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Abstract

The Standard Model of particle physics has been remarkably successful, but the non-perturbative features

of quantum chromodynamics must be tested and modeled with data. There have been many such tests,

focused primarily on the use of jet-based probes of heavy flavor (bottom and charm quark) production

at hadron colliders. In this thesis, we propose and test a strategy for identifying heavy flavor in events

containing a W or Z vector boson (a V boson); this technique probes a much lower energy regime than

can be explored by jet-based methods. In a sample of W and Z events skimmed from 9.7 fb−1 of high-

pT electron and muon data from CDF Run II pp̄ collisions at center of mass energy
√
s = 1.96 GeV , we

identify charm by fully reconstructing D∗(2010) → D0(→ Kπ)πs decays at the track level. Using a binned

fit of ∆m = m(Kππs) − m(Kπ) to count reconstructed D∗ candidates, we then unfold these raw counts

with acceptance values derived from Monte Carlo, and present measurements of σ(W + D∗)/σ(W ) and

σ(Z +D∗)/σ(Z) in the W/Z leptonic decay channels. All measurements are found to be in agreement with

the predictions of Pythia 6.2 (PDF set CTEQ5L). These results include the first measurement of W/Z + c

production in events with zero jet objects at the Tevatron, and the first measurement of W/Z+ c production

with pT (c) < 15 GeV at the Tevatron.
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Introduction

The Standard Model of particle physics has proven itself to be a tremendously successful description of

the fundamental particles and their interactions. The last of its predicted particles, the Higgs boson, was

identified in the summer of 2012, and while there exist tantalizing bits of evidence for new physics (non-zero

neutrino masses, and the existence of dark matter), the standard model still lies at the heart of the field.

This makes it all the more interesting that standard model interactions are not perfectly well understood.

Many studies in collider physics rely on theoretical models to predict the behavior of particle interactions.

While electroweak interactions are well-described by perturbative expansions, the strong interactions of QCD

are non-perturbative at low energies, and cannot be predicted from first principles. The best predictions are

made by using models tuned to data, especially those involving more exotic states of matter that do not

exist in our everyday lives—such as the “heavy flavor” bottom and charm quarks.

This thesis details a set of measurements of the behavior of charm quarks produced in association with

vector bosons, using the CDF detector at the Tevatron collider. In Chapter 1, we introduce the theory of

the standard model and quantum chromodynamics (QCD), and we describe gaps in our knowledge of QCD

at low energy. A description of the Fermilab accelerator complex and CDF detector comprises Chapter 2.

We begin the analysis proper with Chapter 3, in which we discuss general procedures for reconstructing

objects of interest to our study: objects such as leptons, missing energy, and jets. In Chapter 4, we focus

on the selection criteria used to identify W and Z vector bosons (V bosons), and in Chapter 5 we focus on

the process used to identify charmed D∗ mesons. These methods are combined in Chapter 6 to measure the

rate at which D∗ are produced in associaton with V in pp̄ collisions at CDF. We then focus—in Chapters 7,

8, and 9—on measuring this production rate as a function of D∗ momentum; we also unfold observed rates

to a ratio of physical cross-sections using acceptance values derived from simulated events. In Chapter 10,

we finish our work by identifying what percentage of our charmed meson signal can be attributed to each of

three possible production processes.

We conclude with a brief summary of our results and their meaning, and a discussion of future prospects

for charmed meson reconstruction in hadron collider experiments.

1



Chapter 1

The Standard Model and Quantum
Chromodynamics

Particle physics is the study of the basic building blocks of the universe. Our current understanding of

things is that all matter is composed of a set of fundamental particles, and that all forces are mediated

by a complimentary set. The full roster of these fundamental particles can be probed only by studying

interactions at energy scales that are much higher than those which we experience in everyday life. To

access these higher-energy states, physicists accelerate common subatomic particles to enormous speeds, and

collide them in order to force a huge exchange of energy. The result is a spray of elementary particles—some

common (such as electrons), and others much more exotic (such as the Higgs boson). In this chapter, we

describe the full range of elementary particles that are currently known to populate our universe, and then

describe the Standard Model that strives to unite them all behind one simple theoretical premise.

1.1 Matter

All matter is composed of bound states of point-like, half-integer spin particles called fermions. There are two

types of these fermions, leptons and quarks, each of which interacts with a different subset of the four known

forces (discussed in the next section). These fermions are further split into three generations of particles,

loosely defined by tiers of mass, with the members of each successive generation acting essentially as heavier

versions of the generation below it. A single generation consists of two leptons and two quarks, and members

of each pair differ in charge by one unit in e (the magnitude of the electron charge, e=1.602×10−19 C).

As an illustrative example, the first generation of leptons consists of the electron, e, (charge -1e) and

the electron-neutrino, νe, (charge 0). The first generation of quarks consists of the up quark, u (charge

+2/3e) and the down quark, d (charge -1/3e). As u and d quarks compose protons and neutrons, this first

generation of particles makes up virtually all of the matter that we encounter on a daily basis. Table 1.1

lists these particles and their properties, as well as those of the remaining two generations. For each particle

listed, there is also a corresponding anti-particle which has the same mass, but opposite charge and other

quantum numbers.
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Leptons Quarks
Generation Flavor Mass Charge Flavor Mass Charge

1st νe < 2.2 eV/c2
0 u 1.7− 3.1 MeV/c2

+2/3e

e 0.511 MeV/c2 −e d 4.1− 5.7 MeV/c2 −1/3e

2nd νµ < 0.17 MeV/c2
0 c 1.290+0.05

−0.011 GeV/c2
+2/3e

µ 105.7 MeV/c2 −e s 100+30
−20 MeV/c2 −1/3e

3rd ντ < 15.5 eV/c2
0 t 172.9+0.3

−0.9 GeV/c2
+2/3e

τ 1.777 GeV/c2 −e b 4.190+0.18
−0.06 GeV/c2 −1/3e

Table 1.1: A list of the fundamental particles that make up matter, divided by type (lepton or quark) and
generation. For each particle listed here, there is also a corresponding anti-particle with the same mass, but
opposite charge and other quantum numbers. Though not stated explicitly in this table, there are three
possible color states (red, blue, and green) for each quark.

Force Boson Mass Fermions Affected
Gravitational Graviton 0 Quarks and leptons

Electromagnetic Photon (γ) 0 Quarks and charged leptons
Weak W+, W− 80.4 GeV/c2 Quarks and leptons

Z 91.2 GeV/c2

Strong Gluon (g) 0 Quarks

Table 1.2: A list of the four fundamental forces, and the particles that mediate these forces. To the right, the
fermions that are affected by each force. Though not stated explicitly in the table, there are eight possible
color states for the gluon.

1.2 Forces

Interactions between the elementary fermions described in the previous section are governed by the four

fundamental forces: gravity, electromagnetism, the weak force, and the strong force. Each of these is

mediated by one or more integral-spin bosons: the photon (electromagnetism), the W+, W−, and Z bosons

(weak force), the gluon (strong force), and the graviton (gravitation). The graviton has never been confirmed

experimentally, but is believed to be massless and to carry spin 2. The remaining bosons are massless with

spin 1, except for the W and Z bosons—these are given a non-zero mass through electroweak symmetry

breaking, as discussed in the next chapter.

Not all fundamental fermions interact through all of these forces. First of all, in the types of interactions

that are of interest in high energy physics, the gravitational force has a negligible effect when compared to

any other force. We will, in fact, completely ignore gravity for the remainder of this thesis. The quarks

interact through the strong, electromagnetic, and weak forces, but the leptons interact only through the

electromagnetic and weak forces; a further restriction is that only charged particles may interact electromag-

netically, which leaves neutrinos to interact only through the weak force. The four fundamental forces, and

the bosons that mediate them, are listed in Table 1.2.
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1.3 The Standard Model

The identification of the fundamental fermions which lie at the heart of matter, and of the bosons which

mediate force between them, was a fantastic achievement. Perhaps most notable in this work was the

creation of a general framework for describing the strong, weak, and electromagnetic interactions between

quarks and leptons: the Standard Model (SM). The SM has been remarkably successful, correctly predicting

the existence of the top quark and the Higgs boson, and—with the help of numerical simulations—even the

complicated interactions between fundamental particles in such chaotic environments as hadron colliders.

While the SM does not account for dark matter, or for the mass of neutrinos, it is extremely predictive in

all other regimes, and it lies at the heart of all ongoing research in particle physics.

The SM is a quantum field theory, in which the fundamental fermions and the forces between them are

waveforms that propagate through fields permeating all of space. Each particle is associated with its own

field; a particle can be looked at as a ‘bump’ in its field, while its corresponding anti-particle is a ‘hole’,

in a sense somewhat like electrons and holes in a semiconductor (an admittedly flawed analogy, given that

it involves electrons, but hopefully an illustrative one). Mathematically, each fermion is described by a

four-component Dirac spinor field, with the dynamics of these particles governed by a Lagrangian involving

the fermion fields and their derivatives [1].

The form of the SM Lagrangian is determined by imposing natural symmetries; relativity, for example,

requires Lorentz invariance. Gauge symmetries are perhaps the most important of these symmetries; essen-

tially, these are statements that the phases of these fields are arbitrarily-defined and unobservable quantities.

Therefore, a change in the definition of these phases ought to have no effect on physical observables. What

is remarkable about these requirements, is just how far they get us. Local gauge symmetries—requiring

invariance after shifting the phase θ by some space-time dependent continuous function θ(−→x , t)—require the

introduction of integral-spin gauge boson fields; these, in turn, couple to the fermion fields and introduce

interaction terms between the fermions. With the proper choice of gauge symmetry, these gauge fields can

be identified with the fundamental forces of the SM [2, 3].

Explicitly, the gauge structure of the SM is said to be SU(3)color ⊗ SU(2)L ⊗ U(1)Y . Enforcing gauge

symmetry upon the SU(2)L ⊗ U(1)Y piece results in a unified theory of the electromagnetic and weak

interactions, known as electroweak theory. Under this (unmodified) theory, there are four massless gauge

bosons—one for the U(1)Y part, and three for the SU(2)L part. Unfortunately, introducing mass terms

for the quarks and leptons destroys the SU(2)L symmetry, and we know from experiment that a successful

electroweak theory must predict three massive gauge bosons (the W± and the Z). Both of these problems

can be addressed by introducing an SU(2) scalar Higgs field to the SM Lagrangian. The correct choice
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d′s′
b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b


|Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

0.97427± 0.00015 0.22534± 0.00065 0.00351+0.00015
−0.00014

0.22520± 0.00065 0.97344± 0.00016 0.0412+0.0011
−0.005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046


Table 1.3: Top: the column to the left is filled by weak-interaction partners to the up-type quarks; to the
right, a matrix describes the ‘recipe of down-type quark mass eigenstate that composes each of the weak-
interaction partner states. Bottom: the magntudes of the CKM mixing matrix elements. It is easy to see that
couplings within the same generation of mass eigenstates are far larger than inter-generational couplings.
While not shown here, a single complex phase δ in the CKM matrix allows for parity violation through the
weak interaction.

of potential for this field breaks the SU(2)L symmetry, simultaneously giving mass to the three SU(2)L

bosons, and introducing mass terms for the quarks and leptons. For this reason, the existence of a Higgs

boson associated with this theoretically-successful Higgs field was long suspected, and finally confirmed in

the summer of 2012 [4, 5].

The SU(2)L ⊗U(1)Y gauge symmetry and the associated Higgs field result in some interesting features.

For one, the non-Abelian nature of the SU(2)L symmetry results in the electroweak gauge bosons coupling to

one another (e.g., the chargedW± coupling to photons). Perhaps more intriguing, the weak force eigenstates

are not the same as the mass eigenstates generated by coupling to the Higgs (the eigenstates listed in Table

1.1). The weak interaction may thus transmute quarks and leptons of one flavor or generation into quarks

and leptons of another flavor or generation. The couplings between mass eigenstates that are produced by the

weak force are summarized in the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix (Table 1.3). A single

complex phase in the CKM matrix allows for parity violation (in this context, parity violation manifests

itself as unequal rates between interaction a+ b→ c and its anti-matter parallel ā+ b̄→ c̄), which may be

responsible for at least part of the observable universe’s matter/anti-matter asymmetry.

While the electroweak interaction of the SU(2)L ⊗U(1)Y gauge symmetry is a rich theory, the SU(3)color

part of the SM’s full symmetry may be considered richer still. This is the strong force piece of the SM, and

it is referred to as quantum chromodynamics (QCD). The ‘color’ subscript and ‘chromo’ prefix both refer

to the name of the of the strong force ‘charge’ —a three-valued property called color. A quark must have

one color (red (R), green (G), or blue (B)), and an anti-quark one anti-color (anti-red (R̄), anti-green (Ḡ),

or anti-blue (B̄)). Quarks of one color are attracted to quarks of another color, and they bind together

to form colorless states in combinations like RGB and R̄ḠB̄, or RR̄, BB̄, and GḠ. (This color analogy

is best understood by recognizing that red, blue, and green light combine to produce white light, which is

‘colorless’). Three-quark states are referred to as baryons, and quark-antiquark states as mesons.
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Invariance under a SU(3)color gauge transformation requires the introduction of eight massless gauge

bosons called gluons, each of which has its own color-plus-anti-color signature. The SU(3)color gauge sym-

metry is also non-Abelian, such that these gluons interact with one another. This has interesting effects on

the coupling constant which describes the strength of QCD interactions: essentially, this coupling constant

grows with the distance between two colored particles, such that they can never break free from one another

and exist in an independent state. This is in marked contrast to the electromagnetic force, in which the

strength of attraction between two charged objects falls off with distance.

This property of colored objects—their inability to exist in an independent state—is called confinement.

To move two colored objects further away from one another requires an ever-increasing amount of energy;

when the energy within the color field between the two objects reaches a critical level, a quark-antiquark

pair is created from the field. These quarks are, in turn, now attracted—both to each-other, and to the

two original objects. This process repeats, until all colored objects have bonded with other colored objects

to create colorless, bound states. This is called hadronization, and it happens extremely quickly (on the

order of 10−23 seconds). The result is that colored objects, such as free quarks or gluons, are never directly

observed. What we have to work with are colored, bound states—baryons and mesons—from which we must

piece together the properties of the original, colored objects.

For high-energy interactions, the effect of hadronization can be huge: a single quark-antiquark pair

produced in a pp̄ collision can hadronize into tens or hundreds of other particles. What simplifies the process

somewhat is that hadronization must not violate energy and momentum conservation; if a quark hadronizes

into dozens of other particles, the net momentum of this system must remain the same. As a result, particles

that are sourced by a single progenitor quark often cluster together into jets which trace a cone-shaped path

through space, moving outwards from a vertex centered upon the original quark’s production point. Jets are

our (admittedly, sometimes blurry) magnifying glass for studying QCD interactions, and we will describe

them in more detail in Chapter 3.

1.4 Perturbation theory and heavy flavor

Quantum chromodynamics is a fascinating subject, and worthy of (several (hundred)) theses dedicated solely

to the subject. Our analysis, however, is more concerned with how QCD is modeled. The complexity of

QCD interactions, and especially of the process of hadronization, makes this a challenging question. Models

of QCD are generally split into two factions: perturbative methods, and non-perturbative methods.

Perturbation theory is a technique for solving complex systems: an exact solution is found for a simplified

case, and the complicated parts are treated as small perturbations to this exact solution. In models of the
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SM, what we solve for is the amplitude of a given interaction—say, u+ d̄→W +g. (Amplitude is a quantity

that is related to probability, and we will elaborate on this in just a moment.) An exact solution is found by

treating the system of particles as non-interacting; then, interaction terms are added in as a perturbation.

The result is a power-law-like expansion in terms of a coupling constan, α, which describes the strength of

that interaction. The value of α depends upon the type of interaction (strong, weak, electromagnetic), and

also—perhaps most pertinently for the strong force—the interaction’s energy and distance scale. As long as

α is small, this perturbative approach holds. Perturbation theory is, however, perhaps easier discussed in

terms of Feynman diagrams.

Feynman diagrams are cartoon representations of each term in a perturbation series. Each term is

phrased as a particular path by which an interaction can take place; for our u + d̄ → W + g example, was

the gluon emitted by the u or by the d̄? Was a virtual gluon emitted and reabsorbed by the u prior to its

fusion with the d? Each term represents one of these possibilities. Feynman diagrams are a way to visualize

these options, and to determine which processes contribute to your interaction, without struggling through

enormous sets of integrals. Just as important, there are a set of Feynman rules for translating these diagrams

into mathematical terms; these can then be added together to provide the amplitude for your interaction.

In sum, Feynman diagrams are an excellent shorthand for discussing interactions in particle physics. A few

examples of these diagrams are shown in Figures 1.1 and 1.4. Once the Feynman rules have been applied

to all Feynman diagrams representing a process (to some order), all terms are added together to get the

amplitude for that process. A probability (more accurately, a cross-section, though the core meaning is very

similar) can be obtained from the square of the amplitude, integrated over the phase space of interest.

Interactions between particles in a Feynman diagram take the form of vertices, and the Feynman rules

require introducing a factor of α for each vertex; as said earlier, this value depends upon the interaction. For

α� 1, the lowest-order diagrams—those with the fewest vertices—will therefore have the most influence on

your final result. This is extremely powerful, as higher-order terms are generally far more numerous than

lower order terms—as the number of vertices involved increases, the number of ways in which the diagrams

can be drawn increases even faster. As long as these higher-order terms do not propogate too quickly (we

discuss one counterexample in the next section), we can achieve reasonably accurate predictions using only

the lower-order terms. This is the essence of perturbation theory.

Perturbation theory has been used to great success in electroweak physics, for which αEM ∼ 1/137� 1.

As a particularly stunning example, the anomolous magnetic moment of the electron as predicted by the

SM has been experimentally confirmed to an accuracy of 1 : 109. However, the coupling constant αQCD can

be quite large, and for low-energy interactions—specifically, for energy scales near ΛQCD ∼ 200 MeV—αQCD

can approach order 1. Here, perturbation theory fails completely. There are techniques for dealing with
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these types of interactions (for example, lattice QCD calculations [6]); however, another way to circumvent

this problem is to explore those certain regimes of QCD physics in which perturbation theory holds. This is

where heavy flavor quarks (c, b, and t) become very useful.

The lightest of the heavy flavor quarks, the charm quark, has a mass of ∼ 1.5 GeV. Pair production of

cc̄ therefore requires an interaction energy of at least 3 GeV � ΛQCD. Pair-production of bottom quarks

(mb ∼ 5 GeV) lies even further beyond the ΛQCD threshold, and the production of top quarks further still.

Each of these heavy flavors has its own particular advantage.

The enormous top quark mass (∼ 175 GeV) means that non-perturbative effects should have an extremely

small effect on its production cross-section; in addition, the top quark decays so quickly (by the weak process

t→W + b) that it does not have time to hadronize. (Hadronization, a messy process with many low-energy

quarks and gluons produced in close proximity to one another, is a prime example of non-perturbative

physics.) However, the top quark production rate is much lower than that of bottom and charm quarks,

which makes it difficult to obtain statistically-significant samples.

The bottom quark is produced much more frequently in hadron colliders than the top quark, and it

decays much more slowly. This provides an important handle on jets of particles produced by a bottom

quark. When a b hadronizes into a semi-stable meson or baryon, this bound state will in general travel some

macroscopic distance through the detector volume before decaying. The result is a displaced vertex, in which

several particles seem to originate from a point that is not centered upon the original collision point. With

a high-resolution tracking chamber (such as that at Fermilab’s CDF detector), it is possible to detect these

displaced vertices and to use them to identify bottom quark production processes. Because of its relatively

high abundance and this tell-tale displaced vertex, bottom quark production is an extremely common test

of perturbative QCD.

Charm quark production lacks several of the ‘advantages’ possessed by its higher-mass, heavy flavor

brethren. For one, charmed mesons decay relatively quickly, due in part to the much larger CKM mixing

matrix element |Vcs| ∼ 0.97 (to be compared with |Vcb| ∼ 0.04). As a result, displaced vertices are not

as strong of a handle for identifying charm production. In addition, the lower mass of the charm quark

means that perturbation theory is less accurate of a technique for describing cc̄ production, than it is for

describing bb̄ production. This can, however, also be looked at as an advantage—by straddling the boundary

between perturbative and non-perturbative QCD, charm quark production allows for very stringent tests

of perturbation theory, and may expose its weaknesses (or validate its strengths). Furthermore, the lighter

mass of charm quarks means that they are produced in greater abundance than any of the other heavy flavor

quarks. As such, while the lack of displaced vertices can make it difficult to identify charm, we also have

greater statistics to work with.
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1.5 Factorization, parton showers and NLO theory

We have discussed generally the usefulness of heavy flavor in testing the performance of techniques involving

perturbative QCD. However, there are additional processes and properties that can be tested by probing the

heavy flavor regime, all of which stem from observed variations from perturbative predictions. Specifically,

the observed cross-section for bb̄ and cc̄ production is generally higher than that predicted by next-to-leading

order (NLO) perturbative QCD. There are three major contenders for an explanation.

One, is that higher-order terms must be included in order to produce an accurate prediction of heavy

flavor production. Despite the topically perturbative energy scale of, e.g., bb̄ production (10 GeV� ΛQCD),

the leading-order calculation of this cross-section is two to three times smaller than the next-to-leading

order cross-section [7]. The reason for this lies in the propagation of higher-order terms, as mentioned in

the previous section. At lowest order (two vertices, α2
QCD), bb̄/cc̄ production is brought about by quark-

antiquark annihilation or gluon-gluon fusion. However, at the next highest order (α3
QCD), the dominant form

of bb̄ production comes from appending a g → bb̄/cc̄ vertex onto some lower-order QCD process (Figure 1.1).

With the cross-section for gg → gg of order one hundred times larger than that for gg → bb̄/cc̄, this means

that even with an extra suppressing factor of αQCD, the contribution of gg → gg-type interactions to the

heavy-flavor production cross-section is comparable to that of the leader-order term. By extension, it is not

unreasonable to assume that yet higher-order terms might explain the observed discrepancy.

Another option is the possibility of unknown, beyond-the-standard-model (BSM) production processes

which give rise to heavy flavor. Supersymmetry is one popular option. Supersymmetry is an extension to

the standard model in which each fermion is paired with a supersymmetric partner boson, and each boson

with a supersymmetric partner fermion. Quite unfortunately, these supersymmetric partners are labeled by

prefacing the name of a SM fermion with the letter ‘s’, and awkwardly forcing the suffix ‘-ino’ into the names

of SM bosons. As an example, the supersymmetric partner to the bottom quark is called the sbottom, and

the partner of the gluon, the gluino. Under these theories, the pair-production of gluinos, each of which

decays into a bottom and sbottom, may lead to an excess of bottom quark production [8]. Through bottom

quarks decaying into charm (or by direct charm production through some other non-standard model process),

an excess of charm could also be observed. Given the excesses that we do observe, it is possible that some

new physics process (supersymmetric or otherwise) is responsible.

Finally, a third explanation points towards models of the hadronization process by which colored objects

become colorless mesons and baryons. This process is also sometimes referred to as fragmentation. An

improvement to what was (at the time) a leading model of fragmentation was used to improve the discrepancy

between theory and experiment for b production from a factor of 3, to a factor of 1.7 [9]. This is a figure
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Figure 1.1: At lowest order, bb̄ or cc̄ production (labelled generally above as QQ̄) comes about through
quark-antiquark, gluon-gluon, or quark-gluon scattering (top row). The latter process is the least common
source of QQ̄ production in pp̄ collisions, as the proton sea content contains very At next-to-leading order
(NLO), QQ̄ production comes from pinning a g → QQ̄ production vertex onto some lower-order QCD process
(bottom row).

that holds to this day in such popular theoretical software as Pythia.

Fragmentation is a non-perturbative process that must be described phenomenologically. The standard

scheme for doing so is called factorization: the problem is split into hard and soft processes, and the hard

(high-energy) interaction is solved perturbatively, while the soft, non-perturbative piece is modeled off of

experimental results (e.g. from the cleaner environment of e+e− colliders). The major assumption that lies

behind factorization is simply that low-energy interactions do not have a significant effect on hard QCD

interactions within the same collision.

A leading factorization-based approach is the parton shower model, which forms the basis for Monte

Carlo programs such as Pythia [10] and Herwig [11]. The parton shower model begins by simulating the

hard-scatter event of interest (e.g., u + d̄ → W + g), using perturbative QCD. Then, it adds initial state

radiation (ISR) and final state radiation (FSR) to the interaction; this radiation is perhaps best described

as gluons and photons which are radiated away by incoming and outgoing particles. Incoming and outgoing

gluons and photons are also allowed to split into quark-antiquark, gluon-gluon, or lepton-antilepton pairs.

This is all accomplshed using a probabilistic model, tuned to experiment. The result is a full simulation of

high-energy collisions to extremely high order (with many final-state particles), without having to explicitly

draw out each Feynman diagram and calculate each term.

An important final note about Monte Carlo parton shower models is that many (including Pythia) use
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only leading-order predictions for the hard-scattering process in heavy flavor production. The reason for

this is straightforward; the initial and final state radiation, by its nature, will simulate the NLO production

processes that are accomplished by adding a g → bb̄/cc̄ vertex onto a lower-order diagram. Explicitly adding

in such production mechanisms through NLO production processes can result in double-counting. It is

therefore important to take great care when mixing NLO perturbative calculations with the parton-shower

framework. For the Pythia Monte Carlo models used in this thesis, we use only the predictions of lowest-order

perturbative QCD paired with parton-showering.

1.6 Parton distribution functions

A final aspect of high energy collisions which we have not yet touched upon, is parton distribution functions

(PDFs). The proton is nominally a bound state of two up quarks, and one down quark. However, the

huge binding energy between these three quarks causes the color field around them to writhe with activity.

The constant strong interactions between these three quarks are mediated by the exchange of gluons, which

can split into temporary quark-antiquark pairs before recombining. The net result is that the proton is

more accurately described as a bag of quarks and gluons: the “valence” quarks (the aforementioned u, u,

and d) and the “sea” (everything else). When a proton and antiproton collide, the hard interaction may be

between either two valence quarks, one valence quark and one sea parton, or two sea partons. The energy

and momentum that is carried by each type of parton within the proton is described by the proton’s PDF.

The PDF is a probabilistic distribution describing the fraction of energy, x, held by some parton, i, times

that parton’s average population, x · fi(x). In essence, this quantity is the probability that in some given

interaction with energy scale Q, a parton of type i interacts with energy x · Q. The PDF is plotted as a

function of x, and an example proton PDF is shown in Figure 1.2. At high x, the proton PDF is always

largest for the valence quarks, as we would expect—these are the dominant ‘source’ of quarks in the proton,

and are more likely to hold a large fraction of the proton’s energy. However, the shape and size of the PDF

for each parton is dependent upon the collision’s center-of-mass energy scale, Q2, and as Q2 increases, the

overwhelming source of hard interactions is that of sea-quarks and gluons with small x. This reflects the

standard trend of ever-higher energy transfers probing ever-smaller regions of space, in which the sea quarks

become far more prevalent. It is interesting to note that the gluon PDF is enormously larger than that of

any quark flavor at low x; this is simply another reflection of the huge binding energy inherent in the strong

force, here manifesting itself as a large gluon population.

There are many models for the proton PDF. Two of the more historically-dominant PDF sets are CTEQ

[12] and MRST/MSTW [13], both of which are used in this thesis. To determine the proton PDF from
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Figure 1.2: The proton’s parton distribution function (PDF) at energy transfer scale Q2 = 10 GeV2, as
predicted by PDF set CTEQ6L [12]. Notice that below x ∼ 0.1, the PDF is dominated by gluons.

first principles is virtually impossible—this is an extremely non-perturbative regime, with huge numbers of

low-energy, colored partons in close proximity to one another. Instead, these PDF models use experimental

results taken at some particular Q2 to determine specific pieces of the PDF, and then use perturbative

techniques to extrapolate to new regimes.

There are four major types of experiment used to determine the proton PDF. One is deep-inelastic

scattering processes (DIS), in which a lepton is scattered from a target containing protons. This is far

cleaner than colliding two hadrons, and the final states produced provide insight into the nature of the

proton. Lepton pair production also helps, in which a quark and its antiquark annihilate to produce a

lepton-antilepton pair; in proton-proton collisions, for example, all such events must involve at least one sea

quark.

Lepton charge asymmetry is a useful probe in pp̄ collisions: the W bosons produced in the interaction,

and their angular distribution, can provide insight into the nature of underlying quarks. Finally, high-pT jet

production can also contribute to our knowledge of the sea quarks: with each jet theoretically initiated by

a single quark or gluon, we can trace jet structure back to the underlying hard-scatter of a hadron collision.

For example, jets identified with strange quark production may provide insight into gs → gs scattering

events, in which a strange sea quark is excited by collision with a gluon, and is ejected from the proton.

1.7 Vector bosons plus charm

In previous sections, we described the field of high-energy physics in great generality, and closed on three

major concepts concerned with heavy flavor production. First, that heavy flavor production falls into the
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regime of perturbative QCD predictions; second, that deviations from perturbative predictions may indicate

a flawed model or new physics; and third, that heavy flavor production may also provide insight into the

proton PDF. Identifying ‘inclusive’ heavy flavor production—charm, bottom, or top quark production by

any means—is certainly a viable means for exploring these questions. However, several unique advantages

can be gained by looking specifically at vector boson prodiction in association with charm quarks, W/Z + c.

