√
p2
x + p2

y +m2.

Now we de�ne the particle (momentum) distribution function as

n~k(t) =
1

V

∑
s

〈
0; in

∣∣∣a†~k,s(t)a~k,s(t)∣∣∣ 0; in
〉

= 2 |βk(t)|2 , (5.37)

where we have assumed limt→−∞ n~k(t) = 0. Using the evolution equations (5.35) and

(5.36) of α and β, we have

ṅ~k(t) =
eE(t)ε⊥(t)

ω2(t,~k)

ˆ t

t0

dt′
eE(t′)ε⊥(t′)

ω2(t′, ~k)

(
1− n~k(t′)

)
cos 2Θ(t, t′), (5.38)

which is called �Quantum Vlasov� equation [196,267,270]. We can rewrite this integro-

di�erential equation in a set of ordinary di�erential equations, which is more conve-

nient for numerical computation

ṅ~k(t) =
eE(t)ε⊥(t)

ω2(t,~k)
f~k(t), (5.39)

ḟ~k(t) =
eE(t)ε⊥(t)

ω2(t,~k)
(1− n~k(t))− 2ω(t,~k)g~k(t), (5.40)

ġ~k(t) = 2ω(t,~k)f~k(t). (5.41)
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From the result (5.38), we can calculate the induced current

jz(t) = e
〈
ψ̄γ3ψ

〉
(5.42)

= 2e
∑
s

ˆ
d3k

(2π)3

kz − eAz(t)
ω(t,~k)

n~k(t) (5.43)

+
2

E(t)

∑
s

ˆ
d3k

(2π)3
ω(t,~k)

d

dt
n~k(t)

≡ jcond(t) + jpol(t). (5.44)

With Eq. (5.38), the current equation (5.43) and the Maxwell's equation

Äz(t) = −Ė(t) = jz(t), (5.45)

we have a closed nonlinear integro-di�erential equation that includes back-reactions

of produced pairs. Numerical and analytic behaviors of solutions of this equation has

been studied extensively in literature (See, e.g., [266,267,270�279]). These numerical

and analytic investigations show that in the Markovian limit [270] (when E varies

slow enough and the particle occupation number is negligible), the particle production

rate is well approximated in forms of

d

dt
n~k(t) =

∣∣β~k(∞)
∣∣2 |eE(t)| δ(pz), (5.46)

≡ S(~k; t) (5.47)

where ~p is the kinetic momentum ~p = ~k−e ~A, and β~k(∞) is the Bogoliubov coe�cient

relating the �in� and �out� vacua, for a slowly varying electric �eld

∣∣β~k(∞)
∣∣2 ≈ exp

[
−πk

2
x + k2

y +m2

eE

]
. (5.48)

Eq. (5.46) is often written in the terms of kinetic momenta(
∂

∂t
± eE ∂

∂pz

)
f±(~p, t) = S(~k, t), (5.49)
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where f±(~p, t) = n~p∓e ~A(t), which looks more like a Boltzmann-Vlasov equation. Also

from (5.38) we get the pair production rate

d

dt
Npair = 2

ˆ
d3k

(2π)3
ṅ~k(t) ≈

2

(2π)3 (eE)2 exp

[
−πm

2

eE

]
, (5.50)

where the factor 2 is from the spin degrees of freedom. This result is consistent with

Eq. (5.16).
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Chapter 6

Nanoshots from the Crab and

Schwinger Sparks

The highest brightness temperature ever measured are from nanoshots from the Crab

pulsar which could be the signature of bursts of vacuum pair production. If so, this

would be the �rst time that the astronomical Schwinger e�ect has been observed. In

this work, we consider a toy model called a �Schwinger spark chamber� producing

a short-period emission, which may be responsible for the nanoshots. This model

supposes a growing electric �eld in a vacuum of a �nite volume. When the �eld reaches

a threshold just below the Schwinger limit, it turns on a current of e± pairs swiftly,

and this rapid transition can generate a radio pulse. Furthermore, using this model

we show that the Schinwger spark chamber leads to a narrow electromagnetic pulses,

which indicates that the Schwinger e�ect can be a feasible origin of the nanoshots.

