
ABSTRACT

INVESTIGATIONS OF GALAXY CLUSTERS USING
GRAVITATIONAL LENSING

Matthew P. Wiesner, Ph.D.
Department of Physics

Northern Illinois University, 2014
Huan Lin and Michael Fortner, Director

In this dissertation, we discuss the properties of galaxy clusters that have been de-

termined using strong and weak gravitational lensing. A galaxy cluster is a collection

of galaxies that are bound together by the force of gravity, while gravitational lensing

is the bending of light by gravity. Strong lensing is the formation of arcs or rings

of light surrounding clusters and weak lensing is a change in the apparent shapes of

many galaxies. In this work we examine the properties of several samples of galaxy

clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory

of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from

our data that galaxy clusters are more concentrated than cosmology would predict.

In Chapter 3 we investigate whether our assumptions about the number of galaxies

in our clusters was valid by examining new data. In Chapter 4 we describe a deter-

mination of a relationship between mass and number of galaxies in a cluster at higher

redshift than has been found before. In Chapter 5 we describe a model of the mass

distribution in one of the ten lensing systems discovered by our group at Fermilab.

Finally in Chapter 6 we summarize our conclusions.
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CHAPTER 1

AN INTRODUCTION TO GALAXY CLUSTERS AND

GRAVITATIONAL LENSING

Dimidium facti qui coepit habet: sapere aude, incipe. (He who has begun is half

done: dare to know, begin.)–Horace

1.1 Introduction

Nobel prize winning physicist David Gross defines wisdom in this way [36]:

Wisdom =
Knowledge

Ignorance
(1.1)

where ignorance is defined as awareness of a lack of knowledge. Our knowledge of

the universe has increased tremendously over the last century, with groundbreaking

discoveries throughout physics and astronomy. But as our knowledge of the universe

has grown, so has our ignorance. For example as our understanding of galaxy

clusters has increased, many new questions have arisen about their development and

structure. As our knowledge of the structure of the universe has grown, we have

become aware of dark matter and dark energy. By 2014 we have a rich understanding

of the universe but it is accompanied by the knowledge that 95% of the universe

is made of materials we do not really understand. Thus as our knowledge and our

ignorance grow in physics, our quest for wisdom continues.
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In this dissertation I attempt to increase the wisdom of humanity a little bit by

studying clusters of galaxies and the phenomenon of gravitational lensing. Galaxy

clusters hold information about the formation of structure in the universe as well

as about the presence and abundance of dark matter. Gravitational lensing tells

us both about the distribution of matter in massive objects like clusters and about

the structure of source galaxies that are lensed. We will use clusters and lensing to

infer how concentrated galaxy clusters are, to see how galaxies are distributed in

clusters, to determine the mass distribution in one cluster and to find the overall

mass of many clusters at greater distances than have been thus studied before.

In Chapter 1 we present the basic astrophysics behind galaxy clusters and grav-

itational lensing. In Chapter 2 we discuss the overconcentration problem, the idea

that galaxy clusters may be more concentrated in their cores than had been ex-

pected. In Chapter 3 we discuss how the number of galaxies in a cluster changes

with distance from the center. In Chapter 4 we present a new determination of

the relation between the mass of galaxy clusters and the number of galaxies in the

clusters. In Chapter 5 we focus on strong gravitational lensing observed in one of

the clusters we studied, presenting a full lens and source model developed using a

new Bayesian algorithm. Finally in Chapter 6 we summarize our conclusions. We

begin with an overview of some important concepts in observational astronomy.

1.2 Concepts in Observational Astronomy

To begin, we summarize several important ideas in observational astronomy that

will come up later in this thesis. First we discuss the concepts of magnitude, color

and airmass.
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Astronomical magnitude (symbolized as m) describes the brightness or lumi-

nosity of a celestial object. Apparent magnitude is defined as

m−mref = −2.5× log10
I

Iref
(1.2)

I means intensity and the subscript ref means reference object, as magnitude is

always defined with respect to some standard. Apparent magnitude describes flux

received from an object. A related quantity called absolute magnitude describes the

luminosity of an object by quantifying flux received at a particular distance from a

source of radiation.

To an astronomer, color means the difference between magnitudes in two dif-

ferent wavelength bands, that is through two different filters. We frequently use g-r

and r-i colors, although there are many other possible colors. The g, r and i filters

are filters designed for the Sloan Digital Sky Survey (also including u at wavelengths

shorter than g and z at wavelengths longer than i. Then considering Eq. 1.2, we

find that g-r (where g and r are magnitudes measured in g and r filters) color is

defined as

g − r = 2.5× log10

(
Ir
Ig

Ig ref
Ir ref

)
(1.3)

Thus color is the logarithm of the ratio of fluxes in the two bands.

Airmass is the quantity used in astronomy to measure how high an object is in

the sky. It is named such because it describes how much air light from a celestial

object must pass through on the way to an observer. Airmass provides a limitation

to astronomical observing, as images of an object at high airmass (very low in the

sky) will be of very poor quality. The simplest definition of airmass is

X = secZ (1.4)
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In this equation, Z is the zenith angle of the object, that is the angle between the

zenith (the point 90◦ above the horizon) and the object. An object at the zenith

will have an airmass of 1 and airmass will increase as the object gets lower in the

sky.

1.3 Cosmology

1.3.1 Redshift and Expansion

One of the most important discoveries in cosmology was Edwin Hubble’s discov-

ery of the expansion of the universe, leading to the conclusion that radial velocity

of distant galaxies was directly related to galaxy redshift (Hubble’s Law). Redshift

is defined as

z =
λobs − λem

λem
(1.5)

where λobs is the observed wavelength and λem is the emitted wavelength. Thus

redshift measures the fractional change in wavelength of light emitted from some

source. We are here concerned with the cosmological redshift due to the expansion

of the universe, which can be defined as

z =
1

a
− 1 (1.6)

where a is the dimensionless scale factor, which describes the rate of expansion of

the universe. This is related to the scale factor R(t) and the scale factor at time=0

R0 by

a =
R(t)

R0

(1.7)
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Most often the expansion of the universe is described by the Hubble parameter,

which is related to the scale factor by

H =
ȧ

a
(1.8)

The Hubble parameter is usually stated as a function of redshift, as H(z). The

Hubble parameter at z=0 is called H0. The general expression for H(z) proceeds

from Friedmann’s equations (Equations 1.13 and 1.14), and is stated as

H(z) = H0(1 + z)[ΩM,0(1 + z) + Ωrad,0(1 + z2) +
ΩΛ,0

(1 + z2)
+ 1− Ω0]1/2 (1.9)

In this equation, z is the redshift, ΩM is the matter density parameter, ΩΛ is the vac-

uum energy density parameter, Ωrel is the relativistic particle (i.e., photon, neutrino)

density parameter and Ω0 is the total density parameter. The subscript 0 denotes

the value at this time, as the values of these parameters have changed throughout

time. We follow current cosmology to take Ωrad = 0 and Ω0 = 1, corresponding to

a universe with zero curvature. In general, density parameters are represented as:

Ωx =
ρx
ρcrit

(1.10)

where the subscript x denotes the quantity at hand (matter, vacuum energy, etc.).

Other important cosmological parameters include σ8 and w. The quantity σ8 is

a special case of the quantity σR, which is the mean value of the fractional density

perturbation over a sphere of co-moving radius R/a0 [90], where a0 is the scale factor

at z = 0. Note that σ8 is σR evaluated at z = 0 and R = 8h−1Mpc. Thus σ8 is one

measure of the power spectrum at the current time, that is, a measure of clustering
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and structure in the universe. The quantity w comes from the equation of state of

the universe:

p = w × ρ (1.11)

where p is the overall pressure in the universe and ρ is the energy density of the

universe. Thus w is the the ratio of p/ρ.

1.3.2 FRLW Metric and the Friedmann Equations

In General Relativity, the metric is a tensor that describes the fundamental

properties of a spacetime, including the geometry, concepts of distance and time,

and more. If a metric is to be consistent with GR, it must be able to provide a

solution to Einstein’s field equations:

Rµν −
1

2
Rgµν + gµνΛ =

8πG

c4
Tµν (1.12)

In Equation 1.12, Rµν is the Ricci tensor, R is the Ricci scalar, gµν is the metric

tensor, G is Newton’s gravitational constant, Λ is the cosmological constant and Tµν

is the energy-momentum tensor. (The speed of light (c) is usually taken as equal to

1 to simplify.) There are a number of metrics that can provide solutions to Einstein’s

field equations; one that describes expanding spacetime is the Friedmann-Robertson-

LeMâıtre-Walker (FRLW) metric. The FRLW metric describes a universe that is

homogeneous and isotropic but changing in time [18]:

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dΩ2

]
(1.13)
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where

κ =
k

R2
0

(1.14)

and k describes the curvature of the spacetime. Using Equation 1.13 in Equation

1.12, we can obtain the Friedmann equations, which describe the evolution of the

universe. The first Friedmann equation is [18]

(
ȧ

a

)2

=
8πG

3
ρ− κ

a2
(1.15)

where ρ describes the energy density of spacetime. The second Friedmann equation

is

ä

a
= −4πG

3
(ρ+ 3p) (1.16)

where ä is the acceleration of expansion of the universe and p is the pressure of all

components of spacetime.

1.3.3 Distance in Cosmology

Distance is an important concept in cosmology but the meaning of distance is

sensitive to cosmology as distance measurements are done in an expanding uni-

verse with the possibility of curvature. We use two main definitions of cosmological

distance, luminosity distance and angular diameter distance.

Luminosity distance is defined as [19]

dL
2 ≡ L

4πF
(1.17)
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where L is the luminosity of an object and F is the observed flux. Using the

comoving coordinate to define the flux expected, dL can be stated as

dL(z) =
c

H0

(1 + z)I(z) (1.18)

where

I(z) ≡
∫ z

0

dz′√
ΩM,0(1 + z′)3 + Ωrel,0(1 + z′)4 + ΩΛ,0 + (1− Ω0)(1 + z′)2

(1.19)

Equation 1.18 is valid for Ω0 = 1.

Angular diameter distance is defined as

dA ≡
D

θ
(1.20)

where D is an observed object’s linear diameter and θ is the object’s angular diam-

eter on the sky. It can be shown [19] that

dA =
dL

(1 + z)2
(1.21)

1.4 Galaxy Clusters

1.4.1 Properties of Galaxy Clusters

Galaxy clusters are the largest gravitationally bound structures in the universe;

the only larger structures are the clusters of clusters of galaxies that form the cosmic

web of the universe. Some galaxy clusters contain ten or twenty galaxies and some



9

contain hundreds or even thousands of galaxies. A small galaxy cluster with fewer

than 50 galaxies is often referred to as a group. The number of galaxies in a cluster

is referred to as cluster richness. Galaxy clusters can have radii on the order of a

megaparsec or more, where 1 Mpc is 3.26 million light years.

There are a number of galaxy clusters in our own cosmic neighborhood. Our

own Milky Way galaxy is part of a small cluster of about 35 galaxies called the

Local Group. The Virgo cluster is a relatively nearby cluster of spiral and elliptical

galaxies that may contain up to 2000 galaxies. The Virgo cluster is part of the

Virgo supercluster, a cluster of galaxy clusters of which the Local Group is a part.

The Coma cluster [55] is a rich cluster in Coma Berenices that contains over 1000

galaxies.

A galaxy cluster is typically characterized by a collection of luminous elliptical

galaxies surrounding one or several brightest cluster galaxies (BCGs). BCGs are

typically giant elliptical (gE), D or cD galaxies (these are the largest types of galaxies

known); they typically make up a significant fraction of the baryonic mass of the

cluster. Galaxy clusters are believed to have begun to form early in the history of the

universe and as such are often populated by early-type galaxies, that is ellipticals,

of similar age and evolution (and thus color).

Elliptical galaxies are actually triaxial spheroidal systems. Elliptical galaxies are

characterized by low rates of star formation and the lack of significant amounts of

dust and gas which could be used in star formation. It is believed that as early

galaxies were forming after the Big Bang the elliptical galaxies experienced very

rapid star formation. This rapid star formation would have exerted pressure to

prevent a collapse into a disk and would have used up much of the available star-

forming material. Thus elliptical galaxies are observed to lack a significant disk

component.
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Figure 1.1: The Hubble sequence of galaxies, including ellipticals (on the left) and
spirals (on the right). Lenticular (S0) galaxies form a transition type between ellip-
tical and spiral galaxies. (NASA/STScI)

In the Hubble sequence (see Figure 1.1) elliptical galaxies are rated by their

ellipticity:

e = 1− b

a
(1.22)

Here b is the apparent minor axis of the elliptical profile and a is the apparent major

axis. Elliptical galaxies are rated from E0 to E7 in the Hubble sequence, where E0

corresponds to e = 0 and E7 is e = 0.7. S0 galaxies share with ellipticals the lack

of spiral arms but they have a disk like a spiral. S0 or lenticular galaxies are thus

transitional types between ellipticals and spirals.

Galaxy clusters typically have masses from 1013 − 1015h−1M�, but the galaxies

themselves make up a small portion of this total mass, typically about 1%. About

9% of the cluster mass comes from the intra-cluster medium (ICM), hot gas found

in between cluster galaxies. But about 90% of the cluster mass is in the form of



11

Figure 1.2: Images of the Bullet cluster from Clowe et al. (2006) [20]. The left image
is an optical image from the Magellan telescope, while the right image is an x-ray
image from the Chandra x-ray telescope. The contours indicate the weak lensing
shear.

dark matter. The ICM can be mapped out using x-ray observations and the dark

matter can be mapped out using weak lensing (see Section 1.7). The Bullet Cluster

[20] is a well-studied system in which two galaxy clusters are interacting. Through

a combination of x-ray observations and weak lensing, both the ICM and the dark

matter can be represented (see Figure 1.2).

The galaxies and luminous gas are the most easily discernable evidence of a

galaxy cluster, but these objects make up only a fraction of the overall cluster mass.

As can be seen in Figure 1.2, the dark matter does not exactly follow the distribution

of luminous matter. Since dark matter is weakly interacting, it does not collapse into

galaxies and stars or radiate like baryonic matter. Thus dark matter distributions

are fundamentally different than baryonic matter distributions. Some models of

dark matter distributions have been made, including the NFW profile (see Section

1.7.2). The distribution of baryonic matter (e.g. galaxies) in a dark matter halo can

be described by a Halo Occupation Distribution (HOD) function.

An HOD function describes three parameters in the halo model: (1) the number

of galaxies per halo, (2) the spatial distribution of galaxies in a halo and (3) the
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distribution of galaxy velocities [82]. The total number of galaxies in a halo as a

function of mass is given as [82]:

〈N〉M = 1 +

(
M

M1

)α
(1.23)

where M is the halo mass. Spatial distribution of galaxies is given by the galaxy

power spectrum. The monopole and quadrupole moments of the power spectrum

are given by [82]:

P0(k) =

(
1 +

2

3
β +

1

5
β2

)
PR(k) (1.24)

and

P2(k) =

(
4

3
β +

4

7
β2

)
PR(k) (1.25)

where PR(k) is the real-space power spectrum and β = Ω0.6
m /bg. The quantity bg is

the galaxy bias, which runs between 0.922−1.358. Distribution of galaxies velocities

is given by velocity dispersion, which is given as [82]

σv(M) = αv

(
GM

2r200

)1/2

(1.26)

For αv = 1, this corresponds to the velocity dispersion for a singular isothermal

sphere. The quantity r200 is the radius of a region of space within which the average

density is 200 times the critical density of the universe; it is further discussed in

§ 2.3.2.2. The mass contained within r200 is called M200; the number of galaxies

within r200 is N200; and the concentration of mass within r200 is c200.
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1.4.2 Galaxy Cluster Finding

Since the advent of CCD imaging, galaxy cluster-finding is done by using a

computing algorithm based on some known properties of galaxy clusters. These

properties might be the presence of a BCG and galaxies of similar color to that

BCG[33, 9, 38, 13, 73]; it might be an overdensity in a local region of space as found

in a Voronoi Tessellation [79]; it might be evidence of the Sunyaev-Zeldovich effect in

the cosmic microwave background (see § 1.5.1) [94, 69, 40]. Once a cluster is found

it is necessary to identify which galaxies are cluster members and which are simply

along the line of sight and are really either in front of or behind the cluster. Such

a determination can be done by measuring the redshift. Redshift is proportional to

distance, and so if a galaxy is at similar redshift to the other galaxies in the cluster,

then we can conclude it is a cluster member. Measurement of the redshift can be

done using spectroscopy, measuring the spectrum of each of the galaxies believed

to be in the cluster. However, spectroscopy is observationally expensive, requiring

many hours of observing time to measure redshifts for all cluster galaxies.

Thus other methods are used to decide if galaxies are cluster members or not,

including the red sequence method [33]. The red sequence method considers the

fact that most galaxies in a cluster formed at about the same time and will be at

similar evolutionary stages. Thus most galaxies in a cluster would be expected to

have similar colors.

Galaxy cluster catalogs are described in terms of cluster purity and completeness.

Purity describes what fraction of the objects in the catalog are actually clusters while

completeness describes the fraction of existent clusters within defined redshift and

magnitude limits that were found. In other words, purity tells us about how many
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non-cluster interlopers exist in our cluster sample and completeness tells us how

many clusters we missed.

1.5 Galaxy Cluster Cosmology

1.5.1 Introduction to Cluster Cosmology

Observational cosmology can be done using a number of probes, including Type

Ia supernovae, baryon acoustic oscillations, cosmic shear, cosmic microwave back-

ground, galaxy clusters and more. Each probe has advantages and limitations asso-

ciated with it. Galaxy clusters have the advantage that measuring their distribution

in space and time tracks both the distribution of mass (related to ΩM) and the rate

of clustering in the universe (related to ΩΛ). However one limitation to cluster cos-

mology is that to constrain cosmology with clusters it is necessary to understand

the mass distribution of galaxy clusters. That is, we need to know the masses of

the clusters we are studying. This mass distribution is called the mass function

and describes the number of halos as a function of mass and redshift, n(M, z). The

general form of the mass function is [3]

dn

dlnM
=
ρm
M

[
dlnσ

dlnM

]
f(σ) (1.27)

In Eq. 1.27, ρm = Ωmρcrit and f(σ) is a model-dependent function of the filtered

perturbation spectrum [3]. Press-Schechter theory gives a form of Eq. 1.27 as [26]:

dn(M, z)

dM
=

√
2

π

ρmδc
3M2σ

e−δ
2
c/2σ

2

[
−R
σ

dσ

dR

]
(1.28)
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Here δc is the critical overdensity above which objects collapse into gravitationally

bound structures, σ is the RMS of the smoothed density field, and M is the total

mass contained within a volume of space of radius R. Note that the resultant number

density function will be a function of M , the cluster mass as well as redshift, z. In

order to constrain the mass of galaxy clusters, it is necessary to find some way

to determine cluster mass. There are four main ways to determine cluster mass:

using x-ray temperatures, Sunyaev-Zeldovich distortion, optical masses and weak

gravitational lensing [26].

The x-ray temperature method can be used by studying the hot intracluster

medium (ICM) in a galaxy cluster. The temperature of the gas can be determined

by finding the cutoff frequency of the x-ray radiation emitted. Then the temperature

can be related to the mass of the cluster. Allen et al. (2011) give the formula for

x-ray masses as

M(r) = − rkT

Gµmp

[
d lnne
d ln r

+
d lnT

d ln r

]
(1.29)

where M(r) is the mass within radius r, T (r) is the temperature of the ICM, ne(r)

is the electron density, k is Boltzmann’s constant and µmp is the mean molecular

weight [3]. G is Newton’s gravitational constant. Sunyaev-Zeldovich distortion

tracks how photons from the CMB interact with the intracluster gas. CMB photons

scatter off electrons in the hot gas through inverse Compton scattering. This causes

a bias in frequency because the low-energy CMB photons gain energy from the hot

electrons in the gas. The distortion is measured as a lack of photons at low energy

and an excess of photons at higher energy. The amplitude of the distortion can be

related to cluster mass. Optical masses can be found by counting galaxies using
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imaging and finding galaxy velocity dispersion using spectroscopy. Optical mass can

be stated as

M(r) = −rσ
2
r

G

[
d lnσ2

r

d ln r
+
d ln ν

d ln r
+ 2β

]
(1.30)

where ν(r) is the galaxy number density, σr(r) is the 3-dimensional velocity disper-

sion and β is the velocity anisotropy parameter [3]. Weak lensing is a method

of mass determination that is independent of gas temperature. Rather it depends

on how the mass of the cluster causes path changes in photons traveling from more

distant objects. Weak lensing will be discussed at greater length in § 1.7.

1.5.2 Examples of Cluster Cosmology

Rozo et al. (2010) [71] describe using the maxBCG cluster catalog found from

the Sloan Digital Sky Survey to put constraints on the cosmological parameters ΩM

and σ8 (see Figure 2.7). They do this by finding cluster abundances (the number of

clusters in each richness and redshift bin) and by finding cluster masses using weak

lensing [47]. The expected total number of clusters in the maxBCG catalog is given

as:

〈N〉 =

∫
dM dz

dn

dM

dV

dz
〈ψ|M〉 〈φ|z〉 (1.31)

The function dn is given by an expression like Eq. 1.28 and dV/dz is the co-moving

volume per unit redshift. < ψ|M > is the probability that a halo of mass M

falls within the richness bin defined by ψ [71]. < φ|z > is the probability that

a halo at redshift z falls within the redshift bin defined by φ. Combining their

results with Wilkinson Microwave Anisotropy Probe Year 5 cosmology they obtain

σ8 = 0.807± 0.020 and ΩM = 0.265± 0.016 (one-sigma errors).
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Figure 1.3: Figure 5 from Rozo et al. (2010) [71]. These are 1 and 2σ constraints
on σ8 and ΩM from maxBCG clusters and WMAP Year 5 cosmology.

Vikhlinin et al. (2009) [85] present Chandra Space Telescope observations of

86 galaxy clusters found by ROSAT, 37 clusters at < z >= 0.55 and 49 clusters

at z ≈ 0.05. These observations allow improved determinations of cluster mass

functions at low and high redshift. These data allow constraints on cosmological

parameters, including w, ΩM , and σ8. They find w0 = −1.14 ± 0.21, ΩMh =

0.184± 0.035 and σ8 = 0.803± 0.0105. In Figure 1.4 we show their Figure 3 which

shows constraints on ΩMh and σ8 derived from their cluster analyses. In Figure

1.5 we show their Figure 2 which shows the derived cluster mass functions fit with

theoretical curves based on different cosmologies. The left plot uses ΩΛ = 0.75

while the right plot uses ΩΛ = 0. It is evident that the left plot is a much better

fit, suggesting that the standard cosmology of a non-zero ΩΛ is correct. Vikhlinin

et al. also show constraints on cosmological parameters related to dark energy, w0

(w at the present time) and ΩΛ at the present time, which they call ΩX . In Figure
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Figure 1.4: Constraints on the σ8 and ΩM parameters in a flat ΛCDM cosmology
from the total (both low- and high-redshift) cluster sample from Vikhlinin et al.
(2009) [85]. The inner shaded region represents 1σ and the outer contour is 2σ. The
dashed contour shows how the 1σ region would be changed if the cluster mass is
changed by the scale of the systematic errors (≈ 9%).
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Figure 1.5: Cluster mass functions for different cosmologies from Vikhlinin et al.
(2009) [85]. The left side shows the measured data along with the theoretical pre-
dictions for ΩM = 0.25 and ΩΛ = 0.75. The right side shows the same thing for
ΩM = 0.25 and ΩΛ = 0.

1.6 we present their Figure 10, which shows constraints on these two parameters

found from multiple cosmological methods. BAO is baryon acoustic oscillations,

SN Ia is Type Ia supernovae and WMAP is the Wilkinson Microwave Anisotropy

Probe space-based cosmic microwave background experiment. The inner red regions

include their cluster cosmology. With all of these probes combined, they find w0 =

−0.991± 0.045± 0.04systematic and ΩX = 0.740± 0.012.

Finally, Zu et al. (2014) [99] use weak gravitational lensing (see § 1.6) around

maxBCG clusters (see § 2.3.1) to put constraints on σ8 and ΩM . Combining their

results with WMAP7 cosmology they find ΩM = 0.298±0.020 and σ8 = 0.831±0.020.

In Figure 1.7 we present their Figure 9 in which they plot 1σ and 2σ constraints on

these two parameters and also plot the combination of their analysis and WMAP7.
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Figure 1.6: Constraints on dark energy parameters from supernovae, baryon acoustic
oscillations, cosmic microwave background (WMAP) and galaxy clusters. This is
Figure 10 from Vikhlinin et al. (2009) [85].
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Figure 1.7: Constraints on σ8 and ΩM from Zu et al. (2014) [99]. The largest brown
areas are 1 and 2σ constraints from maxBCG clusters and weak lensing. The smaller
reddish areas are from WMAP7. The smallest blue areas are combined constraints.

To conclude, we see that cosmology can be well constrained by analyses of galaxy

clusters combined with some method of determining cluster mass. In Chapter 4 we

present our own relations that relate cluster mass to cluster richness, relations that

will improve future cosmological measurements at higher redshift. These relations

are based on measurements of mass using weak gravitational lensing, which is dis-

cussed in the next section.

1.6 Gravitational Lensing

Gravitational lensing is the deflection of light by mass. The theory of Gen-

eral Relativity predicts that all objects will follow geodesics as they travel through

the universe; photons, traveling at the speed of light, follow null geodesics. These
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geodesics are determined by the curvature of the universe in the path of the photons.

Large concentrations of mass, like galaxy clusters, cause significant curvature, thus

deflecting the photons significantly from their original paths. There are three major

types of gravitational lensing: strong lensing, weak lensing and microlensing.

Strong lensing is a significant bending of light from a distant object, large enough

that the resultant image can be tens of arcseconds across. (An arcsecond is 1
3600

of

a degree). This occurs when light from a distant object passes near to a massive

object and then follows a straight line path to the observer. Strong lensing is what we

observe when we see extended arcs in galaxy clusters or multiple images of quasars.

When the distant object is an extended source (like a galaxy), we can see arcs or

rings of light as the light from different parts of the source is lensed to different

locations. When the distant object is a point source (like a quasar), we cannot see

an arc or ring, but can only see multiple images. Strong lensing is only observed

when the source galaxy (the one whose image is lensed) and the lensing galaxy (the

one that bends the light) are aligned with the line of sight of an observer. In Figure

1.8 we include a Hubble Space Telescope image of galaxy cluster Abell 1689 showing

multiple arcs produced by strong gravitational lensing.

Weak lensing is a more subtle bending of light from distant objects. (In Section

1.7 we will define the distinction between strong and weak lensing more rigorously.)

Weak lensing cannot be observed directly in an image, but rather is a statistical

effect which is only observed after analysis of the shapes of many galaxies. Thus

weak lensing can be somewhat more challenging than strong lensing to observe, but

weak lensing has the advantage that it is not dependent on a chance alignment of

two objects, as strong lensing is. In Figure 1.9 we present a cartoon showing a field

of background galaxies with no lensing (left) and with tangential shear (see § 1.7.3)
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Figure 1.8: An image of galaxy cluster Abell 1689 showing arcs produced by strong
gravitational lensing [61].
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Figure 1.9: A cartoon showing a field of source galaxies with no weak lensing (left)
and with tangential shear produced by weak lensing (right).

produced by weak lensing (right). Of course this would not be visible in an image,

but rather has the effect shown in extreme form to demonstrate what is occurring.

Microlensing is the bending of light by a much less massive object, often by

a single star. Because the lensing effect in microlensing is so small, on the order

of microarcseconds, neither arcs nor changes in ellipticity are observed. Rather,

microlensing is observed as a fluctuation in the luminosity of an object due to

magnification from lensing. What is observed is a light curve that varies somewhat

like a variable star or an eclipsing binary system, but with characteristics in the light

curve that identify an event as microlensing. Microlensing has proven very useful in

searches for extrasolar planets, and several exoplanet searches have used primarily

this technique.
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Figure 1.10: A sketch of a sample lensing system showing the basic parameters
associated with lensing analysis.

1.7 Gravitational Lensing Theory

1.7.1 Lensing by a Point Mass

The simplest case in lensing theory is the deflection of light by a mass that is

concentrated at a point. This is clearly an idealization, but for lensing by quasars or

stars, this is an important approximation. Later in Section 1.7.2 we discuss lensing

by an extended mass distribution. In Figure 1.10, we present the basic quantities

associated with lensing, α̂, β and θ. These are referred to respectively as actual

deflection angle, angle between lens and source and angle between lens and image.

The angular diameter distances in Figure 1.10 are dL, the distance from the observer

to the lens, dS, the distance from the observer to the source galaxy and dLS, the
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distance from the lens to the source galaxy. The actual deflection angle is related

to the reduced deflection angle by [19]

α̂ =
dS
dLS

α (1.32)

Also the angular distance θ is related to the linear distance from the lens called the

impact parameter b by

θ =
b

dL
(1.33)

It may be noted from the figure that the various angular distances are related by a

simple relation,

α = θ − β (1.34)

This is called the lens equation. We can find the actual deflection angle by taking

the gradient of the gravitational potential. The result for a point mass is

α̂ =
4GM

c2b
(1.35)

where G is Newton’s gravitational constant, M is the mass of the lens, c is the speed

of light and b is the impact parameter, the distance from the photon to the lens at

closest approach. Combining this with the lens equation (Equation 1.34 we can say

that

β = θ − dLS
dSdL

4GM

c2θ
(1.36)

In the special case where the source and lens are aligned, then β = 0 and then θ has

a special value, called the Einstein radius:

θE =

√
4GM

c2

dLS
dLdS

(1.37)
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The Einstein radius is a measure of the size of a gravitational lens even in situations

when the source and lens are not perfectly aligned. For strong lensing, the Einstein

radius is tens of arcseconds, while with microlensing the Einstein radius is on the

order of milliarcseconds, far too small to be directly observed. If we solve for the

mass in Equation 1.37 we find that the mass contained within the Einstein radius

of a gravitational lens is

ME =

√
c2

4G

dLdS
dLS

θE
2 (1.38)

Equation 1.34 can be rewritten in terms of θE as

β = θ − θ2
E

θ
(1.39)

This is a quadratic equation which has two solutions:

θ± =
1

2

(
β ±

√
β2 + 4θ2

E

)
(1.40)

Thus a point mass will almost always produce two images. As the source comes

closer to the optic axis of the lens, the two images get closer to merging together

into a single Einstein ring.

One of the properties of gravitational lenses is that they cause magnification,

meaning that the image of a distant galaxy can appear brighter than would nor-

mally occur at a certain distance. Magnification arises because gravitational light

deflection preserves surface brightness (by Liouville’s theorem). The magnification

is related to a change in apparent size of the source galaxy by [62]

magnification =
image area

source area
(1.41)
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For a circularly symmetric lens magnification µ is given by [62]:

µ =
θ

β

dθ

dβ
(1.42)

which for a point mass becomes

µ± =

[
1−

(
θE
θ±

)4
]−1

(1.43)

1.7.2 Lensing by an Extended Mass Distribution

For extended mass distributions like galaxies and galaxy clusters we need to

consider not just the amount of mass M but also its distribution in space. The

gravitational lensing observed will depend on the mass present in the lensing object

and its distribution. Since most of the mass in a galaxy or galaxy cluster is contained

in dark matter, these are dark matter mass profiles. Following classical mechanics,

one of the most important quantities to specify for a mass distribution is the mass

density ρ(r). Most directly applicable to lensing is the related quantity Σ(r) which

is related to ρ(r) by

Σ(r) =

∫
ρ(~ξ, z)dz (1.44)

where ~ξ is a two dimensional vector in the lens plane [62] and z is distance perpen-

dicular to the lens plane. Σcrit is the critical surface mass density, which is

Σcrit =
c2dS

4πGdLdLS
(1.45)

When Σ = Σcrit, then β = 0 and θ = α so we see an Einstein ring.
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Figure 1.11: A demonstration of the lensing arcs that would be produced by any of
several source galaxy positions with respect to the caustics [35].

A cartoon of lensing by an extended mass distribution is shown in Figure 1.11

[35]. This figure shows a distant source galaxy in the source plane in one of several

positions. It also shows a less distant elliptical mass distribution in the image plane

with one of several corresponding strong lensing arcs. Thus in this figure, the top

row represents the source plane (where the more distant source galaxy is) and the

bottom row represents the image plane (where the less distant galaxy cluster is). The

elliptical structures in the image plane are called critical curves and the structures

in the source plane are called caustics. The critical curves are the set of points

where the magnification of an image would approach infinity. These curves mapped

back into the source plane are the caustics. For an elliptical mass distribution the

central caustic appears as this astroid shape. When an object crosses the caustics,

the number of images changes.