First, theW+c production process in pp̄ collisions is sensitive to the magnitude of the Cabibbo-Kobayashi-

Maskawa (CKM) matrix element Vcs, and also to the strange quark distribution function of the proton. To

first order, W + c production comes about through ‘quark-gluon fusion’, in which a strange or down quark

absorbs energy from a gluon, and decays into a W boson and charm quark (Figure 1.4). While the strange

quark PDF is smaller than the down quark PDF within the proton, CKM matrix element |Vcd| ∼ 0.225

is sufficiently suppressed with respect to |Vcs| ∼ 0.973 that most s(d) + g → W + c events come about

through strange quark/gluon fusion (about 80%) [14, 15]. While the s-quark PDF at momentum transfer

scale Q2 ∼ 10 GeV2 and momentum fraction x ∼ 0.1 has been determined by neutrino-nucleon deep inelastic

scattering experiments [16, 17], the interpretation of this data is model-dependent. Some analyses suggest

that the s-quark sea is suppressed with respect to the d -quark sea at all values of x [18, 19, 20], while others

suggest that all light flavor sea quarks approach equal population as x decreases [21]. With Q2 ∼ m2
W for

the production of a W boson in association with a charm quark, it is possible in W + c events to probe this

smaller x regime and to test these models in more detail.

A recent ATLAS search to identifyW+c production in pp collisions provided results with a preference for

the symmetric s and d sea quark hypothesis [22]. In particular subsamples, this analysis was able to probe

down to a charm quark momentum of 8 GeV. However, the uncertainty in this symmetry measurement was

large (∼ 30%), and corroborating or contradictory results would be well-received. The Tevatron has also

investigated W + c production. CDF measured the W + c cross-section for (pT (c) > 20 GeV as an indirect

test of the value of |Vcs|, and also as a means of looking for any excess that might indicate a flaw in the SM

prediction [23, 24]. No such excess was found, and all results (including the derived valued of |Vcs|) were

found to agree with world best measurements.

W/Z+g(→ cc̄) production is also an interesting venue for testing the properties of heavy flavor production.

While searches for inclusive heavy flavor production (e.g., cc̄ or bb̄ production with or without a W/Z) is

certainly an interesting subject, first identifying a W or Z provides a strong handle on the momentum

transfer involved in the collision. This, in turn, allows for more stringent tests of production rates and of

perturbative QCD. As described in earlier in this chapter, the rates for inclusive bb̄ and cc̄ production are

observed to be higher by a factor of 1.7 than NLO predictions with improved models of hadronization. This

may be due to higher-order terms in the perturbative series, to new physics beyond the standard model,
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Figure 1.3: Vector boson plus heavy flavor as a source of background to Higgs and single top searches. To
the left, a plot of a neural net discriminant used to search for single top decays in CDF events with at least
one tagged bottom jet (search is for decay t → W (→ `ν) + b) [26]. To the right, a plot of invariant dijet
mass for D0 events with two tightly-tagged bottom jets (search is for decay pp̄ → W (→ `ν)H(→ bb̄)). In
both cases, the contribution of vector boson plus heavy flavor background (W + h.f. or V + h.f.) is seen to
be quite sizeable. [27].

or to the need to further improve our models of hadronization. A recent analysis by the D0 experiment at

Fermilab tested the (previously unmeasured) rate of charm quark production in association with Z bosons,

and found it, too, to be compatible with the 1.7× rate enhancement of g → cc̄ splitting found in other

analyses [25].

Finally, the signature of a vector boson plus charm event—one or more charged leptons and/or missing

energy, plus heavy flavor jets—is shared by several other searches in high energy physics. Certain decay

modes of the Higgs boson, top quark, dark matter candidates, and supersymmetric particles all look very

similar to vector bosons plus heavy flavor, such that W/Z plus heavy flavor acts as background to these

searches. Some examples are shown in Figure 1.3. To remove this background, these analyses often rely upon

the predictions of theory to estimate how many of these background events will be in their signal sample. It

is therefore very important, if we are to conduct accurate searches for rare processes, that these models be

accurate. Only repeated experiment will tell us if they are.

In short, the applications of W/Z+ c physics are widespread. In this thesis, we do not seek to address all

of the questions raised above, or even most of them. We are far from the first to recognize that these events

are important, and there have been many studies of their properties; however, at the time that we began this

work (and as recently as March of this year), there had been no attempt to probe W/Z + c production in

hadron colliders for charm momentum less than 15− 20 GeV. The reason for this was simple: the standard

approach for identifying charm in an event is to search for charmed jets ([23, 24, 25]). Jet objects at hadron

colliders are generally defined to have transverse momentum greater than 15−20 GeV, which excludes charm
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Figure 1.4: First order production processes for charm quark production in association with vector bosons.
Production via g → QQ̄ includes both direct charm production (Q = c), and bottom hadron decays (in
which Q = b, and the b decays into a c).

production below this threshold.

However, if discrepancies between NLO QCD and observation lies in the failure of perturbative QCD,

then we might expect for the discrepancy between theory and data to increase at lower charm momentum.

In addition, it is possible that some new beyond-the-standard-model process is at work at this momentum

scale, which could lead to an observable excess. We therefore propose a new approach for studying W/Z + c

production in hadron colliders. Instead of probing jet properties for evidence of a genitor charm quark,

we search at the track level for a particular charmed meson decay: D∗(2010) → D0(→ Kπ)π. By fully

reconstructing this decay, we find that we are able to identify D∗ in W/Z events down to a transverse

momentum of 3 GeV—nearly an order of magnitude lower than jet-based approaches (and a factor of 2.5×

lower than a similar analysis presented by the ATLAS collaboration this March [22]).

In this thesis, we present our new approach in more detail, we explore its properties, and we identify and

characterize backgrounds in the low-momentum regime that it has opened up for observation. In the process,

we make the first observation of W/Z +D∗ production (abbreviated very slightly as V +D∗ production) at

hadron colliders at low charm momentum. We show that full reconstruction allows us to identify up to three

individual W +D∗ production processes, and that we are sensitive not only to W/Z+ c production, but also

to W + bb̄ production in which one of the resulting bottom hadrons decays into a D∗. Most importantly, we

prove that is possible to probe this regime with good accuracy, and we provide a viable technique for future

analyses to employ. We conclude by comparing what we have observed to theoretical predictions, in order

to see how well theoretical models hold up in a low-momentum charm regime. We also suggest additional

ways in which our technique might be used to answer other questions in hadron collider physics.
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Chapter 2

The Tevatron Collider and CDF detector

This analysis uses data taken by the Run II Collider Detector at Fermilab (CDF), at the Fermilab Tevatron.

The Tevatron was a 1 km radius synchrotron, acting as the final stage in an accelerator chain that brought

protons and antiprotons together in collisions with a center of mass energy
√
s = 1.96 TeV. Of the six

experimental halls spaced around the four mile accelerator ring, two featured collision points which were

monitored by the CDF and D0 detectors during the Tevatron’s Run II, from 2001 until 2011. Until the

completion of the Large Hadron Collider in 2008, the Tevatron was the world’s most powerful collider.

A schematic diagram of the Fermilab accelerator complex is pictured in Figure 2.1. As of the writing of

this thesis, both the Tevatron and the CDF detector have been decomissioned. However, in all that follows,

we choose to describe the accelerator, the collision process, and all related equipment in the present tense.

This is simply to prevent unwieldy clashes with this author’s tendency to write all scientific literature in the

present-tense.

2.1 The Fermilab accelerator chain and the Tevatron

While nominally more recognizable than other parts of the accelerator chain, the Tevatron is only one part

in a sequence of events leading to the production and collision of proton-antiproton beams at Fermilab. The

proton beams described in the following sections, in particular, are not only used for pp̄ collisions; they are

also delivered to test beam facilities, to fixed target experiments, and to neutrino experiments at Fermilab.

2.1.1 Proton production and acceleration

The production of a pp̄ collision at
√
s = 1.96 TeV at the Fermilab Tevatron begins with the production of

a proton beam.

This beam originates from the Cockcroft-Walton pre-accelerator, which ionizes hydrogen gas (H2) to

create negatively-charged hydrogen ions (H−). These ions are accelerated through a column that leads from

a charged dome housing the hydrogren source, to a grounded wall; in the process, they gain an an energy of

16



Figure 2.1: A schematic representation of the accelerator chain that is used to collide protons with antiprotons
at a center of mass energy

√
s = 1.96 GeV. Not explicitly labeled are the Debuncher and Accumulator, both

of which are located in the rounded triangular segment labeled Antiproton Source. Each piece of the chain
is described in this section (section 2.1).

750 keV.

The ions are next fed through a transfer line into the linear accelerator (Linac). The Linac is a series

of radio frequency (RF) cavities which accelerate the hydrogen ions to an energy of 400 MeV; this beam is

focused by means of quadrupole magnets located both inside (the first five stations) and outside (the last

seven stations) of the RF cavities.

A transfer line takes the resulting beam to the Booster. The Booster is the first synchrotron in the

accelerator chain: a series of magnets arranged around a (75-meter radius) circle, with (19) RF cavities

spaced throughout to provide the acceleration. These RF cavities operate at a frequency that is synchronized

to the period of the circling protons, providing a constant boost—hence the Booster name. The Booster

strips the electrons off of the hydrogen ions, leaving behind only protons, and brings these protons up to an

energy of 8 GeV. Finally (at least until the Tevatron step), the Booster sends the beam of 8 GeV protons to

the Main Injector (MI), another synchrotron with 18 accelerating cavities and a circumference seven times

that of the booster. For beam that is destined for the Tevatron, the MI accelerates the beam to an energy

150 GeV.

Once the protons have reached 150 GeV of energy, they are sent to the Tevatron for the final step.

17



2.1.2 Antiproton production and acceleration

Antiproton production begins with a 120 GeV proton beam sent from the MI, as described in the previous

section. This beam is sent to a target of nickel alloy, and collisions between the protons and the nickel produce

a large number of secondary particles. Magnets and electric fields are used to filter off 8 GeV antiprotons

from this spray, accelerate them, and send them to a synchrotron called the Debuncher.

The Debuncher is not a ‘typical’ accelerator, in that it does not increase the energy of the antiprotons. The

antiprotons filtered off of collisions with the nickel target have a fairly large spread in momentum—including

potentially large oscillations in the transverse plane—and this is not desirable for a final, well-behaved

beam. To address this problem, the Debuncher uses stochastic cooling to reduce the transverse energy of the

anti-protons, reducing this spread in momentum and producing a ‘cooler’, more well-behaved beam. This

stochastic cooling works by detecting electrical signals caused by fluctuations in the momentum of groups of

antiprotons, and providing a stimulus to move the momentum behavior of each group towards some average.

This ‘cools’ the beam in the sense of reducing entropy, producing a more well-ordered state.

This cooled beam is then sent to another synchrotron, the Accumulator, which is housed in the same

ring as the Debuncher. Here it is cooled further and temporarily stored. Antiprotons cannot be produced

at nearly the same rate as high-momentum protons (in fact, it takes about one million protons hitting the

nickel target to produce 20 antiprotons). Therefore, a stack of anti-protons must be built up over the course

of many hours, before being injected into the Tevatron for collisions—in the meantime, they must be stored

somewhere, and the Accumulator is used for part of this storage. The Accumulator is not the final location

for storing the antiprotons, however, and they are next sent to the Recycler.

The Recycler, another synchrotron which is housed in the same ring as the MI, holds the antiprotons

until the Tevatron is ready for a new beam store. In the meantime, it also cools the antiprotons yet further.

It does this via stochastic cooling as previously described, but also through ‘electron cooling’, in which a

cool, well-behaved (low transverse momentum) beam of electrons, at the same energy as the antiprotons, is

overlaid with the antiproton beam. Interactions between the electrons and antiprotons bring the antiprotons

even closer to a cooler, ordered state, allowing for a neater and more compact beam.

When the Tevatron is ready for a new beam store, antiprotons are sent from the Recycler to the Main

Injector, where they are circulated in a direction that is opposite that of the proton beam. Here, the

antiprotons are accelerated to 150 GeV of energy, and then sent to the Tevatron.
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2.1.3 Tevatron

The Tevatron is the final destination for protons and antiprotons that are headed for collision. They are

circulated in the Tevatron as beam ’stores’, which consist of 36 ‘bunches’ of each protons and antiprotons.

One bunch contains about 3 × 1011 particles; each bunch is spaced 396 ns apart from the next, and the

bunches are arranged into three groups of twelve, with ‘abort gaps’ between each group. These bunches are

injected into the Tevatron by the MI, and ramped from 150 GeV up to 980 GeV, their final collision energy.

The performance of a particle collider is measured by instantaneous luminosity, defined as:

L =
fBNNp̄

2π(σ2
p + σ2

p̄)

Here, B is the number of bunches in each beam, Np(Np̄) is the number of protons (antiprotons) in each

bunch, σp(σp̄) is the root-mean-square proton (antiproton) beam widths at the interaction point, and f is

the bunch revolution frequency. Luminosity is usually defined in parallel with cross-section σ. For some

given interaction pp̄→ X, the cross-section for that interaction is related to luminosity as:

R(pp̄→ X) = σ(pp̄→ X)× L

where R is the rate at which the interaction pp̄ → X takes place. The two quantities σ and L only have a

quantifiable meaning when used in tandem. L is, roughly, a measurement of the number of pp̄ collisions that

take place per unit time, while integrated luminosity is a measure of the total number of pp̄ collisions that

have been produced over some finite range of time. Plots of the Tevatron peak and integrated luminosity

records are shown in Figure 2.2.

These pp̄ collisions take place at interaction points inside of the two detectors, CDF and D0, where proton

and anti-proton bunches are made to intersect over a region of length on the order of one meter. Each

crossing results in only a few collisions, and the bunches remain intact over the course of many crossings,

with beams kept focused by magnets spaced around the Tevatron’s circumference. As such, a single store

can be circulated for many hours, either until the proton and antiproton bunches have been depleted to

the point that a new store is desired (for maximum integrated luminosity), or until there is cause to dump

(abort) the beam. This is done if the beam becomes unstable for some reason (e.g., if there is a lightning

strike somewhere in the vicinity of the Tevatron). If not aborted, an unstable beam could damage sensitive

equipment in either the detectors, or the Tevatron ring itself. To prevent this, an unstable beam can be

directed into a high-density target called the ‘dump’. The previously-mentioned ‘abort gaps’ provide time

for the Tevatron’s magnets to set up a field that will reroute the beam into the dump.
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Figure 2.2: Peak (top) and integrated (bottom) luminosity at the Tevatron. The peak luminosity plot shows
an increase with time that reflects continual improvements in the Tevatron’s performance. The integrated
luminosity plot also reflects this improvement, in the form of an accelerating rate of luminosity delivered to
the two detectors, CDF and D0. Out of the ∼ 12 fb−1 of integrated luminosity delivered to each detector,
each recorded ∼ 10 fb−1—an efficiency of over 80%.
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Figure 2.3: A longitudinal, top-down, schematic cross-section of the CDF detector for Run II,.

2.2 The CDF Detector in Run II

The CDF is a multipurpose detector, with tracking, calorimetry, and muon systems that make it possible to

identify a vast range of collision by-products. We provide an overview of the detector in this section, with

an emphasis on the subsystems that we use to identify objects in our analysis. A diagram of the CDF is

displayed in Figure 2.3. A summary of detector signatures for some common physics objects is shown in

Figure 2.4.

2.2.1 Coordinate system

The CDF detector is best described using different coordinate systems for different purposes. A standard

Cartesian coordinate system is defined with ẑ pointing in the direction of motion of the protons, x̂ pointing
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Figure 2.4: A cartoon displaying the signatures of four common colllision event by-products: muons, elec-
trons, photons, and jets. Each type of object interacts with a different subset of the detector systems,
allowing unique identification.

radially outwards from the center of the Tevatron ring, and ŷ pointing vertically upwards up towards the

sky.

In many applications, it is easier to describe the detector using a cylindrical (r, φ, z) or spherical (ρ, φ, θ)

coordinate system, which better reflect the detector’s (approximately) axial symmetry. In the cylindrical

case, ẑ is identified with the longitudinal direction, and the x−y plane is used to describe transverse motion;

azimuthal angle φ is measured with respect to x̂. In spherical coordinates, ρ and φ describe the transverse

plane; φ is once more measured with respect to x̂), while polar angle θ is measured outwards from the ẑ axis.

Another important coordinate is rapidity, y, defined as

y ≡ 1

2
ln

[
E + |−→p | cos θ

E − |−→p | cos θ

]

Rapidity is a Lorentz-invariant quantity which is constructed such that the number of particles produced

per unit rapidity, dN/dy, is approximately constant. The number of particles per unit polar angle, dN/dθ, is

not constant due to variation in the ẑ -momentum of incoming partons; while the protons (or anti-protons) in

any given bunch each have the same average energy (980 GeV), there is variation at the parton level; even for

two protons with identical energy and momentum, the momentum of an individual parton is a probabilistic

fraction of the proton’s total momentum. These probabilities are described by a proton’s parton distribution

functions (PDFs), as described in Chapter 1.

In practice, finding both E and |−→p | in order to calculate y requires knowledge of a particle’s mass. To

avoid this requirement, it is noted that in the relativistic limit pc � mc2, rapidity can be reduced to the

simpler ‘pseudorapidity’, η.
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Figure 2.5: A reduced schematic of the CDF detector, emphasizing the tracking systems and a visual reference
for coordinate η.

y(pc� mc2) ' η ≡ − ln tan(θ/2)

where tan θ is defined in terms of the particle’s transverse (pT ) and longitudinal (pz) momentum, tan θ =

pT /pz. Pseudorapidity is generally defined with respect to the collision point. However, when describing

detector components, a variant definition ηdet may be used; ηdet is defined with respect to the center of the

detector, x = y = z = 0. High |ηdet| parts of the detector are referred to as the forward region, while low

|ηdet| parts are referred to as the central region. The detector is most sensitive in the central region, which is

usually detects the by-products of the highest-energy collisions; incoming partons have pT = 0, on average,

such that a large value of pT in a final state object requires a large transfer of energy and momentum.

2.2.2 Tracking

The CDF tracking system consists of two major parts: the smaller, three-part silicon tracking system near

the beampipe—which provides high-resolution vertex reconstruction—and the larger central outer tracker

(COT). These tracking subdetectors are immersed in a 1.4 T magnetic field running parallel to the beamline.

This field is provided by a superconducting solenoid that surrounds the COT. The tracking subsystems are

shown in the reduced schematic of the COT displayed in Figure 2.5.
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The Silicon Tracking Systems

The three layers of the silicon system extend from the edge of the beampipe, at 1.35 cm, out to a radius of

29 cm. They consist of finely-segmented strips of silicon, with single hit resolution on the order of 6−10 µm.

This resolution allows high precision reconstruction of collision vertices with a resolution ∼ 20µm, which

is useful for identifying displaced vertices from heavy flavor decays. The silicon detectors also have a low

threshold for signal (∼ 3 eV), compared to the gas ionization energies (∼ 1015 eV) needed to produce a

signal in the COT drift chamber.

The silicon system begins with Layer 00 (L00), a set of single-sided silicion detectors which are mounted

directly on the beampipe, and which provide coverage for the region |η| < 4.0. Beyond this, from r =

2.5−10.6 cm, is the SVX II; this covers the region |η| < 2.0 with five double-sided layers of silicion microstrips,

arranged on three cylindrical barrels. Regions with 2.0 < |η| < 4.0 are partially covered by the SVX II (see

Figure 2.6). The microstrips on the outer side of each layer are set at an angle with respect to the inner side,

in order to provide stereo resolution. Finally, the Intermediate Silicon Layers (ISL), from r = 20 − 29 cm,

cover the region |η| < 2.0. Like in the SVX II, each of the three layers comprising the ISL are double-sided,

with the sensors on each side set at a different angle in order to provide stereo measurements [28].

Together, these three components provide high-resolution measurements of charged particle tracks near

the collision point. This allows for the reconstruction of collision and decay vertices, which is particularly

useful for identifying heavy flavor decays. We will take advantage of this in Chapter 5 when we reconstruct

our D∗ → D0(Kπ)π decays in order to identify charm.

The Central Outer Tracker

The central outer tracker (COT) is an open-cell drift chamber: a cylindrical, 1.3 m shell with filled with

an argon-ethane gas mixture, through which 30, 240 sense wires are strung. Approximately half of these

sense wires are axial (run parallel to the z axis), while the other half are “small-angle stereo”, angled 2o with

respect to the z axis. These sense wires are arranged in wire planes, and within each wire plane the sense

wires are alternated with potential wires that act as an anode. The wire planes are positioned opposite field

sheets that act as a cathode. This produces a drift field through which charged particles can be attracted to

the sense wires, registering a signal. These wire planes are arranged into 96 layers, which are further divided

into 8 superlayers (4 axial, 4 stereo) [29].

When a charged particle moves through the COT, it ionizes the gas through which it passes. Electrons

are drawn toward the sense wires, producing ‘hits’ that trace out the path taken by the charged particle.

Track algorithms can later connect these hits and reconstruct the path. The path that a charged particle
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Figure 2.6: Cartoons representing longitudinal (left) and transverse (right) cross-sections of the silicon
detector. The longitudinal view (presented in the r − z plane) provides a nice reference for the coverage in
η that is provided by each piece of the silicon system. The transverse view provides a ‘beamline’ view of the
silicon systems, with L00 in red, SVX II in black, and ISL in pink; the remaining pieces are supports and
infrastructure.

takes as it moves through the COT depends upon its charge and its momentum; as such, the COT tracking

chamber allows for high-resolution determination of a particle’s momentum and charge.

2.2.3 Calorimetry

Beyond the tracking volume and the solenoid lie the calorimeters. As the name would imply, the calorimeters

measure the energies—and to some extent, the directions of motion— of particles produced in pp̄ collisions.

Unlike the tracking volume, the calorimeter system can register both charged and uncharged particles. There

are many parts to the calorimeter system, but all parts work in approximately the same way.

General Calorimeter Function

In order to measure energy, each calorimeter consists of sheets of scintillators that are interspersed with

thicker layers of high-density absorbing material. When a particle strikes the calorimeter, it interacts with

the dense calorimeter material to produce a shower of lower-energy particles. As this shower radiates through

the scintillator, any energy that is deposited in the scintillator volume is converted into light, which is then

picked up and amplified by photomultiplier tubes to produce an electrical signal [30]. The number of photons

produced in these scintillating layers is approximately proportionate to the energy of the initial particle, and
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Figure 2.7: Top: cartoon representing the layout of sense and potential wires, arranged opposite field
sheets, within the COT. The electric field generated between the anode potential wires and the cathode field
sheet brings electrons towards the sense wires, causing ‘hits’ when a charged particle ionizes the gas near a
sense wire. Bottom: the arrangement of wires and field sheets into eight superlayers within the COT; four
superlayers are axial, parallel to the z-axis, and four superlayers are small-angle stereo (2o) with respect to
the z axis. 26



this relationship can be exploited to unfold measurements back to that initial particle energy.

The electromagnetic calorimeters use lead for the high-density absorbing layers, and are designed to

measure the energy of electrons and photons. Photons are easily absorbed by these calorimeters, while

electrons emit their energy very quickly through bremsstrahlung radiation (which is then absorbed); neither

photons nor electrons can penetrate very far. As such, the electromagnetic parts of the calorimeters are

located closest to the tracking volume. The hadronic calorimeters, which use iron for their absorbing layers,

lie just outside of the electromagnetic calorimeters, and are substantially larger [30]. This reflects the fact

that hadrons lose energy by ionization (a small effect) and nuclear interactions (which require collisions with

nuclei)—in order for a hadron’s energy to be absorbed by the calorimeter, it must travel through a large

amount of material.

Calorimeter Specifics

CDF has electromagnetic and hadronic calorimeters—one ‘central’, and one ‘plug’. The central calorime-

ter consists of the Central Electromagnetic (CEM), Central Hadronic (CHA), and Wall Hadronic (WHA)

sections, while the plug calorimeter consists of the Plug Electromagnetic (PEM) and Plug Hadronic (PHA)

sections. The CEM is further divided into ‘towers’ covering the range |η| ≤ 1.1; each tower is an individ-

ual unit covering 15◦ in φ and 0.11 in η. The CHA matches the individual towers of the CEM, but only

covers the range |η| ≤ 0.9; however, it is supplemented by WHA coverage of the region 0.8≤|η|<1.2. Six

radiation lengths into the CEM, a strip-and-wire-chamber Central Electromagnetic Shower (CES) detector

provides additional measurements at the depth at which the electromagnetic shower of incoming particles is

expected to deposit the largest amount of its energy. The CES can be used to better link particle tracks to

calorimeter hits. The Central Pre-Radiate (CPR) wire chambers lie on the inner surface of the CEM, pro-

viding early measurements of showers—measuring this early behavior allows for better separation between

electrons/photons and light hadrons [30].

The plug calorimeter set consists of the Plug Electromagnetic (PEM) and Plug Hadronic (PHA) sections,

which cover the region 1.2 ≤ |η| ≤ 3.6. As in the case of the central sections, these pieces are split into

towers. These towers are clustered by η into 12 groups. The four groups at smaller |η| match the central

section with 15◦ divisions in φ, while the other eight towers use 8◦ divisions in φ. Again, in parallel to the

corresponding central calorimeter piece, the Plug Electromagnetic Shower (PES) lies six radiation lengths

into the PEM, and the Plug Pre-Radiate (PPR) likes on the inner surface of the PEM. Other than placement

and size, these calorimeters function in essentially the same way as their central counterparts [30].
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2.2.4 Muon sub-detectors

Beyond the calorimeters lies the outermost set of CDF sub-detectors: the muon sub-detectors. This is

intentional; muons are highly-penetrating particles, and on average they do not lose much energy even to

dense materials like lead and iron. They are unique in this sense, which provides a powerful identifier—to

first order, any particle that makes it all the way through to the muon sub-detectors is a muon. The muon

sub-detectors, then, need only to detect a charged particle that has made it through the calorimeter. In

practice, there are also fake signatures (for example, high-energy pions can also make their way through the

calorimeter), but we will consider those in section 3.4.

Each of the muon sub-detectors that we will describe here consist of groups of single-wire drift chambers—

very small versions of the COT. As particles move through the sub-detectors, they leave behind small track

signatures, or ‘stubs’, which can be matched to tracks in the COT in order to provide more information

about the particle. The Central Muon (CMU) detector sits directly beyond the CHA, and covers the range

|η| ≤ 0.6. The Central Muon Upgrade (CMP) lies beyond both the CMU and a 61 cm layer of steel shielding

(which prevents additional non-muon particles from hitting the CMP). It covers the same |η| ≤ 0.6 range as

the CMU, but breaks from the (until this point) approximately cylindrical symmetry of the CDF; the CMP

takes the form of a rectangular box of wire chambers, which surrounds the rest of the CDF [31]. The CMP

is supplemented by the Central Muon Extension (CMX), which covers the region 0.6 ≤ |η| ≤ 1.0. Finally,

the Intermediate/Barrel Muon Detector (I/BMU) covers the region 1.0 ≤ |η| ≤ 1.5, positioned at an angle

that such that it stretches radially from the plug calorimeters towards the CMX (see Figure 2.3) [31].

Together, the muon sub-detectors cover the region |η| ≤ 1.5, and they are very useful for identifying

both the leptonic decays of vector bosons, and the semi-leptonic decays of hadrons. As we will see, muon

signatures are very clean, and they help to create signals that stand out from background. The coverage

provided by each muon sub-detector is summarized in Figure 2.8.

2.2.5 Cerenkov Luminosity Counters (CLC)

Though we will not reference the Cerenkov Luminosity Counters (CLC) again in this thesis, they are an

interesting part of the CDF detector. As the name would imply, the CLC is designed to provide a measure of

the luminosity of pp̄ interactions; as we saw in section 2.2.1, measuring the luminosity allows us to measure

the cross-section of specific interaction processes.

In general, not all pp̄ interactions result in a signature that is picked up by the detector systems described

thus far. Inelastic collisions, in particular, often result in forward states which pass through uninstrumented

regions of the detector. To count such events, the CLC occupies the region from 3.7 ≤ |η| ≤ 4.7, and
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Figure 2.8: Summary of coverage by each of the muon sub-detectors in η − φ space.

it consists of long, conical tubes of isobutane gas which are angled to point towards the collision point

[32]. Figure 2.9 displays the basic design of the CLC, as well as its placement within the detector. When

forward particles interact with this gas, Cerenkov radiation is produced, and this radiation is amplified by

photomultiplier tubes to produce a signal. Signal amplitude thresholds are employed to distinguish particles

originating from the pp̄ bunch crossings, from softer particles that originate in secondary interactions (e.g.,

between prompt particles and the beampipe or detector volume) [32]. In all, this system allows for a better

measurement of the total cross-section of pp̄ interactions, in turn allowing for better resolution of cross-section

measurements.