This work was performed in collaboration with Albert Stebbins.
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6.1 Introduction

Quantum electrodynamics (QED) has been very successful, and it has predicted many

novel quantum e�ects, such as Casimir e�ect, Lamb shift, photon splitting and non-

linear Compton scattering, that have been experimentally tested [280�288]. The

Schwinger e�ect (the vacuum e± pair production) is also one of long-standing pre-

dictions of QED since 1930s [264, 289, 290]. The e�ect predicts that the vacuum is

unstable and decays into electron-positron pairs in the presence of strong electric �eld

E with the decay rate given by Γ ∼ e−πEc/E [264�266,291,292]. However, all attempts

to observe this fundamental, non-perturbative e�ect have failed due to the experi-

mental di�culties in generating an critical �eld strength of Ec = m2

e
c3

~ ∼ 1016V/cm1

although the recent rapid development of laser technology may achieve a direct ob-

servation of the Schwinger e�ect in near future [293,294].

On the other hand, it is possible that compact astronomical objects possess ex-

tremely strong magnetic �elds. In particular, pulsars, rapidly rotating and highly

magnetized neutron stars, are believed to have a magnetic �eld in the range from

∼ 108 to 1015G near their surfaces. Because such a strong magnetic �eld may induce

electric �elds close to or even beyond Ec naturally, pulsars are often considered as a

ideal laboratory to test the Schwinger e�ect. In spite of such a optimistic prospect,

the Schwinger e�ect has not been sucessfully employed yet in modeling the mag-

netosphere structure of a pulsar [295]2. For instance, in the simple magnetic dipole

model [298�300] , an induced electric �eld from a rotating magnetic �eld is suppressed

by RsΩ/c, where Rs is the pulsar radius, and Ω is the angular velocity of a pulsar.

Thus the electric �eld E rarely becomes close to Ec in the magnetic dipole model.

1Equivalently, Bc ≈ 4× 1013G in CGS units
2There were a couple of attempts to utilize the Schwinger e�ect to explain regular pulses of

pulsars [296] and to obtain electron-positron plasma from strong intrinsic magnetic �eld of pulsars
[297].
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Moreover, the force-free approximation, ~E = −
(
~Ω× ~r

)
× ~B , inevitably blocks the

Schwinger e�ect [301] (See also [302�305] for a review).

Nonetheless, such a strong electric �eld close to Ec is believed to be involved

in some phenomena of pulsars, such as Giant Radio Pulses (GPs). GPs have been

observed from a variety of pulsars including the Crab pulsar. The GPs are at least

thousand times brighter than regular pulses and have duration ∼ 5µs. They consist

of several distinct groups of micro-bursts of width ∼ 1µs, and a micro-bust contains

short-lived, relatively narrow-band �nanoshots� whose width . 1ns3. The observed

peak �ux density Sν of nanoshots goes up to 150 kJy in a band ν = 8.5 ± 0.2GHz.

Because the Crab pulsar is known to be at a distanceDcrab ≈ 2.2 kpc from Earth [308],

the corresponding radio bolometric luminosity is

Ė ≈ 4πD2
crabSνδν & 102L�. (6.1)

Moreover, the nanoshot duration δt suggests the diameter of the emission volume to

be l . 30 cm, and it indicates a peak brightness temperature

kT peakν ' 1

2

(
1

ν

)2

Sν

(
DCrab

2l

)2

& 1023 erg, (6.2)

where l ∼ δt ≈ 30 cm. This number, millions of times the Planck energy, requires

macroscopic coherent emission by large number of charged particles moving together

rather than a sum of microscopic single particle emission. Hence the propagating

electric �eld at emission is

δE ≈

√
8πĖδt
l3
& 6× 1014 V/cm, (6.3)

which is about a order of magnitude smaller than Ec and also similar to the �typical�

magnetic �eld at the pulsar surface. This implies that nanoshots can be associated

3According to [306,307], some unresolved nanoshots have duration δt . 0.4ns.
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with electric �elds close to Ec, and also the similar magnitude of δE and Bcrab hints

the possibilities of some generation mechanism of the electric �elds.