30

We will utilize several mass distributions:

1. The singular isothermal sphere (SIS)

2. The singular isothermal ellipsoid (SIE)

3. The NFW profile

4. The pseudo-Jaffe profile

1.7.2.1 SIS

Binney and Tremaine [12] give an equation for the mass distribution of a galaxy,

assuming the galaxy can be treated as a spherically symmetric system of stars

behaving like an ideal gas at equilibrium [53]. This is their equation 4-115b:

d

dr

(
r2d ln ρ

dr

)
= −Gm

kBT
4πr2ρ (1.46)

where r is distance from the center, ρ is the density, m is the mass per particle, kB

is Boltzmann’s constant and T is the temperature. The simplest solution to this

equation is the singular isothermal sphere, which is a mass distribution defined as

[53]:

ρ(r) =
σ2
v

2πGr2
(1.47)

where σv is the velocity dispersion in the lensing region. Singular means that this

expression goes to infinity at r = 0 and isothermal means that the the system is at

dynamic equilibrium. If we express the three-dimensional distribution instead as a
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surface mass density, we obtain this equation for surface mass density as a function

of position in an SIS:

Σ(r) =
σ2
v

2G

1

r
(1.48)

1.7.2.2 SIE

A slightly more complex model takes account of the fact that the central lensing

galaxy is often elliptical. We can obtain an expression for the surface mass density

of a singular isothermal ellipsoid by replacing the term r with the square root of the

product of the major (a) and minor (b) axes
√
ab. We then obtain [53]:

Σ(r) =

√
a
b
σ2
v

2G

1

a
(1.49)

1.7.2.3 NFW

The Navarro-Frenk-White mass profile [63] was developed using N-body simula-

tions of dissipationless dark matter particles. The NFW profile has proven to be a

very good fit to the matter distribution in a dark matter halo. The NFW profile is:

ρ(r) =
δcρcrit

(r/rs)(1 + r/rs)2
(1.50)

In this equation, ρcrit is the critical density of the universe, δc is the characteristic

overdensity of the halo, r is the distance from the center of the halo and rs is the

scale radius. The scale radius is the radius at which the decrease in density as a
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function of radius changes from a 1/r relation to a 1/r3 relation. The critical density,

ρcrit, is defined as

ρcrit(z) =
3H(z)2

8πG
(1.51)

where H(z) is the Hubble parameter (see Equation 1.1) and G is Newton’s gravita-

tional constant. The characteristic overdensity of the halo is

δc =
200

3

c3

ln(1 + c)− c/(1 + c)
(1.52)

In this equation, c is the concentration parameter, which is a measure of dark matter

halo density in the inner regions of the cluster. Finally, scale radius is defined as

rs = r∆/c where r∆ is the virial radius, the radius of a spherical region of space

within which the density of the universe is ∆ρcrit.

What value is used for ∆ varies among authors. In this work we will use ∆ = 200,

so r200 is the radius of a region of space within which the average density is 200ρcrit.

Then the total mass contained within this region is called M200 and the total number

of galaxies in this region is N200.

Finally the surface mass density for an NFW profile can be found by solving Eq.

1.44. Wright and Brainerd (2000) [95] present the solution as

ΣNFW (x) =



2rsδcρcrit
(x2−1)

[
1− 2√

1−x2 arctanh
√

1−x
1+x x < 1

2rsδcρcrit
3 x = 1

2rsδcρcrit
(x2−1

[
1− 2√

x2−1
arctan

√
x−1
1+x x > 1
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where x = r/rs.

1.7.2.4 Pseudo-Jaffe

The Jaffe profile (proposed by Walter Jaffe) is [45]

ρ(r) = C
1

r2

(
1

a+ r

)2

(1.54)

where C is a constant and a is the break radius, which describes how quickly mass

density decreases with radius. The Jaffe profile was proposed because it can repro-

duce the de Vaucouleurs profile, which is a description of how luminosity changes as

a function of radius in many galaxies. The de Vaucouleurs profile is (see also § 5.2)

I(r) = Ie exp

[
−7.669

[(
r

re

)1/4

− 1

]]
(1.55)

where I is the observed light intensity, r is radius, re is the radius of an isophote

containing half the light and Ie is the intensity at re. The pseudo-Jaffe profile is

produced by adding a core radius, s [49]:

ρ(r) = C
1

(r2 + s2)

1

(r2 + a2)
(1.56)

The surface mass density of the pseudo-Jaffe profile is [49]

Σ(ξ) =
θE
2

[
1√

s2 + ξ2
− 1√

a2 + ξ2

]
(1.57)

where ξ2 = x2 + y2

q2
, x and y are image plane coordinates and q is the projected axis

ratio.
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1.7.3 Convergence and Shear

The image of the source object is changed by its interaction with the lensing

mass. How the image changes is described by the parameters called convergence

and shear . Lensing is considered strong lensing when κ ≈ 1. When kappa and

γ are � 1 then the lensing is considered weak lensing. Conceptually, convergence

affects the size of the image but not the shape. Conversely, shear affects the shape

of the image but not the size (see Figure 1.12). Typically an observed image has

undergone a combination of convergence and shear. Note that convergence cannot

be directly measured in weak lensing since galaxies may come in any range of sizes,

so a change in galaxy size is not detectable. However shear can be measured by

looking for a large number of galaxies that tend to a particular distortion of shape

[41].

Convergence, κ, is the ratio of the surface mass density at a point to critical

surface mass density:

κ(θ) =
Σ(θ)

Σcrit

(1.58)

where θ describes position in the lens plane. Convergence can also be defined as [95]

κ(θ) =
1

2

(
∂2ψ

∂θ2
1

+
∂2Ψ

∂θ2
2

)
(1.59)

where θ1 and θ2 are lens plane coordinates (effectively x and y in the lens plane).

In Equation 1.59 ψ is the lensing potential, defined as

ψ(~θ) =
dLS
dLdS

2

c2

∫
Φ(dL~θ, z)dz) (1.60)



35

Figure 1.12: A comparison of the effects of convergence and shear on an image of
an imagined spherical galaxy.

where c is the speed of light and Φ is the gravitational potential. Φ is a function of

the mass distribution, and will depend on what mass model is used.

Shear is defined as a complex number:

γ = γ1 + iγ2 (1.61)

As usual for complex numbers, the magnitude of the shear is given by

γ =
√
γ1

2 + γ2
2 (1.62)
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and the two components of shear can be given in terms of the magnitude and a

phase angle φ:

γ1 = γcos(2φ)

γ2 = γsin(2φ)
(1.63)

In terms of the lensing potential, the components of shear are equal to [60]

γ1 = 1
2

(
δ2Ψ
δθ21
− δ2Ψ

δθ22

)
γ2 = δ2Ψ

δθ1δθ2

(1.64)

We seek to measure a change in shape of galaxies between the source (β) plane

and the lens or image (θ) plane [41]. The mapping between source plane and the

image plane is described by the lensing Jacobian. The lensing Jacobian is valid for

all forms of lensing, but in weak lensing the Jacobian has the property that it is

almost equal to the unit matrix, corresponding to very small Einstein radii. The

Jacobian can be written as

A =
δβ

δθ
=

 1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 (1.65)

Thus a source galaxy that is circular and of unit radius will, after lensing involving

convergence and shear, become an ellipse with major (a) and minor (b) axes [62]:

a = (1− κ− γ)−1

b = (1− κ+ γ)−1
(1.66)

The inverse mapping from the source plane to the image plane is given by the

magnification tensor, M, which is the inverse of A. The scalar magnification µ
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describes the change in brightness of the galaxy in the lens plane. The magnification

of the source galaxy is given by

µ = detM =
1

detA
=

1

[(1− κ)2 − γ2]
(1.67)

If the coordinates of the source galaxy position are (xs, ys) and the coordinates of

the image position are (x, y), then the Jacobian can be written as

A =


δxs
δx

δxs
δy

δys
δx

δys
δy

 (1.68)

The actual shape of a galaxy in an image is quantified by the ellipticity, e. There

are several equivalent definitions of ellipticity that are used in lensing. They are [50]

e =
1− (b/a)2

1 + (b/a)2
(1.69)

or

e =
1− (b/a)

1 + b/a)
(1.70)

where b is the minor axis and a is the major axis. We utilize the first definition in our

analyses. Ellipticity has two components, e1 and e2, which are added in quadrature

to give e. The components of ellipticity can be related to the second order (or

quadrupole) moments of an image. First order moments describe the centroid of an

object, while second order moments describe shape. First order moments can be

given as [41]

x =
∫
I(x, y)xdxdy

y =
∫
I(x, y)ydxdy

(1.71)
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for observed flux I(x, y) and positions x and y. Quadrupole moments are defined

as [26]

qij ≡ d2θIobs(θ)θiθj (1.72)

where Iobs is the observed flux. For dimensions x and y we obtain

qxx =

∫
x2w(x, y)I(x, y)dxdy∫
w(x, y)I(x, y)dxdy

(1.73)

qyy =

∫
y2w(x, y)I(x, y)dxdy∫
w(x, y)I(x, y)dxdy

(1.74)

qxy =

∫
xyw(x, y)I(x, y)dxdy∫
w(x, y)I(x, y)dxdy

(1.75)

In this equation I(x, y) is the number of pixel counts (related to object flux) as a

function of position. The quantity w(x, y) is a Gaussian weighting function [17].

Then e1 and e2 are defined as

e1 = qxx−qyy
qxx+qyy

e2 = 2qxy
qxx+qyy

(1.76)

Note that a circular image has qxx = qyy and qxy = 0 [26]. Finally, we introduce

tangential (eT ) and cross (eX) ellipticity components, which are defined as

eT = e1 cos(2φ)− e2 sin(2φ)

eX = e1 sin(2φ) + e2 cos(2φ)
(1.77)

The angle φ is the position angle, which is defined west of north. Mathematically φ

is defined by

φ = arctan

[
−(RAgal −RABCG)× cos(DECBCG)

DECgal −DECBCG

]
(1.78)
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RAgal and DECgal are the coordinates of one of the many source galaxies and

RABCG and DECBCG are the coordinates of the BCG, taken as the center of the

cluster. Ellipticity is related to shear by a factor R called responsivity by

γ = e/R (1.79)

Responsivity is a multiplicative factor that describes how a particular observing site

and system will produce changes in ellipticity in response to a particular shear; it is

one method of estimating the effect of the PSF on the shear (see § 1.7.4). So finally

we have tangential and cross (or orthotangential) shear:

γT =
e1 cos(2φ)− e2 sin(2φ)

R
(1.80)

γX =
e1 sin(2φ) + e2 cos(2φ)

R
(1.81)

Tangential shear is produced by gravitational lensing. Orthotangential shear is not.

Thus cross shear can be used as a check on measurements as if a lensing signal is

observed in cross shear, this is evidence of an error. This will be discussed at greater

length in Chapter 4.

1.7.4 Decoupling Shear from Systematics

Finding the actual change of shape of a number of source galaxies is not as simple

as measuring the shapes and calculating shear. There are a number of systematics

that must be considered before shapes can be measured. In Figure 1.13 Heymanns

(2002) shows what these systematics are. For a galaxy, (1) long after light leaves the

galaxy, the light has its path changed by the gravitational field of a massive object
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Figure 1.13: A graphic from Heymanns (2002) [41] showing the effects on galaxy
shape.

(weak lensing shear). Then (2) the light is distorted by a point spread function

(PSF) caused by the atmosphere and the telescope. Then (3) the detector causes

pixelization of the image. Finally (4) there is also noise in the image, and so the

signal to noise (S/N) ratio must be considered.

For stars, similar systematics occur. However it is somewhat simpler because

stars are point sources. As shown the bottom left of Figure 1.13 a perfectly resolved

star is a point of light. However once the point source is convolved with the PSF

of the atmosphere and telescope, it is a disk of finite size, usually described by a

Moffat profile (see Equation 5.4). Then like before the image is pixelated and there

is some amount of noise.

Overall, the steps from taking data at a telescope to measuring mass of a set of

clusters using weak lensing are [41]:
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1. Take data

2. Reduce data

3. Detect objects in the data

4. Separate stars and galaxies

5. Model the PSF using the stars

6. Remove the effect of the PSF on the galaxy image

7. Measure the shear from the PSF corrected image

8. Fit the shear profile to a mass model

Data reduction involves a number of steps, including overscan subtraction, bias sub-

traction, flat-fielding, bad pixel masking and more. This is discussed in more detail

in § 3.3. Object detection can be done using several routines; one of the most pow-

erful is called SourceExtractor or SExtractor. This routine is described in § 3.3.2.

Star-galaxy separation is done by identifying some feature that distinguishes stars

from galaxies. In § 2.3.1 we describe doing this separation by finding magnitudes

measured in different apertures. This can also be done by using the SExtractor

parameters CLASS STAR or SPREAD MODEL. Modeling the PSF can be done by

taking bright stars (we used 18 ≤ i ≤ 20) and finding their second order moments.

Removing the effect of the PSF involves several steps. One method is called the

Kaiser-Squires-Broadhurst (KSB) method; it deconvolves the PSF from the shear

by subtracting the PSF from the measured moments in Fourier space. KSB uses

the assumption that the PSF can be described by a small but highly anisotropic

distortion convolved with a large circularly symmetric seeing disk [41, 48]. The

Hirata-Seljak method [43] also removes the PSF from the shear, but takes account
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of the fact that the PSF is not Gaussian. Hirata-Seljak also corrects for shear se-

lection bias. After the effect of the PSF is removed, the shear is measured for each

source galaxy-cluster pair using Equation 1.80 and then the shear is averaged for

a particular radius bin. Finally the shear signal is fit to a mass model (we use an

NFW profile) by minimizing the χ2 [17]:

χ2 =
N∑
i=1

[γi − γNFW (ri;M200; c200)]2

σ2
γ

(1.82)

Here γi is the shear measured in a particular radius bin (e.g. between radius of 0.1

and 0.2 megaparsecs from the BCG) and γNFW is the shear predicted by the NFW

model. The parameter σ2
γ is the standard deviation of the galaxy shears in that bin.

This will be described in more detail in Chapter 4. But first we consider strong

lensing observed in 10 galaxy clusters.



CHAPTER 2

A CONFIRMATION OF THE OVERCONCENTRATION

PROBLEM

Philosophy is written in this grand book the universe, which stands continually

open to our gaze.–Galileo Galilei

2.1 Introduction

In this chapter, we describe studies of ten galaxy clusters that exhibit strong

gravitational lensing. All of these systems were found in searches conducted by the

Sloan Bright Arcs Survey (SBAS). These clusters range in redshift from 0.2595 −

0.5580 and the gravitationally lensed source galaxies range in range from 0.6596 −

2.9437.

In § 2.2 we describe how the clusters were found and how we took follow-up

data on them. In § 2.3 we describe how we measured the properties of the clusters,

including measurements of richness, mass, velocity dispersion and concentration.

In § 2.4 we describe measurements of the properties of the strong lensing systems,

including Einstein radius, lens mass and lens velocity dispersion. Finally in § 2.5

we describe analysis of these measurements including a determination that some of

our clusters are more concentrated than would be expected.
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Table 2.1: The coordinates and redshifts of the ten systems in this paper. Note
that source redshift has not been determined for SDSS J1439+3250 so we present a
range of possible source redshifts.

System R.A. (deg) Decl. (deg) Lens z Source z
SDSS J0900+2234 135.01128 22.567767 0.4890 2.0325
SDSS J0901+1814 135.34312 18.242326 0.3459 2.2558
SDSS J0957+0509 149.41318 5.1589174 0.4469 1.8230
SDSS J1038+4849 159.67974 48.821613 0.4256 0.966
SDSS J1209+2640 182.34866 26.679633 0.5580 1.018
SDSS J1318+3942 199.54798 39.707469 0.4751 2.9437
SDSS J1343+4155 205.88702 41.917659 0.4135 2.0927
SDSS J1439+3250 219.98542 32.840162 0.4176 1.0-2.5
SDSS J1511+4713 227.82802 47.227949 0.4517 0.985
SDSS J1537+6556 234.30478 65.939313 0.2595 0.6596

2.2 The Sample of Strong Lenses

The redshifts of all ten of the clusters are given in Table 2.1 along with their

celestial coordinates (right ascension and declination). All of these systems are

among the 19 strong lenses so far found and confirmed by the SBAS. The SBAS is

a collaboration of scientists at Fermilab that has searched the data from the Sloan

Digital Sky Survey (SDSS) to find strong lensing systems [2, 58, 25, 55, 56, 91].

The SDSS is an endeavour, begun in 2000, to map more than 25% of the sky

and to obtain spectra for more than one million objects. The SBAS searched the

SDSS data using two search algorithms, searching for: (1) blue objects that were

within 10′′ of luminous red galaxies (LRGs) [54] and (2) interacting galaxies [1, 2].

Blue objects surrounding red galaxies could be lensing systems as the more distant

galaxies are often galaxies with high rates of star formation, making them appear

blue. Galaxy clusters, often associated with strong lensing, are typically populated
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by red elliptical galaxies. Objects classified as interacting galaxies can actually be

a lensing arc surrounding a lensing galaxy, thus why the second method searched

for these objects. Four of our systems were found using the first method and six of

them were found using the second method.

2.2.1 Details on the Data

The SBAS took new images of the ten lensing systems at Kitt Peak National Ob-

servatory, using the 3.5-m Wisconsin-Indiana-Yale-NOAO (WIYN) telescope. These

observations were conducted on February 26 and 27, 2009. Images were taken using

the Mini-Mosaic camera, which uses two CCDs, each of dimensions 2048 × 4096

pixels. Images were taken using three filters, SDSS g, r and i filters. A collage of

color images of sections of these images showing the strong lenses is provided in

Figure 2.1.

The group took new images in order to obtain data with improved seeing, finer

pixel scale and fainter magnitude limits than the images available from the SDSS.

Astronomical seeing describes the image resolution at a particular observatory on

a particular night. Seeing can be measured by analyzing the point spread function

(PSF) of a star, where the PSF describes how the object’s magnitude changes as a

function of radius. Typically seeing is given as the full-width half-max (FWHM) of

the PSF. Pixel scale describes how much of the sky is fit onto a single pixel in an

image. The smaller the pixel scale, the better small details will be seen in an image.

For example, a pixel scale of 0.2′′ would mean that 0.2′′ of the sky fits on a single

pixel and it would take 18, 000 pixels to cover one full degree of sky. Magnitude limit

describes the faintest objects that can be well observed in an image. Magnitude
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Figure 2.1: A collage of the ten lensing systems. The bottom row is (left to right):
SDSS J0901+1814, SDSS J1038+4849, SDSS J0900+2234, SDSS J1209+2640 and
SDSS J0957+0509. The top row is (left to right): SDSS J1511+4713, SDSS
J1537+6556, SDSS J1439+3250, SDSS J1318+3942 and SDSS J1343+4155. These
images were produced by combining the stacked images in g, r and i filters. Each
image has dimensions of 49′′ × 49′′.

limits can be measured by plotting a histogram of magnitudes and observing when

the histogram begins to turn over from a maximum.

In the SDSS Data Release 7 (DR7), the median seeing is 1.4′′, the pixel scale is

0.396′′ and the magnitude limits are 22.2 in g and r filters and 21.3 in i-band. In our

data seeing ranged from 0.49′′ for SDSS J1318+3042 to 1.54′′ for SDSS J1209+2640.

Median seeing for our data was 0.74′′ for February 26 and 0.75′′ for February 27,

significantly better than SDSS seeing. Pixel scale for the Mini-Mosaic camera that

the group used at WIYN is 0.14′′, less than half that of the SDSS camera. Finally, we

measured magnitude limits for our data to be approximately 24 in g and r-band and

23 in i-band. For each data image, the exposure time was 450-s and two exposures

were taken for each field in each filter. Later the exposures were stacked, leading to

a total exposure time of 900-s (15 minutes) per field in each filter.
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The data were reduced using the NOAO Image Reduction and Analysis Facility

[83]. The data were flat-fielded using both dome flats taken on site and superflats

produced from data images. Cosmic rays were removed using the IRAF task LA-

Cosmic [84]. Next, the two images in each filter were WCS-corrected and stacked,

again in IRAF. Object magnitudes were measured in several measurement apertures

using SExtractor [11]. Finally, the instrumental magnitudes measured by SExtrac-

tor were converted to calibrated magnitudes. This was done by finding the model

magnitudes of stars in the SDSS DR7 Catalog Archive Server that also appeared

in the WIYN data and finding the offset in magnitudes in the g, r, and i bands.

The median offset in each filter for each field was then added to the SExtractor

magnitudes (again using MAG AUTO).

2.3 Galaxy Cluster Properties

2.3.1 Identifying Cluster Galaxies

We first sought to characterize richness of the clusters in terms of Ngals, the

number of cluster members within 1 h−1 Mpc of the BCG [37] by using the maxBCG

method. The maxBCG method [51] uses three primary features of galaxy clusters

to facilitate the detection of clusters in survey data. First, galaxies in a cluster

tend to be close together near the center and to become more separated from one

another toward the outskirts of the cluster. Second, galaxies in a cluster tend to

closely follow a sequence in a color-magnitude diagram; this is referred to as the

E/S0 ridgeline, where E and S0 refer to galaxy types in the Hubble classification.

Finally, galaxy clusters typically contain a central BCG, which is defined as the
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brightest galaxy in the cluster. In all of the clusters in our sample, one or two

BCGs can be seen near the center of the cluster surrounded by lensing arcs. While

the dark matter halo dominates the lensing potential, the BCG contributes to the

lensing potential as well since it comprises a large fraction of the baryonic matter in

the cluster. Typically the BCG would be expected to have a color similar to that of

the other cluster galaxies and it is also expected to be almost at rest with respect

to the halo of the cluster.

Considering these properties of cluster galaxies, we searched the SExtractor cat-

alog files for objects that:

1. Were classified as galaxies, not stars

2. Were within 1 h−1 Mpc of the central BCG

3. Had the characteristic r − i color of the E/S0 ridgeline

4. Had the characteristic g − r color of the E/S0 ridgeline

5. Met a particular magnitude limit (0.4L*)

In order to separate galaxies from stars, we compared two different SExtractor

magnitudes, MAG AUTO and MAG APER. MAG AUTO is the flux measured above back-

ground in a variable-size elliptical aperture. MAG APER uses a circular aperture of

fixed size to determine magnitude; we used a diameter of 2.0′′. The difference

MAG APER − MAG AUTO (henceforth ∆m), can be used to identify the galaxies: stars

stand out from galaxies because stars typically have a nearly identical shape while

galaxies generally do not. Thus for stars the fixed aperture of MAG APER will mea-

sure a fairly constant fraction of the light that the variable aperture of MAG AUTO will

measure. Therefore, the difference between the measurements (∆m) will be mostly
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Figure 2.2: A sample plot of ∆m vs. i-band MAG AUTO for SDSS J1439+3250. Recall
that ∆m is 2′′ MAG APER−MAG AUTO. The horizontal red line is the star-galaxy cutoff
we used, meaning objects with ∆m≤0.11 were cut as stars.

constant for stars, but not for galaxies. We used this fact to find stars by plotting

∆m vs. MAG AUTO (see Figure 2.2). In this plot, stars will be found on a mostly

horizontal line of nearly constant ∆m value; this line is referred to as the stellar

locus.

We also tried using the SExtractor parameter CLASS STAR for star-galaxy sep-

aration by requiring 0 ≤ CLASS STAR ≤ 0.9 (1 is highly star-like and 0 is highly

galaxy-like in this parameter) and remeasuring Ngals with this requirement. We

chose this cutoff because when we plotted CLASS STAR against i-band magnitude

(MAG AUTO), we found a tight stellar sequence within 0.1 of CLASS STAR = 1. We

found that the mean difference in Ngals values was 0.3, which corresponds to a mean
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Figure 2.3: The r − i color-magnitude diagram for SDSS J1209+2640. The black
dots denote the galaxies, the red diamonds denote the cluster galaxies, the vertical
green line shows the value of 0.4L∗ and the horizontal violet dotted line represents
the red sequence r − i color. The objects plotted are galaxies within 1 h−1 Mpc of
the BCG.

percent difference of 1.7%. Thus we conclude that the ∆m cut method is equivalent

to using CLASS STAR.

In order to select galaxies that are members of the cluster, we used the red se-

quence method [33, 51]. This approach involves plotting a color-magnitude diagram

of the g− r and r− i colors of the galaxies vs. their i-band magnitude, looking for a

nearly horizontal line of galaxies of similar color. Galaxies in a cluster are at similar

redshifts and will be largely coeval, leading them to have similar colors. Thus the

galaxies that populate the red sequence are likely to be cluster members. For each

cluster we identified the g − r and r − i color of the red sequence on the plots. A

sample color-magnitude diagram is shown in Figure 2.3.
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We also used a second method to check our identification of the red sequence

color. For both g − r and r − i colors, we made a histogram of the colors of

the galaxies within 1 h−1 Mpc of the BCG and found the distribution near the red

sequence color we had previously identified. We then fit this section of the histogram

with a Gaussian profile and found the mean color of the red sequence galaxies.

Ultimately we used the first method (color-magnitude diagrams) to obtain a

reasonable range of values for the colors of the red sequence and we used the second

method (histograms) to determine final values for the colors. When we made color

cuts, we only allowed galaxies that were within 2σ of the r − i and g − r colors,

where σ was defined as:

σ =

√
(σintrinsic)

2 + (σcolor)
2 (2.1)

Here σintrinsic is the intrinsic scatter in the red sequence color in the absence of

measurement errors, which we took to be 0.06 for r− i and 0.05 for g− r [51]. σcolor

is the color measurement error found by adding the SExtractor aperture magnitude

measurement errors in quadrature.

Finally we cut any galaxies that had a magnitude dimmer than 0.4L∗, where L∗

is defined as the luminosity at which the luminosity function [74] changes from a

power law to an exponential relation. In the maxBCG algorithm 0.4L∗ is used as a

limiting magnitude [52], and so we adopt this as our magnitude limit as well. We

referred to a table of 0.4L∗ [5] as a function of z to make cuts, allowing only galaxies

brighter than 0.4L∗ in i-band. All values used for cluster galaxy cuts are provided

in Table 2.2.
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Table 2.2: A summary of the values of limits used for richness measurements. ∆m
is the magnitude measured in i-band in 2′′ MAG APER minus the magnitude in the
same band measured in MAG AUTO. ∆m was used for star-galaxy separation. The
g − r and r − i colors are based on measurements in the 2′′ aperture. Finally, the
magnitude at 0.4L∗ was found in the i-band.

System ∆m g-r color r-i color 0.4L* Magnitude
SDSS J0900+2234 0.56 1.83 0.73 21.20
SDSS J0901+1814 0.22 1.72 0.52 20.26
SDSS J0957+0509 0.15 1.78 0.71 21.26
SDSS J1038+4849 0.07 1.72 0.62 20.84
SDSS J1209+2640 0.34 1.79 0.93 21.59
SDSS J1318+3942 0.06 1.73 0.73 21.15
SDSS J1343+4155 0.16 1.75 0.54 20.71
SDSS J1439+3250 0.11 1.74 0.67 20.78
SDSS J1511+4713 0.17 1.78 0.75 20.97
SDSS J1537+6556 0.14 1.50 0.52 19.38

2.3.2 Cluster Properties

2.3.2.1 Area Corrections

We applied the four cuts described in § 2.3.1 to measure Ngals. However we found

that for several of the ten systems, regions of the cluster were not in the image. The

reason for this is that when we took the data, our primary focus was on the strong

lensing arcs, which were near the center in all of our images. In order to address this

problem and still obtain accurate values for Ngals, we extrapolated values for Ngals

in the area off the CCD. In order to do this, we divided the 1 h−1 Mpc aperture

into six annuli with constantly increasing radii, as shown in Figure 2.4.
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Figure 2.4: An image of SDSS J1038+4849, with a circular region of radius 1 h−1

Mpc centered on the BCG. We have divided the aperture into six annuli in order to
apply Equation 2.3 for area corrections.
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We assumed that the number of galaxies in each annulus should only be a func-

tion of radius; this would suggest that the number of galaxies per area should be a

constant in each annulus. Mathematically,

Ntotal

Non CCD

=
Aann

Aann on CCD
(2.2)

so

Ntotal = Non CCD

(
Aann

Aann on CCD

)
(2.3)

where Ntotal means the total number of galaxies in each annulus, Non CCD means

the number of galaxies actually found in the image in each annulus, Aann means the

area of the annulus and Aann on CCD means the area of the annulus that was on the

CCD.

We checked the accuracy of Equation 2.3 using the SDSS data. We measured

Ngals twice, once covering the full 1 h−1 Mpc (taking this as true Ngals) and once

covering only as much of the 1 h−1 Mpc as was on the CCD in the WIYN data. We

then used Equation 2.3 to predict the final values of Ngals based on the measurements

with the WIYN area cuts. Finally we compared the predicted values for Ngals to

the measured (true) values and found them to be similar. We plot the two sets of

Ngals against each other in Figure 2.5. Note that the points follow the y = x line

very closely, indicating that the measured and extrapolated values are quite similar

and suggesting that the richness extrapolation works well. The typical fractional

error in the extrapolated values is 0.06.
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Figure 2.5: This plot is a test of the accuracy of the Ngals extrapolation described in
Equation 2.3. Here we plot Ngals values measured in SDSS data, with the measured
values on the x-axis and the predicted values on the y-axis. The red line is the y = x
line. Since the data closely follow the y = x line, we conclude that the predictions
from the extrapolation are quite accurate.
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2.3.2.2 Richness Measurements

We next found the richness, N200 [37], the number of galaxies in a spherical

region within which the density was 200ρcrit, where ρcrit is the critical density of the

universe. The radius of this spherical region of space is termed r200. Hansen et al.

[37] give r200 as:

r200 = 0.156(Ngals)
0.6h−1Mpc (2.4)

We used the area-corrected values for Ngals when calculating r200. In order to find

N200 we again applied the four cuts discussed in § 2.3.1, this time using r200 as the

distance cut rather than 1 h−1 Mpc. Finally, once we found N200, we again applied

the area corrections using Equation 2.3.

We used the variable elliptical aperture of MAG AUTO and the circular 2′′ and 3′′

diameter apertures using MAG APER in order to determine object magnitudes and thus

colors. We used 2′′ and 3′′ because both were significantly larger than the seeing

FWHM, for which the median value was about 0.75′′. The differences in colors

measured in different apertures were usually small, on the order of 0.05 magnitudes,

but could be up to 0.2 magnitudes. Since identification of a cluster galaxy depends

on color, there was a resulting variation in richness values for different apertures. We

determined that the 2′′ aperture had the highest signal to noise by comparing the

measurement errors of the g− r and r− i colors to see in which aperture the errors

were typically lowest. We found that the 2′′ aperture typically had the lowest error

value; therefore we used the colors and thus richness values in the 2′′ aperture for

richness measurements. However, we considered the variation in richness values to

determine the error in richness: we took the standard deviation of the three values

for N200 for each cluster and used these values for the uncertainty in N200.
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2.3.2.3 Cluster Mass

We define M200 to be the mass contained within a spherical region of radius r200

[47]. An empirical relation between mass and richness is found in Johnston et al.

[47] using a large sample of maxBCG clusters from the SDSS:

M200(N200) = M200|20

(
N200

20

)αN
(2.5)

In this equation M200|20 = (8.8±0.4stat±1.1sys)×1013h−1M� and αN = 1.28±0.04.

Equation 2.5 was found empirically using data from the SDSS, using mean redshift

of z = 0.25.

The error in M200 values was considered in Rozo et al. [70]. In that paper, the

logarithmic scatter in mass at fixed richness is given as:

σlnM |N = 0.45+0.20
−0.18 (2.6)

We thus can approximate the uncertainty in the mass itself as:

∆M = 0.45M200 (2.7)

We also propagate error from the uncertainty in values of N200 through equation

2.5. Our final values for error on M200 were found by adding the uncertainty in the

mass and the propagated error in quadrature. The propagated fractional errors had

a median value of 0.13 while the scatter described by Equation 2.7 had a value of

0.45. The combined fractional errors had a median value of 0.47, with the scatter

in mass dominating the errors.
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2.3.2.4 Velocity Dispersion

Becker et al. [8] give an empirical relationship for velocity dispersion as a function

of richness found from redshifts of cluster members in the maxBCG cluster sample:

〈lnσv〉 = A+B ln
N200

25
(2.8)

The constants A and B are referred to as mean normalization and mean slope,

respectively. They are given as A = 6.17±0.04 and B = 0.436±0.015. Becker et al.

[8] also found a relation for the scatter, S, in the velocity dispersion. The scatter is

defined to be the standard deviation in lnσv:

S2 = C +D ln
N200

25
(2.9)

where C = 0.096 ± 0.014 and D = −0.0241 ± 0.0050. We used this relation to

calculate the errors on the velocity dispersion values, defining the errors as one

standard deviation. We also propagated the error on N200 through Equation 2.8

and added these errors in quadrature to the errors found from Equation 2.9. Again

the propagated errors are minimal: The median fractional error on the velocity

dispersions from the propagated error on N200 is 0.08, while the median fractional

error from Equation 2.9 is 0.31, leading to an overall median fractional error of 0.33.

2.3.2.5 Errors on Richness and Mass

In order to better constrain the error on our richness measurements, we also

measured colors and richnesses for the 10 systems using the SDSS data. We found
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Table 2.3: A comparison of Ngals values measured in different SExtractor apertures
and in SDSS data. These values for Ngals have not been area corrected with Eq.
2.3. For the SDSS values, any area which is not on the CCD in the WIYN data is
excluded from consideration. Note that for SDSS J1537+6556 much of the WIYN
area is outside the SDSS footprint, so the SDSS value is biased low.

System Ngals

(MAG AUTO)
Ngals

(2′′ MAG APER)
Ngals

(3′′ MAG APER)
Ngals(Sloan)

SDSS J0900+2234 23 28 29 56
SDSS J0901+1814 8 14 8 11
SDSS J0957+0509 15 28 26 63
SDSS J1038+4849 16 15 17 32
SDSS J1209+2640 85 101 98 190
SDSS J1318+3942 21 23 23 39
SDSS J1343+4155 26 25 32 46
SDSS J1439+3250 48 55 51 82
SDSS J1511+4713 22 29 29 54
SDSS J1537+6556 14 20 18 8

that richness values from the SDSS are typically much higher than those found in

this paper; the mean ratio of Ngals(SDSS) to Ngals(2
′′ MAG APER) is 1.75 (for WIYN

Ngals before area corrections, using only cluster area found both in WIYN and SDSS

data (see Table 2.3).

These differences apparently arise because there is a larger error in magnitudes

measured in the SDSS than in the data used here. This allows some objects to

be counted as cluster members in the SDSS that are not counted as cluster mem-

bers in the WIYN data. Note that in Figure 2.6, a color-color diagram for SDSS

J1318+3942, more cluster members are found in SDSS data, but those objects are

much more scattered in color-color space and many are not true cluster members.

On the other hand, fewer objects are found in the WIYN data, but these objects

form a much tighter red sequence and are more likely to be genuine cluster members.