2.3 Trigger System and Data Acquisition (DAQ)

The rate of pp̄ bunch crossings at the CDF is 1.7 MHz (one bunch crossing every 396 ns). This is meaningfully

compared to the rate at which events can actually be written to tape and recorded, which has varied

throughout the life of the experiment but is generally of order ∼100 Hz. Clearly, far more collisions are

produced per second than can be recorded! The Trigger System is designed to sort through these collision

events, and to select only those events that are most likely to be of interest to physics analyses. The Level

1 and Level 2 triggers are very fast hardware triggers that reject most of the events; the Level 3 triggers

are software triggers that act upon partially-reconstructed events. We will briefly discuss each trigger layer
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Figure 2.9: Left: the basic design of the CLC, consisting of long, thin, conical tubes angled towards the
collision region. Right: the placement of the CLC within the forward detector volume (see Figure 2.3 for
larger context).

here. A flow diagram of the trigger system is shown in Figure 2.10.

2.3.1 Level 1 trigger

At this stage, information about hits in the COT, the calorimeters, the muon system, and the luminosity

system are available; they are used to reconstruct central tracks, and electron and muon signatures. There

are a total of 64 different trigger conditions that can be satisfied at this stage, in order to get an event passed

on to Level 2 [33]. Two of the more important subsystems at this level are the eXtremely Fast Tracker

(XFT), which has the ability to find tracks with pT > 1.5 GeV; and the Extrapolation Unit (XTRP), which

is used to connect these tracks to stubs in the muon detectors (to construct primitive muon objects), and

to the calorimeters (to construct primitive electron objects). Events with such muon and electron objects

comprise the bulk of the data sample that we will discuss in this thesis. Other triggers at this stage act on

primitive jet objects, photons, and the event missing energy 6ET . Events pass the L1 trigger at a rate of

∼ 30, 000 Hz.
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Figure 2.10: The basic flow structure of the CDF trigger system. The actual rate of events accepted and
rejected at each step have varied as a function of time, but the basic structure has remained the same
throughout CDF Run II. The Level 1 (L1) and Level 2 (L2) triggers are hardware based, and very quick; the
Level 3 (L3) triggers are software-based and slower, but act on partially-reconstructed events to make high-
level object decisions. Recorded events are stored on magnetic tape in large storage silos—an interesting, if
antiquated feature.
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2.3.2 Level 2 trigger

Any event that satisfies a Level 1 trigger is passed on to Level 2. Due to the reduced number of input events

(reduced relative to the Level 1 input rate), the Level 2 trigger system has time to refine the primitive objects

constructed by the Level 1 system, and to make finer cuts.

At this stage, information from the silicon detector is sent to the Silicon Vertex Trigger (SVT), which

can identify the transverse impact parameter of tracks with respect to the primary vertex [34]. The impact

parameter is, loosely speaking, a measure of how distinct a track’s origin is from the primary vertex (we will

discuss this further in section 3.3). Heavy flavor hadrons, such as charm and bottom mesons, often travel

some finite distance from the primary vertex before decaying; this gives rise to tracks with a non-zero impact

parameter. At Level 2, some triggers act to select events with large track impact parameters, in order to

select events that are most likely to feature heavy flavor hadrons.

At this level, CES and PES information also becomes available, and can be used to further refine, e.g.,

electron and photon objects. Any refined events which pass the Level 2 selection cuts are passed on to Level

3, at a rate of about 750 Hz.

2.3.3 Level 3 trigger

At Level 3, complete information about the event is read out to a PC farm running the Linux operating

system. On one of these Linux nodes, each event is fully reconstructed with software algorithms. This pro-

vides improved momentum and energy resolution, full three-dimensional track reconstruction with matching

to the muon stubs and to calorimeter signatures, and silicon-based secondary vertex reconstruction. This

improved resolution allows high quality cuts, which select only the most interesting of the events that have

made it through the Level 1 and Level 2 triggers. The rate at which events pass the Level 3 trigger cuts

is about 100 Hz. These events are written to tape for offline analyses—analyses such as, for example, our

search for W/Z +D∗ production.
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Chapter 3

Object Identification

Our primary goal in this analysis is to identify a W/Z boson and D∗ meson emanating from the same pp̄

collision. However, we will find it useful to define other objects along the way. We collect these object

definitions here, explaining the cuts and motivations behind each.

3.1 The data format

We begin by discussing the format in which our data is stored. When a CDF event is saved to tape, it

is often reloaded, reconstructed, and stored in a data format which is more conducive to certain types of

anlaysis. This might including constructing new objects that were not present in the original data format

(such as secondary vertices), or even leaving out data that is not of interest (such as track uncertainties).

This expedites data handling and processing for a given analysis type. For instance, the BStntuple format

that is used by the CDF bottom group, is particularly well-suited for identifying events containing bottom

hadrons and jets. The TopStntuple format is used by the CDF top group for top analyses.

For our analysis, we use the Stntuple data format. Stntuple stores the tracking information that we need

in order to fully reconstruct D∗ → D0(Kπ)πs decays in Chapter 5—a quality that is not shared by the more

frequently-used TopStntuple and BStntuple formats. Objects stored in Stntuple form are usually prefaced

with “TStn”, e.g., TStnElectron (electron objects stored in Stntuple format), or TStnJet (jet objects stored

in Stntuple format). It is important to note that a TStnElectron will not always describe a true electron; it

is often the case that some background event, such as a jet, can fake the signature needed for categorization

as a TStnElectron object. I will often refer to such unproven objects as object ‘candidates’. All objects

of a certain type are stored in parent objects called “Blocks”, e.g., the TStnElectronBlock, which stores all

TStnElectron objects in a given event.
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3.2 Jets

3.2.1 Jet definitions

A jet in hadron collisions can be described at three levels: the parton level, the jet level, and the calorimeter

level. All levels seek to describe a jet as one of the products of a hard-scatter event. Ideally, a single jet

can be mapped back to a single parent parton (e.g., a bottom quark), providing insight into the nature of

partons despite our inability to observe them directly.

At the parton level, a jet is a quark or gluon produced by the hard-scatter process in a pp̄ collision. As this

quark or gluon moves through the detector (on the timescale of the strong interaction, 10−23 s ), additional

quarks and gluons may be produced by QCD radiation. This collection of partons is the parton-level jet,

which shares the net momentum of the original parton.

The partons then hadronize, producing a spray of charged and neutral particles which move through the

COT. For a parent parton with large initial momentum, these boosted particles trace a ‘cone’ of outgoing

paths, with cone width dependent upon the momentum of the initial parton. This cone of outgoing particles,

all of which originate from a single source, is a particle-level jet.

When these particles strike the calorimeter towers, they produce a pattern of energy signatures. These

tower energies are combined by a jet clustering algorithm to produce the final, calorimeter-level jet definitions.

The calorimeter-level jet definition is a staple in collider physics, providing a universal metric for character-

izing diverse hard-scatter products—because neutral particles do not leave tracks, only the calorimeter has

the ability to combine charged and uncharged particle signatures into a single measurement. Tracks within

a cone of radius R about the jet center can then be associated wth the jet, resulting in an object which

encodes a huge amount of information about the original parent parton. Therefore, when we refer to jets,

we are usually talking about these highly-encompassing calorimeter-level jets.

3.2.2 The Midpoint and JetClu jet clustering algorithms

Calorimeter-level jets are constructed using jet clustering algorithms. The ideal algorithm gives a close

relationship between jets at the three levels defined in the precious section. This thesis employs the so-called

JetClu algorithm, but we also discuss here the popular Midpoint clustering algorithm.

Either jet clustering algorithm mentioned above begins by first creating a list of all calorimeter towers

with ET > 1.0 GeV, where

ET = EEM · sin θEM + EHAD · sin θHAD (3.1)
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and θ is measured from the beamline with respect to the event’s highest-pT vertex. These towers are called

seed towers. Picking the seed tower of highest ET , the algorithm clumps together all seed towers within a

cone of radius R = 0.4 about the first tower to create a precluster (or proto-jet). Removing preclustered

towers from the list, the process is repeated until every seed tower has been assigned to exactly one precluster.

Each precluster’s ET -weighted center is found, and for the Midpoint algorithm, this center is used to

create a list of midpoints (hence the name) between precluster centers. Midpoints that fall within the cones

of two or more preclusters are then classified as the center of new proto-jets.

Preclusters are promoted to clusters by drawing a cone of radius R around each proto-jet’s ET -weighted

center, and then grouping together all towers within the cone with ET > 100 MeV. The cluster ET -weighted

center is then recalculated, a new cone is drawn, and the process is repeated until the list of included

towers remains unchanged (or until the number of iterations reaches a maximum limit). In some algorithms

(e.g., JetClu, which does not create midpoint preclusters), towers are only added to the cluster with each

iteration—they are never removed. This is called ratcheting, and it can lead to very large clusters which

contain towers that are no longer within the R = 0.4 cone. The Midpoint algorithm does not use ratcheting.

At this point, cluster overlaps are considered. If one cluster is completely contained within another, the

smaller cluster (smaller ET ) is dropped. If two clusters partially overlap, the overlap fraction f (sum of ET

of common towers, divided by the ET of the smaller cluster) is determined. If f > 0.75, the clusters are

merged. If not, the shared towers are split between the two clusters, with each tower going to the cluster

with the nearest ET -weighted center. After each splitting/merging, cluster centers are redefined. At the end

of this process, the remaining clusters are defined as our jets.

An interesting feature of the Midpoint algorithm is that, used as described above, it is possible for cluster

cones to drift such that some seed towers do not fall into any jet. This can result in energy signatures that

are effectively ignored. This problem is fixed by using a cone size of R/2 to find and define stable cones, and

then using cone size R to determine jet properties at the last step (splitting/merging).

As said, we use the JetClu algorithm in this analysis—this is the default jet clustering algorithm used by

the Stntuple data format. While the Midpoint algorithm may be considered more modern, we do not focus

intensely on jets in this analysis—hence, we claim that JetClu is suffice.

3.2.3 Jet energy corrections

Jet ET at the calorimeter level does not always well describe jet ET at the particle level. There are many

reasons for this, and there just as many solutions for correcting jet energies and strengthening the relationship

between the levels of jet definition.
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Absolute scale: Uninstrumented regions of the detector (e.g., cracks between the calorimeters) lead

to energy loss, and calorimeter reponse must be corrected for non-linearities in the relationship between

signal strength and energy signature. This is done with a combination of MC simulations of the calorimeter

response, and by measuring calorimeter response to single particles (e.g., kaons and pions) and extrapolating

to larger jets.

Relative scale: The calorimeter tower response also depends upon η, with plug calorimeter towers

exhibiting different behavior than central calorimeter towers. Central towers are better understood, and can

be better calibrated; in a 2→ 2 scattering process, the transverse energy of the two resulting jets should be

equal. By measuring jet energy in such events in the well-instrumented region 0.2 < |η| < 0.6 (which is also

far away from cracks), a correction function is determined as a function of |η| and pT , and extrapolated to

other regions.

Multiple interactions and the underlying event: Multiple pp̄ collisions during a single bunch

crossing can result in artificially high jet energies, with particles from one interaction falling into the jet

comes of another. Particles produced in the underlying event (parton interactions in a pp̄ collision that are

not part of the hard scatter) can have the same effect. The multiple interaction correction is determined

based upon the number of reconstructed primary vertices in the event, Nvtx—a fair measure of the number

of pp̄ collisions.

Out of Cone: Jet clustering algorithms will not always correctly measure jet energy—in particular,

energy may ‘leak’ outside of the cone used to cluster jets (R = 0.4 for our analysis), resulting in a smaller

measured jet energy than was present at the particle/parton level. This is corrected for by measuring energy

differences between cones of varying size, and by comparing Monte Carlo predictions with data. These

corrections are used to unfold calorimeter-level jet energy back to the parent parton energy.

In our analysis, we apply absolute scale, relative scale, and multiple interaction corrections, using the

CDF Jet Corrections Group’s jetCorr12 package, version 5. (In this package, underlying event corrections are

actually part of the ‘absolute scale’ correction, which is why we do not state them explicitly.) This package

returns a correction scale factor fscale for each jet in a sample, for an input number of quality primary vertices

Nvtx (vertex quality is determined by a method internal to the package). The corrected four-momentum of

each jet is then found as

p
(4)
jet, corr = p

(4)
jet, raw · fscale (3.2)

We only correct energy for jets with a minimum ET of 8 GeV. We also do not correct for jets that are

identified with an electron passing tight cuts defined by the TStnMuonID class (a set of cuts similar to,
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but more relaxed than our tight electron cuts (Table 3.1)); electron energy is very well measured by the

calorimeters, and does not need to be corrected. A jet is identified with an electron if it is the closest jet in

∆R to that electron (with max ∆R = 0.2).

3.3 Electrons

We define three types of electrons: loose central electrons, tight central electrons, and plug electrons. Loose

central electrons and plug electrons will be used to identify Z → ee events (section 4.2), while tight central

electrons will be used to identify W → eν events (section 4.3). It is worth describing some of the quantities

by which we define our electrons.

3.3.1 Electron classification

Pseudo-rapidity (|η|): Pseudo-rapidity has already been defined (section 2.2.1). However, we also use

|η| to define central (|ηcentral| < 1.1) versus plug (1.2 < |ηplug| < 2.8) electrons. The reason for this is

straightforward: the incoming pp̄ pair has essentially zero transverse momentum. Only in interactions with

high energy/momentum transfer Q2 will outgoing particles have large pT and low |η|. By selecting only

particles and tracks in the central (|η| < 1.1) region, an analysis can focus on high-energy interactions ,while

neglecting background at high |η|. However, valuable information can be lost if the entire region |η| > 1.1 is

neglected. For example, in Z → ee boson decays, it is often the case that decay products are split across the

central and plug regions. By enforcing additional cuts on the electron pair, it is possible to make high-quality

selection of electrons from Z events in the plug region—even if these plug electrons do not have as distinct

of a signature as the electrons in the central region. We use both types of electrons in the course of this thesis.

Fiducial cuts (z0, xCES, zCES): The detector is not hermitic, and there exist un- and under-instrumented

gaps in its coverage. Lepton candidates with tracks that lead into these gaps may be cut, due to our trun-

cated knowledge of their properties. Fiducial cuts often also include cuts on the z0 position at which a lepton

is traced back to the beamline, and on the xCES and zCES positions at which the electrons leave a signature

in the electromagnetic shower (xCES is measured with respect to the CES center for each tower cluster).

Central electron profile (χ2
CES, Lshr, ∆xCES, and ∆zCES): As described in section 2.2.3, the electro-

magnetic calorimeter contains a region called the electromagnetic shower. Real electrons have an expected

signature profile in this shower, described quantitatively by such variables as χ2
CES and Lshr. Cuts on these

values essentially require the electron signature to be ‘electron like’, compared to pre-determined profiles.
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Cuts on ∆zCES and Q ·∆xCES (where Q is track charge) require that the distance between the reconstructed

electron track and the best matching CES cluster are small.

Plug electron profile (χ2
PEM, PEM 3 × 3 fit tower, Pes5x9U(V), ∆xPES, and ∆zPES): As in the case

of central electrons, plug electrons have an expected signature profile. These are described quantitatively

by χ2
PEM and Pes5x9U(V), each of which compare observed energy distributions in some part of the de-

tector with templates. PEM 3 × 3 fit tower compares the number of PEM towers used in the χ2
PEM fit,

compared to the number that would be expected for a real electron. Cuts on ∆xPES/∆zPES parallel those

on ∆xCES/∆zCES in the case of central electrons.

Beam constrained tracks: Z (and W ) bosons are very short-lived particles, with a lifetime on the

order of 10−25 s. They decay essentially immediately after production, such that the decay products appear

to come from the collision point and within the crossing proton and anti-proton beams. By constraining the

decay products to the beamline, lepton production from other sources (e.g. hadronic decays) are eliminated

from our selection.

NCotAxSeg/NCotStSeg: As discussed in section 2.2.2, the COT is composed of four axial and four

stereo superlayers. The accuracy of the information provided by a reconstructed track depends upon how

many of these segments are used in reconstruction. In general, if there are too few layers involved, then

the confidence with which we can claim that several hits have come from the same track will decline. A

superlayer is considered involved if there are five or more layers within that superlayer that contain hits. A

standard cut is that at least three axial and three stereo superlayers, must each have hits in five or more layers.

Track isolation (Iso1): Track isolation for an electron is defined as the ratio of the total transverse

energy of all sources in a cone of ∆R = 0.4 about the electron track (excluding the electron being considered),

to the transverse energy of the electron,

Iso1(electron) =
( ∑

not electron

ET

)
/ET (electron) (3.3)

In this sense, track isolation measures how ‘jet like’ an electron candidate is—a high isolation value means

that there are many other particles in the vicinity of the electron candidate. In general, a lepton from a Z

(or W ) decay will have no tendency to align itself with other objects in the event (e.g., with a particle jet).

On the other hand, fake leptons are very frequently associated with jets: it is not uncommon for one pion
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in a jet of particles to deposit most of its energy in the CEM. It is also possible for a hadron to decay into

an electron and other particles, which would produce a real electron with a high isolation value—but for a

vector boson analysis such as ours, this is not the kind of electron that we want to find. As such, cutting on

track isolation helps to eliminate fake Z or W leptonic decay events.

Calorimeter energy ratio (Had/Em): This is simply the ratio of the elctron’s energy deposited in the

hadronic calorimeter (CHA or PHA), to the electron’s energy deposited in the electromagnetic calorimeter

(CEM or PEM). Real electrons will deposit most of their energy into the CEM/PEM, with very little leaking

into the CHA/PHA, and so are expected to have small Had/Em.

Energy to momentum ratio (E/p): For quality electrons, this ratio is close to unity (at high CDF

production energies, electron p ' E).

Transverse energy (ET ): Electrons from W or Z leptonic decays carry away roughly half of the boson

mass as momentum. This means that the pT and ET of these electrons is generally much higher than it

is for electrons produced by other processes. For electrons, ET is better reconstructed than pT : electrons

moving in a magnetic field will radiate photons, which generally travel in the electron’s initial direction

of motion; the calorimeters will pick up this photon energy, but the reconstructed electron track may not

properly reflect the initial electron pT . Cuts requiring a high value of ET are therefore standard in selecting

electrons from leptonic W/Z boson decays.

3.3.2 Tight central electrons

Electrons from leptonic W decay have very high momentum, and should produce high quality tracks and

signatures in the detector. We therefore place strict cuts on these electrons, in order to eliminate background.

These cuts are featured in the ‘Tight central electron’ column of Table 3.1. In sum, we require a high

transverse energy; an isolated central (|η| < 1.1) electron track that matches to the electromagnetic shower

signature in η and φ; an energy signature that is mostly constrained to the electromagnetic calorimeter; and

a value of E/p near unity.

3.3.3 Loose central electrons and plug electrons

Electrons from Z decay also have very high momentum (in fact, higher average momentum than in electrons

from W decay: compare MW = 80.4 GeV to MZ = 90.2 GeV). However, we must identify two electrons for
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Tight central Loose central Plug
electron electron electron

|ηtrack| < 1.1 |ηtrack| < 1.1 1.2 < |ηPES| < 2.8

beam constrained |z0| < 60 cm beam constrained |z0| < 60 cm
|xCES| < 21.5 cm |xCES| < 21.5 cm

9.0 cm < |zCES| < 230.0 cm 9.0 cm < |zCES| < 230.0 cm

χ2
CES < 10.0 χ2

PEM < 10.0
−3.0 cm < Q ·∆xCES < 1.5 cm 0.65 < Pes5x9(U,V) < 1.0

|∆zCES| < 3.0 cm PEM 3× 3 fit tower=true
Lshr < 0.2

NCotAxSeg > 3
NCotStSeg > 3

Iso1 (R=0.4) < 0.1 Iso1 (R=0.4) < 0.1 Iso1 (R=0.4) < 0.1

Had/Em <0.05±0.0026 Had/Em <0.05±0.0026 Had/Em <0.05±0.0026
·Log(Em/100GeV) ·Log(Em/100GeV) ·Log(Em/100GeV)

0.5 GeV < E/p < 2.0 GeV

ET > 25 GeV ET > 25 GeV ET > 25 GeV

beam constrained pT > 10 GeV beam constrained pT > 10 GeV

Table 3.1: The cuts used to define electrons in our analysis. For our W → eν events, we require that the
electron pass the tight central cuts; for our Z → ee events, we require one electron to pass the loose central
cuts, and the other to pass either the loose central cuts or plug cuts. In general, our cuts require electrons to
have high ET , an isolated track which leads into an instrumented region of the detector, and an ‘electron-like’
signature in the calorimeter (see section 3.3.1).

Z → ee, versus one forW → eν. If our electron cuts are too restrictive, then we will lose many Z candidates.

In addition, we have an extra handle on electrons from Z, in that the two must form a common vertex with

an invariant mass within the Z boson mass window. In sum, this means that we can be a bit more generous

with our electron cuts for Z bosons.

For that reason, we define loose central electron cuts (a less restrictive vesion of the tight central electron

cuts defined above); and plug electron cuts, for electrons in the region 1.2 < |η| < 2.8. Both require an

isolated track, cuts on ET and |η|, and Had/Em values compatible with an electron; the plug cuts place

additional requirements upon calorimeter profile. These cuts are also featured in Table 3.1.

3.4 Muons

We define two types of muons: loose central muons, and tight central muons. Loose central muons will be

used to identify Z → µµ events (section 4.2), while tight central electrons will be used to identify W → µν
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events (section 4.3). Again, it is worth describing some of the quantities by which we define our muons.

3.4.1 Muon signature properties

Many of the properties that we use to describe electrons, are also used to describe muons. We discuss here

only those properties that are new, or that are different from their electron parallels in some important way.

Transverse momentum (pT ) and energy (ET ): A muon is a highly-penetrating particle, and leaves

very little energy in the calorimeters: EEm < 2.0 GeV, EHad < 6.0 GeV are common muon selection criteria.

On the other hand, the momentum of a high-energy muon can usually be reconstructed in the COT with

excellent accuracy. With pT ' ET for muons with high ET and pT , this makes pT the better choice for

characterizing the muon. For muons from W/Z boson decays, pT is required to be large.

Pseudo-rapidity (|η|): As in the case of electrons, we use |η| to define central (|ηcentral| < 1.1) muons.

Again, this is in order to select muons from high-energy intractions like those which produce W/Z bosons,

over muons from lower-energy background events. While there exists instrumentation for identifying muons

in the plug region (the BMU detector), we will not use plug muons in this analysis.

Muon detector stubs (CMUP or CMX stubs, |∆xCMU|, |∆xCMP|, |∆xCMX|): As described in section

2.2.4, the muon detector subsystems lie beyond the calorimeters and (for CMU/X) additional steel shielding.

A highly-penetrating muon should leave a track in both the COT, and in one or more of the muon detector

subsystems. As such, muon identification often requires that an extrapolated COT track be matched to

either a track stub in the CMX detector, or to track stubs in both the CMU and CMP detectors. Matching

takes the form of small differences in position between the extrapolated track, and a given stub in the muon

detectors (cuts on variables |∆xCMU|, |∆xCMP|, and |∆xCMX|).

Iso1 (track isolation): Track isolation defined for muons in the same way that it is for electrons, but

the denominator in Eq. 3.3 is changed to pT of the muon track; this simply reflects that for muons, pT is

better measured than is ET . Explicitly:

Iso1(muon) =
( ∑

not muon

ET

)
/pT (muon) (3.4)
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COT track fit quality (χ2
COT): This is a measure of the quality of the muon track in the COT, as

determined by track reconstruction algorithms. Decay-in-flight events (in which a charged particle decays

into a muon), can produce ‘kinked’ tracks (one leg is the charged particle prior to the decay; the other is the

muon after the decay) that connect to stubs in the muon sub detectors. This track quality cut eliminates

such kinked tracks, and hence such decay-in-flight events.

Track impact parameter (d0): The track impact parameter is found by extrapolating the track back

towards the beamline, and then measuring the distance from the beamline to the track’s point of closest

approach. For a real W/Z decay, muons should originate from the beamline. Due to the finite resolution of

the detector, d0 will not always evaluate to a zero value. Requiring a small value of d0, however, eliminates

muons that are produced by the decay of secondary particles–in general, such muons will originate from a

point that is transversely separated from the beamline, and tracing these muon tracks back to the beamline

will produce non-zero d0.

3.4.2 Tight central muons

Muons fromW → µν decay are highly-penetrating particles with a large average transverse momentum: this

results a unique signature involving the CDF muon detector subsystems. With only one muon in our decay,

we place strict cuts in order to eliminate background. These cuts are featured in the ‘Tight central muon’

column of Table 3.2. In sum, we require a high transverse momentum; an isolated central (|η| < 1.1) muon

track that can be matched to one or more stubs in the muon detector subsystems; small energy deposits in

the calorimeter; and a COT track with highfit quality χ2
COT and small impact parameter d0.

3.4.3 Loose central muons

As in the case of Z → ee decays, the two outgoing leptons in a Z → µµ event allow us to be more relaxed

with our cuts. We define loose central muon cuts, which differ from the tight cuts by relaxing track quality

cuts, and by eliminating the |∆xCMU/P/X| cuts. We still require an isolated track, stubs in the muon detector

subsystem, cuts on pT , small energy deposits in the calorimeter, and small impact parameter d0. These cuts

are featured in the ‘Loose central muon’ column of Table 3.2.

3.5 Cosmic Rays

Cosmic rays are muons produced by collisions between intersteller particles and the upper atmosphere. As

stated before, muons are highly-penetrating particles, and these cosmic rays can make their way down to
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Muon signature Tight central Loose central
property muon muon

|η| |ηtrack| < 1.1 |ηtrack| < 1.1

Muon subsystems Has CMU and CMP stubs AND
|∆xCMU(CMP)| < 3.0 cm(5.0 cm) Has CMU and CMP stubs

———— OR ———— ———— OR ————

Has CMX stub AND Has CMX stub
|∆xCMX| < 6.0 cm

NCotAx(St)Seg NCotAxSeg > 3
NCotStSeg > 3

Iso1 (R=0.4) < 0.1 < 0.1

Had/Em EEm < 2.0 GeV EEm < 2.0 GeV
(pT ≤ 100 GeV) EHad < 6.0 GeV EHad < 6.0 GeV

Had/Em EEm = 0.0115 · (pT − 100) GeV EEm = 0.0115 · (pT − 100) GeV
(pT > 100 GeV) EHad < 6.0 + 0.028 · (pT − 100) GeV EHad < 6.0 + 0.028 · (pT − 100) GeV

Track properties beam constrained |z0| < 60 cm beam constrained |z0| < 60 cm
(Both types also require
track to fall into an χ2

COT < 4.0 d0 < 0.3 cm
instrumented region.)

d0 < 0.3 cm

beam constrained pT > 20 GeV > 20 GeV

Table 3.2: The cuts used to define muons in our analysis. For our W → µν events, we require that the muon
pass the tight central cuts; for our Z → µµ events, we require both muons to pass the loose central cuts. In
general, our cuts require muons to have high pT , an isolated track which leads into an instrumented region
of the detector, small energy deposits in the calorimeter, and stubs in one or more of the muon detector
subsystems. (see section 3.4.1).
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the earth’s surface. If a muon passes through the detector volume during a bunch crossing, and if this muon

happens to pass close to the beamline, it can look very much as if two muons were produced back-to-back in

a pp̄ collision event (e.g., a Z → µµ event). Alternately, if only one part of the cosmic ray is reconstructed,

it may look as if a single high-pT muon was produced (e.g., a W → µν event). To eliminate contamination

from cosmic rays, we employ theTStnCosmicBlock → HasCosmicRay() accessor. The TStnCosmicBlock

class is an Stntuple format version of the CosmicFinderModule class, which uses timing information, track

quality, and impact parameters to identify cosmic ray events in CDF data[35]. For this thesis, we veto all

events in our W → µν and Z → µµ selection that are tagged as having a cosmic ray.

3.6 Missing transverse energy

Weakly-interacting particles that are produced in a collision (neutrinos, dark matter candidates) can pass

through the detector without leaving any signal. However, we can still infer their presence by calculating an

event’s missing transverse energy (6ET ). As earlier stated, the incoming partons have net −→pT ∼ 0; therefore,

the sum
∑−→pT of all jets in an event ought to add up to zero. If there is a large discrepancy from zero, then

this ‘missing’ energy may have been carried away by a weakly-interacting particle. The ‘raw’ value of 6ET is

simply the negative of the sum
∑−→pT of all jets in an event.

In our analysis, we take this value from the TStnMetBlock’s index 1 entry—for high-pT lepton events,

this is 6ET calculated with respect to the high-pT lepton’s point of closest approach to the beamline (recall

from section 3.2 that jet ET is always defined with respect to some vertex). However, this value must be

corrected for two major factors: muons, and jet corrections.

When a muon passes through the calorimeter, it deposits very little energy—this produces a ‘fake’ missing

energy signature in the detector (fake insofar as that energy is not carried away by a weakly-interacting

particle). We correct for this using the TStntuple::CorrectMetForMuons algorithm. This algorithm loops

through all TStnMuon objects in the event’s TStnMuonBlock, and selects those which pass a set of strict

muon cuts (a slightly more relaxed version of our ‘tight central muon’ cuts (Table 3.2)). The difference

between the muon’s calorimeter energy and its track momentum is our false missing energy (recall E ' p

for high−p muons). We define

6ET,fake(muon) = −→pT · (1− E/p) (3.5)

for each tight muon, and subtract this term from our missing energy.

