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1

Chapter 1

Introduction

In this 21st century, physics has succeeded to give explanation for so many mysteries in our

universe. Due to growing technological advancement, high energy particle physics, which

deals with the study of how the smallest building blocks of matter interact with each other

through forces, has been progressing by probing deeper and deeper into the subatomic scale.

With all of these efforts, a theory concerning the electroweak and strong nuclear interac-

tions called the standard model (SM) has been tremendously successful in explaining a wide

variety of experimental results, including the SM Higgs boson (possibly discovered at the

LHC [1] [2] ) that explains the origin of electro-weak spontaneous symmetry breaking neces-

sary to give masses to the observed gauge bosons. However, the standard model falls short of

being a complete theory of fundamental interactions, as the SM does not incorporate gravity

and does not predict many phenomena such as dark energy, neutrino oscillations [3] and the

non–zero masses of neutrinos. Additionally, the SM has some unnatural properties within

its theoretical framework, leading to puzzles like strong CP [4] and the hierarchy problem.

In order to address these limitations, many theories beyond the standard model (BSM) have

been developed and are being tested with increasingly more sensitive experiments. One way

to model a BSM theory is by introducing a new interaction in a very high energy scale in

the form of a 4-fermion contact interaction. This is similar to the approach used by Fermi
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to describe nuclear β decay [5], which could explore the large extra spatial dimensions or

quark/lepton compositeness for parton interaction well below the actual interaction scale.

In order to probe new physics at the TeV scale, the LHC particle accelerator was constructed

by the European Organization for Nuclear Research (CERN) with the aim of allowing physi-

cists to test the predictions of different theories of particle physics, particularly the existence

of the SM Higgs boson or Higgs bosons in extension to the standard model. One of the

four main detectors at the LHC, the CMS detector is designed with the goals of discovering

the Higgs boson, looking for evidence of physics beyond the standard model, and studying

aspects of heavy ion collisions. The analysis presented in this thesis is based on studying

LHC data collected by the CMS detector in 2012 at center of mass energy of 8 TeV. Without

knowledge of the exact intermediate particle exchange mechanism, a search for a new physics

signature in the form of a 4-fermion contact interaction due to the assumed substructure of

quarks and leptons is performed in the high mass region of the Drell-Yan process for pairs

of electrons by looking for an excess of events over what is predicted by the standard model.

This thesis is organized as follows. Chapter 2 discusses the standard model as well as the

motivation for the BSM theory of CI, that is being used in this analysis. At the end, activ-

ities in the CMS collaboration in the compositeness search and some previous work on the

contact interaction will be explained. In section 3.1, the physics of p-p collisions along with

the parton distribution functions and a few generators are discussed. In the beginning of

the Chapter 4, the design and detailed structure of the CMS experiment is given. Chapter 5

gives the Pythia implementation in the context of a contact interaction with the left left

isoscalar model. In Chapter 6, a quick summary is given regarding the overview of the

method of the CI analysis. Since this thesis is restricted to the CI analysis in the di-electron

channel, a brief description of the electron reconstruction and the identifaction in the CMS

detector is presented in Chapter 7. The data-driven method for the estimation of electrons

from jets and the electron charge misidentification are also explained in this chapter. In

Chapter 8, a detailed description of the data and Monte Carlo simulation (MC) used in this
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analysis is given. An explanation of higher order correction is given in Chapter 9. In Chap-

ter 10, the theoretical and the experimental systematic uncertainties are discussed. Since

the largest source of systematic uncertainty comes from the parton distribution function, a

detailed explanation is given for the method used to estimate the PDF uncertainty in this

chapter. In Chapter 11, the flavor of the technical aspects of the data analysis in the CMS

collaboration is discussed in the context of the Data-MC spectrum comparison. Chapter 12

gives some discussion of the statistical methods used in high-energy physics and a detailed

explanation of the particular method used in this analysis. Finally, in Chapter 13, a sum-

mary of the results obtained for this analysis and future plans are discussed.
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Chapter 2

Theoretical background

This chapter introduces the standard model (SM) of particle physics, which has successfully

explained almost all laboratory results to date. In section 2.2, some of the incompleteness

of the SM is discussed followed by the motivation for beyond the SM models. Along with

a review of the previous searches, section 2.2.1 introduces the four fermion contact inter-

action model including possible experimental signatures. Finally, in section 2.2.4, a short

description of a previous search using a similar analysis is given.

2.1 The standard Model of particle physics

The standard model is a widely accepted theory which has successfully described the fun-

damental interactions of nature, within the framework of relativistic quantum field theory

(QFT [6]) in which the fields are quantized and the particles represent excitations of quan-

tized fields. The gauge group, SU (3)C × SU (2)L × U (1)Y conserves color charge, electric

charge, weak isospin and weak hypercharge. Despite its success in explaining other interac-

tions, the standard model does not include gravity.
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2.1.1 Fundamental constituents of matters and interactions

All matter in the universe is made up of the fundamental SM particles called quarks and lep-

tons with half integer spins, which are collectively called fermions. The interaction between

these fermions, however, are mediated via gauge bosons with integer spins. The leptons are

grouped into three families: the electron and electron neutrino (e–, νe), the muon and muon

neutrino (μ–, νμ), and the tau and tau neutrino (τ–, ντ). Similarly to leptons, quarks are also

categorized in 3 families: up and down quarks (u,d), charm and strange quarks (c,s) and

top and bottom quarks (t,b) as well as their antiparticles (ū, d̄), (c̄, s̄) and (t̄, b̄). However,

the quarks possess fractional charge with respect to the leptonic charge. The first families

of quarks and leptons form stable matter, in which protons (uud) and neutrons (udd) are

bound by the strong interaction in nuclei, whereas electrons are bound to the nucleus via

the electromagnetic interaction. Fig. 2.1 shows the quarks, leptons, and bosons of the SM.

Figure 2.1: The 6 quarks (orange boxes), 6 leptons (green boxes) and 4 bosons (purple
boxes) of the standard model of elementary particle physics. [7]

The observed physical processes in nature can be explained by four fundamental inter-

actions of which three are incorporated in the standard model. The fourth interaction, the
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gravitational interaction, however, has yet to be unified with the SM interactions.

The electromagnetic interaction

The electromagnetic interaction is the unified version of the fundamental electric and the

magnetic interactions, in which a force is generated between charged or magnetized parti-

cles. This phenomenon includes the force between stationary particles and forces between

particles with relative motion. This interaction is of infinite range and is described in the

standard model by a quantum gauge theory called quantum electrodynamics (QED).

The weak interaction

The weak interaction is a short ranged (∼ 10–24 seconds) interaction that affects all fermions

and is responsible for β decay of radioactive nuclei. This interaction is caused by the ex-

change of heavy gauge bosons called the W and Z, the masses of which are explained in

terms of spontaneous symmetry breaking by the Higgs mechanism [8, 9]. Both parity and

charge parity symmetries are broken within the weak interactions and the unified interaction

is referred to as “electroweak”.

The strong interaction

The strong interaction is also a short ranged interaction that affects objects that contains

“color” charge (quarks and gluons). It is responsible for binding u and d quarks into nu-

cleus and indirectly, for binding protons and neutrons in the nucleus. The strong interaction

gauge group has 8 generators (gluons). Gluons carry both color and charge and hence, un-

like photons, create tubes of lines of force. As the tube possesses constant energy density,

quarks need infinite energy to break apart. Due to this reason, it is not possible to obtain

free quarks. This phenomenon is commonly known as color confinement [10]. The strong

interaction is described in the standard model by a quantum gauge theory called “quantum

chromodynamics” (QCD).

The gravitational interaction

According to classical mechanics, the only interaction in nature that is affected by the
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mass of an object is the gravitational interaction. With general relativity, the gravitational

interaction is explained in terms of the space time curvature created by massive objects.

There have been many attempts to prepare a successful quantum theory of gravity, and

one of the hopes is string theory [11], which, unfortunately, has predictions that are outside

the range of experimental verification. The gravitational interaction is long ranged and is

believed to be mediated by a spin 2 boson called the graviton.

2.2 Beyond the standard model

Despite the success of the discovery of the Higgs boson [12], there are a lot of compelling

reasons to develop theories to overcome the deficiencies of the standard model. The stan-

dard model has failed to explain the mass hierarchy, 3 generations of quarks and leptons,

the strong CP problem, and neutrino oscillations. Hence, the standard model is taken as an

approximate theory in the low energy regime that unifies the weak and the electromagnetic

interactions, but has not succeeded in unifying the strong interaction. In order to bring

gravity into the framework of the quantum field theory and to overcome the failure of the

standard model to explain various phenomena, there has been much interest in probing

theories that go beyond the standard model.

Physics beyond the standard model is a very popular area in the particle physics com-

munity. Much attention in this area has been focussed on supersymmetry (SUSY) models

which propose that all fermionic particles and bosonic particles have superpartners whose

spin differs by a half-integer. SUSY theory is believed to resolve the mass hierarchy of

the SM, however, so far the LHC has failed to find evidence of SUSY. In order to explain

the weakness of gravity, the theory of extra spatial dimension is also a popular beyond the

standard model theory. Thus far, no evidence of such extra dimensions has been detected

and upper limits have been placed on the production cross-section. Another popular BSM
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approach is the idea that quarks and leptons are composite particles in which this thesis is

concentrated about. A specific compositeness model called LLIM is discussed later in this

chaper. So far there is no evidence of the compositeness and a lower limit is set on the

compositeness scale in terms of the new interaction energy.

2.2.1 Contact Interaction

As a first attempt to build a weak interaction theory in 1932, Fermi imagined a 4-particle

point interaction in space time using the specific example of β decay [5]. For this kind of

interaction, where no propagator is involved, the coupling factor is given in terms of the

Fermi limit, which is still valid in the low energy regime even after the discovery of the

Z, W+, W–. For example, the propagation term of a massive boson is 1
M2

W/Z
–q2 . In the

approximation q2 << MW, the scattering amplitudes without a propagator and with a

propagator can be written as,

f(q2) ∝ GF√
2

(2.1)

f(q2) ∝ g2
w

8M2
W

(2.2)

For GF = 1.166× 10–5 GeV–2 and MW = 80.4 GeV, this implies the weak coupling factor

g2
w = 0.64. Since the Fermi’s theory is a good approximation in physics processes with

extremely massive bosons, if the energy regime is not accessible at the LHC, one can write an

effective Lagrangian describing a new vector interaction without knowing the intermediate

process. This type of interaction is described as a “contact” interaction. The Lagrangian

for the current contact interaction is given by,

L =
g2

2Λ2
[ηLLψ̄LγμψLψ̄Lγ

μ
ψL + ηRRψ̄RγμψRψ̄Rγ

μ
ψR + 2ηLRψ̄LγμψLψ̄Rγ

μ
ψR], (2.3)
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where g is a coupling constant chosen to obey g2

4π = 1, Λ is the contact interaction energy

scale and ψL,R are left and right handed fermion fields.

Since SM Drell-Yan production and the CI process are indistinguishable, assuming the same

helicity state, there is a QM interference and the differential cross-section can be written as,

dσ(Λ)

dMl+l–
=

dσ(DY)

dMl+l–
– η

I

Λ2
+ η2

C

Λ4
(2.4)

Where, Ml+l– is the dilepton invariant mass, I corresponds to the product of DY and CI

amplitudes and C corresponds to a pure CI term. Destructive and constructive interference

correspond to η = +1 and -1 respectively.

2.2.2 Compositeness of quarks and leptons

The variety of observed quark and lepton flavors suggest that the quarks and leptons may be

composite objects of more fundamental particles (often referred to as “preons” [13, 14]). In

order to account for the properties of quarks and leptons, a new strong gauge interaction is

introduced. The quarks and leptons are bound states of “preons” below some characteristic

energy scale Λ and behave as point like particles in that limit. However, above the energy

scale Λ, they behave as extended objects. Even below the energy scale, their effect can

be seen in the tail of the Drell–Yan [15] mass spectrum by observing an excess of events

predicted by the SM. This theoretical framework in high energy particle collisions was

described in detail in a paper by E. Eichten, K. Lane and M. Peskin [16] in 1983.

For parton interaction energy values that are much less than the compositeness scale, the

metacolor force will manifest itself in the form of a flavor–diagonal contact interaction. If

both quarks and leptons share common constituents, it is possible to write the Lagrangian

density for contact interaction leading to di-lepton final states as given in equation 2.3.

In this thesis, as shown in subsection 2.2.1, in equation 2.3, only the first term of the
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Lagrangian, the left-left isoscalar term, is used as the benchmark model (LLIM) for the

search for contact interactions.

2.2.3 Searches for compositeness by the CMS Collaboration

Within the CMS Collaboration, there have been a number of searches for quark and lepton

substructure. Some of the searches are model dependent, while the others are not. The

popular models for the model dependent searches are LLIM (Left Left Isoscalar Model

model) [17] and HNC (Helicity Non Conserving Model) in various channels (inclusive jet,

dijet, di-lepton, lepton and missing ET) [18, 19]. In addition to these contact interaction

models, the search for quark substructure is being performed in terms of the search for

excited quarks1.

2.2.4 Review of previous search

Previously, the searches for quark and lepton compositeness have been performed by dif-

ferent experiments at different energies and in various channels. There are limits from

different experiments: the Large Electron-Positron Collider(LEP [20–24]), Hadron Electron

Ring Accelerator (HERA [25, 26]), the Tevatron [27–32] and A Toroidal LHC ApparatuS

(ATLAS [33–36]). In addition to these experiments, there are a number of searches within

the CMS experiments as discussed in 2.2.3. The best published limits based on the left left

isoscalar model ( LLIM [17] ) in di-electron channel, which, is the subject of this thesis, is set

by the ATLAS experiment [37]. The results described in this thesis represent a significant

improvement over the published results.

1Quarks are fundamental particles according to SM. If quarks are observed in an excited state, that
means they are composite objects.
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Chapter 3

P-P collision

3.1 Proton-Proton collisions at the LHC

Over the past few decades, there have been a number of discoveries made at collider ex-

periments. The collider experiments have served as the discovery machine of fundamental

physics. The Large Hadron Collider has been exploring the physics beyond the SM and the

physics at the electroweak scale, delivering a huge number of collisions initially at
√

s = 7

TeV and more recently at 8 TeV at subatomic distance scale, the rule of which is governed

by the laws of quantum mechanics. The basic features of proton-proton colliders are follow-

ing:

(1) Due to the fact that protons are heavy, the LHC can provide a huge center of mass

energy in head-on collisions.

(2) Since protons participate in the strong interactions, the cross-section is large ∼100

mb.

(3) Accessibility to many new channels than are possible in lepton colliders at the cor-

responding energy. These channels open up resonant production for different charge and

spin states as well as contributions like initial state WW, ZZ and WZ fusion.
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Since, at the LHC, the colliding beams involve protons, the detailed structure of protons

needs to be understood in order to accurately calculate the production cross-sections which

are the key observables for collider experiments. Compositeness and the strong interactions

of protons can be understood in terms of a parton model which was proposed by Richard

Feynman [38] in 1969 to explain Bjorken scaling [39] in deep inelastic scattering data. A par-

ton distribution function fi(x, Q2) is defined as the probability density for finding a parton

of flavor i (quarks or gluons) in the proton carrying a fraction x of the proton momentum

with Q being the energy scale of the hard interaction. A precise knowledge of the parton

distribution functions (PDF) of the proton is extremely important in order to estimate yields

from models that are to be compared with LHC data.

Due to the fact that “sea” quarks arise when valance quarks emit gluons that briefly materi-

alized into quark–antiquark pairs (off-shell quarks), the structure inside the proton is much

more complex, as shown in Fig. 3.1, than the simple valance quark description (uud) of

the proton. Using the QCD factorization theorem, perturbative and non perturbative pro-

cesses are separated and the convolution of the PDF with the hard scattering (perturbative)

cross section yields the total cross section observed. For example, the Drell-Yan production

crosssection at LO accuracy, is given by,

σ(AB→ l+l–X)=
∑
a

∫
dxAdxBf a

A
(xA)f ā

B
(xB)σaā→l+l–(q2)

where the cross-section is summed over all values of a (13 flavors) which include a gluon (0)

and quarks and anti quarks (±1 through ±6). xA and xB are the momentum fractions of a

proton carried by the parton a.

In addition to the hard scattering between two partons, there are other final state particles

(denoted by X in the above equation) usually called the underlying event. In addition to the

hard interation in such a process, the accelerated colored and/or electrically charged objects

in their initial or final state of interaction, emit gluons and/or photons. These processes

are referred to ISR and FSR processes respectively. In the particular example of Drell-Yan

production, the FSR is limited to QED due to the objects with leptonic flavor in final state,
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however, ISR can be QED and QCD both. With an increasing energy scale of interactions,

the number of sea quarks increase resulting in the enhancement of the probability of the

interaction with more than one pair of partons which is known as a“multiparton” interaction.

The mulitparton interactions (MPI) can manifest themselves in various ways in high energy

hadronic collisions. In particular, large hadronic activity is observed in the soft regime,

characterized by small transverse momenta (PT) of the produced particles. For relatively

large PT values, the observation of MPI will mostly focus on two simultaneous scatterings,

i.e. on double parton scattering (DPS). The cross section formula for multiple parton

interactions is derived by multiplying the multi-parton distributions for each individual hard

scatter which demands good knowledge of double parton distribution functions (DPDFs).

Figure 3.1: An illustration schematic diagram of the internal structure of a proton with
two valance up quarks and one valance down quark which interact via gluons (left). The
figure (right) shows a couple of protons about to collide where, a “sea” of quarks and gluons
in addition to the valance quarks exist.[40]

The remaining quarks which did not take part in any iteractions are not free due to quark

confinement, and eventually hadronize (form stable and semistable particles) complicating

the cross section measurement. These processes are approximated by parton showering with

the assumption of low transverse momenta. These showers of photons emitted in ISR and
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Figure 3.2: The PDFs x
∑

(x, Q2) of the quark singlet at Q2 = 25 GeV2 plotted versus
x on a linear scale with the comparison among NNPDF2.3, CT10 and MSTW08 (left) and
NNPDF2.3, HERAPDF1.5 and ABM11 (right). All PDFs are shown for a common value
of αs = 0.118 [41].

FSR, and the jets produced by these quarks and gluons are collectively called soft QCD

processes, more generally “underlying events”.

The knowledge of proton PDFs mainly comes from DIS (deep inelastic scattering [42])

measured by experiments at HERA (Hadron elektron ring anlage), fixed target, Tevatorn

experiments and the LHC. Presently the determination of PDFs is carried out mainly by

MSTW [43], CTEQ [44], NNPDF [45], HERAPDF [46], AB(K)M [47] and GJR [48]. The

CTEQ PDFS are obtained by a global analysis of hard scattering data in the framework of

general mass perturbation QCD. The CTEQ6 [44] family of PDFs is superseded by newer,

more complete, CT10 [49] PDF sets. CT10 set also includes the recent HERA I data and

more Tevatron data. The PDFs of the quark singlet and gluon at Q2 = 25 GeV2 plotted

versus x with comparison among PDF sets NNPDF2.3, CT10, MSTW08, NNPDF2.3, HER-

APDF1.5 and ABM11, for a common value of αs = 0.118, are shown in Figs. 3.2, 3.3, 3.4

and 3.5. The PDF sets NNPDF, MSTW and CT10 are used to estimate systematic uncer-

tainty due to the knowledge of PDFs in this analysis. The detailed study for the systematic

uncertainty due to PDFs is given in Chapter 10.
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Figure 3.3: The PDFs of the quark singlet at Q2 = 25 GeV2 plotted versus x on a
logarithmic scale with the comparison among NNPDF2.3, CT10 and MSTW08 (left) and
NNPDF2.3, HERAPDF1.5 and ABM11 (right). All PDFs are shown for a common value
of αs = 0.118 [41].

In CMS, several Monte Carlo event generators are used in order to simulate the backgrounds

and signals using different Parton Density Functions (PDFs). Different PDF sets are pro-

duced by different groups. The PDF used in this thesis by different event generators comes

from the CTEQ group. Some details of the event generators are given below:

• PYTHIA

PYTHIA [50], whose name comes from Greek mythology, is a full event generator in

which hard scattering matrix elements are implemented in LO and the effects of higher

orders are approximated by adding parton showers to the partons (ISR and FSR) in

the hard scattering process. It generates the collisions between leptons, hadrons and

gammas following QCD recipes.

• MC@NLO

MC@NLO [51] is a hard event generator using a matrix element at next to leading

order (NLO) accuracy which can be interfaced to the shower Monte Carlo HERWIG.

MC@NLO includes heavy flavor physics, which is not very common in other MCs.
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Figure 3.4: The PDFs of the gluons at Q2 = 25 GeV2 plotted versus x on a linear
scale with the comparison among NNPDF2.3, CT10 and MSTW08 (left) and NNPDF2.3,
HERAPDF1.5 and ABM11 (right). All PDFs are shown for a common value of αs =
0.118 [41].

• POWHEG

POWHEG [52–55] stands for positive weight hardest emission generator. It is a hard

event generator for heavy quark production in hadronic collisions at NLO accuracy

which can be interfaced to shower monte carlo programs like HERWIG and PYTHIA

in which a shower of LO accuracy and the hard events of NLO accuracy are maintained

in the output.

• HERWIG

HERWIG [56] stands for hadron emission reactions with interfering gluons. This is a

full event generator in which a matrix element is implemented in LO.

• HORACE

Horace [57–62] is a Monte Carlo event generator for the Drell-Yan process. It includes

exact 1-loop electroweak radiative corrections matched with a QED shower. It is

widely used for the electroweak NLO correction in hadron collider experiments.



17

Figure 3.5: The PDFs of the gluons at Q2 = 25 GeV2 plotted versus x on a logarithmic
scale with the comparison among NNPDF2.3, CT10 and MSTW08 (left) and NNPDF2.3,
HERAPDF1.5 and ABM11 (right). All PDFs are shown for a common value of αs =
0.118 [41].
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Chapter 4

The CMS experiment at the LHC

This chapter starts with a short introduction to the Large Hadron Collider (LHC). In the

section 4.1.1, the design and plan of the LHC is given. A detailed description of the detectors

and trigger system of the CMS experiment is given in section 4.2.

4.1 The Large Hadron Collider

As suggested by the De Broglie relation, λ = h/|~p|, to probe for increasingly smaller con-

stituents, higher and higher energy in collider experiments is required. From 1960 to ∼

2000, the energy of collider experiments had been greatly improved but not enough to study

physics beyond the standard model and to discover the Higgs boson. Hence, in order to

achieve these goals a new and sophisticated collider with the maximum possible energy

was necessary. Regarding the colliding particles, the total energy of e+e– colliders can be

used in experiments, which can be tuned as required. But, due to considerable energy

loss by synchrotron radiation, which is inversely proportional to m4, enough energy can’t

be generated, limiting the lepton colliders to precision measurements. This problem could

be overcome by using hadron colliders which gave birth to the Large Hadron Collider (LHC).
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Figure 4.1: The accelerator complex at CERN [63] [64]

The Large Hadron Collider (LHC) is the world’s largest and highest-energy particle

accelerator. It was built by the European Organization for Nuclear Research (CERN) from

1998 to 2008 and is located 100 m underground with a circumference of 26.7 km and spans

the French-Swiss border near Geneva. The overview of the accelerator complex is shown in

Figs. 4.1 and 4.2. It was designed to deliver an instantaneous luminosity of 1034 cm–2s–1 at

a center-of-mass energy of 14 TeV. The LHC also has a heavy ion mode, colliding lead ions

with energy of 2.76 TeV at a peak instantaneous luminosity of 1027 cm–2s–1.



20

Figure 4.2: CERN’s Rings [63] [64]

4.1.1 LHC design and plans

The LHC was designed to study the standard model and BSM physics. The high luminosity

of the collider allows for the possible discovery of low cross-section production with results

that are not compromised from statistical fluctuations.

The LHC run starting in September 2008 was short-lived due to a faulty electrical con-

nection causing lots of damage and delaying the operation by 14 months. However, the

LHC was successful in its second attempt, in Nov. 20 of 2009, by circulating the beams and
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after 3 days, achieved on energy of 450 GeV per beam ejected. It caught world’s eye when

the first collisions took place on March 30th between two 3.5 TeV beams, setting the world

record for energy in a collider.

By Nov 2012, the LHC discovered the Higgs boson. The LHC operated with 4 TeV per

beam until the end of 2012. It will resume operation in early 2015 with 6.5 TeV per beam

giving the golden chance to detect the new physics lurking around.

The collision rate R in the LHC is proportional to the interaction cross-section

R = Lσint (4.1)

When two bunches, each containing n particles, collide with the frequency f , the luminosity

is given by

L = f
n2

4πσxσy
(4.2)

where σx and σy are the beam spreads in the horizontal and vertical directions.

During the course of 2012, the LHC showed excellent performance, delivering the im-

pressive integrated luminosity of 23.3 fb–1 at a center-of-mass energy of 8 TeV which is ∼3

times the integrated luminosity recorded in year 2011 (6.3 fb–1) and way bigger than in

year 2010 (44.2 pb–1) at a center-of-mass energy of 7 TeV. The peak instantaneous lumi-

nosity was 7.8× 1033 cm–2s–1 in 2012, 3.5× 1033 cm–2s–1 in 2011, and 2× 1032 cm–2s–1 in

2010. The total delivered integrated luminosity and the peak luminosity per day in years

2010, 2011 and 2012 are shown in Figs. 4.3 and 4.4, respectively. Bunches of 1011 protons

collide every 25 ns with average no. of interactions from ∼ 10 – 18. The CERN Council

has planned for data-taking up to 2022 assuming good performance of the LHC as well as

the detectors. According to the plan, a 16 months shutdown is being carried out this year.

After the long shutdown, the LHC will resume at 13 TeV with luminosity ∼ 1033 cm–2s–1.

A second shutdown will be in 2015 for 16 months to raise the luminosity with the help of
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the new Linac4. The luminosity will be above 1034 cm–2s–1. A 19 months shutdown in

year 2020 is planned to allow for the LHC high luminosity phase with an expected lumi of

4×1034 cm–2s–1. Current planning for the LHC and injector chain foresees a series of three

long shutdowns, designated LS1, LS2, and LS3. In LS1 (in the period 2013 – 2014), the CM

energy will be increased to 14 TeV (or slightly lower). In the period through LS2 (2018), the

injector chain will be improved and upgraded to deliver very bright bunches (high intensity

and low emittance) into the LHC. In LS3 (2022), the LHC itself will be upgraded with new

low-β triplets and crab-cavities to optimize bunch overlap at the interaction regions.
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Figure 4.3: Total Integrated luminosity delivered in 2010, 2011 and 2012 in the unit of
fb–1

4.2 The CMS experiment

The CMS experiment is located at Point5 on the LHC ring and has been designed to cope

with the huge radiation of the LHC while recording data with resonable precison even in the
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Figure 4.4: CMS peak luminosity per day for years 2010, 2011 and 2012.

huge traffic of the piled up events due to the fast collision rate (109 s–1). The CMS consists

of two main parts: a cylindrical part commonly known as the barrel which is parallel to

the beam pipe and two circular parts perpendicular to the beam pipe called the endcaps.

These endcaps are located in both ends of the cylinder in order to maximize the detector

coverage. A schematic view of the CMS detector showing the various subdetectors is shown

in Fig. 4.5. The different subdetectors of the CMS detector are the tracker, ECAL, HCAL

and muon system.
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Figure 4.5: Layout of the CMS detector (above) and vertical cross-section showing the
interaction of different particles in the detector(below)[65]

4.2.1 The CMS coordinate convention

The coordinate convention is very important in order to locate the hits in the detectors in

order to reconstruct the tracks effectively. Since the CMS detector is cylindrical in shape

with the origin at the nominal interaction point, a cylindrical coordinate system is a natural

choice. A right–handed coordinate system is used in which the x-axis is pointing towards

the center of the LHC ring, the z-axis is along the beam (the beam with anti–clockwise
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direction, towards the west) and the y-axis is normal to the ground (the upward direction

being positive y). The azimuthal angle φ is measured in the x-y plane around the beam

axis from the positive x axis and the polar angle θ is measured from the positive z axis as

shown in Fig 4.6. The Δη and Δφ for a pair of particles in CMS are shown in Fig. 4.7. The

radius of the polar coordinate system is given by R = z
cosθ . A widely used variable is the

pseduorapidity, η, which is related to the polar angle θ by following relation

Figure 4.6: The coordinate system of CMS

Figure 4.7: Illustration of Δη and Δφ for pair of particles in CMS
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η = –ln(tan
θ

2
) (4.3)

A useful variable is the separation in η – φ space, especially used to find the total transverse

momenta within a cone surrounding a track, to measure the deviation of the variables of

a simulated particle before and after it is reconstructed or to measure the deviation of the

values of triggered and reconstructed particles in data. The variable dR is given by

dR =
√

(η1 – η2)2 + (φ1 – φ2)2. (4.4)

4.3 Design

The layout of the CMS detector is shown in Figure 4.5. The 14000 ton detector, situated

100 m underground at the French village of Cessy, measures 21 m in length and 15 m

in diameter. At the core of this giant detector, a 13 m long, 6 m inner diameter super

conducting magnet provides a uniform magnetic field of 3.8 T. Within this solenoid, the

calorimeter and tracker are located. The iron return yoke is equipped with a muon system

of 4 stations. The innermost part of the detector in the vicinity of the interaction point is

covered by the vertex detector composed of silicon pixel detectors surrounded by tracking

detectors of silicon strip sensors. Figure 4.5 shows the transverse cross-section of the CMS

detector and indicates the overall size of the inner detectors as well as the general idea of

how CMS identifies a particle signature. The details of each subdetector are described next.

4.4 The tracker

The tracking system [66, 67] is designed to reconstruct the trajectories of charged particles,

based upon the hits left by the particles, in order to measure their momentum and charge in

the magnetic field using the track curvature, benefitting from the huge bending power of the
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superconducting magnets. Since it lies closest to the beam axis, the tracker has to sustain a

hostile radiation environment while giving excellent performance in the track reconstruction.

Additionally, a fast response time is extremely important at design luminosity, given the

high pileup (multiple interactions per beam crossing). The CMS tracker was designed for a

luminosity of 1034 cm–2s–1 and 25 ns bunch spacing. The CMS tracker can be divided in

two distinct subsystems both of which are based on silicon detector technology: the silicon

pixel and the silicon strip systems.

Figure 4.8: A schematic r–z view of the CMS Tracker[66]. The yellow colored region shows
the Pixel region, the rest being the Strip region.

4.4.1 The silicon pixel system

The pixel detector consists of 3 barrel layers (|η| < 1.560) with 2 endcap (|η| > 1.560 and

|η| < 2.5) disks on each side, as shown in Fig. 4.8 The pixel detector is the closest detector

to the beam axis where particle flux is ∼ 107 s–1 at r ∼10 cm. A layout of the CMS pixel

detector is shown in Fig. 4.9. The three barrel layers are located at radii of 4.4, 7.3 and

10.2 cm and are called BPix (pixel barrel). The endcap disks (Fpix) are located at |z|=34.5

cm and 46.5 cm with radii extending from 6 to 15 cm. The most basic detection element in

the tracker is called a module with size of 100 × 150 μm2. All together, there are 768 pixel

modules in BPix and 672 modules in FPix are used. The modules are tilted by about 200
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in pixel disks. The pixel layers provide a two-dimensional coordinate of the location of the

hit associated with a traversing charged particle.