60

Figure 2.6: A comparison of cluster members found in our data (2′′ MAG APER) and
in the SDSS data for SDSS J1318+3942. The larger blue circles represent cluster
members found in our data and the smaller violet diamonds are cluster members
found in the SDSS data. The smallest black circles are all galaxies within 1 h−1

Mpc of the BCG that are brighter than 0.4L∗ in our data but do not meet the color
cuts to be considered cluster members. The error bars represent 2σ, with σ defined
by Eq. 2.1. The solid lines mark the cluster red sequence colors for the WIYN data:
the vertical green line marks the g-r color and the horizontal red line marks the r-i
color.
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We also include Figure 2.7, in which we show the deviation of each cluster

galaxy’s color from the measured color of the E/S0 ridgeline; we plot this vs. SDSS

i-band magnitude for all ten clusters. We found g-r and r-i colors for objects consid-

ered to be cluster galaxies within 1 h−1 Mpc of the BCG in WIYN data and in SDSS

data and compared them to the characteristic red sequence colors of the respective

clusters. We also found the errors in colors for both sets of data using Equation 2.1

to find σ. We used magnitude errors reported by SExtractor for WIYN data and

errors on model magnitudes for SDSS data. The error bars shown represent 2σ. It

can be seen in Figure 2.7 that the differences between the measured color and the

cluster color are much larger in the SDSS data than in WIYN data but the errors

are larger for SDSS data as well. Due to these larger errors in SDSS data, there is

a higher likelihood that objects with larger color deviations will still be counted as

cluster members.

The differences in richness values between WIYN and SDSS data persist even at

bright magnitudes. We measured values for Ngals at an i-band magnitude of 19.38,

which is the value for 0.4L∗ corresponding to z = 0.25. We found that the mean

ratio of Ngals(SDSS) to Ngals(2
′′ MAG APER) is 1.63, meaning that SDSS values are

typically about 60% higher than WIYN values. Thus we find that in general for

these ten clusters richness values measured in our data do not closely match values

measured in the SDSS data.

However, since the mass-richness relation (Equation 2.5) is calibrated from SDSS

data, if we use WIYN richness values with this equation, we would expect the masses

to be biased to be too low. Therefore, we determined it would be necessary to scale

our measured richness values up to match SDSS values. To do that, we we first

found all objects that were counted as cluster galaxies (Ngals) only in WIYN (not

in SDSS) and then found the opposite, objects counted as cluster galaxies only in
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Figure 2.7: A plot of color difference versus SDSS i-band magnitude for all cluster
members in both SDSS and WIYN data. Color difference is defined as the difference
between the actual r− i or g − r color of each cluster galaxy and the measured red
sequence color for that cluster. Cluster galaxies in each of the ten clusters are
plotted together here. The red diamonds denote WIYN data points and the black
circles denote SDSS data points. The error bars represent 2σ, where σ is defined by
Eq. 2.1. For SDSS measurements, color is found from SDSS model magnitudes and
the red sequence colors were measured in SDSS data. For WIYN measurements,
color is found from 2′′ MAG APER magnitudes and red sequence colors were measured
in WIYN data. Note that WIYN data points are found much closer to the central
line that represents color difference of 0, while SDSS points can be found further
away. To be counted as cluster members, points must be within 2σ of the cluster
red sequence colors, but 2σ is larger for the SDSS points.
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SDSS but not in WIYN. We then also found the galaxies counted as cluster galaxies

in both WIYN and SDSS. Our goal was to constrain the amount that SDSS was

overcounting galaxies. To do that we found the ratio

C =
N1 +N2

N1

= 1 +
N2

N1

(2.10)

where N1 represents the number of cluster members found in both WIYN data and

SDSS data and N2 represents the number of cluster members found only in SDSS

data. Since we expect the numbers of galaxies in each magnitude bin to be a Poisson

distribution, the standard deviation on N1 and N2 would be simply the square root

of each. Then the fractional error on Equation 2.10 would be

σC =
N2

N1

√
1

N2

+
1

N1

(2.11)

We then plotted C against binned WIYN i-band (MAG AUTO) model magnitude. The

result is shown in Figure 2.8.

We fit the data with a linear relation using IDL routine FITEXY, which applies a

linear fit including error bars. The final relation found was

C = (0.222± 0.116)mi WIY N + (−2.84± 2.29) (2.12)

The magnitude mi WIY N is WIYN i-band magnitude from MAG AUTO. When this

equation is evaluated at i-band m = 19.38, the value for 0.4L∗ at the mean SDSS

redshift of 0.25, then C = 1.47. We took this as the correction factor for our richness

values.
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Figure 2.8: A plot comparing objects counted as cluster galaxies only in SDSS data
and in both WIYN and SDSS data. Here N1 is the number of cluster members found
in both SDSS and WIYN in that magnitude bin and N2 is the number of cluster
members found only in SDSS. We plot the ratio 1 + N2

N1
(which we refer to in the

text as C) on the y-axis and the magnitude bin on the x-axis, where magnitude bins
are 0.5 magnitude in size. The red line is a linear best fit, found using IDL routine
FITEXY. The equation of that line is C = (0.222± 0.116)mi WIY N + (−2.84± 2.29),
where mi WIY N represents magnitude in i-band MAG AUTO.
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Table 2.4: A summary of the quantities measured for the ten galaxy clusters. These
are all based on colors measured in the 2′′ aperture. The Ngals and N200 values are
area-corrected using Eq. 2.3 but are not scaled up. All the other values are based
on these area-corrected but not scaled richness values.

System Ngals r200

(h−1Mpc)
N200 M200

(1014h−1M�)
σv

(km/s)
c200

SDSS J0900+2234 28 1.15 30 ± 4.1 1.48 ± 0.715 518+196
−153 8.27+14.9

−3.32

SDSS J0901+1814 15 0.792 11 ± 0.58 0.409 ± 0.186 334+137
−98 19.0+91.0

−9.00

SDSS J0957+0509 29 1.18 36 ± 3.4 1.87 ± 0.8708 561+200
−153 7.49+9.81

−2.78

SDSS J1038+4849 16 0.823 15 ± 0.62 0.609 ± 0.276 383+150
−108 34.9+18800

−21.3

SDSS J1209+2640 101 2.49 214 ± 11.5 18.3 ± 8.32 1219+293
−240 3.64+2.81

−1.21

SDSS J1318+3942 24 1.050 25 ± 4.2 1.17 ± 0.583 478+191
−150 9.9+31.8

−4.39

SDSS J1343+4155 28 1.15 29 ± 1.1 1.42 ± 0.641 510+182
−135 14.3+118

−7.26

SDSS J1439+3250 59 1.80 105 ± 18 7.35 ± 3.69 894+296
−250 3.20+2.41

−1.03

SDSS J1511+4713 31 1.22 40 ± 2.9 2.14 ± 0.981 587+203
−154 7.69+6.51

−2.45

SDSS J1537+6556 22 0.997 22 ± 2.9 0.994 ± 0.477 452+177
−136 18.8+49.2

−7.84

We measured Ngals and corrected these values for missing area in WIYN using

Equation 2.3. Then we included the above correction factor when calculating r200,

letting

r200 = 0.156(Ngals SDSS)0.6 = 0.156(1.47Ngals WIY N)0.6 (2.13)

We remeasured N200 using the new value for r200 and corrected for missing area.

Finally we scaled these new N200 values by multiplying them by the same scale

factor of 1.47. We used these scaled values of N200 to find M200, velocity dispersion

and concentration parameter. We give values for all quantities found without the

scale factor in Table 2.4 and we give the values found with the scale factor in Table

2.5.

We find the scaled values for N200 are on average 1.7 times bigger than the unscaled

values. This leads the new values for M200 (those found from the scaled richness
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Table 2.5: A summary of the quantities measured for the ten galaxy clusters. These
are all based on colors measured in the 2′′ aperture. The Ngals and N200 values are
area-corrected using Eq. 2.3 and are scaled up using Eq. 2.10.

System Ngals r200

(h−1Mpc)
N200 M200

(1014h−1M�)
σv

(km/s)
c200

SDSS J0900+2234 28 1.45 53 ±7.6 3.046 ± 1.48 662+233
−187 5.13+5.36

−1.82

SDSS J0901+1814 15 0.996 22 ± 2.4 0.993 ± 0.468 452+174
−132 9.63+12.7

−3.52

SDSS J0957+0509 29 1.48 57 ± 5.1 3.38 ± 1.57 686+226
−176 5.15+4.68

−1.72

SDSS J1038+4849 16 1.036 25 ± 1.8 1.17 ± 0.536 477+177
−132 16.8+73.3

−7.80

SDSS J1209+2640 101 3.13 317 ± 17 30.2 ± 13.7 1446+307
−258 2.69+1.90

−0.890

SDSS J1318+3942 24 1.32 44 ± 5.0 2.41 ± 1.14 612+215
−168 5.83+7.30

−2.17

SDSS J1343+4155 28 1.45 43 ± 1.6 2.31 ± 1.046 603+203
−153 9.11+22.0

−3.94

SDSS J1439+3250 59 2.27 158 ± 28 12.4 ± 6.26 1069+331
−288 2.36+1.72

−0.790

SDSS J1511+4713 31 1.54 70 ± 5.6 4.40 ± 2.030 751+237
−185 5.21+3.44

−1.52

SDSS J1537+6556 22 1.25 41 ± 9.6 2.21 ± 1.20 594+243
−204 10.0+14.7

−3.88

values) to be 2.0 times larger than the previous values. Also new values for velocity

dispersion are 1.3 times larger than previous values, while new values for concen-

tration parameter are all smaller, on average 0.63 times the previous values (see §

2.5.2).

2.3.2.6 Comparison of Results

Several other groups have measured cluster masses or related quantities for some

of our clusters. Oguri et al. (2012) [66] present combined strong and weak lensing

analyses for 28 clusters, including 4 of the clusters discussed in this paper. This

allowed us to compare our results for M200 to their results for these four systems.

As Oguri et al. (2012) [66] present values for Mvir, we converted these to M200 values

using the method described in Appendix A of Johnston et al. [47] (see §2.5.1).
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Table 2.6: M200 values from other papers for several of our systems Oguri et al.
(2012) [66], Bayliss et al. [7] and Drabek et al. [27]. Note that the values from
Oguri et al. (2012) [66] have been converted from Mvir to M200 using the process
detailed in the appendix of Johnston et al. [47]. To convert the errors, we simply
converted the upper and lower errors onMvir given in Oguri et al. [66] using the same
method. All M200 values have the units 1014h−1M�. Though there are significant
differences in the M200 values for some clusters, overall our values seem consistent
with those of the other groups. See Figure 2.9.

System M200(this paper) M200(Oguri) M200(Bayliss) M200(Drabek)

SDSS J0957+0509 3.38 ± 1.57 1.17+0.77
−0.55 8.01+4.98

−6.40 -

SDSS J1038+4849 1.17 ± 0.536 0.681+0.48
−0.11 2.06+1.18

−0.36 -

SDSS J1209+2640 30.2 ± 13.7 5.50+1.67
−1.32 16.8+6.43

−11.0 -

SDSS J1343+4155 2.31 ± 1.046 3.34+1.38
−1.11 8.13+4.76

−6.87 6.60 ± 3.20
SDSS J1439+3250 12.4 ± 6.26 - - 4.73 ± 2.84

Bayliss et al. [7] provided velocity dispersions for 4 of our clusters. We used the

relation between cluster mass and galaxy velocity dispersion given in Evrard et al.

[31] to find M200:

b
1
α
v M200c = 1015M�

1

h(z)

(
σgal
σ15

) 1
α

(2.14)

Here h(z) is the Hubble parameter, bv = σgal/σDM is the velocity bias (we assume

bv = 1), σgal is the galaxy velocity dispersion, σDM is the dark matter velocity

dispersion, σ15 = 1084 ± 13 km s−1, and α = 0.3359 ± 0.0045. Drabek et al. [27]

present masses for two clusters, SDSS J1343+4155 and SDSS J1439+3250, based on

spectroscopy of a sample of galaxies in these clusters. We summarize all the values

of M200 found by these groups in Table 2.6.

In Figure 2.9, we plot the M200 values from the three other papers against our M200

values; the dotted line in the plot is the y = x line. We find that our values are

reasonable in light of the findings of other groups as when we plot our values against

those from other groups, the points are all scattered around the y = x line.
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Figure 2.9: A comparison of M200 values in this paper and in other papers. The
black circles represent mass values in Oguri et al. (2012) [66], the red diamonds
represent mass values in Bayliss et al. [7] and the green squares represent mass
values in Drabek et al. [27]. The dotted violet line is the y = x line.
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2.4 Strong Lensing Properties

In a strong lensing system, if the source galaxy and the galaxy cluster are per-

fectly aligned, then the image formed will be a perfect ring, or Einstein ring. The

radius of this ring is referred to as the Einstein radius. The Einstein radius for

a symmetric mass distribution treated as a thin sheet is given by Narayan and

Bartelmann [62]:

θE =

√
4GM

c2

Dds

DdDs

(2.15)

where Dd, Ds, and Dds are angular diameter distances to the lens, to the source,

and from lens to source, respectively, c is the speed of light, G is the gravitational

constant, and M is the mass contained within the Einstein radius. We estimated

the Einstein radius of each of the clusters directly by fitting a circle to the visible arc

and measuring the radius of that circle. The values found here are all very similar

to those presented in the SBAS discovery papers, with a median difference of 2.5%.

In order to try to quantify the uncertainty in our measurements, we measured

the Einstein radii for all the objects again several months after the first measurement

without referencing previous data. In all cases the differences between the original

and new measurements were between 0.03′′ and 0.6′′. Since this represents up to

10% of the value of θE, we estimated the uncertainty in θE as 10%.

We note however that this method of estimating Einstein radius can lead to large

systematic errors, so we also compared our values for Einstein radii to values from

other groups. West et al. [91] present strong lensing models for three of our systems

and [66] present models for four of our systems. Both groups have measurements

for SDSS J1343+4155, so we compared values for a total of six systems. We provide

measured Einstein radii from these papers in Table 2.7. For SDSS J0900+2234
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Table 2.7: A comparison of values for Einstein radius measured in this paper, in
West et al. [91] and in Oguri et al. (2012) [66].

System θE(arcsec) (this
paper)

θE(arcsec)
(West et al.)

θE(arcsec)
(Oguri et al.)

SDSS J0900+2234 8.0 ± 2.7 8.32 -
SDSS J0901+1814 6.9 ± 2.3 6.35 -

SDSS J0957+0509 8.2 ± 2.7 - 5.2+0.5
−0.5

SDSS J1038+4849 8.6 ± 2.9 - 12.6+1.3
−1.6

SDSS J1209+2640 11 ± 3.7 - 8.8+0.9
−0.9

SDSS J1343+4155 13 ± 4.3 7.05 5.4+2.5
−1.6

and SDSS J0901+1814, our estimates are almost exactly the same as the values in

[91]. However for the other four systems, the scatter (standard deviation) in values is

larger, between 2.1′′ and 4.0′′. We account for this error by calculating the fractional

error in the values for θE and then finding the median value of the fractional errors

for each of the six systems. The median value of the fractional errors is 0.32, or

32%, which we added in quadrature to the 10% errors to find final error values.

Solving Equation(2.15) for the mass, we obtain:

M = θ2
E

c2

4G

DdDs

Dds

(2.16)

Using the redshifts listed in Table 2.1 for the galaxy clusters and the source galaxies,

we calculated the angular diameter distances. We then used the Einstein radii we

had measured to calculate the masses of the lenses.
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Table 2.8: A summary of the properties measured for the ten strong lensing systems.
Rescaled Einstein radii are Einstein radii projected to fiducial redshifts, of zlens =
0.433 and zsource = 1.65. See Equation 2.21. Source redshift has not yet been
determined for the arc in SDSS J1439+3250 and so we can only present a range of
redshifts, leading to a range of values for mass and velocity dispersion.

System θE
(arcsec)

Mlens(1012h−1M�) σv(km/s) θE(rescaled)

SDSS J0900+2234 8.0 ± 2.7 11 ± 7.3 648 ± 108 7.9 ± 2.7
SDSS J0901+1814 6.9 ± 2.3 5.5 ± 3.7 564 ± 93.9 5.9 ± 2.0
SDSS J0957+0509 8.2 ± 2.7 12 ± 8.0 680 ± 113 8.5 ± 2.8
SDSS J1038+4849 8.6 ± 2.9 15 ± 10.0 780 ± 130 11 ± 3.8
SDSS J1209+2640 11 ± 3.7 36 ± 24.0 691 ± 115 19 ± 6.2
SDSS J1318+3942 9.1 ± 3.0 12 ± 8.0 336 ± 55.9 8.2 ± 2.7
SDSS J1343+4155 13 ± 4.3 24 ± 16.0 804 ± 134 12 ± 3.9
SDSS J1439+3250 7.4 ± 2.5 7.4 ± 4.9 -10.0 ± 6.7 596 ± 99.2 - 708 ± 118 7.1 ± 2.4
SDSS J1511+4713 5.4 ± 1.8 6.3 ± 4.2 631 ± 105 7.3 ± 2.4
SDSS J1537+6556 8.5 ± 2.8 8.7 ± 5.8 715 ± 119 9.4 ± 3.1

Finally, we calculated the velocity dispersions of the regions of the clusters inside

θE assuming the mass distribution was well fit by a singular isothermal sphere (SIS).

We used the following equation, from [62]:

σv =

√
θEc2Ds

4πDds

(2.17)

All values measured for the strong lenses are presented in Table 2.8.

In Figure 2.10 we compare the velocity dispersions found from lensing to those

found from richness measurements. Note that these velocity dispersions measure

different things: the velocity dispersion from lensing describes the velocity dispersion

inside θE and the velocity dispersion from N200 describes the velocity dispersion

within the much larger distance r200. We see in Figure 2.10 that many of the

clusters are found along the y = x line, several are found above it and several
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Figure 2.10: A comparison of velocity dispersions found from N200 and found from
Einstein radii. The line shown has the equation y = x. The clusters on or above
the y = x line are all higher mass clusters. The lowest mass clusters are shown as
red points.

are found below it. For the clusters found along the y = x line, we see that the

velocity dispersions are similar within the two different radii, θE and r200, which

suggests that these systems are largely isothermal since velocity dispersions are

similar at different radii. For the systems found above the y = x line, the velocity

dispersion at large radii is much larger than at small radii, indicating that much of

the mass is found at larger distance from the BCG, suggesting a low value for c200.

Several systems (shown as red points) are found below the y = x line, suggesting

that the velocity dispersion within θE is larger than that found within r200. This

indicates that for several clusters there is more mass within the smaller radius and

suggests that the concentration parameter is large. Our highest mass clusters are
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found above the y = x line (suggesting lower concentration parameter), while our

lower mass clusters are found below the y = x line (suggesting higher concentration

parameter). This would agree with what we discuss in the next section, that our

highest mass clusters are not overconcentrated but our lowest mass clusters seem to

be.

2.5 Applications to Cosmology

2.5.1 An Overconcentration Problem?

Several recent papers [64, 34, 32, 66] have presented evidence that galaxy clusters

that exhibit strong lensing have higher concentration parameters than ΛCDM would

predict. The most recent considerations [32, 66] suggest that this overconcentration

is most significant at cluster masses less than 1014h−1M�. Overconcentration can be

illustrated by comparing Einstein radii to M200 [34]. Since Einstein radii are depen-

dent on both cluster mass and cluster concentration parameter, such a comparison

will yield larger Einstein radii than would be expected for particular M200 values.

Considering this, we have compared Einstein radius to M200 for our ten systems.

One complication in making this comparison is that Einstein radius is a function of

redshift. Since all of our systems have different redshifts for both lens and source,

in order to compare them, we needed to scale them to a single, constant redshift

for lens and source. We chose both the lens and source redshifts (we refer to them

henceforth as fiducial redshifts) by taking the mean of the ten lens redshifts and the

mean of the ten source redshifts. Our fiducial redshifts are zd = 0.433 for the lens

and zs = 1.65 for the source.
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To scale Einstein radii to the fiducial redshifts, we needed to find a scale factor

k that would satisfy:

θE scaled(zd fiducial, zs fiducial) = k × θE measured(zd, zs) (2.18)

We note that Equation 2.17 can be rearranged as

θE =
4πσ2

v

c2

Dds

Ds

(2.19)

Since σv is proportional to the mass and does not depend on redshift, θE scales with

redshift according to the ratio Dds/Ds. Thus solving Equation 2.18 for k we obtain:

k =
θE scaled

θE measured
=

4πσ2
v

c2
Dds fiducial
Ds fiducial

4πσ2
v

c2
Dds
Ds

(2.20)

and since σv does not scale with redshift, it cancels. Then

k =
Dds fiducial/Ds fiducial

Dds/Ds

(2.21)

We applied Equation 2.21 to find the scale factor k for each cluster and then scaled

each Einstein radius to the fiducial values.

In order to compare the relation between Einstein radius and M200 for our data to

the relation that ΛCDM would predict, we refer to the models presented in Duffy et

al. (2008) [28] and Oguri et al. (2012) [66] which predict concentration as a function

of cluster mass. Duffy et al. present relations for any general galaxy clusters while

Oguri et al. present relations for lensing-selected clusters, that is those that were
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found because of gravitational lensing (like the clusters discussed in this chapter).

Concentration parameter, c∆, is defined as

c∆ =
r∆

rs
(2.22)

The rs term is the scale radius, a term in the Navarro-Frenk-White (NFW) model of

dark matter halo density [63] (see § 1.7.2). The quantity ∆ is the virial overdensity.

In this paper we use ∆ = 200, but Oguri et al. (2009) [65] use ∆ = vir, where

the virial overdensity is the local overdensity that would cause halo collapse; it is a

function of redshift.

Duffy et al. (2008) [28] present a relation for cvir in general clusters, citing results

obtained from N-body simulations conducted using WMAP5 cosmology:

c̄vir(sim) =
7.85

(1 + z)0.71

(
Mvir

2.78× 1012M�

)−0.081

(2.23)

We consider this relation at z = 0.45, for consistency with the lensing-selected

relation below. Oguri et al. (2012) [66] present a relation for cvir in lensing-selected

clusters, using ray tracing to estimate the effect of lensing bias:

c̄vir(z = 0.45) ≈ 6.3

(
Mvir

5× 1014h−1M�

)−0.2

(2.24)

In order to compare our data to these predictions, we chose a range of values of

Mvir and used Equations 2.23 and 2.24 to find the corresponding values for cvir. We

then used the relations in Johnston et al. [47] and Hu and Kravtsov [44] to convert

from cvir and Mvir to c200 and M200. Finally we used the range of values for M200

and the predicted values for c200 to find predicted values for Einstein radius (θE) by
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using the NFW profile (see Equation 2.25 below). We plotted the relations between

M200 and θE as the general and lensing-selected predictions in Figures 2.11 and 2.12.

To find a predicted Einstein radius we used the NFW density profile, expressed

as

ρ(r) =
ρs

(r/rs) (1 + r/rs)
2 (2.25)

where r is the distance from the center of the cluster, ρs is a characteristic density,

and rs is the scale radius, given by rs = r200/c200. We implemented Equation 13 in

Wright and Brainerd [95], an equation that describes surface mass density ΣNFW in

the NFW model. The Einstein radius θE is given implicitly by the solution of [62]:

ΣNFW

(
θE
rs

)
= Σcrit (2.26)

where the critical surface mass density Σcrit is

Σcrit =
c2

4πG

Ds

DdDds

(2.27)

Thus we found Einstein radius by solving for ΣNFW and using that to find θE.

2.5.2 Consideration of the Overconcentration Problem

The final result of our analysis is shown in Figures 2.11 and 2.12. Figure 2.11

shows the relation between M200 and θE for our measured values of M200 while

Figure 2.12 shows the relation for the new M200 values that come from the scaled-

up richness values. We consider Figure 2.12 to be more reliable as it uses richness
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values scaled to correspond with values from SDSS data, which was used to calibrate

the mass-richness relation.

In Figure 2.11 there is a noticeable disagreement between our data and the

predicted relations. It can also be seen that the lower-mass clusters disagree more

while the higher-mass clusters fit the predictions better, as found by other authors.

However in Figure 2.12, we see that all clusters are shifted to higher masses by

an average factor of 2.0. In the plot of the scaled values, we see that many of

the clusters now closely follow the lensing-selected prediction. There are still four

clusters that do not fit the predicted relations. These clusters are SDSS J0901+1814,

SDSS J1038+4849, SDSS J1343+4155 and SDSS J1537+6556, which are the lowest

mass clusters in our sample. SDSS J1318+3942, which is also among the lowest

mass clusters, is found close to the predicted line, but still slightly above it.

We determined values for c200 for our clusters by using our measured values for

M200 and θE in Equations 2.25 and 2.26; values are listed in Table 2.4. We estimated

errors on c200 by varying M200 and θE to the maximum and minimum values allowed

by their respective error bars. Maximum values for c200 were found with minimum

M200 and maximum θE while minimum values for c200 were found with the opposite.

For smaller values of M200, this led to very large upper error bars on c200 as a very

high concentration parameter would then be required to achieve the large Einstein

radius.

Our measurements of c200 follow the trends noted earlier: for many of the clusters,

our measured values of c200 are within the range of predictions, but for the lowest

mass clusters measured values of c200 are higher than predictions. The average value

for c200 predicted for our scaled values of M200 by Equation 2.23 (for general clusters)

is 3.4 while the average value predicted by Equation 2.24 (for lensing-selected clus-

ters) is 5.7. The average of our ten measured values of c200 is 7.3, which is slightly
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Figure 2.11: A plot of Einstein radius versus M200 for unscaled M200 values, with
Einstein radii scaled to fiducial redshifts. The theoretical lines come from a pre-
diction of Einstein radii for given M200 and c200 values found by using an NFW
[63] fit to the mass and concentration. The general clusters line was found using
predicted c200 values found from Equation 2.23 and the lensing-selected clusters line
was found using predicted c200 values found from Equation 2.24. The average c200

for general clusters is 3.6 and for lensing-selected clusters it is 6.4. Both Equations
took z = 0.45. The approximate fit line was found by multiplying the values of cvir
resulting from Eq. 2.24 by 1.9. We tried different factors to multiply cvir until the
resultant line went approximately through the low mass data points.
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Figure 2.12: The same plot as Figure 2.11 but using M200 values found by scaling
richness values up using Eq. 2.12. The average c200 for general clusters is 3.4 and for
lensing-selected clusters it is 5.7. To find the approximate fit to the low mass data,
we multiplied all cvir values from Eq. 2.24 by 1.5. Note that with scaled richness
values, the points all move closer to the predicted values.
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larger than the lensing-selected prediction. However for our four lowest mass clus-

ters the average c200 value is 11.6, much larger than the lensing-selected prediction.

The four clusters we identify as overconcentrated above have the following values for

c200: for SDSS J0901+1814, c200 = 9.6+13
−3.5; for SDSS J1038+4840, c200 = 17+73

−7.8; for

SDSS J1343+4155, c200 = 9.1+22
−3.9; and for SDSS J1537+6556, c200 = 11+15

−3.9. These

clusters have respectively M200 of 0.99, 1.2, 2.3 and 2.2× 1014h−1M�, which are the

lowest masses in our sample.

Concentration parameters (cvir) based on strong and weak lensing measurements

are provided in Oguri et al. (2012) [66] for two of these four clusters. We convert

these to c200 using the method discussed in §2.5.1. For SDSS J1038+4840, c200 =

33.8+0.00
−18.3 and for SDSS J1343+4155, c200 = 4.25+1.38

−0.790. Thus for SDSS J1038+4840,

the second lowest mass cluster in our sample, both sets of measurements find this

cluster to be significantly overconcentrated. For SDSS J1343+4155 the evidence for

overconcentration is not as strong.

In Figures 2.13 and 2.14 we consider the mass-concentration relation, comparing

log(c200) to log(M200). Figure 2.13 is the mass-concentration relation for our mea-

sured values of c200 and M200 without scaling and Figure 2.14 is this relation using

scaled richness values. We also include three lines in Figures 2.13 and 2.14: the blue

solid line is the prediction from Oguri et al. (2012) [66] for lensing-selected clusters,

the green solid line is the best-fit to the data in the Oguri paper (Equation 26 in

[66]) and the red dotted line is the best fit to our data. Equation 26 in [66] is:

cvir = (7.7± 0.6)

(
Mvir

5× 1014h−1M�

)−0.59±0.12

(2.28)

We used the same method as discussed in §2.5.1 to add the prediction and best fit

from Oguri et al. (2012) [66] to Figures 2.13 and 2.14. For the predicted line, we
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applied Equation 2.24 and for the best fit from Oguri et al. (2012) [66] we applied

Equation 2.28. In Figure 2.13 the slope is α = 0.45 ± 0.30 while in Figure 2.14

α = 0.45 ± 0.23. Note that the error bars are larger on c200 in Figure 2.13; this is

because when calculating error bars, the minimum M200 was small and maximum θE

was large, leading to very large values for c200. Fedeli et al. (2011) [32] suggests that

for clusters that are not overconcentrated, α should be no larger than 0.2. At 1σ, our

lowest value of α is 0.15 for unscaled values and 0.22 for scaled values. Both of these

values are consistent with clusters that are not overconcentrated, again suggesting

that most of our clusters are not overconcentrated. Prada et al. (2011) [68] suggest

in their Figure 12 that log(c200) should be less than about 0.8 at z = 0.5. This is

again consistent with most of our clusters, although not for the lowest mass clusters.

Note in Figure 2.14 that the four lowest mass clusters have values of log(c200) above

1.0 which suggest that these clusters are overconcentrated.

We find in Figure 2.13 that our data points are mostly above the predicted line,

suggesting many of our clusters are overconcentrated. However when we use the

more reliable scaled values in Figure 2.14 we find that most of the clusters are found

near the predicted line, but the lowest mass clusters (the four identified above)

remain above the prediction. This again confirms our previous statement that most

of our clusters do not appear to be overconcentrated, but there is evidence for

overconcentration at lower cluster masses.

Thus for most of our clusters, ΛCDM seems to match their observed properties.

But for our several clusters showing evidence of overconcentration, what does the

overconcentration problem suggest is happening in galaxy clusters? It seems to

suggest that clusters are collapsing more than ΛCDM would predict [16, 32, 66]. The

dark matter halo associated with a galaxy cluster is expected to have undergone an

adiabatic collapse during the formation of the cluster. The baryonic matter in the
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Figure 2.13: A plot of the logarithm of the concentration parameter c200 versus
logarithm of M200. This is modeled on Figure 1 in [32]. The red line is the best
fit to the data and has a slope α = 0.45 ± 0.30. The solid green line is the fit to
the data in [66] (their Equation 26). The solid blue line is the Oguri prediction for
lensing-selected clusters (Equation 2.24). The large vertical error bars arise on the
low-mass clusters due to how c200 changes as a function of M200 and θE. We found
the upper vertical error bars on c200 by setting M200 and θE to their minimum and
maximum values, respectively. When M200 is very small, a very large value for c200

is required to achieve the large value for Einstein radius.
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Figure 2.14: The same plot as Figure 2.13 but made with M200 and c200 values
corresponding to richness values scaled up using Eq. 2.12. The slope of the best fit
line is α = 0.45± 0.23. Note that the values for M200 have been shifted to the right
and thus many of the points fit the predicted relations now. However the lowest
mass points still do not match the predictions.
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cluster (concentrated in the BCG) would also have collapsed. The baryonic matter

would likely have dragged the dark matter along with it, augmenting the collapse

of the halo. Since we find some clusters to be more concentrated than expected, it

may be that the halo collapsed more than expected due to the contribution of the

baryons. It is suggested [32, 66] that the overconcentration is most significant in

lower-mass clusters because in these clusters the BCG makes up a larger percentage

of the overall cluster mass. Thus the baryons would contribute to the halo collapse

more in a lower-mass cluster than in a higher-mass cluster.



CHAPTER 3

INVESTIGATING THE RICHNESS EXTRAPOLATION

There are more things in heaven and earth, Horatio, than are dreamt of in your

philosophy.–from Hamlet by William Shakespeare

3.1 Introduction

As we mentioned in Chapter 2, we measured richness for the ten clusters by

counting all of the galaxies meeting certain criteria. However we found that for

several of the ten systems, some regions of the cluster were not in the image. Thus

we used Equation 2.3 in order to extrapolate the total values for Ngals and N200.

In this section we describe how we took further images of the clusters in order to

completely image all cluster galaxies, to obtain more reliable richness values and to

assess the accuracy of the richness extrapolation method.

In § 3.2 we describe how we planned and completed the new observations at

Apache Point Observatory. In § 3.3 we describe the data reductions and calibrations

done to prepare the data images for science analysis. In § 3.4 we detail how we

identified the characteristic colors of the clusters and measured the additional cluster

galaxies not found in the original imaging. In § 3.5 we present a final determination

of the accuracy of the richness extrapolation method. Finally in § 3.6 we present

new imaging of a foreground galaxy cluster found in the APO images.
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3.2 Data Acquisition and Reduction

3.2.1 Planning the Observations

We proposed to Apache Point Observatory for 4 half-nights on the APO 3.5-m

telescope. APO assigns observing in half-nights, so one group observes for the first

half of the night and a different group observes for the second half. The proposal

was accepted, but we only obtained 3 half nights, on February 20, March 16 and

March 18 of 2012. For the first two nights, we would be observing for the first half of

the night (sunset to about midnight) and for the last night we would have a second

half (about midnight to sunrise). Unfortunately on March 18 the observatory was

closed due to snow on the mountain, so we were only able to take data on two of

the three half-nights.

Observing at APO is usually done remotely, as long as at least one of the ob-

servers is trained for remote observing. As H. Lin and S. Allam had been trained,

we observed remotely from Fermilab. Remote observing is done through the pro-

gram TUI, or Telescope User Interface, which was written by Russell Owen at the

University of Washington. TUI produces a graphical user interface through which

all elements of telescope function can be controlled. One technician works at the

Observatory during the night to address any issues that cannot be resolved remotely.

The APO 3.5-m telescope is a Ritchey-Chretien reflector on an alt-azimith

mount. A Ritchey-Chretien telescope is a Cassegrain telescope that uses a hy-

perbolic mirror for both the primary and secondary mirrors in order to minimize

spherical abberations. An alt-azimuth mount moves along two perpendicular axes,

one vertical and one horizontal. This is as opposed to an equatorial mount, in
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which one of the axes is aligned with the celestial equator. There are a number of

instruments which can be used on this telescope, including several spectrometers,

a spectrograph and an optical imaging camera called SPIcam (Seaver Prototype

Imaging camera). We used SPIcam for these observations.