We must also account for jet corrections. 6ET as taken from the TStnMetBlock is calculated before any
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jet energy corrections are applied. To modify 6ET to reflect these jet corrections, we define a difference vector

∆p
(4)
jet = p

(4)
jet, corr − p

(4)
jet, raw (3.6)

for each jet, where p(4)
jet, raw, p

(4)
jet, corr are the jet four-momenta before and after corrections, respectively.

We then add all of these ∆p
(4)
jet together to find ∆p

(4)
total =

∑
all jets ∆p(4). The negative of the transverse part

of ∆p
(4)
total is our correction to 6ET for jets, and we add this to our muon-corrected 6ET value. At this point,

we consider our 6ET to be fully corrected. In sum,

66ET = 6ET , raw −
∑

tight muons

−→pT · (1− E/p) −
∑

all jets

(
p

(4)
jet, corr − p

(4)
jet, raw

)
(3.7)

45



Chapter 4

Vector Boson Event Selection

Our analysis begins with the identification of Z and W vector bosons in the CDF high-pT lepton datasets.

We therefore begin this Chapter by describing the high-pT lepton datasets, and the triggers which define

them. We then discuss the cuts that we use to identify Z and W bosons, apply these cuts, and count the

number of selected events. We conclude by determining what fraction of these events are fake Z or W events

(other kinds of event, which simply mimic the Z or W signature).

4.1 The datasets

We look for our vector bosons in three high-pT lepton Stntuple CDF datasets: HIGH_PT_MUON (abbre-

viated bhmu), HIGH_PT_ELECTRON (bhel), and PLUG_ELECTRON (bpel). Each of these datasets

covers the full range of CDF Run II data taking (Periods 0 through 38), corresponding to 9.7 fb−1 of inte-

grated luminosity.

A bhmu event is defined (at L3) by having a high-pT central muon with pT > 18, and either CMU

and CMP stubs, or a CMX stub. The transverse distance between the extrapolated COT track and the

associated CMU/P/X stubs must satisfy |∆x| < 10 cm. This dataset is a common candidate for vector

boson searches; when a vector boson decays into two leptons, each lepton carries away approximately half of

the Z or W boson’s mass as momentum—this often leads to muons with very high transverse momentum,

which is a clear signature to work with. Specifically, we use this dataset for our W → µν and Z → µµ

searches.

A bhel event is defined (at L3) by having a high-pT central electron with ET > 18 GeV and pT > 6 GeV.

The extrapolated electron track must match to a hit in the CES within |∆x| < 3 cm and |∆x| < 5 cm.

Again, and for the same reasons, this dataset is a common candidate for vector boson searches. We use this

dataset for our W → eν and Z → ee searches.

A bpel event is defined (at L3) by having a PEM cluster with E > 20 GeV, a matched electron track

with Iso1 < 0.1, and missing energy 6ET > 15 GeV. Note that the calorimeter energy restriction here is

on E, and not on ET ; in the forward region, we will expect to see particles with lower transverse energy
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and momentum, compared to the central region. So, we trigger on total E registered by the calorimeter,

instead. A bpel event also requires that the ratio of energy deposited in the electromagnetic and hadronic

calorimeters satisfies E(had)/E(em) < 0.075. Due to the 6ET cut, this trigger is preferentially geared towards

W → eν identification. However, in our analysis, we will use it to search for Z → ee events, only.

4.2 Identifying Z → `+`− events

We identify Z events only for those cases in which Z → ee or Z → µµ. These dilepton events produce very

clean and recognizable signatures, making them an ideal pair of channels to work with. After finding two

good electrons or muons, we calculate the dilepton invariant mass, and compare this to the known mass

window of Z bosons. The dilepton invariant mass is then binned for all events near the Z boson mass

window, and the resulting histogram is fit to a signal plus background hypothesis in order to count signal

events.

4.2.1 Identifying Z → ee events

We begin our search for Z → ee decays by looking for two quality electrons in bhel and bpel events. For

each event, we require that the (central) high pT trigger electron pass our loose central electron cuts, and

that a second (oppositely-signed) electron pass either our loose central electron cuts, or our plug electron cuts

(Table 3.1). We then require that the dielectron invariant mass M(e+e−) fall within the region 66 GeV <

M(e+e−) < 116 GeV. Finally, we check that the event does not pass our W → eν cuts (section 4.3); it is

possible for an electron from W → eν decay to be paired with another (real or fake) electron, to produce a

signature that is Z → ee like. Any event which passes all of these cuts, we tag as Z → ee.

4.2.2 Identifying Z → µµ events

Our procedure for identifying Z → µµ events parallels that for identfying Z → ee events. We begin by

searching for two quality muons in bhmu events. We require that the high-pT trigger muon pass our loose

central muon cuts, and that a second muon also pass those cuts (Table 3.2). The dimuon invariant mass

must fall near the Z mass window (satisfying 66 GeV < M(µ+µ−) < 116 GeV), and the event must not pass

our W → µν cuts. The Z → µµ selection differs from the Z → ee selection, in that we must also account

for cosmic ray events; if a cosmic muon passes through the detector during a bunch crossing, it can produce

a fake dimuon signature with an invariant mass that falls within our mass window. Therefore, we veto any

events which are tagged as having a cosmic ray (section 3.5). Any event which passes these cuts, we tag as

a Z → µµ event.
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Z → ee event selection cuts Z → µµ event selection cuts

High-pT trigger electron High-pT trigger muon
passes loose central electron cuts passes loose central muon cuts

A second electron passes loose central electron cuts
———— OR ———— A second muon passes loose muon electron cuts

A second electron passes plug electron cuts

Electrons are oppositely-signed Muons are oppositely-signed

Dilepton invariant mass satisfies Dilepton invariant mass satisfies
66 GeV < M(e+e−) < 116 GeV 66 GeV < M(µ+µ−) < 116 GeV

Event does not pass W → eν cuts Event does not pass W → µν cuts

Event is not tagged as a cosmic ray event

Table 4.1: The cuts that we use to identify Z → ee and Z → µµ events in the high-pT lepton dataset. The
electron/muon cuts referenced above can be found in Tables 3.1, 3.2.

Figure 4.1: Plots of the invariant mass M(`+`−) of all lepton pairs which pass our Z → ee/µµ cuts. We fit
the M(`+`−) distribution with a double-Gaussian signal (widths (σ1, σ2) and mean shown on plots) plus an
exponential background. The signal fit is shown in red, the combined fit in blue. By integrating under the
signal function, we count NZ→ee = 241, 450± 580, and NZ→µµ = 269, 451± 560. Note that only one lepton
pair is accepted for each event, consisting of the high-pT trigger lepton, and the first secondary lepton in the
muon/electron block to satisfy all selection criteria.

48



4.2.3 Background to the Z → ee/µµ selections

Our Z selection cuts will inevitably include some background events. Accounting for background in our

Z selection is quite straightforward. We bin the invariant mass M(`+`−) for all events which pass our

Z → `+`− cuts. The Z resonance results in a clear peak near MZ = 91.2 GeV (Figure 4.1). We then fit

the M(`+`−) histogram to a double-gaussian signal plus exponential background hypothesis, and integrate

beneath the signal curve to count the number of true Z resonance events, NZ→``. Doing this, we count

NZ→ee = 241, 450± 580 and NZ→µµ = 257, 600± 550.

4.2.4 The effects of binning and range

As can be seen in Figure 4.1, the choice of background shape does not perfectly describe the data. Because

we are primarily interested in the size of the signal shape, this is a problem only if an improperly-shaped

background ansatz affects our signal size. We can test this by varying the range and bin size of the M(`+`−)

histograms, and remeasuring the size of the signal peak. Different choices will result in fits of varying quality

(as quantified in the χ2/DOF value associated with each fit), and if large changes in the fit quality do not

correspond to large changes in the signal size, then we can say that our signal count does not strongly depend

upon our choice of background shape.

That being said, we check the effects of bin and range choice on the count of Z → µµ and Z → ee

events identified by our selection criteria. The results, and the conditions enforced to find each result, are

summarized in Table 4.2. A few sample plots from these tests are shown in Figure 4.2. We find that changing

the bin definitions has very little effect for a histogram range M(`+`−) ∈∼ [60.0, 122.0]. However, the signal

counts can be changed by ∼ 2% when the M(`+`−) range is reduced to M(`+`−) ∈∼ [70.0, 112.0]. This 2%

uncertainty is dwarfed by a much larger uncertainty of ∼ 30− 50% in our final measurements of the Z +D∗

production rate (as we’ll see in chapter 9). Therefore, we consider the effect of rebinning—and by extension,

the effect of our choice of background function—to be negligible in our final results. We will ignore this

uncertainty henceforth.

4.2.5 Comparison to counts by other analyses

As a final check of the quality of our Z → µµ/ee cuts, we also compare our Z → µµ/ee signal counts against

counts found by other CDF analyses. In particular, we look at two Fall 2013 analyses ([36, 37]) which

measure sin2 θW (MW ) using µµ/ee pairs in the Z boson region. Both of these analyses count Z → µµ/ee

events in the region 66 < MZ/GeV < 116, using the same high-pT lepton datasets that we do.

The first analysis [36] counted 51, 951 central-central Z → ee events in 2.1fb−1 of data, using cuts that
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Figure 4.2: Sample plots of invariant massM(`+`−) for different bin and range choices. Plots for the Z → ee
case are on the top row; for the Z → µµ case, on the bottom row. For more details, and to see the results
of other bin and range choices, see Table 4.2.
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M(`+`−) histogram range # bins NZ→µµ χ2/NDOF NZ→ee χ2/NDOF
[60.0, 122.0] 100 257, 600± 550 2563 / 92 241, 450± 580 2528 / 92
[60.0, 122.0] 50 257, 600± 550 2494 / 42 241, 530± 580 2452 / 42

[60.0, 122.0]+half bin shift 100 257, 500± 550 2539 / 92 241, 330± 580 2474 / 92
[60.0, 122.0]+half bin shift 50 257, 400± 550 2376 / 41 240, 980± 580 2335 / 41

[70.0, 112.0] 100 255, 400± 660 458 / 92 237, 050± 1000 428 / 92
[70.0, 112.0] 50 250, 800± 570 874.3 / 42 236, 900± 1000 355 / 42

Table 4.2: This table presents the number of Z events identified in our Z → µµ and Z → ee samples, using
different bin and range choices. While there is little variation as a function of bin width or placement in
the range M(`+`−) ∈∼ [60.0, 122.0] , we see that the signal count drops if histogram range is reduced to
M(`+`−) ∈∼ [70.0, 112.0]. This effect is small (∼ 2%), and is most pronounced only for the last test (which
has fewer bins in the detailed area about the MZ peak, and thus poorer resolution). A 2% uncertainty is
negligible compared to the ∼ 30−50% uncertainty in our final measurements of the Z+D∗ production rate,
and so we ignore this ‘binning uncertainty’ in the rest of this analysis.

were similar to our own. (Here, a ‘central-central’ event is one in which both electrons fall in the central

region of the detector; a central-plug event, an event in which electron number one (two) falls in the central

(plug) region.) Extrapolating to 9.7 fb−1, we would estimate ∼ 239, 960 central-central Z → ee events in

the full dataset, for this analysis. As our analysis counted very few central-plug Z → ee events (only ∼ 120,

compared to ∼ 240, 000 central-central candidates), we would expect our yield (241, 450± 580) to be similar

to the yield of this analysis, which is indeed what we find. We could likely increase our Z → ee yield by

adopting the looser cuts of [36], but there are two arguments against this: we already have well-established

results using the central sample; and more forward Z → ee events are less likely to have D∗ in the central

region (our D∗ selection method (chapter 5) requires central D∗).

The second analysis [37] counted 276, 623 Z → µµ events in 9.2 fb−1 of data, again using cuts similar

to (but looser than) our own. This is comparable to the 257, 600 ± 550 events that we find in 9.7 fb−1 of

data (taking into account the differences in selection criteria). We conclude that our counts of Z → µµ and

Z → ee are compatible with similar counts in other analyses; we are unlikely to be missing major useful

cuts, or eliminating an unnecessarily large number of Z events due to excessively strict cuts.

Major selection criteria differences between the sin2 θW (MW ) analysis and our own are noted in Table

4.3, along with the Z → µµ/ee counts recorded by each.

4.3 Identifying W → `ν events

We identify W events only for those cases in which W → eν or W → µν. These events produce a very

recognizable signature, consisting of a high-pT lepton paired with large missing energy 6ET (energy that

is carried away by the weakly-interacting neutrino). As we will see, however, these events are a bit more

difficult to work with than the Z → ee/µµ events; we do not have an invariant mass peak to work with, and
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Z selection Our sin2 θW (MW )
criteria Analysis Analysis

Z → ee ET > 25/25 GeV (two central candidates) ET > 25/15 GeV (two central candidates)
ET > 25/25 GeV (one central, one plug) ET > 20/20 GeV (one central, one plug)

Z → ee Central/Plug electrons must pass Both electrons must pass ‘standard’ CDF
Loose/PlugIDWord cuts electron selection cuts

Z → ee 241, 450± 580 51, 951

Count mostly central-central events in 9.7 fb−1 central-central events in 2.1 fb−1

Z → µµ Both muons: track matched to muon stub Muon 1: track matched to |η| < 1 muon stub
Both muons: |η| < 1.1 Muon 2: any muon candidate

Z → µµ No constraint on muon pair |y| Muon pair: |y| < 1

Z → µµ 257, 600± 550 276, 623

Count in 9.7 fb−1 in 9.2 fb−1

Table 4.3: Differences between our Z → µµ/ee selection criteria (Table 4.1), and those of the sin2 θW (MW )
analyses [36, 37]. With these differences in mind, our Z → µµ/ee counts are declared comparable with the
counts of the sin2 θW (MW ) analysis. The full sets of cuts used for our Z selection can be found in Tables
3.1, 3.2, 4.1.

so we must estimate the contributions of background by a more clever approach.

4.3.1 Identifying W → eν

We start by skimming the bhel dataset for events with corrected 6ET > 25 GeV. We also require that the

(central) high pT trigger electron pass our tight central electron cuts (Table 3.1). We then evaluate the

transverse mass of this W candidate, defined as

MT (W ) =
√

2.0 · ET (e)· 6ET ·
(
1− cos(∆φ

e,
−→
6ET

)
)

(4.1)

In essence, MT (W ) is the invariant mass of the electron and neutrino, M(eν), but the z axis is ignored

(along with any energy/momentum that is directed along it). The W transverse mass has a well-defined and

well-studied shape, and, in particular, background fromW → τν decays can be mostly removed by enforcing

the cut MT (W ) > 20 GeV [38]. Finally, we reject the event if it passes our Z → ee cuts; it is possible for an

electron from Z decays to be paired with real or fake missing energy, to produce a false W signature. We

count 5, 081, 938 W → eν candidates.
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W → eν event selection cuts W → µν event selection cuts

High-pT trigger electron High-pT trigger muon
passes tight central electron cuts passes tight central muon cuts

corrected 6ET > 25 GeV corrected 6ET > 20 GeV

MT (W ) > 20 GeV MT (W ) > 25 GeV

Event does not pass Z → ee cuts Event does not pass Z → µµ cuts

Event is not tagged as a cosmic ray event

Table 4.4: The cuts that we use to identify W → eν and W → µν events in the high-pT lepton dataset. The
electron/muon cuts referenced above can be found in Tables 3.1 and 3.2.

4.3.2 Identifying W → µν

Paralleling the W → eν case, we start by skimming bhmu for events with corrected 6ET > 20 GeV. We then

require the (central) high-pT trigger muon pass our tight muon cuts (Table 3.2). We relax the 6ET and muon

pT cuts for W → µν, compared to our cuts for W → eν, due to a cleaner muon sample: in short, it is easier

for a particle to fake an electron, than it is to fake a muon. The W transverse mass is also defined slightly

differently in W → µν events: ET (e) is replaced by pT (µ) in order to reflect more accurate measurement of

muon pT than muon ET .

MT (W ) =
√

2.0 · pT (µ)· 6ET ·
(
1− cos(∆φ

µ,
−→
6ET

)
)

(4.2)

As in our Z → µµ selection, we veto cosmic ray events: a cosmic muon can be paired with real or fake

missing energy in order to produce a false W → µν signature. Finally, we reject the event if it passes our

Z → µµ cuts. We count 5, 348, 975 W → µν candidates.

4.3.3 Background to the W → `ν selections

Our W → µν/eν selection criteria ensure that the majority of tagged events are W bosons. However,

some electroweak backgrounds—specifically, Z → µµ/ee and W → τν—may mimic our signal. We consider

W → τν to be a ‘background’, because it may behave differently than our W → µν/eν signals (e.g. under
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6ET boundary, W → µν (eν) Charged lepton Iso1 boundary
Region A 6ET < 10 GeV Iso1 < 0.1
Region B 6ET < 10 GeV Iso1 > 0.3
Region C 6ET > 20 (25) GeV Iso1 > 0.3
Region W 6ET > 20 (25) GeV Iso1 < 0.1

Table 4.5: The boundaries used to define regions A, B, C, and W for W candidates in the 6ET / Iso1 plane.
These are visualized in Figure 4.3. For regions C and W, the 6ET boundary depends upon whether we are
consider the case of W → µν or W → eν—the value for the W → eν case is written in parentheses.

the influence of a neural network, or in terms of overall acceptance rate).

In addition to these electroweak backgrounds, QCD jets may also mimic ourW signature. As an example,

a high-pT charged pion may pass through the calorimeters and into the muon tracking chambers, mimicking

a muon. At the same time, another jet with mismeasured energy may produce a large 6ET signature. The

end result is what appears to be a W → µν signature. Only a small fraction of all jet events are expected to

fake a W signature, but there are a huge number of jets produced in pp̄ collisions. In sum, there will likely

be some measureable QCD jet contamination in our W sample.

Estimating the background contribution of electroweak events is traditionally done by running Monte

Carlo simulations. However, accurate estimates of QCD jet background requires a data-driven technique.

We will in fact solve for both of these types of background contribution simultaneously, using a set of

coupled equations. This custom technique eliminates many unknowns, and provides an easy determination

of combined systematic uncertainty (see 6.4).

We begin by first removing the 6ET and lepton track isolation (Iso1) cuts from the W → `ν selection

criteria. We then define four regions as shown in Table 4.5 and Figure 4.3. To first order, regions A, B, and

C, are composed entirely of QCD jet events [39]. We therefore approximate:

NQCD,W '
Ncand,A
Ncand,B

·Ncand,C (4.3)

where Ncand,X is the number of candidate events in region X, and NQCD,X is the number of QCD jet events

in region X. In reality, however, regions A, B, and C will contain at least some small amount of Z → `+`−

and W → τν background, as well as W → `ν signal events. We would like to correct (4.3), to account for

this. We define:
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Figure 4.3: A two-dimensional distribution of all W candidates, with 6ET and charged lepton isolation cuts
removed. We define four regions in this space, A, B, C and W, and use them to estimate the number of
background events in signal region W.

XW→`ν ≡ Number of W → `νsignal events in quadrant X

XW→τν ≡ Number of W → τνbackground events in quadrant X

XZ→`` ≡ Number of Z → `+`−background events in quadrant X

XQCD ≡ Number of QCD jet background events in quadrant X

Xcand ≡ Number of total events in quadrant X

We then expand the definition of ‘QCD’ background to mean any background that is not otherwise explicitly

stated (the overwhelming majority of which is expected to be QCD jet events). This allows us to state:

Xcand = XW→`ν +XZ→`` +XW→τν +XQCD (4.4)

We may then refine (4.3), writing

WQCD =
AQCD

BQCD
· CQCD (4.5)

Using (4.4), we rewrite (4.5) as
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Wcand −WW→`ν −WW→τν −WZ→`` =
Acand −AW→`ν −AW→τν −AZ→``
Bcand −BW→`ν −BW→τν −BZ→``

×
(
Ccand − CW→`ν − CW→τν − CZ→``

)
(4.6)

Next, we use Monte Carlo simulations to scale values XW→`ν , XW→τν , XZ→`` to the (unknown) number of

signal events in region W. Specifically, for electroweak process Y → ab, we define a quantity RXY→ab as:

RXY→ab ≡
fXY→ab
fWW→µν

· σ(Y → ab)

σ(W → µν)
(4.7)

where fXY→ab is the fraction of simulated signal events of type Y → ab which pass our W → `ν selection

cuts and fall in Region X, and σ(Y → ab) is the production cross section of events of type Y → ab. For any

electroweak background process, we may then connect XY→ab to the unknown WW→`ν as:

XY→ab = RXY→ab ·WW→`ν (4.8)

This approach makes only one assumption: that the Monte Carlo simulation is good at predicting the

properties of W → `ν and Z → `+`−decays.

Applying (4.8) to (4.5), we find

Wcand −
(
RWW→µν +RWW→τν +RWZ→µµ

)
WW→µν =

Acand −
(
RAW→µν +RAW→τν +RAZ→µµ

)
WW→µν

Bcand −
(
RBW→µν +RBW→τν +RBZ→µµ

)
WW→µν

×
(
Ccand −

(
RCW→µν +RCW→τν +RCZ→µµ

)
WW→µν

)
(4.9)

Defining abbreviation

RXsum ≡ RXW→µν +RXW→τν +RXZ→µµ

we rearrange (4.9) to find a quadratic equation for WW→µν ,
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W → µν % W → µν % W → τν % Z → µµ % QCD jets
selection Raw Count (± stat) (± stat) (± stat) (± stat)

Reg. A 319,054 14.0 ± 0.1 1.71± 0.04 18.29± 0.05 66.0± 0.1

Reg. B 214,377 .049 ± 0.08 .00004 ± .000022 .000019± 0.00002 99.928 ± 0.009

Reg. C 110,179 20.8 ± 0.2 0.56 ± 0.04 0.60 ± 0.01 78.0 ± 0.2

Reg. W 5,348,975 91.52 ± 0.02 3.05 ± 0.01 3.853 ± 0.005 1.58 ± 0.01

W → eν Raw Count % W → eν % W → τν % Z → ee % QCD jets
selection (± stat) (± stat) (± stat) (± stat)

Reg. A 1,714,631 1.85 ± 0.02 0.179 ± 0.006 5.34 ± 0.01 92.64 ± 0.02

Reg. B 243,238 0.038 ± 0.007 0.096 ± .004 0.032 ± 0.002 99.920 ± 0.008

Reg. C 45,947 31.4 ± 0.5 0.93 ± 0.08 0.24 ± 0.01 67.4 ± 0.5

Reg. W 5,081,938 93.62 ± 0.04 1.91 ± 0.01 0.486 ± 0.002 3.98 ± 0.04

Table 4.6: The percent composition by production process ofW → µν/eν candidates in regionsA, B, C, and
W. The largest percent contribution in each region is in bold. We see that the majority of candidate events
in Regions A, B, and C, are QCD jet events (which, recall, is really a measure of all background events that
are not electroweak—the vast majority of such events are expected to be QCD jet events). Uncertainties in
the table above are statistical only; systematic uncertainties are taken into account in Chapter 7.

0 =
(
WW→µν

)2

·
(
RBsum ·RWsum −RAsum ·RCsum

)
+
(
WW→µν

)
·
(
RAsum · Ccand +RCsum ·Acand −RBsum ·Wcand −RWsum ·Bcand

)
(4.10)

+Bcand ·Wcand −Acand · Ccand

Once we have solved for WW→µν , we can trace back with (4.8) to find the fraction of each type of

background event in each quadrant. We do this, and put the results of our background analysis in Table

4.6. We see that, as assumed, the majority of events in Regions A, B, and C are QCD jet events (a term

which, recall, is expanded here to mean all non-electroweak background events). The majority of events in

signal region W are, as hoped, found to be signal events (92% for W → µν, 94% for W → eν).
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Chapter 5

Charmed Meson (D∗) Selection

Now that we have identified our W candidates, we want to identify D∗ mesons that have been produced

in association with these candidates. In this chapter, we discuss our general procedure for tagging D∗ →

D0(→ Kπ)πs decays in a collision event. We count D∗ produced in association with our W/Z selections,

and identify sources of D∗ background candidates. We train a neural network to discriminate between signal

and background D∗ candidates, and we then use this neural network to improve the statistical uncertainty

of our D∗ counts.

5.1 Identifying D∗ → D0(→ Kπ)πs decays

We identify charm by looking for D∗(2010)→ D0(→ Kπ)πs decays. For real D∗, the difference in invariant

mass between the reconstructed D∗ and D0 vertices forms a sharp peak above background near ∆mpeak =

0.1456 GeV; by measuring the magnitude of this peak, we may count the number of D∗ decays in our

sample. We break the D∗(2010)→ D0(→ Kπ)πs identification process down into five steps, as described in

the following five subsections.

5.1.1 Selecting D∗ Decay Tracks

Let us assume that we have identified an event of interest: for example, if we are looking for W/Z + c

production, let us assume that we have identified a W or Z event. For W → `ν decays, and for Z(`+`−)

decays in which only one lepton has a track, we begin by selecting all tracks within 2.0 cm of the high-pT

lepton’s point of closest approach to the beamline. For Z decays in which both leptons have a track, we use

the point of closest approach z0 of the high-pT trigger lepton (this preference should have no effect on our

final results for real Z).

For each possible set of three tracks taken from our selection, we ‘hypothesize’ that one is the K, one the

π, and one the πs of a D∗ decay. This includes assigning the appropriate K or π mass to each track (e.g.,

when calculating invariant masses). We then make a number of checks against this hypothesis in order to
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eliminate background.

5.1.2 Testing a set of tracks for the D∗ decay signature

We first require that the K and π have opposite electric charge, as determined by the curvature of their

tracks in the magnetic field. Then, as D0 → K−π+ is Cabbibo-favored versus D0 → K+π− by a factor of

104, we require the two pions to have the same charge (note D∗+ → D0π+ and D∗− → D̄0π−). We also

enforce a track quality cut, requiring each track to have at least 20 hits in the axial layers of the COT, at

least 20 hits in the stereo layers of the COT, and |η| < 1.1. These hit requirements make it less likely that

our ‘track’ is just a random assortment of hits falsely recognized as a true track, and the |η| requirement

confines our tracks to the fiducial region of the detector.

We then make additional kinematic selection cuts. The transverse momenta of the particles produced in

this decay are expected to be higher on average than those of background tracks. Based on MC simulations,

we enforce lower limits pT (K,π) > 400 MeV, and pT (πs) > 80 MeV. Finally, due to the relativistic mo-

mentum of the decay products, we expect their opening angles to be relatively small. We therefore require

∆R < 1.1 for each pair of tracks (where ∆R ≡
√

∆φ2 + ∆η2).

5.1.3 Fitting the tracks

With these preliminary cuts in place, we use the CDF TCtvmft fitting algorithm to reconstruct D0 and

D∗ vertices from the K,π and πs track candidates. This algorithm tests the validity of the hypothesis that

two (or more) tracks have come from a common vertex, by moving each track about within the limits of

uncertainty allowed by the resolution of the detector. Once a maximally-probable intersection point has been

formed, the tracks are updated to reflect their new trajectories, and the probability of the fit is returned. A

vertex can also be required to ‘point’ back towards another, to accomodate the following case: a particle is

produced in a decay; it travels some finite distance away from the initial decay vertex; and it then decays

itself, producing a secondary vertex.

In our case, we require that the K and π tracks form a D0 production vertex, and that the momentum

of this D0 vertex points back towards and intersects with the πs track, forming the D∗ vertex. Because we

are interested not only in direct charm, but also in charm from bottom decays, we do not limit our search

to prompt D∗ production: as such, we do not require the D∗ to point back towards the beamline. (A D∗

meson decays through the strong interaction, and as such it has a very short lifetime; it decays essentially

immediately after production, and so a prompt D∗ decay vertex would sit very close to the collision point.)

We reject events only if the probability of the fit is 0 (e.g., if the fit did not converge). For events with a
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Figure 5.1: D0 mass distributions for Monte Carlo f + g → W + c events (teal), and all D∗ candidates in
our W → µν selection that pass every cut up to (but not including) the D0 mass cut.

non-zero fit probabilty, we store this probability and the χ2/DOF of the fit for later analysis.

From these fitted tracks, we now construct the position vectorV and four-momentum p(4) = (E,p) of each

vertex. From the four-momenta, we can calculate the invariant mass of each vertex asm =
√
E2 − p2. While

we do nothing with the D∗ mass at this point, we require the fitted D0 mass to fall within 3σ = 0.03321 GeV

of the nominal D0 mass peak, mD0 = 1.865 GeV (see Fig. 5.1). This rejects over 99% of background, while

eliminating only about ∼ 0.3% of the signal.

We now use these reconstructed vertices to define a few quantities, that we will later use to describe

our events with more precision. First, the position vector is used to determine the signed impact parameter

Lxy = p ·V/|p| of each vertex. Lxy is positive if p points in the same direction as V, and negative otherwise.

For any particle which decays with a finite lifetime, we would expect Lxy > 0. However, the finite resolution

of the detector allows real vertices with small |V| to give zero or negative Lxy. For this reason, we do not

cut on Lxy of the D∗ or D0 vertex. We will later on use these Lxy values to separate signal events from

background events, using a neural network (see 5.2). We also find Lxy of the reconstructed D0 vertex with

respect to the D∗ vertex—in other words, Lxy = p ·V/|p| in which V is the displacement vector between

the two reconstructed vertices, V=V(D0)-V(D∗), and p is the momentum of the reconstructed D0. We

call this quantity Vtx Lxy.