Figure 4.9: Layout of the CMS pixel detector [68]

4.4.2 The silicon strip system

The silicon system consists of a central region and endcap regions. The central region is

covered by the Tracker Inner Barrel (TIB) and Tracker Outer Barrel (TOB) while end-

cap regions contain the Tracker Inner Disk (TID) and the Tracker End Cap (TEC). The

schematic view is shown in Fig 4.8. The TIB consists of four concentric cylinders placed in

the region 250 mm < r < 500 mm at 255 mm, 339 mm, 418.5 mm and 498 mm, in the region

|z| < 70 cm. The two inner layers have double–sided modules whereas the two outer layers

have single–sided modules. The TOB is composed of six cylindrical sections that cover the

region 50 cm < r <116 cm and |z| <118 cm. The TID is composed of 3 disks on each side,

with 3 rings of modules on each disk. The TEC is composed of 9 circular wheels covering

the region of 130 cm < |z| <270 cm. The innermost 3 wheels have 7 rings, wheels 4-6 have

6 rings, wheels 7-8 have 5 rings, and the last outermost wheel has 4 rings. The TIB/TID

detectors are 320 μm thick silicon microstrip sensors with pitch between 80 and 141 μm. The

TOB sensors are 500 μm thick silicon microstrip sensors with pitch ranging from 122 to 183
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μm. The CMS strip tracker, with 9.3 million strips, ensures at least 9 particle hits in the full

range of |η| < 2.4 with at least 4 of them being two dimensional measurements. These strip

trackers consists of 15148 modules which are mounted on a carbon-fiber structure placed

inside a temperature controlled volume.

4.5 Calorimeter

A calorimeter is used to measure the energy of particle when it passes through. Most of the

particles entering the calorimeter initiate a shower of particles as shown in Fig. 4.10, which

produce light that can be trapped and converted to charge measured by the electronics.

Depending upon the nature of the particles, the calorimeter is designed to stop and measure

their energy using special materials that are fine tuned to the properties of the interacting

particles. The CMS calorimeter consists of two major subsystems which are designed for

two different kinds of particles. The ECAL measures those particles which mostly loose

their energy via the electromagnetic interaction.The HCAL measures hadrons which can’t

be stopped by the ECAL.

4.5.1 The Ecal

The CMS electromagnetic calorimeter (ECAL) [69] is composed of two parts, a barrel and

endcaps, covering the range |η| < 3.0. The ECAL detects the electromagnetic showers that

are initiated by electrons or photons which hit the scintillating crystal. In order to stop the

shower in the smallest possible range, a high density material with very short radiation length

as well as small Moliere radius1 is preferred. Since these properties best match with lead

tungstate (density= 8.28 g cm–3, Molière radius = 2.2 cm, radiation length=0.89 cm), 61200

lead tungstate (PbWo4) crystals are used in the barrel and 7324 crystals are used in each of

the endcaps. In order to detect the light from showering particles and convert the light to an

1The radius of a cylindrical object that contains on average of 90 % energy deposition of an electromag-
netic shower.
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analog signal, avalanche photodiodes (APD) are used in the barrel and vacuum phototriode

(VPTs) are used in the endcaps. The barrel has inner radius of 129 cm and covers the range

|η| < 1.48 while the endcap covers the region (1.56 < |η| < 3.0). The endcaps are placed at

|z| = 314 cm. The crystals in the barrel have upstream and downstream face dimensions of

22×22 mm2 and 26×26 mm2, respectively; the endcap has face dimensions 28.6×28.6 mm2

and 30 × 30 mm2. The length of the crystals in the barrel are 230 mm (25.8 X0) whereas

in endcaps the length is 220 mm (corresponding to 24.7 X0). The crystals are arranged in

modules and supermodules. A total of 36 supermodules corresponds to the 61200 crystals

grouped into the barrel. However, in the endcaps, crystals are gathered in 5×5 arrays called

supercrystals, totalling 14648 supercrystals in both endcaps combined. The circular shaped

endcap is composed of two structures which are each a half part of the full disk. This “D”

shape is commonly known as a Dee. Each Dee holds 3662 crystals. A preshower detector is

placed in front of the endcap crystals and covers the range 1.653 < |η| < 2.6. The preshower

detector is designed to identify neutral pions that decay to two photons in a very short time

(8.4× 10–7 s) .

Figure 4.10: Simulation of showering of an electron in a PbWO4 crystal of the CMS
detector[70]



31

4.5.2 The Hcal

The HCAL[71] is a sampling calorimeter designed to measure jets and missing transverse en-

ergy the latter of which provides an indirect measurement of the presence of non-interacting

charge neutral particles such as neutrinos. Just as the ECAL is designed for electromagnetic

showers, the HCAL is designed for hadronic showers which are due to the strong interaction

between hadrons and the nuclei of the material of the HCAL. The HCAL consists of layers

of brass or steel interspersed with plastic scintillators which emit light at wavelengths be-

tween 410 and 425 nm. These photons enter wavelength-shifting fibers connected to hybrid

photodiodes that are read out for the analog conversion. In order to detect the hadrons that

may penetrate the HCAL due to its limited absorption material, HO is placed outside the

solenoid magnet, which is commonly known as “Hadronic outer” or “the tail catcher”. The

HB covers |η| < 1.4 and has a polygonal structure with an assembly of 18 wedges that form

one half-barrel. The HB is subdivided into HB+ and HB- which cover the pseudorapidity

ranges |η| < 1.3 and 1.3 < |η| < 3.0. The hadron forward calorimeter (HF) covers the pseu-

dorapidity regions between 3.0 and 5.2. The HF is composted of a sandwich of steel and

quartz fibers. The HF is located 11 m on either side of the interaction point and employs a

technology of steel absorber and quartz fibers for readout. Cerenkov radiation is produced

in the quartz fibers which allows good separation of particles in the congested forward region.

4.6 The muon system

Muons are unstable charged particles with very short lifetime (2.2 μs) and are interesting

as they are expected to be produced in the decay of exotic particles that could offer a clean

signature for new physics. So the CMS experiment is dedicated to detect muons, which

can penetrate a few meters into materials as dense as iron and hence impossible to be

stopped by the ECAL and the HCAL. So a dedicated system is required for the detection
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and reconstruction of the tracks of muons. Hence, for track reconstruction, measurement

of momentum and online trigger, three different systems to the very end of the detectors

are built, which are collectively called the muon system [72]. There are four stations of

muon chambers which are arranged in coaxial cylinders with five wheels in the barrel region

called MB. In the endcap, the chambers are installed in concentric rings on each side of the

detector called ME.

Figure 4.11: A layout of the CMS muon system[73] with the position of DT, RPC and
CSC.

As shown in Fig. 4.11, the muon system consists of three different detectors called drift

tubes (DT), cathode strip chambers (CSC), and resistive plate chambers (RPC). The DTs

and CSCs are used in the barrel and the endcaps respectively, while the RPCs are used in

both the barrel and the endcap. All together, there are 1400 muon chambers with 250 DTs,

540 CSCs and 610 RPCs.

4.6.1 Drift tube (DT)

The DT chambers contribute to the pT measurement in the barrel region where the muon

rate is low and magnetic field is relatively uniform, with coverage in the range |η| ≤ 1.2.
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Each drift tube is 4 cm wide with a stretched wire (working as anode) within a gas volume.

It provides a one dimensional measurement of the hit position by using the drift time of the

ionization charge to the wire when a charged particle knocks off an electron from the gas.

The barrel DTs are organized into 4 stations. The first 3 stations, containing 8 chambers,

measure the muon coordinate in the r-φ plane and the remaining 4 chambers provide the

measurement in the z-direction. The last station doesn’t measure the z-direction but does

provide r-φ measurements.

4.6.2 Cathode strip chambers (CSC)

Four stations of cathode strip chambers (CSC) are used in the endcap disks, where the

magnetic field is uneven and the particle rate is high, covering the range 0.9 < |η| < 2.4.

CSCs are built of anode wires and copper cathodes strips within a gas volume. When muons

pass through the gas volume, the electrons are knocked off the atoms of the gas and are

attracted to anode wires creating an avalanche of electrons (as they knock off other electrons

in their way). The positive ions induce a charge pulse on the strip as they move towards

the cathode. The orientation of strip and wires are perpendicular to each other which gives

the two position coordinates for each passing muon.

The CSC is composed of 4 chambers of trapezoidal rings in each endcap with 468 cham-

bers in total. The rings of the chambers are identified by ME±S/R, where, ME stands for

Muon Endcap, S for the “station (disk)” and R for the ring number. ME±1/1 and ME±1/2

are smaller and closer to the interaction point whereas ME±2/2, ME±3/2 and ME±4/2

are further away from the interaction point and larger. The CSCs measure the azimuthal

coordinates of the muon tracks with high precision, achieved by exploiting the shape of the

charge distribution on three consecutive strips. This precision is sufficient to measure the

muon momentum for triggering.
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4.6.3 Resistive plate chambers (RPC)

RPCs are fast gaseous detectors that provide a muon trigger in parallel with those of the

DTs and CSCs. The RPCs are used in both the barrel and endcap regions. All together, 6

layers of RPCs are implemented in the barrel muon system. In the endcap muon system,

a plane of RPCs is embedded in each of first three stations. RPCs are made of a couple

of parallel plates of high resistivity plastic material working as anode and cathode, which

are separated by a gas volume. When a muon passes through the chamber, electrons are

knocked off the gas which in turn hit other atoms of gas causing an avalanche of electrons.

The pattern of hit strips gives a quick measure of the muon momentum which is then used

by the trigger to make an immediate decision about whether the data are worth keeping.

RPCs have good spatial resolution (∼ 8 mm) and time resolution of just <1.3 ns.

4.7 The Trigger

Since the interaction rate is ∼ 109 s–1 at the nominal luminosity, the amount of data pro-

duced by the CMS is extremely high (∼ 1 megabyte per crossing). It is almost impossible

to write all this information to tape as it is very unlikely that every event is interesting.

Hence, for a huge reduction, while keeping all the interesting events, an automated system is

required, commonly known as “the trigger system”. In order to make a decision, the trigger

system uses a kinematic variable such as transverse energy (ET) or transverse momentum

(PT). The function of the trigger system is not only to reduce the event rate to write, but

also to separate event types. The trigger system works in two steps: Level 1-trigger and

High level trigger.

Level 1-trigger

The level 1 trigger (L1) [74] is implemented in custom hardware processors which use in-

formation from the calorimeter and muon system to reduce the total event rate from 40
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MHz to 100 KHz. This trigger uses the various kinematic variables to decide whether an

event should be passed to the HLT, as specified in L1 trigger menu, within ∼ 3 μs. Upon a

positive decision, the entire detector is read out from a pipelined memory which holds the

data. The data is transferred by the data acquisition system (DAQ) to the HLT.

High Level trigger

The High Level Trigger (HLT) [75] is composed of a farm of processors for further reduction

of data from 100 KHz to 100 Hz, keeping the interesting events. This trigger performs a

more complex calculation and has more time than the L1 trigger. The HLT trigger checks

the parameters according to the HLT trigger menu and upon a positive decision the data of

the event is transferred to storage.

4.8 Data processing, reconstruction and DQM shifts

After a collision, the signals in the detectors are collected by a data acquisition system

consists of a huge numbers of cables and boards. These signals are sent to the detector

FrontEnd Boards called FEDs which digitize and process the signals collected from the de-

tector. After the signals are processed by multiple FEDs of each detector, the information

is sent to the online processing farm. The full event information is produced by the Builder

Units2 and then sent to the local disk.

Events written by the storage manager (the system which writes data to the disk buffer)

are analyzed by a CMSSW3 application as part of Data Quality Monitoring (DQM). The

plots are sent to a twikipage for DQM online shifters to judge whether each detector’s per-

formance was satisfactory. The shifter has the option to flag each subdetector as good or

2A unit of a physical system interconnecting data sources with data destinations.
3The overall collection of software of the CMS experiment is referred to as CMSSW that includes the

services needed by the simulation, calibration and alignment, and reconstruction modules that process event
data in order to perform analysis.
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bad. The responsibility of the online shifters includes identifying problems with the detec-

tor performance as well as verifying data integrity based upon the histograms provided by

the DQM infrastructure as well as the high voltage information of subdetectors for each

lumisection.

After the online shifter completes the inspection and signs off on a given run, the

DQM offline shifter re-evaluates the run based upon the histograms provided by prompt-

reconstruction in Tier 0 and CAF (Calibration and Alignment Facility) [76], which generally

takes from a few hours to a few days. The CMS data flow summary is given in Figure 4.12.

After careful evaluation by experts based upon the flags and comments by the DQM shifters,

a run is marked either good or bad depending upon the particular channel of interest. The

detailed information for each run of given lumi-section is compiled in JSON files by a dedi-

cated group in CMS called pdmv (Physics Data/MC validation group), which can be used

by scientists around the world for data analysis.

Figure 4.12: A summary of the dataflow for CMS data at CERN, starting from P5, showing
the major Tier-0 tasks and PromptCalibration loops, feeding back conditions to the Tier-0
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Chapter 5

The Pythia Monte Carlo

This chapter discusses a few models of compositeness implemented in the Pythia Monte

Carlo event generator. In Section 5.1, a detailed explanation of contact-interaction models is

presented. Since this analysis is based upon the Left Left Isoscalar Model, Section 5.1.2 gives

the technical details of the script to simulate the contact interaction process in the context

of the LLIM using the Pythia event generator. In Section 5.1.3, the fitting technique of the

cross section for LLIM, in order to determine the cross section for a given Λ, is discussed

briefly.

5.1 Compositeness models in PYTHIA

In the Pythia generator, a couple of models for the contact interaction process, HNC (He-

licity non conserving model) and LLIM (Left-left isoscalar model), are implemented to

introduce an anomalous coupling in addition to the Standard Model. In this analysis, the

LLIM is tested against the SM under the assumption that all quarks are composite objects,

hence a brief description of the PYTHIA architecture for the contact interaction process is

given.
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The Pythia description of the CI process with both possible interferences (constructive

and destructive) with the SM Drell-Yan process, as well as pure SM DY, can be called by

using subprocess ISUB 165, which, basically, can be used in three different scenarios, i.e pure

SM Drell-Yan process, SM DY+ CI (LLIM) and SM DY+CI (Helicity non conserving) by

specifying the parameter ITCM(5), with ITCM(5)=0, ITCM(5)=1 or 2, and ITCM(5)= 3 or

4, which will call the respective processes. With ITCM(5)=0, no quarks are assumed to have

any substructure, with ITCM(5)=1, only u and d have substructure and with ITCM(5)=2,

all quarks have substructure. Similarly, with ITCM(5)=3, only the up quark has substruc-

ture whereas with ITCM(5)=4, u, c and t have substructure. All these processes are 2→

2 processes. To make these processes equivalent to 2→ 1 processes like Z/γ*, MSTP(32)

= 4 is used. In order to choose the interference for the cases ITCM(5) > 0, RTCM(42)

is used where the value can be either 1 or -1 for destructive and constructive interference

respectively with the default being destructive. In order to supply the characteristic energy

scale of the CI process, Λ, RTCM(41) is used and the value is supplied in GeV with the

default being 1000 GeV. In order to keep the event only if the desired particles are in the

final state, a card KFPR(165,1) = 11 or 13 is used with 11 for the dielectron and 13 for the

dimuon channel.

5.1.1 Simulation of CI samples using Pythia

Based on the options described in Section 5.1 above, SM DY and CI (in both interference

scenerio) samples were processed with different minimum mass cut and with different Λ

values. For all of the samples, the production level minimum mass cut at 300 GeV, 500

GeV and 800 GeV were applied. |η|<3.0 , PT > 30 GeV is applied using the standard

Pythia filters in generator level. For destructive interference Λ of 9, 11, 13, 15 TeV were

processed. However, for constructive interference, additional samples for Λ of 17 and 19

TeV were processed. A program to prepare the CMS executable config files for all of these
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samples, is given in D.5. The detail of the processed samples is given in Table 8.5.

5.1.2 Script for the CI/DY production

In order to simulate the CI process using PYTHIA 6.4, the following script was used which

gives the techincal details for the job submission.

‘MSEL = 0 !User defined process’,

‘MSUB(165) = 1 !CI+g*/Z → ee’,

‘MSTP(32) = 4 !forcing a 2 → 2 process to 2 → 1 process’,

‘RTCM(42) =-1 !Constructive Interference’,

‘RTCM(41) = 13000 !Lambda = 13 TeV’,

‘ITCM(5) = 2 !LL, all upper quarks composite’,

‘KFPR(165,1) = 11 !e+e– final state’,

‘CKIN(1) = 1000 !Minimum
√

ŝ value in GeV/c2’),

The meaning of each argument is given below:

(1) MSEL = 0: This allows the combination of different subproceses.

(2) MSUB(165) = 1: MSUB(ISUB) specifies the process ISUB. Here, 165 insures the process

in which a fermion and anti-fermion annihilate followed by the decay γ*/Z0 (3) MSTP(32)

= 4: Forces ISUB 165 to use the ŝ value in place of default P2
⊥ of Q2 scale in parton distri-

butions (forces a 2 → 2 process to 2 → 1 process)

(4) RTCM(42) = ±1: Sign of interference is +1 for constructive and -1 for destructive

(5) RTCM(41) = Λ: Value of the compositeness energy scale Λ in unit of GeV with default

1000 GeV

(6) ITCM(5) = 2: Compositeness assumed for all quarks in the initial state
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(7) KFPR(165,1) = 11: Forces the final product e+e–

(8) CKIN(1) = Massmin: Minimum
√

ŝ value in GeV/c2 at the parton level

5.1.3 LLIM and fitting the cross-section distribution of LLIM

This analysis tests the contact interaction model LLIM against CMS data taken in 2012

of 19.6 fb–1. The LLIM corresponds to the first term of equation 2.3 in which all quarks

and leptons are assumed to be composite objects. While the DY process can be simulated

separately, the CI process cannot be simulated by itself since the quantum mechanical in-

terference effect with the DY cross-section needs to be taken into account as depicted by

equation 2.4. Hence, the contact interaction process is inseparable from the DY process.

In order to specify the terms in the CI process, CI/DY or “signal” will be used throughout

this thesis.

Figs. 5.1 and 5.2 show the comparison of dielectron mass spectra for destructive and con-

structive interference above 100 GeV/c2 at
√

s = 8 TeV for different Λ values with total lumi

of 20 fb–1. For the plots shown here, |η| < 3.0 and PT >30 GeV are required to mimic the

detector acceptance and the trigger threshold for the transverse momentum. Since multiple

samples of 200k events were generated to cover the range 100 GeV to 3000 GeV, the spectra

are smooth and continuous and the black color shows the DY distribution. As explained by

equation 2.4, it is clearly seen that as Λ increases the dielectron event yield decreases and as

Λ → ∞ the spectrum converges to DY. As the CI/DY spectra are relatively flat, they are

affected by the reconstruction in the detector. For example, for higher Λ value, it is more

probable in DY(Λ =∞) than CI/DY that an event will be reconstructed with a higher mass

than it was generated due to detector resolution smearing and the nature of the spectrum

shape. For this reason, it is always better to use detector-simulated predictions to compare

the CI process with data.
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Despite the large numbers of events in the full-simulation samples, as shown in Table 8.6,

these samples are limited to the odd values of Λ. In order to predict the CI cross-section

for any given value of Λ and for a given interference sign, the dielectron yield as a function

of Λ is fitted using the equation 2.4. The functional form of the event yield is then used

to predict the event yield for a given mass bin with a given Λ value. As we can see in

Figure 5.3, the fit is very good.
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Figure 5.1: Dielectron mass spectra using the LLIM model in the PYTHIA event generator
for destructive interference.
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constructive and destructive interferences. These curves are fitted using the equation 2.4
for the LLIM model. The colored circles represent the predictions for odd values of Λ.
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Chapter 6

Overview of the analysis method

Since the main goal is to explain the 2012 CMS data in the context of the LLIM using the

dielectron channel in order to confirm or rule out the compositeness model at some accessi-

ble energy range, the SM prediction is very important since it is an irreducible background

to the signal. In this chapter, the strategy for the search for the CI process is discussed in

brief. An overview of how the data is tested against the predicted CI model is given with a

short description of how the signal and backgrounds are predicted. In section 6.3, how data

is compared with the SM or CI model is discussed. The limit setting procedure, if the null

hypothesis is not accepted, is also given.

6.1 The sensitive region for CI search

In any high energy physics experiment, the search for new phenomena is normally performed

by different counting experiments with different observed statistics, background expecta-

tions, signal sensitivities and systematic uncertainties. In order to optimize the sensitivity

of the search while separating the control region from the discovery region, it is very impor-

tant to study the selection efficiency, background rate and signal probability for the given
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region. In this analysis, the Z-peak region, in which no new physics is expected, provides a

large statistical sample to study systematic uncertainties due to the electron reconstruction

(using tag and probe), trigger inefficiency and others. The Z-peak can be used to normalize

the cross-section from simulation in order to reduce systematic unvertainty. Since previous

searches for contact interaction have ruled out Λ ∼ 9 TeV, this analysis is focused on the

region beyond 9 TeV, which is considered to be a highly sensitive region of search for any CI

signal at the given center of mass energy of 8 TeV. With the large statistics of the previous

search for CI at
√

s=7 TeV up to 1.5 TeV dimuon mass, the sensitive region for this CI

search is beyond 900 GeV/c2 dilepton mass.

With the knowledge of these sensitive regions, this analysis was performed as a counting

experiment with 100 GeV steps of dielectron mass, starting from 300 GeV and up to 2 TeV.

This analysis uses data and Monte Carlo simulated events for signal and backgrounds in

which various correction factors are applied for better accuracy. While the details of this

procedure are given in Chapter 8, a brief discussion of the prediction of expected events is

given in section 6.2.

6.2 Prediction of observed events

As explained in chapter 2.2.1, the contact interaction signal cannot be generated separately

but must allow the natural effect of the quantum mechanical interference with the Stan-

dard Model cross-section. This analysis deals with signal + background (called CI/DY +

Non DY) and the background (DY + Non DY) hypothesis. Despite the dedicated selection

criteria which will be discussed in chapter 7.4, there are a number of different irreducible

sources that contaminate the signal. Hence, the prediction is made for all the signal +

irreducible background and the irreducible background only using the following formulae
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where expected events (SM) and expected events (CI) stand for the background and signal

+ background respectively. All of these signal and background predictions are obtained

from the detector simulated samples using different Monte Carlo programs.

Expected events (SM) = CI/DY(Λ =∞) × QCD K-factor × QED K-factor + Non DY

Expected events (CI) = CI/DY(Λ) × QCD K-factor × QED K-factor + Non DY

The QCD and QED K-factors are used to bring the event yields to NLO accuracy by

incorporating gluon radiation or quark/gluon loops from QCD interactions as well as pho-

ton radiation loops from electroweak interactions. The QCD and QED corrections will be

explained in detail in Chapter 9. With these expected events for both hypotheses, the ob-

served events from 2012 CMS data at
√

s = 8 TeV can be tested for possible discovery or

for ruling out a sensitive region for Λ.

6.3 Consistency check and Limit setting

After evaluation of the predicted event yield and the event yield from data, a statistical test

is applied to quantify the consistency of data with either of the hypotheses in terms of a

p value. A detailed explanation of this check will be given in chapter 12.1.4. If data are

consistent with the SM prediction, which is actually observed in this analysis, a modified

frequentist technique, commonly known as the CLs method [77] with a profile-likelihood

ratio as a test statistic is used to set a lower limit on Λ at 95 % CL. The details of this

process are given in chapters 12.1.3 and 12.1.5.
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Chapter 7

Electron reconstruction, identification

and di-electron mass

This chapter starts with a quick description of electron clustering in 7.1, followed by the

electron reconstruction in 7.2. This section gives a short description of selection criteria

for electrons in section 7.4 and concludes with the description of the method for “Jet back-

grounds” estimation using the “fake rate method” in section 7.4.1. Charge identification

of electrons is discussed in 7.4.2. Finally, a short description of di-electron mass is given

in 7.4.3.

7.1 Electron clustering

This analysis is based upon the comparison of the invariant mass spectrum beyond 300

GeV, which is composed of high energy di-electrons. The presence of two electrons comes

mostly from either DY or CI processes along with a small contribution from the other SM

processes. Since the final state involves electrons, electron clustering is described here.
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Electromagnetic showers of electrons and photons deposit energy in the crystals of the

ECAL and sometimes a small fraction in the material of the HCAL. In order to determine

the energy of the incident particle, the total energy deposited in the crystal of the ECAL is

reconstructed using the electronic signal from the array of crystals. A detailed description

of the procedure for the electron identification and reconstruction can be found in [78, 79].

Different algorithms [80] are used for the energy clustering in the barrel and the endcap

regions due to the different geometrical arrangement of the crystals. In the barrel region

the “hybrid algorithm” is used whereas in the endcap, “island algorithm” is used. In the

hybrid super-clustering algorithm, which is designed for the high-energy electrons in the

barrel, the crystals with deposited energy ( ET > 1 GeV) are listed, which are called the

“seed” crystals. Crystals with the largest energies in the vicinity of the seed crystal are

searched. As depicted in Fig. 7.1, depending upon the transverse energy of center crystal of

the domino ( ET > 1 GeV or ET < 1), 1× 5 or 1× 3 dominoes are formed with the central

crystal of each domino aligned in η with the seed crystal. In this way, construction of domi-

noes proceeds with a maximum of 10 crystals in φ until the central crystal of the domino

reaches the minimum limit (ET < 0.1 GeV). The minimum ET has to be higher than 0.35

GeV for a subcluster formation. In this way, all clusters are combined to make a supercluster.

Similarly, in the island algorithm, as in the hybrid algorithm, the highest deposited

energy crystals are listed with minimum threshold of (ET > 0.18). The list is then ordered

in decreasing energy followed by looping over the seeds as shown in Fig 7.2. The algorithm

collects the crystals in the φ direction, then moves in η until a rise in energy or a hole is

encountered. When one η direction is completed, the algorithm goes back to the seed to

search in the other η direction. To prevent double counting, a seed included in one cluster

can not seed another cluster.

With the superclusters formed with the algorithms used above, the total energy of the

incident particle is calculated from the sum of the energy of the individual crystals in the
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supercluster. For matching the track, in the “Ecal–driven” method, the position is obtained

from the weighted average of the individual crystals with weight according to each crystals

contribution in energy to the supercluster.

Figure 7.1: Step of domino construction for “hybrid” algorithm

7.2 Electron reconstruction : GSF method

The electron reconstruction involves track finding in the tracker and the measurement of

the position and energy deposited in the ECAL. In order to distinguish an electron from a

photon, parameters of the energy in the ECAL and the hits in the tracker are important.

The tracker system is based on semiconductor technology and contains significant mass from

the electronics, cooling systems and mechanical support. Hence, the effect of this material

must be taken into account for the reconstruction of an electron. The reconstruction takes

into account Bethe-Heitler distribution of energy loss from bremsstrahlung. The track is

found using the gaussian-sum filter (GSF [81]) method, which is a non-linear generalization

of the Kalman Filter in which weighted sums of gaussian “noise” are used instead of a single
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Figure 7.2: Illustration of the “island clustering” in the barrel ECAL

gaussian. In order to reconstruct an electron track, a trajectory is created from a seed. The

compatible hits on the silicon layers are searched and then the track is extrapolated until

no hit is observed in a couple of successive layers. Using the gaussian sum filter, the track

is fitted and the χ2 of the fitted track is evaluated with the requirement that the number

of hits should be at least 5. The track with the minimum χ2 is assigned to the electron. If

energy is deposited in the ECAL with no hit in the tracker, the particle is reconstructed as

a photon. All the tracks reconstructed using the energy deposited in the ECAL are required

to match the tracker for electrons. The track from the tracker is used to assign the charge

and momentum of the electron. The energy deposited in the ECAL is used to rescale the

momentum assigned using the tracker track.

7.3 Electron identification and isolation

An optimized algorithm has been developed to identify electrons in the CMS detector. The

major backgrounds are pair production from a photon, jets faking electrons and hadrons
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misreconstructed as electrons. A dedicated group (HEEP) in CMS has established opti-

mized selection criteria. The selection uses the energy deposited in the ECAL and the

HCAL, the sum of the transverse momenta close to the track of the electron, energy den-

sity of the event and other parameters. Using these selection criteria, commonly known as

HEEP v4.1, an electron is isolated with a high efficiency and high background rejection rate.

7.4 HEEP selection criteria

Selection criteria for electrons and events, HEEP (High Energy Electron Pair) selection fol-

lows, in which offline events are required to have two GSF electrons (those electrons with

tracks that are obtained using a Gaussian sum filter) with ET > 35 GeV passing the HEEP

selection criteria v4.1 (see Table 7.1) with at least one of those electrons incident in the

barrel electromagnetic calorimeter (EB). Brief definitions of the parameters of the table are

given below.

(1) ET, the transverse energy of the GSF electron candidate

(2) ηsc, the pseudo rapidity of the supercluster based on its position in the calorimeter with

respect to 0,0,0.

(3) η, the pseudo rapidity of the electron’s track measured at the inner layer of the tracker

and then extrapolated to the interaction vertex.

(4) |Δηin|, |Δφin|, the difference in η or φ between the track position as measured in the

inner layer, extrapolated to the interaction vertex and then extrapolated to the calorimeter

with the η or φ of the supercluster respectively.

(5) ρ, the average energy density in the event caused by PU (pile up1).

(6) d0, minimum distance in (x, y) between track and beamspot.

(7) H
E , the ratio of the hadronic energy of the CaloTowers in a cone of radius 0.15 centered

1multiple events due to additional collisions in the same bunch crossing of the proton beams
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on the electron’s position in the calorimeter to the electromagnetic energy of the electron’s

supercluster.

(8) Track Isol, the summed PT of the cft tracks (using Combinatorial Track Finder algo-

rithm) tracks in a ΔR cone of 0.04–0.3 with PT >0.7 GeV and z0 within ± 0.2 cm of the

z0 of the electron’s GsfTrack and d0 < 9999. The variable z0 is the minimum distance in z

from the point (0,0,0).

(9) ecal isolation, the transverse EM energy of all the rec-hits with |E| > 0.08 GeV (|Et|>0.1

GeV in the endcap) in a cone of radius 0.3 centered on the electron’s position in the calorime-

ter excluding those in an inner cone of radius 3 crystals and eta strip of total width of 3

crystals.

(10) hadronic depth one, the transverse depth 1 hadronic energy of all the HCAL CaloTow-

ers in a cone of radius 0.3 centered on the electron’s position in the calorimeter, excluding

CaloTowers in a cone of radius 0.15. Depth 1 is defined as All depths Towers 1-17, depth 1

Towers 18-29, depth 2 Towers 27-29.

(11) σiηiη, the measure of the spread in eta in units of crystals of the electron’s energy in

the 5x5 block centered on the seed crystal.