SPIcam uses a single CCD of dimensions 2048x2048 pixels and has pixel scale

of 0.14′′ per pixel. However since this is usually much better than typical seeing,

the CCD is typically operated in binned mode, giving pixel scale of 0.28′′ per pixel.

SPIcam has a field of view of 4.7′ on each side. The original images of the clusters

taken at the WIYN telescope used the Mini-Mosaic imager which has 2 CCDs each

with field of view of 9.6′. Thus SPIcam provides a much smaller view of the sky and

more images would be required in order to observe the entire cluster.

In order to plan our observations, we placed circular regions files corresponding to

an area with a radius of r200 on the WIYN images in astronomical image viewer DS9.

(A ”region” in DS9 is a shape that can be made any size that can be superimposed

on an image. We used both circular and square regions to help plan our observing.)

We then tried to cover as much of the area off the CCD with square regions 4.7′

on a side, corresponding to the size of SPIcam. With some of the images, we could

fit most of the missing area with 1 or 2 pointings of the APO telescope, while with

others we needed up to 9. In Figure 3.1, we show an image of SDSS J0901+1814

and SDSS J1439+3250, showing how we used square regions to fit the missing area.
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Figure 3.1: An image of SDSS J0901+1814 and SDSS J1439+3250 showing how we
designed pointings for APO followup of the WIYN images. Note that we could
mostly cover the missing area of SDSS J0901+1814 with only one pointing at
APO while we required six pointings to mostly cover the missing area of SDSS
J1439+3250. (SDSS J0901+1814 was imaged, but observations of SDSS J1439+3250
did not ultimately fit into the two half nights we had.) There are six circles presented
as these are the six annuli used for Equation 2.3.
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3.2.2 Details of the Observations

We determined that we could cover most of the missing area in the WIYN

images in the 3 half-nights we were allotted by using 29 pointings of the telescope,

assuming that we could complete one pointing every 30 minutes. A pointing in this

case consisted of slewing the telescope to a particular set of celestial coordinates

and then taking images in three filters, SDSS g, r and i filters. We needed to use

three different filters as information on g-r and r-i colors is critical to using the red-

sequence method for cluster galaxy identification. In each filter, we took two 210

second exposures, dithering by 15′′ between each of the two exposures. Dithering

(moving the telescope slightly) is often done in astronomical observations in order

to identify cosmic rays and to avoid placing celestial objects permanantly on a bad

column on the CCD. During image processing, the dithered exposures are stacked so

bad columns or cosmic rays can be rejected in comparisons between the two images,

and the total exposure time is 210 s× 2 = 420 seconds.

At the beginning of each half night we always took calibration images, including

bias frames, dome flats and sky flats. Bias frames are 0 second integrations, meaning

the CCD is not exposed to any light, but it is read out. This allows the observer

to identify noise that occurs during CCD readout. We took 10 bias frames and

then co-added them before using them for data reduction. We took 5 dome flats in

each of the three filters and then the same number of sky flats. A dome flat is an

image taken by pointing the telescope at a screen illuminated by a highly stable and

uniform light source in the observatory dome. A sky flat is an image of the twilight

sky, which is fairly evenly illuminated by the recently-set Sun.
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We used the centers of the square regions to determine the right ascension and

declination of the point where each planned pointing of the telescope would be

centered. We proceeded to image each of the fields in order, beginning with the fields

with the lowest airmass (see § 1.2). Due to several limiting factors, we only were able

to complete imaging of 15 of the planned 29 fields. The limiting factors included

the following: (1) as previously mentioned, we lost the March 18 observations; (2)

airmasses for all fields were too high to begin observing any of them right at the

end of twilight on March 16 and so we repeated a previous observation; (3) on

the first night, I miscalculated the center of one of the pointings, requiring us to

redo it; and (4) we had an occasional slight overrun on the planned 30 minutes per

pointing. The 15 fields observed are listed in Table 3.1. We also list median seeing

in this table; astronomical seeing describes the quality of the images taken on a

particular night. Mathematically, seeing is the full-width half-max (FWHM) of the

point-spread function (PSF) of stars in an image.

3.3 Data Reduction

Before science analysis can be completed on CCD images, they must be reduced

and calibrated. As described at greater length in my Master’s thesis [93], data

reduction and calibration consists primarily of the following steps:

1: Basic reductions

2: WCS correction

3: Bad pixel removal

4: Image stacking
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Table 3.1: The observing parameters for the data taken at APO. The number given
after the name indicates the image number, as for some clusters several different
fields were imaged. RA and DEC are of the center of each field. RA is given in
the form (hours:min:sec) and DEC in (deg:min:sec). Stated values of airmass and
seeing are median values for each image. The upper objects are those observed on
February 20 and the lower ones are those observed on March 16.

System RA DEC Airmass Seeing (′′)
SDSS J0900+2234-1 09:00:02.992 +22:30:54.74 1.62 1.24
SDSS J0901+1814-1 09:01:22.013 +18:11:00.71 1.34 0.965
SDSS J0957+0509-1 09:57:47.383 +05:05:02.00 1.50 1.11
SDSS J0957+0509-2 09:57:29.853 +05:05:01.11 1.35 0.955
SDSS J1038+4849-1 10:38:43.035 +48:45:12.72 1.47 1.03
SDSS J1209+2640-1 12:09:52.658 +26:40:22.47 1.61 1.31
SDSS J1209+2640-2 12:09:48.246 +26:35:36.95 1.43 1.08
SDSS J1209+2640-3 12:09:27.287 +26:34:52.67 1.29 1.39
SDSS J1209+2640-4 12:09:06.168 +26:34:53.18 1.18 1.25

SDSS J0900+2234-1 09:00:02.992 +22:30:54.74 1.088 1.050
SDSS J1209+2640-5 12:08:53.778 +26:39:12.05 1.61 1.60
SDSS J1209+2640-6 12:08:53.959 +26:43:57.72 1.31 1.12
SDSS J1209+2640-7 12:09:08.579 +26:48:02.63 1.19 1.15
SDSS J1209+2640-8 12:09:30.411 +26:48:06.57 1.11 1.20
SDSS J1209+2640-9 12:09:51.871 +26:45:12.67 1.059 1.34
SDSS J1318+3942-1 13:18:11.757 +39:39:19.93 1.10 1.18
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5: Magnitude calibration

We will describe each of these steps in brief.

3.3.1 Basic reductions

Basic reductions used on the APO data included overscan removal, bias subtrac-

tion and flat fielding. Basic reductions were done using the NOAO Image Reduction

and Analysis Facility (IRAF). Overscan is a small section of the CCD that contains

no science data but does provide information on the noise or bias level produced

during readout of the CCD. The bias level is the values measured in each pixel in

the absence of real data. The constant overscan value is subtracted from the whole

image and then the overscan region is removed.

A bias frame is a readout of the CCD with zero integration time and the shutter

closed. Its purpose is to identify pixel-to-pixel variations in the bias level of the CCD.

In other words, different pixels may have different bias levels during the readout of

the CCD; since the bias level varies spatially across the image, the removal of the

constant value of the overscan may leave some pixels with more bias. Thus we

take bias frames to identify the variations in response to readout. It is usual to

take a number of bias frames and then take the average of them before subtracting

them from the data images. This is done as a single bias frame may have random

variations in it which would introduce more noise into the data images. Such random

variations would be eliminated when the average is taken; thus a master bias or zero

frame is ultimately subtracted from the data image.

Flat fielding is the use of uniformly illuminated images to remove pixel-to-pixel

variations in images. In other words, flat fielding helps to ensure that every pixel
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in the image will give the same output measurement for the same input flux. We

combined each of the dome flats taken in the same filter and each of the sky flats

taken in the same filter and produced master dome flats and master sky flats in each

filter. We then divided each data image by the master flats in that filter.

3.3.2 WCS Correction

World Coordinate System (WCS) correction is a correction applied across an

image to ensure that the coordinate measurements put into the images at the tele-

scope closely match standard catalogs. If there are any differences, then coordinates

in data images are corrected. We completed this step using the program called

SCAMP [10]. SCAMP is one of a series of astronomical analysis programs writ-

ten by E. Bertin that are called Astromatic programs. The Astromatic programs

each have a different main function, but their operation is very similar in that the

programs are invoked from the command line while referring to a configuration file.

In order to run SCAMP, we needed to first run another Astromatic program

called SourceExtractor (SExtractor). This program identifies the sources (stars and

galaxies) in an image along with their locations, magnitudes and more. To run

SCAMP, we first had to run SExtractor to produce FITS LDAC files. FITS stands

for Flexible Image Transport System and is the typical format for astronomical im-

ages; LDAC stands for Leiden Data Analysis Center, and is a data format developed

by E. Bertin and others especially for use in large astronomical surveys. SCAMP

ultimately finds a solution to update all positions to correspond to standard catalogs

and updates image headers with this information.



94

3.3.3 Bad Pixel Removal

Two types of pixels need to be identified and removed, cosmic rays and bad pixels.

Cosmic ray removal was done using the program LACosmic [84]. LACosmic uses a

Laplacian algorithm to find and remove cosmic rays based on the characteristic way

cosmic ray hits transition from background to maximum measured flux. LACosmic

is provided in several different codes, but we used the implementation in IRAF

Command Language (CL).

CCDs often have some number of bad pixels, pixels that do not respond linearly

to input flux. Typically bad pixels in data images are removed by using a bad pixel

map to identify them during processing. We made a bad pixel mask by taking flat-

field images of two different exposure lengths. On March 16 we took dome flats in

the r-band, integrating for 6 seconds a total of 5 times and then combining the 5

exposures. We did this again while integrating for only 3 seconds, and combining

each of these 5 exposures. We then took the ratio of the short exposure flat-field to

the long exposure flat-field. This method works because in the ratio image, good

pixels will all have almost exactly the same value since good pixels will measure

more flux in the long exposure than in the short exposure. Bad pixels will not have

the same ratio as the good pixels and can be identified on this basis. Finally we

used the IRAF task CCDMASK to convert the ratio image to a bad pixel mask.

There were some other bad pixels which were not found using this method, and

so these were masked out by hand, by making a list of the coordinates of bad pixels.

The images made from these pixels were combined with the images made using the

ratio of flat fields to make a single bad pixel map, one for each of the g, r and i-filters.

These bad pixel maps were fed into the stacking program.
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3.3.4 Image Stacking

After bad pixels and cosmic rays were removed, the two 210 second dithered

exposures in each filter could be stacked. Stacking was done with the Astromatic

program called SWARP [10]. SWARP takes the input data images in FITS format

and makes necessary shifts and interpolations to combine the images. The output

is a single image in each filter with an equivalent exposure time of 420 seconds.

SExtractor is then run on the final stacked images to identify sources and measure

their magnitudes and other quantities. This time SExtractor is run to produce

ASCII output. Each object is listed by SExtractor in the output data file along

with all the other quantities that it had been set to measure. However thus far the

magnitudes that SExtractor outputs are not yet actual object magnitudes but are

only instrumental magnitudes.

3.3.5 Magnitude Calibration

Instrumental magnitudes are magnitudes measured based on fluxes observed in

a particular instrument. These fluxes have to be compared to the actual fluxes from

some standard objects in order to convert instrumental magnitudes to calibrated

magnitudes. This is often done by observing a standard star during the observing

session, that is a star whose actual magnitude is well known. We instead converted

our instrumental magnitudes measured by SExtractor to calibrated magnitudes by

referring to magnitudes measured in the SDSS. We did this by querying the SDSS

Catalog Archive Server (CAS) at http://cas.sdss.org for stars in the fields we ob-

served. We then found the magnitudes measured for these stars by SExtractor and
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the magnitudes measured for the same stars in the SDSS and found the median dif-

ferences. We were able to match stars between the APO and SDSS data by using the

IDL program CLOSE MATCH RA DEC [46] which compares celestial coordinates

to make a list of matching objects. Median differences were calculated between the

magnitudes measured in APO data and those measured in the SDSS for each field

in each filter.

A sample plot of magnitude differences is shown in Figure 3.2 and a full list

of offsets is provided in Table 3.2. Errors reported in Table 3.2 were found by

calculating Poisson errors (σo is the standard deviation of the differences between

Sloan and APO magnitudes and No is the number of data points):

error =
σo√
No

(3.1)

Once magnitude offsets were found, they were added to magnitudes measured in

APO data, converting them from instrumental magnitudes to calibrated magnitudes.

All magnitudes reported henceforth in this chapter include these offsets.

We finally also include in Figure 3.3 an image of SDSS J1209+2640 with circles

of radius r200. The two images show WIYN imaging alone and WIYN imaging with

APO imaging superimposed, indicating how much of the cluster was covered. Both

WIYN and APO images are color composites made of images taken in g, r and i

filters. We note that there are still small gaps in imaging; we quantify the area of

these gaps in Section 3.5.1. We also note that in several of the APO images there are

small dark regions near the center of the images: this was due to condensation on

the camera during February 20 observations; we saw no indication that this would

significantly bias our analyses and so did not pursue further efforts to remove them.
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Figure 3.2: A plot of magnitude offsets (Sloan magnitude - APO instrumental mag-
nitude) for SDSS J0900+2234.

Figure 3.3: An image of SDSS J1209+2640 before (left) and after (right) APO
imaging. In the ”after” image we superimpose APO imaging onto the WIYN image.
The large circle is a circle of radius r200.
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Table 3.2: The offsets added to SExtractor magnitudes in each band to convert
them to calibrated magnitudes. These were found from SDSS stars.

System Offset in g-band Offset in r-band Offset in i-band
SDSS J0900+2234-1 5.443 ± 0.036 5.560 ± 0.023 5.380 ± 0.018
SDSS J0901+1814-1 5.450 ± 0.026 5.584 ± 0.014 5.359 ± 0.013
SDSS J0957+0509-1 5.452 ± 0.028 5.582 ± 0.018 5.374 ± 0.016
SDSS J0957+0509-2 5.511 ± 0.091 5.596 ± 0.030 5.373 ± 0.011
SDSS J1038+4849-1 5.484 ± 0.26 5.605 ± 0.19 5.345 ± 0.19
SDSS J1209+2640-1 5.414 ± 0.026 5.546 ± 0.016 5.343 ±0.040
SDSS J1209+2640-2 5.524 ± 0.011 5.600 ± 0.016 5.411 ± 0.013
SDSS J1209+2640-3 5.424 ± 0.035 5.561 ± 0.025 5.389 ± 0.018
SDSS J1209+2640-4 5.538 ± 0.017 5.602 ± 0.014 5.393 ± 0.0094

SDSS J0900+2234-1 5.682 ± 0.027 5.771 ± 0.017 5.504 ± 0.016
SDSS J1209+2640-5 5.587 ± 0.069 5.723 ± 0.019 5.499 ± 0.018
SDSS J1209+2640-6 5.734 ± 0.16 5.762 ± 0.24 5.521 ± 0.30
SDSS J1209+2640-7 5.747 ± 0.12 5.807 ± 0.058 5.537 ± 0.026
SDSS J1209+2640-8 5.693 ± 0.029 5.740 ± 0.014 5.487 ± 0.020
SDSS J1209+2640-9 5.749 ± 0.044 5.765 ± 0.022 5.510 ± 0.017
SDSS J1318+3942-1 5.712 ± 0.031 5.738 0.019 5.502 ± 0.025
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3.4 Measuring Richness

Once we had catalogs listing calibrated object magnitudes, we could apply the

machinery developed for the WIYN images (see Chapter 2) to identify cluster galax-

ies found in these fields. We wrote an IDL program to apply (as in Chapter 2) 5

criteria:

1: r-i color of galaxy is less than 2σ different from cluster r-i color

2: g-r color of galaxy is less than 2σ different from cluster g-r color

3: galaxy is within radius of 1 h−1Mpc or r200

4: galaxy is no dimmer than 0.4L*

5: galaxy meets cuts to be considered a galaxy and not a star

3.4.1 Finding APO Red Sequence Colors

Ordinarily to find the red sequence r-i and g-r colors for galaxy clusters we

would make a color-magnitude plot and look for the emergence of a line of galaxies

of constant color. We could not do that with the APO data because only small

sections of the clusters were present in the images, since by design we only imaged

the outer regions of the clusters that were not imaged in the WIYN data. We also

could not simply use colors previously identified in WIYN data, as colors have some

dependence on observing site and instruments. Finally, we could not always directly

find the difference in magnitudes between WIYN and APO data as for some images
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there is almost no overlap between WIYN and APO. Thus we began with SDSS

cluster data, which covered all of the clusters we investigated here.

We had identified red sequence colors in SDSS data for all ten WIYN clusters.

We had also identified red sequence colors in WIYN; see Table 3.3 for these values.

In order to convert from SDSS colors to WIYN colors to APO colors, we used the

following equation (c always stands for color):

cAPO = cSDSS + (cAPO − cSDSS) + (cWIY N − cSDSS) (3.2)

We use this equation in order to convert from SDSS colors to WIYN colors to APO

colors, allowing us to use the complete coverage of SDSS but still make a comparison

between WIYN and APO. The differences between WIYN colors and SDSS colors,

i.e. (cWIY N − cSDSS)), were found by comparing the red sequence colors from the

two different data sets for the clusters. The quantities called (cAPO − cSDSS) were

found by matching galaxies brighter than i = 21.5 in SDSS and APO data and then

finding the median difference in both g-r and r-i colors. Matching was done using the

routine CLOSE MATCH RA DEC.pro. A plot of color difference vs. SDSS color

was made while calculating the median color difference; a sample plot is shown in

Figure 3.4. Final values for APO colors are shown in Table 3.4.

3.4.2 Finding Cluster Galaxies in APO Images

We finally wrote a program called APO richness.pro in IDL that read in cluster

centers of all clusters, the size of 1 h−1 Mpc or r200 in degrees, the value for 0.4L*,

the APO g-r and r-i colors for each image, and so on. It then applied the cuts

discussed at the beginning of this section to identify which galaxies were cluster
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Table 3.3: WIYN and Sloan colors for the clusters observed at APO and differences
between colors. Note that cWIY N -cSDSS means the difference between colors in
WIYN data and SDSS data.

Cluster WIYN
g-r

WIYN
r-i

SDSS
g-r

SDSS
r-i

g-r
cWIY N−
cSDSS

r-i
cWIY N−
cSDSS

SDSS J0900+2234 1.83 0.73 1.60 0.83 0.23 -0.10
SDSS J0901+1814 1.72 0.52 1.67 0.53 0.05 -0.01
SDSS J0957+0509 1.78 0.71 1.51 0.74 0.27 -0.03
SDSS J1038+4849 1.72 0.62 1.64 0.69 0.08 -0.07
SDSS J1209+2640 1.79 0.93 1.65 0.95 0.14 -0.02
SDSS J1318+3942 1.73 0.73 1.65 0.78 0.08 -0.05

Figure 3.4: A plot of SDSS color vs. color difference (cAPO − cSDSS) for SDSS
J1209+2640, Image 1.
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Table 3.4: Differences between APO and Sloan galaxy magnitudes and measured
APO colors.

Cluster g-r cAPO − cSDSS r-i cAPO − cSDSS APO g-r APO r-i
SDSS J0900+2234-1 -0.0041 ± 0.033 -0.047 ± 0.027 1.83 0.73

SDSS J0901+1814-1 -0.13 ± 0.024 -0.00026 ± 0.017 1.59 0.52
SDSS J0957+0509-1 -0.014 ± 0.023 0.0035 ± 0.021 1.77 0.71
SDSS J0957+0509-2 -0.039 ± 0.028 -0.014 ± 0.023 1.74 0.70
SDSS J1038+4849-1 -0.013 ± 0.041 0.033 ± 0.018 1.71 0.65
SDSS J1209+2640-1 -0.032 ± 0.026 -0.019 ± 0.021 1.76 0.91
SDSS J1209+2640-2 0.044 ± 0.027 -0.032 ± 0.020 1.83 0.90
SDSS J1209+2640-3 -0.065 ± 0.040 -0.048 ± 0.031 1.73 0.88
SDSS J1209+2640-4 -0.017 ± 0.032 -0.029 ± 0.021 1.77 0.90
SDSS J0900+2234-1 0.0047 ± 0.043 0.0012 ± 0.028 1.83 0.68
SDSS J1209+2640-5 0.0070 ± 0.025 -0.043 ± 0.020 1.80 0.89
SDSS J1209+2640-6 0.078 ± 0.022 -0.053 ± 0.015 1.87 0.88
SDSS J1209+2640-7 0.022 ± 0.023 -0.028 ± 0.017 1.81 0.90
SDSS J1209+2640-8 -0.0076 ± 0.027 -0.039 ± 0.017 1.78 0.89
SDSS J1209+2640-9 0.024 ± 0.019 -0.037 ± 0.019 1.81 0.89
SDSS J1318+3942-1 0.022 ± 0.029 -0.067 ± 0.024 1.75 0.66

galaxies and which ones were not. In addition this routine matched APO galaxies

to galaxies identified as cluster galaxies in WIYN that overlapped with the APO

images. Thus we were able to identify how effective the routine was at identifying

cluster galaxies since we had some regions of the images in which we knew which

galaxies should be considered cluster galaxies.

For the WIYN-APO overlap region of each APO image, there were three classes

of galaxy:

1. Galaxies considered cluster galaxies in APO and in WIYN (matched)

2. Galaxies considered cluster galaxies in APO only (APO only)

3. Galaxies considered cluster galaxies in WIYN only (missed)
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Figure 3.5: The output plot from APO richness.pro for SDSS J1209+2640, Image
6. This shows galaxies matched with cluster galaxies in WIYN (green) considered
cluster galaxies in APO only (white) and considered cluster galaxies in WIYN only
(red). The green vertical line and red horizontal line are the cluster g-r and r-i color,
respectively.

For each cluster, the program made a plot of these three types of galaxies, shown

in Figure 3.5. By varying the values of APO red sequence color up and down, we

identified what cluster colors produced the highest rate of matched galaxies and the

lowest possible rates of APO only or missed galaxies. Thus the final values for APO

colors are slightly different than those given in Table 3.4. We list the numbers of

each of the three types of galaxies as well as the final values for red sequence colors

in Table 3.5.

Considering the total numbers in each category, we find that we missed as many

galaxies as we overcounted in the overlap region, leading us to believe that the
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Table 3.5: The numbers of galaxies that are (1) matched to WIYN cluster galaxies,
(2) found in APO only or (3) found in WIYN only. We also provide here the
final values for cluster colors, found by maximizing the number of matches between
WIYN and APO cluster galaxies. The quantities ∆g-r and ∆r-i mean the difference
between these final colors and the measured colors stated in Table 3.4 (i.e., these
values-previous).

Cluster Number
Matched

Number
APO
only

Number
Missed

APO
g-r

APO
r-i

∆g-r ∆ r-i

SDSS J0900+2234-1 5 3 5 1.84 0.76 0.01 0.03
SDSS J0901+1814-1 2 0 1 1.60 0.55 0.01 0.03
SDSS J0957+0509-1 1 0 0 1.76 0.71 -0.01 0
SDSS J0957+0509-2 1 0 1 1.73 0.70 -0.01 0
SDSS J1038+4849-1 0 0 0 1.69 0.65 -0.02 0
SDSS J1209+2640-1 2 0 1 1.73 0.91 -0.03 0
SDSS J1209+2640-2 1 2 1 2.03 0.83 0.20 -0.07
SDSS J1209+2640-3 0 0 0 1.76 0.90 0.03 0.02
SDSS J1209+2640-4 0 0 0 1.79 0.92 0.02 0.02

SDSS J0900+2234-1 1 1 1 1.83 0.73 0 0.05
SDSS J1209+2640-5 1 0 0 1.80 0.90 0 0.01
SDSS J1209+2640-6 5 5 3 1.87 0.82 0 -0.06
SDSS J1209+2640-7 3 2 2 1.80 0.91 -0.01 0.01
SDSS J1209+2640-8 8 2 0 1.77 1.02 -0.01 0.13
SDSS J1209+2640-9 0 0 1 1.81 0.89 0 0
SDSS J1318+3942-1 2 1 0 1.75 0.66 0 0

TOTAL 32 16 16 - -
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method used to identify cluster galaxies would give a reasonable estimate in the

region beyond the overlap.

So we finally applied all cuts to the galaxies in the APO images and excluded

any galaxies that had previously been counted in WIYN. Thus we obtained richness

values for APO data only, values of both Ngals and N200 (see Table 3.6).

3.5 The Accuracy of the Area Extrapolation

Finally we can use these data to consider the accuracy of the area extrapolation

used in 2. We obtain final richness values for each cluster by adding the cluster

galaxies found only in APO data to cluster galaxies found only in WIYN data. We

can then compare these values to those obtained by using Equation 2.3 to extrapolate

richness values (see Table 3.8).

However, before we make final conclusions, there are two more factors to consider:

First, even with APO imaging, there are still small parts of the clusters for which

no imaging was obtained; second, we must quantify uncertainties in our richness

measurements.

3.5.1 How Much Area was Missed in APO?

In order to determine how much cluster area was still missed even with the new

imaging, we used DS9 regions as discussed in Section 3.2.1. We superimposed square

regions that matched the size of the APO images over circular regions representing

areas of radius r200 or 1 h−1 Mpc and looked for any space that was not covered. If

space was not imaged in either APO or WIYN, then we fit that area with a polygonal
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Table 3.6: Final numbers of cluster galaxies found in APO data but not in WIYN
data. By Ngals and N200, we mean galaxies meeting criteria to be cluster galaxies
and within 1 h−1 Mpc or r200, respectively, but only present in APO images.

Cluster Ngals N200

SDSS J0900+2234-1 0 0
SDSS J0901+1814-1 1 0
SDSS J0957+0509-1 1 1
SDSS J0957+0509-2 1 2
SDSS J1038+4849-1 0 0
SDSS J1209+2640-1 0 4
SDSS J1209+2640-2 0 1
SDSS J1209+2640-3 0 14
SDSS J1209+2640-4 0 6

SDSS J0900+2234-1 0 0
SDSS J1209+2640-5 0 10
SDSS J1209+2640-6 0 8
SDSS J1209+2640-7 0 4
SDSS J1209+2640-8 0 3
SDSS J1209+2640-9 0 4
SDSS J1318+3942-1 0 1

TOTAL 3 58

Total By Cluster
SDSS J0900+2234 0 0
SDSS J0901+1814 1 0
SDSS J0957+0509 2 3
SDSS J1038+4849 0 0
SDSS J1209+2640 0 54
SDSS J1318+3942 0 1
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Table 3.7: Comparison of values for Ngals and N200 from APO and WIYN data
combined (Measured) and from WIYN only, using extrapolation (Predicted). The
values given for ∆Ngals or ∆N200 are those from combined richness minus those from
extrapolated richness (i.e., NA+W − Nex.). Thus negative values indicate that the
extrapolated value was higher than observed data while positive values indicate the
extrapolated value was lower than the observed data.

Cluster Measured
Ngals

Predicted
Ngals

∆Ngals Measured
N200

Predicted
N200

∆N200

SDSS J0900+2234 28 28 0 29 30 -1
SDSS J0901+1814 15 15 0 11 11 0
SDSS 0957+0509 30 29 1 36 36 0
SDSS J1038+4849 15 16 -1 14 15 -1
SDSS J1209+2640 101 101 0 199 214 -15
SDSS J1318+3942 23 24 -1 25 25 0

region. The advantage of polygonal regions is that they can have as many vertices

as necessary to fit a region of unusual size. An image of how we did this for SDSS

J1209+2640 is shown in Figure 3.6. Note that in this figure we display both an area

of radius r200 and the nine APO pointings (circle and squares, respectively). The

solid green areas represent the area for which there is still no image information.

Once we fit polygonal regions to the areas off of the images, we used a Fortran

routine from C. Peng [67] called Fillpoly.f. This routine will take the vertices of

a polygonal DS9 region and fill in the area with pixels. Fillpoly.f was designed to

create masks when using Galfit (which we describe in Chapter 4). We did this once

for each individual piece of missing area and then counted pixels in each piece, finally

summing them all. This gave us the total area not imaged in units of pixels. Finally

we found r200 and 1 h−1 Mpc in pixels and found the total number of pixels in the

entire cluster area by using A = πr2, with r in pixels. By comparing the number of

pixels in the missing area to the number of pixels in the total area we were able to

find the percentage of coverage of the cluster.
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Figure 3.6: The WIYN image for SDSS J1209+2640 with several regions superim-
posed. The large red circle represents an area of radius r200 and the red squares
represent the locations of the nine pointings for this cluster done at APO. The solid
green areas are the areas for which there is still no image data.
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3.5.2 Consideration of Errors

Finally we consider errors both in values predicted by the extrapolation equation

and in values measured from WIYN and APO data. First, for WIYN data we

consider the error in richness values in a slightly different way than in Section 2.3.2.2.

Previously we found the error on richness by finding richness values in 3 different

SExtractor magnitude apertures (MAG AUTO, 2 ′′MAG APER and 3 ′′MAG APER). We then

found the standard deviation in the 3 values and took this as the error on the richness

value. When we extrapolated richness values using Equation 2.3, we found error by

using this equation, assuming that error scales up with richness (subscript ac means

area corrected, using Equation 2.3):

N200 ac err = N200 ac
N200 error

N200

(3.3)

Another approach (which we use here) would be to take the error in richness

in two pieces, error in richness values on the CCDs and error in richness values

extrapolated off the CCDs. For error in richness on CCDs we continue to use the

standard deviation in measurements in different apertures, but we also add another

element to track intrinsic scatter in richness, taking the square root of each data

value. Thus

Ngals on CCD err =

√
σ (Ngals values)2 +

(√
Ngals

)2

(3.4)

For the area off the CCD, we note that the number of galaxies found off the

CCD in Equation 2.3 depends on the fraction of cluster area on the CCD, so the

standard deviation does as well. Thus we write down the standard deviation as
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(where subscript A represents on the CCD, subscript B represents off, Ti means

total area of ith annulus, Ai means area of annulus on CCD and NAi means number

of cluster galaxies observed in WIYN data in ith annulus):

σNgals off CCD =

√√√√ 6∑
i=1

NAi

(
Ti − Ai
Ai

)
(3.5)

We finally add in quadrature both the richness uncertainty for on the CCD (Eq.

3.4) and that for off the CCD (Eq. 3.5)). The error bars on richness predictions in

Figure 3.7 and error values in Table 3.8 are produced in this way.

To find errors on richness values combining APO and WIYN measurements, we

add in quadrature Poisson errors (square root of data value) for APO measurements

to errors from Equation 3.4.

3.5.3 Final Values

In Table 3.8 we present the total imaging coverage of each cluster and also the

total number of galaxies found from WIYN and APO data. To obtain these numbers

we took the total number of galaxies counted in WIYN and in APO and scaled these

numbers up to reflect the amount of area still not imaged, following the equation

Ngals(observed)

Percent imaged
=
Ngals(total)

100%
(3.6)

In Figure 3.7 we compare the total richness measurements taken from APO and

WIYN data (”measured”; on x-axis) to predictions from Equation 2.3 (”predicted”;

on y-axis). The green line is the y=x line and errors are 2σ, with σ being the

total error found following the methods of Section 3.5.2. Note that the observed
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Table 3.8: Total imaging coverage of each cluster and final results for measured and
extrapolated richness.

Cluster Total
Cover-
age for
Ngals

Total
Cover-
age for
N200

Measured
Ngals

Predicted
Ngals

Measured
N200

Predicted
N200

SDSS J0900+2234 100% 99.4% 28 ± 6.2 28 ± 6.2 29 ± 7.1 30 ± 7.1
SDSS J0901+1814 96.5% 100% 16 ± 5.2 15 ± 5.1 11 ± 3.6 11 ± 3.6
SDSS J0957+0509 100% 100% 30 ± 8.9 29 ± 8.8 36 ± 6.8 36 ± 6.7
SDSS J1038+4849 99.1% 100% 15 ± 4.0 16 ± 4.0 14 ± 3.9 15 ± 3.9
SDSS J1209+2640 100% 93.5% 101 ± 13.2 101 ± 13.2 213 ± 16.1 214 ± 27
SDSS J1318+3942 99.5% 99.1% 23 ± 4.9 24 ± 5.0 25 ± 5.9 25 ± 5.8

final numbers closely follow predictions, with all data points falling on the y=x line.

Thus we conclude that the extrapolation relation, Equation 2.3, is highly accurate

as the measurements obtained using the APO follow-up observations match the

predictions exquisitely.

3.6 New Imaging of a Foreground Cluster

In our analysis of images of SDSS J1209+2640, we noticed in Image 9 (taken on

16 Mar) that there was a collection of galaxies surrounding a bright elliptical galaxy,

but that none of them were marked as cluster members for SDSS J1209+2640.

Upon further investigation we determined that this was in fact a separate cluster

that happens to overlap with SDSS J1209+2640 but is a foreground object. A

search of the NASA/IPAC Extragalactic Database (NED) showed that this cluster

was known, although as far as we can determine this is the best imaging that

exists for this cluster. This cluster was part of two 2010 cluster catalogs based

on SDSS Data Release 6, J. Hao’s gmBCG cluster catalog [39] and Wen, Han &
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Figure 3.7: A comparison of richness values measured in APO data after corrections
for missing area (”measured”) against richness values predicted by WIYN measure-
ments with area extrapolation (”predicted”). The green line is the y=x line.

Li’s cluster catalog [92]. We refer to this cluster by the name from the first paper,

SDSS J120947.0+264354. This paper gives a photometric redshift of this cluster as

z=0.321209. Since the (spectroscopic) redshift of SDSS J1209+2640 is z=0.5580, it

is clear that SDSS J120947.0+264354 is a foreground object, not associated with

SDSS J1209+2640.

We found an image of this location in the SDSS, this is shown in Figure 3.8.