Furthermore, the Schwinger e�ect naturally produces a short-period emission (a

spark) because it is a threshold phenomenon. The Schwinger e�ect is not e�ective

initially when the electric �eld E is far below Ec such that Γ is too small to a�ect E.

Growing gradually, E eventually reaches a limiting value Elim just below Ec, at which

point the pair current suddenly overwhelms the increasing E, and the �eld cannot

increase beyond Elim. If the Schwinger e�ect takes place over a large enough volume,

then the pair current can actually reverse the �eld creating a persistent pair plasma,

and E will oscillate and dissipate [266,267]. However for small volumes, one does not

have such oscillations, and the Schwinger e�ect merely limits the magnitude of the

�eld excursion. Consequently, this causes a change of the current density once for a

short time, which produces a spark, which we call a �Schwinger spark�.

This work presented in the following orders. In Sec. 6.2, we present a toy model

for generating a spark using the Schwinger e�ect and estimate the luminosity and

the width of a spark, and we derive a consistency relation. In Sec. 6.3, we apply

the result from the toy model to nanoshots from the Crab pulsar and discuss the

possibilities of strong electric �elds. Finally, we conclude in Sec. 6.4. we are going to

use the natural units ~ = c = ε0 = 1 in the following sections.

6.2 Toy Model: Schwinger Spark Chamber

Suppose that there is a parallel plate vacuum capacitor connected to a power supply.

Because we have its application to a pulsar in mind, we assume a uniform magnetic

�eld ~B also although the result would not be altered much without it. The mag-

netic �eld ~B is along the direction of the electric �eld ~E from charges on the plates.
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Whether it is aligned or anti-aligned does not matter in the following consideration.

Furthermore, because the diameter of the plates are larger than the distance w be-

tween them, the electric �eld in the capacitor is almost uniform.

As the power supply begins to charge the capacitor, the electric �eld inside the

capacitor grows as well. In spite of continuous piling charges up on both plates, the

electric �eld cannot grows to in�nity due to the production of electron and positron

pairs when it reaches close to the Schwinger limit Ec. Once the pair production starts

to yield a current inside the capacitor. The induced current grows very rapidly and

becomes saturated at a value just enough to neutralize the current from the power

supply. The rapid emergence of the current from pair production at the transition

emits a narrow radio pulse, which looks just like a spark.

This model can be translated into a simple one-dimensional problem4, and the

behavior of the electric �eld inside the capacitor described by the di�erential equation

− d

dt
E(t) = jpp(t) + jext(t) ≡ jtot(t), (6.4)

where E is the electric �eld inside the capacitor, jext is the current density generated

from the power supply, and jpp is the induced one by the pair production given by

jpp(t) ≈ 2eS [E,B]w = 2
e3EB

(2π)2 we
−πm

2

eE . (6.5)

We can see that E becomes saturated to E∗ at some point t∗ unless jext grows very

quickly to the in�nity. For a steady current jext = const, we explicitly �nd that

E∗ ≈


|jext|
ξ
Ec for |jext| � ξ

πEc
log πξ
|jext|

for |jext| � ξ

, t∗ ≈


Ec/ξ for |jext| � ξ

πEc
|jext| log πξ

|jext|
for |jext| � ξ

, (6.6)

where

ξ ≡ 2w
e3EcB

(2π)2 . (6.7)

4The required conditions are discussed in Appendix. 6.5
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Phenomenologically it may be di�cult to achieve E∗ > Ec, which requires an enor-

mously large external current density |jext| � ξ 5. On the other hand, a weak external

current makes E increase gradually and reach below Ec if the external current persists

su�ciently long t > t∗. More precisely, for the typical parameters of the consideration,

w = 30 cm and B ∼ 0.1×Bc, the electric �eld E∗ becomes approximately

E∗ ∼ 0.05Ec ×O(1) ≡ Elim, (6.8)

The O(1) factor is from the logarithmic dependence of the external current jext, and

hence we expect that the typical value E∗ is ∼ 0.05Ec.
6

Through the transition from vacuum to the electron-positron plasma, there is a

sudden change of the total current density jtot, which eventually gives rise to a spark.