(12) E1×5

E5×5 and E2×5

E5×5 , fraction of energy deposited in η×φ crystal matrix of size 1× 5 (2× 5)

compared to 5× 5 matrix centered on seed crystal

(13) |dxy|, transverse impact parameter w.r.t. the first primary vertex

(14) isEcalDriven, the electron reconsturction algorithm, which starts with reconstruction

of ecal superclusters of ET>4 GeV

Reconstruction cuts for baseline selection of events in dielectron channel

(1) To avoid events from beam backgrounds, events are required to have at least 25% of the

silicon tracker tracks marked as high-purity.

(2) To reject cosmic-ray muons triggering in empty bunch-crossings, at least one good pri-

mary vertex (PV) needs to be found in the offline reconstruction. The vertex must be
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Table 7.1: HEEP selection criteria version 4.1
Variable Barrel Endcap
ET > 35GeV > 35GeV
|η| |ηsc| < 1.442 1.56 < |ηsc| < 2.5
isEcalDriven = 1 = 1
|Δηin| < 0.005 < 0.007
|Δφin| < 0.06 < 0.06
H
E < 0.05 < 0.05
σiηiη n/a < 0.03
E2×5

E5×5 > 0.94 or E1×5
E5×5 > 0.83 n/a

EM + Had Depth 1 Isolation < 2 + 0.03× ET + 0.28× ρ < 2.5 + 0.28× ρ for ET < 50
else < 2.5 + 0.03× (ET – 50) + 0.28× ρ

Track Isol: Trk Pt < 5 < 5
Inner Layer Lost Hits ≤ 1 ≤ 1
|dxy| < 0.02 < 0.05

associated with four or more tracks, have |r| < 2 cm and |z| < 24 cm.

(3) Reject events associated with the anomalously high energies given by two EE 5×5 crys-

tal regions ((ix=23, iy=23,iz=-1; ix=48, iy=98,iz=+1)

(4) Reject bad events due to unphysical values of laser calibration constant on some crystals

(>3.0 in EB and>8.0 in EE) [for rereco datasets of 2012A and 2012B]

(5) No opposite charge requirement (will be discussed more in 7.4.2)

Reconstruction cuts for individual electrons

(1) The HEEP selection v4.1, shown in Table 7.1, is used for selecting individual electron

candidates.

(2) Both electrons must match to HLT DoubleEle33 CaloIdL GsfTrkIdVL objects.

For events with more than two reconstructed electrons passing all of the cuts, we select the

two highest pT electrons.
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7.4.1 The fake rate method

The jet background consists of following backgrounds:

(1) QCD multijets background, where two jets each fake an electron.

(2) W + jets, where the W decays into an e νe pair and a jet fakes an electron.

(3) γ +jets, where the photon is misreconstructed as an electron and a jet fakes an electron.

In general, simulation samples are avoided to estimate these backgrounds because of the

poor statistics as well as the very rare chance that a parton hadronise into almost a single

particle. Since, in simulation, we are looking at a tail of the distribution where MC may

not be accurate, a data-driven technique is used commonly known as “fake rate” in order

to estimate the jet background.

The “fake rate” is defined as the ratio of fake leptons passing the tight criteria (HEEP

4.1) over fake leptons passing the loose criteria (Table 7.2). This ratio is determined in the

Z′ analysis using the SinglePhoton dataset with ratio as a function of the transverse energy

of electron with three different eta ranges [82]. The jet background can be estimated by

applying the measured fake rate once to a sample of events with 1 HEEP electron and 1

GsfElectron passing the fake rate pre-selection (usually known as the 1 HEEP + 1 GSF

method) or twice to a sample of events with 2 GsfElectrons both passing the fake rate pre-

selection (usually known as the 2 GSF method). The latter method is used as the former

method overestimates the background by double counting the dijet contribution. In order to

reduce contamination from Z/γ*→ ee the GsfElectron is required to not pass the full HEEP

selection. As a result, the event is further weighted by 1
1–fakerate to correct the lost events.

Unlike the 1 HEEP + 1 GSF method, using 2 GsfElectrons on data, the W+jets and γ + jets

contributions are not included and hence the MC estimation using the measured fake rate of

those are added to the dijet estimate from data in order to estimate the total jet background.
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variable barrel endcap

σiηiη < 0.013 < 0.034
H
E < 0.15 < 0.10

no. missing hits <= 1 <= 1
|dxy| < 0.02 cm < 0.05 cm

Table 7.2: The loose selection requirements for the fake rate calculation

7.4.2 Electron charge misidentification

Since the energy of the electrons is assigned using the ECAL information, the energy res-

olution for the di-electron channel is generally better than that of the di-muon channel.

However, at high ET, electrons suffer severely from bremsstrahlung, which leads to the pos-

sibility of charge misidentification. After bremsstrahlung, the emitted photon can undergo

pair production, giving oppositely charged electrons. If this process happens early enough in

the tracker, one of the newly created electrons can distort the track of the original electron

to the extent that the charge is flipped. Fig 7.3 shows a comparison of same vs. opposite

charged leptons observed in the CMS detector. The figure shows that same-sign electrons

pairs are in all likelihood Drell-Yan events where one of the charges has been misidentified.

For this reason, the opposite charge requirement in the electron pair is dropped in order to

retain good reconstruction efficiency. The charge misidentification probability is measured

from a Monte Carlo simulation of the Drell-Yan process, which shows that the probability

per muon is nearly 0.45%, whereas for an electron, the probability is 5.5%. In addition

to bremsstrahlung, inefficiency in the tracker is also a source for charge misidentification.

In this analysis, there are 9 Drell-Yan events above Mee = 700 GeV/c2 with misidentified

charge.
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Figure 7.3: The observed events with same charge and opposite charge dielectron (left)
and dimuon (right) pair in the CMS detector from the data of 2012.

7.4.3 Di-electron mass

Di-electron invariant mass is reconstructed using the laws of conservation of energy and

momentum

Minv(e1e2)[GeV/c2] =

√
(Ee1 + Ee2)2 – (~Pe1 + ~Pe2)2 (7.1)

where Minv(e1e2) is di-electron invariant mass, Ee1 , Ee2 are energies and ~Pe1 , ~Pe2 are the

momenta of the first and second electrons, respectively.

The main observable in this analysis is the number of events with Mee above a threshold

value. The highest invariant mass event in the dielectron sample has Mee = 1776 GeV/c2.

Fig. 7.4 shows the reconstructed dilepton mass distributions associated with a particular

generator mass window and shows the gradual degrading of mass resolution with increasing

dilepton mass. The plots show that electrons have better mass resolution than that of muons

in the CMS detector in the high dilepton mass region. However, in low mass region muons

have better mass resolution. This is because electrons lose energy due to bremstrahlung and

this energy is not always recovered at low ET values. However, at high ET the energy lost

by the bremsstrahlung is measured with great accuracy in the ECAL.
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Figure 7.4: Reconstructed dimuon and dielectron distributions associated with a particular
generator mass window for some of the standard bins. All the plots are normalized to the
event statistics of the 0-100 GeV/c2 bin. This figure illustrates the gradually degrading
mass resolution with increasing dilepton mass.
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Chapter 8

Data Sets and Monte Carlo Samples

at
√
s = 8 TeV

This chapter describes the data collected in 2012, the simulated samples for Contact Inter-

action (CI) and all other background processes. In subsection 8.1.3, the trigger requirement

is discussed.

8.1 Samples

The LHC began running with collisions at
√

s = 8 TeV in 2012 at which time the CMS

detector collected a total of 19.6 fb–1 of data, which is divided into various data taking

periods. All of these samples are used and combined in order to compute the observed

cross-section in the dielectron channel. In order to predict the expected events for the Con-

tact Interaction model and the Standard Model, the samples were processed using PYTHIA

6.4 and the GEANT4 [83] toolkit as a part of the official 8 TeV CMS production campaign

with CMSSW 5 3 2 patch4. The baseline alignment scenario of V7A, using the CTEQ6L1
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Dataset Trigger Run Range Lumi(fb–1)
/Photon/Run2012A-13Jul2012-v1/AOD HLT DoubleEle33 CaloIdL GsfTrkIdVL 190456–193621 0.81
/Photon/Run2012A-recover-06Aug2012-v1/AOD HLT DoubleEle33 CaloIdL GsfTrkIdVL 190782–190949 0.08
/DoublePhotonHighPt/Run2012B-13Jul2012-v1/AOD HLT DoubleEle33 CaloIdL GsfTrkIdVL 193833–196531 4.43
/DoublePhotonHighPt/Run2012C-24Aug2012-v2/AOD HLT DoubleEle33 CaloIdL GsfTrkIdVL 198022–198913 0.49
/DoublePhotonHighPt/Run2012C-PromptReco-v2/AOD HLT DoubleEle33 CaloIdL GsfTrkIdVL 198934–203746 6.40
/DoublePhotonHighPt/Run2012D-PromptReco-v1/AOD HLT DoubleEle33 CaloIdL GsfTrkIdVL 203768–205618 7.27

Table 8.1: Datasets used in the analysis.

set of parton distribution functions for the incident protons were used. The details of the

data and Monte Carlo samples are given in section 8.1.1 and 8.1.2.

8.1.1 2012 Data samples

This analysis uses electron data streams from the 2012 proton-proton collision data with

the run range from run 190456 to run 208686. The datasets were reconstructed with

CMSSW 5 3 X. Table 8.1 gives a summary of datasets including the triggers, run ranges,

and integrated luminosities.

The runs and lumi sections that have been analyzed were selected based on JSON files

provided by the PdmV group:

Cert_190456-196531_8TeV_13Jul2012ReReco_Collisions12_JSON_v2.txt

Cert_190782-190949_8TeV_06Aug2012ReReco_Collisions12_JSON.txt

Cert_190456-196531_8TeV_13Jul2012ReReco_Collisions12_JSON_v2.txt

Cert_198022-198523_8TeV_24Aug2012ReReco_Collisions12_JSON.txt

Cert_190456-203002_8TeV_PromptReco_Collisions12_JSON_v2.txt

Cert_190456-208686_8TeV_PromptReco_Collisions12_JSON.txt

8.1.2 Monte Carlo samples

In order to estimate the DY contribution to the dielectron channel and perform comparisons

with the CI process, the samples listed in Tables 8.2 were used. The samples that were used
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to determine the non-DY backgrounds are listed in Table 8.3.

Process Dataset
/DYToEE M-20 CT10 TuneZ2star 8 TeV-powheg-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/DYToEE M-120 CT10 TuneZ2star 8 TeV-powheg-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/DYToEE M-200 CT10 TuneZ2star 8 TeV-powheg-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/DYToEE M-400 CT10 TuneZ2star 8 TeV-powheg-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM

DY→ e+e– /DYToEE M-500 CT10 TuneZ2star 8 TeV-powheg-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/DYToEE M-700 CT10 TuneZ2star 8 TeV-powheg-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/DYToEE M-800 CT10 TuneZ2star 8 TeV-powheg-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/DYToEE M-1000 CT10 TuneZ2star 8 TeV-powheg-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/DYToEE M-1500 CT10 TuneZ2star 8 TeV-powheg-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/DYToEE M-2000 CT10 TuneZ2star 8 TeV-powheg-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM

Table 8.2: Central MC samples used to cross check Λ =∞ (DY) values.

Process Dataset
DY→ τ+τ– /DYToTauTau M-20 CT10 TuneZ2star 8 TeV-powheg-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM

tt̄ /TTJets MassiveBinDECAY TuneZ2star 8 TeV-madgraph-tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/TT CT10 TuneZ2star 8 TeV-powheg-tauola/Summer12 DR53X-PU S10 START53 V7A-v2/AODSIM

tW /T tW-channel-DR TuneZ2star 8 TeV-powheg-tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
t̄W /Tbar tW-channel-DR TuneZ2star 8 TeV-powheg-tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM

WW /WW TuneZ2star 8 TeV pythia6 tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
WZ /WZ TuneZ2star 8 TeV pythia6 tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
ZZ /ZZ TuneZ2star 8 TeV pythia6 tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM

W+jets /WJetsToLNu TuneZ2Star 8 TeV-madgraph-tarball/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
QCD /QCD Pt 20 MuEnrichedPt 15 TuneZ2star 8 TeV pythia6/Summer12 DR53X-PU S10 START53 V7A-v3/AODSIM

/G Pt-15to30 TuneZ2star 8 TeV pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/G Pt-30to50 TuneZ2star 8 TeV pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/G Pt-50to80 TuneZ2star 8 TeV pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/G Pt-80to120 TuneZ2star 8 TeV pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/G Pt-120to170 TuneZ2star 8 TeV pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM

γ + jets /G Pt-170to300 TuneZ2star 8 TeV pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/G Pt-300to470 TuneZ2star 8 TeV pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/G Pt-470to800 TuneZ2star 8 TeV pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/G Pt-800to1400 TuneZ2star 8 TeV pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
/G Pt-1400to1800 TuneZ2star 8 TeV pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM

/G Pt-1800 TuneZ2star 8 TeV pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM

Table 8.3: MC Samples used in dilepton non-DY background analysis.

Information on the cross sections for the processes in these tables can be found in ta-

ble 8.4. For the CI prediction, a number of CI config files were submitted for MC sample

generation. These samples are summarized in Table 8.5 and the dataset path names are

given in Table 8.6.
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Process Generator Kinematic cuts Events σ(pb) Lumi(pb–1) Order

DY→ e+e– POWHEG
√

ŝ > 20GeV ∼3.3M 1915 1721.69 NLO

POWHEG
√

ŝ > 120GeV ∼100k 12.16 8222.62 NLO

POWHEG
√

ŝ > 200GeV ∼100k 1.517 65913.65 NLO

POWHEG
√

ŝ > 400GeV ∼100k 0.1112 899199.64 NLO

POWHEG
√

ŝ > 500GeV ∼100k 0.04515 2214529.35 NLO

POWHEG
√

ŝ > 700GeV ∼100k 0.01048 9541030.53 NLO

POWHEG
√

ŝ > 800GeV ∼100k 0.005615 17807658.06 NLO

POWHEG
√

ŝ > 1000GeV ∼100k 0.001837 54432226.46 NLO

POWHEG
√

ŝ > 1500GeV ∼100k 1.74E-04 573388761.47 NLO

POWHEG
√

ŝ > 2000GeV ∼100k 2.26E-05 4426427622.84 NLO

DY→ τ+τ– POWHEG
√

ŝ > 20GeV ∼3.3M 1915 1720.75 NNLO
tt̄ POWHEG no cuts ∼21.6M 225.197 96253.37 NLO
tW POWHEG no cuts ∼500k 11.18 44513.24 NLO
t̄W POWHEG no cuts ∼500k 11.18 44137.75 NLO
WW PYTHIA no cuts ∼10M 54.8 182489.62 NLO
WZ PYTHIA no cuts ∼10M 33.2 301213.34 NLO
ZZ PYTHIA no cuts ∼10M 17.7 553667.12 NLO
W+jets MADGRAPH no cuts ∼57.7M 36257.2 1591.68 NNLO
γ + jets PYTHIA 15GeV < p̂T < 30GeV ∼2M 200062 9.85 LO

PYTHIA 30GeV < p̂T < 50GeV ∼2M 19932 100.01 LO
PYTHIA 50GeV < p̂T < 80GeV ∼2M 3322.3 600.51 LO
PYTHIA 80GeV < p̂T < 120GeV ∼2M 558.3 3569.10 LO
PYTHIA 120GeV < p̂T < 170GeV ∼2M 108 18518.92 LO
PYTHIA 170GeV < p̂T < 300GeV ∼2M 30.12 66403.35 LO
PYTHIA 300GeV < p̂T < 470GeV ∼2M 2.139 935077.14 LO
PYTHIA 470GeV < p̂T < 800GeV ∼2M 0.2119 9321524.30 LO
PYTHIA 800GeV < p̂T < 1400GeV ∼2M 0.007078 278822266.18 LO
PYTHIA 1400GeV < p̂T < 1800GeV ∼2M 4.51E-05 44010864745.01 LO
PYTHIA p̂T > 1800GeV ∼1.9M 1.87E-06 1036963636363.64 LO

Table 8.4: MC Samples used in dielectron background analysis.

8.1.3 Trigger requirement

All the datasets taken in the different periods of 2012 use double electron triggers, in which

the transverse energy of each electron ET > 33 GeV is required for the signal events. In order

to mimic the condition of the detector, the same trigger is simulated in the full simulation

samples for CI/DY and other Non–DY background samples. These triggers require two

online superclusters with H/E < 0.15 and σiηiη < 0.014 for the electrons in the barrel region

and H/E < 0.1 and σiηiη < 0.035 for the electrons in the endcap region. The superclusters

are required to have an online pixel match and an online GSF Track matching step satisfying

Δηin < 0.02 and Δφin < 0.15.

A detailed study, performed by the search for high mass resonances decaying into electron

pairs [82] using the Tag and Probe method, showed that this trigger is more than 98%

efficient over different ranges of dielectron mass which is slightly lower than over different
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Table 8.5: Characteristics of simulation samples for the CI/DY process using PYTHIA.
For each set of parameters (Λ, Mmin), the number of events and cross-section σ is shown.

Mmin (GeV)
300 500 800 300 500 800

Leptons Λ [TeV] η Events σ (pb)
∞ 55751 26056 25672 0.2621 0.03562 0.004503
19 54189 26380 26022 0.2676 0.03821 0.005518
17 55000 26595 25983 0.2693 0.03915 0.005877
15 55469 27087 26689 0.2722 0.04034 0.006480
13 56620 26748 26514 0.2761 0.04289 0.007542

ee 11 -1 55922 25322 28215 0.2852 0.04739 0.009645
9 57300 26797 26111 0.3041 0.05713 0.014450
15 56123 26563 26297 0.2554 0.03380 0.004403
13 55248 33874 26239 0.2542 0.03418 0.004786
11 +1 56049 26246 25814 0.2536 0.03516 0.005808
9 55269 26553 26328 0.2555 0.03886 0.008843

Table 8.6: File names of CI/DY simulation samples for the dielectron final state.
CIToEE ITCM5 M-300 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE ITCM5 M-500 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE ITCM5 M-800 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM

CIToEE Con Lambda-9 M-300 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-9 M-500 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-9 M-800 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-11 M-300 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-11 M-500 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-11 M-800 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-13 M-300 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-13 M-500 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-13 M-800 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-15 M-300 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-15 M-500 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-15 M-800 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-17 M-300 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-17 M-500 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-17 M-800 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-19 M-300 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-19 M-500 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Con Lambda-19 M-800 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM

CIToEE Des Lambda-9 M-300 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Des Lambda-9 M-500 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Des Lambda-9 M-800 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Des Lambda-11 M-300 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Des Lambda-11 M-500 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Des Lambda-11 M-800 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Des Lambda-13 M-300 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Des Lambda-13 M-500 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Des Lambda-13 M-800 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Des Lambda-15 M-300 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Des Lambda-15 M-500 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
CIToEE Des Lambda-15 M-800 TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM
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ranges of ET for individual electrons as shown in Figs 8.1 and 8.2 .

Figure 8.1: The HLT DoubleEle33 CaloIdL GsfTrkIdL trigger efficiency for the HEEP
electrons as a function of ET. The plot (left) is for EB or EB-EB electrons and the plot
(right) is for EE or EB-EE events
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Figure 8.2: The HLT DoubleEle33 CaloIdL GsfTrkIdL trigger efficiency for the HEEP
electros as a function of Mee. The plots (left) is for EB or EB-EB electrons and the plots
(right) is for EE or EB-EE events
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Chapter 9

NLO Correction

This chapter gives a detailed description of the QCD and QED K-factor estimation.

9.1 K-factor

It has been observed that a mere leading order (LO) evaluation of QCD and QED cross-

sections is inadequate to describe Drell-Yan, heavy quark and jet production. In turn, it

can seriously underestimate the real cross-section, which could potentially undermine the

possibility of observing new physics. These inadequacies can be overcome by the evaluation

of the cross-sections using matrix elements with next to leading order (NLO) or NNLO

accuracy. However, the theoretical model for contact interaction on which this analysis is

based is implemented only in the PYTHIA event generator. In PYTHIA, the hard scattering

matrix elements are implemented in LO and the effects of higher orders are approximated

by adding parton showers to the partons (ISR and FSR) in the hard scattering process.

In order to predict the theoretical cross-section of the signal, as well as the backgrounds

that contaminate the signal, to NLO accuracy, the LO cross-section is boosted by a num-

ber calculated from the ratio of the cross-section at NLO accuracy to the LO accuracy, or

sometimes from the ratio of the cross-section of data to the theory. This is generally known
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as the K-factor. In this analysis, we use QCD and QED k-factors for NLO accuracy of the

signal and the background prediction.

K-factor (NLO correction) =σ
NLO

σLO

9.2 QCD K-factor

In this analysis, in order to estimate QCD K-factor, [MC@NLO 3.4 + HERWIG 6] and

PYTHIA 6 are used, which are event generators at NLO and LO accuracy, respectively.

Here, HERWIG 6 is used for the showering and hadronization of the hard interaction

events generated by MC@NLO. The pdf sets used are CTEQL1 (PYTHIA) and CTEQ6M

(MC@NLO). The region of interest for k-factor calculation in dilepton mass scale (in GeV)

is: 300 and up, 400 and up, and so forth up to 2000 and up. In order to obtain sufficient

statistics, 200k events are generated for each MC sample for every single mass step. In

essence, the minimum mass is 300 GeV, 400 GeV, 500 GeV and so on, so that there are

34 total samples (17 for MC@NLO and 17 for PYTHIA). In order to calculate k-factors,

the total number of dilepton events in the region of interest that are survive after generator

level cuts are considered rather than the full cross section. The generator level cuts are the

following:

For both electrons:

ET > 35 and |ηe|<3.0

As explained earlier, K-factors were calculated for minimum di-electron mass (in GeV)

of 300 GeV, 400 GeV and so on up to 2000 GeV. For the normalization, the luminosity of

each sample was re-adjusted for the bad events (those events with final products other than

dilepton events. In the case of PYTHIA, this is almost negligible: i.e. 1 to 2 events in 200k).
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In the case of MC@NLO, some events are generated with negative events because of the fact

that exact quantum mechanical computations feature interference phenomena, whose con-

tributions don’t have a definite sign, which prevents us having only +1 weights (if weights

are > 0, +1 is assigned and if < 0, -1 weight is assigned). The negative events are neces-

sary in order to obtain the exact NLO results for total rates and for differential distributions.

In MC@NLO, following the MC@NLO manual [84], negative weights are taken care of

by weighting the related histogram of the physical observables (dielectron mass in this case)

with -1 weight, which basically means that subtracting interesting events with +1 weights

by the number of events with -1 weights. In a similar fashion, to assign the luminosity to

the sample, all negative events must be subtracted from the total number of events that

were asked to be generated.

In the MCatNLO.inputs file for the dielectron channel, IPROC=-1351 was used for the

Drell–Yan process. For a minimum mass cut, a negative number is assigned to V1GAMMAX,

then V1MASSINF is assigned the desired value of mass in GeV (for minimum mass of dilep-

tion) and V1MASSSUP is assigned some ultra high values (for ∞) or any desired value to

supply a mass window. In this analysis, 14000 GeV is used for V1MASSSUP and 300, 400,

and so on up to 2000 were used for V1MASSINF.

In PYTHIA, MSUB(1) = 1 and MSTP(43) = 3 are used for the Drell–Yan process and

CKIN(1) is used for a minimum mass of dielectrons (like above) and no upper limits for

mass cut are applied. MDME(182,1) =1 is used for dielectrons in order to select appropriate

final states. No filters are applied at generator level. FSR (QED, since the final products

are with leptonic flavor only) is not implemented in HERWIG, the shower MC used for the

hard events generated by MC@NLO. For a good comparison of NLO vs LO, MSTJ(41)=1

is called in PYTHIA in order to turn off FSR deliberately for both channels.

Table 9.1 shows the K-factor results at
√

s=8 TeV as well as the comparison of the total

cross-section ratio and the event ratio (MC@NLO
PYTHIA ) for a given Massmin

ee .
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Massmin PYTHIAσ(pb)(B) MC@NLOσ(pb)(A) A
B

K-factor

300 0.261700 0.338300 1.293 1.2968 ± 0.0046
400 0.086900 0.113000 1.300 1.3012 ± 0.0045
500 0.035560 0.046255 1.301 1.3005 ± 0.0045
600 0.016500 0.021451 1.300 1.3015 ± 0.0044
700 0.008362 0.010854 1.298 1.299 ± 0.0044
800 0.004508 0.005827 1.293 1.2933 ± 0.0044
900 0.002545 0.003279 1.288 1.2901 ± 0.0043
1000 0.001491 0.001911 1.282 1.2832 ± 0.0043
1100 0.000901 0.001148 1.275 1.2757 ± 0.0043
1200 0.000555 0.000705 1.272 1.2713 ± 0.0042
1300 0.000349 0.000442 1.266 1.2664 ± 0.0042
1400 0.000223 0.000282 1.265 1.265 ± 0.0042
1500 0.000145 0.000182 1.259 1.2589 ± 0.0042
1600 0.000094 0.000119 1.261 1.2602 ± 0.0042
1700 0.000062 0.000078 1.257 1.2558 ± 0.0042
1800 0.000042 0.000052 1.257 1.2565 ± 0.0042
1900 0.000028 0.000035 1.259 1.2587 ± 0.0042
2000 0.000019 0.000024 1.264 1.2644 ± 0.0042

Table 9.1: K-factor and errors at
√

s = 8 TeV in di-electron channel

These results are summarized in Fig. 9.1. The Fig. 9.2 shows the comparison of PYTHIA×

k – factor vs Powheg, in which a good agreement is seen for both dimuon and di-electron

channels. K-factors start to decrease around 400 GeV dilepton mass, and keep decreasing

until 1700 GeV. The K-factors appear to rise after 1700 GeV which could be due to the poor

understanding the PDF around 2 TeV. The size of the deviation of the calculated k-factor

from the widely accepted flat value of 1.3 is applied as the systematic uncertainty in order

to address this unexpected behavior.

9.3 QED K-factor

Due to the facts that in higher order QED diagrams, a virtual photon can be emitted

and re-absorbed either by fermions or across the vertex, and a fermion - antifermion pair

can be produced and annihilate, the matrix element is suppressed by 1
137 . Hence, these

types of higher order corrections are also needed, along with the QCD corrections for NLO

accuracy. In order to estimate the QED K-factor, HORACE 3.1 [57–62] is used by the extra
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Figure 9.1: The QCD K-factors in the dielectron channel at
√

s=8 TeV
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Figure 9.2: Normalized difference in predicted DY yields between PYTHIA with k-factor
correction and POWHEG versus Mmin in units of GeV. The difference is normalized by its
statistical uncertainty. The integrated luminosities correspond to the data.
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dimension search group in CMS (CMS-PAS-EXO-12-031) and the QED K-factor result for

the dielectron channel is presented in the CMS public document [85] which is used in this

analysis.



72

Chapter 10

Systematic uncertainty

This chapter gives a brief description of theoretical and experimental systematic uncertain-

ties. The PDF uncertainty is discussed in detail in section 10.1.1.

10.1 Theoretical sources

10.1.1 PDF uncertainty

The Les Houches Accord PDF (LHAPDF) [86] interface package, which is specially designed

to study PDFs and uncertainties, was used to estimate the PDF uncertainty in this analysis.

There are two ways to calculate PDF uncertainty: brute force and PDF weight technique.

In the brute force method, one must generate as many MC samples as there are PDF sets.

This requires a lot of computing resources, especially for the reconstruction and the detector

simulation processes. However, in the PDF weight technique, only one MC is generated but

weights for each PDF set are stored on an event-by-event basis followed by the observable

weighing. In this analysis, the PDF weight technique is used to estimate the uncertainty of

the cross-section on the dielectron mass spectrum due to PDFs.
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Hessian Method

In order to propagate the uncertainties through the observables, experimental constraints

need to be incorporated. The Hessian Method [87] both constructs a N eigenvector basis

of PDFs and provides a method from which uncertainties on observables can be calculated.

The Hessian method, which is used for MSTW2008 and CT10, works in two steps. The first

step is to fit the data using N free parameters, where the global χ2 of the fit is minimized,

which yields the best fit parameter set. In the second step, the global χ2 is increased to

form the Hessian error matrix.

Δχ
2=

N∑
i=1

N∑
j=1

Hij(ai – a0
i )(aj – a0

j )

where Hij is the Hessian matrix and ai and aj are the horizontal and the vertical dimensions

of the original parameter basis respectively.

This matrix can then be diagonalized yielding N (22 for CTEQ66 and 26 for CT10 and

CT10W, 20 for MRST2008) eigenvectors. These eigenvectors probe a direction in PDF

parameter space; the highest one is taken as the best eigenvalue and the lowest one is taken

as the worst eigenvalue. Each N eigenvector direction is then varied up and down within

tolerance to obtain 2N new parameter sets (hence 44 for CTEQ66, 52 for CT10 and CT10W,

40 for MSTW2008) and the Eigenvector Basis PDFs (S±i (i = 1, ..,N) ).

PDF Weights

Since it is not practically possible to generate huge numbers of MC samples, the PDF

Weight Technique is preferred for this analysis. In this method, only one MC is generated

but weights for each PDF set are stored on an event-by-event basis followed by the observ-

able weighing. In order to do this, for each event generated using the central PDF from the

set, a PDF weight is calculated and stored in that event.

Technical details for the PDF weight calculation using the Hessian method from the LHAPDF

package is given in A.2 and in A.3. The weights are calculated for the maximum and mini-
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Massmin ΔX+(%) ΔX–(%) Average (%)

300 6.88 4.31 5.6
400 7.33 4.32 5.8
500 7.77 4.63 6.2
600 8.12 4.98 6.6
700 8.31 5.18 6.7
800 8.36 5.25 6.8
900 8.61 5.53 7.1
1000 9.58 6.15 7.9
1100 10.29 6.57 8.4
1200 11.04 7.01 9.0
1300 11.84 7.50 9.7
1400 12.69 7.95 10.3
1500 13.74 8.58 11.2
1600 15.00 9.12 12.1
1700 16.10 9.79 12.9
1800 16.51 10.60 13.6
1900 18.97 11.53 15.2
2000 19.35 11.77 15.6

Table 10.1: PDF uncertainties from the envelope of CT10, MSTW08 and NNPDF2.1 at
68% CL.

mum fluctuation using the Modified Tolerence Method (Master’s equation). The technical

detail of this calculation is given in B.1. In order to estimate the PDF uncertainty for a

given set, the relative weights are used, but to estimate the PDF uncertainty with different

PDFs, the absolute error sets are used so that the relative uncertainty from a common set

can be estimated.

Master’s Equation

Even if the variations applied in the eigenvector directions are symmetrical by construc-

tion, when propagated through to an observable, this may not always be true. The 2N+1

(1 being central) members of the PDF set provide 2N+1 results for any observable of in-

terest. In general, the well constrained directions (low eigenvector numbers) tend to have

symmetrical positive and negative deviations on either side of the central value of the ob-

servable. These sets of eigenvectors can be used in a Master’s formula to approximate the

PDF uncertainty. There are several Master’s formulae, however many of them have some

faults.
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Figure 10.1: PDF uncertainty (shown in 68% CL) from CT10, MSTW08 and NNPDF21.
The uncertainties for MSTW08 and for NNPDF21 are shown with respect to the central
value of CT10. The envelope shows the worst fluctuation in the three different sets.