At RA and DEC of (12:09:46.952, +26:43:55.89) there is what appears to be the

BCG for this cluster. It shows evidence of being composed of two separate elliptical

galaxies, although they blend together. Another slightly bluer galaxy is found very

near the BCG(s). A number of smaller elliptical galaxies are clustered around the

BCG(s).

In Figure 3.9 we show a section of the APO image of this cluster. Finally, in

Figure 3.10 we present the WIYN image of SDSS J1209+2640 next to the APO

image of SDSS J1209+2640, Image 9. The circles on the images represent an area

of radius 1 h−1 Mpc. Note that the circle showing 1 h−1 Mpc is larger for SDSS
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Figure 3.8: An image of SDSS J120947.0+264354 from the SDSS.

Figure 3.9: An image of SDSS J120947.0+264354 from the APO data, Image 9 of
SDSS J1209+2640. This image has dimensions of 100′′ square. Note the BCG near
the center, with a bluer galaxy above it.
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Figure 3.10: An image of SDSS J120947.0+264354 in the APO image of SDSS
J1209+2640, Image 9 (upper left) placed next to the WIYN image of SDSS
J1209+2640. The superimposed circles indicate an area of radius 1 h−1 Mpc.

J120947.0+264354 since this cluster is at lower redshift (and therefore closer to us).



CHAPTER 4

DEVELOPING A HIGHER-REDSHIFT

MASS-RICHNESS RELATION

What could be more beautiful than the heavens, which contain all beautiful things?–

Nicolaus Copernicus

4.1 Introduction

4.1.1 Mass-Richness Relations

As discussed in Chapter 1, when observing a galaxy cluster, a number of prop-

erties can be measured directly, including cluster richness (the number of galaxies

in the cluster), the brightness of each of the cluster galaxies, the morphologies of

cluster galaxies and the galaxy star-forming rate. However some important quanti-

ties cannot be measured directly but must be inferred from measurable properties.

Mass is one such quantity. Thus instead we measure quantities that can be related

to mass; these are called mass proxies. Cluster richness is commonly used as a

mass proxy, but in order for it to give meaningful results, the relation between mass

and richness must be calibrated. This calibration is referred to as a mass-richness

relation.

Methods of determining cluster mass are discussed more in § 1.5.1. As discussed,

methods of finding cluster mass include X-ray temperature, cluster velocity disper-
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sion, frequency bias caused by the Sunyaev-Zeldovich effect and tangential shear

caused by weak lensing. Weak lensing can cause a systematic change in the ellip-

ticities of many galaxies behind the galaxy clusters (see Chapter 1); this observed

change is called shear. As discussed in Chapter 1, only tangential shear is produced

by weak lensing, so we expect no signal in orthotangential or cross shear. Since the

observed shear is related to cluster mass, weak lensing can provide a measure of

cluster mass. However often weak lensing nearby individual clusters does not pro-

vide the statistics for a significant measure of mass. Therefore we can use stacked

weak lensing, where shear is measured for galaxies nearby multiple clusters within

a particular range of richnesses and redshift and the shear signal is added together

for each richness and redshift bin. The larger numbers of galaxies make it possible to

obtain a reliable measurement of mass. Tangential shear is found for a combination

of galaxy clusters and source galaxies, where source galaxies are galaxies nearby the

cluster in projection, but at a larger redshift than the cluster. The source galaxies

are the galaxies whose shape is measured, and the mass associated with the clusters

is the cause of the tangential shear that describes the shape variation.

We observed stacked weak lensing shear as well as cluster richness in three data

sets: the coadd of Stripe 82 of the Sloan Digital Sky Survey (SDSS), the Blanco

Cosmology Survey (BCS) and the Dark Energy Survey (DES) Science Verification

(SV) data. These are important results because all of these data sets reach to

higher redshift (median ≈ 0.6) than previous surveys such as the Sloan Digital

Sky Survey (median z = 0.25), where the best previous measurement of the mass-

richness relation was done.

In § 4.1.2 we describe previous measurements of mass-richness relations at lower

redshift. In § 4.2 we describe the properties of our three data sets. In § 4.3 we

describe measurements of cluster richness. In § 4.4 we describe how stacked weak
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lensing shear measurements were done and how mass was found from shear re-

sults. In § 4.5 we describe systematics that introduced uncertainties into our mass

measurements and how we compensated for them. In § 4.6 we describe null tests

conducted to check that the weak lensing shear signal is real, and will not appear

when there is no source of signal. In § 4.7 we present our results for mass-richness

relations for the Stripe 82 coadd including each of the systematics individually and

then altogether. In § 4.8 we present mass-redshift and mass-concentration relations

for the Stripe 82 coadd. Finally in § 4.9 we present mass-richness relations for BCS

and DES-SV data.

4.1.2 Previous Work

Johnston et al. (2007) [47] and Sheldon et al. (2007) [76] present average shear

profiles from stacked weak lensing measurements around about 130,000 galaxy clus-

ters at median redshift of 0.25 found in the SDSS. These clusters were taken from

the maxBCG cluster catalog [52]. For richness, they measure N200, the number of

cluster galaxies inside radius r200; r200 is given by our Equation 2.4. To fit weak

lensing shear, they find the quantity ∆Σ, which is [95]:

∆Σ = Σ(x)− Σ(x) = Σcritγ (4.1)

Here x = r/rs, where r is the radius and rs is the scale radius (see 1.7.2.3). Σ(x) is

the mean surface mass density inside x and Σ(x) is surface mass density at position

x. Σcrit is the critical surface mass density, defined in Chapter 1. Finally γ is the

observed shear.
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Johnston et al. fit the shear profiles with a mathematical expression that includes

all of the major expected contributions to the shear. Their expression is

< ̂∆Σ(R) >=
M0

πR2
+pc〈∆ΣNFW 〉(R)+(1−pc)〈∆Σ2

NFW 〉(R)+B∆Σl+∆ΣNL (4.2)

The brackets around ̂∆Σ(R) indicate that this quantity is averaged over the prob-

ability distribution of halo masses. The first term describes the mass of the central

brightest cluster galaxy (BCG). The second term is the contribution from the dark

matter halo, described by an NFW profile (see Section 4.2). The quantity pc is the

fraction of correctly centered halos; this needs to be considered because the BCG is

taken to be the cluster center, but in some fraction of clusters, the BCG will not be

at the center of the halo. Johnston et al. give

pc(N200) ≡ 1

1 + exp(−q)
(4.3)

where

q = ln(1.13 + 0.92(N200/20)) (4.4)

Thus the second term includes the correctly centered halos and the third term

includes the miscentered halos. In the third term the quantity ∆Σ2
NFW is the NFW

profile from the dark matter halos where the BCG is miscentered and 1− pc is the

fraction of halos that contain a miscentered BCG. The fourth term describes the

contribution from neighboring dark matter halos. ∆Σl is the shear signal produced

by neighboring halos and B is the bias parameter:

B ≡ b(M200, z)Ωmσ
2
8D(z)2 (4.5)
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The term b(M200, z) is the linear bias parameter and D(z) is the linear growth factor,

which is a function of the scale factor a. Finally the fifth term in Equation 4.2 is the

contribution from non-linear shear. These different contributions to the measured

shear signal have different strengths at different radii. Figure 8 in Johnston et al.

(our Figure 4.1) shows the contribution of each quantity as a function of radius.

After finding cluster masses (M200) as a function of richness, Johnston et al. fit a

power relation to their results. Their final mass-richness relation is

M200(N200) = M200|20(N200/20)αN (4.6)

where

M200|20 = (8.8± 0.4stat ± 1.1sys)× 1013h−1M� (4.7)

and

αN = 1.28± 0.04 (4.8)

Simet et al. (2011) [77] present measurements of weak lensing shear in the SDSS

Stripe 82 (see Section 4.2.1). They use the same maxBCG catalog as Johnston et al.

but they use only clusters found in the Stripe 82 coadd. The clusters, being a subset

of the clusters used in Johnston et al., have the same median redshift of ≈ 0.25, but

more source galaxies can be observed as the Stripe 82 as the magnitude limits are

18 < i < 24. Simet et al. consider many of the same systematics as Johnston et al.,

including halo miscentering. They consider miscentering of the BCG by creating

a set of mock catalogs from their data. These catalogs preserve galaxy positions,

shape errors, photometric redshifts and more but replace actual source galaxy shears

with expected shears from a shear model. Since the shear model is produced by a

halo model, they control how many of the halos have a miscentered BCG and can
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Figure 4.1: Johnston et al. (2007) [47] Figure 8, showing the contribution of different
elements of their shear model (Equation 4.2) at different radii for 12 different N200

richness bins. Red is the central BCG (term 1), green is the NFW halo profile (term
2), orange is the miscentered halo component (term 3), blue is the neighboring halos
(term 4) and purple is the non-linear contribution (term 5). Magenta curves show
the sum of these components.
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obtain information on the actual halo masses. They then fit an NFW profile to the

mock data and find that the measured mass is underestimated due to miscentering

of the BCG. They then find a relationship between the richness and the scale of

miscentering:

M200,true

M200,mis

= 1.44± 0.17

(
N200

20

)−0.21±0.18

(4.9)

They also find a mass-richness relation that is a power law, with

M200|20 = (9.56± 0.75)× 1013h−1M� (4.10)

and

α = 1.10± 0.12 (4.11)

4.2 The Data Sets

4.2.1 Stripe 82 of the Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) began in 1998 and sought to image 10,000

deg2 in the North Galactic Cap and to take spectroscopy of one million galaxies

and one hundred thousand quasars in this same region [4]. The SDSS uses a 2.5-m

telescope located at Apache Point Observatory. The SDSS uses a camera with 24

2048x2048 CCDs of pixel scale 0.396′′. Stripe 82 is a section of the footprint of the

Sloan Digital Sky Survey (SDSS). The complete footprint of the SDSS is shown in

Figure 4.2; note that Stripe 82 falls along the celestial equator between declinations

of −1.25◦ and +1.25◦. Stripe 82 was imaged repeatedly during the fall when the

North Galactic Cap was not observable. The main SDSS area reaches r ≈ 22.4 and
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Figure 4.2: The Sloan Digital Sky Survey footprint (as of DR7) [78]. Note that
each imaging section is referred to as a ”stripe”, which is made of two ”strips”. The
red vs. green bands denote the 2 strips, which together make a stripe. Stripe 82 is
found along the celestial equator (declination of 0).
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median seeing of 1.4′′, while Stripe 82 reaches to r ≈ 24.4 and median seeing of 1.1′′.

This is possible as about 20 runs were taken of each field in the Stripe 82 coadd and

these data were then coadded.

Source galaxies were selected from a catalog of luminous red galaxies provided

by H. Lin. There are 5,875,133 objects in this catalog, ranging from 0.3 ≤ z < 1.60

and i-band magnitude 18 < i < 24. All galaxies in this catalog include shape

information measured by the SDSS pipeline.

4.2.2 The Blanco Cosmology Survey

The Blanco Cosmology Survey (BCS) was a survey conducted from 2005-2008 at

the Cerro Tololo Inter American Observatory (CTIO) Victor M. Blanco Telescope

using the Mosaic2 Imager [24]. The Mosaic2 imager was a prime focus camera that

uses eight 2048x4096 CCDs. The field of view of the camera was 26.8 ′ per side, and

the total camera area is about 0.4 deg2. The BCS project was awarded 60 nights

of observations [24] using the Blanco at CTIO. Images were taken using SDSS griz

filters.

There were two primary fields imaged in this survey, one at 5.5 hours right as-

cension and one at 23.5 hours; both fields were at declination about −55◦. The

total area of the survey is about 75 deg2. These particular fields were chosen as

they overlap with other surveys, including the South Pole Telescope (SPT), the Ar-

cminute Cosmology Bolometer Array Receiver (ACBAR), the Atacama Pathfinder

Experiment (APEX) and the Atacama Cosmology Telescope (ACT).

Source galaxies in BCS were found by running SExtractor on the original BCS

PSF-homogenized images and matching information taken from this run to data
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provided by the BCS collaboration. We found values for image moments, RA,

DEC and FLUX RADIUS by running SExtractor. We then matched these objects

to data from the BCS collaboration on RA, DEC, magnitudes, SExtractor flags,

SPREAD MODEL and photometric redshift. We ultimately put all of these parameters

together in two separate source galaxy catalogs, one for the 5 hr field and one for

the 23 hr field. There are 1,794,195 galaxies in the BCS source galaxy catalog, with

photometric redshifts in the range 0.006 < z < 2.96 and i-band magnitude in the

range 18 ≤ i < 23.5. We calculated ellipticities which we called ME1CORR and

ME2CORR by using Equation 1.76.

4.2.3 The Dark Energy Survey–Science Verification

The Dark Energy Survey (DES) is a survey to learn more about the nature of

dark energy by taking high-precision photometric data of 5000 square degrees of

the southern sky. DES also uses the Blanco telescope, having constructed the 570

megapixel, Dark Energy Camera (DECam) and installed it on the Blanco in place

of Mosaic2. DECam uses 62 2kx4k imaging CCDs. (See Figure 4.3 for an image of

the dome (left) and the camera at the prime focus of the telescope with the author

(right).) This survey will study dark energy using four major complementary meth-

ods: type Ia supernovae, baryon acoustic oscillations, weak gravitational lensing and

galaxy cluster counting. DES saw first light in September 2012 and then continued

to take data for small sections of its footprint during science verification (SV). I use

about 100 square degrees of data of DES SV-A1 (area 1) for measurements of the

mass-richness relation. DES began full survey operations in August 2013 and will

continue for at least five years.
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Figure 4.3: Left: An image of the dome of the Blanco telescope where DES is being
conducted. Right: DECam and the author.
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Figure 4.4: The highest richness cluster in the Stripe 82 coadd cluster catalog, with
NV T = 127. This is SDSS J0104+0004 (from the SDSS Image Server).

Source galaxies in DES-SV were found using a catalog of galaxies provided by

H. Lin. There are 1,772,862 objects in this catalog with photometric redshifts in

the range 0.01 < z ≤ 2.0 and i-band magnitude in the range 18 ≤ i < 23.5.

All source galaxies included shape information found by SExtractor in the DES

reduction pipeline.

4.3 Measurements of Cluster Richness

M. Soares-Santos provided us with a catalog of 19,376 clusters found in the

Stripe 82 coadd using a Voronoi tessellation (VT) cluster finder. (The highest

richness cluster in the sample is shown in Figure 4.4.) Voronoi tessellation is a

method of relating distances between different locations in a large array of points
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(called seeds). In a Voronoi tessellation, regions called Voronoi cells are defined in

which all points within that cell are closer to that seed than to any other seed. In

this method, the seeds would be galaxies. If the number and size of Voronoi cells

exceed certain criteria, then it is declared to be a cluster. This was found to be

a way of assembling a cluster sample with high purity and completeness while not

depending on galaxy magnitude or color [79]. The total number of cluster members

is defined by the number of objects within the overdense region in the VT method.

Thus the richness measure is not N200 but is instead a new richness measure called

NV T . The Stripe 82 coadd VT catalog is biased towards lower richness clusters as

the VT method is more likely to find these than the rarer high richness clusters.

We wanted to find an approximate relation between N200 and NV T both to

compare results for each and in order to use Equation 4.9, which depends on N200.

In order to do this, we found galaxy clusters listed both in the maxBCG catalog [52]

and in the Stripe 82 VT catalog. We found 163 galaxy clusters in both catalogs and

plotted the N200 from the maxBCG catalog against the NV T from the VT catalog.

The result is shown in Figure 4.5. It can be seen that there is not a clear relation

between NV T and N200. Nevertheless we tried to find an approximate relation by

fitting a power relation to the data (the power relation was a better fit than a simple

linear fit). The equation we obtained relating the two richness measures was:

N200 = 3.88± 0.105(NV T )0.621±0.00689 (4.12)

Bleem et al. [13] present a sample of 763 clusters found in the BCS data. These

clusters were found using a red sequence method presented by Gladders and Yee

(2000) [33]; note that this is the same method behind the maxBCG method we use in

Chapters 2 and 3. This method finds clusters by looking for overdensities of galaxies
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Figure 4.5: A plot of NV T vs. N200 for 163 galaxy clusters.
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in position, in color and in magnitude. That is, it looks for places where there are

more galaxies than normal of a similar color. Richness was measured using the

quantity λ, which is a statistic developed to minimize scatter in the mass-richness

relation [72].

Clusters in the DES-SV data were also found by M. Soares-Santos using the

Voronoi tessellation method. There are 27,230 clusters that were found in this

preliminary DES-SV VT catalog. As in the Stripe 82 catalog, most of these clusters

are found at low richness values. Due to the nature of DES as a higher redshift

survey than SDSS, there are more clusters at higher redshift in the DES-SV cluster

sample than in the Stripe 82 sample.

In order to compare λ to our other richness measurements, we found 206 clusters

that overlapped between the DES-SV cluster sample and the 763 clusters from Bleem

et al. Following the same method described above, we plotted NV T as a function of

λ, as seen in Figure 4.6. We found the relation between these variables to be

NV T = 0.194± 0.00935(λ)1.56±0.0143 (4.13)

In Figure 4.7 we include a Hammer-Aitoff projection map of the whole sky showing

the locations of our 3 data sets.

Finally we consider the richness and redshift ranges of the galaxy clusters. For

the 19,706 Stripe 82 coadd clusters the redshift range is 0 ≤ z ≤ 0.98 and the

richness range is 1 ≤ NV T ≤ 127. We imposed a criterion that cluster needed to

be at z = 0.1 or higher as below that significance of the NV T detections was low.

For the 763 BCS clusters, the redshift range is 0.13 ≤ z ≤ 0.75 and the richness

range is 10 ≤ λ ≤ 64.3. For the 27,230 DES-SV clusters the redshift range is

0.12 ≤ z ≤ 1.68 and the richness range is 1 ≤ NV T ≤ 538. In Figure 4.8 we show
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Figure 4.6: A plot of the richness parameter λ vs. NV T for 206 galaxy clusters.

histograms of richness and redshift for all three cluster samples. Note that all three

have the most clusters at redshifts above 0.5 while richnesses are dominated by low

values. These samples were deliberately chosen as they extend to higher cluster

redshift so that we could find the mass-richness relation at higher redshift.

4.4 Measurements of Cluster Mass

4.4.1 The Algorithm for Measurement of Shear

The quantity that can be directly observed in images of galaxy clusters is galaxy

ellipticity. In order to find tangential shear, we use the relations described in Section
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Figure 4.7: A plot of the whole sky showing the locations of the three datasets used
in this chapter. DES Y1C2 is the DES-SV data; Y1C2 stands for Year 1, Catalog
2.
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Figure 4.8: Histograms of redshift and richness for all three data sets.
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1.7.3. Tangential shear is related to the mass and concentration of the lensing mass

distribution. In order to find these quantities, we apply an NFW profile and find

the best fit mass and concentration that produce the observed shear. We did this by

using the equations given in Wright and Brainerd (2000) [95]. Weak lensing shear

as a function of radius predicted by the NFW model is given as

γNFW (x) =
ΣNFW (x)− ΣNFW (x)

Σcrit

(4.14)

Here x is a dimensionless radius equal to r/rs, where r is the distance from the

cluster center in the lens plane and rs is the scale radius defined in Chapter 1.

ΣNFW (x) is the surface mass density of the galaxy cluster’s dark matter halo in the

NFW model and ΣNFW (x) is the mean surface mass density of the halo. Putting in

Wright and Brainerd’s Equations 11 and 13 for ΣNFW (x) and ΣNFW (x) we obtain

their Equation 14 for shear predicted by the NFW profile:

γNFW (x) =



rsδcρc
Σc

g<(x) x < 1

rsδcρc
Σc

[10
3

+ 4 ln 1
2
] x = 1

rsδcρc
Σc

g>(x) x > 1

(4.15)

where

δc =
200

3

c3

ln(1 + c)− c/(1 + c)
(4.16)
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and

g<(x) =
8 arctanh(

√
(1− x)/(1 + x))

x2
√

1− x2
+

4

x2
ln
(x

2

)
− 2

(x2 − 1)
+

4 arctanh(
√

(1− x)/(1 + x))

(x2 − 1)
√

1− x2

(4.17)

and

g>(x) =
8 arctan(

√
(x− 1)/(1 + x))

x2
√
x2 − 1

+
4

x2
ln
(x

2

)
− 2

(x2 − 1)
+

4 arctan(
√

(x− 1)/(1 + x))

(x2 − 1)3/2

(4.18)

In all of these equations

x =
r

rs
(4.19)

and

r = DL(θ2
1 + θ2

2)1/2 (4.20)

The thetas above are image plane coordinates in the plane of the galaxy cluster.

In order to fit shear as a function of radius to an NFW profile, H. Lin wrote a

function in IDL called shearnfw. This function implements Equation 4.15 by using

the IDL routine lmfit. This routine takes in an independent variable, a dependent

variable and an array of parameters to fit for. The lmfit routine applies a least

squares fit to a non-linear function, in this case to the shearnfw function. The

independent variable was the distance of a source galaxy from the center of the

cluster, the dependent variable was the measured shear and the two parameters

being fit for were M200 and c200. The output of the function was a prediction of the

tangential or orthotangential shear from the NFW model as a function of distance

from the cluster center.
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The lmfit function also read in partial derivatives of the function in order to do

the fit. Two partial derivatives were output by shearnfw and input to lmfit, ∂γNFW
∂M200

and ∂γNFW
∂c200

. These derivatives are implemented as:

∂γNFW
∂M200

=
∂g

∂rs

∂rs
∂r200

∂r200

∂M200

(4.21)

and

∂γNFW
∂c200

=
∂g

∂rs

∂rs
∂c200

+
∂δc
∂c200

(4.22)

4.4.2 How the Algorithm was Applied

All of the above routines and others were assembled into an IDL program called

NFW.pro. At the start of this program, data was read in from one of the three data

sets, either the SDSS Stripe 82 coadd, BCS or DES. The data included information

on a set of clusters and a set of source galaxies. Each cluster would have a large

number of source galaxies nearby it (nearby in the same x-y plane, but at a higher

redshift); these source galaxies would have their ellipticities measured and thus

tangential shears calculated. All of these shears would be combined for clusters

in a particular redshift and richness bin and they would then be run through the

shearnfw fitting routine. We used 4 redshift bins:

• 0.1 < z ≤ 0.4 (low-z)

• 0.4 < z ≤ 0.7 (mid-z)

• 0.7 < z ≤ 1.0 (high-z)

• 0.1 < z ≤ 1.0 (all-z)
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Table 4.1: Richness bins for shear measurements in the Stripe 82 coadd. When all
bins have the same richness range we give only the value in the low-z bin, but these
are the values for all 4 bins.

Bin
Number

NV T

(Low-z)
NV T

(Mid-z)
NV T

(High-z)
NV T

(All-z)
1 1 – – –
2 2 – – –
3 3 – – –
4 4 – – –
5 5 – – –
6 6 – – –
7 7 – – –
8 8 – – –
9 9-10 – – –
10 11-12 – – –
11 13-15 – – –
12 16-20 – – –
13 21-30 – – –
14 31-40 – – –
15 41-50 41-50 41-140 41-50
16 51-60 51-60 none 51-60
17 61-70 61-70 none 61-70
18 71-80 71-127 none 71-80
19 81-127 none none 81-127

We also used a number of richness bins; these varied by redshift bin and were chosen

to maximize the number of clusters in each bin. The bins used for the Stripe 82

coadd are given in Table 4.1.

At the start of the program, several parameters were read in (see Table 4.2). The

parameters drad and nrad were used to control the total distance from the BCG

(in Mpc) to which the fitting routine would proceed. The maximum distance is

drad × nrad. The maximum and minimum i-band magnitudes for source galaxies

were controlled by maglim1 and maglim2. The fitting routine could be run multiple
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Table 4.2: A list of pre-set parameters and their values used in the program
NFW.pro.

Name Function Value
drad Radius step size (in Mpc) 0.1
nrad Number of radius steps 30

maglim1 lower limit i-band magnitude for source galaxies 20.5
maglime2 upper limit i-band magnitude for source galaxies 23.5

niter number of iterations of fitting 1
zfid fiducial lens redshift 0.55
zfids fiducial source redshift 0.75

times to improve the fit; this was controlled by niter. We set niter to 1 as the fitting

results were not found to improve significantly with more iterations.

At the beginning of NFW.pro, a loop was begun that would run through a series

of richness bins in a particular redshift range. For each individual cluster in a rich-

ness and redshift bin, the program would calculate angular diameter distance for

the cluster. It would then cut any source galaxies that are outside the allowed mag-

nitude limits, had photometric redshifts less than the cluster redshift plus 0.1, had

ellipticities greater than 2 and were farther than drad × nrad (usually 3.0 h−1Mpc)

from the BCG. It then calculates tangential and orthotangential ellipticities of the

source galaxies that passed all of these cuts using Equation 1.77. Finally ellipticities

were converted to shears by dividing by responsivity.

For the Stripe 82 coadd, we used

R = 2(1− σ2
SN) = 1.73 (4.23)

where σSN is the intrinsic galaxy shape noise in the SDSS, taken to be σSN = 0.37.

Shape noise describes the intrinsic variation in galaxy shapes, independent of any

measurement uncertainty. For the BCS and DES-SV data, we took R = 1. This
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value of responsivity was found by H. Lin by measuring ellipticities of a number

of source galaxies in images taken at the Blanco telescope using DECam and then

measuring the ellipticities of a number of source galaxies in the same region of the

sky using Hubble Space Telescope COSMOS data. Responsivity is related to the

ratio of ellipticities in the two data sets. Responsivity was found to be 1 for DES-SV

and BCS data.

For Stripe 82 data, PSF deconvolution was done by R. Reis using the Hirata-

Seljak method [43]. For DES and BCS data a simpler estimate was done [17]: we

identified the stars and found their second moments. We then subtracted these

second order moments from those of the galaxies. This method was facilitated in

BCS data as the data were PSF-homogenized.

We then calculated a scale factor to scale all cluster shears to the same redshift.

This was done because weak lensing shear is a function of redshift, and while all

clusters in a redshift/richness bin are at similar redshift, they are not at identical

redshift. This scaling puts all clusters at the same redshift. This scaling factor is

correction =
dSdL fiddLS fid

dS fiddLdLS
(4.24)

where dS, dL and dLS are angular diameter distances to the source, the lens and from

lens to source, respectively. The ones marked fiducial mean at the fiducial redshift,

which is zfiducial lens = 0.55 for the lens and zfiducial source = 0.75 for the source.

Thus all objects are scaled to these two redshifts. Equation 4.24 was obtained by

taking the ratio of Σcrit for the cluster redshift to the fiducial redshift. In other

words, what we wanted to find was a correction, where

γfiducial = γactual × correction (4.25)
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Then

correction =
γfiducial
γactual

(4.26)

Since the magnitude of tangential shear is proportional to Σ−1
crit and the other factors

in the shear are not functions of redshift, we can say the following:

correction =
Σ−1
crit fiducial

Σ−1
crit actual

(4.27)

since

Σcrit =
c2dS

4πGdLdLS
(4.28)

we are led to Equation 4.24.

After calculating shears for all source galaxies in a particular redshift/richness

bin and correcting them with Equation 4.24, the program prepares to fit the shears

to an NFW profile. First it calculates H(z) and ρcrit at the fiducial redshift. It also

needs to calculate Σ−1
crit using redshifts of the source galaxies and of the cluster. This

calculation is very important to the final results; we discuss analysis of systematics

that affect Σ−1
crit in § 4.5.3. Next the routine calculates the standard deviation in the

tangential and orthotangential shear values using the unscaled shear values. We use

unscaled shear values to avoid biasing by a large scale factor. This can be a problem

when the source galaxy redshift is very close to the fiducial redshift. We scale the

standard deviations after calculating them. We then calculate average tangential

shear by using inverse variance weighting, again to overcome the effects of large

scale factors. The equation we use is

γave =

N∑
i=1

[
γi

σ2
shear

]
1

N∑
i=1

[σ2
shear]

(4.29)
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for N source galaxies where σ2
shear is the standard deviation on the values of tan-

gential shear in that redshift and richness bin. Then the error on this average value

is found as

∆γave =

√√√√√ 1
N∑
i=1

1
σ2
shear

(4.30)

Finally we take the average shear values found from Equation 4.29 and the

predicted shear values found from Equation 4.15 and minimize the χ2 function:

χ2 =
N∑
i=1

[γi − γNFW (ri;M200; c200)]2

σ2
γ

(4.31)

The values of M200 and c200 that minimize the χ2 are taken as the model fits for

mass and concentration. The average values of tangential and orthotangential shear

are plotted as a function of radius along with the predicted values of tangential and

orthotangential shear. Two sample plots are shown in Figure 4.9, one for the low

redshift (0.1 − 0.4) bin with NV T = 6 and one for the high redshift (0.1 − 1.0) bin

with NV T = 11 − 12. Note that as would be expected, there are far more clusters

(555) for the lower richness NV T = 6 bin. For the higher richness NV T = 11 − 12

bin there are only 90 clusters. However there are more source galaxies (435, 759) in

the higher richness bin than in the lower richness (209, 784) bin. Note that in both

cases there is good evidence for a tangential shear signal, but orthotangential shear

is consistent with zero.

Finally in Tables 4.3, 4.4, 4.5 and 4.6 we present measurements of richness,

stacked cluster mass and concentration as well as reduced χ2 and the χ2 probability
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Figure 4.9: Upper: The shear profile for Stripe 82 coadd, high-z bin, NV T = 6.
Lower: The shear profile for Stripe 82 coadd, low-z bin, NV T = 11− 12.
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for each richness and redshift bin. The value of NV T given is the median of the NV T

values in that richness bin. The error on NV T is the range of NV T values, given by

∆NV T =
[max(NV T )−median(NV T )] + [median(NV T )−min(NV T )]

2
(4.32)

The error on the M200 values is the standard deviation on values of M200 output by

the lmfit routine in IDL. The error on c200 is also output as the standard deviation

from lmfit. The χ2
red we report here is the reduced χ2 for the null test of fitting

the weak lensing shear to 0 (see Equation 1.82 for the definition of χ2). Note that

reduced χ2 means χ2/dof , where dof means degrees of freedom. The number of

degrees of freedom is the number of data points minus the number of fit parameters

(here 2, M200 and c200). The χred we report here is not the same as the χ2
red used for

the fit to the NFW profile (Equation 4.31). What we are checking here is whether

the tangential shear profile is consistent with zero. If this is a good fit (reduced

χ2 ≈ 1) then there is no signal. If this is a bad fit (reduced χ2 > 1), then we have

cause to believe there is a tangential shear signal. The equation we use in the code

is

χ2 =

(
γave − 0

∆γave

)2

(4.33)

The χ2 probability is equal to

Prob(χ2
red > x) =

∫ ∞
x

χ2
red (4.34)

The resultant expresion is given as [6]

Prob(χ2, N) =

∞∫
χ2

2−N/2

Γ(N/2)
χN−2e−χ

2/2dχ′2 (4.35)
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where Γ(N/2) is the gamma function. This probability is the probability that a

function which does genuinely describe a set of N data points would give a value of

χ2 as large, or larger, than the one you already have. Another way of saying this is

that the χ2 probability is the probability of the correct fit being found outside of the

fit. Thus for a good fit the probability will be of order 0.5. We again implemented

the χ2 probability to test whether the tangential shear signal was consistent with

0. So a very small value of the χ2 probability would indicate the shear signal not

being consistent with 0 while a larger probability would indicate the shear signal is

consistent with 0. Note that in Tables 4.3, 4.4 and 4.6 the probabilities are all quite

small, which suggests that the fit to 0 is poor and there is measurable weak lensing

signal. In Table 4.5 many of the probabilities are higher, which suggests the weak

lensing signal is less clear for the high-z bin.

4.5 Systematics in Measurement of Cluster Mass in Stripe

82 Coadd

4.5.1 Central BCG

In our fitting of the mass and concentration, we fit an NFW profile to the dark

matter halo of the clusters. In so doing, we did not include a term for the mass

of the central BCG. Thus we wanted to try to estimate what effect the mass of

the BCG would have on the shear profile. To do this we ran the NFW.pro program

and excluded the central 0.1 h−1 Mpc. We did this as the mass of the BCG would

usually affect only the innermost regions of the shear profile, as shown in Figure 4.1.
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Table 4.3: Weak lensing shear fit results for low redshift clusters (0.1 ≤ z ≤ 0.4).
This table includes values for richness and error, mass (M200) and error, concentra-
tion (c200) and error, null test (fit to 0) reduced χ2 and corresponding probability
of fit.