Now we estimate the peak of djtot/dt and its width δt∗ near the transition. Firstly,

taking a derivative of Eq. (6.4) with respect to t, we have

d

dt
jtot =

jtot
E

(jtot − jext)
(

1 + π
Ec
E

)
+
d

dt
jext. (6.11)

Neglecting d
dt
jext and treating E as a constant at the transition, we can solve Eq.

(6.11) explicitly and �nd

jtot(t) =
j∗ext

1 + exp (t− t∗) /δt∗
, (6.12)

5For B = 0.1Bc and w = 30 cm, ξ ' 3.4× 1051e · cm−2s−1
6For example, near a surface of a pulsar, the typical current density may be estimated from the

Goldreich-Julian density [301]

jext ∼ e nGJ ∼ B/P, (6.9)

where B is the magnetic �eld and and P is the rotation period. For the Crab pulsar, the peak
surface magnetic �eld Bp ∼ 3× 1013G and the rotation period P ∼ 33msec,

E∗ ∼ 0.046× Ec. (6.10)

Also, for a typical current density in a tabletop experiment jext ∼ 1019e cm−2s−1,

E∗ ∼ 0.042× Ec.
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where j∗ext is the external current density at the transition, and

δt∗ ≡
1

π

∣∣∣∣ E2
∗

Ecj∗ext

∣∣∣∣ . (6.13)

The peak value of
∣∣ d
dt
jtot
∣∣ near the transition is estimated as∣∣∣∣ ddtjtot

∣∣∣∣
tpeak

≈
∣∣∣∣ j∗2ext4E∗

(
1 + π

Ec
E∗

)∣∣∣∣ ≡ ∣∣j̇∗tot∣∣ . (6.14)

As shown in Fig. 6.1, j̇tot clearly behaves as a sharp pulse at the transition, which

can be interpreted as a spark.

From these we can �nd the luminosity and the duration of an induced electro-

magnetic pulse from j̇tot at the transition. The Poynting vector from a localized and

linear current is given by (See Appendix 6.6 for a derivation)

~S '
~Q · ~Q−

(
~r · ~Q

)2

4πr2
r̂, (6.15)

where

~Q(r̂0, δt) =

ˆ
V

d3δx′ ~̇j
(
~x′0 + δ~x′, t

′

0 + δt− r̂0 · δx′
)
. (6.16)

Suppose that ~̇jtot is uniform and also varies coherenently over the volume of the

Schwinger chamber. Putting Eq. (6.12) into Eq. (6.16) we obtain at the transition∣∣∣ ~Q(r̂0, δt)
∣∣∣ =

j∗extw
2 sinh w

2δt∗

cosh w
2δt∗

+ cosh δt
δt∗

, (6.17)

where we have treated the chamber as a cubic box with side w and r̂0 is aligned with

one of the sides to simplify the integral and the estimation of the luminosity. From

this, the maximum value of Q and the width of the pulse ∆t7 are estimated as

Qmax ≈ j∗extw
2 tanh

w

4δt∗
, (6.18)

∆t ≈ 2δt∗ cosh−1

[
2 + cosh

w

2δt∗

]
. (6.19)

7Full width at half maximum
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Figure 6.1: These plots shows how
{
E, jtot, j̇tot

}
varies over time for a constant current

(left) and a growing current (right), where j0 = 10−13mEc and j̇0 = 10−25m2Ec. In
each plot, the dashed lines denotes the expected E∗ from Eq. (6.8), the external
current jext, and the peak of j̇tot from Eq. (6.14). At the transition t = t∗, the �eld E
becomes saturated to E∗, the current j suddenly drops to 0, and j̇tot shows a pulse-like
behavior.
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Using Eqs. (6.13) and (6.18) we obtain