ΔX1 = 1
2

√
N∑

i=1
(X+

i – X–
i )2

where X+ and X– are the maximum and minimum PDF weights respectively.

This original CTEQ Master’s equation only works if X–
i and X+

i are symmetrical. Other-

wise, it underestimates the uncertainty.

Similary, the given alternative formula below can not be interpreted as positive and nega-

tive errors in the general case as the positive and negative directions defined in the PDF

eigenvector space are not always related to positive and negative variations of an observable.
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ΔX+ = 1
2

√
N∑

i=1
(X+

i – X0
i )2

ΔX– = 1
2

√
N∑

i=1
(X–

i – X0
i )2

The Master equation which is called the “Modified Tolerence Method” is used in this anal-

ysis, as it is considered to give the best performance even in the case where observables are

not symmetrical around the central values.

Δ
+
max =

√
N∑

i=1
[max(X+

i – X0, X–
i – X0, 0)]2

Δ
–
max =

√
N∑

i=1
[max(X0 – X+

i , X0 – X–
i , 0)]2

where Δ+
max and Δ–

max are positive and negative maximum fluctuations of the observ-

ables. X+
i is the ith weight above the central value and X–

i is the ith weight below the central

value (in the case where fluctuation of the observable is symmetric, which it doesn’t always

happen). The Master’s equation normally returns the maximum and minimum fluctuation

for symmetric case, but for a case in which the fluctuation is not symmetrical, it simply re-

turns 0 for that set. However, one needs to keep getting the fluctuation for all PDF sets and

add them in quadrature. Finally, the total deviations from unity in either direction are the

final weights of that event. These weights are used to weight the histogram for dimuon or

dielectron events. Finally, for a particular region of interest, all dilepon events are counted,

i.e., with up-weighted, down-weighted and central-weighted (it doesn’t matter if weighed or

not, as weight =1). The % difference of the up events from central events gives the relative

uncertainty in an upward direction (maximum positive fluctuation). Similarly, % difference

of the down events from central events gives the relative uncertainty in a downward direction

(maximum negative fluctuation).
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The same calculation can be repeated using the unnormalized values of the weights (cen-

tral value will not be 1 in this case) which won’t effect the result to estimate the uncertainty

for a given set. However, if the uncertainties are estimated from multiple sets with the result

relative to each other, unnormalized weights are used in which the values are compared from

the central value of one fixed set. Following the PDF4LHC recommendation, the absolute

uncertainty from 3 different PDF sets, with respect to the central values of each sets, are

taken and the uncertainties are then measured from the common central values. Out of

these 3 different uncertainty sets, the worst condition is taken in either direction, called the

“envelope”. The average of the maximum and the minimum fluctuations of this envelope is

used for the systematic uncertainty due to the PDF uncertainty in this analysis.

For this purpose, the PDF sets CT10 (α1variation: 0.116 – 0.120), MSTW2008 (α vari-

ation: 0.110 – 0.130) and NNPDF2.1 (α variation of 0.114–0.124) were taken using the

PDF Weight Technique in which only one MC is generated but weights for each PDF set

are stored on an event-by-event basis followed by the observable weighting. The number

of error sets are 52 for CT10, 40 for MSTW2008 and 100 for NNPDF2.1. The modified

tolerance method is used for the first two PDFs, but, for NNPDF2.1, that works with the

Monte Carlo sampling technique using the data replica technique. With this technique, a

separate PDF fit is performed to each replica data set, average and standard deviation (σ)

is calculated from 100 PDF sets, which is equivalent to the Hessian method for Δχ2 = 1.

The PDF uncertainty bands (68% CL) with respect to the central set of CT10, from CT10,

MSTW08 and NNPDF2.1 and the corresponding band of the envelope, are shown in Fig

10.1.

1strong coupling constant
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10.1.2 QCD and QED K-factors

The CI signal is estimated using the PYTHIA Monte Carlo, a leading order generator with

CTEQ6.6L1 PDF set. In order to make higher order QCD and QED corrections, QCD

and QED k-factors are used in this analysis, which is discussed briefly in Chapter 9. The

statistical errors are negligible (∼ 0.4 %) because of the huge sample (∼ 200k events) in

each of the 100 GeV steps, however the systematic error for the QCD K-factor is assigned

as 3% which is the size of the NNLO vs. NLO correction. For the QED correction, the

size of the correction itself is assigned as systematic in order to account for the maximum

difference due to the possible unknown factors of the QED correction between the DY and

the CI process.

10.2 Experimental sources

In addition to the theoretical sources, there are 3 different important experimental sources.

These are:

(1) uncertainty due to the luminosity measurement,

(2) uncertainty due to energy scale calibration, and

(3) uncertainty due to reconstruction efficiency.

The uncertainty in the luminosity is the biggest uncertainty in the experimental sources,

and is measured to be 4.4%, as described in [88]. The electron reconstruction and identi-

fication uncertainty is measured for PT > 25GeV/c using the tag-and-probe method with

Z→ ee events in which reconstruction uncertainty is 1.9% and identification uncertainty is

found to be 1.5% [89]. A total of 5% is assigned in order to cover these two separate uncer-

tainties. In order to measure the energy scale uncertainty, isolated electrons from W-boson
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decays are used to validate response corrections over a period of time [90].

10.3 Summary of systematic uncertainties

Table 10.2 summarizes all the systematic uncertainties in this analysis for the dielectron

mass of 1.5 TeV/c2, which is the approximate point to set the limit for both interferences.

Among these, PDF and higher order corrections depend on the dielectron mass. The total

error is added in quadrature from the dielectron event yield, in which PDF uncertainty has

the largest contribution, followed by the electron reconstruction. These systematic uncer-

tainties are included as “nuisance parameters” in the limit setting procedure, where the

signal is forced to fluctuate with the value randomly picked from the “log-normal” distribu-

tion about the mean.

Source Rel. Uncert. (%)

PDF 12.1
Electron reconstruction and identification 5.0

Energy scale 1.0
QED k-factor 6.0
QCD k-factor 2.0
Luminosity 4.4

Table 10.2: Systematic uncertainties on dielectron yields above Mee. The PDF and QED
k-factor uncertainties are quoted at Mee =1500 GeV; all other uncertainties are independent
of the minimum mass.
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Chapter 11

Sample processing and Data-MC

spectra comparison

In this chapter, technical aspects of the data analysis in CMS are discussed in section 11.1

and section 11.2. In section 11.4, a comparison of CI models and the SM with data is

explained.

11.1 Job submission using CRAB

Since the millions of events need to be processed in order to select the events of interest

and extract the parameter of interest, di-electron mass in this analysis, local computing via

the interactive method is not feasible, especially for the background estimation. Hence, a

grid computing technique [91] is used to process the data and MC samples using CRAB

(CMS Remote Analysis Builder)[92], the official CMS analysis software that helps to avoid

the complexity in submitting, checking and retrieving the jobs, as well as to publish the

output in the desired storage medium in which the user has permission to write. In this
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analysis, T3 US FNALLPC is used as the storage element for all CRAB submissions using

an automated python script interfaced with the CRAB system, given in A.1.

Even if CRAB can be used both standalone and with a server, the latter is more suitable

for a huge task. An example would be generating the large number of detector-simulated

Monte Carlo samples. In analysis work, the standalone mode was used, in which jobs are

directly sent to the scheduler and the user has the responsibility of the jobs, which may

need resubmission if the output is corrupted.

11.2 Ntuplization and processing

In order to test the Contact Interaction model against the Standard Model, the cross-section

in terms of the number of events as a function of dielectron mass needs to be estimated for

both models. In order to compute this information, the data set and Monte Carlo samples

that are stored in various storage facilities of the CMS collaboration need to be processed.

The information storage in CMS is based on ROOT, in which most of the datasets and MC

samples are available in AOD format, specially chosen to satisfy the needs of a large fraction

of analysis studies, which is a proper subset of RECO format. AOD format samples were

used, which were processed with all the major pieces of information kept in “Ntuple” format.

These Ntuples were stored in ROOT files using the programs given in A.2 and A.3. In

order to select events of interest, a dedicated selection was applied in addition to the trigger

requirement. The histograms of various observables were prepared using the programs given

in B.1 and B.2 by processing the stored Ntuples. Finally, various pieces of information such

as η, φ distributions of the dielectron pair, efficiency × acceptance of the selection criteria,

trigger efficiency, etc. were calculated using the stored information in order to estimate

the systematic uncertainty and to estimate the backgrounds from data. However, most
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importantly, the di-electron mass was used to compare the various hypotheses, which can

be calculated using the program given in D.4.

11.3 Re-binning and combining histograms from vari-

ous samples

In order to compare visually with good statistics, optimized binned histograms are pre-

ferred for a comparison of data with the SM. For that, histograms of the dielectron mass

from data are re-binned using the program given in C.1.1. Since, for the different MC

processes, especially for the Drell-Yan process, the information comes from different sam-

ples for different regions, and mass dependent K-factors need to be used to re-scale for

NLO or NNLO accuracy, programs given in C.1.3 and C.1.4 are used. For the cumulative

distribution, the program given in C.1.2 is used for both data and Monte Carlo. With

these combined histograms, cumulative and variable binned differential Data-MC compar-

ison plots are prepared in which errors are separately calculated in order to combine the

statistical and systematic uncertainties. The ROOT script for the Data-MC spectra com-

parison plot can be found in C.1.6.

11.4 Data-MC spectra comparison

Following the procedures outlined in sections 11.1, 11.2, and 11.3, a Data-MC spectra com-

parison plot was created in which the SM, data and the CI model are compared in Fig. 11.1

as a function of Mee and Fig. 11.2 as a function of Mmin
ee . Except for the backgrounds that

involve at least one jet (in the e+e– channel, as shown in these plots, which are estimated

using the fake rate method using data) all other SM dilepton sources are estimated from

Monte Carlo simulation. The estimated backgrounds are stacked, normalized to the inte-
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grated luminosity of the data and superimposed on the distribution from data in a variable

binned histogram beyond the dilepton mass of 300 GeV. The quantitative comparison of the

event yields of these plots is shown in Table 12.1, Tables 12.2 and 12.3. A detailed table for

background yields is given in 11.1. The error bars shown in the data distribution are Poisson

bars at 68% CL, which don’t include the errors from Monte Carlo, whereas the error bars on

the pedestal plots include the total errors (stat + systematic). It appears that in Fig 11.2,

a slight deviation in event yields is observed around 1 TeV, however the ratio of data to

SM prediction plot in pedestal of Fig. 11.1 explains the fact that those deviations are not

statistically significant and are consistent within 1 σ fluctuation. The highest di-electron

mass observed in the data is 1776 GeV/c2.

Mmin
ee DY tt̄ jets Diboson Other

300 3469.72 557.53 242.45 218.83 55.49
400 1190.80 138.61 76.78 76.03 17.52
500 516.59 41.24 31.63 28.80 6.21
600 246.24 15.76 13.44 11.56 2.10
700 126.49 3.89 5.91 5.20 1.16
800 68.11 1.30 2.92 2.85 1.07
900 39.23 0.65 1.20 1.98 1.01
1000 23.12 0.22 0.57 1.40 0.56
1100 13.82 0.45 0.28 0.68 0.09
1200 8.55 0.00 0.17 0.43 0.06
1300 5.39 0.00 0.10 0.32 0.06
1400 3.45 0.00 0.06 0.18 0.06
1500 2.22 0.00 0.04 0.14 0.00
1600 1.43 0.00 0.02 0.14 0.00
1700 0.94 0.00 0.01 0.00 0.00
1800 0.61 0.00 0.01 0.00 0.00
1900 0.42 0.00 0.01 0.00 0.00
2000 0.28 0.00 0.00 0.00 0.00

Table 11.1: DY and non-DY Event Yields in dielectron channel at 20 fb–1.



84

)2
E

ve
nt

s 
/(

20
 G

eV
/c

-310

-210

-110

1

10

210

310

410

-1 = 8 TeV,19.6 fbsCMS, 

data
 = 11 TeV (const.)Λ
 = 11 TeV (destr.)Λ
 = 13 TeV (const.)Λ
 = 13 TeV (destr.)Λ
 = 15 TeV (const.)Λ
 = 15 TeV (destr.)Λ

DY
tt 

tW
diboson
jets (data)

)2 (GeV/ceeM
400 600 800 1000 1200 1400 1600 1800 2000pr

ed
ic

tio
n(

S
M

)
da

ta

0.5
1

1.5
2

Figure 11.1: The dielectron mass spectrum at 19.6 fb–1 shown with MC predictions and
with a variable binning. The distribution with error bars (Poisson 68 % CL) represent the
data. Dimuon sources from the SM (Z/γ*, tt̄, diboson, tW, jets) are stacked, normalized and
superimposed. The dielectron contribution from multi-jet backgrounds is estimated using
fake rate method.
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Figure 11.2: The dielectron mass spectrum at 19.6 fb–1 shown with MC predictions and
for masses above Mee. The distribution with error bars (Poisson 68 % CL) represent the
data. Dielectron sources from SM (Z/γ*, tt̄, diboson, tW, jets) are stacked, normalized and
superimposed. The dielectron contribution from multi-jet backgrounds is estimated using
fake rate method.
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Chapter 12

Limit Setting

After all the dedicated isolation requirements, the dielectron mass spectra beyond 300 GeV

were analyzed and a search for the contact interaction was performed. This chapter intro-

duces the Frequentist and Bayesian statistics. In section 12.1.3, a brief explanation of CLs

is given, which is the method used to set the lower limit of the Contact Interaction energy

scale (Λ) as data are found to be consistent with the prediction made by the Standard Model

as will be seen in 12.1.4.

12.1 Statistical method

Since experimental particle physics research involves extremely complex and expensive de-

tector facilities as well as effort from a huge number of physicists, it is extremely important

to optimize the data by using good statistical practices so that the maximum possible in-

formation can be extracted from the data. There are several statistical procedures that

have to be carried out by particle physicists in order to get the results, such as separating

signal from background, comparing the hypotheses, etc. The heart of the analysis in particle

physics is the limit setting procedure for the parameter of interest if the signal is absent or

it is the estimation of significance if the signal is present. For this purpose, the two different
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statistical approaches that are commonly used are called the Bayesian and the Frequentist

methods. Basically, in both the Frequestist and Bayesian techniques, the search results can

be formulated in terms of an hypothesis test. In this analysis, the null hypothesis is that

the CI signal is absent, which means the data can be explained by the prediction from the

SM. The alternate hypothesis is that, it exists, which is the discovery of the CI process.

These tasks can be formally defined and quantified by checking which of the hypotheses are

favored by the data.

12.1.1 Frequentist method

In the Frequentist method, a convenient test statistic qμ is constructed, which is used to

distinguish the null hypothesis (background-like) and the alternative hypothesis (signal +

background-like). By the construction of Neyman-Pearson lemma, the ratio of likelihoods

is considered the most powerful discriminator.

qμ = –2ln
L(data|s(μ) + b)

L(data|b)
(12.1)

where μ refers to the parameter of interest. The values from data and the predictions give the

baseline for the estimation of total probability for both hypotheses. The probability density

function is constructed using a large sample of pseudo data, using the Poisson fluctuation,

and by using the “toy Monte Carlo method”. Now, suppose the value of qobs obtained from

the data is given as in Figure 12.1 with qμ. Using the constructed PDFs, ps+b, the p-value

for signal + background hypothesis and pb, the corresponding value for the background

only hypothesis can be obtained using following relation:

ps+b = P(q ≥ qobs|s(μ) + b) =

∫ ∞
qobs

f(q|s(μ) + b)dq (12.2)
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pb = P(q ≤obs |b) =

∫ qobs

–∞
f(q|b)dq (12.3)

In the method called CLs+b, the alternative hypothesis (signal+ background) is supposed

to be excluded at 95% confidence interval for the given parameter μ if ps+b in equation 12.2,

satisfies the condition ps+b ≤0.05. This method is expected to give a useful result only if

the probability density function of the different hypotheses are well separated and the cross-

sections between the two are comparable. Unfortunately, this does not happen normally in

search of physics beyond the Standard Model. A modified version of CLs+b is very popular

and will be discussed in detail in 12.1.3.

Figure 12.1: The distribution of the variable q of equation 12.1 under null and alternative
hypothesis. [93]

12.1.2 Bayesian method

In the Bayesian method, subjective probability is used which allows to use the information

extracted by previous experiments that could be very important to accept or reject the
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hypothesis in a more robust way. However, this is subjective which can be argued as a

trade-off with a possible bias in the conclusion. It may not be a great tool, especially if

a conservative conclusion is desired. For the posterior probability, the formula established

using the Bayesian approach of probability is used.

P(H/~x) =
P(~x/H)π(H)∫
P(~x/H)π(H)dH

(12.4)

where P(~x/H) is the probability of observing the data under hypothesis H, π(H) is the

prior probability,
∫

P(~x/H)π(H)dH is the normalization factor obtained by summing over

all the available hypotheses, and P(H/~x) is the posterior probability. For example, in order

to search for a contact interaction in a simple counting experiment, say, s is the number of

events from CI, which is represented by μ and b is the background. Now, the parameter

μ can be expressed in terms of signal (s), background (b) and “nuisance” parameters (ν)

which are any parameters that are not under investigation but still have influence on the

prediction.

μ = s(Λ, ν) + b(ν) (12.5)

The likelihood of observing the set of n events for a given invariant mass bin with total

bins of Nbins is given by the product of Poisson probabilities:

L(n/Λ, ν) =

Nbins∏
k=1

μ
nk
k e–μk

nk!
(12.6)

Now, using equation 12.4, the posterior probability for Λ given n observed events can

be calculated using the best prior probability. Normally, the prior probability is taken to

be flat to make it free from the bias of previous experiments. And, finally, in order to set a

95% Bayesian credibility interval limit,

∫
Λlimit

0
P(Λ′/n)dΛ′ = 0.95 (12.7)
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that can be solved for Λlimit.

12.1.3 The modified Frequentist (CLs) method

As mentioned in section 12.1.1, the CLs+b procedure fails to perform well when the signal

is negligible with respect to background. If the observed number of events has downward

fluctuation, given that the signal is very small, there will be a huge overlap in the prob-

ability density functions between the two hypotheses, causing the signal to be improperly

excluded at 95% CL. In order to correct this false exclusion, the CLs+b method is modified

to make some trade off between the p-value of the signal+background hypothesis with the

background hypothesis. The higher the exclusion potential, the lower will be the false exclu-

sion rate (p-value of the signal+background hypothesis). This modified version is commonly

known as the CLs method.

For the CLs method [77, 94], the value of CLs is given by the following equation:

CLs =
CLs+b

1 – CLb
=

P(q ≥ qobs|s(μ) + b)

1 – P(q ≤obs |b)
=

∫∞
qobs

f(q|s(μ) + b)dq

1 –
∫ qobs

–∞ f(q|b)dq
(12.8)

where the p-value of the signal hypothesis depends upon the p-value of background hypothe-

sis, making the CLs always greater than ps+b, reducing the false exclusion rate. The penalty

depends upon how well these distributions are separated. Similar to CLs+b, in order to ex-

clude the signal + background hypothesis at 95% CL, the value of CLs is required to be less

than or equal to 0.05. As an example of how these variables are related to the probability

distribution of the q value, the value of CLs+b and CLb are shown in Fig. 12.2 with the

probability taken from the LEP experiment in search of the Higgs. The “LHC-style” CLs

method uses the profile-likelihood ratio [95] as the test statistic as shown in the following

equation.

λ(μ) =
L(μ,

ˆ̂
θ)

L(μ̂, θ̂)
(12.9)
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where θ is the collection of nuisance parameters and μ can be 0 or 1 depending upon the

signal or background hypothesis.
ˆ̂
θ is the conditional maximum likelihood estimator of θ

which is a function of μ. μ̂ and θ̂ are the true maximum likelihood estimators. By this

construction, the profile likelihood ratio shows the compatibility between the data and the

hypothesis when μ coincides or deviates with μ̂.

Figure 12.2: The graphical representation of the terms CLs, CLs+b, in equation 12.8 from
the Higgs search of mass 115 GeV/c2 [96].

12.1.4 Consistency check of data with the SM

In order to check the consistency between data and the null hypothesis, a comparison is

performed in the distributions of the dielectron mass spectra from the data and the SM

prediction for a given minimum mass as shown in Fig. 11.1, which is normalized to the

luminosity of data at 19.6 fb–1. In order to make the visual check better, a cumulative
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distribution as a function of Mee is shown in Fig. 11.2. In the pedestal plot of Fig. 11.1, a

ratio of the data to the SM prediction is shown, including the total error of the measure-

ment, which clearly shows agreement within the statistical fluctuation. The quantitative

description of the plots is given in Table 12.1.

In addition to the visual inspection, the agreement of the data with the null hypothesis

is confirmed by measuring “the p-value”. In order to measure the p-value, the following test

statistics is used by optimizing the nuisance parameters.

qμ = –2ln
L(data|b)

L(data|s(μ) + b)
(12.10)

As explained in section 12.1.3, the probability density function is constructed by using the

“toy MC method”, using the Poisson probability functions followed by the calculation of

cumulative probability, using equation 12.3. The p-value is expected to be higher than 5

% in order to be consistent. In this analysis, with the 2012 dataset, a p-value of 41% was

found above 1 TeV of Mee, which shows a strong consistency with the SM.

Table 12.1: Data and predicted event yields in the dielectron channel.
Mmin

ee (GeV/c2) Data SM prediction (DY + Non DY)

300 4459 ± 66.78 4456.9 ± 76.3
400 1544 ± 39.29 1469.2 ± 18.7
500 641 ± 25.32 611.7 ± 10.4
600 294 ± 17.15 282.8 ± 3.8
700 146 ± 12.08 139.7 ± 2.4
800 70 ± 8.37 74.6 ± 1.7
900 45 ± 6.71 43.1 ± 1.3
1000 21 ± 4.58 25.3 ± 1.0
1100 11 ± 3.32 15.4 ± 0.8
1200 6 ± 2.45 8.97 ± 0.53
1300 4 ± 2 5.70 ± 0.42
1400 3 ± 1.73 3.62 ± 0.32
1500 3 ± 1.73 2.36 ± 0.25
1600 2 ± 1.41 1.56 ± 0.22
1700 1 ± 1 0.93 ± 0.18
1800 0 ± 0 0.61 ± 0.15
1900 0 ± 0 0.422 ± 0.003
2000 0 ± 0 0.276 ± 0.003
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12.1.5 Limit setting

With the agreement between the data and the SM prediction, the possibility of the CI

process is ruled out. In order to set the 95 % CL lower bound on the CI energy scale

Λ, the modified Frequentist method as described in section 12.1.3 was used with a single

bin counting experiment. The official CMS package, which is certified by the CMS sta-

tistical committee, a CLs program written in C++ and interfaced with ROOSTAT in the

framework of ROOT version 5.32.00 or higher is used. Using the various functions such as

pseudo-random generation from ROOSTAT, this CLs takes a number of inputs and returns

the median, a 1 – σ and 2 – σ cross-section for the CI/DY process that can be excluded at

95 % CL. This macro is integrated with a program using PYROOT in order to take the

arguments and express these cross-sections in terms of a sensible CI energy scale. This is

done by using the event yields in the CI model from the Full-simulated CI samples. The

program is given in D.1.

The input taken by the CLs program is as follows:

(1) Nominal integrated luminosity (pb–1)

(2) Absolute error on the integrated luminosity

(3) Nominal value of the efficiency × acceptance (in range 0 to 1)

(4) Absolute error on the efficiency × acceptance

(5) Nominal value of the background estimate

(6) Absolute error on the background

(7) Number of observed events (not used for the expected limit)

(8) Number of pseudo experiments to perform for the expected limit calculation

(9) Statistics choice (True = gauss or False = Poisson)

(10) Nuisance Model - distribution function which is used in integration over nuisance pa-

rameters : (0 – Gaussian, 1–lognormal, 2 – gamma)

(11) Method of statistical inference (“Bayesian”, “mcmc”, “cls”, “fc”, “workspace”)
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(12) plotFileName

(13) Seed for random number generation

The integrated luminosity for this analysis is 19616 pb–1 with 4.4 % error, correspond-

ing to a luminosity of 862.4 pb–1. The value of efficiency × acceptance is set to 1 and the

absolute error is set to 0. The nominal value of the background estimate (DY + Non DY)

is given in Table 12.1. The absolute error on the background is estimated by combining

the statistical error with the different systematics described in Chapter 10, in which the %

effect on the event yield is given in Table 10.3. The number of observed events are shown

in Table 12.1 given as a function of minimum dielectron mass. The statistics choice used is

the “Poisson” and the nuisance model is taken as “lognormal”. The last 3 arguments are

not very interesting but are simply the mechanical parts of the process.

With the above arguments, the median of the lower limit on the cross-sections for CI

signals are returned as a function of Mlow
ee corresponding to the 95% CL along with 1 – σ

and 2 – σ fluctuations on that limit due to statistical fluctuations. These cross-sections can

be interpreted in terms of the event yields using simple multiplication of the luminosity

followed by mapping in the interval of the Λ values from Tables 12.2 and 12.3. A simple in-

terpolation is done in order to find the exact Λ value for the limit for a given minimum mass.

The observed and the expected lower limits on Λ as a function of Mlow
ee at 95% CL are

shown in Figs 12.3 and 12.4. Due to the fact that expectations of dielectron event yield

slightly exceed the data around 1 TeV (Fig. 11.2), though it is not statistically significant,

the observed limit peaks around 1 TeV (extending slightly above the 1 – σ fluctuation band

of the expected limit). The limit is taken at Mlow
ee = 1.4 TeV for destructive and 1.2 TeV

for constructive interference. The observed (expected) limits are 13.1 TeV (12.9 TeV) for

destructive interference and 18.3 TeV (16.7 TeV) for constructive interference.



95

Table 12.2: Observed and predicted number of dielectron events using the SM and LLIM
over a range of values of Mee. For LLIM, predictions are shown for a range of Λ values, for
destructive interference. Both the SM and CI predictions include small contributions from
non-DY backgrounds. The integrated luminosity is 19.6 fb–1.

Mmin

(GeV/c2) 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Source Number of Events
data 641 294 146 70 45 21 11 6 4 3 3
SM pred. 611.7 282.8 139.7 74.6 43.1 25.3 15.4 9.0 5.7 3.6 2.4
σ(SM pred.) 55.5 26.3 13.4 7.4 4.4 2.8 1.9 1.2 0.8 0.6 0.4
Λ (TeV)
20 561.6 261.0 130.3 71.1 41.3 24.9 15.3 9.1 5.9 3.8 2.5
19 559.9 259.7 129.6 71.0 41.4 25.1 15.5 9.4 6.1 4.0 2.6
18 558.3 258.4 129.1 71.0 41.7 25.5 15.9 9.7 6.4 4.3 2.8
17 556.8 257.3 128.8 71.3 42.2 26.0 16.4 10.2 6.8 4.6 3.2
16 555.6 256.5 128.8 71.9 43.0 26.9 17.2 10.9 7.4 5.1 3.6
15 555.1 256.4 129.4 73.0 44.3 28.1 18.4 11.9 8.3 5.9 4.2
14 555.6 257.5 131.1 75.1 46.3 30.1 20.1 13.5 9.6 7.0 5.1
13 558.3 260.6 134.5 78.7 49.7 33.1 22.8 15.8 11.6 8.6 6.5
12 564.8 267.5 141.0 84.7 55.0 37.8 26.9 19.3 14.6 11.1 8.6
11 578.2 281.0 152.7 95.1 63.9 45.5 33.5 24.9 19.3 15.0 11.9
10 604.4 307.0 174.2 113.0 78.8 58.2 44.3 34.0 27.1 21.4 17.2
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Figure 12.3: Observed and expected limits as a function of Mee for destructive interference.
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Figure 12.4: Observed and expected limits as a function of Mee for constructive interfer-
ence.
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Table 12.3: Observed and expected number of events for the range of Mmin in which the
95% CL limit on Λ is established. The expected yields for finite Λ values are shown for
constructive interference. Both the SM and CI predictions include small contributions from
non-DY backgrounds. The values correspond to an integrated luminosity of 19.6fb–1.

Mmin

(GeV/c2) 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Source Number of Events
data 641 294 146 70 45 21 11 6 4 3 3
SM pred. 611.7 282.8 139.7 74.6 43.1 25.3 15.4 9.0 5.7 3.6 2.4
σ(SM pred.) 55.5 26.3 13.4 7.4 4.4 2.8 1.9 1.2 0.8 0.6 0.4
Λ (TeV)
20 622.8 306.2 159.2 89.8 53.9 33.4 21.6 13.8 9.4 6.5 4.6
19 627.4 309.4 161.6 91.6 55.3 34.5 22.4 14.5 10.0 7.0 5.0
18 633.0 313.4 164.6 93.9 57.1 35.8 23.5 15.4 10.7 7.5 5.5
17 639.8 318.3 168.3 96.8 59.4 37.5 24.9 16.5 11.6 8.3 6.1
16 648.2 324.6 173.0 100.5 62.4 39.8 26.8 18.0 12.9 9.3 6.9
15 659.0 332.7 179.2 105.4 66.3 42.8 29.3 20.0 14.5 10.6 7.9
14 672.8 343.3 187.4 112.0 71.6 46.9 32.7 22.8 16.7 12.3 9.3
13 691.1 357.6 198.7 121.1 78.9 52.8 37.5 26.6 19.8 14.8 11.4
12 716.0 377.5 214.4 134.0 89.3 61.2 44.4 32.2 24.2 18.4 14.2
11 751.0 405.9 237.4 152.9 104.6 73.7 54.6 40.4 30.8 23.8 18.6
10 802.1 448.5 272.0 181.9 128.1 93.2 70.6 53.2 41.1 32.1 25.3
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Chapter 13

Summary and discussion

The analysis presented in this thesis is performed using data from the CMS experiment at
√

s = 8 TeV in 2012 at the LHC, for an integrated luminosity of 19.6 fb–1. The data was

tested against the Standard Model in the context of the Left-Left isoscalar model of the

contact interaction. The huge center of mass energy and the instantaneous luminosity as

well as the excellent detector resolution (with the dedicated isolation criteria established

by significant efforts on the part of various institutions all over the globe) provided the

promising sensitivity in this search.

For the prediction, the Monte Carlo method is utilized in many cases. The dedicated

software, computing resources and a huge effort by theorists made the prediction possible

with a high level of accuracy. The data-driven technique, developed for the prediction of

jets faking leptons in order to address the inefficiency of the Monte Carlo model, adds to

the sensitivity of the results presented in this thesis.

With the sincere efforts mentioned above, the dielectron mass spectrum above 300 GeV

was analyzed and no significant deviation from the SM prediction was observed. At 95%

CL, lower limits on the energy scale Λ of llqq contact interactions in the Left-Left isoscalar
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model were placed in destructive (13.1 TeV) and constructive (18.3 TeV) interference. These

limits are the most stringent to date.