Finally, we construct a set of signed impact parameters specific to each track. For b defined as the

distance of closest approach between a track and the D∗ or D0 vertex, we define bs as bs ≡ b · sign(cos(φ)),

with φ as defined in Fig 5.2. We have six such parameters in all, one for each track paired with each vertex.
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Figure 5.2: Sketch of a track and vertex for which bs might be calculated. φ is the angle between the momentum of
the reconstructed vertex, and the line connecting the track and vertex at the point of closest approach. We define b
as the distance between the track and vertex at this point.

We write these as bs(track, vertex), though the first argument can be replaced with another vertex if, e.g.,

we are interested in the reconstructed D0’s point of closest approach to the beamline; in this case, instead

of a track (the D0 leaves no track in the COT), the reconstructed vertex momentum is traced backwards

towards the target vertex.

These bs parameters are complementary to the Lxy measurements, and provide a more detailed look into

the kinematics of our decay near the production point. In particular, we expect tracks from the D0 decay in

signal events to produce bs distributions with respect to the D∗ vertex that are statistically separated from

0. This is in contrast to the combinatoric background, which has vanishing average impact parameters.

5.1.4 Binning ∆m and counting signal

At this point we have enforced our cuts, performed the vertex fits, and rejected all events that failed these

fits, eliminating a large amount of background. The last step towards counting D∗ signal is to bin ∆m for

all remaining D∗ candidates, and to fit the resulting histogram to a double-gaussian signal plus power-law

background hypothesis, in order to count the number of tagged D∗. (We use templates for the signal and

the background functions, and allow only the amplitude of each function to vary. For a description of these

templates, and how we derived them, see Appendix A.) Before moving on to the next section, we tabulate all

cuts used to eliminate background thus far, and we list all quantities calculated to describe our D∗ candidates

(Table 5.1).

5.1.5 Counting D∗ in our W/Z selections

Having identified Z andW events in sections 4.2 and 4.3, we now use the machinery developed in this section

to identify D∗ produced in association with these vector boson events. We look separately at Z → µµ,

Z → ee, W → µν and W → eν events; we also combine decay modes to produce single Z → ee/µµ and

W → eν/µν samples, and then finally split the latter into two different subsets: events for which the W

and tagged D∗ have the same sign (W +D∗SS events), and events for which the W and tagged D∗ have the
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Variable Signal Requirements Variable Signal Requirements

pT (K) 400 MeV < pT pT (D0) Not used for cuts
pT (π) 400 MeV < pT |VD∗ −VD0 | Not used for cuts
pT (πs) 80 MeV < pT bs(K,D

∗) Not used for cuts
∆R(K,π) ∆R < 1.1 bs(π,D

∗) Not used for cuts
∆R(K,πs) ∆R < 1.1 bs(πs, D

∗) Not used for cuts
∆R(π, πs) ∆R < 1.1 bs(K,D

0) Not used for cuts
Fit χ2/DOF χ2/DOF> 0 bs(π,D

0) Not used for cuts
Prob(χ2/DOF) Prob > 0 bs(πs, D

0) Not used for cuts
Lxy(D∗) Not used for cuts bs(D

∗, beam) Not used for cuts
Lxy(D0) Lxy > 0 bs(D

0, beam) Not used for cuts
pT (D∗) Not used for cuts Vtx Lxy Not used for cuts

Table 5.1: All properties used to distinguish between signal and background events. Requirements on each
property—which must be satisfied in order for an event to be considered signal–are located under ‘Signal
Requirements’. Properties marked ‘Not used for cuts ’ have no absolute cuts, but may be used later on in
other contexts (e.g., as input to a neural network).

opposite sign (W +D∗OS events). We will later use these OS/SS counts to identify the fraction of our sample

that comes from a particular production process (see 10.3). The relevant plots are shown in Figs. 5.3 and

5.4; signal counts are recorded in Table 5.2.

In the case of our Z(→ ``)+D
∗
samples, we have a relatively small signal. In order to assess the strength

of that signal (is it real signal, or is it a statistical fluctuation?), we can perform a significance test. In

short, we fit the ∆m distribution to our full signal plus background hypothesis, and then to a hypothesis

of background only. We record the fit quality value χ2/DOF for each (where DOF ≡ number of degrees of

freedom in the fit), and we look at the difference between these values. A value of χ2/DOF ∼ 1 usually

indicates a good fit, and if the signal plus background hypothesis is a much better fit than the hypothesis of

background only, then we say that our signal is significant. Quantitatively [40], for a signal with gaussian-

distributed uncertainty, and for a fit in which removing the signal decrements DOF by only 1, we may

calculate

Significance / σ =
√
χ2

sig+bkg − χ2
bkg only (5.1)

This quantity is only truly meaningful in the context of small signals, such as in the ∆m distributions of

our Z +D∗ samples. However, for the sake of comparison with our later, improved measurements (see 5.2),

we measure this quantity for all of the V + D∗ signal types described above (Table 5.2). We see that our

Z + D∗ signals have a significance that falls just below 3σ; this might be worrisome if we were looking to

prove the existence of a new process or particle (e.g., the Higgs boson). Such measurement usually requires
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Category Ncount χ2
sig+bkg / χ2

bkg only / Significance / σ
(Number D∗ tagged) DOF DOF

Weν +D∗ 367± 51 121.1 / 80 183.8 / 81 7.9
(with NNcut = 0.0) 340± 30 100.8 / 79 292.7 / 80 13.9

Wµν +D∗ 326± 43 90.4 / 79 158.5 / 80 8.3
(with NNcut = 0.0) 294± 26 111.3 / 78 305.9 / 79 13.9

Weν/µν +D∗ 693± 66 121.3 / 79 247.5 / 80 11.2
(with NNcut = 0.0) 634± 39 108.9 / 79 469.7 / 80 19.0
Weν/µν +D∗OS 383± 49 109.3 / 79 181.7 / 80 8.5

(with NNcut = 0.0) 362± 30 114.6 / 78 328.9 / 79 14.6
Weν/µν +D∗SS 310± 45 115.2 / 80 175.5 / 81 7.8

(with NNcut = 0.0) 272± 26 101.4 / 79 253.1 / 80 12.3

Zee +D∗ 48± 17 112.8 / 76 120.4 / 77 2.8
(with NNcut = 0.0) 17± 8 86.4 / 69 84.8 / 70 0.0

Zµµ +D∗ 30± 12 139.2 / 74 145.8 / 75 2.6
(with NNcut = 0.0) 310± 45 45.4 / 55 48.1 / 76 1.6

Zee/µµ +D∗ 78± 21 101.7 / 76 118.0 / 77 4.0
(with NNcut = 0.0) 39± 11 113.1 / 73 123.5 / 74 3.2

Table 5.2: Tagged D∗ counts as derived from our fitted plots of ∆m for each type of signal event. We include
counts found both with (top row of each result) and without (bottom row of each result) applying a neural
network to reduce background. The neural network is discussed further in 5.2. Vxy is short for V → xy.
Vxy/ab is short for a combined sample of V → xy and V → ab events.

a 3σ confidence level to be of interest, and a 5σ confidence level to be accepted as a real signal. However,

when measuring the strength of a process which is already known to exist, lower significance values (such

as those of our Z + D∗ signals) are acceptable for claiming observation. We have no such qualms with our

W +D∗ signals: these are not only easily visible to the “naked” eye in our ∆m distributions (Fig. 5.3), but

are far beyond the 3-5σ significance threshold (Table 5.2).

5.2 Using a neural network to reduce background in ∆m

In the previous section, we identified D∗ candidates produced in association W and Z decays. We did this

by binning ∆m for all D∗ candidates passing a set of cuts, and then fitting these ∆m histograms to a signal

plus background hypothesis. However, we would also like to look at differential measurements, e.g., the

number of D∗ produced as a function of pT (D∗), or the number of D∗ produced in events with N jets.

By dividing up our D∗ sample, we can provide more detailed final results; however, this will also reduce

our signal strength, which in turn increases uncertainty in our measurements. In order to counteract this

increased uncertainty and in order to provide the most meaningful final results, we want to eliminate as

much background as possible in our ∆m distributions. The less background there is, the stronger our signal

will stand out over this background. This, then, is our next objective; to approach it, we turn to neural

networks.
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Figure 5.3: Fitted plots of ∆m for W (eν/µν) +D∗ events.

Figure 5.4: Fitted plots of ∆m for Z(ee/µµ) +D∗ events.
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5.2.1 What is a neural network?

An artificial neural network (ANN) is a multivariate analysis tool. Unlike hard cuts, which set a clear line

between what is considered background and what is considered signal (e.g., our cuts on the reconstructed

D0 mass), a neural network cut allows these lines to be blurred by considering many properties in tandem.

A D∗ candidate with a large, negative Lxy value for example, might be D∗-like enough in all other ways that

it will still pass our cuts. This kind of flexibility is very useful if your events are described by a large array

of variables, none of which provide particularly clear boundaries between signal and background events.

A neural network gets its name by merit of its input and output structure, which can be said to resemble

a web of interlocking neurons in the human brain. In the brain, a single neuron takes in inputs from many

sources, through its dendrites, and produces a single output value; this value is carried along its axon, and

then distributed as input to other neurons. The process is repeated many, many times, until some cell

chooses to act (or not act) based upon the value delivered to it by some final neuron. The way that a brain

learns to perform a certain to task, or to distinguish between a square and a circle, is by juggling these input

and output values until a desired result is obtained.

An artificial neural network works in much the same way; the primary difference is that in an ANN,

functions takes the place of chemical interactions. The network begins with a series of inputs, called simply

the input layer. Each node in this input layer represents a single variable, which is provided by the user.

These variables are sent to the nodes of a second, ‘hidden’ layer, each node of which combines these input

values according to some function to produce a single output value. This value, in turn, is sent to the output

layer, where the process is repeated; a neural network can have many hidden layers, and its final output

layer can consist of one or more nodes. The primary purpose of each output node, however, is to represent

in a single value how signal- or background-like an event is. In this way, many inputs can be consolidated

into a single value representing the entire event; this value can be cut upon to provide a binomial yes-or-no

decision. The general ANN structure is shown in Figure 5.5.

Like a biological neural network, a neural network must ‘learn’ to perform a task. This is accomplished

by defining each function in the hidden layer with a large array of variable constants, which can be adjusted

until the desired behavior is obtained. In general, a user provides the neural network with sample signal

events and background events, which he wants to separate in other samples with unknown contents. The

constants in the hidden layer are adjusted, until the final output value is a reliable measure of whether an

event is signal- or background- like. This usually takes the form of an output value between -1 and 1, where

the closer to -1 this value is, the more background-like the event. These adjustments are called ‘training’.

We use the Neurobayes package in this analysis [41], a commercial software product used by the CDF
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Figure 5.5: A schematic representing the structure of a neural network. The input layer is an array of
variables, one per node, which describe an event. These inputs are each passed to the nodes of a second,
‘hidden’ layer, where they are processed to produce a second set of values. These values are then sent to an
output layers (or to one or more additional hidden layers), where the process is repeated. At the end, each
output node produces a single value representing how signal- or background- like an event is. Cuts on these
final values are used to decide whether an event is signal- or background-like.

experiment. The hidden layers of this package are encrypted, and we are therefore unable to explain how

they work in this thesis. Suffice it to say, it is very likely that they work exactly as described above. In the

following subsections, we will describe the types of signal and background events that we wish to separate,

and the variables (inputs) that we will use to create and train our neural network.

5.2.2 An interlude on production processes

Recall that to first order, the W/Z+D∗ signals measured in section 5.1 come from four different production

processes: s(d) + g → W + c(→ D∗) and pp̄ → W/Z + cc̄(→ D∗) (direct charm production); and pp̄ →

W+B(→ D∗) (bottom hadron decays). For reference, these four production processes, and the abbreviations

with which we refer to them, are re-listed in Table 5.3.

As we develop our neural network, we will need to keep these different production processes in mind. Let

us assume, for example, that our trained neural network comes to identify the reconstructed D∗ momentum

as a critical discriminant for separating signal and background. While it is unlikely that D∗ produced in

Wcc vs Zcc events will have properties that are substantially different from one another, it is possible that

the momentum distribution of D∗ from Wbb events will be quite different than the momentum distribution

of D∗ from Wcc or Wc events. It is also possible that D∗ from Wcc will have a momentum distribution
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Production process Abbreviation Number of Monte Carlo signal events
q + q̄′ →W + g(→ bb̄)→W +D∗ +X Wbb 2710
q + q̄′ →W + g(→ cc̄)→W +D∗ +X Wcc 8437

q + g →W + c→W +D∗ +X Wc 7090
q + q̄ → Z + g(→ cc̄)→W +D∗ +X Zcc 4995

Table 5.3: Our four production processes, along with the abbreviations used to refer to each, and the number
of D∗ candidates in each sample that fall within 3σ of the ∆m peak.

different than that of D∗ from Wc. While we do not expect the effect to be large, it is possible that this will

cause, e.g., NNWcc (a neural network trained to identify Wcc events), to preferentially select D∗ from Wcc,

over D∗ from other production processes.

In practice, this neural network bias will not affect our final inclusive measurements (see the A · e

‘unfolding’ process in chapter 8). However, it provides some interesting insight into the nature of our signal.

In fact, we will even take advantage of this bias and use it to separate Wcc and Wbb signal contributions

from one another in 10.1. For now, we will simply keep track of the neural network acceptance rates for each

of these four production processes.

Finally, we expect for most of our D∗ signal to come from Wcc events. Therefore, in what follows, we

will train our neural network to identify D∗ from Wcc production. This choice does cause us to identify

Wbb and Wc signal at a lower rate than Wcc signal, but the effect turns out to be small (see Figure 5.9),

and may be easily accounted for.

5.2.3 Training the neural network

To create our neural network, we must first do two things: decide which variables to send to the ANN input

layer; and collect sample signal and background events to train the neural network with. This may may at

first seem contradictory; if we know which events are signal and which are background, then why train a

neural network to begin with? The answer is that in the signal region (beneath the peak in our ∆m plot),

we have no way of knowing which events are background events, and which are signal. The signal peak is

a statistical phenomena that rises above this uncertainty. We can, however, look at signal and background

events in purer samples, and then use these to distinguish between signal and background in ‘contested’

regions.

First, we assemble a list of variables which can be used by the neural network to separate signal and

background (Table 5.4). This list contains mostly kinematic variables (impact parameters, opening angles,

and track/vertex momenta), as well as the vertex fit probability and χ2/DOF value. In practice, the neural

network does not use all of these variables (if changing some variable has only minimal impact on the

final output value, a Neurobayes neural network will ignore it). Those that it does, we list in the order of
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Rank Variable Rank Variable Rank Variable

1 Lxy(D0) 11 Lxy(D∗) Unused pT (D0)
2 pT (K) 12 pT (D∗) Unused bs(πs, D

0)
3 bs(πs, D

∗) 13 pT (πs) Unused Fit Prob
4 ∆R(K,π) 14 ∆R(K,πs)
5 bs(π,D

∗) 15 bs(D
0, beam)

6 bs(K,D
0) 16 |VD∗ −VD0 |

7 ∆R(π, πs) 17 Vtx Lxy
8 Fit χ2/DOF 18 bs(K,D

∗)
9 pT (π) 19 bs(π,D

0)
10 bs(D

∗, beam)

Table 5.4: The properties used to characterize our D∗ candidates, both signal and background. It is these
properties that the neural networks will use to separate signal and background. We also list the importance of
each of these properties, as ranked by the neural network training program. Three of these variables (pT (D0),
bs(D

0, πs) and Fit Prob) are determined by the training program to have negligible use in separating signal
and background. These variables are, therefore, not used by the neural network. For more information about
the variables listed above, please refer back to section 5.1.

importance assigned to them by the final, trained neural network.

5.2.3.1 Defining our signal sample

Now, we collect sample signal events for training. For this, we generate inclusive Pythia Monte Carlo

pp̄ → W/Z events, skimming off only those events in which a D∗ is produced in one of the four ways

described aboove. We simulate these events in a detector environment using cdfSim, and then run them

through our W/Z + D∗ tagging algorithms as if they were data. In general, Pythia Monte Carlo is very

good at simulating the kinematic behavior of signal events; it is only the magnitude of these production

processes that are considered unreliable until measured. For our purposes, then—training a neural network

to recognize the kinematic properties of signal events—these simulated events will serve very well.

In the simulated samples described above, any D∗ candidates that fall within 3σ of the ∆m peak,

∆mpeak = 0.1455, are considered signal events. While it is possible for some combinatoric background to

fall into this region (tracks in signal events that do not come from a D∗ decay may pass all of our cuts),

this effect is considered to be negligible (contribution � 1%). The properties of each type of signal event

are stored in a data format called a ROOT Tree. These trees (Tree Wbb , Tree Wcc, etc) can then be used to

train our neural network, NNWcc, and to estimate the efficiency with which this neural network identifies

D∗ from each production process.
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5.2.3.2 Defining our background sample

We now need a sample of “D∗-like” background events. We expect that most of our background will be

combinatoric background from underlying QCD processes; there are no known standard model processes

that can mimic the ∆m peak of the D∗ → D0(Kπ)π decay. While Monte Carlo simulations are quite good

at predicting the kinematics of specific signal processes, they are not as reliable when it comes to predicting

the behavior of general QCD background. Instead, we look to data. Specifically, we look in our selected

W events for D∗ candidates that pass all of our selection criteria, but do have not the charge assignments

needed for a true signal event. (We choose to look in our W events, versus in our Z events, for two reasons:

we have many more background candidates in our W sample than our Z sample; and we do not expect

D∗-like background in Z events to be very kinematically different from D∗-like background in W events.)

We define two kinds of background according to the criteria above: “same-sign track” (SS ) background,

in which all tracks have the same sign; and “bad-sign πs” (BSP) background, in which the soft pion has the

opposite charge of the ‘hard’ pion. The SS background should be purely combinatoric. The BSP background

is a combination of combinatoric background, real D0 → K+π− decays paired with a random low-momentum

track, and real signal events in which the sign of the soft pion is misreconstructed. We expect for the latter

effect to be small; even if it is not, our A · ε calculations (chapter 8) will take this into account when we

report our final measurements.

Neural networks are optimally trained using the same number of signal and background events (in our

largest Monte Carlo signal sample—the Wcc events—we count 8437 signal D∗ candidates; we would also like

to select 8437 D∗-like background events). However, in order to provide maximum discriminating power in

the region beneath the ∆m signal peak, we want our signal and background events to be as kinematically

similar as possible. To fit both of these constraints, we combine our SS and BSP background samples, and

count outwards from the ∆m signal peak at ∆mpeak = 0.1455. We select 8437 D∗ candidates within 3.2σ of

the peak, and define these as our background sample.

5.2.3.3 Bringing it all together

With our signal and background samples defined, we evaluate the variables used to describe each (Table

5.4), and send all of this information to the neural network NNWcc for training. The separating power of the

final, trained neural network, in terms of the final output value distributions, is displayed in Figure 5.6. The

distributions of each variable used to develop this neural network (for both signal and background events),

are recorded in Appendix B. The correlation matrix for all input variables is also recorded in Appendix B.
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Figure 5.6: The neural network output score spectra for signal and background events, for trained neural
network NNWcc. The signal event spectrum is drawn as a red histogram, while the background event
spectrum is black.

5.2.4 Characterizing the neural network

As shown in Figure 5.6, our trained neural network is quite good at separating signal and background events

from one another. The network output is close to 1 for the majority of signal events, and close to -1 for the

majority of background events. However, in order to actually employ this neural network, we must cut upon

its output score, and declare that all events with an output score greater than some value NNcut are signal

events.

Recall that our primary motivation in training this neural network is to reduce the number of D∗-like

background events, thereby reducing the statistical uncertainty in our fits and our final measurements. To

do this, we will want to choose an optimal cut value NNcut. We determine that value by plotting a so-called

figure of merit (FOM) as a function of neural network cut score, and looking for that neural net score which

gives us the highest FOM. The FOM is, generally speaking, a measure of the ‘cleanliness’ of a signal amidst

background—a high FOM value indicates less noise, hence less uncertainty when measuring the size of the

signal peak. For our figure of merit, we choose standard expression

FOM =
s√
s+ b

(5.2)

Here, s is the number of signal events that pass a given NN cut value, and b the number of background
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Figure 5.7: We plot FOM ≡ s/
√
s+ b as a function of the neural network score cut, NNcut. A higher FOM

score translates into a smaller uncertainty when fitting our discriminant (∆m) to a signal plus background
hypothesis. As can be seen here, the ‘peak’ for the neural network is quite broad, within little change in the
FOM value between 0.2 and −0.2. For the sake of simplicity, and for uniformity when using multiple neural
networks (as we will in later sections), we choose to use NNcut = 0.0 as our cut value between signal and
background.

events that pass that cut value. Using the signal and background samples defined above to find s and b, we

generate the FOM plot as shown in Figure 5.9. It is also interesting to look at at a plot of NNcut versus the

number of signal and background events that pass that cut, again using the signal and background samples

defined above. This lets us predict about how much signal and background will be lost for, e.g., a neural

network cut of NNcut = 0.0. We show these plots in Figure 5.8.

Recall that we would also like to see how our cut on the neural network output will affect different signal

events from different production processes. For that purpose, we plot the fraction of each type of signal event

that has a neural network output score greater than NNcut, for each of our four signal processes (Figure

5.9). We see that for NNcut = 0.0, our Wcc and Zcc samples have a very similar acceptance efficiency, but

our Wc and Wbb samples have rather different efficiencies. This is to be expected—we will see later (chapter

8) that the rate at which we accept D∗ candidates is directly dependent upon the transverse momentum of

the D∗ meson (pT (D∗)). In single charm production (Wc), the W and c are produced back-to-back, and we

would expect the D∗ to have higher average momentum. In double charm production (Wcc), the momentum

opposite to the W must be split between two charm quarks—this will reduce average pT (D∗). Finally, in

double bottom production (Wbb), not only is the momentum opposite to the W split between two bottom

quarks, but the D∗ produced will only carry away a fraction of the momentum given to one bottom quark.

As such, Wbb events will produce D∗ with the lowest average pT (D∗). This is exactly the trend that we see
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Figure 5.8: The number of signal and background events with NNcut greater than some value, as a function of
that value. To generate these plots, we employ the neural network and signal/background samples described
earlier in this section (section 5.2). We see that for the choice NNcut = 0.0, we would eliminate ∼ 80% of
background, while losing only ∼ 10% of our signal.

in Figure 5.9.

5.3 Refined D∗ counts in our W/Z selections

Choosing a cut on neural network score of NNcut = 0.0, we run over all D∗ candidates as selected in section

5.1. We then fit the resulting ∆m plots. The results are plotted in Figures 5.10-5.12.

In the combinedW+D∗ selection, we lose about 10% of our signal (as expected). In the combined Z+D∗

selection, however, we appear to lose significantly more signal (Figure 5.10). Looking at the Z → ee and

Z → µµ cases separately (compare Figures 5.4 and 5.12), we see that this loss is due primarily to reduction

in the Z(→ ee) +D∗ signal. Because we do not expect for the neural network to affect Wcc and Zcc events

very differently (recall Figure 5.9), and because the Z + D∗ fits involve low statistics, we attribute this

signal ‘loss’ to be due to statistics only—the Z +D∗ pre-neural network signal count may have been driven

artificially high by a statistical fluctuation (or the post-nerural network Z +D∗ signal count may have been

driven artificially low).
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Figure 5.9: The rate at which our neural network acceptsD∗ candidates from each of four different production
processes, plotted as a function of NNcut.
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Figure 5.10: Fitted plots of D∗ signal discriminant ∆m for D∗ candidates in both W and Z events. We plot
∆m both before and after applying the NN cut of 0.0. We see marked improvement in the fit uncertainty
of the W +D∗ signal, but less improvement of the Z +D∗ signal..
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Figure 5.11: Fitted plots of ∆m for W (eν/µν) + c events.

Figure 5.12: Fitted plots of ∆m for Z(ee/µµ) + c events.
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Chapter 6

Rate of D∗ Production in Vector Boson
Events

Following the techniques described in Chapter 5, we found low-uncertainty measurements of the number of

D∗ → D0(→ Kπ)πs decays in our selected W and Z events. Let us take a moment, however, to remember

what it is that we ultimately wish to measure: a ratio of physical cross-sections σ(V + c)/σ(V ). On the

surface, this might appear to be a very simple task. If, for example, every reconstructed W in our W → µν

selection was a real W , then we could simply divide the number of tagged D∗ in each sample, by the number

of tagged W → µν events in that sample. After applying some ‘unfolding’ factors to this raw fraction, to

take acceptance values and branching ratios into account, we would have our final measurement (chapter 8).

Unfortunately, it is unlikely that every event which passes our W/Z cuts are in fact W/Z events. For

example, some “W ” events may actually be misreconstructed Z decays, or may be QCD jets which fake

the W signature. Further complicating this scenario, some of the D∗ that we identified in our ∆m plots

may be associated with these fake W events. If the rate at which fake W/Z are produced in association

with D∗, is similar to the rate at which real W/Z are produced in association with D∗, then the ratios

σ(W/Z + c)/σ(W/Z) will not be strongly affected. However, we cannot a priori assume this.

In this section, we work to remove the influence of background W/Z events from our D∗ signal counts.

In the process, we will determine the ‘raw’ fractions fW/Z sig
D∗ and fW/Z bkg

D∗ , where fD∗ ≡ NW/Z+D∗

tagged /N
W/Z
tagged

for each real (sig) and fake (bkg) W/Z events. As we will see, it is easiest to solve for both fW/Z bkg
D∗ and

f
W/Z bkg
D∗ simultaneously.

6.1 Solving for rate fZ sig
D∗

We will first determine the fraction of Z events (both real and fake) which are also tagged as having a D∗ →

D0(→ Kπ)πs decay. To do this, we define two regions along them(`+`−) axis for all Z candidates: the signal

region is defined as |m(`+`−)−91 GeV| ≤ 3σMZ
, and the background region as |m(`+`−)−91 GeV| > 3σMZ

.

Here, σMZ
is the width of the Z boson signal peak; due to finite detector resolution that is generally worse

for electrons than it is for muons, this value varies between σMZ
= 3.0 GeV for Z → e+e− events, and

σMZ
= 2.0 GeV for Z → µ+µ− events.
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We then fit the total m(`+`−) distributions to an exponential background plus double-Gaussian signal

hypothesis, as in section 4.2; integrate beneath the curves to count the number of signal and background Z

candidates in each region, N region=(sig,bkg)
Z and N region=(sig,bkg)

Z, bkg ; and bin ∆m for all D∗ candidates, fitting

this distribution with our standard ∆m signal plus background hypothesis. This gives us counts N region=sig
D∗

and N region=bkg
D∗ . Finally, we construct two simple coupled equations to solve for fZ,bkg

D∗ and fZ,sigD∗ :

N sig region
D∗ = fsigD∗ ·N sig region

Z + f bkgD∗ ·N sig region
Bkg

Nbkg region
D∗ = fsigD∗ ·Nbkg region

Z + f bkgD∗ ·Nbkg region
Bkg (6.1)

While we do not expect there to be many Z signal events in the background region, it is possible for the

rate at which Z are produced with D∗ to be much larger than the rate at which background events are

produced with D∗. If that is the case, then all D∗ in the background region may be from Z events; it is for

this reason that we use the coupled set of equations above, instead of finding the background plus D∗ rate in

the background region, and then using that rate to estimate the number D∗ from background in the signal

region. The results of the approach described above are reported as “Test Number 4’ ’in Table 6.1.

6.2 Systematic uncertainty in fZ sig
D∗

The technique described in section 6.1 is expected to be accurate; there are no known sources of background

which might peak in the signal region and cause a change in the behavior of background as a function of

m(`+`−). We test this assumption by looking at Z candidates in which both leptons have the same sign:

the m(`±`±) distribution is smooth across the signal region, with no peaks.

Regardless, we test the accuracy of our Z +D∗ rate-finding technique by performing the above analysis

for several definitions of the m(`+`−) signal and background regions. We collect the results of these tests in

Table 6.1. We fit, with a constant value hypothesis, the full set of fZ sig
D∗ and fZ bkg

D∗ test values (Figure 6.1).

The mean and uncertainty of these fits are taken to be the final fractions, fZ sig/bkg
D∗ , and their systematic

uncertainties. These final results are as shown in Table 6.2.