Lmax =

ˆ
dΩ~Smax · ~n (6.20)

' 2

3

[
1

π

E2
∗

Ecδt∗
w2 tanh

w

4δt∗

]2

. (6.21)

Notice that there are only two independent model parameters among {E∗, w, δt∗} if

the change of jext during the transition is negligible. For example, we can obtain δt∗

from E∗ and w using Eq. (6.6). Hence, for given values of E∗ and w, Eq. (6.21) and

Eq. (6.19) determines the maximum luminosity and the duration of a electromagnetic

pulse induced by the transition, Lmax and ∆t. Note also that the toy model analysis

has been done in the particular frame where the external electric �eld and magnetic

�eld are parallel. Generally, we can boost a frame to have the external electric �eld

and the magnetic �eld parallel, but it yields a boosting factor, which is neglected in

this analysis. In the next section, we are going to apply the relation to nanoshots

from the Crab pulsar.

6.3 Nanoshots from Schwinger Sparks

In Ref. [309], nanoshots from the Crab pulsar have been observed with a peak �ux

up to Sν ' 150 kJy in a band ν = 8.5± 0.2GHz. Its typical �ux Sν is ∼ 10 kJy and

its duration ∆t is ∼ 1ns. The peak luminosity obtained from Lmax ' 4πD2
crabSνδν.

Using (6.19) and (6.21) with the observation of the peak �ux density and the duration

of a nanoshot, Sν and ∆t , we can contrain the parameters of the toy model, the

electric �eld at the transition and the width of the Schwinger chamber, E∗ and w, as

shown in Fig. 6.2.

Fig. (6.2) shows that the Schwinger spark can cover quite wide ranges of the

peak density �ux and the duration, Sν and ∆t, including the ranges of the typical
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Figure 6.2: The peak �ux density and the duration of an induced EM pulse from the
Scwhinger spark. The solid lines represent constraints from the durations of pulses,
and the dotted lines denote those from the peak �ux densities.

nanoshots. This indicates that the Schwinger spark can indeed be an origin of the

nanoshots from the Crab pulsars. Moreover, for Sν ∼40 − 160 kJy and ∆t ∼ 1ns

implies that δt∗ ∼ ∆t ∼ w.

At this point, we should mention that the generation mechanism for such large

external coherent electric �elds inducing the Schwinger sparks within an appropriate

size of volumes is still in question. However, the similarity in magnitude of E∗ and

Bcrab itself is suggestive that nanoshots are generated near the neutron star surface

and related to transients in the electromagnetic (EM) �eld of the neutron star. While

such EM �elds are not part of normal pulsar modeling [301, 303�305], it would not

be surprising to �nd this phenomena in young pulsars such as the Crab. Highly

magnetized and rapidly rotating neutron stars are out of thermodynamic balance

with their environment and will utilize all available channels to equilibrate; shedding
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energy, angular momentum and magnetic �eld. The initial magnetic �eld frozen into

the neutron star material could be quite convoluted with large �eld variations on fairly

small scales since high multipole �elds do not contribute signi�cantly to rotational

energy loss and are unconstrained by observations. Small magnetic �eld loops may

be shaken or if loosely tethered even become detached. Similar surface phenomena

power stellar �ares and and soft gamma repeaters.

6.4 Conclusion

In this work, we have considered a possibility that the Schwinger e�ect is responsible

for the nanoshot phenomena in the emission from the Crab pulsar. We build a toy

model using the Schwinger e�ect that leads to a short-period electomagnetic pulse.

Moreover, we show that this model can explain nanoshots from the Crab, which

suggests that the Schwinger e�ect gives rise to the nanoshots. If so, they are the

�rst direct evidence of the Schwinger e�ect. Furthermore, it implies the existence

of extremely high energy e± pairs as well. Produced e± pairs within an emission

volume gain energy ∼ 1
2
eE∗w ≈ 10PeV as they escape the volume. That can make

our model more interesting as the pairs may trigger the pair cascades in the pulsar

magnetosphere [302, 310, 311] or provide a novel method to examine BSM physics.