As shown in equation 2.4, as Λ goes higher, the whole spectrum converges to the DY

spectrum, which degrades the sensitivity of the search. Although the sensitivity of the

search increases with the center of mass energy, since the limit is already set up to 18 TeV

in the dielectron channel in this work, and up to 26 TeV in LEP (in the reverse process

compared to the process this analysis is based upon, instead of the LLIM) a dijet final state

or helicity non conserving model could be more useful. There are several searches that are

being performed in the CMS experiment for excited quarks, a popular model for compos-

iteness. Nevertheless, it is very interesting to observe the data from the CMS experiment

at 13 TeV in 2015, which has a great potential to discover or rule out several models, in-

cluding the Contact Interaction, at least in the accessible energy range of today’s technology.

In addition to the CMS experiment at 13 TeV, muon-muon colliders in the future will be

very interesting in that these results can be tested with great resolution. Any collider exper-

iments in the future with higher energies and better resolution could reveal the substructure

of quarks and leptons.
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Appendix A

A.1 Module for job submission via CRAB

####################

# Module Name : CRAB.py

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program is used to submit crab jobs (automatically) in grids, which uses the

programs given in A.2 and A.3

# to generate Ntuples for Full Sim MC and DATA from CMS detector

####################

samples=[ ]

import os

pl SAMPLE=open(“SAMPLES.LOG”,“w”)

mass cut=[300,500,800]

option=[“Des”,“Con”]

lambda values=[9,11,13,15,17,19]

count=0
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for i in range(0,len(mass cut)):

samples.append(“/CIToEE ITCM5 M-’+str(mass cut[i])+’ TuneZ2star 8TeV-pythia6/Summer12 DR53X-

PU S10 START53 V7A-v1/AODSIM”)

for j in range(0,len(option)):

for k in range(0,len(lambda values)):

if not ((lambda values[k]==17 or lambda values[k]==19 ) and (option[j]==“Des”)):

samples.append(“/CIToEE ”+option[j]+“ Lambda-”+str(lambda values[k])+“ M-”+

str(mass cut[i])+“ TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM”)

for i in range(0,len(samples)):

CI DY=samples[i].strip(“/”).split(“ ”)

print CI DY[0],CI DY[1],CI DY[2],CI DY[3]

mycrab=“‘

[CMSSW]

total number of events=-1

events per job =60000

pset =ci dielectron cfg.py

datasetpath =%s

output file = NTUPLE.root

[USER]

return data = 1

ui working dir=%s

[CRAB]

jobtype = cmssw

scheduler = condor
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[GRID]

rb = CERN

proxy server = myproxy.cern.ch

”’%(samples[i],CI DY[0]+’ ’+CI DY[1]+“ ”+CI DY[2]+“ ”+CI DY[3])

pl =open(CI DY[0]+“ ”+CI DY[1]+“ ”+CI DY[2]+“ ”+CI DY[3]+“.cfg”,“w”)

pl .writelines(mycrab)

pl .close()

pl SAMPLE.writelines(samples[i]+“n”)

os.system(“crab -create -submit-cfg”+CI DY[0]+“ ”

+CI DY[1]+“ ”+CI DY[2]+“ ”+CI DY[3]+“.cfg>>crab info for noofevents.log”)

pl SAMPLE.close()

A.2 Python module

####################

# Module Name : CI DIELECTRON.py

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program is integrated to C++ source code given in A.3

# to generate Ntuples for Full Sim MC and DATA from CMS detector

####################

import FWCore.ParameterSet.Config as cms

import os

USE MC=1#1 means MC AND 0 MEANS DATA

PDF WORK=True
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process = cms.Process(“Demo”)

process.load(“FWCore.MessageService.MessageLogger cfi”)

process.load(“TrackingTools/TransientTrack/TransientTrackBuilder cfi”)

process.load(“Configuration/StandardSequences/MagneticField cff”)

process.load(“Configuration.Geometry.GeometryIdeal cff”)

process.load(“Configuration/StandardSequences/FrontierConditions GlobalTag cff”)

##########RHO CALCULATION ######

process.load(“RecoJets.JetProducers.kt4PFJets cfi”)

process.kt6PFJets = process.kt4PFJets.clone( rParam = 0.6, doRhoFastjet = True )

process.kt6PFJets.Rho EtaMax = cms.double(2.5)

###################

process.otherStuff = cms.Sequence( process.kt6PFJets )

process.load(“RecoMET.METFilters.eeBadScFilter cfi”)

if USE MC==1:

process.GlobalTag.globaltag = “START53 V11::All”

elif USE MC==0:

process.GlobalTag.globaltag = “GR R 53 V8::All”

else:

print “UNSPECIFIED OPTION”

exit(1)

process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(5000) )

process.source = cms.Source(“PoolSource”,

noEventSort = cms.untracked.bool(True),

duplicateCheckMode = cms.untracked.string(“noDuplicateCheck”),

fileNames = cms.untracked.vstring(
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’/store/mc/Summer12/DYToEE M 200 TuneZ2star 8TeV pythia6/AODSIM/PU S7 START52 V9-

v1/0000/FCC11233-7F9E-E111-92DD-002354EF3BE0.root’,

)

)

process.primaryVertexFilter = cms.EDFilter(“GoodVertexFilter”,

vertexCollection = cms.InputTag(“offlinePrimaryVertices”),

minimumNDOF = cms.uint32 (4),

maxAbsZ = cms.double (24),

maxd0 = cms.double (2)

)

#process.primaryVertexPath = cms.Path(process.primaryVertexFilter)

process.noscraping = cms.EDFilter(“FilterOutScraping”,

applyfilter = cms.untracked.bool(True),

debugOn = cms.untracked.bool(False),

numtrack = cms.untracked.uint32(10),

thresh = cms.untracked.double(0.25)

)

process.Pramod mc = cms.EDFilter(“HLTHighLevel”,

TriggerResultsTag = cms.InputTag(“TriggerResults”,“”,“HLT”),

HLTPaths = cms.vstring(“HLT DoubleEle33 CaloIdL GsfTrkIdVL v*”),

eventSetupPathsKey = cms.string(“”),

andOr = cms.bool(True),

throw = cms.bool(True)

)

process.Pramod data = cms.EDFilter(“HLTHighLevel”,
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TriggerResultsTag = cms.InputTag(“TriggerResults”,“”,“HLT”),

HLTPaths = cms.vstring(“HLT DoubleEle33 CaloIdL v5”),

eventSetupPathsKey = cms.string(“”), # not empty => use read paths from AlCaRecoTrigger-

BitsRcd via this key

andOr = cms.bool(True), # how to deal with multiple triggers: True (OR) accept if ANY is true,

False (AND) accept if ALL are true

throw = cms.bool(True) # throw exception on unknown path names

)

process.TRIGGER EVENT = cms.EDAnalyzer(“WAYNE STATE CI DIELECTRON’,

MC OR DATA=cms.double(USE MC),

triggerSummaryLabel = cms.InputTag(“hltTriggerSummaryAOD”,“”,“HLT”),#“REDIGI311X”)

pdfSet = cms.string(“CT10.LHgrid”),

PDF WORK GARNE KI NO=cms.bool(PDF WORK)

)

process.TFileService = cms.Service(“TFileService”,

fileName = cms.string(“NTUPLE.root”)

)

if process.TRIGGER EVENT.MC OR DATA==1:

process.p = cms.Path(process.otherStuff*process.eeBadScFilter*process.primaryVertexFilter*

process.noscraping*process.Pramod mc*process.TRIGGER EVENT)

process.NOT TRIGGER EVENT = process.TRIGGER EVENT.clone()

process.p1 = cms.Path( process.Pramod mc*process.NOT TRIGGER EVENT)

elif process.TRIGGER EVENT.MC OR DATA==0:

process.p = cms.Path(process.otherStuff*process.eeBadScFilter*process.primaryVertexFilter*

process.noscraping*process.Pramod data*process.TRIGGER EVENT)

process.NOT TRIGGER EVENT = process.TRIGGER EVENT.clone()
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process.p1 = cms.Path( process.Pramod data*process.NOT TRIGGER EVENT)

A.3 C++ source code

####################

# Module Name : WAYNE STATE CI DIELECTRON.cc

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program is integrated to Python script in A.2 and CMS BuildFile

# to generate Ntuples for Full Sim MC and DATA from CMS detector

####################

// Package: WAYNE STATE CI DIELECTRON

// Class: WAYNE STATE CI DIELECTRON

// AUTHOR : PRAMOD LAMICHHANE

//const int PDF SET KATI OTA=100;

const int PDF SET KATI OTA=100;

#include “TTree.h”

#include “TBranch.h”

#include < memory >

#include “FWCore/Framework/interface/Frameworkfwd.h”

#include “FWCore/Framework/interface/EDAnalyzer.h”

#include “FWCore/Framework/interface/Event.h”

#include “FWCore/Framework/interface/MakerMacros.h”
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#include “FWCore/ParameterSet/interface/ParameterSet.h”

#include “FWCore/Framework/interface/Event.h”

#include “FWCore/Framework/interface/Run.h”

#include “TH1.h”

#include “TH1F.h”

#include “TH2F.h”

#include “TProfile.h”

#include < TROOT.h >

#include “TF1.h”

#include “TMath.h”

#include < TSystem.h >

#include “TFile.h”

#include < TCanvas.h >

#include < cmath >

#include < iostream >

#include < fstream >

#include < vector >

#include < functional >

#include < Math/VectorUtil.h >

#include “DataFormats/Common/interface/Handle.h”

#include “DataFormats/HepMCCandidate/interface/GenParticle.h”

#include “DataFormats/HepMCCandidate/interface/GenParticleFwd.h”

#include “DataFormats/Candidate/interface/CompositePtrCandidate.h”

#include “DataFormats/Candidate/interface/Candidate.h”

#include “DataFormats/Candidate/interface/CandAssociation.h”

#include “FWCore/ServiceRegistry/interface/Service.h”

#include “CommonTools/UtilAlgos/interface/TFileService.h”
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//muons

#include “DataFormats/GsfTrackReco/interface/GsfTrack.h”

#include “DataFormats/EgammaCandidates/interface/GsfElectron.h”

#include “DataFormats/EgammaReco/interface/BasicClusterFwd.h”

#include “DataFormats/EgammaReco/interface/SuperClusterFwd.h”

#include “DataFormats/EgammaReco/interface/ElectronSeed.h”

#include “DataFormats/EgammaReco/interface/ElectronSeedFwd.h”

#include “DataFormats/JetReco/interface/CaloJetCollection.h”

#include “DataFormats/EcalDetId/interface/EcalSubdetector.h”

#include “DataFormats/BeamSpot/interface/BeamSpot.h”

#include “DataFormats/Common/interface/TriggerResults.h”

#include “DataFormats/MuonReco/interface/MuonFwd.h”

#include “DataFormats/MuonReco/interface/Muon.h”

#include “DataFormats/RecoCandidate/interface/RecoCandidate.h”

#include “DataFormats/MuonReco/interface/MuonChamberMatch.h”

#include “DataFormats/MuonReco/interface/MuonIsolation.h”

#include “DataFormats/MuonReco/interface/MuonEnergy.h”

#include “DataFormats/MuonReco/interface/MuonTime.h”

#include “DataFormats/MuonReco/interface/MuonQuality.h”

#include “DataFormats/MuonReco/interface/MuonSelectors.h”

#include “DataFormats/RecoCandidate/interface/IsoDeposit.h”

#include “DataFormats/RecoCandidate/interface/IsoDepositFwd.h”

#include “DataFormats/TrackReco/interface/Track.h”

#include “DataFormats/TrackReco/interface/TrackFwd.h”

#include “DataFormats/Common/interface/ValueMap.h”

#include “FWCore/Utilities/interface/InputTag.h”

#include “DataFormats/BeamSpot/interface/BeamSpot.h”
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#include “DataFormats/Common/interface/Handle.h”

#include “DataFormats/HepMCCandidate/interface/GenParticle.h”

#include “DataFormats/HepMCCandidate/interface/GenParticleFwd.h”

#include “DataFormats/Candidate/interface/CompositePtrCandidate.h”

//trigger

#include “DataFormats/L1GlobalMuonTrigger/interface/L1MuRegionalCand.h”

#include “DataFormats/L1GlobalMuonTrigger/interface/L1MuGMTReadoutCollection.h”

#include “DataFormats/L1GlobalTrigger/interface/L1GlobalTriggerReadoutRecord.h”

#include “DataFormats/L1GlobalTrigger/interface/L1GtPsbWord.h”

#include “FWCore/Common/interface/TriggerNames.h”

#include “DataFormats/Common/interface/TriggerResults.h”

#include “DataFormats/HLTReco/interface/TriggerObject.h”

#include “DataFormats/HLTReco/interface/TriggerEvent.h”

#include “DataFormats/HLTReco/interface/TriggerTypeDefs.h”

#include “HLTrigger/HLTcore/interface/HLTConfigProvider.h”

#include “DataFormats/TrackReco/interface/Track.h”

#include “DataFormats/TrackReco/interface/TrackFwd.h”

#include “DataFormats/VertexReco/interface/Vertex.h”

#include “DataFormats/VertexReco/interface/VertexFwd.h”

#include “DataFormats/Math/interface/deltaR.h”

#include “TTree.h”

#include “RecoVertex/KalmanVertexFit/interface/KalmanVertexFitter.h”

#include “RecoVertex/VertexPrimitives/interface/TransientVertex.h”

#include “TrackingTools/Records/interface/TransientTrackRecord.h”

#include “TrackingTools/TransientTrack/interface/TransientTrack.h”

#include “TrackingTools/TransientTrack/interface/TransientTrackBuilder.h”

#include “TrackingTools/Records/interface/TrackingComponentsRecord.h”
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#include “TrackPropagation/SteppingHelixPropagator/interface/SteppingHelixPropagator.h”

#include “TrackPropagation/RungeKutta/interface/RKTestPropagator.h”

#include “TrackingTools/GeomPropagators/interface/SmartPropagator.h”

#include “TrackingTools/GeomPropagators/interface/BeamHaloPropagator.h”

#include “FWCore/Common/interface/TriggerNames.h”

#include “DataFormats/Common/interface/TriggerResults.h”

#include “DataFormats/HLTReco/interface/TriggerObject.h”

#include “DataFormats/HLTReco/interface/TriggerEvent.h”

#include “DataFormats/HLTReco/interface/TriggerTypeDefs.h”

#include “HLTrigger/HLTcore/interface/HLTConfigProvider.h”

#include “SimDataFormats/PileupSummaryInfo/interface/PileupSummaryInfo.h”

#include “FWCore/Framework/interface/Event.h”

#include “DataFormats/EgammaReco/interface/ElectronSeedFwd.h”

#include “DataFormats/EgammaReco/interface/ElectronSeed.h”

#include “DataFormats/EgammaCandidates/interface/GsfElectron.h”

#include “DataFormats/GsfTrackReco/interface/GsfTrack.h”

#include “DataFormats/EgammaReco/interface/BasicCluster.h”

#include “DataFormats/EgammaReco/interface/BasicClusterFwd.h”

#include < memory >

#include “SimDataFormats/GeneratorProducts/interface/LHEEventProduct.h”

#include “SimDataFormats/GeneratorProducts/interface/LHERunInfoProduct.h”

#include “DataFormats/BeamSpot/interface/BeamSpot.h”

// user include files

#include “FWCore/Framework/interface/Frameworkfwd.h”

#include “FWCore/Framework/interface/EDProducer.h”

#include “FWCore/Framework/interface/Event.h”

#include “FWCore/Framework/interface/MakerMacros.h”
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#include “FWCore/ParameterSet/interface/ParameterSet.h”

#include “SimDataFormats/GeneratorProducts/interface/GenEventInfoProduct.h”

namespace LHAPDF {

void initPDFSet(int nset, const std::string& filename, int member=0);

int numberPDF(int nset);

void usePDFMember(int nset, int member);

double xfx(int nset, double x, double Q, int fl);

double getXmin(int nset, int member);

double getXmax(int nset, int member);

double getQ2min(int nset, int member);

double getQ2max(int nset, int member);

void extrapolate(bool extrapolate=true);

}

std::string pdfSet ; /// lhapdf string

unsigned int Tree index=0;

double inv mass gen,inv mass reco;

int event,run,lumi,bxnumber,realdata,primary vertex;

struct wholething reco

{ public: double pt value reco;

double eta value reco;

double phi value reco;

double x mom reco;

double y mom reco;

double z mom reco;

double E energy reco;

double charge value reco;

double ET RECO;
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double ETA SC;

double DELTA ETA IN;

double DELTA PHI IN;

double H OVER E;

double SIGMA IETA IETA;

double ECAL ISOLATION;

double HADRONIC DEPTH ONE ISOLATION;

double HADRONIC DEPTH TWO ISOLATION;

double TRACK PT ISOLATION;

double E 2 5;

double E 5 5;

double E 1 5;

int IS ECAL DRIVEN ;

double NUMBER OF LOST HITS ;

int IS ENDCAP;

int IS BARREL;

math::XYZTLorentzVector CHECK GARNA KO LAGI RECO;

double Recoelectron dxy;

};

struct wholething gen

{ public:

double pdgid value gen;

double pt value gen;

double eta value gen;

double phi value gen;

double x mom gen;

double y mom gen;
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double z mom gen;

double E energy gen;

math::XYZTLorentzVector CHECK GARNA KO LAGI GEN;

double ET GEN; };

bool PDF WORK GARNE KI NO=false;

bool compare momenta gen ( const wholething gen& x, const wholething gen& y)

{

return (x.pt value gen) > (y.pt value gen);

}

bool compare momenta reco ( const wholething reco & x, const wholething reco& y)

{

return (x.pt value reco) > (y.pt value reco);

}

class TH1F;

class TH2F;

class TStyle;

class TTree;

using namespace edm;

using namespace reco;

using namespace std;

using namespace ROOT::Math::VectorUtil;

using namespace HepMC;

class WAYNE STATE CI DIELECTRON : public edm::EDAnalyzer {

public:

explicit WAYNE STATE CI DIELECTRON(const edm::ParameterSet&);

WAYNE STATE CI DIELECTRON();

private:
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virtual void beginJob();

virtual void analyze(const edm::Event&, const edm::EventSetup&);

virtual void endJob() ;

std::string outputFilename;

edm::InputTag triggerSummaryLabel ;

edm::Handle < double> rho ;

edm::Service < TFileService> fs;

TTree * myTree;

TFile * myFile;

double MC OR DATA ;

double PDF UNCERTAINTY WEIGHT[PDF SET KATI OTA+1];

double DIELECTRON MASS GEN,DIELECTRON MASS RECO;

double Recoelectron px[50], Recoelectron py[50], Recoelectron pz[50],Recoelectron dxy[50];

double Recoelectron pt[50], Recoelectron eta[50], Recoelectron phi[50],Recoelectron energy[50];

double Recoelectron charge[50];

double ET RECO[50],ET GEN [50],ETA SC[50],DELTA ETA IN[50],DELTA PHI IN[50],H OVER E[50],

SIGMA IETA IETA[50],ECAL ISOLATION[50],HADRONIC DEPTH ONE ISOLATION[50],

HADRONIC DEPTH TWO ISOLATION[50],TRACK PT ISOLATION[50]; double E 2 5[50];

double E 5 5[50];

double E 1 5[50],NUMBER OF LOST HITS[50];

int IS ECAL DRIVEN [50],IS ENDCAP [50],

IS BARREL [50];

double STANDARD DIELECTRON MASS RECO;

double STANDARD DIELECTRON MASS GEN;

double RHO;

//Gen

double Genelectron pt[50],Genelectron px[50],Genelectron py[50],Genelectron pz[50],
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Genelectron eta[50],Genelectron phi[50],Genelectron charge[50],Genelectron energy[50];

};

WAYNE STATE CI DIELECTRON::WAYNE STATE CI DIELECTRON(const edm::ParameterSet&

iConfig)

{

pdfSet =iConfig.getParameter < std::string> (“pdfSet”);

PDF WORK GARNE KI NO=iConfig.getParameter < bool> (“PDF WORK GARNE KI NO”);

if (( pdfSet != “” )&&(PDF WORK GARNE KI NO))

{ LHAPDF::initPDFSet(1, pdfSet .c str());}

triggerSummaryLabel = iConfig.getParameter < edm::InputTag>(“triggerSummaryLabel”);

MC OR DATA = iConfig.getParameter < double>(“MC OR DATA”);

}

WAYNE STATE CI DIELECTRON:: WAYNE STATE CI DIELECTRON() { }

void WAYNE STATE CI DIELECTRON::analyze(const edm::Event& iEvent, const edm::EventSetup&

iSetup) { for(int jj=0;jj < PDF SET KATI OTA+1;++jj ) { PDF UNCERTAINTY WEIGHT[jj]=0.0;

}

if(PDF WORK GARNE KI NO)

{

std::auto ptr < std::vector < double> > pdf weights( new std::vector < double>() );

if ( ! iEvent.isRealData() && pdfSet !=“” ) {

edm::Handle < GenEventInfoProduct> lamichhane pl;

if (iEvent.getByLabel(“generator”, lamichhane pl)) {

LHAPDF::usePDFMember(1,0);

float q = lamichhane pl – >pdf() – >scalePDF;

int id1 = lamichhane pl – >pdf() – >id.first;

double x1 = lamichhane pl – >pdf() – >x.first;

int id2 = lamichhane pl – >pdf() – >id.second;
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double x2 = lamichhane pl – >pdf() – >x.second;

double xpdf1 = LHAPDF::xfx(1, x1, q, id1);

double xpdf2 = LHAPDF::xfx(1, x2, q, id2);

for(int i=0; i < =PDF SET KATI OTA; ++i){

LHAPDF::usePDFMember(1,i);

float q = lamichhane pl – >pdf() – >scalePDF;

int id1 = lamichhane pl – >pdf() – >id.first;

double x1 = lamichhane pl – >pdf() – >x.first;

int id2 = lamichhane pl – >pdf() – >id.second;

double x2 = lamichhane pl – >pdf() – >x.second;

double xpdf1 new = LHAPDF::xfx(1, x1 , q , id1 );

double xpdf2 new = LHAPDF::xfx(1, x2 , q , id2 );

double weight = xpdf1 new * xpdf2 new;

pdf weights – >push back(weight);

}

}

}

for(size t plji=0;plji < pdf weights – >size();plji++)

{

PDF UNCERTAINTY WEIGHT[plji]=(*pdf weights)[plji];

}

}

using namespace edm;

edm::Handle < BeamSpot> beamSpotHandle;

iEvent.getByLabel(InputTag(“offlineBeamSpot”),beamSpotHandle);

Handle < GenParticleCollection>gen;

if (MC OR DATA ==1)
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{

iEvent.getByLabel(“genParticles”,gen);

} wholething gen record gen; wholething reco record reco;

Handle < reco::GsfElectronCollection>mero electrons;

iEvent.getByLabel(“gsfElectrons”,mero electrons);

Tree index=5;

vector < wholething gen> Information gen;

vector < wholething reco> Information reco;

unsigned int GEN SEGMENT=0;

unsigned int GEN NUMBER=1;

unsigned int RECO SEGMENT=0;

unsigned int RECO NUMBER=1;

DIELECTRON MASS GEN=DIELECTRON MASS RECO=0.0;

RHO=0.0;

for(int jj=0;jj < 50;++jj )

{

Genelectron pt[jj]=0.0; Genelectron px[jj]=0.0; Genelectron py[jj]=0.0; Genelectron pz[jj]=0.0;

Genelectron eta[jj]=0.0; Genelectron phi[jj]=0.0; Genelectron charge[jj]=0.0; Genelectron energy[jj]=0.0;

Recoelectron dxy[jj]=0.0; Recoelectron px[jj]=0.0; Recoelectron py[jj]=0.0; Recoelectron pz[jj]=0.0;

Recoelectron pt[jj]=0.0; Recoelectron eta[jj]=0.0; Recoelectron phi[jj]=0.0; ET RECO[jj]=0.0;

ET GEN [jj]=0.0; ETA SC[jj]=0.0; DELTA ETA IN[jj]=0.0; DELTA PHI IN[jj]=0.0; H OVER E[jj]=0.0;

SIGMA IETA IETA[jj]=0.0; ECAL ISOLATION[jj]=0.0; HADRONIC DEPTH ONE ISOLATION[jj]=0.0;

HADRONIC DEPTH TWO ISOLATION[jj]=0.0; TRACK PT ISOLATION[jj]=0.0;

E 2 5[jj]=0.0; E 5 5[jj]=0.0; E 1 5[jj]=0.0; IS ECAL DRIVEN [jj]=0;

Recoelectron charge[jj]=0.0; NUMBER OF LOST HITS[jj]=20.0; IS ENDCAP [jj]=0; IS BARREL [jj]=0;

STANDARD DIELECTRON MASS RECO=0.0; STANDARD DIELECTRON MASS GEN=0.0;
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}

using namespace edm;

using namespace reco; using namespace std; bool isrho;

isrho = iEvent.getByLabel(edm::InputTag(“kt6PFJets:rho”),rho );

if(isrho) RHO =*rho ; edm::Handle < reco::VertexCollection>PVCollection; bool hasPVs = false;

primary vertex=0;

if ( iEvent.getByLabel(InputTag(“offlinePrimaryVertices”), PVCollection ) ) {

for (reco::VertexCollection::const iterator pv = PVCollection – >begin(); pv != PVCollection

– >end(); ++pv )

{ if ( pv – >isFake() || pv – >tracksSize()==0 ) continue; else { primary vertex++; hasPVs =

true; } } }

Handle < trigger::TriggerEvent> triggerObj;

iEvent.getByLabel(triggerSummaryLabel ,triggerObj);

std::vector < reco::Particle> HLTMuMatched pl;

for ( size t ia = 0; ia < triggerObj – >sizeFilters(); ++ ia) {

std::string fullname = triggerObj – >filterTag(ia).encode();

std::string name;

size t p = fullname.find first of(‘:’);

if ( p != std::string::npos) { name = fullname.substr(0, p);

{cout < < “name of trigger : ” < < name < < endl; } } else { name = fullname; } }

if (MC OR DATA ==1) { for (reco::GenParticleCollection::const iterator it = gen – >begin(),ge

= gen – >end(); it != ge;++it)

{ if((abs((it) – >pdgId())==11) && ((it) – >status()==1))// &&(abs((it) – >eta() ) < eta-

cut gen) &&(abs((it) – >pt())> ptcut gen))

{

record gen.pt value gen = (it) – >pt(); record gen.eta value gen = (it) – >eta();
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record gen.phi value gen = (it) – >phi();

record gen.pdgid value gen = (it) – >pdgId();

record gen.x mom gen =(it) – >px(); record gen.y mom gen =(it) – >py();

record gen.z mom gen =(it) – >pz();

record gen.E energy gen =(it) – >energy();

record gen.CHECK GARNA KO LAGI GEN=(it) – >p4();

record gen.ET GEN=it – >energy()*sin(it – >theta()) ;

Information gen.push back(record gen); } }

} event = iEvent.id().event(); run = iEvent.id().run(); lumi = iEvent.luminosityBlock();

bxnumber = iEvent.bunchCrossing();

realdata = iEvent.isRealData();

if(Information gen.size()>1)

{ std::sort(Information gen.begin(),Information gen.end(),compare momenta gen);

math::XYZTLorentzVector v1 no charge((Information gen[0].x mom gen+Information gen[1].x mom gen),

(Information gen[0].y mom gen+Information gen[1].y mom gen),(Information gen[0].z mom gen

+Information gen[1].z mom gen),

(Information gen[0].E energy gen+Information gen[1].E energy gen)) ;

DIELECTRON MASS GEN=v1 no charge.M();

GEN SEGMENT=7;

STANDARD DIELECTRON MASS GEN=0.0;

if(GEN SEGMENT ==7)

{

STANDARD DIELECTRON MASS GEN=(Information gen[0].CHECK GARNA KO LAGI GEN

+Information gen[GEN NUMBER].CHECK GARNA KO LAGI GEN).mag();
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for (unsigned int i=0;i < Information gen.size();i++)

{

Genelectron pt[i] =(Information gen[i].pt value gen);

Genelectron px[i] =(Information gen[i].x mom gen);

Genelectron py[i] =(Information gen[i].y mom gen);

Genelectron pz[i] =(Information gen[i].z mom gen);

Genelectron eta[i] =(Information gen[i].eta value gen);

Genelectron phi[i] =(Information gen[i].phi value gen);

Genelectron charge[i] =(Information gen[i].pdgid value gen);

Genelectron energy[i] =(Information gen[i].E energy gen);

ET GEN [i] =(Information gen[i].ET GEN);

}

}

}

edm::Handle < reco::BeamSpot> theBeamSpot;

iEvent.getByType(theBeamSpot);

edm::Handle < reco::BeamSpot> pBeamSpot;

iEvent.getByLabel(“verticesCollection”, pBeamSpot);

Handle < reco::VertexCollection> primaryVertexColl;

iEvent.getByLabel(“offlinePrimaryVertices”,primaryVertexColl);

const reco::VertexCollection* pvcoll = primaryVertexColl.product();

math::XYZPoint firstpvertex(0.,0.,0.);
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if(pvcoll – >size() > 0) {

reco::VertexCollection::const iterator firstpv = pvcoll – >begin();

firstpvertex.SetXYZ(firstpv – >x(),firstpv – >y(),firstpv – >z());

}

for( reco::GsfElectronCollection::const iterator pramod=mero electrons – >begin(); pramod!=mero electrons

– >end(); ++pramod )

{ static const double mass = 0.000510998928;//0.10566;

record reco.pt value reco = (pramod) – >pt();

record reco.charge value reco = (pramod) – >charge();

record reco.eta value reco = (pramod) – >eta();

record reco.phi value reco = (pramod) – >phi();

record reco.x mom reco = (pramod) – >px();

record reco.y mom reco = (pramod) – >py();

record reco.z mom reco = (pramod) – >pz();

record reco.E energy reco =pramod – >superCluster() – >energy();

record reco.CHECK GARNA KO LAGI RECO=pramod – >p4()* (pramod – >caloEnergy() /

pramod – >energy());

record reco.ET RECO=pramod – >caloEnergy()*sin(pramod – >p4().theta());

cout << ”ENERGY FROM SUPER CALORIMETER �:�” << pramod – >caloEnergy()*sin(pramod

– >p4().theta()) < < endl;

cout << ”ENERGY FROM SUPER CLUSTER �:�” << pramod – >superCluster() – >energy()*sin(pramod

– >p4().theta()) < < endl;

record reco.ETA SC=pramod – >caloPosition().eta();

record reco.DELTA ETA IN=pramod – >deltaEtaSuperClusterTrackAtVtx();



123

APPENDIX
record reco.DELTA PHI IN=pramod – >deltaPhiSuperClusterTrackAtVtx();

record reco.H OVER E=pramod – >hadronicOverEm();

record reco.SIGMA IETA IETA=pramod – >sigmaIetaIeta();

record reco.ECAL ISOLATION=pramod – >dr03EcalRecHitSumEt();

record reco.HADRONIC DEPTH ONE ISOLATION=pramod – >dr03HcalDepth1TowerSumEt();

record reco.HADRONIC DEPTH TWO ISOLATION=pramod – >dr03HcalDepth2TowerSumEt();

record reco.TRACK PT ISOLATION=pramod – >dr03TkSumPt();

record reco.E 2 5=pramod – >e2x5Max();

record reco.E 5 5=pramod – >e5x5();

record reco.E 1 5=pramod – >e1x5();

record reco.IS ECAL DRIVEN =(pramod – >ecalDriven());

record reco.IS BARREL=pramod – >isEB();

record reco.IS ENDCAP=pramod – >isEE();

record reco.Recoelectron dxy=fabs(pramod – >gsfTrack() – >dxy(firstpvertex));

record reco.NUMBER OF LOST HITS =pramod – >gsfTrack()