6.3 Solving for rate fW sig
D∗

We now wish to determine fractions fW sig
D∗ and fW bkg

D∗ . The procedure for this is a bit more complicated

than that used to find fractions fZ sig
D∗ and fZ bkg

D∗ in the previous section. This is due to the lack of a
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Test Sig Region Bkg Region fZ→µµD∗ (×10−5) (±stat) fZ→eeD∗ (×10−5) (±stat)
No. |MZ − 91.0 GeV| ≤ |MZ − 91.0 GeV| > (σMZ

= 2.0) (σMZ
= 3.0)

1 2.0 σMZ
2.0 σMZ

11± 3 5.0± 3.1
2 2.0 σMZ

3.0 σMZ
11± 3 5.3± 3.1

3 2.0 σMZ
5.0 σMZ

11± 3 5.0± 3.0
4 3.0 σMZ

3.0 σMZ
9.3± 3.0 5.9± 3.0

5 3.0 σMZ
5.0 σMZ

9.3± 3.0 5.5± 3.0
6 3.0 σMZ

7.0 σMZ
9.2± 3.0 5.7± 3.1

7 5.0 σMZ
5.0 σMZ

8.2± 2.6 5.1± 3.3
8 5.0 σMZ

7.0 σMZ
8.1± 2.7 5.4± 3.6

9 2.0 σMZ
7.0 σMZ

11± 3 5.2± 3.1

Table 6.1: Tables containing the fZ sig
D∗ values found by varying the definition of signal and background

regions in our Z → µµ and Z → ee selection samples. The signal (background) region is defined as all
events for which MZ is within (without) N σMZ

of the nominal peak at MZ = 91.0 GeV. We approximate
σMZ

= 2.0 for Z → µµ, σMZ
= 3.0 for Z → ee. Statistical uncertainty in each test is dominated by

uncertainty in the ∆m fits.

Figure 6.1: Plot of the fZ sig
D∗ (red) and fZ bkg

D∗ (blue) values found by varying the signal and background
regions in our Z selection sample. We fit each set of values to a constant-value hypothesis (solid horizontal
lines), and take the uncertainty in the best-fit value to be the systematic uncertainty of this method (shaded
horizontal bars).

Signal fZ bkg
D∗ (×10−5) fZ sig

D∗ (×10−5)
Type (± stat ± syst) (± stat ± syst)

Z(→ µµ) +D∗ 0.0± 0.2± 0.1 9.6± 2.9± 1.0

Z(→ ee) +D∗ 6± 13± 5 5.3± 3.0± 1.0

Table 6.2: Final fZ sig/bkg
D∗ fractions, with full statistical and systematic uncertainties.
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clear signal discriminant such as MZ . Instead, we break the process into two steps: first, we identify the

fraction of selected W which are actually background events faking the W signature; then, we use this value

to determine the rate at which real and fake W are produced in association with D∗ (fW sig
D∗ and fW bkg

D∗ ).

As we will see, there are many different sources of background to consider.

6.3.1 First considerations of EWK backgrounds to the W +D∗ selection

Recall the fraction of our W selection that is attributed to backgrounds, as recorded in Table 4.6. For both

W → µν and W → eν events, we have percent-level non-signal events in region W, which is the region that

corresponds to our signal selection. Any of these background events may be produced in association with a

D∗. If not taken into account, this would contaminate our measurement of rates fW sig
D∗ and fW bkg

D∗ .

We now assume that the fZ sig
D∗ rates, as found in the previous section, should be equal across all quadrants

as defined in Table 4.5. Any 6ET in a Z +D∗ event should not be due to the underlying Z +D∗ production

process, and any variation in the lepton isolation value should be dominated by a structureless background—

the W/Z +D∗ production processes that we consider produce jets that are preferentially back-to-back with

the W/Z decay products. We also assume that the fW sig
D∗ rates are equal across all regions. For a true

W → `ν event, a mismeasurement of 6ET should not strongly affect the odds of tagging an associated D∗.

Once again, any variation in lepton isolation should be dominated by a structureless background.

Finally, we argue that fW → τν
D∗ should approximately equal fW → µν/eν

D∗ . At the production level, these two

rates should absolutely be equal—what happens to theW after production should not affect the properties of

the associated D∗. However, we may tag D∗ at a different rate inW → τν events than inW → µν/eν events:

for example, the pT distributions of tagged W events may differ across decay modes, which in turn would

affect the pT distributions of taggable D∗. For now, we claim that any variation from fW → τν
D∗ = f

W → µν/eν
D∗

is negligible—especially with the small number of W → τν events expected in region W (Table 4.6).

6.3.2 First considerations of QCD backgrounds to the W +D∗ selection

This leaves the question of D∗ production in QCD-background events which fake the W signature. As we

will see, these QCD-background events are the most important source of non-signal D∗ in our sample. In

general, our fW sig
D∗ rates are of order 10−5, while our fW bkg=QCD

D∗ rates (henceforth fQCD
D∗ , for brevity) can

be as large as order 10−3. With fQCD
D∗ ∼ 100 × fW sig

D∗ , the rate of D∗ production in QCD background is

much greater than the rate of D∗ production in W signal events—even a few percent of QCD background

events in region W can strongly affect our D∗ count. As such, we will want to understand this rate in as

much detail as possible.
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There is no a priori reason to assume that fQCD
D∗ is constant across all four quadrants. Events with large

lepton isolation (Iso1), may be more likely to come from heavy-flavor production; meanwhile, events with

low 6ET may describe a different class of QCD background (e.g., mismeasured jets), than events with large

6ET (e.g., a heavy-flavor decay involving a lepton and neutrino). We therefore would like to measure the

dependence of fQCD
D∗ on 6ET and Iso1.

To do this, we first assume that fQCD
D∗ can be written as a separable product of functions

fQCD
D∗ = h( 6ET )× g(Iso1) (6.2)

We then define fQCD
D∗,X as the rate of QCD background plus D∗ production in Region X. To first order,

we may say that:

fQCD
D∗,A = hLO × gLO fQCD

D∗,B = hLO × gHI fQCD
D∗,C = hHI × gHI (6.3)

where hLO is the average value of h in regions A and B (the low- 6ET regions), and hHI is the average value

of h in regions C and W (the high-6ET regions); gLO/HI is defined similarly, for regions split by Iso1. This

simplification allows us to say that:

fQCD
D∗,W = hHI × gLO =

fQCD
D∗,A × f

QCD
D∗,C

fQCD
D∗,B

(6.4)

6.3.3 Measuring rates fW sig
D∗ and fW bkg

D∗ (full approach)

By counting the number of D∗ in each of the four 6ET /Iso1 regions, we get four values which can be used to

solve for four unknown rates. Using the fZ sig
D∗ rates as found in data, and assuming that fZ sig

D∗ and fW sig
D∗

are constant across all quadrants (as discussed earlier in this section ), we may choose these four unknown

rates to be fQCD
D∗,A, f

QCD
D∗,B , f

QCD
D∗,C , and fW sig

D∗ . We will solve for these unknowns in the following iterative

process.

First, assume that we have some estimate for fW sig
D∗ . For each region A, B, and C, we estimate the

number of true W +D∗ events by multiplying this fraction into the expected number of W events. We then

subtract this value from the region’s total D∗ count. Similarly, we subtract the number of D∗ expected to

be from Z events. What’s left in each quadrant is assumed to be the count of D∗ from QCD background.

Hence, dividing this remaining D∗ count by the number of QCD events in each quadrant (Table 4.6), we

find fQCD
D∗,A, f

QCD
D∗,B , and f

QCD
D∗,C .

We now calculate fQCD
D∗,W using Eq 6.4. Using fQCD

D∗,W and fZD∗ , and the number of events in region W
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Tagged Rate ... in W → µν events ... in W → eν events
(×10−5) (± stat) (± stat)
fQCD
D∗,A 17± 5 23± 2

fQCD
D∗,B 152± 11 32± 7

fQCD
D∗,C 135± 17 20± 17

fQCD
D∗,W 16± 5 15± 2

fW sig
D∗ 5.1± 0.5 5.3± 0.8

Table 6.3: Rates fQCD
D∗ and fW, sig

D∗ for both our W → µν and W → eν samples. These results suggest
that fQCD

D∗ is strongly dependent on lepton isolation Iso1 (especially in the W → µν case), but only weakly
dependent on 6ET (if at all: rate pairs fQCD

D∗,A and fQCD
D∗,W , and fQCD

D∗,B and fQCD
D∗,C , are each compatible within

uncertainty—for both W decay modes).

that are expected to come from Z and QCD events, we can determine the number of D∗ in region W that

come from non-W sources. Subtracting out these D∗ from the total D∗ count in region W, we are left with

the number of D∗ produced in association with real W bosons. We divide this by the number of real W in

region W to get a next-order approximation to fW sig
D∗ .

With an initial guess of fW sig
D∗ = 0, we iterate through this process until the value of fW sig

D∗ does not

change by more than 0.1% of its value over two consecutive iterations. (As we will see, this is far lower than

the uncertainty in our ∆m signal fits—as such, it is more than sufficient that we iterate only to this level of

accuracy).

Doing this for both our W → µν and W → eν samples, we find values for fQCD
D∗,A, f

QCD
D∗,B , f

QCD
D∗,C , f

QCD
D∗,W

and fW sig
D∗ as recorded in Table 6.3.

6.3.4 Measuring rates fW sig
D∗ and fW bkg

D∗ (reduced uncertainty approach)

We see in Table 6.3 that fQCD
D∗ is strongly dependent on lepton isolation (especially in the W → µν case),

but only weakly dependent on 6ET . Specifically, rates fQCD
D∗,A and fQCD

D∗,W are compatible within uncertainty,

as are rates fQCD
D∗,B and fQCD

D∗,C . Unfortunately, for the case of W → eν, a small population of D∗ in region

C leads to large uncertainties in fQCD
D∗,C , which in turn leads to large uncertainties in fQCD

D∗,W as found by Eq

6.4. As such—and because 6ET dependence in fQCD
D∗ is shown to be weak—we choose instead to approximate

rate fQCD
D∗,W for both W samples as

fQCD
D∗,W ' f

QCD
D∗,A (6.5)

With this approximation made, we otherwise solve for fW
D∗ in the same way that we did in section 6.3.3. Doing

so, we find (new) values for fW
D∗ as summarized in Table 6.4. We will use these values for the remainder of

this analysis—any uncertainty in the procedures described here will be taken into account by our evaluation

of systematic uncertainties in 6.4.
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Signal fQCDD∗,W (×10−5) fWD∗ (×10−5)

Type (± stat) (± stat)

W (→ µν) +D∗ 17± 5 5.1± 0.5

W (→ eν) +D∗ 23± 2 5.0± 0.6

Table 6.4: Final values for the rate at which W bosons are produced in association with D∗ mesons, found
independently for decay modes W → µν and W → eν.

We may also work backwards, and use final rates fW
D∗ and fQCD

D∗ to count the number of tagged D∗ in

Region W that are attributed to each signal and background process. Results are summarized in Table 6.5.

6.4 Systematic uncertainty in fW sig
D∗

The technique used above may not be completely accurate—any of our simplifying assumptions in section

6.3could be erroneous. We would like to estimate the quantitative effects of this uncertainty. Because

the whole of our fW sig
D∗ -finding technique depends upon the definition of 6ET /Iso1 regions A, B, C, and

W, this can be done by redefining those regions, and then redoing our measurements of fW sig
D∗ , for each

definition. The maximum variation in final results fW sig
D∗ , taken across all tests, is identified as the systematic

uncertainty associated with our technique.

Specifically, we first shift the upper 6ET boundary used to define regions A and B, while keeping all

other region boundaries as defined in Table 4.5. This ensures that we do not vary our definition as to what

constitutes a W → `ν event, while also maintaining the accuracy of the important ratio defined in Equation

6.4. We then reestablish the original 6ET boundaries, and vary instead the lower Iso1 boundary used to define

regions B and C.

Unlike in the case of fZ sig
D∗ , we do not average the results of all tests to find a central value; this would

indirectly vary our definition of W events, and the original region W boundaries are widely accepted as the

standard for W selection. Instead, we use the fW sig
D∗ rates reported in Table 6.4 as our central value, and

these tests are used to find systematic uncertainty only. We tabulate the boundary definitions employed,

and the fW sig
D∗ values found, by each test (Table 6.6). The results are also plotted, in Figure 6.2. Our final

values for fW sig
D∗ , including full statistical and systematic uncertainties, are summarized in Table 6.7.
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W → µν selection Fraction of all events Number of events D∗ Production Rate W +D∗

Njets ≥ 0, pT ≥ 0 in region W in region W fW
D∗ (×10−5) Count

(± stat) (± stat) (± stat) (± stat)
Total 1.0 5, 348, 975 5.5± 0.5 293± 26

W → µν 0.9152± 0.0002 4, 895, 240± 880 5.1± 0.5 250± 24
W → τν 0.0305± 0.0001 163, 070± 670 5.1± 0.5 8.3± 0.8

W → µν & τν 258± 25
Z → µµ 0.03853± 0.00005 206, 110± 270 1.0± 0.3 2.1± 0.6

Jets Faking W → µν 0.0158± 0.0001 84, 550± 540 17± 5 14± 4

W → eν selection Fraction of all events Number of events D∗ Production Rate W +D∗

Njets ≥ 0, pT ≥ 0 in region W in region W fW
D∗ (×10−5) Count

(± stat) (± stat) (± stat) (± stat)
Total 1.0 5, 081, 938 5.7± 0.5 291± 27

W → eν 0.9362± 0.0004 4, 757, 570± 2100 5.0± 0.6 238± 29
W → τν 0.01913± 0.0001 97, 193± 560 5.0± 0.6 4.9± 0.6

W → eν & τν 243± 29
Z → ee 0.004863± 0.00001 24, 710± 90 5.3± 3.2 1.3± 0.8

Jets Faking W → eν 0.03984± 0.0004 202, 500± 2, 100 23± 2 47± 4

Table 6.5: The fractions of tagged W signal and background events that are also tagged as having a D∗. For
easy reference, we also list the fraction of events in region W that are expected to come from each source,
and the number of W +D∗ events that are attributed to each source. The number in the top right of each
table is the total number of W + D∗ candidates in region W for that decay mode. Note that for W + D∗

signal counts, only the combined “W → µν & τν” and “W → eν & τν” values are calculated directly. The
separated W +D∗ signal counts (W → eν, W → µν, and W → τν) are derived from the combined results.

Test Name Regions A and B Regions B and C f
W (→µν) sig
D∗ f

W (→eν) sig
D∗

6ET (GeV) ≤ Iso1 ≥ (×10−5) (×10−5)

Iso Test 1 10.0 0.2 5.10± 0.53 5.1± 0.6
Iso Test 2 10.0 0.3 5.10± 0.53 5.0± 0.6
Iso Test 3 10.0 0.4 5.09± 0.53 4.9± 0.6
Iso Test 4 10.0 0.5 5.07± 0.54 4.8± 0.6
Iso Test 5 10.0 0.6 5.04± 0.54 4.6± 0.6

MET Test 1 8.0 0.3 5.05± 0.54 4.98± 0.55
MET Test 2 10.0 0.3 5.10± 0.53 5.02± 0.55
MET Test 3 12.0 0.3 5.10± 0.53 5.02± 0.55
MET Test 4 14.0 0.3 5.08± 0.53 5.02± 0.55
MET Test 5 16.0 0.3 5.11± 0.53 5.04± 0.55

Table 6.6: The charm fraction rates fW sig
D∗ found by varying the 6ET / Iso1 borders used to define regions

A, B, C, and W. We take the maximum variation infW sig
D∗ across all tests to be the systematic uncertainty

associated with our “region-driven” technique for finding fW sig
D∗ . We do this for both the W → µν and

W → eν samples. Note that Iso1 Test 1 and 6ET Test 2 are the same—these tests both use the standard
region definitions from Table 4.5. This does not affect the systematic uncertainty, as it does not affect the
mininum/maximum fW sig

D∗ values.
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Figure 6.2: Plots of the values fW sig
D∗ found by varying the 6ET / Iso1 borders used to define regions A,

B, C, and W. Nota bene that the error bars for each data point are statistical, and are highly-correlated
across tests (the set of D∗ candidates, which we look through to count D∗ signal, changes only slightly as our
6ET / Iso1 borders are varied. Our systematic uncertainty is, in general, much smaller than this statistical
uncertainty.

Signal fW sig
D∗ (×10−5)

Type (± stat ± syst)

W (→ µν) +D∗ 5.1± 0.5 (stat)± 0.1 (syst)

W (→ eν) +D∗ 5.0± 0.6 (stat)± 0.5 (syst)

Table 6.7: Final measurements of fW sig
D∗ for the W → eν and W → µν samples, including full statistical

and systematic uncertainties.
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Chapter 7

Kinematic Properties of W/Z + D∗

Events

Before getting started, let us simplify our terminology somewhat. Having completed our investigation of

background, it is no longer necessary to specifically label fW sig
D∗ with the sig token. Henceforth, we refer to

rates fWD∗ only in the context of D∗ produced in association with real, “signal” W events. From this point

forward, then, we will use fW sig
D∗ and fWD∗ interchangeably.

7.1 A preface

Thus far, we have found “inclusive” rates of D∗ production, involving all identifiable W +D∗ events in our

sample. We would also like to measure specific properties of our W + D∗ events. The particular strength

of our fully-reconstructed D∗ analysis, is our ability to detect low momentum D∗. This allows two novel

measurements: a measurement of the rate at which D∗ are produced in association with W bosons in zero

jet events (jet objects are generally defined to have ET > 15, 20 GeV); and a measurement of how W + c

production acts at low pT (c) (defined here as pT (c) < 15 GeV). This is the first time that either of these

measurements have been made at the Tevatron. We would also like to measure other properties of these

events—how often the D∗ is found within a jet, for example, and how often the D∗ is produced back-to-back

with the W boson. These are the measurements that we make in this chapter.

In general, we use exactly the same techniques developed in Chapters 4-6; the only difference are addi-

tional restrictions placed on which W and D∗ are allowed to pass our cuts. We essentially run the analysis

for several ‘reduced’ datasets (e.g., D∗ with pT in ranges a, b or c, exclusively), and then merge these reduced

analyses together to measure fW sig
D∗ as a function of some variable. In this analysis, we call this process

‘splitting’ our signal. The exact splits will be elaborated upon for each case.

7.2 Splitting by pT (D∗)

We first look at the (normalized) pT (D∗) distributions of all D∗ identified in our Wcc, Wbb, Wc and Zcc

Monte Carlo samples, as defined in Table 5.3. These distributions are plotted in Figure 7.1. We do not split
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Figure 7.1: Normalized pT (D∗) distribution of all D∗ tagged by our algorithm in fully-simulated W/Z +D∗

events generated by Pythia (and simulated with the cdfSim package). We include results from each of Wcc,
Wbb, Wc, and Zcc Monte Carlo samples.

our Zcc sample by pT (D∗), but we add the Zcc distribution to Figure 7.1 for completeness and comparison.

As expected, we see that theWc distribution is weighted towards higher pT (D∗) than theWcc distribution

is, and the Wbb distribution is weighted towards lower pT (D∗). In terms of pT (D∗), we would like to split

our W +D∗ signal in such a way that the expected number of D∗ in each region is approximately constant.

This will assure a similar uncertainty in each region, rather than forcing huge uncertainties into ‘tail’ regions

with low statistics. In chapter 10, we will show that our W +D∗ signal consists mostly of Wcc events, with

some smaller fractions of Wbb and Wc. from Wcc. Therefore, we split our W +D∗ signal into eight regions,

chosen such that number of predicted D∗ from Wcc Monte Carlo is approximately the same in each region.

These regions are defined as in Table 7.1. The highest-pT (D∗) region is capped at 30.0 GeV, for two reasons:

first, this will allow us to measure the differential quantity dσ(W +D∗)/σ(W ) · dpT (D∗) without an infinite

denominator in the last bin; second, beyond 30.0 GeV the number of D∗ counted in our final pT (D∗) region

does not change.

For each region we run our full W +D∗ analysis. Again, we compare our results to measurements of the

same quantity in the inclusive Monte Carlo samples. All results are reported in Table 7.1. Once more, we

find good agreement between simulation and data.
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Region Region fD
∗

W→eν ± (stat)± (syst) fD
∗

W→eν ± (stat)
Number Definition (×10−6) DATA (×10−6) MC

1 [0.0, 3.0] 0.2± 0.2± 0.0 0.0± 0.3
2 [3.00, 6.50] 9.7± 2.8± 0.6 19.0± 5.9
3 [6.50, 7.75] 6.8± 2.0± 0.4 5.5± 3.5
4 [7.75, 9.00] 4.2± 1.9± 0.5 6.6± 3.4
5 [9.00, 11.25] 5.2± 1.9± 0.8 2.7± 2.9
6 [11.25, 13.5] 4.7± 1.7± 0.5 4.3± 2.7
7 [13.5, 22.0] 11.0± 2.4± 1.6 11.1± 3.8
8 [22.0, 30.0] 8.2± 1.7± 0.6 3.8± 2.1

Region Region fD
∗

W→µν ± (stat)± (syst) fD
∗

W→µν ± (stat)
Number Definition (×10−6) DATA (×10−6) MC

1 [0.0, 3.0] 0.0± 1.9± 0.0 0.0± 0.0
2 [3.00, 6.50] 13.0± 2.8± 0.7 11.1± 4.8
3 [6.50, 7.75] 6.2± 1.9± 1.0 6.4± 3.2
4 [7.75, 9.00] 6.6± 1.8± 0.2 6.4± 2.8
5 [9.00, 11.25] 7.5± 1.9± 0.3 7.1± 3.2
6 [11.25, 13.5] 4.0± 1.5± 0.1 7.0± 2.4
7 [13.5, 22.0] 9.4± 2.0± 0.4 13.7± 3.8
8 [22.0, 30.0] 5.0± 1.4± 0.2 4.0± 2.2

Table 7.1: fWD∗ as measured in different regions of pT (D∗). We split the pT (D∗) spectrum into eight regions,
defined such that approximately the same number of observed D∗ are expected to fall into each region.
Again, we find good agreement between the inclusive MC sample and data. We see that region 1 contains
a number of D∗ compatible with zero. This is what we would expect, based on the pT (D∗) spectrum of
accepted D∗ from our W +D∗ Monte Carlo samples (Figure 7.1); our acceptance rate for all W +D∗ signal
processes apparently drops to zero near pT (D∗) ∼ 3.5− 4 GeV. We investigate this acceptance rate in more
detail in Chapter 8.
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Njets f
W (→eν)
D∗ ± (stat)± (syst) f

W (→eν)
D∗ ± (stat) f

W (→µν)
D∗ ± (stat)± (syst) f

W (→µν)
D∗ ± (stat)

(×10−5) DATA (×10−5) MC (×10−5) DATA (×10−5) MC
≥ 0 5.0± 0.6± 0.3 5.3± 1.0 5.11± 0.53± 0.06 5.6± 0.9
≥ 1 18± 2.8± 0.6 14± 4 17.7± 2.3± 0.4 19± 4
≥ 2 37.7± 9.9± 1.2 36± 13 36± 7± 1 27± 10.
≥ 3 102± 36± 23 41± 36 48± 18± 5 0± 130

= 0 2.4± 0.4± 0.2 2.7± 0.6 2.2± 0.4± 0.1 2.1± 0.6
= 1 12± 2.3± 0.5 9.4± 3.6 12± 2± 3 17± 4
= 2 24± 9± 2 35± 14 32± 7± 1 32± 11
= 3 32± 30.± 7 35± 40. 39± 19± 4 7± 24

Table 7.2: fWD∗ rates measured as a function of Njets, for jet ET > 15 GeV, both for events in the inclusive
high-pT lepton datasets, and simulated events in the CDF EWK group’s inclusive W datasets. We find good
agreement in all cases save for Njets ≥ 3; however, within uncertainty, this disagreement is not large—it may
be attributed to low statistics. All results above are plotted in Figure 9.3.

7.3 Splitting by Njets

We define jets according to the midpoint algorithm with ∆R = 0.4, as described in section 3.2, and we

require that all jets have ET > 15 GeV. From there, it is a simple matter of splitting our W event selection

by the number of jets counted in that event. For each subset, we perform the complete D∗-counting and

fW sig
D∗ -measuring analysis as described in Chapters 4-6. We do this both for the high-pT lepton datasets,

and for the CDF EWK group’s inclusive Monte Carlo W samples (for comparison). All of these results are

compiled in Table 7.2.
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Chapter 8

Acceptance Rates and Unfolding

8.1 What we want, and what we have measured

We next turn to the question of how to unfold our tagged charm fractions, fW/ZD∗ , into a ratio of physical

cross-sections, σ(W/Z +D∗)/σ(W/Z). To do this, we will have to determine our acceptance times efficiency

rates, A · ε; these are a convolution of the detector-level fiducial and trigger acceptance rates, and the rate

at which our tagging algorithm accepts those events that remain. In short, A · ε is the rate at which we tag

all signal events of a given type.

Recall that fW/ZD∗ is generally defined as

f
W/Z
D∗ =

Number of D∗tagged in our W/Z selection
Number of W/Z events in our selection

(8.1)

This quantity is related to the ratio of physical cross-sections, σ(W/Z +D∗)/σ(W/Z), as

f
W/Z
D∗ =

σ
(
W/Z +D∗

)
σ
(
W/Z

) ·
(A · ε)W/Z, events with D∗

tag · (A · ε)D
∗, in W/Z events

tag × BrD∗→D0(→Kπ)πs

(A · ε)W/Z , inclusive
tag

(8.2)

where we define

BrD∗→D0(→Kπ)πs
≡ Branching ratio for D∗to decay as D∗ → D0(→ Kπ)πs

(A · ε)W/Z , inclusive ≡ Rate at which we tag all W/Z, whether or not the event has a D∗

(A · ε)W/Z , events with D∗
≡ Rate at which we tag W/Z, when the W/Z is produced with a D∗ (8.3)

(A · ε)D
∗, in W/Z events ≡ Rate at which we tag D∗, in an event containing a tagged W/Z

There are a few important points to make about these quantities. For one, we cannot assume a priori

that W/Z bosons that are produced alongside a D∗ will be tagged at the same rate as a general sample
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Parent process Events total Events tagged (A · ε)W/Z, inclusive

pp̄→W (→ µν) +X 7,871,895 1,721,976 21.9%
pp̄→W (→ eν) +X 7,858,019 1,532,542 19.5%
pp̄→ Z(→ µµ) + g 7,894,603 484,811 6.14%
pp̄→ Z(→ ee) + g 7,835,135 378,008 4.82%

Table 8.1: W/Z tag rates, for the inclusive W/Z samples.

of W/Z bosons. It is possible, for example, that W/Z bosons that are produced alongside a D∗ have a

higher average pT than those with no accompanying D∗. As such, in Equation 8.2, we cannot cancel out

(A · ε)W→µν , events with D∗
and (A · ε)W→µν , inclusive . Additionally, we cannot assume that D∗ tag rates will

be the same across W/Z decay modes—we will either have to find the rate at which D∗ are tagged in all four

samples, or develop some invariant metric for the D∗ tag rate. For these reasons, we combine the second

two rates in equation 8.3 to create a combined rate (A · ε)W/Z+D∗, inclusive:

(A · ε)W/Z+D∗, inclusive = (A · ε)W/Z , events with D∗
× (A · ε)D

∗, in W/Z events (8.4)

This rate (equation 8.4) is now just the total A · ε for finding the W/Z and D∗ in a sample of W/Z + D∗

events, using our selection criteria.

To determine physical cross-section ratios, then, we will need to determine both (A · ε)W/Z , inclusive and

(A · ε)W/Z+D∗, inclusive, and we must do this for each of our selected W/Z samples. Determining these

quantities, and using them to go from f
W/Z
D∗ to σ

(
W/Z +D∗

)
/σ
(
W/Z

)
, is the purpose of this chapter.

8.2 Finding inclusive rates (A · ε)W/Z and (A · ε)W/Z+D∗

We will first determine the rates at which W/Z bosons are tagged, (A · ε)W/Z , inclusive . To do this, we run

over the CDF EWK group’s inclusive W/Z datasets with our W/Z tagging algorithm, and simply report the

rate at which we accept events. These rates are summarized in Table 8.1. We see that we tag W events at

approximately three times the rate at which we tag Z events; a larger W acceptance rate is to be expected,

as we require only one lepton to fall into the central region |η| < 1.1 for W → `ν decays; both leptons

must fall into the central region for Z → `` decays, which is less likely. (Technically, we do allow for plug

electrons in our Z candidates, but we found the number of accepted Z with at least one plug electron to be

be negligible (section 4.2).)

To determine rates (A · ε)W/Z+D∗, inclusive, we return to our Pythia-generated Monte Carlo samples from

section 5.2. Recall that we constructed each sample by choosing a production process of interest, and then

skimming off events which contained a D∗ → D0πs → (Kπ)πs decay. In order to save time, we also made a
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Parent process : count Subprocess: : count Subprocess Rate
q + q̄′ →W (→ µν) + g : 2,908,022,069 g(→ cc̄) : 39,280,12 1.351 %
q + q̄′ →W (→ µν) + g : 4,004,507,486 g(→ bb̄) : 12,255,600 0.306 %
q + g →W (→ µν) + q̄′ 303,103,282 q̄′ = c/c̄ : 28,196,185 9.303%

q + q̄ → Z(→ µµ) + g : 5,507,241,075 g(→ cc̄) : 51,136,473 0.929%

Table 8.2: A summary of the rates at which each first-order W/Z boson production process gives rise to
our D∗-generating subprocesses. Subprocesses are defined relative to the parent process named on each line.
These values are derived from Pythia simulation. Unertainty on these numbers is binomial, but negligible
compared to all other uncertainties considered in this section.

check as to whether an event was ‘fiducial’ before simulating its interactions with the detector (full detector

event simulation is extremely time intensive). In order to prevent any kind of interference with the production

process, we did not place explicit restrictions on the production process’ kinematics; we simply filtered off

only those events that we would have a non-zero chance of tagging. Explicitly, the charged leptons fromW/Z

decays, and the K, π, and πs from D∗ decay, were all required to have |η| < 1.2. While these requirements

allow for some non-fiducial events to get through (recall that our final cuts require |η| < 1.1), we wanted to

make certain not to miss any events that we might be able to tag.