We postpone the study of the high energy e± pairs for our future work.

6.5 Appendix: Setup for a Schwinger Spark

Chamber

We consider a system with inhomogeneous background the electromagnetic �elds

in the frame that ~E ‖ ~B. The �elds are non-vanishing within a cylindrical region
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with radius r and width w. Both electric and magnetic �elds are aligned along

the symmetrical axis of the cylinder, and due to the external charge and current

con�guration, the electric �eld outside the region is negligible, Eout � m2/e , i.e,

E(t, ~x) =


E(t) if ~x ∈ Cylinder

0 otherwise

, (6.22)

and the magnetic �eld lines are diverging smoothly.

Then the total pair production rate within the region is given by

Ntot = S [E,B]Vcyl, (6.23)

Vcyl ≡ πr2w, (6.24)

where S ≈ eEB
(2π)2 e

−πm
2

eE is a pair production rate per unit volume [264�266]. Because

we assume that E and B are su�ciently large such that most of pairs in the region

are relativistic8 and they move along the magnetic �eld lines, the current density

generated by pair production is [264�266,291,292]

jpp ≈ 2eS [E,B]w = 2w
e3EB

(2π)2 e
−πm

2

eE . (6.26)

Note that we have taken E, and B are positive. This induced current back-reacts to

the electric �eld in the region. As long as the width of the region is not too narrow,

w . r, from the Maxwell's equation the back-reaction due to the induced current is

given by

d

dt
E = −jpp − jext, (6.27)

8This assumption implies that the polarization current is always sub-dominant compared to the
conducting current. To be precise, the polarization and the conducting current currents are

jpol =
2e2Bm

(2π)
2 e−π

m2

eE , jcond =
2e3EB

(2π)
2 e−π

m2

eE δt, (6.25)

where δt is the average time pairs staying in the region, δt ∼ w. The assumption of the relativistic
current is valid if eEδt & m, which guarantees that the conducting current is larger than the
polarization current, jpp ≈ jcond. Moreover, the condition eEδt & m is well satis�ed for the typical
values we consider, E ∼ 0.05Ec and w ∼ 30 cm.
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where jext < 0 is the external current that sources the electric �eld energy in the

region. Notice that the homogeneous solution of Eq. 6.27 is a monotonically decaying

function unlike the usual oscillatory solution [266, 267, 270, 273]. This is due to the

�niteness of the �eld con�guration, which gives the conditions for the approximation,∣∣∣∣ Ejpp
∣∣∣∣� w =⇒ 1

w2
� 2

e3B

(2π)2 e
−πm

2

eE , (6.28)∣∣∣∣ B

2πjpp

∣∣∣∣� r =⇒ 1

rw
� 2

e3E

(2π)
e−π

m2

eE . (6.29)

The �rst condition is to prevent the plasma oscillation, and the second one to restrict

the induced magnetic �eld by the pair production to be weaker than the external

magnetic �eld B. For the typical values in consideration E ∼ 0.05Ec and B ∼ 0.1Bc,

the conditions are

w � 4× 104 cm, r � 8× 104 cm, (6.30)

which shows the typical width for nanoshots w ∼ 30 cm is well within the range.

6.6 Appendix: Je�menko's Equation

A general solution to Maxwell's equations is given by Je�menko's equations [312]

~E(x) =

ˆ
d3~x′

(
ρ (~x′, tret)

|~x− ~x′|3
+
ρ̇ (~x′, tret)

|~x− ~x′|2
)

(~x− ~x′)−
~̇j (~x′, tret)

|~x− ~x′| , (6.31)

~B (x) =

ˆ
d3~x′

(
~j (~x′, tret)

|~x− ~x′|3
+
~̇j (~x′, tret)

|~x− ~x′|2

)
× (~x− ~x′) , (6.32)

where we have dropped the homogeneous solutions, and tret = t− |~x− ~x′|. Using the

continuity equation

ρ̇+∇ ·~j = 0 (6.33)
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we can integrate by parts to �nd