– >trackerExpectedHitsInner().numberOfLostHits();

Information reco.push back(record reco); }

if((Information reco.size()>1))

{ std::sort(Information reco.begin(),Information reco.end(),compare momenta reco); math::XYZTLorentzVector

v2 NO CHARGE CHECK(

(Information reco[0].x mom reco+Information reco[1].x mom reco),(Information reco[0].y mom reco

+Information reco[1].y mom reco),(Information reco[0].z mom reco+Information reco[1].z mom reco),

(Information reco[0].E energy reco+Information reco[1].E energy reco) ) ;

DIELECTRON MASS RECO=v2 NO CHARGE CHECK.M();

RECO SEGMENT=7;

STANDARD DIELECTRON MASS RECO=0.0;
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if(RECO SEGMENT ==7)

{ for(unsigned int i=0;i < Information reco.size();i++)

{

IS BARREL [i] =Information reco[i].IS BARREL;

IS ENDCAP [i] =Information reco[i].IS ENDCAP;

Recoelectron dxy[i] =(Information reco[i]. Recoelectron dxy);

Recoelectron pt[i] =(Information reco[i].pt value reco);

Recoelectron px[i] =(Information reco[i].x mom reco);

Recoelectron py[i] =(Information reco[i].y mom reco);

Recoelectron pz[i] =(Information reco[i].z mom reco);

Recoelectron eta[i] =(Information reco[i].eta value reco);

Recoelectron phi[i] =(Information reco[i].phi value reco);

Recoelectron charge[i] =(Information reco[i].charge value reco);

ET RECO[i] =(Information reco[i].ET RECO);

Recoelectron energy[i] =(Information reco[i].E energy reco );

IS ECAL DRIVEN [i] =(Information reco[i].IS ECAL DRIVEN );

ETA SC[i] =(Information reco[i].ETA SC);

DELTA ETA IN[i] =(Information reco[i].DELTA ETA IN);

DELTA PHI IN[i] =(Information reco[i].DELTA PHI IN);

H OVER E[i] =(Information reco[i].H OVER E);

SIGMA IETA IETA[i] =(Information reco[i].SIGMA IETA IETA);

ECAL ISOLATION[i] =(Information reco[i].ECAL ISOLATION);

HADRONIC DEPTH ONE ISOLATION[i] =(Information reco[i].HADRONIC DEPTH ONE ISOLATION);

HADRONIC DEPTH TWO ISOLATION[i] =(Information reco[i].HADRONIC DEPTH TWO ISOLATION);
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TRACK PT ISOLATION[i] =(Information reco[i].TRACK PT ISOLATION);

E 2 5[i] =(Information reco[i].E 2 5);

E 5 5[i] =(Information reco[i].E 5 5);

E 1 5[i] =(Information reco[i].E 1 5);

NUMBER OF LOST HITS[i] =(Information reco[i].NUMBER OF LOST HITS ); } } }

myTree – >Fill(); }

void WAYNE STATE CI DIELECTRON::beginJob() { TFileDirectory TestDir = fs – >mkdir(“demo”);

myTree = new TTree(“WAYNE STATE CI DIELECTRON”,”WAYNE STATE CI DIELECTRON justtitle”);

myTree – >Branch(“IS BARREL”,IS BARREL ,“IS BARREL [50]/I”);

myTree – >Branch(“IS ENDCAP”,IS ENDCAP ,“IS ENDCAP [50]/I”);

myTree – >Branch(“RHO”,&RHO,“RHO/D”);

myTree – >Branch(“E 2 5”,E 2 5,“E 2 5[50]/D”);

myTree – >Branch(“E 5 5”,E 5 5,“E 5 5[50]/D”);

myTree – >Branch(“E 1 5”,E 1 5,“E 1 5[50]/D”);

myTree – >Branch(“IS ECAL DRIVEN ”,IS ECAL DRIVEN ,“IS ECAL DRIVEN [50]/I”);

myTree – >Branch(“NUMBER OF LOST HITS”,NUMBER OF LOST HITS,

“NUMBER OF LOST HITS[50]/D”);

myTree – >Branch(“STANDARD DIELECTRON MASS RECO”,

&STANDARD DIELECTRON MASS RECO,

“STANDARD DIELECTRON MASS RECO/D”);

myTree – >Branch(“STANDARD DIELECTRON MASS GEN”,

&STANDARD DIELECTRON MASS GEN,

“STANDARD DIELECTRON MASS GEN/D”);

myTree – >Branch(“whaterver”, &Tree index,“Tree index/I”);

myTree – >Branch(“PRIMARY VERTEX”, &primary vertex,“primary vertex/I”);

myTree – >Branch(“DIELECTRON MASS GEN”,&DIELECTRON MASS GEN,

“DIELECTRON MASS GEN/D”);
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myTree – >Branch(“DIELECTRON MASS RECO”,&DIELECTRON MASS RECO,

“DIELECTRON MASS RECO/D”);

myTree – >Branch(“ET RECO”,ET RECO,“ET RECO[50]/D”);

myTree – >Branch(“ETA SC”,ETA SC,“ETA SC[50]/D”);

myTree – >Branch(“DELTA ETA IN”,DELTA ETA IN,“DELTA ETA IN[50]/D”);

myTree – >Branch(“DELTA PHI IN”,DELTA PHI IN,“DELTA PHI IN[50]/D”);

myTree – >Branch(“H OVER E”,H OVER E,“H OVER E[50]/D”);

myTree – >Branch(“SIGMA IETA IETA”,SIGMA IETA IETA,“SIGMA IETA IETA[50]/D”);

myTree – >Branch(“ECAL ISOLATION”,ECAL ISOLATION,“ECAL ISOLATION[50]/D”);

myTree – >Branch(“HADRONIC DEPTH ONE ISOLATION”,HADRONIC DEPTH ONE ISOLATION,

“HADRONIC DEPTH ONE ISOLATION[50]/D”);

myTree – >Branch(“HADRONIC DEPTH TWO ISOLATION”,HADRONIC DEPTH TWO ISOLATION,

“HADRONIC DEPTH TWO ISOLATION[50]/D”);

myTree – >Branch(“TRACK PT ISOLATION”,TRACK PT ISOLATION,“TRACK PT ISOLATION[50]/D”);

myTree – >Branch(“EVENT NUM”,&event,“event/I”);

myTree – >Branch(“RUN NUM”,&run,“run/I”);

myTree – >Branch(“LUMI BLOCK”,&lumi,“lumi/I”);

myTree – >Branch(“BXNUMBER”,bxnumber,“bxnumber/I”);

myTree – >Branch(“REAL DATA”,realdata,“realdata/I”);

myTree – >Branch(“ET GEN”,ET GEN ,“ET GEN [50]/D”);

myTree – >Branch(“Recoelectron pt”,Recoelectron pt,“Recoelectron pt[50]/D”);

myTree – >Branch(“Recoelectron px”,Recoelectron px,“Recoelectron px[50]/D”);

myTree – >Branch(“Recoelectron py”,Recoelectron py,“Recoelectron py[50]/D”);

myTree – >Branch(“Recoelectron pz”,Recoelectron pz,“Recoelectron pz[50]/D”);

myTree – >Branch(“Recoelectron eta”,Recoelectron eta,“Recoelectron eta[50]/D”);

myTree – >Branch(“Recoelectron phi”,Recoelectron phi,“Recoelectron phi[50]/D”);

myTree – >Branch(“Recoelectron charge”,Recoelectron charge,“Recoelectron charge[50]/D”);
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myTree – >Branch(“Recoelectron energy”,Recoelectron energy,“Recoelectron energy[50]/D”);

myTree – >Branch(“Genelectron test pt”,Genelectron pt,“Genelectron pt[50]/D”);

myTree – >Branch(“Genelectron test px”,Genelectron px,“Genelectron px[50]/D”);

myTree – >Branch(“Genelectron test py”,Genelectron py,“Genelectron py[50]/D”);

myTree – >Branch(“Genelectron test pz”,Genelectron pz,“Genelectron pz[50]/D”);

myTree – >Branch(“Genelectron test eta”,Genelectron eta,“Genelectron eta[50]/D”);

myTree – >Branch(“Genelectron test phi”,Genelectron phi,“Genelectron phi[50]/D”);

myTree – >Branch(“PDF UNCERTAINTY WEIGHT”,PDF UNCERTAINTY WEIGHT,

“PDF UNCERTAINTY WEIGHT[101]/D”);

myTree – >Branch(”Recoelectron dxy”,Recoelectron dxy,“Recoelectron dxy[50]/D”);

myTree – >Branch(”Gen test charge”,Genelectron charge,“Genelectron charge[50]/D”);

myTree – >Branch(”Gen test energy”,Genelectron energy,“Genelectron energy[50]/D”); }

void WAYNE STATE CI DIELECTRON::endJob()

{ myTree – >Print(); }

DEFINE FWK MODULE(WAYNE STATE CI DIELECTRON);
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Appendix B

B.1 C++ program for Ntuple processing

####################

# Module Name : NTPL p.cpp

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program reads the Ntuple prepared by programs in A

# and generates ROOT files with histograms of various information

# This module is used by external program B.2 to execute the task

####################

#include “/uscms/home/bikashji/all c files/PRAMOD HEADER FILE EL.h”

#include < vector >

#include “TMath.h”

using namespace std;

const float MYTOTAL LUMI AILESAMMA=19482.4;

const int USE MC=0; TString DATA ROOT FILE ADDRESS(“/uscms data/d2/bikashji/all c files/”);

TString MC ROOT FILE ADDRESS(DATA ROOT FILE ADDRESS);

TString ntp dir(“/uscms data/d2/bikashji/NTUPLES VAULT/ALL DIELECTRON NTUPLES/”);



129

APPENDIX
TString NAME OF NTUPLE(“/WAYNE STATE CI DIELECTRON”);

TString DATA KO HISTO NAME(“PRIMARY VERTEX DISTRIBUTION”);

TString MC KO HISTO NAME(”Primary vertex changed ”);

const int PDF KATI OTA=45;

//###########TRIGGER TURN ON KO STUFF######

bool prashna=false;

float laserTurnOnClusEt(float et);

float noLaserTurnOnClusEt(float et);

float barrelTurnOnClusEt(float et);

float totalClusEtTurnOn(float et,float detEta,float totLumi)

{

if(fabs(detEta) < 1.5) return barrelTurnOnClusEt(et);

else{

float fracPostLaser=(totLumi-325.)/totLumi;

return fracPostLaser*laserTurnOnClusEt(et) + (1-fracPostLaser)*noLaserTurnOnClusEt(et);

}}

float barrelTurnOnClusEt(float et)

{

float maxEff = 0.999;

maxEff=1.;

float midPoint = 34.26;

float turnOn=0.6852;

return 0.5*maxEff*(1+TMath::Erf((et-midPoint)/(sqrt(2)*turnOn)));

}

float laserTurnOnClusEt(float et)

{
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float maxEff = 0.9976;

maxEff=1.;

float midPoint = 33.62;

float turnOn=1.576;

return 0.5*maxEff*(1+TMath::Erf((et-midPoint)/(sqrt(2)*turnOn)));}

float noLaserTurnOnClusEt(float et)

{ float maxEff = 0.9681;

maxEff=1.;

float midPoint = 37.47;

float turnOn=2.323;

return 0.5*maxEff*(1+TMath::Erf((et-midPoint)/(sqrt(2)*turnOn)));}

int pl[13],pl gen[3],good gen,good reco;const double gen pt threshold=0.0; const double reco pt threshold=0.0;

const double gen ET threshold=30.0;

bool GEN CUT CHECK(double GEN ET [50],double ETA[50],double PDG[50])

{ int GEN CUT=0;for (int j = 0; j < 2; ++j) {

if ((GEN ET [j] > gen ET threshold) &&(fabs(ETA[j]) < 2.6)){GEN CUT++;} }

if((GEN CUT > 1)&&((PDG[0]*PDG[1])==-121)) {return true;} else{return false;} }

bool RECO CUT CHECK( int END[50],int BAR[50],double BARREL KI ENDCAP[50],double

ET[50],double PT[50],int ECAL DRIVEN[50],

double DELTA ETA IN[50],double DELTA PHI IN[50],double H OVER E[50],double SIGMA IETA IETA[50],

double E25[50],double E55[50],double E15[50],

double DEPTH ONE[50],double ECAL ISO[50],double TRACK PT[50],double LOST HIT[50],double

CHARGE[50],double RHO ,double RECOELECTRON dxy[50])

{ int RECO CUT=0;

for (int j=0;j < 2;j++)

{

if (BAR[j]==1)
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{

if( (ET[j] > 35) &&

(fabs(BARREL KI ENDCAP[j]) < 1.442) &&

(ECAL DRIVEN[j]==1) &&

(std::abs(DELTA ETA IN[j]) < 0.005) &&

(std::abs(DELTA PHI IN[j]) < 0.06) &&

(H OVER E[j] < 0.05) &&

(((E25[j]/E55[j]) > 0.94) ||((E15[j]/E55[j]) > 0.83) ) &&

((DEPTH ONE[j])+(ECAL ISO[j])) < (2+0.03*ET[j]+0.28*RHO ) &&

(TRACK PT[j] < 5) &&

(LOST HIT[j] < =1) &&

(std::abs(RECOELECTRON dxy[j]) < 0.02)

)

{ RECO CUT++;}

}

if(END[j]==1)

{ bool had one cut=false;

double had cut=0.0;

if (ET[j] < 50){had one cut=true;}

if(!had one cut){had cut=2.5+0.03*(ET[j]-50)+0.28*RHO ;}

else{had cut=2.5+0.28*RHO ;}

if(((fabs(BARREL KI ENDCAP[j]) > 1.560)&&(fabs(BARREL KI ENDCAP[j]) < 2.5)) &&

(ET[j] > 35) &&

// (PT[j] > reco pt threshold) &&

(ECAL DRIVEN[j]==1) &&

(std::abs(DELTA ETA IN[j]) < 0.007) &&
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(std::abs(DELTA PHI IN[j]) < 0.06) &&

(H OVER E[j] < 0.05) &&

(SIGMA IETA IETA[j] < 0.03) &&

//((E25 OVER E55[j] > 0.94) ||(E15 OVER E55[j] > 0.83) ) &&

((DEPTH ONE[j]+(ECAL ISO[j])) < had cut) &&

(TRACK PT[j] < 5) &&

(LOST HIT[j] < =1) &&

(std::abs(RECOELECTRON dxy[j]) < 0.05)

)

{RECO CUT++;}

}

}

bool barrel=false;

for (int a=0;a < 2;a++){if(BAR[a]==1){barrel=true;}}

if((RECO CUT > 1)&&(1)&&(barrel))

{ return true; } else {return false;}

}

bool GEN CUT CHECK (double GEN ET [50],double ETA[50],double PDG[50])

{ int gCUT1=0; int gCUT2=0; int gCUT3=0; int gCUT4=0;

for (int j = 0; j < 2; ++j)

{

if ((GEN ET [j]) < =gen ET threshold) continue; gCUT1++;
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if (fabs(ETA[j]) > = 2.6) continue; gCUT2++;

}

if((PDG[0]*PDG[1]==-121)){ gCUT3++;

//cout << “pdg values:” << PDG[0] << “” << PDG[1] << endl;

}

if( gCUT1 > 1){pl gen[0]++;}

if( gCUT2 > 1){pl gen[1]++;}

if((gCUT1 > 1)&&(gCUT2 > 1)&&( gCUT3==1)){pl gen[2]++;}

return true;

}

bool RECO CUT CHECK ( int END[50],int BAR[50],double BARREL KI ENDCAP[50],double

ET[50],double PT[50],int ECAL DRIVEN[50],

double DELTA ETA IN[50],double DELTA PHI IN[50],double H OVER E[50],

double SIGMA IETA IETA[50],double E25[50],double E55[50],double E15[50],

double DEPTH ONE[50],double ECAL ISO[50],double TRACK PT[50],double LOST HIT[50],double

CHARGE[50],double RHO )

{

int rCUT1=0; int rCUT2=0;int rCUT3=0;int rCUT4=0;int rCUT5=0;int rCUT6=0;int rCUT7=0;int

rCUT8=0;int rCUT9=0;int

rCUT10=0;int rCUT11=0;int rCUT12=0;int rCUT13=0;
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for (int j=0;j < 2;j++)

{

if(BAR[j]==1)

{

if (ET[j] < =35) continue; rCUT1++;

if (PT[j] < =reco pt threshold) continue; rCUT2++;

if (ECAL DRIVEN[j]!=1) continue; rCUT3++;

if (DELTA ETA IN[j] > =0.005) continue; rCUT4++;

if (DELTA PHI IN[j] > =0.06) continue; rCUT5++;

if ((H OVER E[j]) > =0.05) continue; rCUT6++;rCUT7++;

if (((E25[j]/E55[j]) < =0.94) &&((E15[j]/E55[j]) < =0.83) ) continue; rCUT8++;

if (((DEPTH ONE[j])+(ECAL ISO[j])) > =(2+0.03*ET[j]+0.28*RHO )) continue; rCUT9++;

if (TRACK PT[j] > =5) continue; rCUT10++;

if (!(LOST HIT[j] > 1)) continue; rCUT11++;

if ((CHARGE[0]*CHARGE[1])!=-1) continue; rCUT12++;

if(! (fabs(BARREL KI ENDCAP[j]) < 1.442)) continue; rCUT13++;

}

else if(END[j]==1)

{ bool had one cut=false;

double had cut=0.0;



135

APPENDIX
if (ET[j] < 50){had one cut=true;}

if(!had one cut){had cut=2.5+0.03*(ET[j]-50)+0.28*RHO ;}

else{had cut=2.5+0.28*RHO ;}

if (ET[j] < =40) continue; rCUT1++;

if (PT[j] < =reco pt threshold) continue; rCUT2++;

if (ECAL DRIVEN[j]!=1) continue; rCUT3++;

if (DELTA ETA IN[j] > =0.007) continue; rCUT4++;

if (DELTA PHI IN[j] > =0.06) continue; rCUT5++;

if (H OVER E[j] > =0.05) continue; rCUT6++;

if (SIGMA IETA IETA[j] > =0.03) continue; rCUT7++;

rCUT8++;

if ((DEPTH ONE[j]+(ECAL ISO[j])) > =had cut) continue; rCUT9++;

if (TRACK PT[j] > =5) continue; rCUT10++;

if (!(LOST HIT[j] > 1)) continue; rCUT11++;

if ((CHARGE[0]*CHARGE[1])!=-1) continue; rCUT12++;

if(!((fabs(BARREL KI ENDCAP[j]) > 1.560)&&(fabs(BARREL KI ENDCAP[j]) < 2.5)))continue;

rCUT13++;

} }

if(rCUT1 > 1) {++pl[0]; }

if(rCUT2 > 1) {++pl[1]; }

if(rCUT3 > 1) {++pl[2]; }

if(rCUT4 > 1) {++pl[3]; }
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if(rCUT5 > 1) {++pl[4]; }

if(rCUT6 > 1) {++pl[5]; }

if(rCUT7 > 1) {++pl[6]; }

if(rCUT8 > 1) {++pl[7]; }

if(rCUT9 > 1) {++pl[8]; }

if(rCUT10 > 1) {++pl[9]; }

if(rCUT11 > 1) {++pl[10];}

if(rCUT12 > 1) {++pl[11];}

if(rCUT13 > 1) {++pl[12];}

return true;

}

void UPDATED PRASHNA DATA(TString TRIGGER KI HOINA,TString KUN DATASET ,TString

which data histo,TString which mc histo)

{

std::vector < int > event ;

std::vector < double > mass ;

std::vector < int > RUN ;

if(USE MC==1) { cout << “REMINDER MC IS BEING PROCESSED USE MC VALUE IS 1

NOW, CHANGE TO 0 FOR DATA” << endl; }

if(USE MC==0) { cout << “REMINDER DATA IS BEING PROCESSED USE MC VALUE IS

0 NOW, CHANGE TO 1 FOR MC” << endl; }

int pramod1,pramod2,pramod3;

std::string string common=“migration bin ”;std::string W string common=“W migration bin ”;

TH1F* DiELECTRON reco; TH1F* W DiELECTRON reco; TH1F* DiELECTRON gen; TH1F*

W DiELECTRON gen;

map < string,TH1F* > nam;map < string,TH1F* > W nam;

for (int a=1;a < 22;a++)



137

APPENDIX
{

std::ostringstream temporary; temporary << string common << a;

nam[temporary.str().c str()]=new TH1F(temporary.str().c str(),temporary.str().c str(),400,0.0,4000.0);

}

map < string, TH1F* > ::const iterator iter;

for (int a=1;a < 22;a++)

{

std::ostringstream temporary;

temporary << W string common << a;

W nam[temporary.str().c str()]=new TH1F(temporary.str().c str(),temporary.str().c str(),400,0.0,4000.0);

}

for (int a=1;a < 22;a++)

{

std::ostringstream temporary;

temporary << W string common << a;

W nam[temporary.str().c str()]–> Sumw2(); }

DiELECTRON reco =new TH1F(“DiELECTRON reco”,“DiELECTRON reco”,400,0,4000);

W DiELECTRON reco =new TH1F(“W DiELECTRON reco”,“W DiELECTRON reco”,400,0,4000);

DiELECTRON gen =new TH1F(“DiELECTRON gen”,“DiELECTRON gen”,400,0,4000);

W DiELECTRON gen =new TH1F(“W DiELECTRON gen”,“DiELECTRON gen”,400,0,4000);

W DiELECTRON reco 2 =new TH1F(“DiELECTRON reco 2”,“DiELECTRON reco 2”,60,0,120);

Reco pt =new TH1F(“Reco pt”,“Reco pt”,200,0,500);

Reco px =new TH1F(“Reco px”,“Reco px”,200,0,500);

Reco py =new TH1F(“Reco py”,“Reco py”,200,0,500);

Reco pz =new TH1F(“Reco pz”,“Reco pz”,200,0,500);

Reco eta =new TH1F(“Reco eta”,“Reco eta”,200,-5,5);

Reco phi =new TH1F(“Reco phi”,“Reco phi”,160,-5,5);
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Gen pt =new TH1F(“Gen pt”,“Gen pt”,200,0,500);

Gen px =new TH1F(“Gen px”,“Gen px”,200,0,500);

Gen py =new TH1F(“Gen py”,“Gen py”,200,0,500);

Gen pz =new TH1F(“Gen pz”,“Gen pz”,200,0,500);

Gen eta =new TH1F(“Gen eta”,“Gen eta”,200,-5,5);

Gen phi =new TH1F(“Gen phi”,“Gen phi”,160,-5,5);

Reco DELTA ETA =new TH1F(“Reco DELTA ETA”,“Reco DELTA ETA”,2000,-5.0,5.0);

Reco DELTA PHI =new TH1F(“Reco DELTA PHI”,“Reco DELTA PHI”,2000,-5.0,5.0);

Reco H OVER E =new TH1F(“Reco H OVER E”,“Reco H OVER E”,2000,0,1.0);

Reco SIGMA IETA IETA =new TH1F(“Reco SIGMA IETA IETA”,“Reco SIGMA IETA IETA”,2000,0,1.0);

had 1iso =new TH1F(“HADRONIC DEPTH ONE ISOLATION”,

“HADRONIC DEPTH ONE ISOLATION”,2000,0,100);

had 2iso =new TH1F(“had 2iso”,

“had 2iso”,2000,0,100);

Reco TRACK PT ISOLATION =new TH1F(“Reco TRACK PT ISOLATION”,

“Reco TRACK PT ISOLATION”,2000,0,150);

Reco ETA SC =new TH1F(“Reco ETA SC”,“Reco ETA SC”,200,-5,5);

Reco E 2 5 =new TH1F(“Reco E 2 5”,“Reco E 2 5”,2000,0,50);

Reco E 5 5 =new TH1F(“Reco E 5 5”,“Reco E 5 5”,2000,0,50);

Reco E 1 5 =new TH1F(“Reco E 1 5”,“Reco E 1 5”,2000,0,50);

Reco LOST LAYER HIT =new TH1F(“NO OF LOST LAYER”,“NO OF LOST LAYER”,2000,0,50);

W DiELECTRON reco–¿Sumw2();W DiELECTRON gen– > Sumw2();

TChain myTree(TRIGGER KI HOINA+NAME OF NTUPLE);

cout << TRIGGER KI HOINA+NAME OF NTUPLE << endl;

cout << ntp dir+KUN DATASET+”/res/*.root” << endl;

myTree.Add(ntp dir+KUN DATASET+”/res/*.root”);

//myTree.Print();

PDF ERR PLUS =new TH1D(“Dimuon reco PLUS”,“Dimuon reco PLUS”,400,0,4000);
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PDF ERR CENTRAL =new TH1D(“Dimuon reco CENTRAL”,“Dimuon reco CENTRAL”,400,0,4000);

PDF ERR MINUS =new TH1D(“Dimuon reco MINUS”,“Dimuon reco MINUS”,400,0,4000);

PDF ERR PLUS– >Sumw2();PDF ERR CENTRAL– > Sumw2();PDF ERR MINUS– > Sumw2();

TH1D* PRIMARY VERTEX DISTRIBUTION;

PRIMARY VERTEX DISTRIBUTION =new TH1D(“PRIMARY VERTEX DISTRIBUTION”,

“PRIMARY VERTEX DISTRIBUTION”,60,0,60);

int Tree index;

int IS ENDCAP[50],IS BARREL[50];

int PRIMARY VERTEX,EVENT NUM,RUN NUM,LUMI BLOCK,BXNUMBER,REAL DATA;

double DIELECTRON MASS GEN,DIELECTRON MASS RECO,E 2 5[50],E 5 5[50],E 1 5[50];

int IS ECAL DRIVEN[50];

double NUMBER OF LOST HITS[50],ELECTRON ET RECO[50],

ELECTRON ETA SC[50],ELECTRON DELTA ETA IN[50],ELECTRON DELTA PHI IN[50]

,ELECTRON H OVER E[50], ELECTRON SIGMA IETA IETA[50],ELECTRON ECAL ISOLATION[50],

ELECTRON HADRONIC DEPTH ONE ISOLATION[50],

ELECTRON HADRONIC DEPTH TWO ISOLATION[50],

ELECTRON TRACK PT ISOLATION[50],

RECO ELECTRON pt[50],RECO ELECTRON px[50],

RECO ELECTRON py[50],RECO ELECTRON pz[50],RECO ELECTRON eta[50]

,RECO ELECTRON phi[50],RECO ELECTRON energy[50],

RECO ELECTRON charge[50],GEN ELECTRON pt[50],

GEN ELECTRON px[50],GEN ELECTRON py[50],GEN ELECTRON pz[50]

,GEN ELECTRON eta[50],GEN ELECTRON phi[50],GEN ELECTRON pdgid[50]

,GEN ELECTRON energy[50];

double data=0.0;double mc=0.0;

double MY ELE GEN ET[50];

double STANDARD DIELECTRON MASS RECO;

double STANDARD DIELECTRON MASS GEN;
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double RHO;

double pdfun[PDF KATI OTA];

double RECO ELECTRON dxy[50];

myTree.SetBranchAddress(”STANDARD DIELECTRON MASS RECO”,

&STANDARD DIELECTRON MASS RECO);

myTree.SetBranchAddress(”STANDARD DIELECTRON MASS GEN”

, &STANDARD DIELECTRON MASS GEN);

myTree.SetBranchAddress(”whaterver”, &Tree index);

myTree.SetBranchAddress(”IS ENDCAP”,IS ENDCAP);

myTree.SetBranchAddress(”IS BARREL”,IS BARREL);

myTree.SetBranchAddress(”RHO”,&RHO);

myTree.SetBranchAddress(“PRIMARY VERTEX”,&PRIMARY VERTEX);

myTree.SetBranchAddress(“EVENT NUM”,&EVENT NUM);

myTree.SetBranchAddress(“RUN NUM”,&RUN NUM);

myTree.SetBranchAddress(“LUMI BLOCK”,&LUMI BLOCK);

myTree.SetBranchAddress(“BXNUMBER”,&BXNUMBER);

myTree.SetBranchAddress(“REAL DATA”,&REAL DATA);

myTree.SetBranchAddress(“DIELECTRON MASS GEN”

,&DIELECTRON MASS GEN);

myTree.SetBranchAddress(“DIELECTRON MASS RECO”,&DIELECTRON MASS RECO);

myTree.SetBranchAddress(“pdfun”

,pdfun);

myTree.SetBranchAddress(“E 2 5”,E 2 5);

myTree.SetBranchAddress(“E 5 5”,E 5 5);

myTree.SetBranchAddress(“E 1 5”,E 1 5);

myTree.SetBranchAddress(“IS ECAL DRIVEN ”,IS ECAL DRIVEN);

myTree.SetBranchAddress(“NUMBER OF LOST HITS”

,NUMBER OF LOST HITS);
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myTree.SetBranchAddress(“ET RECO”,ELECTRON ET RECO);

myTree.SetBranchAddress(“ET GEN”,MY ELE GEN ET);

myTree.SetBranchAddress(“ETA SC”,ELECTRON ETA SC);

myTree.SetBranchAddress(“DELTA ETA IN”,ELECTRON DELTA ETA IN);

myTree.SetBranchAddress(“DELTA PHI IN”

,ELECTRON DELTA PHI IN);

myTree.SetBranchAddress(“H OVER E”,ELECTRON H OVER E);

myTree.SetBranchAddress(“SIGMA IETA IETA”

,ELECTRON SIGMA IETA IETA);

myTree.SetBranchAddress(“ECAL ISOLATION”,ELECTRON ECAL ISOLATION);

myTree.SetBranchAddress(“HADRONIC DEPTH ONE ISOLATION”

,ELECTRON HADRONIC DEPTH ONE ISOLATION);

myTree.SetBranchAddress(“HADRONIC DEPTH TWO ISOLATION”

,ELECTRON HADRONIC DEPTH TWO ISOLATION);

myTree.SetBranchAddress(“TRACK PT ISOLATION”

,ELECTRON TRACK PT ISOLATION);

myTree.SetBranchAddress(“Recoelectron pt”,RECO ELECTRON pt);

myTree.SetBranchAddress(“Recoelectron px”,RECO ELECTRON px);

myTree.SetBranchAddress(“Recoelectron py”,RECO ELECTRON py);

myTree.SetBranchAddress(“Recoelectron pz”,RECO ELECTRON pz);

myTree.SetBranchAddress(“Recoelectron eta”,RECO ELECTRON eta);

myTree.SetBranchAddress(“Recoelectron phi”,RECO ELECTRON phi);

myTree.SetBranchAddress(“Recoelectron energy”,RECO ELECTRON energy);

myTree.SetBranchAddress(“Recoelectron charge”,RECO ELECTRON charge);

myTree.SetBranchAddress(“Recoelectron dxy”,RECO ELECTRON dxy);

myTree.SetBranchAddress(“Genelectron test pt”,GEN ELECTRON pt);

myTree.SetBranchAddress(“Genelectron test px”,GEN ELECTRON px);

myTree.SetBranchAddress(“Genelectron test py”,GEN ELECTRON py);
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myTree.SetBranchAddress(“Genelectron test pz”,GEN ELECTRON pz);

myTree.SetBranchAddress(“Genelectron test eta”,GEN ELECTRON eta);

myTree.SetBranchAddress(“Genelectron test phi”,GEN ELECTRON phi);

myTree.SetBranchAddress(“Gen test charge”,GEN ELECTRON pdgid);

myTree.SetBranchAddress(“Gen test energy”,GEN ELECTRON energy);