We record a number of statistics about these samples, in order to better identify the means by which

D∗ come to be associated with our W or Z events. Included among these statistics is the rate at which

each ‘parent process’ gives rise to the subprocess that we are interested in—e.g., what percentage of all

s(d) + g → W + q events satisfy q = c, and what percentage of all q + q̄′ → W + g events are followed by

g → cc̄ or g → bb̄. We present these statistics in Table 8.2. We also run over the simulated signal events with

our W/Z + D∗ tagging algorithms, and count how many events pass each of our W/Z + D∗ cuts. We use

these values to find combined rates These rates, and the counts used to find them, are recorded in Table 6.4.

We see that in all cases, we are better able to identifyW/Z+D∗ events if theW/Z decays to a muon(s)—this

simply reflects the fact that our electron cuts are tighter than our muon cuts, as explained in sections 3.3-3.4.

8.3 Constructing pT -dependent rates (A · ε)W/Z+D∗

The tag rates found in the previous section are an important step, but overlook a rather important piece of

the simulation/measurement relationship. Recall that while Pythia simulations are quite good at predicting

the behavior of specific signal processes, they are not always great at determining the rates of production.

This can have a profound impact on our tagging rate (A·ε)W/Ztag , if e.g. this tagging rate is strongly dependent

upon momentum: if Pythia claims that half of all D∗ in W/Z events have pT (D∗) < 3.0 GeV, but reality

dictates that 90% of all D∗ in W/Z events have pT (D∗) < 3.0 GeV, then our tag rates for inclusive D∗

production, as determined by simulation, could be very far off!
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Process Number of D∗ Number of D∗ # events tagged Net tag rate
(Event Count) w/ decay with fiducial for W/Z +D∗ (A · ε)W/Z+D∗

D∗ → D0(→ Kπ)πs decay products (w/ NN) (w/ NN)
pp̄→W (→ eν) + g(→ cc̄) 552,097 104,938 5,308 0.961%

(36,790,414)
pp̄→W (→ µν) + g(→ cc̄) 595,827 113,250 6,712 1.127%

(39, 280, 812)
pp̄→W (→ eν) + c 350,025 57,415 5,288 1.511%

(28,196,185)
pp̄→W (→ µν) + c 352,689 57,852 5,849 1.658%

(38,510,409)
pp̄→ Z(→ ee) + g(→ cc̄) 426,723 43,460 2,509 0.5880%

(51,136,473)
pp̄→ Z(→ µµ) + g(→ cc̄) 414,882 42,254 3,230 0.779%

(50,443,745)

Table 8.3: A summary of the simulated Pythia Monte Carlo samples that we used to analyze the properties
ofW/Z+D∗ production. The ultimate goal of these samples, as used in this section, is to determine the rates
at which we identify W/Z +D∗ events. The “w/ NN” token means that tag rates are for event acceptances
after applying our neural network. Important: the final column above shows ‘net’ tag rate, which is the
rate at which we tag all W/Z + D∗ events. This is not the same as the rate at which we tag events with
pT (D∗) > 3 GeV (see Table 8.5), which turns out to be a much more useful quantity. These values should
be looked at only as a stepping stone towards our final results.

We do not have to worry about this for our W/Z boson acceptance; W/Z boson production simulations

have been very well-tuned over the years, and are generally accepted to be quite accurate. And in general,

Pythia is considered to be quite good even for specific QCD processes, so long as pT is large. It is in the

low-pT regime that we do not have sufficient evidence for simulations being accurate (which is part of the

reason for doing this analysis in the first place!).

We address this uncertainty by determining A · ε as a function of pT (D∗). By doing this, we can ignore

model-dependent assumptions about the true pT (D∗) distribution of inclusiveW/Z+D∗ events. Specifically,

we break the pT (D∗) axis into eight regions as defined in Table 7.1, and determine the rate at which we tag

W/Z + D∗ events which fall into each region. These rates are recorded in Figure 8.1 and Table 8.4). As

claimed earlier, our A · ε values drop to zero below pT = 3 GeV; this means that our analysis is completely

insensitive to D∗ content in that regime. With that in mind, we can only meaningfully unfold our results

back to pT (D∗) ≥ 3 GeV; going back any further would be model-dependent extrapolation. This fits with

what we observed in Table 7.1, in which the lowest bin (for pT ∈ [0, 3.0]) is found to be empty both in data

and in the inclusive Monte Carlo W samples. We also integrate to find A · ε for all W/Z + D∗ events with

pT (D∗) ≥ 3 GeV. These values are listed in Table 8.5.
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pT (D∗)

Range (A · ε)W (→eν)+D∗
(A · ε)W (→µν)+D∗

[0.0, 3.0] (1.67± 0.6)× 10−5 (6.7± 3.9)× 10−6

[3.0, 6.50] 0.0074± 0.0002 0.0084± 0.0002
[6.50, 7.75] 0.0258± 0.0008 0.0293± 0.0008
[7.75, 9.00] 0.034± 0.001 0.037± 0.001
[9.00, 11.25] 0.037± 0.001 0.044± 0.001
[11.25, 13.5] 0.041± 0.001 0.051± 0.001
[13.5, 21.75] 0.049± 0.002 0.056± 0.001
[21.75, 30.0] 0.056± 0.002 0.061± 0.002

[3.0,∞) 0.021341± 0.000002 0.024171± 0.000002

Table 8.4: Values of (A · ε)W+D∗
as a function of pT (D∗) (plotted in Figure 8.1). Uncertainties in this table

are statistical and due to finite sample size. Other uncertainties (PDF) are introduced in the next chapter.
Regions of pT (D∗) are chosen to match the splits described in section 7.2. We also include ‘inclusive’
(A · ε)W+D∗

values for all events with pT (D∗) > 3 GeV. We will use the full range of values shown in this
table to unfold our W + D∗ samples as a function of pT in chapter 9. It is important to note that we
do not have enough statistics to unfold our Z + D∗ samples in the same way. We use only the inclusive
(pT (D∗) > 3 GeV) values of (A · ε)Z+D∗

to unfold our Z +D∗ results in data.

Figure 8.1: Plots of (A · ε)W+D∗
as a function of pT (D∗) for both W selections considered by this analysis.

Explicit values are recorded in Table 8.4. Bins are chosen to match the splits described in section 7.2. We see
that the shapes of the A · ε ‘curves’ are roughly similar, while the amplitudes vary. This suggests that these
plots represent a single underlying (A · ε)D∗ distribution, independent of W decay mode, that is multiplied
by some slightly-D∗(pT ) dependent W tag rate. (Of course, this pT (D∗) dependence is only indirect, in the
form of higher pT (D∗) being more commonly associated with higher pT W bosons).
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Important Values
BrD∗→D0π = .677±.005 BrD0→Kπ = .0388±.0005 BrD∗→D0(Kπ)π = 0.0263± 0.0004

Process Inclusive Inclusive
(with D∗ understood to decay W/Z W/Z +D∗ tag rate w/ NN Conversion factor

as D∗ → D0(→ Kπ)π) tag rate (pT (D∗) > 3 GeV)
pp̄→W (→ eν) +D∗ 0.195 0.021341 347± 5
pp̄→W (→ µν) +D∗ 0.219 0.024171 344± 5
pp̄→ Z(→ ee) +D∗ 0.0482 0.009388 195± 3
pp̄→ Z(→ µµ) +D∗ 0.0614 0.012385 189± 3

Table 8.5: Conversion factors, to go from a raw “tagged” fraction f
W/Z
D∗ to a physical fraction of cross-

sections σ(W/Z+c)/σ(W/Z). Uncertainly in the final column is dominated by uncertainty in BrD∗→D0(Kπ)π.
Statistical uncertainties are overwhelmed by uncertainty in the branching ratio, and are not shown. Other
uncertainties (e.g., PDF uncertainties) are considered and added to our final results in the next chapter.

8.4 From A · ε to unfolding factors

Recall that our ultimate aim is to ‘unfold’ rates fW/ZD∗ into the ratio of physical cross-sections σ(W+D∗)σ(W ).

We do this by creating an unfolding factor that performs this conversion. Explicitly, this factor is the inverse

of a quantity found in Eq 8.2, and can be written as

Unfolding Factor (W/Z +D∗) =
(A · ε)W/Z , inclusive

tag

(A · ε)W/Z+D∗ , inclusive
tag × BrD∗→D0(→Kπ)πs

(8.5)

such that

σ
(
W/Z +D∗

)
σ
(
W/Z

) = f
W/Z
D∗ ·Unfolding Factor (W/Z +D∗) (8.6)

We evaluate these unfolding factors, using our values for (A · ε)W/Z , inclusive
tag and (A · ε)W/Z+D∗ , inclusive

tag as

reported in tables 8.1 and 8.3, and using the D∗(2010)→ D0(→ Kπ)πs branching ratio BrD∗→D0(→Kπ)πs
=

0.0263± 0.0004 as reported in the 2013 Particle Data Group (PDG) book [42]. In practice, these values are

derived in real time by our program—however, to get a feel for the magnitude of these conversion factors,

we report results for the inclusive case (pT (D∗) > 3 GeV) in Table 8.5. We employ these unfolding factors

in Chapter 9 to get our final results.
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Chapter 9

Final Results, Full Systematics, and
Comparisons to Theory

By applying the converison factors described in Chapter 8 to the raw fractions found in Chapter 6, we

may finally report the ratio of physical cross-sections σ(W/Z +D∗)/σ(W/Z); both for the inclusive sample

pT (D∗) > 3 GeV, and as a function of different variables. We will begin this chapter, however, by making a

summary of all systematic uncertainties.

9.1 Summary of systematic uncertainties

The primary source of systematic uncertainty in Tables 9.3 and 9.4, is our choice of 6ET and Iso1 boundaries—

what we will refer to here as our “method” uncertainty. This uncertainty was determined in section 6.4. There

is, however, another source of systematic uncertainty that we must take into account—PDF uncertainty.

In determining our A · ε values in section 8, we relied upon Monte Carlo predictions of the production

processes. As explained earlier, while these simulations are usually quite good at predicting the kinematics

of any given decay, the amplitude of each type of event is not as well modeled. One of the reasons for this

is uncertainty in the parton distribution function (PDF) of the proton—the fraction of the proton’s energy

and momentum that is carried by its constituent partons. There are three major types of PDF uncertainty.

The first is the so-called ‘eigenvector uncertainty’. In general, parton distribution functions are dependent

upon several parameters which must be fit to data. Uncertainty in any one of these parameters leads to

an uncertainty in the PDF. The CTEQ PDF sets which we use have twenty such parameters, such that

any one PDF can be described in a parameter space which is spanned by 20 eigenvectors. The eigenvector

uncertainty is determined by varying the value of each input parameter to its ±90% confidence level (CL)

values, refitting the PDF, and then rerunning the PDF-dependent parts of the analysis [43].

In practice, rerunning an analysis forty one times (once for the central PDF, and twice for each eigenvector

uncertainty-modified PDF) is time consuming and unnecessary. Instead, an analysis is run once (at the

central PDF value), and the values measured are then reweighted to reflect the probability of each event

occurring, for each modified PDF. These probabilities depend upon the fraction of energy and momentum

carried by the two initial hard scatter particles (x1 and x2), and the hard-scatter momentum transfer Q2.
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Specifically, for each event, we define the relative weight of that event for PDF number i, HPDF i, as,

HPDF i =

(
x1 · f(x1)ptcl 1 · x2 · f(x2)ptcl 2

)
PDF i(

x1 · f(x1)ptcl 1 · x2 · f(x2)ptcl 2
)
PDF 0

where PDF 0 is the ‘central’, unmodified PDF. Then, we define a modified value of any count x for PDF set

i, xi, as

xi = x0 ·HPDF i

Most commonly, x is a count of the number of events of some type which have passed your cuts; this

is usually paired with some integrated count y of all events considered, in order to get an acceptance value

A · ε = x/y that has been reweighted to reflect the modified PDF distribution. Total eigenvector uncertainty

(high and low) in A · ε for a PDF with 2N eigenvector-driven variations is then calculated as

∆(A · ε)+
max =

√√√√ 2N∑
i=1

(
max((A · ε)+

i − (A · ε)0, (A · ε)−i − (A · ε)0, 0)
)2

∆(A · ε)−max =

√√√√ 2N∑
i=1

(
max((A · ε)0 − (A · ε)+

i , (A · ε)0 − (A · ε)−i , 0)
)2

There are two other types of PDF uncertainty to consider: the αs uncertainty, ∆(A · ε)αs (the amount

by which (A · ε) varies as strong coupling constant αs is changed); and the model uncertainty, ∆(A · ε)model

(the amount by which (A · ε) varies if we move from one PDF set, say CTEQ5, to another, say MSTW2008).

If ∆(A · ε)model is smaller than the eigenvector uncertainty described above, then it is ignored; otherwise, it

is added in quadrature. ∆(A · ε)αs
is then added in quadrature to the resulting quantities, to give us our

final PDF uncertainty [43].

Our values for A · ε depend upon the proton PDF insofar as our ratio of acceptance rates may depend

upon the PDF. We apply the procedure described above, and we find (both for the inclusive pT (D∗) > 3 GeV

sample, and for (A ·ε) as a function of pT (D∗)), that our PDF uncertainty is quite small (Table 9.1). We also

find the PDF uncertainty in the theoretical predictions for σ(W +D∗)/σ(W ), following the same procedure.

These values are shown in Table 9.2.
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σ(V +D∗) Signal
Inclusive sample σ(V ) % stat Bkgs. modeling PDF Total
pT (D∗) ∈ [3.0,∞) unc.

(×10−2) % syst % syst % syst % syst
unc. unc. unc. unc.

W (→ eν) +D∗ 1.74 12 10 �1 2 10

W (→ µν) +D∗ 1.75 10 2 �1 2 3

Z(→ ee) +D∗ 1.0 57 19 �1 1 19

Z(→ µµ) +D∗ 1.8 30 11 �1 1 11

dσ(V +D∗) Signal
W (→ eν) +D∗ σ(V ) · dpT (D∗) % stat Bkgs. modeling PDF Total
[pT (D∗) range] unc.

(×10−3) % syst % syst % syst % syst
unc. unc. unc. unc.

[3.0, 6.50] 2.77 29 6 3 2 7
[6.50, 7.75] 1.60 29 6 3 2 7
[7.75, 9.00] 0.73 45 12 3 2 13
[9.00, 11.25] 0.44 37 15 3 3 15
[11.25, 13.5] 0.40 36 11 2 3 12
[13.5, 21.75] 0.21 22 15 4 3 16
[21.75, 30.00] 0.10 21 7 4 4 9

dσ(V +D∗) Signal
W (→ µν) +D∗ σ(V ) · dpT (D∗) % stat Bkgs. modeling PDF Total
[pT (D∗) range] unc.

(×10−3) % syst % syst % syst % syst
unc. unc. unc. unc.

[3.0, 6.50] 3.69 21 5 2 2 6
[6.50, 7.75] 1.44 31 16 3 2 16
[7.75, 9.00] 1.21 27 3 3 2 4
[9.00, 11.25] 0.64 25 4 2 2 5
[11.25, 13.5] 0.29 38 3 2 2 4
[13.5, 21.75] 0.17 21 4 2 2 5
[21.75, 30.00] 0.08 28 4 3 3 6

Table 9.1: A summary of statistical and systematic uncertainties in our final results. Our statistical uncer-
tainty is dominated by uncertainty from our fits of the ∆m signal plus background plots, while our systematic
uncertainty is dominated by the methods used to find our tagged fractions, labeled above as “Bkgs.” (see
6.2, 6.4). Uncertainty due to finite sample size in our evaluation of A · ε is identified as “signal modeling”,
while PDF uncertainties in A · ε are labeled as such. Uncertainties not mentioned here are considered neg-
ligible. Many uncertainties (e.g., trigger uncertainties) are almost entirely cancelled out by taking the ratio
of cross-sections; this is one of the advantages to measuring this ratio, versus a total cross-section.
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Signal Sample Pythia 6.2.16 (CTEQ5L) % uncertainty
pT (D∗) ∈ [3.0,∞) σ(V +D∗)/σ(V ) (×10−2) (PDF)
W → eν/µν 1.77 4.2

Z → ee/µµ 1.36 4.1

W → eν/µν Pythia 6.2.16 (CTEQ5L) % uncertainty
[pT (D∗) range]

[
1/σ(V )

]
×
[
dσ(V +D∗)

/
dpT (D∗)

]
(×10−3) (PDF)

[3.0, 6.50] 2.44 3.0
[6.50, 7.75] 2.01 5.0
[7.75, 9.00] 0.98 6.0
[9.00, 11.25] 0.73 7.2
[11.25, 13.5] 0.47 7.8
[13.5, 21.75] 0.20 8.8
[21.75, 30.0] 0.12 9.0

Table 9.2: The ratio of cross-sectons predicted by Pythia 6.2 (CTEQ5L), alongside the % uncertainty in this
prediction due to PDF / modeling uncertainties (see 9.1, above).

Production CDF Run II Preliminary Pythia 6.2.16 (CTEQ5L)
process σ(V +D∗)/σ(V ) (%) σ(V +D∗)/σ(V ) (%)

(pT (D∗) > 3 GeV) ±(stat)± (syst) ± (pdf unc)
W (→ eν) +D∗ 1.74± 0.21± 0.17 1.77± 0.07
W (→ µν) +D∗ 1.75± 0.17± 0.05 1.77± 0.07

Combined results:
W (→ eν/µν) +D∗ 1.75± 0.13± 0.09 1.77± 0.07

Z(→ ee) +D∗ 1.0± 0.6± 0.2 1.36± 0.05
Z(→ µµ) +D∗ 1.8± 0.5± 0.2 1.36± 0.05

Combined results:
Z(→ ee/µµ) +D∗ 1.5± 0.4± 0.2 1.36± 0.05

Table 9.3: The ratio of cross-sections σ(W/Z + D∗)/σ(W/Z) for inclusive sample pT (D∗) > 3 GeV, and
the predictions of Pythia 6.2.16 simulation using PDF set CTEQ5L. The displayed restriction on pT (D∗) is
the only kinematic restriction on these unfolded results. These are the final values, with full statistical and
systematic uncertainties.

9.2 The inclusive sample, pT (D∗) > 3 GeV

We record our final results in Table 9.3, for easy comparisons. For each process, we simply unfold the raw

fraction to a rate of physical cross-sections using the acceptance values derived in the previous section, and

the uncertainties summarized in Table 9.2 above. Results from the electron and muon decay channels are

then combined using a best linear uncertainty estimate (BLUE), assuming that within each sample (W

and Z), systematic uncertainties are fully correlated. For both our W samples and our Z samples, we

find agreement within uncertainty between our unfolded results from data, and Pythia 6.2.16 predictions

made with PDF set CTEQ5L. The Pythia predictions are made at the particle level (pre- CDF environment

simulation).
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CDF Run II CDF Run II CDF Run II Pythia 6.2.16
Preliminary Preliminary Preliminary (CTEQ5L)

Combined Results:
pT (D∗) dσ(Weν +D∗) dσ(Wµν +D∗) dσ(Weν/µν +D∗) dσ(Weν/µν +D∗)

Range σ(Weν) · dpT (D∗) σ(Wµν) · dpT (D∗) σ(Weν/µν) · dpT (D∗) σ(Weν/µν) · dpT (D∗)

(×10−3) DATA (×10−3) DATA (×10−3) DATA (×10−3) MC
±(stat)± (syst) ±(stat)± (syst) ±(stat)± (syst) ±(stat)± (syst)

[3.0, 6.50] 2.8± 0.9± 0.2 3.7± 0.8± 0.2 3.3± 0.6± 0.2 2.44± 0.07
[6.50, 7.75] 1.60± 0.48± 0.08 1.44± 0.48± 0.24 1.53± 0.34± 0.15 2.01± 0.09
[7.75, 9.00] 0.73± 0.32± 0.08 1.21± 0.32± 0.07 0.97± 0.23± 0.08 0.99± 0.04
[9.00, 11.25] 0.44± 0.18± 0.09 0.64± 0.16± 0.04 0.56± 0.12± 0.06 0.73± 0.04
[11.25, 13.5] 0.40± 0.13± 0.09 0.29± 0.11± 0.02 0.32± 0.09± 0.04 0.47± 0.04
[13.5, 22.0] 0.21± 0.05± 0.02 0.17± 0.04± 0.01 0.17± 0.03± 0.01 0.20± 0.02
[22.0, 30.0] 0.13± 0.03± 0.01 0.083± 0.024± 0.007 0.102± 0.018± 0.008 0.12± 0.01

Table 9.4: The ratio of cross-sections σ(W + D∗)/σ(W ) found in data as a function of pT (D∗), and the
predictions of Pythia 6.2.16 using PDF set CTEQ5L. The displayed restrictions on pT (D∗) are the only
kinematic restriction on these unfolded results. These are the final results, with full statistical and systematic
uncertainties.

9.3 As a function of pT (D∗)

We also report our results as a function of pT (D∗) (Table 9.4). These measurements are made by running our

analysis exactly as described in the previous chapters, except for a restriction placed upon the momentum

of prospective D∗ candidates. Each momentum range is treated as an independent data sample. Once more,

results from the electron and muon decay channels are combined using a best linear uncertainty estimate

(BLUE), assuming that systematic uncertainties are fully correlated.These results are plotted in Figure 9.1.

9.4 As a function of Njets(pT > 15 GeV)

It is also interesting to consider other properties of our W +D∗ events. For example, how many jets are in

these events? This particular question, however, opens up many others. First, let us assume that we have

measured the number of calorimeter-level jets in each W + D∗ event. It is unclear what the best level to

‘unfold’ back to, is—do we unfold from calorimeter-level jets to particle-level jets, or to parton-level jets?

If the former choice is made, we must also decide how best to cluster jets at the particle-level; if the latter

choice is made, how best do we map parton energy to jet energy?

In short, there are many possible options, and this question of ‘unfolding’ may be a question best left

to future analyses. To completely, properly perform this unfolding, requires redoing our A · ε calculations

as a function of Njets, and properly calibrating each of our unfolding values based on the mapping between

calorimeter and particle (or parton) level jets. At the same time, this may not yield much more information
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Figure 9.1: The ratio of physical cross-sections σ(W +D∗)/σ(W ) as a function of pT (D∗). The left plot is
for the W → eν decay mode; the right is for the W → µν decay mode. The displayed restrictions on pT (D∗)
are the only kinematic restriction on these results. In each case, error bars give the statistical uncertainty,
while the sum in quadrature of the statistical and systematic errors is shown as a yellow error band. The
dotted red line shows the prediction of the Pythia 6.2 obtained using the CTEQ5L PDF set, with solid red
lines showing PDF uncertainty in this prediction. The ratio of the simulated distribution to data is shown
in the lower panels.
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Figure 9.2: The ratio of physical cross-sections σ(W + D∗)/σ(W ) as a function of pT (D∗), for combined
W → eν andW → µν results. Combination is made using a best linear uncertainty estimate with systematic
uncertainties assumed to be fully correlated. The displayed restrictions on pT (D∗) are the only kinematic
restriction on these results. In each case, error bars give the statistical uncertainty, while the sum in
quadrature of the statistical and systematic errors is shown as a yellow error band. The dotted red line
shows the prediction of the Pythia 6.2 obtained using the CTEQ5L PDF set, with solid red lines showing
PDF uncertainty in this prediction. The ratio of the simulated distribution to data is shown in the lower
panels.
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Figure 9.3: The ratio of tagged events Ntagged(W +D∗)/Ntagged(W ) as a function of Njets. The left plot is
for the W → eν decay mode; the right is for the W → µν decay mode. The error bars give the statistical
uncertainty, while the sum in quadrature of the statistical and systematic errors is shown as a yellow error
band. The red circle and red error band show the same quantity as measured in an inclusive W simulation
sample, produced with Pythia 6.2 and using the CTEQ5L PDF set. The red error band corresponds to
statistical uncertainties, due to a finite size simulation sample. Note that the uncertainty in these results
does not take PDF uncertainties into account; this is simply an object-level comparison of MC simulation
versus data. Note also that uncertainty in the simulated Pythia results for the W → µν case, is greater
for the Njets ≥ 3 prediction than for the Njets = 3 prediction; this is simply due to a larger number of D∗
candidates in the former case—this drives up uncertainty in the fit of ∆(m) for that case.

than a simple comparison of calorimeter-level jet measurements between simulation and data

As a result, we decide to report simply the calorimeter-level ‘tagged’ fractions, Ntagged(D∗)/Ntagged(W +

D∗), as a function of Njets(pT > 15 GeV), as first recorded in Chapter 7. (Table 9.4). We plot these results

in Figure 9.3. We see no significant disagreement between data and theory. (Speaking fancifully, the slight

excess of events in data with Njets ≥ 3 may be due to top decays, t→ W (→ `ν) + b, in which b→ high pT

jets+D∗; however, we have no direct evidence for this.) With no significant discrepancies observed between

theory and data, we do not believe that there is a good reason to unfold back to particle- or parton- level

jets; we leave our jet measurements in ‘tagged’ fraction form. Note that the uncertainty in these results does

not take PDF uncertainties into account; this is simply an object-level comparison of MC simulation versus

data.
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Chapter 10

Splitting Signal by Production Process

As explained in section 5.2.2, we expect to tag W +D∗ events from three different production processes. We

recall the relevant production processes here:

q + q̄′ →W + g(→ bb̄)→W +D∗ +X ≡ Wbb

q + q̄′ →W + g(→ cc̄)→W +D∗ +X ≡ Wcc

q + g →W + c→W +D∗ +X ≡ Wc (10.1)

We would like to determine what percentage of our W + D∗ signal sample comes from each one of

these production processes. This does not affect our unfolded cross-section ratios, as reported in Chapter 9.

However, the ability to look at particular production sources is uncommon in jet-based techniques, making

this the first real test of production process in W/Z + c events. We accomplish this in three ways: by using

neural networks; by using the signed impact parameter of the reconstructed D0 vertex; and by looking at

the sign relationship of the W and D∗.

10.1 Splitting with neural networks

As explored in section 5.2, a neural network will generally identify D∗ from different sources (Wcc, Wc, and

Wbb) with different efficiencies. We can take advantage of this to measure the fraction of our signal that

comes from each production process. We first train three neural networks: NNWcc, NNWc, and NNWbb.

Each network is trained to identify one type of signal event (labeled in the subscript) versus the BSP and

SS background samples described in section 5.2.3. We run each of these three neural networks over each of

our three simulated Monte Carlo signal samples (Wcc, Wc, and Wbb). This gives us the efficiencies with

which each neural network is expected to identify each type of event. Choosing a neural network cut score

of NNcut = 0.0 for each case, we collect nine efficiencies as recorded in Table 10.1.

Next, we run our pre-neural network W + D∗ candidates (from data) through each neural network, ad
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Production process ε(NNWcc) ε(NNWbb) ε(NNWc)
NNcut = 0.0 NNcut = 0.0 NNcut = 0.0

Wcc 0.818 0.595 0.759
Wbb 0.730 0.868 0.693
Wc 0.857 0.693 0.834

Table 10.1: The efficiencies with which our three basic neural networks identify D∗ from each of the three
first-order W + D∗ production processes; all D∗ candidates must have a neural network score NNscore >
NNcut = 0.0 in order to pass, for all cases.

Production ε(NNWcc +NNWcc vs Wbb) ε(NNWbb +NNWbb vs Wcc) ε(NNWc +NNWc vs Wcc)
process NNcut = 0.0 (both NNs) NNcut = 0.0 (both NNs) NNcut = 0.0 (both NNs)
Wcc 0.618 0.190 0.357
Wbb 0.213 0.677 0.295
Wc 0.652 0.195 0.535

Table 10.2: The efficiencies with which neural network pairs identifyD∗ from each of the three first-order
W + D∗ production processes. All D∗ candidates must have neural network scores NNscore > NNcut =
0.0 according to each neural network in a pair, in order to pass. This ‘second-order’ technique provides
measurements of XD∗ with greatly reduced uncertainty, relative to the values found using unpaired neural
networks.

require that each candidate have a neural network output score NNscore> NNcut = 0.0 in order to pass.

This results in three new ∆m distributions; we fit these distributions to our standard signal plus background

hypothesis, in order to make three different counts of W + D∗ signal events: NWcc
D∗ , NWc

D∗ , and NWbb
D∗ . We

now put these three counts, as well as our nine efficiency values, into equation 10.2. Solving, we find the

fraction of pre-neural network W +D∗ signal events that fall into each production category; these fractions

are labeled XWcc
D∗ , XWc

D∗ and XWbb
D∗ .


ε(NNWcc)Wcc, ε(NNWcc)Wc, ε(NNWcc)Wbb,

ε(NNWc)Wcc, ε(NNWc)Wc, ε(NNWc)Wbb,

ε(NNWbb)Wcc, ε(NNWbb)Wc, ε(NNWbb)Wbb,



XWcc
D∗ ·NTOT

D∗

XWc
D∗ ·NTOT

D∗

XWbb
D∗ ·NTOT

D∗

 =


NNNWcc

D∗

NNNWc

D∗

NNNWbb

D∗

 (10.2)

Doing this, we find fractions as reported in Table 10.3. Our uncertainty in these fractions is very large.