~E(x) =

ˆ
d3x′

ρ (~x′, tret) + ~̇j (~x′, tret) · (~x− ~x′) + 2~j (~x′, tret) · (~x−~x′)
|~x−~x′|

|~x− ~x′|3

 (~x− ~x′)

−
~j (~x′, tret)

|~x− ~x′|2
−
~̇j (~x′, tret)

|~x− ~x′|

]
. (6.34)

Then the far-�eld behavior is given by

~E(x) =

ˆ
d3x′

~̇j (~x′, tret) · (−I + r̂ ⊗ r̂)
|~x− ~x′| +O

[
1

|~x− ~x′|2
]

(6.35)

~B (x) =

ˆ
d3~x′

~̇j (~x′, tret)

|~x− ~x′| × r̂, (6.36)

where r̂ = (~x− ~x′) / |~x− ~x′| is the radial unit vector.

Suppose the charges and currents are con�ned in a small region around a �ducial

source event,
(
~x
′
0, t
′
0

)
and we wish to �nd the electric and magnetic �eld in small region

around a distant �ducial observation event (~x0, t0). We assume that (~x0, t0) is in the

forward light cone of
(
~x
′
0, t
′
0

)
, i.e., c (t0 − t′0) = |~x0 − ~x′0|. De�ne r0 ≡ |~x0 − ~x′0| r̂0 ≡

~x0−~x′0
|~x0−~x′0| then we see that

~E(x0 + δx) =
1

r0

ˆ
d3δx′ ~̇j

(
~x′0 + δ~x′, t

′

0 + δt− r̂0 · (δx− δx′)
)
· (−I + r̂0 ⊗ r̂0)

+O

[
1

r2
0

]
, (6.37)

~B(x0 + δx) =
1

r0

ˆ
d3~x′ ~̇j

(
~x′0 + δ~x′, t

′

0 + δt− r̂0 · (δx− δx′)
)
× r̂0 +O

[
1

r2
0

]
,(6.38)

where we have used tret ≈ t′0 + δt− r̂0 (δx− δx′). Note that in this approximation

~E(~x0 + r̂0δt, t0 + δt) = ~E(~x0, t0) +O

[
1

r2
0

]
, (6.39)

~B(~x0 + r̂0δt, t0 + δt) = ~B(~x0, t0) +O

[
1

r2
0

]
, (6.40)
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so this is an outgoing wave traveling in the r̂0 direction at the speed of light c. Fur-

thermore, translating the observer perpendicular to the line-of-sight does not change

the �elds:

~E(~x0 + δ~x⊥, t0) = ~E(~x0, t0) +O

[
1

r2
0

]
, (6.41)

~B(~x0 + δ~x⊥, t0) = ~B(~x0, t0) +O

[
1

r2
0

]
, (6.42)

when δx⊥ · r̂0 = 0. Without loss of generality, we can set δ~x = 0. Moreover noting

the integrals are the same in the expressions for the electric and magnetic �elds we

can write this solution more compactly

~E(~x0, t0 + δt) =
1

r0

(−I + r̂0 ⊗ r̂0) · ~Q(r̂0, δt) +O

[
1

r2
0

]
, (6.43)

~B(~x0, t0 + δt) =
1

r0

~Q(r̂0, δt)× r̂0 +O

[
1

r2
0

]
, (6.44)

where

~Q(r̂0, δt) =

ˆ
d3δx′ ~̇j

(
~x′0 + δ~x′, t

′

0 + δt− r̂0 · δx′
)
. (6.45)

The Poynting vector is

~S =
1

4π
~E × ~B =

r̂0

4πr2
0

((
~Q · ~Q

)
−
(
r̂0 · ~Q

)2
)
. (6.46)

which is of course directed directly away from the source and is zero if ~Q is pointed

directly away or toward the source.
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