Int t nevent = myTree.GetEntries();

int vertex value=0;

cout << “TOTAL EVENTS:” << nevent << endl;

good gen=good reco=0; double pramod gen,pramod reco;

pramod gen=pramod reco=0.0;

TFile f(TRIGGER KI HOINA+” ”+KUN DATASET+”.root”,”recreate”);

for (Int t iev=0;iev < nevent;iev++) //nevent

{

myTree.GetEntry(iev);

if(DIELECTRON MASS GEN > 0.0){good gen++;}

if(DIELECTRON MASS RECO > 0.0){good reco++;}

double Gen px 0,Gen py 0,Gen pz 0,Gen E 0,Gen px 1,Gen py 1,Gen pz 1,Gen E 1,px 0,py 0,pz 0

,E 0,px 1,py 1,pz 1,E 1,Gen diELECTRON mass,Reco diELECTRON mass;

Gen px 0=Gen py 0=Gen pz 0=Gen E 0=Gen px 1=Gen py 1=Gen pz 1=Gen E 1=px 0=py 0=pz 0

=E 0=px 1=py 1=pz 1=E 1=Gen diELECTRON mass=Reco diELECTRON mass=0.0;

data=mc=0.0; double weight factor=0;

bool CUT OF ISOLATION REQUIREMENT GEN=GEN CUT CHECK(MY ELE GEN ET,

GEN ELECTRON eta,GEN ELECTRON pdgid);

bool CUT OF ISOLATION REQUIREMENT RECO=RECO CUT CHECK(

IS ENDCAP,IS BARREL,ELECTRON ETA SC,ELECTRON ET RECO,RECO ELECTRON pt,

IS ECAL DRIVEN,ELECTRON DELTA ETA IN,

ELECTRON DELTA PHI IN,ELECTRON H OVER E,ELECTRON SIGMA IETA IETA,E 2 5,

E 5 5,E 1 5,ELECTRON HADRONIC DEPTH ONE ISOLATION,
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ELECTRON ECAL ISOLATION,ELECTRON TRACK PT ISOLATION,NUMBER OF LOST HITS,

RECO ELECTRON charge,RHO,RECO ELECTRON dxy);

GEN CUT CHECK (MY ELE GEN ET,GEN ELECTRON eta,GEN ELECTRON pdgid);

RECO CUT CHECK (IS ENDCAP,IS BARREL,ELECTRON ETA SC

,ELECTRON ET RECO,RECO ELECTRON pt,

IS ECAL DRIVEN,ELECTRON DELTA ETA IN,

ELECTRON DELTA PHI IN,ELECTRON H OVER E,

ELECTRON SIGMA IETA IETA,E 2 5,E 5 5,E 1 5,

ELECTRON HADRONIC DEPTH ONE ISOLATION,ELECTRON ECAL ISOLATION,

ELECTRON TRACK PT ISOLATION,NUMBER OF LOST HITS,RECO ELECTRON charge,RHO);

if(CUT OF ISOLATION REQUIREMENT GEN)

{ pramod gen++;

Gen px 0 = GEN ELECTRON px[0];

Gen py 0 = GEN ELECTRON py[0];

Gen pz 0 = GEN ELECTRON pz[0];

Gen E 0 = GEN ELECTRON energy[0];

Gen px 1 = GEN ELECTRON px[1];

Gen py 1 = GEN ELECTRON py[1];

Gen pz 1 = GEN ELECTRON pz[1];

Gen E 1 = GEN ELECTRON energy[1];

TLorentzVector v3((Gen px 0+Gen px 1),(Gen py 0+Gen py 1),(Gen pz 0+Gen pz 1),(Gen E 0+Gen E 1));

Gen diELECTRON mass=v3.M();

if(CUT OF ISOLATION REQUIREMENT GEN){Gen diELECTRON mass

=STANDARD DIELECTRON MASS GEN;}

if(Gen diELECTRON mass > 0.0)
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{

DiELECTRON gen– > Fill(Gen diELECTRON mass);

W DiELECTRON gen – > Fill(Gen diELECTRON mass,weight factor);

for(int i=0;i < 2;++i)

{

Gen pt –> Fill(GEN ELECTRON pt[i]);

Gen px –> Fill(GEN ELECTRON px[i]);

Gen py –> Fill(GEN ELECTRON py[i]);

Gen pz –> Fill(GEN ELECTRON pz[i]);

Gen eta –> Fill(GEN ELECTRON eta[i]);

Gen phi –> Fill(GEN ELECTRON phi[i]);

} }}

if(CUT OF ISOLATION REQUIREMENT RECO)

{pramod reco++;

px 0 = RECO ELECTRON px[0];

py 0 = RECO ELECTRON py[0];

pz 0 = RECO ELECTRON pz[0];

E 0 = RECO ELECTRON energy[0];

px 1 = RECO ELECTRON px[1];

py 1 = RECO ELECTRON py[1];

pz 1 = RECO ELECTRON pz[1];

E 1 = RECO ELECTRON energy[1];

TLorentzVector v2((px 0+px 1),(py 0+py 1),(pz 0+pz 1),(E 0+E 1));

Reco diELECTRON mass=v2.M();

Reco diELECTRON mass=STANDARD DIELECTRON MASS RECO;
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}

if (CUT OF ISOLATION REQUIREMENT RECO)

{

float W1=totalClusEtTurnOn(ELECTRON ET RECO[0],ELECTRON ETA SC[0],

MYTOTAL LUMI AILESAMMA);

float W2=totalClusEtTurnOn(ELECTRON ET RECO[1],ELECTRON ETA SC[1],

MYTOTAL LUMI AILESAMMA);

float weight factor =W1*W2;

if(USE MC==1)//means monte carlo using and trig turn on ko weight halnuparchha

{

DiELECTRON reco–> Fill(Reco diELECTRON mass);

W DiELECTRON reco–> Fill(Reco diELECTRON mass,weight factor );

W DiELECTRON reco 2–> Fill(Reco diELECTRON mass,weight factor );

}

if(USE MC==0)//means data, no weight is required

{

string pramod lamichhane string(“”);

string pa,pb,pc,pd;

if (RECO ELECTRON charge[0]==1) pa=“+”;

if (RECO ELECTRON charge[1]==1) pb=“+”;

if (RECO ELECTRON charge[0]==-1) pa=“-”;

if (RECO ELECTRON charge[1]==-1) pb=“-”;

pramod lamichhane string=“[“+pa+” , “+pb+”]”;
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if((Reco diELECTRON mass > 700.))

{

cout << “EVENT” << EVENT NUM << “||” << “RUN” << RUN NUM << ”||” << “LUMIX”

<< LUMI BLOCK << ”||” << “MASS” << Reco diELECTRON mass << “” << pramod lamichhane string

<< endl;

}

DiELECTRON reco–> Fill(Reco diELECTRON mass);

W DiELECTRON reco–> Fill(Reco diELECTRON mass);

W DiELECTRON reco 2–> Fill(Reco diELECTRON mass);

}

for(int i=0;i < 2;++i)

{

Reco phi –> Fill(RECO ELECTRON phi[i]);

Reco pt–> Fill(RECO ELECTRON pt[i]);

Reco px–> Fill(RECO ELECTRON px[i]);

Reco py–> Fill(RECO ELECTRON py[i]);

Reco pz–> Fill(RECO ELECTRON pz[i]);

Reco eta–> Fill(RECO ELECTRON eta[i]);

Reco ETA SC–> Fill(ELECTRON ETA SC[i]);

Reco DELTA ETA–> Fill(ELECTRON DELTA ETA IN[i]);

Reco DELTA PHI–> Fill(ELECTRON DELTA PHI IN[i]);

Reco H OVER E–> Fill(ELECTRON H OVER E[i]);

Reco SIGMA IETA IETA–> Fill(ELECTRON SIGMA IETA IETA[i]);
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had 1iso–> Fill(ELECTRON HADRONIC DEPTH ONE ISOLATION[i]);

had 2iso–> Fill(ELECTRON HADRONIC DEPTH TWO ISOLATION[i]);

Reco TRACK PT ISOLATION–> Fill(ELECTRON TRACK PT ISOLATION[i]);

Reco E 2 5–> Fill(E 2 5[i]);

Reco E 5 5–> Fill(E 5 5[i]);

Reco E 1 5–> Fill(E 1 5[i]);

Reco LOST LAYER HIT–> Fill(NUMBER OF LOST HITS[i]);

}

PRIMARY VERTEX DISTRIBUTION–> Fill(PRIMARY VERTEX);

if(Reco diELECTRON mass > 60){pramod1++;}

if(Reco diELECTRON mass > 120){pramod2++;}

if(Reco diELECTRON mass > 200){pramod3++;}

if((Reco diELECTRON mass > 700)||(prashna))

{

event .push back(EVENT NUM);

mass .push back(Reco diELECTRON mass);

RUN .push back(RUN NUM);

}

for(int g=0;g < 20;g++)

{

std::ostringstream temporary;

temporary << string common << g+1;

if((Gen diELECTRON mass > g*100)&&(Gen diELECTRON mass < =(g+1)*100))

{nam[temporary.str().c str()]–> Fill(Reco diELECTRON mass);}

}

int g=20;

std::ostringstream temporary;

temporary << string common << g+1;
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if((Gen diELECTRON mass > 2000)&&(Gen diELECTRON mass

< =3000))

{nam[temporary.str().c str()]–> Fill(Reco diELECTRON mass);}

for(int g n=0;g n < 20;g n++)

{

std::ostringstream temporary;

temporary << W string common << g n+1;

if((Gen diELECTRON mass > g n*100)

&&(Gen diELECTRON mass < =(g n+1)*100))

{W nam[temporary.str().c str()]–> Fill(Reco diELECTRON mass,weight factor);}

}

int g n=20;

std::ostringstream temporary ;

temporary << W string common << g n+1;

if((Gen diELECTRON mass > 2000)&&(Gen diELECTRON mass < =3000))

{W nam[temporary .str().c str()]–> Fill(Reco diELECTRON mass,weight factor);}

int size val =sizeof(pdfun)/sizeof(double);

double PLUS TOT SQR=0.0;

double MINUS TOT SQR=0.0;

for( int j = 1; j < size val ; j+=2) {

double WPLUS=0.0; double WPLUS SQR=0.0 ; double WMINUS=0.0;

double WMINUS SQR=0.0 ; WPLUS = max((pdfun[j]-pdfun[0]),(pdfun[j+1]-pdfun[0])) ;

WPLUS = max(WPLUS, 0.0);

WMINUS = max((pdfun[0]-pdfun[j]),(pdfun[0]-pdfun[j+1])) ;

WMINUS = max(WMINUS, 0.0);

WPLUS SQR=pow(WPLUS,2); WMINUS SQR=pow(WMINUS,2); PLUS TOT SQR+=WPLUS SQR;

MINUS TOT SQR+=WMINUS SQR; }



149

APPENDIX
if(PLUS TOT SQR > 0)PLUS TOT SQR=sqrt(PLUS TOT SQR);

if(MINUS TOT SQR > 0)MINUS TOT SQR=sqrt(MINUS TOT SQR);

PDF ERR PLUS–> Fill(Reco diELECTRON mass,1+PLUS TOT SQR);

PDF ERR CENTRAL–> Fill(Reco diELECTRON mass,pdfun[0]);

PDF ERR MINUS–> Fill(Reco diELECTRON mass,1-MINUS TOT SQR); } }

PDF ERR PLUS–> Write(); PDF ERR CENTRAL–> Write();PDF ERR MINUS–> Write(); PRI-

MARY VERTEX DISTRIBUTION–> Write();

DiELECTRON reco–> Write();W DiELECTRON reco–> Write();DiELECTRON gen–> Write();

W DiELECTRON gen–> Write();

Reco pt–> Write(); Reco px–> Write(); Reco py–> Write(); Reco pz–> Write();

Reco eta–> Write(); Reco phi–> Write(); Gen pt–> Write(); Gen px–> Write();

Gen py–> Write(); Gen pz–> Write(); Gen eta–> Write(); Gen phi–> Write();

Reco DELTA ETA–> Write(); Reco DELTA PHI–> Write(); Reco H OVER E–> Write();

Reco SIGMA IETA IETA–> Write(); had 1iso–> Write();

had 2iso–> Write(); Reco TRACK PT ISOLATION–> Write();

Reco ETA SC–> Write(); Reco E 2 5–> Write(); Reco E 5 5–> Write(); Reco E 1 5–> Write();

delete DiELECTRON reco;delete W DiELECTRON reco;delete DiELECTRON gen;

delete W DiELECTRON gen;

delete PDF ERR PLUS;delete PDF ERR CENTRAL;delete PDF ERR MINUS;

delete PRIMARY VERTEX DISTRIBUTION;

delete Reco pt; delete Reco px; delete Reco py; delete Reco pz;

delete Reco eta; delete Reco phi; delete Gen pt; delete Gen px;

delete Gen py; delete Gen pz;delete Gen eta;delete Gen phi;

delete Reco DELTA ETA; delete Reco DELTA PHI; delete Reco H OVER E;

delete Reco SIGMA IETA IETA; delete had 1iso;

delete had 2iso; delete Reco TRACK PT ISOLATION;

delete Reco ETA SC; delete Reco E 2 5; delete Reco E 5 5;

delete Reco E 1 5;
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{delete p–> R second;}W nam.clear();

B.2 C++ program for Ntuple processing

####################

# Module Name : process all.cpp

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program reads the Ntuple prepared by programs in A

# and generates ROOT files with histograms of various information

# This module uses the program B.1

####################

#include “NTPL p.cpp”

#include<iostream>

#include<vector>

#include<string>

#include <fstream>

#include “TMath.h”

#include “vector”

#include<TString.h>

#include <sstream>

#include <iostream>

#include<vector>

#include<string>

#include <fstream>

#include “TMath.h”
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#include “vector”

#include<TString.h>

#include <sstream>

int process all dyci()

{

using namespace std;

std::vector<std::string>* pramod dir names;

std::vector<std::string>pramod dir name;

pramod dir names=&pramod dir name;

TString string common(“CIToEE ”);

int mass cut[3]={300,500,800};

string option[2]={“Des”,“Con”};

int lambda values[6]={9,11,13,15,17,19};

for(size t i=0;i< sizeof(mass cut)/sizeof(int);i++)

{ std::ostringstream temporary;

temporary<<string common<<“ITCM5 M-”<<mass cut[i]<<“ TuneZ2star”;

cout<<temporary.str().c str()<<endl;

pramod dir names->push back(temporary.str().c str());

for(size t j=0;j< sizeof(option)/sizeof(string);j++)

{

for(size t k=0;k< sizeof(lambda values)/sizeof(int);k++)

{

std::ostringstream temporary1;

if((lambda values[k]>15 && option[j]==“Des”))

{cout<<endl;}

else

{temporary1<<string common<<option[j]<<“ ”<<”Lambda-”<<lambda values[k]<<“ M-”<<mass cut[i];
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cout<<temporary1.str().c str()<<endl;

pramod dir names->push back(temporary1.str().c str());

} } }

for (size t i=0;i<pramod dir names->size();i++)

{NTPL p(“TRIGGER EVENT”,(*pramod dir names)[i],“VERTEX DATA 2012”,“VERTEX MC 2012”);}

return 0;

}
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APPENDIX C

Appendix C

C.1 Python module to chop histograms and combine

to variable histograms

C.1.1 Rebinning for data

####################

# Module Name : REBIN DATA.py

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program is used to rebin the combined data histogram for a given variable bin

with differential information

####################

import os

from ROOT import *

from array import array

ROOT =TFile(“TOTAL ELECTRON SAME SIGN 19P6166 ABS RHO FIXED.root”)

h1=ROOT .Get(“DiELECTRON reco”)
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my array=[ ]

for i in range(1,31):

my array.append(float(i))

REST bins=[ 660,700,740,800,900,1000,1300,1600,2000 ]

for i in range(0,len(REST bins)):

my array.append(float(i))

h1 = TH1F(“h1”,“h1”,len(my array),0.,2000.)

VAR LO =array(“f”,my array)

hnew = h1.Rebin(len(my array)-1,“hnew”,VAR LO )

hnew.Draw()

C.1.2 For cumulative distribution

####################

# Module Name : CUMU.py

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program is used to produce cumulative histograms using differential MC and

DATA histograms

####################

import sys, os

from array import array

from ROOT import *

from ROOT import TH1F

import string

import math
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def cumu(type ,ROOT NAME,dine name,kun,THAPNE):

HAMRO AFNAI NAME=TFile(ROOT NAME)

h=HAMRO AFNAI NAME.Get(dine name)

nb = h.GetNbinsX()

hc = TH1F(h.GetName()+‘ NEW’,h.GetTitle()+

‘ NEW’,nb, h.GetXaxis().GetXmin(), h.GetXaxis().GetXmax())

G = TFile (‘CUMU BIN ’+THAPNE+ROOT NAME,“recreate”)

hc.Sumw2()

if type == ‘ge’:

first, last, step = nb+1, 0, -1

elif type == ‘le’:

first, last, step = 0, nb+1, 1

else:

raise ValueError(’type for i in xrange(first, last, step):

prev = 0 if i == first else hc.GetBinContent(i-step)

c = h.GetBinContent(i) + prev

hc.Fill(i*kun-1,c)

hc.Write()

G.Close()

return 1

cumu(‘ge’,‘ttbar SCALED.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘tw SCALED.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘tbarw SCALED.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘ww SCALED.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘wz SCALED.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘zz SCALED.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘wjets SCALED.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘dytautau SCALED.root’,‘SCALED Dimuon reco’,10,‘’)



cumu(‘ge’,‘LAMBDA-9.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘LAMBDA-11.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘LAMBDA-13.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘LAMBDA-15.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘LAMBDA-17.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘LAMBDA-19.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘LAMBDA-9.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘LAMBDA-11.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘LAMBDA-13.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘LAMBDA-15.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘DRELL YAN.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘LAMBDA-INFINITY.root’,‘SCALED Dimuon reco’,10,‘’)

cumu(‘ge’,‘DATA.root’,‘Dimuon reco’,10,‘’)

C.1.3 Chopping and rescaling for MC

####################

# Module Name : CHOP.py

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program is used to rescale the histograms with mass dependent k factors by

# chopping into pieces and prepare a combined histogram which is taken from the relevent

# sample of interest to optimize the statistics

####################
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import string

import math

import time

LUMI TO SCALE TO=19616.0

NNLO FACTOR=1.024

QCD k factor=[1.2962,1.2992,1.3029,1.2970,1.3071,1.2979,1.3033,1.2902,

1.2845,1.2870,1.2678,1.2730,1.2622,1.2727,1.2481,1.2497,1.2543,1.2590]

ACCEPTANCE=[1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.]

#QED k factor=[1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.]

#QED k factor=[0.997, 0.993, 0.989, 0.985, 0.981, 0.976, 0.972, 0.968,

0.964, 0.960 ,0.955, 0.951, 0.947, 0.943, 0.939, 0.934, 0.930, 0.926]

QED k factor=[ ]

for i in range(0,len(QCD k factor)):QED k factor.append(1)

LOCATION=‘/uscms/home/bikashji/’

def CHOPPING(KUN ROOT FILE,CROSS SECTION,EVENTS,FILTER EFF):

print KUN ROOT FILE

KUN HISTO KO BANAUNE=‘W DiELECTRON reco’

SUPPLIED VALUE BEGINNING, SUPPLIED VALUE END=0,0

if ‘300’ in KUN ROOT FILE:

SUPPLIED VALUE BEGINNING=31

SUPPLIED VALUE END=61

if ‘500’ in KUN ROOT FILE:

SUPPLIED VALUE BEGINNING=61

SUPPLIED VALUE END=101

if ‘800’ in KUN ROOT FILE:

SUPPLIED VALUE BEGINNING=101

SUPPLIED VALUE END=402
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scale thing ORIGINAL=(LUMI TO SCALE TO/(EVENTS/(FILTER EFF

CROSS SECTION)))*NNLO FACTOR

scale thing=scale thing ORIGINAL

SUPPLIED ROOT FILE=TFile(LOCATION+‘TRIGGER EVENT ’+KUN ROOT FILE+’.root’)

h=SUPPLIED ROOT FILE.Get(KUN HISTO KO BANAUNE)

nb =h.GetNbinsX()

bin width=(h.GetXaxis().GetXmax()-h.GetXaxis().GetXmin())/nb

MY NAME=h.GetName()+‘ ’+str(int((SUPPLIED VALUE BEGINNING-1)*bin width))+

‘ ’+str(int((SUPPLIED VALUE END-1)*bin width))

hc=TH1F(‘ele reco’,‘ele reco’,

nb,h.GetXaxis().GetXmin(),h.GetXaxis().GetXmax())

kun=h.GetName().split(’ ’)

print MY NAME,MY NAME,nb,h.GetXaxis().GetXmin(),h.GetXaxis().GetXmax()

G =TFile (KUN ROOT FILE+‘ SCALED.root’,“recreate”)

print KUN ROOT FILE.strip(‘.root’)+kun[1]+‘ SCALED.root’

for u in range(SUPPLIED VALUE BEGINNING,SUPPLIED VALUE END):

scale thing=scale thing ORIGINAL

if u*bin width>300 and u*bin width<=400:

scale thing=scale thing*QCD k factor[0]*QED k factor[0]*ACCEPTANCE[0]

if u*bin width>400 and u*bin width<=500:

scale thing=scale thing*QCD k factor[1]*QED k factor[1]*ACCEPTANCE[1]

if u*bin width>500 and u*bin width<=600:

scale thing=scale thing*QCD k factor[2]*QED k factor[2]*ACCEPTANCE[2]
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if u*bin width>600 and u*bin width<=700:

scale thing=scale thing*QCD k factor[3]*QED k factor[3]*ACCEPTANCE[3]

if u*bin width>700 and u*bin width<=800:

scale thing=scale thing*QCD k factor[4]*QED k factor[4]*ACCEPTANCE[4]

if u*bin width>800 and u*bin width<=900:

scale thing=scale thing*QCD k factor[5]*QED k factor[5]*ACCEPTANCE[5]

if u*bin width>900 and u*bin width<=1000:

scale thing=scale thing*QCD k factor[6]*QED k factor[6]*ACCEPTANCE[6]

if u*bin width>1000 and u*bin width<=1100:

scale thing=scale thing*QCD k factor[7]*QED k factor[7]*ACCEPTANCE[7]

if u*bin width>1100 and u*bin width<=1200:

scale thing=scale thing*QCD k factor[8]*QED k factor[8]*ACCEPTANCE[8]

if u*bin width>1200 and u*bin width<=1300:

scale thing=scale thing*QCD k factor[9]*QED k factor[9]*ACCEPTANCE[9]

if u*bin width>1300 and u*bin width<=1400:

scale thing=scale thing*QCD k factor[10]*QED k factor[10]*ACCEPTANCE[10]

if u*bin width>1400 and u*bin width<=1500:

scale thing=scale thing*QCD k factor[11]*QED k factor[11]*ACCEPTANCE[11]

if u*bin width>1500 and u*bin width<=1600:
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scale thing=scale thing*QCD k factor[12]*QED k factor[12]*ACCEPTANCE[12]

if u*bin width>1600 and u*bin width<=1700:

scale thing=scale thing*QCD k factor[13]*QED k factor[13]*ACCEPTANCE[13]

if u*bin width>1700 and u*bin width<=1800:

scale thing=scale thing*QCD k factor[14]*QED k factor[14]*ACCEPTANCE[14]

if u*bin width>1800 and u*bin width<=1900:

scale thing=scale thing*QCD k factor[15]*QED k factor[15]*ACCEPTANCE[15]

if u*bin width>1900 and u*bin width<=2000:

scale thing=scale thing*QCD k factor[16]*QED k factor[16]*ACCEPTANCE[16]

if u*bin width>2000 and u*bin width<=5000:

scale thing=scale thing*QCD k factor[17]*QED k factor[17]*ACCEPTANCE[17]

hc.Fill((u*bin width)-1,h.GetBinContent(u)*scale thing)

hc.Write()

G.Close()

CHOPPING(‘CIToEE ITCM5 M-300 TuneZ2star’, 0.2621 , 55751 , 0.778 )

CHOPPING(‘CIToEE ITCM5 M-500 TuneZ2star’, 0.03562 , 26056 , 0.886 )

CHOPPING(‘CIToEE ITCM5 M-800 TuneZ2star’, 0.004503 , 25672 , 0.929 )

CHOPPING(‘CIToEE Con Lambda-9 M-300’, 0.3041 , 57300 , 0.76 )

CHOPPING(‘CIToEE Con Lambda-9 M-500’, 0.05713 , 26797 , 0.866 )

CHOPPING(‘CIToEE Con Lambda-9 M-800’, 0.01445 , 26111 , 0.918 )

CHOPPING(‘CIToEE Con Lambda-11 M-300’, 0.2852 , 55922 , 0.778 )

CHOPPING(‘CIToEE Con Lambda-11 M-500’, 0.04739 , 25322 , 0.918 )

CHOPPING(‘CIToEE Con Lambda-11 M-800’, 0.009645 , 28215 , 0.849 )

CHOPPING(‘CIToEE Con Lambda-13 M-300’, 0.2761 , 56620 , 0.764 )

CHOPPING(‘CIToEE Con Lambda-13 M-500’, 0.04289 , 26748 , 0.868 )



CHOPPING(‘CIToEE Con Lambda-13 M-800’, 0.007542 , 26514 , 0.9 )

CHOPPING(‘CIToEE Con Lambda-15 M-300’, 0.2722 , 55469 , 0.782 )

CHOPPING(‘CIToEE Con Lambda-15 M-500’, 0.04034 , 27087 , 0.856 )

CHOPPING(‘CIToEE Con Lambda-15 M-800’, 0.00648 , 26689 , 0.897 )

CHOPPING(‘CIToEE Con Lambda-17 M-300’, 0.2693 , 55000 , 0.79 )

CHOPPING(‘CIToEE Con Lambda-17 M-500’, 0.03915 , 26595 , 0.87 )

CHOPPING(‘CIToEE Con Lambda-17 M-800’, 0.005877 , 25983 , 0.919 )

CHOPPING(‘CIToEE Con Lambda-19 M-300’, 0.2676 , 54189 , 0.799 )

CHOPPING(‘CIToEE Con Lambda-19 M-500’, 0.03821 , 26380 , 0.875 )

CHOPPING(‘CIToEE Con Lambda-19 M-800’, 0.005518 , 26022 , 0.916 )

CHOPPING(‘CIToEE Des Lambda-9 M-300’, 0.2555 , 55269 , 0.791 )

CHOPPING(‘CIToEE Des Lambda-9 M-500’, 0.03886 , 26553 , 0.882 )

CHOPPING(‘CIToEE Des Lambda-9 M-800’, 0.008843 , 26328 , 0.917 )

CHOPPING(‘CIToEE Des Lambda-11 M-300’, 0.2536 , 56049 , 0.778 )

CHOPPING(‘CIToEE Des Lambda-11 M-500’, 0.03516 , 26246 , 0.891 )

CHOPPING(‘CIToEE Des Lambda-11 M-800’, 0.005808 , 25814 , 0.933 )

CHOPPING(‘CIToEE Des Lambda-13 M-300’, 0.2542 , 55248 , 0.789 )

CHOPPING(‘CIToEE Des Lambda-13 M-500’, 0.03418 , 33874 , 0.685 )

CHOPPING(‘CIToEE Des Lambda-13 M-800’, 0.004786 , 26239 , 0.916 )

CHOPPING(‘CIToEE Des Lambda-15 M-300’, 0.2554 , 56123 , 0.774 )

CHOPPING(‘CIToEE Des Lambda-15 M-500’, 0.0338 , 26563 , 0.871 )

CHOPPING(‘CIToEE Des Lambda-15 M-800’, 0.004403 , 26297 , 0.91 )
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C.1.4 For variable histograms

####################

# Module Name : VARIABLE.py

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program is used to combine histograms prepared by C.1.3 and prepare

# a variable binned histogram

####################

#!/usr/bin/env python

location =‘/uscms/home/bikashji/’

import sys, os

from array import array

from ROOT import *

from ROOT import TH1F

import string

import math

VAR LO=[ ]

for i in range(1,31):

VAR LO.append(float(i*20))

VAR LO.append(float (620))

VAR LO.append(float (660))

VAR LO.append(float (700))

VAR LO.append(float (740))

VAR LO.append(float (800))

VAR LO.append(float (900))
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VAR LO.append(float (1000))

VAR LO.append(float (1300))

VAR LO.append(float (1600))

VAR LO.append(float (2000))

VAR LO =array(’f’,VAR LO)

def VAR H(KUN ROOT FILE,KUN HISTO KO BANAUNE,THAPNE):

SUPPLIED ROOT FILE=TFile(location+KUN ROOT FILE)

h=SUPPLIED ROOT FILE.Get(KUN HISTO KO BANAUNE)

nb =h.GetNbinsX()

number of bins=h.GetNbinsX()

bin width cal=(h.GetXaxis().GetXmax()-h.GetXaxis().GetXmin())/number of bins

kun=bin width cal

print VAR LO

print nb

print ’bin width’,kun

print h.GetName(),h.GetTitle()

hc =TH1F(h.GetName()+’ NEW’,h.GetTitle()+

’ NEW’,len(VAR LO)-1,VAR LO )

G =TFile (’VAR BIN ’+THAPNE+KUN ROOT FILE,“recreate”)

#R hc.Sumw2()

for i in range(1,nb):

c=h.GetBinContent(i)

if not THAPNE==’FOR POISSON’:

if i*kun-1<=620 :

hc.Fill(i*kun-1,c)

if (i*kun-1>620) and (i*kun-1<=660):

hc.Fill(i*kun-1,c/2 )

if (i*kun-1>660) and (i*kun-1<=700):
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hc.Fill(i*kun-1,c/2)

if (i*kun-1>700) and (i*kun-1<=740):

hc.Fill(i*kun-1,c/2)

if (i*kun-1>740) and (i*kun-1<=800):

hc.Fill(i*kun-1,c/3)

if (i*kun-1>800) and (i*kun-1<=900):

hc.Fill(i*kun-1,c/5)

if (i*kun-1>900) and (i*kun-1<=1000):

hc.Fill(i*kun-1,c/5)

if (i*kun-1>1000) and (i*kun-1<=1300):

hc.Fill(i*kun-1,c/15)

if (i*kun-1>1300) and (i*kun-1<=1600):

hc.Fill(i*kun-1,c/15)

if (i*kun-1>1600) and (i*kun-1<=2000):

hc.Fill(i*kun-1,c/20)

if THAPNE==‘FOR POISSON’:

hc.Fill(i*kun-1,c)

hc.Write()