NV T M200 c200

error
χ2
red Prob

1 ± 0 0.0147 ± 0.0100 4.87 ± 5.77 1.54 0.0306
2 ± 0 0.0505 ± 0.0145 2.52 ±1.16 1.83 0.00368
3 ± 0 0.0773 ± 0.0222 1.56 ±0.772 2.23 0.000126
4 ± 0 0.0729 ± 0.0330 0.890±0.628 1.73 0.00769
5± 0 0.139 ± 0.0417 1.066±0.541 2.39 0.000028
6 ± 0 0.125 ± 0.0389 2.28± 1.18 1.81 0.00421
7 ± 0 0.206± 0.0633 1.30± 0.704 1.99 0.000977
8± 0 0.0226 ± 0.0315 1.28± 2.88 2.13 0.000305

9 ± 0.500 0.0154 ± 0.0205 1.87 ± 4.17 2.40 0.000025
11 ± 0.500 0.500 ±0.103 0.926± 0.350 4.17 0
14 ±1.00 0.417 ±0.116 0.633 ±0.300 4.11 0
18 ± 2.00 0.331 ± 0.0954 0.993 ±0.506 2.45 0.000016
23 ± 4.50 0.400± 0.159 0.444± 0.289 2.65 0.000002
35 ± 4.50 1.15± 0.275 1.069 ±0.508 2.75 0.000001
46 ± 4.50 1.42 ± 0.326 1.45±0.646 2.49 0.000011
54± 4.50 2.65± 0.842 0.825 ±0.559 2.10 0.000386
65± 3.00 2.27 ±0.710 1.075 ±0.683 2.77 0.000001
78 ± 4.00 2.75 ±1.28 1.089± 1.046 1.81 0.00413
127 ± 14.0 2.41 ± 1.51 0.615± 0.835 1.26 0.157
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Table 4.4: Weak lensing shear fit results for mid-redshift clusters (0.4 ≤ z ≤ 0.7).
This table includes values for richness and error, mass (M200) and error, concentra-
tion (c200) and error, null test (fit to 0) reduced χ2 and corresponding probability
of fit

NV T M200 c200

error
χ2
red Prob

1 ±0 0.0564 ± 0.0315 0.777 ±0.635 1.48 0.0452
2 ± 0 0.00171 ± 0.00143 0.0000880 ±0.279 1.63 0.0165
3 ±0 0.0477 ± 0.0302 1.011 ±0.994 1.24 0.168
4 ± 0 0.187 ± 0.0500 1.87 ±0.831 1.92 0.00176
5 ± 0 0.114 ± 0.0607 1.092 ±0.961 2.14 0.000269
6 ± 0 0.198± 0.115 0.444± 0.377 1.98 0.00108
7 ± 0 0.217 ± 0.126 0.591±0.528 1.49 0.0413
8 ±0 0.522 ± 0.217 0.425 ±0.302 1.91 0.00194

9 ± 0.500 0.448 ± 0.132 1.17 ±0.626 2.31 0.000061
11± 0.500 0.725± 0.201 1.24 ±0.644 2.22 0.000140
14 ± 1.00 0.0241 ± 0.0705 0.827± 3.46 1.06 0.376
17 ±2.00 0.703 ± 0.205 1.330± 0.720 1.98 0.00109
24 ± 4.50 0.923 ± 0.294 1.13± 0.689 1.64 0.0155
35 ± 4.00 1.38 ± 1.045 0.423± 0.673 1.64 0.0152
44 ± 3.00 0.680 ± 0.649 6.83± 7.01 1.61 0.0183
54 ± 2.00 1.74 ± 0.886 1.45 ± 1.470 1.38 0.0825
63 ± 4.00 2.42 ± 2.023 0.450± 0.920 1.069 0.364
91 ± 7.50 0.898 ± 1.89 0.617 ±2.53 0.712 0.876
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Table 4.5: Weak lensing shear fit results for high redshift clusters (0.7 ≤ z ≤
1.0). This table includes values for richness and error, mass (M200) and error,
concentration (c200) and error, null test (fit to 0) reduced χ2 and corresponding
probability of fit

NV T M200 c200

error
χ2
red Prob

1 ± 0 0.00387 ± 0.0172 0.0232 ±0.163 0.921 0.590
2 ± 0 0.0378 ± 0.0747 0.432 ± 1.038 0.937 0.564
3 ± 0 0.294 ± 0.136 0.00541 ±0.253 1.49 0.0408
4 ± 0 0.0237 ± 0.0625 1.11 ± 4.31 1.22 0.189
5 ± 0 0.292 ± 0.174 3.49 ± 2.41 1.91 0.00192
6 ± 0 0.264 ± 0.204 1.72 ± 2.073 0.716 0.872
7 ± 0 0.307 ± 0.273 1.69 ± 2.37 0.553 0.977
8 ± 0 0.0818± 0.307 0.333 ± 1.58 0.892 0.636

9 ± 0.500 0.848 ± 0.442 1.28 ± 1.17 1.024 0.429
11 ± 0.500 0.351± 0.381 2.044 ± 3.33 0.814 0.753
14 ± 1.00 0.293± 0.608 0.0296 ±0.438 1.056 0.383
17 ± 2.00 1.85 ± 1.12 1.74 ± 1.67 0.961 0.526
24 ± 4.50 2.86 ± 2.75 0.167± 0.644 1.35 0.0983
34 ± 4.50 4.74± 4.43 4.20 ± 4.42 1.18 0.233
44 ± 5.00 0.0138 ± 1.11 0.349 ± 30.1 1.20 0.209
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Table 4.6: Weak lensing shear fit results for all redshift clusters (0.1 ≤ z ≤ 1.0). This
table includes values for richness and error, mass (M200) and error, concentration
(c200) and error, null test (fit to 0) reduced χ2 and corresponding probability of fit

NV T M200 c200

error
χ2
red Prob

1 ± 0 0.0263 ± 0.0131 0.861 ±0.622 1.59 0.0207
2 ±0 0.00610 ± 0.00693 0.970 ± 1.58 1.77 0.00576
3 ± 0 0.0633 ± 0.0211 0.783 ±0.388 2.86 0
4 ± 0 0.00261 ± 0.00663 1.36 ± 5.73 2.86 0
5± 0 0.143 ± 0.0409 0.697± 0.307 3.29 0
6 ± 0 0.152 ± 0.0415 1.026 ±0.474 3.031 0
7 ± 0 0.0128 ± 0.0175 1.65 ± 3.67 2.74 0.000001
8 ± 0 0.205 ±0.0841 0.401 ±0.240 2.72 0.000001

9 ± 0.500 0.296 ± 0.0537 1.39± 0.453 3.57 0
11 ± 0.500 0.546 ± 0.0884 1.051 ±0.317 5.68 0
14 ± 1.00 0.305 ±0.101 0.448± 0.231 4.30 0
17 ± 2.00 0.435 ± 0.0879 1.105 ±0.405 3.83 0
24 ± 4.50 0.526± 0.142 0.562 ±0.266 3.60 0
35 ± 4.50 1.22 ± 0.264 1.055 ±0.453 3.082 0
45 ± 4.50 1.38 ± 0.312 1.35 ±0.594 2.44 0.000018
54 ± 4.50 2.32 ± 0.617 1.031 ±0.564 2.52 0.000008
65 ± 4.00 2.32 ± 0.672 0.932 ±0.569 3.028 0
78± 4.00 2.70 ± 1.28 0.974 ±0.974 1.72 0.00844
99 ± 18.0 2.028 ± 1.23 0.647 ±0.833 0.936 0.566
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In Figure 4.10 we present the same shear profiles as shown in Figure 4.9 but now

excluding the central 0.1 h−1 Mpc.

In Figure 4.11 we compare the cluster masses found with and without the central

0.1 h−1 Mpc region of the clusters. The green line is the y = x line. The points

follow this line quite closely, with a few exceptions. Thus we conclude that the mass

of the central BCG has minimal impact on the shear profiles.

4.5.2 Halo Miscentering

When we fit an NFW profile to the dark matter halos of the galaxy clusters as in

Section 4.4.2, we take the BCG to be the center of the halo, measuring all distances

with respect to this. However, as discussed in Section 4.1.2, this is will be incorrect

some fraction of the time, as the BCG at times is not the center of the dark matter

halo. If mass is measured at a location outside the center of a halo, the mass found

for that halo will be less than it should be, since you are then treating the outer

region of a halo as the center. As this will bias mass measurements, our analysis

needs to include a consideration of the contribution from halos that are not centered

on the BCG. In order to consider halo miscentering we follow the analysis of Simet

et al. [77] in Equation 4.9.

We applied Equation 4.9 by taking the masses output by the fitting routine

as M200,mis and multiplying them by 1.44. Then the true masses (M200,true) are a

function of N200, following Equation 4.9. This process was done in our program

which calculated the final mass-richness relation, MASS RICHNESS.pro. Before we

calculated M200,true we had to convert NV T to N200 using Equation 4.12.



149

Figure 4.10: These are the same shear profiles as shown in Figure 4.9, but with
the central 0.1h−1 Mpc excluded. Upper: The shear profile for Stripe 82 coadd,
high-z bin, NV T = 6. Lower: The shear profile for Stripe 82 coadd, low-z bin,
NV T = 11− 12.
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Figure 4.11: M200 with and without the central 0.1 h−1 Mpc included in fitting. The
green line is the y = x line. Note that the points mostly follow this line.
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Figure 4.12: M200 values before and after miscentering correction. The green line is
the y = x line. Note that all masses are pushed upward by about 50%.

In Figure 4.12 we compare masses found without the miscentering correction to

masses found after the miscentering correction. Note that all masses are system-

atically higher. For each of the redshift bins we found the ratio of miscentering-

corrected mass to the uncorrected masses and then found the median of the ratios.

This median is shown in Figure 4.12 as increase. Note that the percent increases

are signficant and range from 48.7% to 52.6%. Thus we conclude that the mis-

centering correction causes masses to increase by about 50% and we conclude that

miscentering corrections must be part of our final mass determinations.
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4.5.3 Errors on Photometric Redshifts

All source galaxies in the sample had photometric redshifts measured for them.

A photometric redshift (or photo-z) is a redshift measured by observing magnitudes

in multiple filters and then using a neural network to estimate redshift based on this

information and a small set of spectroscopic redshifts (spec-z). The relation between

the magnitudes measured in different filters has a dependence on the redshift of an

object, thus photometry can be used to estimate redshifts. Photometric redshifts are

usually used in large surveys where it is implausible to find spectroscopic redshifts

for most objects. The advantage to this method is that redshifts can be estimated

for many objects, but the disadvantage is that errors on photometric redshifts are

significantly larger than those for spectroscopic redshifts.

Our weak lensing mass measurements depend on photometric redshifts because

tangential shear γ depends on Σ−1
crit, which is a function of redshift. Thus we need to

consider the errors which may be introduced into our measurements by uncertain-

ties on photometric redshifts. To do this, we assembled a sample of spectroscopic

redshifts to compare to.

We gathered public data from four data sets: The Stripe 82 coadd spectro-

scopic data; VVDS, DEEP2 and VIPERS. To access spectroscopy from the Stripe

82 coadd we used the SDSS-III CAS (http : //skyserver.sdss3.org/CasJobs/) to

query for spectroscopic redshifts for objects within Stripe 82 that had i-band mag-

nitudes 19 ≤ i ≤ 23.5, type=3 (galaxies) and zwarning=0. The last parameter is a

measure of the quality of the spectroscopic redshift. DEEP2 [23] is a project which

uses the Keck telescopes at Mauna Kea. The DEEP2 project seeks to understand

the evolution of galaxies and galaxy clusters by taking spectra of more than 50,000
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Table 4.7: The number of objects in each spectroscopic sample.

Spectroscopic
sample

Number of
objects

DEEP2 7916
SDSS-III 21775
VIPERS 2093
VVDS 2396

galaxies out to redshift greater than 0.7. The VIMOS VLT Deep Survey (VVDS)

[87] is a survey conducted using the VIMOS spectrograph on the Very Large Tele-

scope (VLT). VVDS observed 3 fields that observed 35,526 galaxies of magnitude

ranging between 17.5 and 24.75 and redshift between 0 and 6.7. The VIMOS Public

Extragalactic Redshift Survey (VIPERS) [86] is a survey of high-redshift objects

taken using the VIMOS spectrograph on the VLT. VIPERS observed two fields

of objects chosen from the Canada-France-Hawaii Telescope Legacy Survey-Wide

(CFHTLS-Wide) optical photometric catalog. In the first public data release of

VIPERS there are 54,756 galaxies with spectroscopy. In each of these surveys we

match the galaxy catalog with our own catalog of galaxies in Stripe 82. Our final

catalog of objects with spectroscopic redshifts is a list of all objects from these 4

sets of data that overlap with objects in the Stripe 82 coadd. The total number of

matched objects from each data set is given in Table 4.7, with 34,180 objects being

matched altogether. After eliminating redundancies among the data sets, we found

a total of 34,033 matched source galaxies with spectroscopic redshifts.

We first directly compared the photometric and the spectroscopic redshifts of

these 34,033 objects, shown in Figure 4.13. We find fairly good agreement between

spectroscopic and photometric redshifts, with this agreement decreasing at higher

redshift, as would be expected. In order to better constrain the effect of photo-z
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Figure 4.13: A comparison of photometric redshifts and spectroscopic redshifts for
the 34,033 objects in the Stripe 82 coadd for which we also found spectroscopic
redshifts. The red line is the y = x line.
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error, we analyzed how Σ−1
crit changed with different measures of redshift. We looked

at four different ways of finding Σ−1
crit and then we compared them to see how much

Σ−1
crit varied based on the method:

1. Find Σ−1
crit using the median photo-z of the source galaxies.

2. Find Σ−1
crit for each source galaxy and then take the average. Use all photo-zs.

3. Find Σ−1
crit for each galaxy that has a spec-z but use the photo-z for each of

those galaxies. Photo-zs must be weighted.

4. Find Σ−1
crit for each galaxy that has a spec-z but use the spec-z for each of those

galaxies. Spec-zs must be weighted.

We discuss each of these methods individually next and then compare results. Note

that Σcrit is given by Equation 1.45.

4.5.3.1 Σ−1
crit from Median Photometric Redshift

The original method (Method 1) by which we found Σcrit was to find photometric

redshift of the cluster and then find the median of all of the photometric redshifts of

the source galaxies. These redshifts were used to find the angular diameter distances,

then Σcrit was calculated from them. Recall that galaxies were considered source

galaxies if they were (1) within 3 h−1 Mpc of the BCG, (2) had i-band magnitude

between 20.5 and 23.5, (3) had ellipticities less than 2 and (4) had zsource > zcluster+

0.1. To test this method we produced a table of 1000 redshifts from 0.1−1.0, treating

these as cluster redshifts. We then took the first 1000 objects in the source galaxy

catalog and looped through these to find source galaxies to correspond to each of
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the ”clusters”; we only required that the source galaxies have 20.5 ≤ i ≤ 23.5 and

that zsource > zcluster + 0.1.

4.5.3.2 Σ−1
crit from All Photometric Redshifts

For Method 2 (using all photometric redshifts) we used almost the same method

as in the previous Section. However rather than finding the median source redshift,

for each cluster we looped through all source galaxies and found Σcrit for each. Then

for each cluster we found a mean value of Σcrit.

4.5.3.3 Σ−1
crit from Photometric Redshift of Galaxies with Spectroscopic

Redshifts

In Method 3 we began to use the 34,033 galaxies for which we had both photo-

metric and spectroscopic redshifts. However since we were using this small spectro-

scopic sample to find values of Σcrit for the full Stripe 82 coadd dataset, we had to

weight the small spectroscopic sample to match the distribution of the much larger

Stripe 82 sample. We utilized a routine in C++ called calcweights.cpp that was

developed by C. Cunha [22] that uses a nearest-neighbor code to estimate a redshift

distribution. The theory behind this code is described in Lima et al. (2008) [57].

This routine reads in two files, a training set that contains spectroscopic red-

shifts and observables for those galaxies with the spec-zs and a photometric redshift

distribution with the observables for all galaxies in the photo-z distribution. The

goal is to take a small data set with spectroscopic redshifts and match it to a photo-

metric distribution by comparing to a set of observables. We used four observables:
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Figure 4.14: Magnitude distributions from the full Stripe 82 data and from the
weighted spectroscopic sample. The black histograms are from the full Stripe 82
coadd photometric data while the red histograms are from the weighted spectro-
scopic sample.

g, r and i-band magnitude and photometric redshift. The routine allows you to vary

the number of nearest neighbors used; we chose 10. The output of the routine is

a set of weights; all the weights added together add to 1. The weight multiplied

by the total number of photometric objects gives the number of times each galaxy

with a spectroscopic redshift must be used to reproduce the distribution (e.g. on a

magnitude histogram) of the photometric set. Figure 4.14 displays the magnitude

histograms in g, r, and i-band for the entire Stripe 82 coadd source galaxy catalog.

In it we also overlay the distribution reproduced by using the 34,033 galaxies with

spectroscopic redshifts multiplied by the weights from this code.
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Now that we had these weights we could find Σcrit using Method 3. We produced

a cluster sample like before, ranging in redshift from 0.1 − 1.0. The source red-

shifts we used in Method 3 were the photometric redshifts that corresponded to the

34,033 galaxies with spectroscopic redshifts. Then for each cluster redshift we looped

through all the (photometric) source redshifts, producing a value of Σcrit × weight

for each. Finally we found the mean by finding for N source galaxies:

Σcrit ave =

N∑
i=1

Σcrit i × weighti
N∑
i=1

weighti

(4.36)

4.5.3.4 Σ−1
crit from Spectroscopic Redshifts

Finally in Method 4, we used almost exactly the same method as Method 3,

but this time the source redshifts were the spectroscopic redshifts. Again we found

Σcrit × weight for each source galaxy for a particular cluster redshift and again we

found the mean value of Σcrit for that cluster redshift by using Equation 4.36.

4.5.3.5 Conclusion

Our final product in each case was a lookup table of values of Σcrit for a set of

cluster redshifts ranging from 0.1 − 1.0. Finally we computed Σ−1
crit as that is the

quantity needed for lensing analysis. In Figure 4.15 we plot Σ−1
crit as a function of

redshift from 0.1− 1.0. In this plot the green line is from Method 1, the black line

is from Method 2, the red line is from Method 3 and the blue line is from Method

4. Note that the original method of finding Σ−1
crit (Method 1) deviates the most from
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Figure 4.15: Σ−1
crit as a function of redshift for each of the four different methods

described in this section. The green line is from Method 1, the black line is from
Method 2, the red line is from Method 3 and the blue line is from Method 4. All
values of Σ−1

crit are multiplied by 10−16 m2/kg.

the other methods. The red and the black lines (Methods 3 and 2) are the closest,

as they should be, since the red line describes the small photometric set projected

to represent the full photometric set using the weights.

We finally conclude that there are significant differences in Σ−1
crit depending on

which method of finding it we use. We also conclude, from the closeness of the

black and the red lines, that the weights code is highly effective at reproducing the

photometric distribution from the spectroscopic distribution. Therefore we finally
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will use the weighted distribution of spectroscopic redshifts (the blue line in Figure

4.15) to calculate Σ−1
crit.

4.5.4 Foreground Galaxy Contamination

4.5.4.1 The Problem

Weak lensing shear was measured on a sample of galaxies that were more distant

than each of the lensing clusters. In NFW.pro we measured shear only on galaxies

that were at a redshift that was 0.1 greater than cluster redshift. The redshifts used

for these cuts are photometric redshifts, and thus they have larger errors than if they

were spectroscopic redshifts. These errors can allow some galaxies that are actually

at lower redshift than the cluster (i.e., in front of the cluster) to be included in

the sample of background source galaxies. This would contaminate the shear signal

with galaxies that cannot exhibit shear. This is especially a problem nearby a

galaxy cluster, as cluster galaxies can be misidentified as background galaxies. The

contamination can be quantified by noting that average tangential shear (γave) in a

particular richness bin is

γave =

Nreal∑
i=1

γT real +
Nfake∑
i=1

γT fake

Nreal +Nfake

(4.37)

where real and fake refer to source galaxies and misidentified foreground galaxies

respectively and N means total number of galaxies found in that richness bin. We

expect ΣγT fake to sum to zero since this includes only shape noise and no actual

shear. However, the Nfake term remains, and we need to find a correction factor C(r)
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to account for it. What we want is to remove the Nfake term in the denominator.

Thus we need to multiply the measured γave by this term:

C(r) =
Nreal +Nfake

Nreal

(4.38)

But since we cannot directly measure Nreal, we can instead measure a number

density, the number of galaxies per area per cluster. Thus

C(r) =
Nreal +Nfake

Nreal

=
nmeasured(r)

nrandom
(4.39)

where n means number density. Thus nmeasured is the number of galaxies measured

per area per cluster at various radii around clusters; this tells us about Nreal +

Nfake because it accounts for all apparently source galaxies found nearby clusters

(including misidentified cluster galaxies). The second term, nrandom, is the number

of galaxies per area per cluster measured either in a random part of the sky not near

a cluster or far enough away from the cluster that the concentration of galaxies that

marks a galaxy cluster does not affect the number density. We will use the latter in

our corrections, but we will show that the two options (random part of sky or far

from cluster) give the same results.

4.5.4.2 The Solution

Number density n is measured by finding the total number of galaxies per area

per cluster in a given richness bin. To find this, we go to the output files from NFW.pro

and find the total number of galaxies that have passed the cuts to be considered

source galaxies in increments of 0.1h−1 Mpc of distance from the BCG. We then
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divide this number by the product of the area of an annulus at that increment of

distance from the BCG and the number of clusters in that richness bin. In other

words we measure

n =

Ntotal
Aannulus

Nclusters

(4.40)

where Ntotal is the total number of apparently source galaxies in that richness and

redshift bin, Aannulus is the area of the annulus and Nclusters is the number of clusters

in that bin. We initially used the same richness bins that we also used to measure

cluster masses (presented in Table 4.1), however we found that these bins contained

too few clusters at higher richness to allow us to have reasonable statistics for the

number density. Thus we instead made a set of bins that combined the higher

richness bins, as shown in Table 4.8.

When we first measured the number densities, we found that they all decreased

with radius, even for the random points, as seen in the upper panels of Figure 4.16.

This is unexpected behavior, as random points should overall have no dependence of

number density on position. It was found that this behavior was due to the nature

of Stripe 82 as a thin strip of observations (2.5 degrees wide in declination). For

clusters that were near the edge of the images the number of nearby galaxies that

could be measured would be limited to those that appeared on the images. As the

distance from the cluster center increased, the number of galaxies per area would

drop, not due to an actual decrease but simply because we had progressed outside

the available imaging region. To address this issue, we reran NFW.pro while rejecting

any clusters for which a circle of radius 3.0 h−1 Mpc would be off the imaging area.

The result was as shown in the lower panels of Figure 4.16. Since we reduced the

number of clusters used in this analysis in order to avoid biasing by clusters too close
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BEFORE CORRECTION

AFTER CORRECTION

Figure 4.16: A plot of number density as a function of radius for the first six richness
bins, done before (upper) and after (lower) removal of clusters that were close to
the edges of Stripe 82. This is for 0.4 ≤ 0.7. The green line is the median number
density for that richness bin. Note that in the lower panel, the data points form a
much flatter horizontal line, as is expected.
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Table 4.8: The bins used to measure galaxy number density, the number of clusters
(N ) in each bin and the number of clusters that passed cuts to be considered com-
pletely contained within the Stripe 82 data set. Low-z is 0.1 < z ≤ 0.4, mid-z is
0.4 < z ≤ 0.7, high-z is 0.7 < z ≤ 1.0 and all-z is 0.1 < z ≤ 1.0.

Bin
num-
ber

NV T

range
N

(low-
z)

N
(low-

z,
pass
cut)

N
(mid-

z)

N
(mid-

z,
pass
cut)

N
(high-

z)

N
(high-

z,
pass
cut)

N
(all-
z)

N
(all-
z,

pass
cut)

1 1 543 285 1205 1042 2355 1990 4103 3399
2 2 619 289 1310 1119 2515 2212 4444 3787
3 3 428 222 924 808 1693 1461 3045 2601
4 4 275 143 654 586 1168 1029 2097 1799
5 5 238 132 411 359 772 677 1421 1213
6 6 179 95 318 269 555 467 1052 877
7 7 126 46 223 196 354 314 703 606
8 8 98 64 171 148 263 224 532 442
9 9-10 150 76 224 198 303 257 677 561
10 11-20 266 156 357 319 394 340 1017 854
11 21-127 123 89 86 76 62 53 271 216

to the edge of Stripe 82, we also present the final number of clusters that passed

cuts to be completely on Stripe 82 in Table 4.8.

We found that number density for random points is about the same as the

number density in the region of a cluster but far away from the center (see Figure

4.17). Because of this we chose to use the number density in the region of clusters

but far away as the reference point for our foreground corrections. As the number

density approached a constant by 1.4h−1 Mpc, we measured the number density

between 1.4 − 3.0h−1 Mpc. Plots of number density for clusters for all redshift

and richness bins may be seen in Figures A.1, A.2, A.3 and A.4 in Appendix A.

The final foreground corrections as defined by Equation 4.39 are provided for the

lowest radius (0.1h−1 Mpc) in Table 4.9. We give the lowest radius as these are
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Table 4.9: Foreground corrections at 0.1h−1 Mpc as a function of richness bin. Low-
z is 0.1 < z ≤ 0.4, mid-z is 0.4 < z ≤ 0.7, high-z is 0.7 < z ≤ 1.0 and all-z is
0.1 < z ≤ 1.0.

Richness
bin

Low-z
Correc-

tion

Mid-z
Correc-

tion

High-z
Correc-

tion

All-z
Correc-

tion

1 1.06 1.22 1.00 1.01
2 1.05 1.24 1.00 1.00
3 1.05 1.40 1.06 1.00
4 1.09 1.41 1.03 1.00
5 1.11 1.52 1.12 1.00
6 1.04 1.54 1.13 1.04
7 1.18 1.48 1.00 1.00
8 1.15 1.50 1.06 1.12

9-10 1.06 1.46 1.00 1.00
11-20 1.17 1.43 1.03 1.00
21-127 1.03 1.26 1.05 1.00

the largest corrections. The corrections are applied at for each radius bin (of size

0.1h−1 Mpc), but beyond the first several bins most corrections are 1 (meaning no

change). We did not allow any of the final corrections to fall below 1 even if the

value of the correction factor was less than the reference value at that point. We did

this because a final correction less than 1 is not physically meaningful. All values

of average tangential shear (γave) were multiplied by the correction factors before

fitting was done.

4.6 Null and Other Systematics Tests for Stripe 82 Coadd

A null test means a test that measurements where no signal should be expected

do in fact show no signal. We conducted two null tests: First, we measured or-
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RANDOM POINTS

CLUSTERS

Figure 4.17: Plots comparing number density found for the first six richness bins
for 0.4 ≤ 0.7 for random points (upper) and actual clusters (lower). The green line
represents the median value of number density and the vertical red line represents
the beginning radius at which the median number density was found for actual
clusters.
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thotangential shear for each richness and redshift bin, as orthotangential shear is

not produced by lensing. Second, we measured weak lensing signal around random

points in the sky rather than around galaxy clusters. Lastly we conducted one fur-

ther systematics test: we checked to see if there was a dependence of shear on sky

position in Stripe 82.

4.6.1 Orthotangential Shear Test

Every time we run NFW.pro we obtain shear profile plots for both tangential and

orthotangential shear. For tangential shear we expect to see a curve up near the cen-

ter of the profile (consistent with non-zero tangential shear) while for orthotangential

shear we expect to see a line running along x = 0 (consistent with zero tangential

shear). If we see significant deviations from this flat line for orthotangential shear,

this can be evidence of error as weak lensing will not produce orthotangential shear.

As seen in Figure 4.9 typically we can see a clear signal in tangential shear while

the orthotangential shear is apparently consistent with zero.

In Figure 4.18 we compare the χ2 probability calculated for the tangential shear

to that calculated for orthotangential shear. Recall from Equation 4.35 that this

quantity tells us the probability that the χ2
red for a fit to 0 will exceed the given

value of χ2
red. For null data, like we expect orthotangential shear signal to be, this

probability should be on the order of 0.5, since we expect the orthotangential shear

to be well fit to 0. For real data this probability should be very small, since we

would expect real shear measurements to not be consistent with 0. Note that in

Figure 4.18 we find that χ2 probability is almost always significantly higher for

orthotangential shear than it is for tangential shear. For orthotangential shear, the
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Figure 4.18: χ2 probabilities compared for tangential and orthotangential shear.
The green line is the y = x line.

probability ranges from 0 to 1, and so on average is about 0.5, as expected. In most

cases, the probabilities for tangential shear are near 0, meaning they are not well fit

to a tangential shear of 0. Thus we conclude that in most cases, there is evidence

for tangential shear signal, and not for orthotangential shear. The one notable

exception is the high-z data. The high-z data has the lowest statistics of any of the

bins, and so the tangential shear fits have higher error bars. The tangential shear

signal is less obvious, with χ2 probabilities from 0 to 1, while the orthotangential

shear signal is unchanged.
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4.6.2 Random Points Test

We would expect no tangential shear signal around random points in the sky

while we would expect a non-zero tangential shear around clusters. If random points

were to give signal similar to that measured near clusters, this would be evidence

that there is a systematic problem in our measurements. In order to conduct this

random points test we first generated a sample of random points. As there are

19,706 clusters in the complete Stripe 82 VT sample, we also generated 19,706

random points. There are 11,123 clusters in the low RA (≤ 59.7◦) field and 8,583

clusters in the high RA (> 310◦) field. To generate random points, we used the IDL

function RANDOMU. The commands used for the low RA field were:

A = (1 + 58.7 ∗RANDOMU(seed,N))

DEC1 = (−1.25 + 1.25 ∗RANDOMU(seed,N/2))

DEC2 = (1.25− 1.25 ∗RANDOMU(seed,N/2))

(4.41)

The function RANDOMU generates N pseudo random numbers in the range 0 <

Y < 1.0. The seed is an integer used to initialize the random number generator; we

took it to be 1.0. Note that for the RA we multiplied the output from RANDOMU by

58.7 so that the maximum RA corresponds to the maximum RA in this section of

the real data, 59.7◦. The declination section is divided into two pieces, as there are

both positive and negative declinations. This entire process was repeated for the

high RA field. Finally we produced a catalog of these 19,706 random RA and DEC

and kept the real cluster values of NV T and z.

Once we generated the random points catalog, we reran NFW.pro using the ran-

dom points as the clusters. We found that the tangential shear profiles generated
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were now consistent with zero, as would be expected for random points. In Figure

4.19 we show the same shear profiles as shown in Figure 4.9, but now for the ran-

dom points. Note that for the low-z NV T 11− 12 bin, the tangential shear is clearly

consistent with zero. In the high-z bin it is not as clearly consistent with zero, but

note the larger error bars. This is as was noted before, that the high-z bin has the

lowest statistics (since there are far fewer source galaxies available) and therefore

the fits have larger error bars. Nonetheless if you compare Figure 4.19 to Figure

4.9, you will see the latter has a clear tangential shear signal while the former does

not.

In Figure 4.20 we plot the reduced χ2 values from tangential shear fits for both

the actual data (upper) and for the random points (lower). Note that for the real

data the reduced χ2 values are mostly larger than 1, meaning that the real data is

not consistent with a model of no shear signal. On the other hand, for the random

points the reduced χ2 values are mostly near 1, meaning that the random points

are consistent with no tangential shear. This reinforces our claim that we have

measured a significant weak lensing shear signal.

4.6.3 Dependence of Shear on Sky Position

The last test conducted was to check if shear depends on sky position, as we

would not expect such a dependence. The way we did this was to divide the clusters

in the Stripe 82 coadd into 6 equal sections in declination. These sections were:

1. −0.75◦ ≤ DEC < −0.5◦

2. −0.5◦ ≤ DEC < −0.25◦
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Figure 4.19: Shear profiles for random points. Note that for the low-z case the
tangential shear is consistent with zero. For the high-z case, there is a fit to the
points, but there is more scatter than there was in Figure 4.9.
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REAL POINTS

RANDOM POINTS

Figure 4.20: Reduced χ2 values for tangential shear fits to clusters and for the
same fits to random points, given compared to NV T . Note that for the clusters, the
reduced χ2 values are well above 1, meaning they are not consistent with a model of
no shear signal. For the random points, reduced χ2 values are close to 1, suggesting
no evidence of shear signal (as expected).
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3. −0.25◦ ≤ DEC < 0◦

4. 0◦ ≤ DEC < 0.25◦

5. 0.25◦ ≤ DEC < 0.5◦

6. 0.5◦ ≤ DEC < 0.75◦

We chose these sections instead of the full range from −1.25◦ − 1.25◦ so that no

clusters were right on the edge of the area (we noted in § 4.5.4 that this could be a

problem). We then reran NFW.pro allowing in each case only clusters fitting within

these regions.

In Figure 4.21 we plot the values of M200 found for each stripe of declination

for the lowest four values of richness, NV T = 1, 2, 3 and 4. We plot these richness

bins as they have the most clusters and thus the best statistics. There is no obvious

trend of variation in mass with position in the sky, thus we conclude that there is

no evident dependence of shear on sky position.

4.7 Mass-Richness Relations for Stripe 82 Coadd

4.7.1 The Mass-Richness Code

In order to find a mass-richness relation by using the weak lensing shear results,

we developed a routine called MASS RICHNESS.pro. First we read in richness and

mass results from NFW.pro. Then we used the IDL routine FITEXY to apply a linear fit

to lnNV T/20 (as independent variable) and lnM200 (as dependent variable). FITEXY

calculates a linear fit while including errors on x and y; for errors we used the
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Figure 4.21: Mass as a function of declination for NV T = 1, 2, 3 and 4. The declina-
tion slices are 0.25◦ wide, given by 4.6.3.
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fractional error, ∆NV T/NV T and ∆M200/M200. We used natural log for the fit as

we want to find a power law relation, as in Section 4.1.2. Note that if we want to

find this:

y = axb (4.42)

then we need to find this in a linear fit:

ln y = b lnx+ ln a (4.43)

Thus if we fit a linear relation to lnx and ln y, then the power b will be equal to

the slope and the coefficient a will be e raised to the power of the y-intercept. We

also found values of reduced χ2 and χ2 probability for each fit. Before running

MASS RICHNESS.pro we tested it by running it on the M200 and N200 data from

Johnston et al. [47]. We found that we exactly reproduced their mass-richness

relation, so we were confident that the routine functioned well. In each case we

found mass-richness relations for four separate redshift bins, 0.1 − 0.4, 0.4 − 0.7,

0.7− 1.0 and 0.1− 1.0. Note that all mass-richness relations are given in the form:

M200 = M200|20

(
NV T

20

)α
(4.44)

where α is the parameter we called b in Equation 4.42, the slope of the power law.

This parameter tells us how quickly mass increases with an increase in richness.

M200|20 is the mass coefficient of M200 when NV T = 20, and corresponds to the

parameter a in Equation 4.42.
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4.7.2 Initial Mass-Richness Relations for the Stripe 82

Coadd

Our initial mass-richness relations for the Stripe 82 coadd were found with no

corrections for the systematics discussed in Section 4.5. We ran NFW.pro using the

four redshift bins and then ran MASS RICHNESS.pro on the results. The four mass-

richness fits are shown in Figure 4.23 and our numerical results are shown in Table

4.10. In Figure 4.23 we note that the error bars are smallest for the low-z and all-z

bins, while they are largest for the high-z bin. The violet line is the fit to the all-z

relation; we overplot each relation with this line to compare. We note that the

slope of the power relation is significantly higher for the high-z relation than for the

others. The reduced χ2 value is the best for the low-z bin.