We can reduce this uncertainty by adding a second layer of three new neural networks: NNWcc vs Wbb,

NNWbb vs Wcc, and NNWc vs Wcc. As the subscripts would imply, each new neural network is trained to

identify one type of production process as signal, and another as background. This provides further separation

between the three types of production process, which in turn allows finer measurement of the fractions XD∗ .

We train this second tier of neural networks not only on the standard set of D∗ properties (Table 5.4), but

also on the score that each event is given by the three original neural networks, NNWcc, NNWc, and NNWbb.

Grouping each first-order neural network with one second order neural network as summarized in the

headers of Table 10.2, and requiring that a D∗ candidate must pass both neural networks in each set in
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Production process Fraction found using Fraction found using
Pre−NNWcc application single neural networks neural network pairs

Wcc 0.10± 2.03 0.55± 0.30
Wc 0.80± 2.03 0.31± 0.28
Wbb 0.10± 0.16 0.14± 0.06

Correlation For results using For results using
coefficient single neural networks neural network pairs
ρwcc,wc −0.997 −0.982
ρwbb,wc −0.022 0.177
ρwbb,wcc 0.056 −0.361

Table 10.3: The fraction of pre-neural network W + D∗ events that falls into each production category, as
well as the correlation coefficients for these fractions. Note that ‘Pre-NNWcc application’ means that these
fractions describe our W + D∗ signal before applying any neural network to reduce uncertainty. Once a
neural network has been applied to our D∗ candidates, the fractional content of the remaining signal shifts
slightly, as described in Table 10.4.

order to be counted, we find nine new efficiencies (also in Table 10.2). We then run our pre-neural network

W + D∗ selection through each neural network pair, to obtain three new counts ND∗ . Substituting these

new efficiencies and counts into equation 10.2, we solve to find improved, ‘second-order’ fractions as reported

in Table 10.3. On the whole, these second-order fractions have greatly reduced uncertainty with respect to

the first-order fractions.

We are also interested in the correlation coefficients describing the relationship between the fraction

uncertainties. For that reason, they are recorded in Table 10.3. We see that the Wcc and Wc fractions are

the most strongly anti-correlated—essentially, the neural networks may confuse these two types of signal

with one another, but much less frequently confuse them with Wbb events.

We would finally like to take the fractions reported in Table 10.3—which refer to the W + D∗ signal’s

fractional content before applying the neural network—and use them to determine the signal’s fractional

content after applying neural network NNWcc to reduce total uncertainty. This is done rather simply, using

the NNWcc efficiencies in Table 10.1, and the correlation coefficients recorded in Table 10.3. Results are

recorded in Table 10.4. However, we would like to see if we can back up these measurement using other

methods. That is the purpose of the next two sub-sections.

10.2 Splitting with the D0 signed impact parameter

We now consider a more traditional method for separating direct charm production (Wcc and Wc), from

charm produced by the decay of bottom hadrons (Wbb): we look at the impact parameter (with respect

to the beamline) of the reconstructed D0 vertex. D∗ from direct charm ought to have a smaller impact

parameter, on average, than D∗ from Wbb.
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Production process Fraction found working from Fraction found working from
Post−NNWcc application single neural network results neural network pair results

Wcc 0.27± 1.90 0.56± 0.30
Wc 0.63± 1.91 0.32± 0.29
Wbb 0.09± 0.14 0.13± 0.05

Correlation Correlation found working from Correlation found working from
coefficient single neural network results neural network pair results
ρwcc,wc −0.997 −0.986
ρwbb,wc −0.075 0.153
ρwbb,wcc 0.002 −0.312

Table 10.4: The fractional content of post-neural network W +D∗ signal, by production process. Also, the
correlation coefficients for these post-neural network results. Note that ‘Post-NNWcc application’ means
that these fractions describe our W +D∗ signal after applying a NN to reduce uncertainty. The NN that
we applied to reduce uncertainty is not directly related to the NNs used to derive these fractions.

10.2.1 Development

In terms of impact parameter, we split events within our signal region into three groups: direct charm

production, charm from bottom hadron decays, and fake D∗ background. We didn’t need to worry about

background events in the previous section, as we were able to measure signal count directly—however,

background events will affect the bs(D0, beam) distributions in this section, and must be considered.

Using the the Monte Carlo and background samples described in section 5.2.3, we develop template

bs(D
0, beam) distributions for each type of the three types of events (Table 10.5), . This is done by binning

the (randomly) signed impact parameter 10.5 for all D∗ candidates, and then fitting the resulting histogram

with a gaussian plus symmetric-exponential (e−|x−x0|/σ) hypothesis. We sign the impact parameter ran-

domly in order to make the fit easier—we find that better fits can be made using symmetric distributions.

The gaussian piece of the fit is meant to model events near the beamline (where the distribution shape is

dominated by vertex resolution); the exponential piece is meant to fit the tail, the shape of which is deter-

mined by the lifetime of the D0 (and bottom hadron) decays. We generate bs(D0, beam) templates both

with and without a cut on the NNWcc neural network value (Figure 10.1), to see what sort of effect the

neural network might have. Generally, applying the neural net decreases the Wbb fraction relative to the

Wcc and Wc content, and reduces the size of the bs(D0, beam) tails.

Fitting these impact parameter distributions is a slightly tricky process. We wish to include as much

detail as possible about the gaussian core and the exponential tail of each distribution. However, selecting a

fit region that is too small results in tails that are much longer than the data would suggest. For each case,

then (with and without a cut on the neural network value), we choose a fit range such that the following

conditions are satisfied: we see a (arbitrarily-defined) ‘good’ amount of the gaussian core of the distribution,

occupying somewhere between one quarter and one-half of the visible range; and at the same time, we
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Event Type Sample used to generate template # events used
Charm from bottom hadron decays q + q̄′ →W + g(→ bb̄)→W +D∗ +X (MC) 2710

Direct charm production q + q̄′ →W + g(→ cc̄)→W +D∗ +X (MC) 8437
Background SS and BSP background 8437

Table 10.5: The three types of events that we seek to separate by impact parameter, and the samples used
to represent each. While the direct charm events and D∗ from bottom decay are modeled well by Monte
Carlo (MC) samples, we use background samples from data (the samples described in section 5.2.3). Recall
that SS background refers to candidates which pass all stages of our D∗ selection criteria, except that all
tracks have the same charge; in BSP background, the soft pion track has charge opposite that of the harder
pion track.

Figure 10.1: Example bs(D0, beam) distributions for the three types of event that we wish to distinguish
between. Each distribution is fit with a gaussian plus symmetric-exponential function. The top row features
distributions without any neural network cut; the bottom row shows distributions with a NNWcc neural
network cut of 0.0. Note bene the difference in x -axis scale between the Bkg and Wbb distributions in the
top row, and all other distributions.

107



require that the integral beneath this (normalized) distribution approaches unity as we extend the limits of

integration to three times the range used to make the fits. This latter requirement comes from observations

of the bs(D0, beam) distributions of our background and Monte Carlo signal samples, which fall to zero

rather quickly.

10.2.2 Testing

With these templates defined, we can determine the D∗ content of our signal region. We will do this by

fitting the bs(D0, beam) distribution of all D∗ candidates within 3σ of the ∆m peak, with a combination

of these three templates; the shapes of the templates are held fixed, and only the amplitudes are allowed to

vary. Before doing this, however, we test the validity of this method with a series of ‘toy’ histograms.

For each of several values of XWbb
D∗ , we generate a blank histogram. We then fill this histogram with the

bs(D
0, beam) values of ‘simulated’ background events, drawing entries at random from the Bkg bs(D0, beam)

template (treating this template as a probability distribution). We then add a number of ‘simulated’ signal

events in the same way, drawing from the Wcc and Wbb templates. For each test, the number of signal and

background events added is based on the numbers found by fitting our ∆m distribution in data, and then

integrating the background and signal functions across the signal region (3σ from ∆mpeak). Specifically,

each test uses a value taken from gaussian distributions, which are centered upon the integrated signal and

background values. The width of the gaussians is the uncertainty of the fit, propogated through to the inte-

gral. When all events have been added, we fit this distribution with a combination of the three templates,

and see how well the input fractions XWbb
D∗ and XWcc/Wc

D∗ are recreated.

That is the general concept, at any rate. In practice, we fix the amplitude of the background curve to

the total number of background events predicted by our ∆m fit. We also fix the combined amplitudes of

the charm and bottom templates to equal the total number of signal events predicted by the ∆m fit. Only

the fraction XWbb
D∗ is allowed to vary. Uncertainty in the meaured values of XWbb

D∗ —as determined by these

tests—should take into account the effect of fixing our total signal and background amplitudes.

It turns out that the effectiveness of this ‘template’ approach depends upon not only the number of

signal and background events that populate the signal region, but also the fraction XWbb
D∗ being tested. We

therefore test this technique for multiple values of Xb, ranging from 0.0 to 0.5 in units of 0.05. Creating and

fitting 100, 000 toy histograms for each value of XWbb
D∗ , we find good agreement between the input fraction

and (average) ouput fraction (Figure 10.2).
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Figure 10.2: Measured values XWbb
D∗ obtained for several input values of XWbb

D∗ . Each input value is tested
by fitting 100, 000 toy bs(D0, beam) histograms, each of which is generated with a number of signal and
background events compatible with what we observe in data. We see that there is good agreement between
the average measured value of XWbb

D∗ , and the input value being tested. The tests shown are for post-neural
network templates.

Sample Type XWbb
D∗

No neural network cut 0.02± 0.12 (stat)± 0.06 (syst)
Neural network cut at 0.0 0.08± 0.07 (stat)± 0.03 (syst)

Table 10.6: Fractions XWbb
D∗ , as found by fitting the bs(D0, beam) distribution of all events within 3σ of the

∆m signal region, using a set of templates.

10.2.3 Results

With the effectiveness of this technique established, we can now apply it to the bs(D0, beam) distribution

of all events within 3σ of the ∆m signal peak, in our post-neural network W + D∗ data sample. We find

fractions XWbb
D∗ as reported in Table 10.6.These results are compatible with those found in the previous

section (Tables 10.3 and 10.4), but have larger uncertainty. As such, we will use the Wbb fractions found in

the previous section (using the neural network-based technique) in our final results. It is nice, however, to

see that our results are backed up by this more traditional approach.

.
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10.3 Splitting with D∗ and W signs

Recall our three W + D∗ production processes, as summarized in Eq. 10.1. In the case of Wc production,

conservation of charge requires that the W and c be produced with opposite signs. When the W decays

leptonically, the lepton will always have the same sign as the W . When the c hadronizes to a D∗, the c and

D∗ will have the same sign as one-another. In sum, this means that for a Wc event, the W and D∗ that we

tag ought to have opposite signs. We refer to such events as (W +D∗)OS .

In the case of either Wcc or Wbb production, however, the W is produced along with a c and c̄ (or b and

b̄), either of which could give rise to the D∗ that we tag. This means that in a Wcc or Wbb event, we are

equally likely to tag oppositely-signed W and D∗, (W +D∗)OS , or same-signed W and D∗, (W +D∗)SS .

By considering the difference between the number of (W +D∗)OS and (W +D∗)SS events tagged by our

algorithm, we can estimate the contributions of Wc events versus Wcc/Wbb events. Quantitatively

NOS = NWc +
1

2
NWcc/Wbb

NSS =
1

2
NWcc/Wbb

and so

NWc = NOS −NSS

NWcc/Wbb = 2 ·NSS

Measuring these quantities in our combined W (→ µν/eν) +D∗ sample (Figures 5.3,5.11, and Table 5.2),

we find

XWc
D∗ (no neural network cut) = 0.107± 0.097 (stat)

XWc
D∗ (with neural network cut at 0.0) = 0.141± 0.063 (stat) (10.3)
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Production process Fraction of W (→ `ν) +D∗ signal
s(d) + g →W + c XWc

D∗ = 0.14± 0.06
q + q̄′ →W + g(→ cc̄) XWcc

D∗ = 0.73± 0.08
q + q̄′ →W + g(→ bb̄) XWbb

D∗ = 0.13± 0.05

Table 10.7: The best measurements of the fraction of our W + D∗ signal that comes from processes Wbb
and Wc. The best measurement for the Wbb fraction, XWbb

D∗ , comes from our NN -based approach (section
10.2), while our best measurement for the Wc fraction, XWc

D∗ , comes from the OS−SS sign-based approach
(section 10.2).

10.4 Combining results

We have determined what fraction of our sample comes from each of three production process, using several

different techniques. Our best measurement for the fraction of Wc events, XWc
D∗ , is found using the OS−SS

sign-based technique (section 10.3); our best measurement for the fraction of Wbb events after the neural

network cut, XWbb
D∗ , is found using the two-tiered neural-network technique (section 10.1). Because we arrived

at these results using independent methods, we treat their uncertainties as uncorrelated. We report these

best measurements in Table 10.7.

10.5 The effect of D∗ from background

In splitting our signal into Wcc/Wbb/Wc fractions, we assumed that the signal was composed entirely of

D∗ from these three signal processes. We know from Table 6.5 that this is not true—some small number of

D∗ in our signal comes from background events which fake the W signature. We assume that this effect is

negligible within our (fairly large) uncertainties. This may be a question to revisit in the future.
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Conclusions

This analysis was motivated by a gap in studies of perturbative QCD: while W/Z + b production is well-

tested, W/Z + c production has been studied much less extensively. Never (before now) had we probed the

regime pT (c) < 15 GeV; with perturbative QCD relying on assumptions that are less accurate as pT → 0,

this means that the pT (c) < 15 GeV regime is a rigorous test of our models.

With this in mind, we created a new tool for identifying low-momentum charm by fully-reconstructing

D∗ mesons at the track level. We applied that tool to W/Z events in the CDF high-pT lepton datasets,

and tested this technique extensively. We characterized interesting backgrounds and systematic uncertainties

with a high degree of precision, and we proved not only that this technique is viable, but that it is in fact quite

successful: we were able to probe the full pT spectrum of D∗ produced in W events (for pT (D∗) > 3 GeV).

We found no discrepancy between data and Pythia MC predictions.

We also showed that this technique is capable of measuring much more than just inclusive cross-sections—

working within the (relatively low statistics) regime of the CDF high-pT lepton samples, we measured several

other properties describing our events: how D∗ production varies as a function of Njets, and what percentage

of our W + D∗ signal comes from each of three different production processes. These properties could, in

the future, act as a starting point for other interesting analyses—not only at CDF (there are other charmed

mesons that we could add to our sample), but also in high-statistics datasets at the Large Hadron Collider.

In short, the strength of this analysis lies primarily in its promise: low-momentum charm is infrequently

considered a viable ‘secondary tag’ in events with other major players, like W/Z bosons or top quarks. More

often than not, charm is considered an irreducible background, which must be emulated by (potentially

faulty) Monte Carlo simulations. We have proven that this is not so—charmed mesons can take the role of a

precise probe into the QCD processes that underlie the production of major event types. We have observed

no discrepancies between data and Monte Carlo in W/Z production, but this is hardly the end of the road

for this kind of work. Rather, the technique that we have developed in this thesis work is easily ported to

new studies, and may open the way for a fascinating series of low-momentum measurements of QCD (see

The Future, below).
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The Future

After giving a joint CDF/D0 Tevatron talk at Moriond QCD 2014, this March, I was asked exactly zero

questions about my W/Z +D∗ work. The reason for this soon became quite clear: among the CDF results

that I discussed was a study of Υ + W/Z production. The first order production process for Υ + W/Z

production, as advertised in the study’s public paper, is simply u + d̄ → W/Z + g(→ bb̄), in which the

bb̄ pair condenses into a bound state. During the coffee break that proceeded my talk, it seemed that

representatives from every major European country had become possessed with a monomanical desire to

correct me: obviously, this cannot be the first order production process—the gluon is colored, and the Υ

must be colorless. What did I really mean?

Whilst silently cursing the authors of that paper, I also became quite intrigued by this question. Kevin

Pitts had suggested that we might use our D∗ tagging technique to look for D∗ produced in association with

heavy quarkonium, and it was now easy to see why this would be fascinating. The bb̄ pair obviously have

to radiate off their color in some fashion in order to become an Υ; by tagging a particular charmed meson,

we might be able to probe this process in considerable detail. What is the average angle of emission for this

D∗, with respect to the Υ? How much energy or momentum is carried away? More importantly, how well

do our models of perturbative QCD work in this extremely close-range, low-momentum menagerie of heavy

flavor? If we are going to find significant discrepancies anywhere, it seems that this would be the ideal place

for them to be hiding.

For this reason, I have been training a team of two undergraduates (and as of late May, one REU

student) to modify my W/Z + D∗ tagging software for identifying Υ(→ µµ) + D∗ events. There are a

colossal number of Υ +D∗ candidates to work with in the CDF Run II dataset, compared to our ∼ 600 or

so W +D∗ candidates; from a very preliminary study, we have identified hundreds of thousands of Υ→ µµ

candidates, with thousands of D∗ candidates split between the Υ events and their backgrounds. We will

look at the production rate of D∗ associated with each Υ state, and provide what may well be one of the

first measurements of ‘heavy quarkonium plus heavy flavor’ production at low momentum.

This work obviously suggests a future study of J/ψ+D∗ production, or perhaps even of γ+D∗ production.
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We might even imagine investigating the X(3872) or X(4260) particles, which some have suggested might

be tetraquark states involving a bound cc̄ pair [44, 45]. There are a huge number of options, and many

opportunities for testing untested regimes of pertubative QCD. The code that we have have developed is very

easily ported to other studies, which makes them quick and precedented projects, excellent for undergrads or

graduate students, alike. In short, we have opened the door for a whole suite of interesting, low-momentum

heavy flavor analyses. What the future may hold, in terms of our understanding of QCD, is unknown but

very exciting—and I am eager to see our toolset pushed to potentially fascinating new limits.
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Appendix A: Fitting ∆m templates

In this appendix, we discuss the process by which we choose our signal and background template functions,

for fitting ∆m distributions.

Part I: Exploring signal and background shapes

To begin, we consider the Wcc Monte Carlo sample. This is our largest sample, and it will provide us with

the greatest statistics. We fit the ∆m distribution of this sample with two different shapes for signal, and

two different shapes for background. The latter tests the stability of each signal shape. For signal, we try

each a double gaussian

sDG(x) = N ·
(e−(x−x0)2/2σ2

1

σ1

√
2π

+R · e
−(x−x0)2/2σ2

2

σ2

√
2π

)
/(1 +R) (10.4)

with σ2 ≡ Rσ · σ1

and a triple gaussian

sTG(x) = N ·
(e−(x−x0)2/2σ2

1

σ1

√
2π

+R · e
−(x−x0)2/2σ2

2

σ2

√
2π

+R2 ·
e−(x−x0)2/2σ2

3

σ3

√
2π

)
/(1 +R+R2) (10.5)

with σ2 ≡ Rσ · σ1 and σ3 ≡ R2,σ, · σ1

The two signal functions have been normalized such that N is the integral of the function from −∞ to

∞.

For background, we try a power-law
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W + cc x0 σ1 R Rσ R2 Rσ,2 N NCount χ2/DOF

Pow. Law & DG 0.145546 0.00050 0.51 3.3 2.898 11593 281.6 / 74
Fit Uncertainty (±) 0.000007 0.00001 0.04 0.1 0.034 136

Poly & DG 0.145547 0.000523 0.50 3.89 3.06 12250 358 / 72
Fit Uncertainty (±) 0.000006 0.000006 0.02 0.06 0.03 103

Average: 0.145547 0.000512 0.51 3.6

Pow. Law & TG 0.145542 0.00066 0.51 2.9 0.4 0.48 2.931 11723 226.1 / 72
Fit Uncertainty (±) 0.000007 0.00004 0.05 0.1 0.1 0.03 0.034 137

Poly & TG 0.145543 0.000671 0.57 3.29 0.43 0.48 3.07 12294 274.1 / 70
Fit Uncertainty (±) 0.000005 0.000007 0.02 0.05 0.02 0.02 0.02 84

Average: 0.145543 0.00067 0.54 3.1 0.42 0.48

Table A.1: D∗ counts in a signal plus background fit of ∆m for Wcc MC events. Four permutations of signal
and background function shape are tested.

b(x)POW = A ·
(
x−mπ±

)p
(10.6)

with mπ± = 0.1396 GeV

(where mπ± is the mass of the charged pion), and a third-order polynomial

b(x)POLY = a+ b · x+ c · x2 + d · x3 (10.7)

For each combination of signal and background, we fit our Wcc Monte Carlo sample’s ∆m histogram.

The fitted signal function’s parameters are recorded in Table A.1. The fitted plots are recorded in Figure

A.1.

While none of the permutations of signal and background provides a fit with low χ2/DOF, we are not

looking for an absolutely ideal fit. We are looking only for a reasonable fit to the shape of our MC sample,

and the similarity in final signal counts between the four fits hints that we have accomplished just that.

Part II: Making a final decision

We do not expect for the shape of the ∆m peak to vary significantly from one type of signal to the next.

We will therefore use the results of our Wcc fits to generate a template that describes the shape of the ∆m

peak. In particular, we use the double and triple gaussian functions from earlier, but fix the R, Rσ, R2 and

R2,σ values to their averages across the two double gaussian / triple gaussian fits performed. We then define

σ0 as the average value of σ1 across the two double gaussian / triple gaussian fits, and set σ1 = s · σ0 for
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Figure A.1: Fitted ∆m plots for Wcc MC events. Four permutations of signal and background function
shape are tested.
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some new parameter s, which describes by how much a given signal deviates from this template average.

In effect, this fixes the basic shape of the double/triple gaussian signals, allowing only the width and

overall amplitude of the function to vary. We have now the double gaussian template:

sDG,TEMPLATE(x) = N ·
(e−(x−x0)2/2σ1

2

σ1

√
2π

+R · e
−(x−x0)2/2σ2

2

σ2

√
2π

)
/(1 +R) (10.8)

with σ1 = s · σ0, σ2 = Rσ · σ1,

R = 0.51, Rσ = 3.6, σ0 = 0.000512

and the triple gaussian template

sTG(x) = N ·
(e−(x−x0)2/2σ2

1

σ1

√
2π

+R · e
−(x−x0)2/2σ2

2

σ2

√
2π

+R2 ·
e−(x−x0)2/2σ2

3

σ3

√
2π

)
/(1 +R+R2) (10.9)

with σ1 = s · σ0, σ2 = Rσ · σ1, σ3 = Rσ,2 · σ1,

R = 0.54, R2 = 0.42, Rσ = 3.1, R2,σ = 0.48, σ0 = 0.00067

For small signals (such as those that we will measure in data), the choice of double or triple gaussian

signal has a negligible impact on the final measurement. We therefore choose the double-gaussian template

(Eq 10.8) for fitting our ∆m signal peak in data. We do not allow s to vary, in order to prevent statistics

from forcing the fit into a sharp artificial peak. Instead, because signal widths in data are generally 10−15%

larger than in simulation, we fix s = 1.1, and allow only the amplitude to vary. This allows us to take

advantage of our knowledge of the ∆m signal shape, in order to get the most out of low-statistics samples.
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Appendix B: Neural Network Qualities

In this appendix, we include output from the training program that we used to develop our NNWcc neural

network. The first page displays the correlation matrix for all variables used to train the network. The pages

after this correlation matrix describe the signal (red) and background (black) distributions for each variable.

Note that x-axis scales for each distribution are not constant. Finally, we include additional output from

the training program detailing the signal purity and efficiency, the Gini index, and a visual diagram of how

each node in the final neural network connects to each other node.

A note on Vtx Lxy and Vtx Lxy: Redundant

In the pages that follow, we have one variable named Vtx Lxy, and another named Vtx Lxy: Redundant.

Both of these variables describe the signed impact parameter of the reconstructed D∗ with respect to the D0

vertex. The redundancy is due to having developed two definitions for this quantity, both of which turned

out to be equivalent. This has no effect on the final neural network, as, due to this redundancy, the training

program chose to ignore the second Vtx Lxy variable when constructing the neural network.
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 0.21089
 0.30043
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 2.84
 3.4039
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 0.0065331
 0.12688
 0.16189
 0.19203
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 0.0011059
 0.026309
 0.038572
 0.04996
 0.059982
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 0.00056893
 0.021555
 0.030974
 0.03851
 0.045519
 0.052287
 0.058966
 0.065868
 0.072761
 0.079313
 0.086347
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 -4.0468
 -0.11589
 -0.04493
 -0.021973
 -0.013124
 -0.0088253
 -0.006718
 -0.0053476
 -0.0043961
 -0.003598
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 -1.4989
 -0.095866
 -0.035111
 -0.017057
 -0.0099656
 -0.0071344
 -0.0057773
 -0.0048498
 -0.0040549
 -0.0033859
 -0.0028324
 -0.0023632
 -0.0019106
 -0.0014606
 -0.0010655
 -0.00072161
 -0.00037444
 -5.2766e-05
 0.00026861
 0.00056717
 0.00088768
 0.0012019
 0.0015178
 0.0018245
 0.0021434
 0.0024921
 0.0028294
 0.0032044
 0.0036314
 0.0040304
 0.0044266
 0.0048391
 0.0053367
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 0.0064269
 0.0071052
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 0.0095662
 0.010788
 0.012199
 0.013872
 0.016094
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 0.045818
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 -13.208
 -0.1371
 -0.072955
 -0.046695
 -0.033385
 -0.024566
 -0.018916
 -0.014864
 -0.012309
 -0.010227
 -0.0088187
 -0.0075533
 -0.0066246
 -0.0056763
 -0.0049911
 -0.0043452
 -0.0037404
 -0.0031596
 -0.0025847
 -0.0020411
 -0.0015366
 -0.0010231
 -0.00058633
 -7.9688e-05
 0.00041252
 0.00091018
 0.0013775
 0.0018933
 0.0024342
 0.00292
 0.0034673
 0.0040508
 0.0047202
 0.005432
 0.0062541
 0.0072607
 0.0083172
 0.0096166
 0.011094
 0.013003
 0.015702
 0.019434
 0.024189
 0.03318
 0.045866
 0.068215
 0.10468
 0.1761
 0.3182
 0.69792
 13.578
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 -4.0468
 -0.11648
 -0.04493
 -0.021924
 -0.013124
 -0.0088209
 -0.006718
 -0.0053609
 -0.0044049
 -0.0036199
 -0.0030189
 -0.002464
 -0.0019616
 -0.0014932
 -0.001056
 -0.00068095
 -0.00030636
 8.605e-05
 0.00040259
 0.00076648
 0.001067
 0.0014101
 0.0017498
 0.002077
 0.0024308
 0.0028018
 0.0031508
 0.0035236
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 0.0047517
 0.0051887
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 0.095986
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 -1.4989
 -0.09563
 -0.035722
 -0.017305
 -0.010046
 -0.0071719
 -0.0057843
 -0.0048666
 -0.0040566
 -0.0033972
 -0.0028434
 -0.0023727
 -0.0019232
 -0.0014669
 -0.0010686
 -0.00072878
 -0.00038282
 -7.4105e-05
 0.00026002
 0.00056219
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 0.010763
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 0.016023
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 0.14196
 5.2417

10 20 30 40 50 60 70 80 90 100

pu
rit

y

0

0.2

0.4

0.6

0.8

1   spline fit

-3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 3

ev
en

ts

0

100

200

300

400

500

600

       final

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

si
gn

al
 p

ur
ity

0

0.2

0.4

0.6

0.8

1   separation
b_s(Pi, D0)

135



 TeacherNeuroBayes

0 0.2 0.4 0.6 0.8 1

ev
en

ts

0
20
40
60
80

100
120
140
160
180

input node 17         flat

 -13.208
 -0.1371
 -0.072955
 -0.046695
 -0.033385
 -0.024566
 -0.018916
 -0.014864
 -0.012309
 -0.010227
 -0.0088187
 -0.0075533
 -0.0066246
 -0.0056763
 -0.0049911
 -0.0043452
 -0.0037404
 -0.0031596
 -0.0025847
 -0.0020411
 -0.0015366
 -0.0010231
 -0.00058633
 -7.9688e-05
 0.00041252
 0.00091018
 0.0013775
 0.0018933
 0.0024342
 0.00292
 0.0034673
 0.0040508
 0.0047202
 0.005432
 0.0062541
 0.0072607
 0.0083172
 0.0096166
 0.011094
 0.013003
 0.015702
 0.019434
 0.024189
 0.03318
 0.045866
 0.068215
 0.10468
 0.1761
 0.3182
 0.69792
 13.578
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 -39.382
 -2.0931
 -1.3521
 -0.9888
 -0.74309
 -0.57366
 -0.43362
 -0.35757
 -0.29556
 -0.24108
 -0.19933
 -0.16412
 -0.13869
 -0.11535
 -0.096049
 -0.079556
 -0.064757
 -0.048358
 -0.033398
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 -0.0061114
 0.0065686
 0.018952
 0.030888
 0.044368
 0.060852
 0.07619
 0.094043
 0.11255
 0.13587
 0.16149
 0.18888
 0.2265
 0.2654
 0.31939
 0.39889
 0.5091
 0.67736
 0.92303
 1.2941
 1.8422
 2.6712
 3.7595
 5.2135
 6.8261
 8.7772
 10.833
 13.648
 16.576
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 60.29
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