We also note that in all plots there are at least several points well out of line

with the others. For the low-z bin, there are two points that are well out of line with

the others. These are the points for NV T = 8 and NV T = 9− 10. In Figure 4.22 we

present the shear profiles for these points along with that for NV T = 4. Note that

there are 98 clusters for the NV T = 8 bin and 150 clusters for the NV T = 9 − 10

bin while there are 275 clusters for the NV T = 4 bin. The fits are less good for the

first two larger richness bins, and there is some evidence of an orthotangential shear

signal. For the NV T = 4 bin orthotangential shear is 0 and the tangential shear

signal is more clear. Thus we conclude that these two points are simply outliers

because of poor statistics.
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NV T = 8

NV T = 9− 10

NV T = 4

Figure 4.22: Shear profiles for several richness bins in the low-redshift bin. Note
that for NV T = 8 and NV T = 9 − 10 the tangential shear fits are not as good, and
there is more scatter in the shear signal. For NV T = 4 this is not true.
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4.7.3 Mass-Richness Relations After Considering the

Effect of the Central BCG

As discussed in Section 4.5.1, we removed any source galaxies within 0.1 h−1 Mpc

of the BCG in order to try to remove the effect of the mass of the BCG. In Figure

4.24 we plot the mass-richness relations obtained from this analysis and in Table

4.11 we present the numerical results. The low-z bin is affected the least by the

change, with the mass coefficient and the slope of the power law almost unchanged.

The values for the high-z bin are affected the most, although the error bars are

also increased significantly. The values of reduced χ2 are somewhat better than for

the case of no corrections. There is no general trend on the results here, as some

numbers are increased and others are decreased. Our conclusion is in agreement

with what we found in Section 4.5.1, that the removal of the central region of the

halo has a small effect on the final results.

4.7.4 Mass-Richness Relations After Considering the

Effect of Halo Miscentering

We next considered the effect of halo miscentering, as discussed in Section

4.5.2. The miscentering correction from Equation 4.9 was applied directly in the

MASS RICHNESS.pro routine. The mass-richness plots are shown in Figure 4.25 and

the numerical results are in Table 4.12. All of the mass coefficients are increased

by about 37% and all of the power law slopes are decreased by about 13% from the
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numbers found without any consideration of systematics. The values of reduced χ2

are almost identical to those found for the case of no corrections.

4.7.5 Mass-Richness Relations After Considering the

Effect of Photo-z Bias

Next we considered the effect of photo-z errors, finding and using Σcrit using

the sample of spectroscopic redshifts as discussed in Section 4.5.3. We produced

a lookup table of values of Σcrit using these spectroscopic redshifts and then had

NFW.pro refer to this table when finding Σcrit for a particular cluster. The correction

factor (Equation 4.24) was then calculated as (following Equation 4.27):

correction =
Σcrit actual

Σcrit fiducial

(4.45)

Σcrit fiducial was taken as 7.94 × 1015 kg/m2, which is the value of Σcrit found for

zsource = 0.75 and zcluster = 0.55.

We find that when using the spectroscopic redshifts to correct for photo-z bias,

the mass coefficients increase in 3 of 4 cases (except for the high-z case). The power

law slopes mostly increase, except for the mid-z case. Most changes in values are

quite small; the largest changes in values are for the high-z case where the mass

coefficient drops by 9% and the slope increases by 33%.
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4.7.6 Mass-Richness Relations After Considering the

Effect of Foreground Contamination

We next considered the effect of contamination by foreground galaxies that were

misidentified as source galaxies. To do this, we followed the analysis in Section 4.5.4,

multiplying the value of average tangential shear by the correction factors described

in that section. The results of the fitting and mass-richness analysis after applying

this correction are given in Figure 4.27 and Table 4.14. The effect of the foreground

galaxy correction is to make the mass coefficient larger in all cases, although it is

almost unchanged (6.47 to 6.49) in the case of all-z. The effect on the slope of the

power law varies: for low-z it is slightly larger, for mid-z it is smaller, for high-z it

is larger (although with larger error bars) and for all-z it is unchanged.

4.7.7 Mass-Richness Relations After Considering All

Systematics

We finally found the mass-richness relations for the Stripe 82 coadd including

corrections for all of the above systematics. We excluded the central 0.1 h−1 Mpc

in the fits, using only source galaxies between 0.1− 3.0 h−1 Mpc from the BCG. We

included the correction for halo miscentering in MASS RICHNESS.pro. We also used

the spectroscopic redshift lookup table to find values for Σcrit in NFW.pro and we

applied the foreground galaxy corrections factors when calculating γave. Our final

plot of mass vs. richness is shown in Figure 4.28 and the final numerical values for

the mass-richness relations are shown in Table 4.15.
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Figure 4.23: The initial mass richness relation (M200 vs. NV T ) before any corrections
were made. The violet line is the fit for all redshift bins.

4.7.8 Comparison of Results

First, we present all mass-richness plots and tables referenced in the preceding

sections. We present them all here for easy comparison.

In Figure 4.29 we compare all of the values of the mass coefficient and the power

law slope. The situations in these plots are:

1=No corrections

2=BCG correction

3=Halo miscentering correction
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Table 4.10: Mass-richness relations for Stripe 82 coadd, not including any correc-
tions. Note that the mass coefficients all have the units 1013 h−1 M�.

Redshift
Bin

Mass
Coeffi-
cient

Slope
of

Power
Law

χ2 Number
of dof

Reduced
χ2

Prob

0.1≤ z ≤ 0.4 6.04 ±0.496 1.11 ±0.0672 20.2 17 1.19 0.264
0.4≤ z ≤ 0.7 8.60 ±1.23 1.07 ±0.122 32.8 16 2.047 0.00796
0.7≤ z ≤ 1.0 18.5 ±6.85 1.22 ±0.298 5.15 13 0.396 0.972
0.1≤ z ≤ 1.0 6.47 ±0.471 1.10 ±0.0735 24.3 17 1.43 0.112

Figure 4.24: The initial mass richness relation (M200 vs. NV T ) including only a
correction for the removal of the central 0.1 h−1 Mpc. The violet line is the fit for
all redshift bins.
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Table 4.11: Mass-richness relations for Stripe 82 coadd, including a correction for
the effect of the central BCG. Note that the mass coefficients all have the units
1013 h−1 M�.

Redshift
Bin

Mass
Coeffi-
cient

Slope
of

Power
Law

χ2 Number
of dof

Reduced
χ2

Prob

0.1≤ z ≤ 0.4 6.20 ±0.490 1.10 ±0.0721 22.6 17 1.33 0.163
0.4≤ z ≤ 0.7 8.99 ±1.26 0.967 ±0.131 16.3 16 1.020 0.431
0.7≤ z ≤ 1.0 23.9 ±9.13 1.80 ±0.4648 3.073 13 0.236 0.998
0.1≤ z ≤ 1.0 5.97 ±0.487 1.14 ±0.0754 13.4 17 0.790 0.707

Figure 4.25: The initial mass richness relation (M200vs.NV T ) including only a cor-
rection for the effect of halo miscentering. The violet line is the fit for all redshift
bins.
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Table 4.12: Mass-richness relations for Stripe 82 coadd, including a correction for
halo miscentering. Note that the mass coefficients all have the units 1013 h−1 M�.

Redshift
Bin

Mass
Coeffi-
cient

Slope
of

Power
Law

χ2 Number
of dof

Reduced
χ2

Prob

0.1≤ z ≤ 0.4 8.29 ±0.672 0.977 ±0.0666 20.5 17 1.20 0.250
0.4≤ z ≤ 0.7 11.8 ±1.67 0.941 ±0.121 32.8 16 2.049 0.00787
0.7≤ z ≤ 1.0 25.6 ±9.43 1.09 ±0.298 5.16 13 0.397 0.972
0.1≤ z ≤ 1.0 8.87 ±0.637 0.966 ±0.0723 24.7 17 1.45 0.102

Figure 4.26: The initial mass richness relation (M200 vs. NV T ) including only a
correction for the effect of photo-z bias. The pink line is the fit for all redshift bins.
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Table 4.13: Mass-richness relations for Stripe 82 coadd, including a correction for the
effect of photo-z bias. Note that the mass coefficients all have the units 1013 h−1 M�.

Redshift
Bin

Mass
Coeffi-
cient

Slope
of

Power
Law

χ2 Number
of dof

Reduced
χ2

Prob

0.1≤ z ≤ 0.4 6.46 ±0.533 1.13 ±0.0681 26.5 17 1.56 0.0658
0.4≤ z ≤ 0.7 9.32 ±1.30 0.985 ±0.122 16.6 16 1.036 0.414
0.7≤ z ≤ 1.0 16.9 ±6.81 1.62 ±0.399 3.068 13 0.236 0.998
0.1≤ z ≤ 1.0 7.18 ±0.555 1.14 ±0.0733 34.7 17 2.039 0.00689

Figure 4.27: The initial mass richness relation (M200 vs. NV T ) including only a
correction for the effect of contamination by foreground galaxies. The violet line is
the fit for all redshift bins.
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Table 4.14: Mass-richness relation for Stripe 82 coadd, including a correction for
the effect of contamination by foreground galaxies. Note that the mass coefficients
all have the units 1013 h−1 M�.

Redshift
Bin

Mass
Coeffi-
cient

Slope
of

Power
Law

χ2 Number
of dof

Reduced
χ2

Prob

0.1≤ z ≤ 0.4 6.39 ±0.0.503 1.13 ±0.0654 27.2 17 1.60 0.0548
0.4≤ z ≤ 0.7 9.27 ±1.22 0.992 ±0.112 23.6 16 1.47 0.0986
0.7≤ z ≤ 1.0 22.4 ±8.50 1.71 ±0.355 3.00 13 0.231 0.998
0.1≤ z ≤ 1.0 6.49 ±0.472 1.10 ±0.0730 24.7 17 1.45 0.103

Figure 4.28: The mass richness relation (M200 vs. NV T ) including corrections for
the effect of the central BCG, halo miscentering, photo-z bias and foreground galaxy
contamination. The violet line is the fit for all redshift bins.
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Table 4.15: Mass-richness relation for Stripe 82 coadd, considering the effect of all
systematics. Note that the mass coefficients all have the units 1013 h−1 M�.

Redshift
Bin

Mass
Coeffi-
cient

Slope
of

Power
Law

χ2 Number
of dof

Reduced
χ2

Prob

0.1≤ z ≤ 0.4 9.54 ± 0.725 0.994 ± 0.0683 12.4 17 0.732 0.772
0.4≤ z ≤ 0.7 14.2 ± 1.80 0.856 ± 0.113 30.0 16 1.88 0.0178
0.7≤ z ≤ 1.0 29.0 ± 11.4 1.79 ± 0.390 2.40 13 0.185 0.999
0.1≤ z ≤ 1.0 9.33 ± 0.689 1.00 ± 0.0723 19.5 17 1.14 0.303

4=Photo-z correction

5=Foreground galaxy correction

6=all corrections

7=Johnston et al.

8=Simet et al.

Note that the only single correction that seems to have a big effect on the mass

coefficient is the correction for halo miscentering. Mass coefficient also changes

significantly when the four corrections applied are all applied together (halo miscen-

tering, photo-z, foreground galaxy, central BCG). For the low-z bin, applying these

corrections brings the mass coefficient exactly into the range of the two previous re-

sults. For the high-z bin, the error bars are always so large that there is no notable

change from any of the corrections.

For the power law slope, the corrections have the opposite effect as they did on

the mass coefficient. That is, the corrections push the power law slope lower than

it was initially. For the low-z bin, the final power law slope of 0.99 ± 0.07 is well
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Figure 4.29: Comparison of Stripe 82 mass-richness parameters for all situations.
The LEFT FOUR plots compare the mass coefficients and the RIGHT FOUR plots
compare the power law slopes. In the low-z plots, we include the data points for
Johnston et al. [47] and Simet et al. [77]. The situations are: 1=No corrections,
2=BCG correction, 3=Halo miscentering correction, 4=Photo-z correction, 5=Fore-
ground galaxy correction, 6=all corrections, 7=Johnston et al., 8=Simet et al.

within the range of the Simet et al. measurement (α = 1.10± 0.12), but below the

measurement of Johnston et al. (1.28±0.04). The final mass coefficient for the low-z

bin of 9.54±0.725 is extremely close to that found by Simet et al. (9.56±0.75) and

also well within the range found by Johnston et al. (8.8± 1.2).

To conclude, our final mass-richness relations are:

Low − z : M200 = (9.54± 0.725)× 1013h−1M�
(
NV T

20

)0.994±0.0683

Mid− z : M200 = (14.2± 1.80)× 1013h−1M�
(
NV T

20

)0.856±0.113

High− z : M200 = (29.0± 11.4)× 1013h−1M�
(
NV T

20

)1.79±0.390

All − z : M200 = (9.33± 0.689)× 1013h−1M�
(
NV T

20

)1.00±0.0723

(4.46)
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4.8 Mass-Redshift and Mass-Concentration Relations for

Stripe 82

4.8.1 The Mass-Redshift Relation

To examine the mass-redshift relation, we considered the mass coefficient, which

is the mass of a galaxy cluster at a richness value of NV T = 20 and the power

law slope. In Figure 4.30 we plot the mass coefficient and the power law slope

vs. redshift for three redshift bins: low-z (z = 0.25), mid-z (z = 0.55) and high-z

(z = 0.85). We used FITEXY to find a linear relation between M200(NV T = 20) and

z and power law slope and z as:

M200(NV T = 20) = (17.2± 1.94)z + (5.21± 6.17)

slope = (0.0592± 0.142)z + (0.955± 0.374)
(4.47)

Thus it appears that the mass of a halo at NV T = 20 does increase with redshift.

However the large error bars on the high-z point make the rate of increase with

redshift less clear. The power law slope also does appear to increase with redshift,

although at redshifts below 0.85 it appears that the power law slope might not have

a redshift dependence.

Since the mass coefficient describes the mass of a cluster with NV T = 20, this

indicates that the mass of a cluster will be higher at higher redshift. This suggests

that more dark matter is present in the cluster halos at higher redshift. Since

these are likely to be older clusters, they would have had more time to accrete dark

matter. Thus it conceptually makes sense that higher redshift clusters would be
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more massive. The power law slope describes the rate at which mass increases with

richness. The number of galaxies present in a cluster is dependent on the mass of

the halo, as more massive halos would be expected to attract more galaxies. The

number of galaxies as a function of mass is also connected to the rate of clustering

in the universe; when there are more galaxies present in a region of space, there will

be more galaxies available to join dark matter halos. Since clustering increases with

redshift, we would also expect some dependence of the power law slope on redshift.

It is important to note that there is a difference between real mass evolution

with redshift and apparent mass evolution caused by measurement systematics.

One particular systematic that might cause the appearance of redshift evolution is

the limiting magnitude for cluster finding. The Voronoi tessellation method uses

an apparent magnitude cut rather than an absolute magnitude cut. This means

that the sample of clusters will be less complete at higher redshift, where galaxies

will be biased toward dimmer apparent magnitude simply because of their large

distances. Since there are fewer clusters found at higher redshift, there would be

poorer statistics at higher redshift, which could bias the ultimate measurement of

mass coefficient at higher-z. In order to further test this mass-redshift relation, it

would be better to also find this relation using a cluster sample that is limited by

absolute magnitude rather than apparent magnitude.

4.8.2 The Mass-Concentration Relation

The mass M200 contained in a halo within the radius r200 and the concentration

c200 of the halo are related (recall measurements of this in Chapter 2 for the ten

lensing clusters). The relationship between them is called a mass-concentration
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Figure 4.30: The mass at NV T = 20 as a function of redshift (upper plot) and the
power law slope as a function of redshift (lower plot) for the Stripe 82 coadd.
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relation. The mass-concentration relations given in the literature follow the general

form [59]:

c200 =
c0

1 + z

(
M200

M0

)−β
(4.48)

Mandelbaum et al. (2008) [59] use weak lensing to find a mass-concentration relation

of

c200 =
5.612

1 + z

(
M200

1.0× 1014 h−1 M�

)−0.13

(4.49)

Duffy et al. (2008) [28] give a mass-concentration relation of

cvir =
7.85

(1 + z)0.71

(
Mvir

0.0278× 1014h−1 M�

)−0.081

(4.50)

As mentioned in Chapter 2, the process to convert cvir to c200 is described at length

in the appendix of Johnston et al. We followed this process to find the approximation

that

M200 = 0.93Mvir

c200 = 0.8cvir

(4.51)

We then plotted both Equation 4.49 and Equation 4.50 along with the values of c200

that we had found from the Stripe 82 coadd. The final values of c200 that we found

after including all systematics are given in Tables A.1 and A.2 in Appendix A. Our

plots of the concentration-mass relation are shown in Figure 4.31. We find that our

values for concentration do not closely match the expected relations as given by

Mandelbaum and Duffy. Part of the reason is the large error bars on c200, especially

in the case of the high-z region. However there does appear to be a systematic

offset between our values and the expected values. For the mid-z and high-z bins,

the error bars on c200 are too large to obtain a sensible concentration-mass relation.

For the low-z bin, we obtained a mass-concentration relation using the IDL routine



193

Figure 4.31: A plot of the concentration-mass relation for the Stripe 82 coadd. The
red line is the relation from Duffy et al. [28] and the green line is the relation from
Mandelbaum et al. [59]. The blue line is our best fit line to the data.
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FITEXY. For the all-z bin, this routine did not give a sensible result. Thus for the

all-z bin we used LINFIT, a linear fitting routine that does not include error bars.

Our results are

Low − z : c200 = 1.76
1+z

(
M200

1.0×1014 h−1 M�

)−0.033

All − z : c200 = 1.64
1+z

(
M200

1.0×1014 h−1 M�

)−0.020 (4.52)

4.9 Mass-Richness Relations for BCS and DES-SV

4.9.1 BCS Mass-Richness Relations

We ran the NFW.pro code on the 763 clusters from Bleem et al. using five bins

of richness, using the parameter λ as the richness measure:

I. 10 ≤ λ ≤ 11

II. 12 ≤ λ ≤ 13

III. 14 ≤ λ ≤ 15

IV. 16 ≤ λ ≤ 20

V. 21 ≤ λ ≤ 65

We used only one systematics correction, the correction for halo miscentering; we

used this one as it had the most significant effect on the Stripe 82 shear profiles.

After we found results for M200, we ran them through the MASS RICHNESS.pro code.

When we did this we converted λ to NV T using Equation 4.6 so that the final relation

would be the same as the others we found. The mass-richness plots are shown in
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Figure 4.32: The mass richness relation (M200vs.NV T ) for the BCS data.

Figure 4.32. Note that the error bars are large and the number of points is small; this

is because this is a relatively small cluster sample. With a larger sample of clusters

in the BCS, we would be able to obtain better statistics. Our final mass-richness

relation parameters are shown in Table 4.16.

4.9.2 DES-SV Mass-Richness Relations

We ran the NFW.pro code on the preliminary sample of 27,230 VT clusters found

in the DES-SV using these bins of NV T :

I. NV T =1
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Table 4.16: Mass-richness relation numerical values for the BCS data. Note that
the mass coefficients all have the units 1013 h−1 M�.

Redshift
Bin

Mass
Coeffi-
cient

Slope
of

Power
Law

χ2 Number
of dof

Reduced
χ2

Prob

0.1≤ z ≤ 0.4 4.37 ± 1.69 1.10 ± 0.458 3.93 3 1.31 0.269
0.4≤ z ≤ 0.7 3.12 ± 2.08 1.59 ± 0.879 0.392 3 0.131 0.942
0.7≤ z ≤ 1.0 21.3 ± 14.8 0.424 ± 1.04 0.786 3 0.262 0.853
0.1≤ z ≤ 1.0 2.57 ± 0.906 1.17 ± 0.384 5.54 3 1.85 0.136

II. NV T =2

III. NV T =3

IV. 4 ≤ NV T ≤ 6

V. 7 ≤ NV T ≤ 10

VI. 11 ≤ NV T ≤ 15

VII. 16 ≤ NV T ≤ 25

VIII. 26 ≤ NV T ≤ 40

IX. 41 ≤ NV T ≤ 60

X. 61 ≤ NV T ≤ 80

We used only one systematics correction, the correction for halo miscentering. We

then ran the MASS RICHNESS.pro code on the results. Our final mass-richness plots

are shown in Figure 4.33 and the numerical results for the mass-richness relations

are shown in Table 4.17. Finally in Figure 4.34 we compare the mass-richness
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Figure 4.33: The mass richness relation (M200vs.NV T ) for the DES-SV data. The
violet line is the fit for all redshift bins.

Table 4.17: Mass-richness relation numerical values for DES-SV data. Note that
the mass coefficients all have the units 1013 h−1 M�.

Redshift
Bin

Mass
Coeffi-
cient

Slope
of

Power
Law

χ2 Number
of dof

Reduced
χ2

Prob

0.1≤ z ≤ 0.4 2.09 ± 1.15 0.494 ± 0.478 1.58 8 0.197 0.991
0.4≤ z ≤ 0.7 4.50 ± 0.996 0.988 ± 0.253 3.19 8 0.399 0.922
0.7≤ z ≤ 1.0 4.90 ± 2.73 0.150± 0.329 4.39 8 0.549 0.820
0.1≤ z ≤ 1.0 3.57 ± 0.734 0.900 ± 0.231 4.92 8 0.615 0.767
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parameters measured in all 3 data sets. The mass coefficients are systematically

higher for the Stripe 82 results, while the power law slopes are all within the same

ranges for all three data sets.
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COMPARISON OF MASS COEFFICIENTS

COMPARISON OF POWER LAW SLOPES

Figure 4.34: Comparison of mass-richness parameters (mass coefficient and slope of
power law) for all 3 data sets.



CHAPTER 5

MODELING OF STRONG LENS SDSS J1537+6556

Alice laughed: ”There’s no use trying,” she said; ”one can’t believe impossible

things.”

”I daresay you haven’t had much practice,” said the Queen. ”When I was

younger, I always did it for half an hour a day. Why, sometimes I’ve believed as

many as six impossible things before breakfast.”–Lewis Carroll, from Alice Through

the Looking Glass

5.1 Introduction

In Chapter 2 we presented estimates of Einstein radii of the ten lensing systems.

These estimates were made by fitting circles to the lensing arcs and then measuring

the radii of those circles. While this will provide an estimate of the Einstein radius,

it is better to model the lensing system in order to obtain better determinations

of Einstein radius, lens mass and so on. In this chapter we describe the process of

lens modeling and we present initial results for SDSS J1537+6556. This system was

chosen as this is one of the four systems found in Chapter 2 to show evidence of

overconcentration and it is the only one for which a mass model did not yet exist.

In addition we describe use of a matrix-based Bayesian lens modeling routine that

has not previously been utilized by the Sloan Bright Arcs Survey group.
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In § 5.2 we describe the process of modeling galaxies nearby the arc using GALFIT

and removing them. In § 5.3 we describe using LENSVIEW to fit models to SDSS

J1537+6556. In § 5.4 we describe using a new modeling routine developed by H.

Lin called Tri3SrcMatrixFit. We also present results for SDSS J1537+6556 using

Tri3SrcMatrixFit. In § 5.5 we compare results from LENSVIEW to results from

Tri3SrcMatrixFit. Finally in § 5.6 we describe an interesting system found during

observing for the Dark Energy Survey that initially was thought to be a strong lens

candidate.

5.2 Galaxy Modeling

5.2.1 The Process of Galaxy Modeling

Lens modeling involves fitting the lensing arcs in an image to a mass model

which would cause the light to be deflected in that way. Before this can be done,

the cluster galaxies present in the image need to be subtracted. In order to subtract

only the light due to the galaxies, the light profiles observed in each galaxy in the

images is fit to a theoretical relation between light intensity and distance that would

be expected for such a galaxy.

There are several mathematical relations which are commonly used to predict

brightness as a function of radius for elliptical galaxies, including especially the

Śersic profile and the de Vaucouleurs profile. The Śersic profile has the form [21]

log

(
I(r)

Ie

)
= −k

[(
r

Re

)1/n

− 1

]
(5.1)
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Figure 5.1: A plot of intensity predicted by the Sersic profile as a function of radius.
On both x and y-axes we plot the natural logarithm of these quantities.

Here I is the light intensity as a function of radius r , k is a constant, Re is the radius

containing half of the total luminosity, Ie is the light intensity at that distance, and

n is the Śersic index. This last parameter controls the curvature of the Śersic profile:

as n becomes larger, the profile becomes more centrally concentrated. As can be

seen in Figure 5.1, the light falls off with distance much faster for small n than for

large n. In the special case of n = 4 (the red line in Figure 5.1), we find that

I(r) ∝ e−kr
1/4

(5.2)
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This is called the de Vaucouleurs profile, which is known to be a good fit to many

elliptical galaxies. For n = 1

I(r) ∝ e−kr (5.3)

This is called the exponential profile. Not all astronomical objects have light profiles

well fit by a variation on the Śersic profile; stars are better fit by a profile that is

close to a Gaussian, the Moffat profile. The Moffat profile has the form:

I(r) = I0[1 +
(r
θ

)2

]−β (5.4)

Again I(r) is the intensity as a function of distance from the center of the object,

I0 is the intensity at the center of the object, θ is the full width half max (FWHM)

of the profile and β is the atmospheric scattering coefficient [42].

5.2.2 Fitting galaxy models in GALFIT

To fit models to the galaxies nearby the BCG, we used the program GALFIT [67].

GALFIT uses parametric fitting to describe the light distribution of galaxies in the

image using a small number of independent parameters. GALFIT is run from the

command line by being fed a list of parameters. We selected only a small region

of the original WIYN image to run in GALFIT; we wanted to select a region that

contained the entire lensing arc but no larger. The region we selected is shown by

the green box in Figure 5.2. In order to run GALFIT, several input files are needed

along with the image section chosen for galaxy fitting. We also need to produce

(1) a sigma image, (2) a mask file and (3) a PSF file. A sigma image describes

the standard deviation of values in the image section being used. It is made by
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Figure 5.2: The region of the image containing SDSS J1537+6556 that was fit in
GALFIT.
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taking the original WIYN image and dividing by the GAIN of the image multiplied

by the number of exposures (2 in most cases for the WIYN images). To this we

add the RDNOISE (readout noise) parameter divided by GAIN times number of

exposures, all squared. Finally we take the square root of this image. This can

all be done in IRAF. Next we made a mask image, in which the lensing arcs

are masked out. We mask the arcs out because we do not want to include their

light profiles with the galaxy profiles. Masks were made by using polygonal regions

in DS9, filling them with a Fortran routine called FILLPOLY.f (provided by Peng

[67]) and using the routine 2MASK and then copying this to a .fits file in IRAF.

Finally a point spread function (PSF) image was made in order to describe how

the light was distorted by the atmosphere and the telescope. To do this, a bright

but unsaturated star was chosen nearby the lensing system (the star is located at

(234.24061, +65.911439)). Then we fit this star with a Moffat fit in GALFIT. The

resultant model image was used as the PSF image. Note that each of these images

must be made for each filter the images were taken in, as GALFIT is run only on

single-filter images (i.e, g, r or i-band images). Examples of each of these images

are shown in Figure 5.3.

To run GALFIT, it was necessary to produce a ”feedme” file. The list of input

and output files and the values of parameters are all put together in a file that

traditionally has the suffix ”.feedme”. Then is invoked from the command line

with the name of this input file being declared. A sample ”feedme” file is shown

in Figure 5.4. Note that at the top we control the input files, the output files, the

image region to fit and several other run parameters. Below this is a list of object

numbers. For each object in the fitting region we need to declare what type of

brightness profile to fit to that object, the coordinates of the object, initial guesses

at magnitude, half-light radius, Śersic index, axis ratio and position angle. GALFIT
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Figure 5.3: Images input to GALFIT for SDSS J1537+6556. Going clockwise from
top left they are: (1) Original image, (2) sigma image, (3) Mask image and (4) PSF
image. The PSF image is 123 pixels square while the other images are 179 x 175
pixels. These are all i-band images.
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Figure 5.4: A section of a sample ”feedme” input file for GALFIT.
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Figure 5.5: GALFIT models for SDSS J1537+6556. From top to bottom these are
g-band, r-band and i-band images. From left to right they are galaxy images, galaxy
models and residual images.

takes these input parameters and tries different values while trying to minimize the

value of χ2. Once we find a set of models that minimize χ2 and provide reasonable

models for all objects in the image, then we take that as our final result. The final

results are shown in Figure 5.5. Note that the GALFIT produces an image block,

which is a FITS image containing 4 different frames. The first frame is empty, and

the remaining three contain the image section being fit, the galaxy models produced

by the fit and the residual image, which is the image minus the models.

The final parameters found for each of the galaxies in the fitting region for

SDSS J1537+6556 are listed in Tables B.1, B.2 and B.3 in Appendix ??. The

final values for reduced χ2 were 1.152 for g-band, 1.151 for r-band and 1.029 for

i-band. Finally we took the fitting regions of the original images in each band and
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subtracted the GALFIT model images. This produced images in each band containing

only the lensing arcs, along with a minimal amount of residual noise not subtracted

by GALFIT. These images were then used for lens modeling.

5.3 Lens Modeling in LENSVIEW

5.3.1 About LENSVIEW

LENSVIEW contains an implementation of an algorithm called LENSMEM. This

algorithm proceeds in two cycles, an inner loop and an outer loop. The inner loop

finds the best source model that fits the data and the outer loop adjusts the model

parameters for the lens and restarts the inner loop [88]. The goal of the inner loop

is to minimize the function J where

J = C − λS (5.5)

In this equation,

C =
∑
ij

(Dij −Mij)
2/σ2

ij (5.6)

and

S = −
∑
kl

fkl[ln(fkl/A)− 1] (5.7)

In Equation 5.6 C is the χ2 merit function describing the difference between the

data Dij and the model Mij, divided by the variance σ2
ij. In Equation 5.7 S is

the entropy in the source model, fkl is the set of source pixels and A is the sky
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background. Finally λ in Equation 5.5 is a parameter which can be adjusted by the

outer loop of the algorithm in order to change the lens model parameters.

LENSVIEW must be installed and then it is run from the command line with a list

of parameters like this:

lensview -logfilepath . -tracelevel 2 -pixelres 0.14 -datafile 5185 DATA r.fits -sourcefile

empty30by30.fits -psffile PSF 5185 LV r.fits -nice 2 -pixelratio 2 -maxiter 100 -

paramfile comps r.txt -srcxoffset 0 -mask MASK allones.fits -srcyoffset 0 -srcdefaultval

1 -noisefile 5185 VAR r.fits -targetchisqu 2692 -useminfinder $*

All parameters that can be turned on or off in LENSVIEW are described in Wayth

(2012) [89]. Note especially that there are several images that are referred to in

this command, including (1) a data image, (2) a source image, (3) a PSF image,

(4) a mask image and (5) a variance image. In addition there is a parameter file

which we called comps r.txt. The data image is the final image produced after using

GALFIT, containing only the lensing arcs. The source image is a blank image that

defines the size of the source plane. The PSF image describes the PSF, the same

as used for GALFIT. The mask image is used to denote what regions of the image

you want to fit, as only those regions with pixel value of 1 will be included in the

calculation of χ2. The variance image is calculated similarly to the Sigma image

used in GALFIT, but it is only the size of the LENSVIEW data image and we do not

take the square root of the image at the end of its creation. The parameter file

contains the definition of the lens model you wish to fit as well as initial values

and step sizes. Options for lens models include the pseudo-isothermal potential, the

singular isothermal ellipsoid, the point mass and the NFW profile.
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Table 5.1: Mass model parameters found for SDSS J1537+6556 using LENSVIEW.

Filter x-
offset

y-
offset

Einstein
Radius

Axis
Ratio

Position
Angle

χ2

(Lens
Model)

Entropy

g 0 0 10 0.9 180 87937 -259353
r 0 0 8.36 0.86 145 37339 -33158
i 0 0 8.36 0.84 50.4 33273 -17701

5.3.2 Lens Modeling Results from LENSVIEW for SDSS

J1537+6556

We used a singular isothermal ellipsoid fit for lens modeling of SDSS J1537+6556.

The fit parameters we found are listed in Table 5.1. The lens and source model

images we obtained are shown in Figure 5.6. These images are for g (top), r (middle)

and i-band (bottom) images. From left to right the images are the input image, the

model image, the residual image and the source image. The residual image is the

input data image minus the model. Note that the fit was not good for g-band as

there is much lower signal to noise in g-band images.
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Figure 5.6: Lens model results from LENSVIEW for SDSS J1537+6556. The images
are for g (top), r (middle) and i-band (bottom) images. From left to right the images
are the input image, the model image, the residual image and the source image.
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5.4 Lens Modeling with a Bayesian Lens Fitting Routine:

Tri3SrcMatrixFit

5.4.1 About Tri3SrcMatrixFit

To begin, let us define Bayes’ Theorem. Bayes’ Theorem originated with the work

of Thomas Bayes, an English statistician, philosopher and Presbyterian minister who

lived from 1701-1761. Bayes’ Theorem can be stated as [29]

P (A|B) =
P (A)P (B|A)

P (B)
(5.8)

P(A) is called the prior and describes the initial probability of event A. P(B)

is the probability of event B. P (B|A) is called the likelihood and it describes the

probability of B given event A. Finally P (A|B) is called the posterior probability;

it describes the probability of event A given event B. In other words, we can get a

more precise measure of the probability of event A occuring if we also have some

knowledge about an event B that has some effect on event A. This theorem has

applications across all fields of knowledge. But in terms of gravitational lensing,

we apply Bayes’ Theorem by applying it to the model fitting. In all model fitting

routines, the goal is to test the goodness of fit by minimizing a function that measures

the difference between the fit and the data. This is usually done with a χ2. In the

Bayesian method, a χ2 is still used to measure goodness of fit, but there is another

step in which efforts are made to make the fit as simple as possible. This is done

with Occam’s razor in mind [81], the idea that the simplest solution is usually the
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most realistic. This simplicity is the prior, the extra information we have which we

can use to constrain the model fitting.

Suyu et al. (2006) [81] describe a way to apply Bayes’ Theorem to gravitational

lens modeling. They describe lens modeling in two steps: (1) Model fitting and

(2) Model comparison. Model fitting is done by obtaining the best source model

parameters by minimizing the function:

M(s) = ED(s) + λEs(s) (5.9)

The quantity s represents the source model parameters. Here ED(s) is essentially the

χ2 function, Es(s) is the regularization function and λ is the regularization constant.

Model comparison is done by maximizing the simplicity of the model parameters

by maximizing the Bayesian evidence (described further below). To do this, it is

necessary to find the value of λ that produces the maximum of the evidence and

then use that value of λ when applying the regularization. Regularization penalizes

any function that is not sufficiently physical, whether by trying to make the source

as small as possible (zeroth order regularization), minimzing gradients in the model

(first order) or minimizing curvature (second order).

5.4.1.1 Model Fitting

Suyu et al. use d (the bold indicates a matrix quantity) to represent the vector

of data points, s to represent model parameters, λ to denote the regularization



215

constant, g to mean the output of the regularization function and f to be the

response function, a matrix that relates the data to the model parameters where

d = fs+ n (5.10)

and n is the matrix representing noise in the data. Then the posterior probability

is

P (s|d, λ, f,g) =
P (s|g, λ)P (d|s, f)

P (d|λ, f,g)
(5.11)

But also

P (s|d, λ, f,g) =
exp[−M(s)]

ZM(λ)
(5.12)

with

ZM(λ) =

∫
dNss exp[−Ms(s)] (5.13)

Recall that Ms(s) is the function we seek to minimize in order to find the best model

parameters. The prior, P (s|g, λ) applies Occam’s razor, penalizing any solutions

that are not smooth (this is the P (A) term in Equation 5.8). The probability

P (d|s, f) is the likelihood (the P (B|A) term). The quantity P (d|λ, f,g) is called the

evidence for the model (the P (B) term).

For the prior, Suyu et al. give the expression

P (s|g, λ) =
exp[−λES(s|g)]

Zs(λ)
(5.14)

with Es(s|g) being the regularization (discussed further below) and Zs(λ) being the

normalization of the prior probability distribution [81], given as

Zs(λ) =

∫
dNss exp(−λEs) (5.15)
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Ns is the number of model parameters. The likelihood implements the χ2 test. It

is given as

P (d|s, f) =
exp[−ED(d|s, f)]

ZD
(5.16)

where

ED(d|s, f) =
1

2
(fs − d)TC−1

D (fs − d) =
1

2
χ2 (5.17)

where CD is the covariance matrix for the data and ZD is the normalization for the

probability, given by

ZD = (2π)Nd/2(det CD)1/2 (5.18)

Finally the evidence is given in terms of a logarithm in order to simplify some of

the terms. It is

logP (d|λ, f,g) = −λEs(sMP )− ED(sMP )− 1
2

log(det A) + Ns
2

log λ+ λEs(0) + 1
2

log(det C)

−Nd
2

log(2π) + 1
2

log
(
det C−1

D

)
(5.19)

The quantity sMP indicates the model parameters of the most probable solution.

As previously mentioned, Ns is the number of source model parameters, Nd is the

total number of data points and C = ∇∇ES(s). ED is the regularizing function for

the data and ED = 1
2
χ2. Finally

A = ∇∇M(s) (5.20)

5.4.1.2 Model Comparison

The regularizing function Es penalizes a solution that is overly complicated. The

regularizing function can be of several different forms, including zeroth order, gradi-
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ent and curvature regularization [81]. Zeroth order regularization tries to minimize

intensity at every source pixel, while gradient regularization tries to minimize the

difference in intensity between adjacent pixels. Finally curvature regularization tries

to minimize the second derivatives in the intensity in x and y-directions. All reg-

ularizations try to minimize rates of change of intensity, again trying to keep the

source light distributions as simple as possible. Zeroth order regularization can be

written as [81]

ES(s) =
1

2

Ns∑
i=1

s2
i (5.21)

where the si are the source pixels. Gradient and curvature regularization are de-

scribed by Equations A2 and A3 in Suyu et al.

In order to accomplish model comparison, we want to maximize the posterior for

the regularization constant (λ) given the data, the response function for the model

parameters and the choice of regularization. We need to find a value of λ that will

allow us to maximize this posterior. Suyu et al. give the posterior as

P (λ|d, f,g) =
P (d|λ, f,g)P (λ)

P (d|f,g)
(5.22)

Suyu et al. assume a flat prior in log λ, meaning any value is possible so P (lambda)

cannot be constrained. The quantity to consider is then is P (d|λ, f,g) which was

the evidence in Equation 5.19.

In Figure 5.7 we see Figure 3 from Suyu et al. [81]. This plot gives the expected

relation between λ and logP (d|λ, f,g) (they work with the log(P) in order to simplify

some of the terms). The solid line in this plot represents the result of Equation 5.19

as a function of λ. Note that log(P ) reaches a maximum value for a particular value

of λ. Thus what we are looking for when using Tri3SrcMatrixFit is the value of
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Figure 5.7: A plot of regularization constant (λ) vs. log of Bayesian evidence
(Log(P)) from Suyu et al. (2006) [81] (solid line). The dotted and dashed lines
are plots of Eq. 20 from Suyu et al. The evidence, rescaled to fit graph, is shown
as the dot-dashed line.

λ that maximizes the evidence. Then from there we seek to find source and lens

model parameters by minimizing the χ2 function.

5.4.1.3 Using Tri3SrcMatrixFit

Tri3SrcMatrixFit is run using parameter files in a manner similar to GALFIT

and LENSVIEW. The source code is written in Fortran. The program is invoked

by simply stating tri3srcmatrixfit on the command line once the Makefile has been

run and the code is compiled. Tri3SrcMatrixFit operates (like GALFIT) using
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two major loops: an inner loop called tri3subroutinematrixfit.f and an outer loop

called tri3srcmatrixfit.f. The inner loop searches for the best source plane model

parameters given a value or range of values of λ. The outer loop takes these source

model parameters and searches for the best lens plane model parameters, finding

model parameters for a singular isothermal ellipsoid (SIE) profile. Both inner and

outer loops have their own parameter files by which starting values and ranges can

be controlled. Figure 5.8 shows the parameter files for the outer (upper image) and

inner (lower image) loops. The upper (lens plane) file lists the system name (note

that 5185 is an alternative informal name for SDSS J1537+6556 assigned during

lens searches using the interacting galaxies method) and then the image names.

Note that the input images are the same types as used by LENSVIEW, including

a data image, a source image, a variance image, a mask image and a PSF image.

Parameters that are then read in include the x and y-centers of the image (where the

BCG was before subtraction), the Einstein radius in pixels, the axis ratio and the

position angle given counterclockwise from the x-axis. A core radius and truncation

radius can be optionally be given to use a pseudo-Jaffe rather than an SIE profile.

The lower (source plane) file takes input on the starting and ending values for λ as

well as a λ step size and a parameter determining which type of regularization to

use. The second line in this file control the center and the size of the source plane

image.

Initially we kept the lens plane input parameters constant and varied λ to find

which values of λ maximize the evidence. The resultant plots are shown in Figure

5.9. For zeroth order regularization we found the evidence is maximized at λ =

0.00012 while for first order regularization we found the maximum evidence at λ =

0.00008; plots are shown in Figure 5.9 (in both cases we used the r-band data image).
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Figure 5.8: Parameter files for Tri3SrcMatrixFit. The upper file is for the outer
loop (lens plane fitting). The lower file is for the inner loop (source plane fitting).
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Figure 5.9: The relation between log(evidence) and λ for SDSS J1537+6556. The
plot on the left is for zeroth order regularization while the plot on the right is for
first order regularization.

Table 5.2: Mass model results for SDSS J1537+6556 found from Tri3SrcMatrixFit.

Filter x-
center

y-
center

Einstein
Ra-
dius

Axis
Ratio

Position
An-
gle

χ2

(Lens
Model)

χ2

(Source
Model)

log
(Evi-
dence)

g 91 89 8.4 0.87 10 2369514 63051 -45443
r 91 90 8.3 0.87 10 35999 14323 -19662
i 91 90 8.3 0.87 10 32313 12650 -18786

We then fixed λ at these values as we then allowed lens plane parameters to vary,

seeking to find the best lens and source plane model fits.

5.4.2 Lens Modeling Results from Tri3SrcMatrixFit for

SDSS J1537+6556

After running Tri3SrcMatrixFit on SDSS J1537+6556 we obtained the lens

model parameters listed in Table 5.2. Lens and source models for SDSS J1537+6556

are shown in Figure 5.10. In this figure, the three rows are for g (top), r (middle)
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and i-band (lower) images. From left to right they are: (1) input image, (2) model

image, (3) residual image, (4) source image, (5) second source image and (6) finer

source image. The input image is the image with only the lensing arc that was

output by GALFIT. The model image is the model of the arc that was produced by

Tri3SrcMatrixFit, considering the χ2 only in the highlighted region. The residual

is the input image minus the model image. The first source image is that produced

directly by the Tri3SrcMatrixFit program. The second and third source images

were produced by a subsidiary program also written by H. Lin that takes position

and magnitude information output by Tri3SrcMatrixFit and uses the IDL routine

Triangulate to construct a Delaunay triangulation of points above background in

the source plane. It then uses the IDL routine Trigrid to display the points. The

second source image uses a coarse grid and the last one uses a finer grid to display

the points.
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Figure 5.10: Lens model results from Tri3SrcMatrixFit for SDSS J1537+6556. In this figure, the three rows are for g
(top), r (middle) and i-band (bottom) images. From left to right they are: (1) input image, (2) model image, (3) residual
image, (4) source image, (5) second source image and (6) finer source image.
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The subsidiary program also produces a plot of points above background. In this

plot, the red points are points with brightness greater than 0 and the green points

are points with brightness greater than the defined background (we used 100). The

red points, being produced by a model of a singular isothermal ellipsoid, trace out a

caustic. The green points represent the source model. It appears from Figure 5.11

that the source object falls almost along one boundary of the caustic.
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Figure 5.11: Points above background in the source plane for SDSS J1537+6556. The plots are for g (left), r (middle) and
i-band (right). The red points are points with brightness greater than 0 and the green points are those with brightness
greater than 100.
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5.5 Comparison of Results from LENSVIEW and

Tri3SrcMatrixFit

Both modeling programs produce very similar source models, appearing as a long

filament. In both cases, the g-band fit has the largest errors, because of lower signal

to noise. The χ2 values for the lens model fits from LENSVIEW are 87937, 37339 and

33273 while those from Tri3SrcMatrixFit are 63051, 14323 and 12650. Thus the

fits are significantly better for Tri3SrcMatrixFit than for LENSVIEW. The results

for Einstein radius are similar for both programs, with θE = 8.4′′ for LENSVIEW and

θE = 8.3′′ for Tri3SrcMatrixFit. We found θE = 8.5 ± 2.8′′ in Chapter 2. Both

programs found axis ratio around 0.86, but there was significant disagreement about

position angle.

So our final conclusion about the source is that it is a filamentary object falling

along a caustic. Recalling Figure 1.11 in Section 1.7.2 it we see that a source

galaxy falling along the astroid caustic would produce a single large arc, along with

several much smaller counter images. It is not surprising that the counter images

are not visible, as they would likely be significantly dimmer than the main arc.

There also are no visible secondary arclets visible in the model images produced by

Tri3SrcMatrixFit.

5.6 Butterfly Collecting: The Vizcacha Galaxy

During observing for the Dark Energy Survey on the night of November 14, 2013,

I noticed the presence of an object in a z-band image from Chip S-16 that had the

potential to be a gravitational lens. This object has the coordinates (347.028508,
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Figure 5.12: A closeup image of the Vizcacha Galaxy from the raw z-band image
taken at the 4-m Blanco telescope on November 11, 2013.

-54.0222056); I give it the informal designation of ”Vizcacha Galaxy” due to the

sighting of one of these chinchilla-like rodents before sunset on this night. A closeup

image of the z-band data is shown in Figure 5.12 while a wider-field image showing

surrounding galaxies in shown in Figure 5.13. This object stood out because the

center of the object appeared like a large elliptical galaxy and it was surrounded by

a faint, diffuse circle that could have potentially been an Einstein ring. I notified H.

Lin and T. Diehl of this finding, and we planned to further investigate this object

when data was available in multiple wavelength bands to see what colors the objects

in the image had.

After further investigation it was found that this object was in DES-SV data

(from 2012-2013 observing season) and so the multi-band observations did exist.

The images with color information and stacked observations gave evidence that this

was not a gravitational lensing system, but was rather a spiral galaxy with a ring-

component. This was evident because the ring surrounding the galactic core was

flocculent and not well defined as lensing arcs typically are. Although this was

determined not to be a lensing system, it is nontheless interesting as a well-defined
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Figure 5.13: A larger image of the Vizcacha Galaxy from the raw z-band image
taken at the 4-m Blanco telescope on November 11, 2013.

ring galaxy. A ring galaxy is believed to be formed when a disk galaxy experiences a

direct impact be another system [12]. The disk galaxy is gravitationally distorted to

form a ring of star-forming material while the impactor forms the new ring galaxy’s

nucleus. In Figure 5.14 we display a wide section of this image, while in Figure 5.15

we display a large image of the galaxy.



229

Figure 5.14: A wide-field color image of the Vizcacha Galaxy.

Figure 5.15: A color image of the Vizcacha Galaxy.



CHAPTER 6

CONCLUSION

If you would attain to what you are not yet, you must always be displeased by

what you are. For where you are pleased with yourself there you have remained.

Keep adding, keep walking, keep advancing.–St. Augustine of Hippo

6.1 Conclusions: Evidence of Overconcentration Among

Low-Mass Strong Lensing Clusters

In Chapter 2 we describe 10 strong lensing galaxy clusters of redshift 0.26 ≤ z ≤

0.56 that were found in the Sloan Digital Sky Survey. We present measurements of

richness (N200), mass (M200), and velocity dispersion for the clusters.

We find that in order to use the massrichness relation from Johnston et al. [47],

which was established at mean redshift of 0.25, it is necessary to scale measured

richness values up by 1.47. Using this scaling, we find richness values for these

clusters to be in the range of 22 ≤ N200 ≤ 317 and mass values to be in the range

of 1− 30× 1014h1 M�. We also present measurements of Einstein radius, mass, and

velocity dispersion for the lensing systems. The Einstein radii (θE) are all relatively

small, with 5.4 ≤ θE13.

Finally, we consider if there is evidence that our clusters are more concentrated

than CDM would predict. We find that six of our clusters do not show evidence

of overconcentration, while four of our clusters do. We note a correlation between
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overconcentration and mass, as the four clusters showing evidence of overconcentra-

tion are all lower-mass clusters. For the four lowest mass clusters the average value

of the concentration parameter c200 is 11.6, while for the six higher-mass clusters

the average value of c200 is 4.4. ΛCDM would place c200 between 3.4 and 5.7.

6.2 Conclusions: The Accuracy of the Richness

Extrapolation

In Chapter 3 we describe follow-up observations at Apache Point Observatory

(APO) of six of the ten strong lensing galaxy clusters described in Chapter 2. Follow-

up observations were taken in 2012 as some sections of the galaxy clusters being

studied were not present in the original images taken at the WIYN telescope in

2009. In order to complete the analysis described in Chapter 2, it was necessary to

extrapolate the total cluster richness. Our goal in Chapter 3 was to confirm that

this extrapolation relation was reliable.

We describe the process of data reduction and magnitude calibration using IRAF,

LACosmic, SCAMP, SWARP and SExtractor. We then measure the total number

of cluster galaxies present in the APO images and compare this to the number

of cluster galaxies found in the previous WIYN images. We finally combine APO

and WIYN results to give total measured richnesses for these six clusters. We

compare the total measured richnesses to the total extrapolated richnesses and find

there is a good match. Thus we conclude that the extrapolation relation previously

used is highly reliable. Finally we present new imaging of another galaxy cluster

serendipitously noticed in the APO imaging.
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6.3 Conclusions: A Higher Redshift Mass-Richness

Relation

In Chapter 4 we present mass-richness relations for three data sets: the Sloan

Digital Sky Survey Stripe 82 Coadd (Stripe 82), the Blanco Cosmology Survey

(BCS) and the Dark Energy Survey Science Verification data (DES-SV). These mass-

richness relations are presented for four redshift bins, 0.1 ≤ z ≤ 0.4, 0.4 ≤ z ≤ 0.7,

0.7 ≤ z ≤ 1.0 and 0.1 ≤ z ≤ 1.0.

We present samples of galaxy clusters for each of the 3 data sets and describe how

these clusters were found using a Voronoi tessellation cluster finder for Stripe 82 and

DES and using the red sequence method for BCS. Richness for Stripe 82 and DES-

SV was given in terms of NV T and for BCS was given in terms of richness measure

λ. Our sample includes 19, 376 clusters in Stripe between 0.1 ≤ z ≤ 0.98 and

1 ≤ NV T ≤ 127. It also includes 763 clusters in the BCS between 0.13 ≤ z ≤ 0.75

and 10 ≤ λ ≤ 64.3 and 27, 230 clusters in the DES-SV between 0.12 ≤ z ≤ 1.68 and

1 ≤ NV T ≤ 538. We present measurements of richness for clusters in each of these

data sets. We then describe how we measured cluster masses with measurements of

weak lensing shear.

We describe the effects of systematics on weak lensing shear and thus cluster mass

(M200) results. These systematics include the effect of the central BCG, halo mis-

centering, foreground galaxy contamination and photometric redshift uncertainty.

We present mass-richness relations with each of these effects considered separately

as well as considered altogether. We also conducted two null tests and one final

systematics test; these included measurements of orthotangential shear for all clus-
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ter bins, measurements of weak lensing shear around random points and analysis of

dependence of shear on sky position.

We present values for the mass coefficient and the power law slope for mass-

richness relations found using Stripe 82 data for each of the four redshift bins. Our

final results for mass richness relations for the Stripe 82 coadd including corrections

for all systematic effects are:

Low − z : M200 = (9.54± 0.725)× 1013h−1M�
(
NV T

20

)0.994±0.0683

Mid− z : M200 = (14.2± 1.80)× 1013h−1M�
(
NV T

20

)0.856±0.113

High− z : M200 = (29.0± 11.4)× 1013h−1M�
(
NV T

20

)1.79±0.390

All − z : M200 = (9.33± 0.689)× 1013h−1M�
(
NV T

20

)1.00±0.0723

(6.1)

Our result for the mass coefficient is very consistent with the results of other groups

at low redshift. Our result for the power law slope at low redshift is consistent with

one of the other groups but outside the range of the other.

We also considered the mass-redshift and mass-concentration relations using the

Stripe 82 data. We find that the mass coefficient shows evidence of increasing with

redshift, while the power law slope may not. Our results for the concentration

parameter have large error bars which contributes to a systematic offset between

our final mass concentration relations and those from other groups.

Finally we present mass-richness relations for all four redshift bins for clusters

found in the BCS and for clusters found in the DES-SV. We applied only the halo

miscentering correction to these data sets.
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6.4 Conclusions: A Mass Model of SDSS J1537+6556

We present initial lens models for SDSS J1537+6556 of the mass distribution in

the cluster and of the lensed source galaxy. We describe how the image was prepared

for lens modeling by using GALFIT. We then describe lens model results from two

modeling routines: First, from LENSVIEW and then from Tri3SrcMatrixFit, a new

Bayesian lens-modeling routine.

Both GALFIT and Tri3SrcMatrixFit give similar results, with θE ≈ 8.3′′ and

axis ratio about 0.86. Position angle estimates cover a wide range. The final source

image describes a long filamentary source object that is very close to the astroid

caustic. Its position along the caustic in the source plane leads to the formation of

a single distinct arc in the image plane, along with other small counter images that

were not detected in our images.

Finally we briefly describe a system found during observing for the Dark Energy

Survey that was initially thought to be a strong lens. Later it was found to be a ring

galaxy. We present initial images taken at the Blanco Telescope along with color

images of the system produced after observing.
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Figure A.1: Plots of number density nearby clusters as a function of radius for all
richness bins and 0.1 ≤ 0.4. The green line is the median value of the correction
between 1.4 − 3.0h−1 Mpc and the red line indicates the 1.4h−1 Mpc point where
calculation of the median begins.
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Figure A.2: Plots of number density nearby clusters as a function of radius for all
richness bins and 0.4 ≤ 0.7. The green line is the median value of the correction
between 1.4 − 3.0h−1 Mpc and the red line indicates the 1.4h−1 Mpc point where
calculation of the median begins.
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Figure A.3: Plots of number density nearby clusters as a function of radius for all
richness bins and 0.7 ≤ 1.0. The green line is the median value of the correction
between 1.4 − 3.0h−1 Mpc and the red line indicates the 1.4h−1 Mpc point where
calculation of the median begins.
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Figure A.4: Plots of number density nearby clusters as a function of radius for all
richness bins and 0.1 ≤ 1.0. The green line is the median value of the correction
between 1.4 − 3.0h−1 Mpc and the red line indicates the 1.4h−1 Mpc point where
calculation of the median begins.
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Table A.1: Values of NV T , M200, reduced χ2 for fit to 0 tangential shear, reduced
χ2 probability for this fit and c200 for low-z and mid-z bins in the Stripe 82 coadd,
including all systematics for low-z and mid-z. Note that all values of M200 have the
units 1014 h−1 M�.

NV T M200 χ2
red Prob c200

LOW-Z
1±0 0.00406±0.012009 1.416802 0.067667 0.252202±0.70859
2±0 0.058286±0.016521 1.73268 0.008492 3.799757±3.569984
3±0 0.052419±0.032134 1.93739 0.001797 0.561834±0.462221
4±0 0.089228±0.038313 1.806692 0.004925 1.129056±0.876895
5±0 0.164858±0.046633 2.494385 0.000014 1.358829±0.76223
6±0 0.141509±0.042059 1.827822 0.004201 3.856865±3.191844
7±0 0.281613±0.067054 2.259911 0.000121 3.247561±1.781743
8±0 0.008465±0.03857 2.260948 0.000119 1.404976±12.036672

9±0.5 0.284505±0.062433 2.54702 0.000009 2.108155±1.011853
11±0.5 0.011267±0.034215 4.600511 0 2.909726±27.526752
14±1 0.527766±0.12408 4.498949 0 0.824398±0.362104
18±2 0.457485±0.102334 2.712129 0.000002 1.634428±0.740969

23±4.5 0.427442±0.178904 2.590297 0.000006 0.408939±0.283339
35±4.5 1.410066±0.296783 3.017968 0 1.535705±0.653672
46±4.5 1.666487±0.357641 2.80289 0.000001 1.834109±0.775471
54±4.5 3.244358±0.929298 2.282188 0.000099 1.184691±0.694519
65±3 2.72311±0.802419 3.056965 0 1.299974±0.782216
78±4 3.299089±1.485384 1.966073 0.00143 1.146059±1.083152

127±14 3.061078±1.630495 1.420342 0.06628 0.884632±0.991859
MID-Z

1±0 0.069772±0.03618 1.576941 0.024949 1.051204±0.942445
2±0 0.003561±0.006142 1.588484 0.023113 0.017414±0.056651
3±0 0.059976±0.036219 1.33745 0.10583 1.37736±1.628322
4±0 0.229013±0.052323 2.396917 0.000035 6.694057±4.441216
5±0 0.037±0.020071 2.371531 0.000045 0.001301±0.251882
6±0 0.314665±0.113355 2.374317 0.000043 0.956172±0.631958
7±0 0.214724±0.142441 1.507642 0.038993 0.510683±0.513062
8±0 0.599321±0.2341 2.001758 0.001073 0.476461±0.329924

9±0.5 0.595091±0.137589 2.745069 0.000001 2.287043±1.071839
11±0.5 0.878344±0.199879 2.707946 0.000002 3.290453±1.444648
14±1 0.088256±0.158563 1.290609 0.135599 0.220921±0.502494
17±2 0.853927±0.211785 2.448511 0.000022 3.277201±1.541722

24±4.5 1.118405±0.319318 1.839168 0.003854 1.485424±0.853651
35±4 1.563332±1.130345 1.780024 0.006007 0.466469±0.727339
44±3 0.392595±0.53786 1.834253 0.004001 54.881158±485.101411
54±2 2.155516±0.974095 1.458665 0.05275 3.071444±2.495965
63±4 2.787909±2.396291 1.164216 0.248069 0.392854±0.893397

91±7.5 1.218674±1.920435 0.745867 0.835177 1.148463±3.781818
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Table A.2: Values of NV T , M200, reduced χ2 for fit to 0 tangential shear, reduced
χ2 probability for this fit and c200 for high-z and all-z bins in the Stripe 82 coadd,
including all systematics for high-z and all-z. Note that all values of M200 have the
units 1014 h−1 M�.

NV T M200 χ2
red Prob c200

1±0 0.002029±0.009283 0.957746 0.529986 0.01483±0.12344
2±0 0.01475±0.049737 0.86649 0.671578 0.234656±0.816177
3±0 0.040665±0.031091 1.545216 0.03069 0.001878±0.274297
4±0 0.017853±0.067707 1.276644 0.145645 1.313342±9.352414
5±0 0.103945±0.116542 1.842378 0.003761 1.530302±3.495593
6±0 0.160461±0.197662 0.698788 0.884504 0.769622±1.537464
7±0 0.309319±0.279084 0.58758 0.961559 1.002459±1.664817
8±0 0.103975±0.277 0.897874 0.623441 0.515606±1.92646

9±0.5 0.745032±0.341688 1.077766 0.353493 1.755921±1.563842
11±0.5 0.004744±0.128912 0.853321 0.691342 2.588025±199.342227
14±1 0.724868±2.88679 1.021296 0.433272 0.002621±1.402359
17±2 1.504825±0.856889 1.009955 0.450107 1.91472±1.935946

24±4.5 1.77267±1.865614 1.336321 0.106479 0.038911±0.609364
34±4.5 3.817381±3.497042 1.239977 0.174752 3.79427±5.040852
44±5 0.006809±0.781065 1.269146 0.151272 0.398401±48.844501

ALL-Z
1±0 0.014803±0.015163 1.44742 0.056448 0.648094±0.861629
2±0 0.010365±0.012625 1.780743 0.005975 0.991389±1.873042
3±0 0.035904±0.021049 2.718256 0.000002 0.788744±0.683776
4±0 0.123229±0.028352 2.877786 0 1.687073±0.828339
5±0 0.144676±0.046665 3.311249 0 0.645999±0.318774
6±0 0.164156±0.047078 3.059856 0 1.078554±0.564484
7±0 0.215766±0.058829 2.782672 0.000001 1.227187±0.642782
8±0 0.246157±0.092297 2.795151 0.000001 0.48445±0.279183

9±0.5 0.350722±0.057498 3.741433 0 1.889484±0.65386
11±0.5 0.030831±0.031881 5.860152 0 2.839587±8.926458
14±1 0.023933±0.034446 4.452306 0 1.996493±7.008187
17±2 0.534629±0.093642 4.03183 0 1.566853±0.551982

24±4.5 0.543445±0.160251 3.544194 0 0.500548±0.258482
35±4.5 1.378453±0.282283 3.196332 0 1.296939±0.543255
45±4.5 1.492566±0.338548 2.476048 0.000017 1.390023±0.643546
54±4.5 2.732788±0.683912 2.57956 0.000006 1.366189±0.69135
65±4 2.618092±0.76672 3.12242 0 0.928388±0.592224
78±4 3.022221±1.441194 1.758291 0.007049 0.984739±1.013918
99±18 2.385235±1.338059 0.968976 0.512555 0.79108±0.94815
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Table B.1: Fit parameters in the g-band for SDSS J1537+6556. Reduced χ2 for this fit is 1.152294. Parameters in
brackets were held constant.

Object Fit Type X-Coord Y-Coord Magni-
tude

Half-Light
Radius

Sersic
Index

Axis Ratio Position
Angle

1 sersic 1374.3979 ± 0.0237 2084.9402 ± 0.0205 17.4389 ± 0.0186 28.3697 ± 0.7329 3.5575 ± 0.0510 0.8737± 0.0046 88.8789 ± 1.3666
2 sersic 1390.4496 ± 0.0530 2105.5269 ± 0.0556 19.1156 ± 0.3483 43.0002 ± 40.0398 13.0348 ± 3.9879 0.7732± 0.0263 31.8516 ± 4.8259
3 sersic 1383.0238 ± 0.0624 2064.4194 ± 0.0569 20.3739 ± 0.0439 7.2176 ± 0.5294 3.4674 ± 0.3756 0.5045± 0.0231 -51.9336 ± 2.1955
4 sersic 1346.4375 ± 0.1048 2017.4507 ± 0.1069 21.4388 ± 0.0238 1.8511 ± 0.2304 4.0000 0.6272± 0.1143 70.5943 ± 11.0105
5 psf 1294.6576 ± 0.1056 2055.7161 ± 0.0985 22.1252 ± 0.0260 – – – –
6 sersic 1308.4723 ± 0.1581 2060.7151 ± 0.6147 20.9757 ± 0.2128 4.3045 ± 0.3514 1.1978 ± 0.2103 0.5956± 0.0362 -28.8738 ± 6.3180
7 sersic 1306.9716 ± 0.0926 2055.6104 ± 0.2699 20.6643 ± 0.1399 3.2199 ± 0.3708 3.5630 ± 0.8741 0.7511± 0.0578 -75.3914 ± 16.3601
8 psf 1330.2479 ± 0.5937 2079.4106 ± 0.6174 24.3845 ± 0.1997 – – – –
9 psf 1322.7611 ± 0.6326 2110.9307 ± 0.6915 24.3218 ± 0.1881 – – – –
10 psf 1436.5002 ± 0.5514 2098.8923 ± 0.5940 24.1311 ± 0.1577 – – – –
11 sky – – 256.6260 – – – –

Table B.2: Fit parameters in the r-band for SDSS J1537+6556. Reduced χ2 for this fit is 1.151182. Parameters in
brackets were held constant.

Object Fit Type X-Coord Y-Coord Magni-
tude

Half-Light
Radius

Sersic
Index

Axis Ratio Position
Angle

1 sersic 1376.3577 ± 0.0089 2086.2585 ± 0.0083 15.9208 ± 0.0105 27.4349 ± 0.4225 3.7070 ± 0.0323 0.8837± 0.0020 -86.1759 ± 0.6301
2 sersic 1392.4614 ± 0.0165 2106.8474 ± 0.0183 18.0033 ± 0.0787 18.3057 ± 3.6837 10.5145 ± 0.9491 0.6833± 0.0111 33.3883 ± 1.3199
3 sersic 1385.2336 ± 0.0228 2065.6501 ± 0.0227 18.9964 ± 0.0088 6.7768 ± 0.1261 4.0000 0.4283± 0.0106 -47.1949 ± 0.7511
4 sersic 1348.3701 ± 0.0352 2018.5625 ± 0.0361 20.0365 ± 0.0084 1.5629 ± 0.0753 4.0000 0.7314± 0.0443 67.5400 ± 6.2341
5 psf 1297.0903 ± 0.0692 2057.2061 ± 0.0665 21.7565 ± 0.0260 – – – –
6 sersic 1310.9547 ± 0.0730 2062.4309 ± 0.1230 20.2751 ± 0.0425 5.5600 4.0000 0.7025± 0.0392 -14.8913 ± 7.3438
7 sersic 1309.0724 ± 0.0411 2057.2107 ± 0.0552 20.0828 ± 0.0467 2.7471 ± 0.2587 4.0000 0.8026± 0.0335 -63.5804 ± 12.4048
8 psf 1324.5046 ± 0.2854 2111.4158 ± 0.3045 23.3713 ± 0.0935 – – – –
9 psf 1439.8379 ± 0.2102 2099.2566 ± 0.2083 23.1049 ± 0.0793 – – – –
10 sky – – 848.0933 – – – –

Table B.3: Fit parameters in the i-band for SDSS J1537+6556. Reduced χ2 for this fit is 1.028762.
Object Fit Type X-Coord Y-Coord Magni-

tude
Half-Light

Radius
Sersic
Index

Axis Ratio Position
Angle

1 sersic 1377.3176 ± 0.0090 2086.4600 ± 0.0083 15.9269 ± 0.0107 27.2935 ± 0.4125 3.7337 ± 0.0286 0.8836± 0.0023 -84.8530 ± 0.6336
2 sersic 1393.4456 ± 0.0156 2107.0481 ± 0.0176 18.1580 ± 0.0627 12.8645 ± 1.8865 8.3298 ± 0.6435 0.6526± 0.0118 29.7365 ± 1.2284
3 sersic 1386.3014 ± 0.0225 2065.8818 ± 0.0225 18.9981 ± 0.0300 6.9839 ± 0.3888 4.4912 ± 0.2397 0.4079± 0.0117 -46.8339 ± 0.7253
4 sersic 1349.4187 ± 0.0293 2018.7106 ± 0.0310 20.0554 ± 0.0116 1.6087 ± 0.0889 4.0000 0.7050± 0.0460 57.6272 ± 5.6987
5 psf 1298.2356 ± 0.0849 2057.3516 ± 0.0774 22.1870 ± 0.0399 – – – –
6 sersic 1311.5455 ± 0.1076 2061.4131 ± 0.2619 20.5614 ± 0.1061 4.9438 ± 0.2603 1.5076 ± 0.2129 0.5282± 0.0259 -16.5862 ± 4.3823
7 sersic 1309.9556 ± 0.1430 2057.1079 ± 0.1427 20.8710 ± 0.1789 3.9186 ± 0.9491 4.0000 0.6778± 0.0789 -77.4156 ± 15.8052
8 psf 1331.7040 ± 0.1791 2081.4048 ± 0.1908 23.0551 ± 0.0816 – – – –
9 psf 1325.3127 ± 0.2944 2111.8164 ± 0.3160 23.3717 ± 0.1076 – – – –
10 psf 1440.1631 ± 0.2262 2099.1506 ± 0.2371 23.1588 ± 0.0998 – – – –
11 sky – – 1591.1017 – – – –
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