G.Close()

return hc

VAR H(‘LAMBDA-INFINITY.root’,‘ele reco’,‘’)

VAR H(‘LAMBDA-9.root’,‘ele reco’,‘’)

VAR H(‘LAMBDA-11.root’,‘ele reco’,‘’)

VAR H(‘LAMBDA-13.root’,‘ele reco’,‘’)

VAR H(‘LAMBDA-15.root’,‘ele reco’,‘’)

VAR H(‘LAMBDA-17.root’,‘ele reco’,‘’)

VAR H(‘LAMBDA-19.root’,‘ele reco’,‘’)
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VAR H(‘LAMBDA-9.root’,‘ele reco’,‘’)

VAR H(‘LAMBDA-11.root’,‘ele reco’,‘’)

VAR H(‘LAMBDA-13.root’,‘ele reco’,‘’)

VAR H(‘LAMBDA-15.root’,‘ele reco’,‘’)

VAR H(‘data.root’,‘DiELECTRON reco’,‘’)

VAR H(‘DY.root’,‘ele reco’,‘’)

VAR H(‘dytautau SCALED.root’,‘ele reco’,‘’)

VAR H(‘ttbar SCALED.root’,‘ele reco’,‘’)

VAR H(‘tw SCALED.root’,‘ele reco’,‘’)

VAR H(‘tbarw SCALED.root’,‘ele reco’,‘’)

VAR H(‘ww SCALED.root’,‘ele reco’,‘’)

VAR H(‘wz SCALED.root’,‘ele reco’,‘’)

VAR H(‘zz SCALED.root’,‘ele reco’,‘’)

VAR H(‘wjets SCALED.root’,‘ele reco’,‘’)

VAR H(‘G15 30 SCALED.root’,‘ele reco’,‘’)

VAR H(‘G30 50 SCALED.root’,‘ele reco’,‘’)

VAR H(‘G50 80 SCALED.root’,‘ele reco’,‘’)

VAR H(‘G80 120 SCALED.root’,‘ele reco’,‘’)

VAR H(‘G120 170 SCALED.root’,‘ele reco’,‘’)

VAR H(‘G170 300 SCALED.root’,‘ele reco’,‘’)

VAR H(‘G300 470 SCALED.root’,‘ele reco’,‘’)

VAR H(‘G470 800 SCALED.root’,‘ele reco’,‘’)

VAR H(‘G800 1400 SCALED.root’,‘ele reco’,‘’)

VAR H(‘G1400 1800 SCALED.root’,‘ele reco’,‘’)

VAR H(‘G1800 SCALED.root’,‘ele reco’,‘’)

VAR H(‘main jet 1heep 1gsfmethod.root’,‘JET BKG’,‘’)

VAR H(‘total jet root 2gsf method new.root’,‘JET BKG’,‘’)
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C.1.5 Root script to fit the CI cross-sections

####################

# Module Name : fit CI cross section.C

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program uses the function “a + b
Λ2

+ c
Λ4

”

# to fit the CI cross-sections that are calculated by D.4

####################

Double t myFitFunction(Double t *x, Double t *par)

{

Double t contact= par[0]+par[1]/(x[0]*x[0])+par[2]/(x[0]*x[0]*x[0]*x[0]);

return (contact);

}

void fit CI cross section()

{

TCanvas *C4 = new TCanvas(“C4”,“”);

C4–>cd();

gStyle–>SetOptFit(1);

gStyle–>SetOptStat(0);

gStyle–>SetOptTitle(0);

C4–>SetFillColor(0);

C4–>SetBorderMode(0);

C4–>SetBorderSize(2);

C4–>SetTickx(1);
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C4–>SetTicky(1);

C4–>SetLeftMargin(0.19);

C4–>SetRightMargin(0.11);

C4–>SetTopMargin(0.15);

C4–>SetBottomMargin(0.15);

C4–>SetFrameFillStyle(0);

C4–>SetFrameBorderMode(0);

C4–>SetFrameFillStyle(0);

C4–>SetFrameBorderMode(0);

TFile *fc500=new TFile(“c500.root”);

TH1D *hisc500=fc500–>Get(“c500MY HISTO”);

TFile *fd500=new TFile(“d500.root”);

TH1D *hisd500=fd500–>Get(“d500MY HISTO”);

TFile *fc600=new TFile(“c600.root”);

TH1D *hisc600=fc600–>Get(“c600MY HISTO”);

TFile *fd600=new TFile(“d600.root”);

TH1D *hisd600=fd600–>Get(“d600MY HISTO”);

TFile *fc700=new TFile(“c700.root”);

TH1D *hisc700=fc700–>Get(“c700MY HISTO”);

TFile *fd700=new TFile(“d700.root”);

TH1D *hisd700=fd700–>Get(“d700MY HISTO”);

TFile *fc800=new TFile(“c800.root”);

TH1D *hisc800=fc800–>Get(“c800MY HISTO”);

TFile *fd800=new TFile(“d800.root”);

TH1D *hisd800=fd800–>Get(“d800MY HISTO”);

TFile *fc900=new TFile(“c900.root”);

TH1D *hisc900=fc900–>Get(“c900MY HISTO”);

TFile *fd900=new TFile(“d900.root”);
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TH1D *hisd900=fd900–>Get(“d900MY HISTO”);

TF1 *fSpectrumc500 = new TF1(“fSpectrumc500”,myFitFunction,0.,100.,3);

fSpectrumc500–>SetParameters(367.62,45,10);

fSpectrumc500–>SetLineColor(3);

hisc500–>Fit(“fSpectrumc500”);

hisc500–>GetXaxis()–>SetRangeUser(7,30);

hisc500–>GetYaxis()–>SetRangeUser(0,1000);

TF1 *fSpectrumd500 = new TF1(“fSpectrumd500”,myFitFunction,0.,100.,3);

fSpectrumd500–>SetParameters(367.62,45,10);

fSpectrumd500–>SetLineColor(3);

fSpectrumd500–>SetLineStyle(8);

fSpectrumd500–>SetMarkerStyle(20);

hisd500–>Fit(“fSpectrumd500”);

hisd500–>GetXaxis()–>SetRangeUser(5,30);

hisd500–>GetYaxis()–>SetRangeUser(0,3000);

TF1 *fSpectrumc600 = new TF1(“fSpectrumc600”,myFitFunction,0.,100.,3);

fSpectrumc600–>SetParameters(213.66,45,10);

fSpectrumc600–>SetLineColor(2);

hisc600–>Fit(“fSpectrumc600”);

hisc600–>GetXaxis()–>SetRangeUser(5,30);

hisc600–>GetYaxis()–>SetRangeUser(0,3000);

TF1 *fSpectrumd600 = new TF1(“fSpectrumd600”,myFitFunction,0.,100.,3);

fSpectrumd600–>SetParameters(213.66,45,10);

fSpectrumd600–>SetLineColor(2);

fSpectrumd600–>SetLineStyle(8);

hisd600–>Fit(“fSpectrumd600”);

hisd600–>GetXaxis()–>SetRangeUser(5,30);

hisd600–>GetYaxis()–>SetRangeUser(0,3000);
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TF1 *fSpectrumc700 = new TF1(“fSpectrumc700”,myFitFunction,0.,100.,3);

fSpectrumc700–>SetParameters(2216.06,45,10);

fSpectrumc700–>SetLineColor(6);

hisc700–>Fit(“fSpectrumc700”);

hisc700–>GetXaxis()–>SetRangeUser(5,30);

hisc700–>GetYaxis()–>SetRangeUser(0,3000);

TF1 *fSpectrumd700 = new TF1(“fSpectrumd700”,myFitFunction,0.,100.,3);

fSpectrumd700–>SetParameters(111.6,45,10);

fSpectrumd700–>SetLineColor(6);

fSpectrumd700–>SetLineStyle(8);

hisd700–>Fit(“fSpectrumd700”);

hisd700–>GetXaxis()–>SetRangeUser(5,30);

hisd700–>GetYaxis()–>SetRangeUser(0,3000);

TF1 *fSpectrumc800 = new TF1(“fSpectrumc800”,myFitFunction,0.,100.,3);

fSpectrumc800–>SetParameters(61.32,45,10);

fSpectrumc800–>SetLineColor(7);

hisc800–>Fit(“fSpectrumc800”);

hisc800–>GetXaxis()–>SetRangeUser(5,30);

hisc800–>GetYaxis()–>SetRangeUser(0,3000);

TF1 *fSpectrumd800 = new TF1(“fSpectrumc800”,myFitFunction,0.,100.,3);

fSpectrumd800–>SetParameters(61.32,45,10);

fSpectrumd800–>SetLineColor(7);

fSpectrumd800–>SetLineStyle(8);

hisd800–>Fit(“fSpectrumc800”);

hisd800–>GetXaxis()–>SetRangeUser(5,30);

hisd800–>GetYaxis()–>SetRangeUser(0,3000);

TF1 *fSpectrumc900 = new TF1(“fSpectrumc900”,myFitFunction,0.,100.,3);

fSpectrumc900–>SetParameters(34.39,45,10);



170

fSpectrumc900–>SetLineColor(4);

hisc900–>Fit(“fSpectrumc900”);

hisc900–>GetXaxis()–>SetRangeUser(7,30);

hisc900–>GetYaxis()–>SetRangeUser(0,3000);

TF1 *fSpectrumd900 = new TF1(“fSpectrumc900”,myFitFunction,0.,100.,3);

fSpectrumd900–>SetParameters(34.39,45,10);

fSpectrumd900–>SetLineColor(4);

fSpectrumd900–>SetLineStyle(8);

hisd900–>Fit(“fSpectrumc900”);

hisd900–>GetXaxis()–>SetRangeUser(7,30);

hisd900–>GetYaxis()–>SetRangeUser(0,975);

hisc500–>SetMarkerStyle(20);

hisc500–>SetMarkerColor(3);

hisc500–>SetLineColor(3);

//hisc500–>GetXaxis()–>SetRangeUser(300,3000);

//hisc500–>GetYaxis()–>SetRangeUser(0.01,1e5);

hisc500–>GetXaxis()–>SetNdivisions(511);

hisc500–>GetXaxis()–>SetMoreLogLabels(10);

hisc500–>GetXaxis()–>SetMoreLogLabels();

//hisc500–>GetXaxis()–>SetNdivisions(511);

hisc500–>GetYaxis()–>SetNdivisions(505);

hisc500–>GetXaxis()–>SetLabelFont(42);

hisc500–>GetXaxis()–>SetLabelSize(0.047935);

hisc500–>GetXaxis()–>SetTitleSize(0.06);

hisc500–>GetXaxis()–>SetTitleOffset(1.025);

hisc500–>GetXaxis()–>SetTitleFont(42);

hisc500–>GetYaxis()–>SetTitle(“Event Yield in e{̂+}e{̂-} ”);

hisc500–>GetYaxis()–>SetLabelFont(42);
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hisc500–>GetYaxis()–>SetLabelSize(0.047535);

hisc500–>GetYaxis()–>SetTitleSize(0.06);

hisc500–>GetYaxis()–>SetTitleFont(42);

hisc500–>SetXTitle(“#Lambda (TeV)”);

gStyle–>SetOptStat(0);

gStyle–>SetOptFit(0000);

hisc500–>Draw(“P”);

hisd500–>SetMarkerStyle(20);

hisd500–>SetMarkerColor(3);

hisd500–>SetLineColor(3);

hisd500–>SetLineStyle(8);

hisd500–>Draw(“PSAME”);

hisc600–>SetMarkerStyle(20);

hisc600–>SetMarkerColor(2);

hisc600–>SetLineColor(2);

hisc600–>Draw(“PSAME”);

hisd600–>SetLineStyle(8);

hisd600–>SetMarkerStyle(20);

hisd600–>SetMarkerColor(2);

hisd600–>SetLineColor(2);

hisd600–>Draw(“PSAME”);

hisc700–>SetLineColor(6);

hisc700–>SetMarkerStyle(20);

hisc700–>SetMarkerColor(6);

hisc700–>Draw(“PSAME”);

hisd700–>SetLineStyle(8);

hisd700–>SetLineColor(6);

hisd700–>SetMarkerStyle(20);
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hisd700–>SetMarkerColor(6);

hisd700–>Draw(“PSAME”);

hisc800–>SetLineColor(7);

hisc800–>SetMarkerStyle(20);

hisc800–>SetMarkerColor(7);

hisc800–>Draw(“PSAME”);

hisd800–>SetLineColor(7);

hisd800–>SetLineStyle(8);

hisd800–>SetMarkerStyle(20);

hisd800–>SetMarkerColor(7);

hisd800–>Draw(“PSAME”);

hisc900–>SetLineColor(4);

hisc900–>SetMarkerStyle(20);

hisc900–>SetMarkerColor(4);

hisc900–>Draw(“PSAME”);

hisd900–>SetLineColor(4);

hisd900–>SetLineStyle(8);

hisd900–>SetMarkerStyle(20);

hisd900–>SetMarkerColor(4);

hisd900–>Draw(“PSAME”);

TLegend *leg = new TLegend(0.6149425,0.4367089,0.941092,0.8396624,NULL,“brNDC”);

leg–>SetBorderSize(1);

leg–>SetTextFont(62);

leg–>SetTextSize(0.04);

leg–>SetLineColor(0);

leg–>SetLineStyle(1);

leg–>SetLineWidth(1);

leg–>SetFillColor(0);
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leg–>SetFillStyle(1001);

leg–>SetTextSize(0.03);

leg–>AddEntry(hisc500,“500 GeV (const.)”,“L”);

leg–>AddEntry(hisd500,“500 GeV (destr.)”,“L”);

leg–>AddEntry(hisc600,“600 GeV (const.)”,“L”);

leg–>AddEntry(hisd600,“600 GeV (destr.)”,“L”);

leg–>AddEntry(hisc700,“700 GeV (const.)”,“L”);

leg–>AddEntry(hisd700,“700 GeV (destr.)”,“L”);

leg–>AddEntry(hisc800,“800 GeV (const.)”,“L”);

leg–>AddEntry(hisd800,“800 GeV (destr.)”,“L”);

leg–>AddEntry(hisc900,“900 GeV (const.)”,“L”);

leg–>AddEntry(hisd900,“900 GeV (destr.)”,“L”);

leg–>Draw(“nopave”);

C4–>Update();

gPad–>RedrawAxis();

TPaveText *pt = new TPaveText(0.3204023,0.8544304,0.5862069,0.9198312,“brNDC”);

pt–>SetFillColor(0);

pt–>SetLineColor(0);

pt–>SetTextAlign(12);

pt–>SetTextSize(0.04);

TText *text = pt–>AddText(“CMS Simulation, #sqrt{s} = 8 TeV, 20 fb{̂-1}”);

pt–>Draw(“nopave”);

TPaveText *pt1 = new TPaveText(0.3318966,0.5949367,0.5977011,0.6603376,“brNDC”);

pt1–>SetFillColor(0);

pt1–>SetLineColor(0);

pt1–>SetTextAlign(12);

pt1–>SetTextSize(0.04);

text = pt1–>AddText(“Fit : a + #frac{b}{#Lambda{̂2}} + #frac{c}{#Lambda{̂4}}”);
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pt1–>Draw(“no pave”);

}

C.1.6 ROOT script of the DATA-MC comparison plot

####################

# Module Name : Spectra.C

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program is used to plot the histograms prepared by C.1.4

####################

{

TString location(“/uscms/home/bikashji/”);

TCanvas *c1 = new TCanvas(“c1”, “”,66,52,700,502);c1–>Divide(1,2);

pad = c1–>cd(1);

pad–>SetPad(0,0.1687764,0.9971264,0.9957806);

pad = c1–>cd(2);

pad–>SetPad(0,0.004219409,0.9827586,0.335443);

c1–>cd(1);

c1–>cd(1);

gStyle–>SetOptFit(1);

gStyle–>SetOptStat(0);

gStyle–>SetOptTitle(0);

c1 1–>Range(-158.2304,-4.36755,2269.342,4.718543);

c1 1–>SetFillColor(0);

c1 1–>SetBorderMode(0);
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c1 1–>SetBorderSize(2);

c1 1–>SetLogy();

c1 1–>SetTickx(1);

c1 1–>SetTicky(1);

c1 1–>SetLeftMargin(0.1887608);

c1 1–>SetRightMargin(0.110951);

c1 1–>SetTopMargin(0.07908163);

c1 1–>SetBottomMargin(0.1505102);

c1 1–>SetFrameFillStyle(0);

c1 1–>SetFrameBorderMode(0);

c1 1–>SetFrameFillStyle(0);

c1 1–>SetFrameBorderMode(0);

c1 1–>SetLogy();

TFile* f2d =TFile::Open(location+“VDRELL YAN CHOOPED.root”);

TH1F* DY = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“DATA.root”);

TH1F* Data = (TH1F*)f2d–>Get(”DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“DATA POISSON.root”);

TH1F* poissionData = (TH1F*)f2d–>Get(”DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“LAMBDA-9.root”);

TH1F* con lam9 = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“LAMBDA-11.root”);

TH1F* con lam11 = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“LAMBDA-13.root”);

TH1F* con lam13 = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“LAMBDA-15.root”);

TH1F* con lam15 = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“LAMBDA-17.root”);
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TH1F* con lam17 = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“LAMBDA-19.root”);

TH1F* con lam19 = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“LAMBDA-9.root”);

TH1F* des lam9 = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“LAMBDA-11.root”);

TH1F* des lam11 = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“LAMBDA-13.root”);

TH1F* des lam13 = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“LAMBDA-15.root”);

TH1F* des lam15 = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“VAR BIN MULTIJETS SCALED.root”);

TH1F* MULTIJETS = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“VAR BIN DIBOSON SCALED.root”);

TH1F* DIBOSON = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“VAR BIN TW TBARW SCALED.root”);

TH1F* TW TBARW = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“VAR BIN dytautau SCALED.root”);

TH1F* DYTAUTAU = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“VAR BIN wjets SCALED.root”);

TH1F* WJETS = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“VAR BIN ttbar SCALED.root”);

TH1F* TTBAR = (TH1F*)f2d–>Get(”SCALED DiELECTRON reco NEW”);

TFile* f2d =TFile::Open(location+“jet root new.root”);

TH1F* JETS DATA = (TH1F*)f2d–>Get(”JET BKG NEW”);

Data–>SetMarkerStyle(20);

JETS DATA–>SetLineColor(2);

DIBOSON–>SetLineColor(6);
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TW TBARW–>SetLineColor(5);

DYTAUTAU–>SetLineColor(12);

TTBAR–>SetLineColor(3);

JETS DATA–>SetFillColor(2);

DIBOSON–>SetFillColor(6);

TW TBARW–>SetFillColor(5);

DYTAUTAU–>SetFillColor(12);

TTBAR–>SetFillColor(3);

DY–>SetLineColor(kBlack);

JETS DATA–>SetLineColor(2);

DIBOSON–>SetLineColor(kBlack);

TW TBARW–>SetLineColor(kBlack);

DYTAUTAU–>SetLineColor(kBlack);

TTBAR–>SetLineColor(1);

con lam9–>SetLineColor(2);

des lam9–>SetLineColor(2);

con lam11–>SetLineColor(3);

des lam11–>SetLineColor(3);

con lam13–>SetLineColor(4);

des lam13–>SetLineColor(4);

con lam15–>SetLineColor(6);

des lam15–>SetLineColor(6);

DY–>GetXaxis()–>SetRangeUser(300,2000);

DY–>GetYaxis()–>SetRangeUser(0.001,1e4);

DY–>GetXaxis()–>SetNdivisions(511);

DY–>GetXaxis()–>SetMoreLogLabels(10);

DY–>GetXaxis()–>SetTitle(“M {ee} (GeV/c{̂2})”);

DY–>GetXaxis()–>SetRange(15,39);
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DY–>GetXaxis()–>SetMoreLogLabels();

DY–>GetXaxis()–>SetNdivisions(511);

DY–>GetXaxis()–>SetLabelFont(42);

DY–>GetXaxis()–>SetLabelSize(0.047935);

DY–>GetXaxis()–>SetTitleSize(0.06);

DY–>GetXaxis()–>SetTitleOffset(1.025);

DY–>GetXaxis()–>SetTitleFont(42);

DY–>GetYaxis()–>SetTitle(”Events /20 GeV c{̂-2}”);

DY–>GetYaxis()–>SetLabelFont(42);

DY–>GetYaxis()–>SetLabelSize(0.06);

DY–>GetYaxis()–>SetTitleSize(0.06);

DY–>GetYaxis()–>SetTitleFont(42);

DY–>GetXaxis()–>SetRangeUser(300,2000);

DY–>GetYaxis()–>SetRangeUser(0.001,1e4);

DY–>GetXaxis()–>SetNdivisions(511);

DY–>GetXaxis()–>SetMoreLogLabels(10);

DY–>GetXaxis()–>SetTitle(”M {ee} (GeV/c{̂2})”);

DY–>GetXaxis()–>SetRange(15,39);

DY–>GetXaxis()–>SetMoreLogLabels();

DY–>GetXaxis()–>SetNdivisions(511);

DY–>GetXaxis()–>SetLabelFont(42);

DY–>GetXaxis()–>SetLabelSize(0.047935);

DY–>GetXaxis()–>SetTitleSize(0.);

DY–>GetXaxis()–>SetTitleOffset(1.025);

DY–>GetXaxis()–>SetTitleFont(42);

DY–>GetYaxis()–>SetTitle(”Events /20 GeV c{̂-2}”);

DY–>GetYaxis()–>SetLabelFont(42);

DY–>GetYaxis()–>SetLabelSize(0.047535);
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DY–>GetYaxis()–>SetTitleSize(0.06);

DY–>GetYaxis()–>SetTitleFont(42);

DY–>SetXTitle(”M {ee} (GeV/c{̂2})”);

DY–>SetYTitle(”Events /(20 GeV/c{̂2})”);

DY–>GetYaxis()–>SetNdivisions(9,9,9,kFALSE);

des lam9–>SetLineStyle(2);

des lam11–>SetLineStyle(2);

des lam13–>SetLineStyle(2);

des lam15–>SetLineStyle(2);

DY–>SetFillColor(kCyan);

THStack *hs = new THStack(“hs”,“Stacked 1D histograms”);

con lam9–>Add(JETS DATA); con lam11–>Add(JETS DATA); con lam13–>Add(JETS DATA);

con lam15–>Add(JETS DATA);

con lam9–>Add(DIBOSON); con lam11–>Add(DIBOSON); con lam13–>Add(DIBOSON);

con lam15–>Add(DIBOSON);

con lam9–>Add(TW TBARW); con lam11–>Add(TW TBARW); con lam13–>Add(TW TBARW);

con lam15–>Add(TW TBARW);

con lam9–>Add(TTBAR); con lam11–>Add(TTBAR); con lam13–>Add(TTBAR);

con lam15–>Add(TTBAR);

con lam9–>Add(DYTAUTAU); con lam11–>Add(DYTAUTAU); con lam13–>Add(DYTAUTAU);

con lam15–>Add(DYTAUTAU);

des lam9–>Add(JETS DATA); des lam11–>Add(JETS DATA); des lam13–>Add(JETS DATA);

des lam15–>Add(JETS DATA);

des lam9–>Add(DIBOSON); des lam11–>Add(DIBOSON); des lam13–>Add(DIBOSON);

des lam15–>Add(DIBOSON);

des lam9–>Add(TW TBARW); des lam11–>Add(TW TBARW); des lam13–>Add(TW TBARW);

des lam15–>Add(TW TBARW);
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des lam9–>Add(TTBAR); des lam11–>Add(TTBAR); des lam13–>Add(TTBAR);

des lam15–>Add(TTBAR);

des lam9–>Add(DYTAUTAU); des lam11–>Add(DYTAUTAU); des lam13–>Add(DYTAUTAU);

des lam15–>Add(DYTAUTAU);

DY–>Draw(“hist”);

DY–>GetXaxis()–>SetLabelSize(0);

con lam11–>Draw(“histsame”); con lam13–>Draw(“histsame”); con lam15–>Draw(“histsame”);

des lam11–>Draw(“histsame”); des lam13–>Draw(“histsame”); des lam15–>Draw(“histsame”);

hs–>Add(TW TBARW);

hs–>Add(DIBOSON);

hs–>Add(JETS DATA);

hs–>Add(TTBAR);

hs–>Add(DY);

hs–>Draw(“histsame ”);

float b, err;

for(Int t s=1;s¡=400;s++)

{

b = Data–>GetBinContent(s);

err = sqrt(b);

Data–>SetBinError(s,0);

}

const double alpha = 1 - 0.6827;

TGraphAsymmErrors * g = new TGraphAsymmErrors(Data);

for (int i = 0; i ¡ g–>GetN(); ++i) {

double width=(poissionData–>GetBinWidth(i+1))/20.0;

if(width==0){width=12345678;}

float N = g–>GetY()[i]*width;
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double L = (N==0) ? 0 : (ROOT::Math::gamma quantile(alpha/2,N,1.));

double U = (N==0) ? ( ROOT::Math::gamma quantile c(alpha,N+1,1) ) :

( ROOT::Math::gamma quantile c(alpha/2,N+1,1) );

g–>SetPointEYlow(i, (N-L)/width);

g–>SetPointEYhigh(i, (U-N)/width);

g–>SetPointEXlow(i, 0);

g–>SetPointEXhigh(i, 0);

}

g–>Draw(”PSAME”);

Data–>Draw(”PSAME”);

c1 1–>RedrawAxis();

TPaveText *pt = new TPaveText(0.3717579,0.9387755,0.8069164,0.9897959,“brNDC”);

pt–>SetFillColor(0);

pt–>SetLineColor(0);

pt–>SetTextAlign(12);

pt–>SetTextSize(0.04321678);

TText *text = pt–>AddText(“cMS, #sqrt{s} = 8 TeV,19.6 fb{̂-1}”);

pt–>Draw(“nopave”);

TPaveText *pt = new TPaveText(0.1836242,0.715035,0.4496644,0.7797203,“brNDC”);

pt–>SetFillColor(kWhite);

pt–>SetLineColor(kWhite);

pt–>SetShadowColor(0);

pt–>SetTextSize(0.04);

pt–>SetTextAlign(12);

text=pt–>AddText(“cMS, #sqrt{s} = 7 TeV, 5.3 fb{̂-1}”);

pt = new TPaveText(0.3060345,0.6313559,0.4382184,0.7012712,“brNDC”);

pt–>SetFillColor(kWhite);

pt–>SetLineColor(kWhite);
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pt–>SetShadowColor(0);

pt–>SetTextSize(0.03);

pt–>SetTextAlign(12);

text=pt–>AddText(”5.3 fb{̂-1}”);

pt = new TPaveText(0.3017241,0.7733051,0.4612069,0.8347458,“brNDC”);

pt–>SetFillColor(kWhite);

pt–>SetLineColor(kWhite);

pt–>SetShadowColor(0);

pt–>SetTextSize(0.03);

pt–>SetTextAlign(12);

text=pt–>AddText(“cMS”);

TLegend *leg = new TLegend(0.625,0.4682203,0.9252874,0.8389831,NULL,“brNDC”);

leg–>SetBorderSize(1);

leg–>SetTextFont(62);

leg–>SetTextSize(0.029);

leg–>SetLineColor(0);

leg–>SetLineStyle(1);

leg–>SetLineWidth(1);

leg–>SetFillColor(0);

leg–>SetFillStyle(1001);

leg–>AddEntry(Data,“data”,“P”);

leg–>AddEntry(con lam11,“#Lambda = 11 TeV (const.)”,“L”);

leg–>AddEntry(des lam11,“#Lambda = 11 TeV (destr.)”,“L”);

leg–>AddEntry(con lam13,“#Lambda = 13 TeV (const.)”,“L”);

leg–>AddEntry(des lam13,“#Lambda = 13 TeV (destr.)”,“L”);

leg–>AddEntry(con lam15,“#Lambda = 15 TeV (const.)”,“L”);

leg–>AddEntry(des lam15,“#Lambda = 15 TeV (destr.)”,“L”);

leg–>AddEntry(DY,“DY”,“f”);
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leg–>AddEntry(TTBAR,“t #bar{t}”,“f”);

leg–>AddEntry(TW TBARW,“tW”,“f”);

leg–>AddEntry(DIBOSON,“diboson”,“f”);

leg–>AddEntry(JETS DATA,“jets (data)”,“f”);

leg–>Draw(”nopave”);

const Int t n = 26;

Float t x[n] = {310, 330, 350, 370, 390, 410, 430, 450, 470, 490, 510, 530, 550, 570, 590, 610,

640, 680,

720, 770, 850, 950, 1150,

1450,

1800,2000};

Float t y[n] = { 1.013, 1.037, 0.993, 0.987, 0.87, 1.103, 1.148, 0.848, 0.897, 1.121, 0.983, 1.019,

1.157, 0.99, 1.204, 1.091, 1.056, 1.031,

1.232, 1.092, 0.757, 1.239, 0.901,

0.465, 1.736,0};

Float t ey[n] = {0.209, 0.216, 0.209, 0.211, 0.195, 0.252, 0.268, 0.188, 0.202, 0.253, 0.229, 0.242,

0.275, 0.248, 0.299, 0.291, 0.182, 0.193, 0.25,

0.204, 0.159, 0.27, 0.222,

0.33, 1.23,0};

Float t ex[n] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

c1–>cd(2);

TGraphErrors *gr = new TGraphErrors(n,x,y,ex,ey);

gr–>SetTitle(“TGraphErrors Example”);

gr–>SetMarkerColor(4);

gr–>SetMarkerStyle(20);

//gr–>Draw(”AEP”);

TMultiGraph *mg = new TMultiGraph();
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mg–>Add(gr,“p”);

mg–>Draw(“ap”);

mg–>GetXaxis()–>SetRangeUser(300,2000);

mg–>GetYaxis()–>SetRangeUser(0.4,2.1);

mg–>GetXaxis()–>SetLabelFont(42);

mg–>GetXaxis()–>SetLabelSize(0.2);

mg–>GetXaxis()–>SetTitleSize(0.16);

mg–>GetXaxis()–>SetTitleOffset(0.1);

mg–>GetXaxis()–>SetTitleFont(42);

mg–>GetYaxis()–>SetNdivisions(506);

mg–>GetYaxis()–>SetLabelFont(42);

mg–>GetYaxis()–>SetLabelSize(0.3);

mg–>GetYaxis()–>SetTitleSize(0.3);

mg–>GetYaxis()–>SetTitleOffset(0.1);

mg–>GetYaxis()–>SetTitleFont(42);

c1 2–>SetFillColor(0);

c1 2–>SetBorderMode(0);

c1 2–>SetBorderSize(2);

c1 2–>SetTickx(1);

c1 2–>SetTicky(1);

c1 2–>SetTopMargin(0.15);

c1 2–>SetBottomMargin(0.15);

c1 2–>SetFrameFillStyle(0);

c1 2–>SetFrameBorderMode(0);

c1 2–>SetFrameFillStyle(0);

c1 2–>SetFrameBorderMode(0);

c1 2–>SetLeftMargin(0.1887608);

//c1 2–>SetRightMargin(0.110951);
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//here is new

//c1 2–>Range(-144.3232,-0.6441558,2247.97,2.414286);

c1 2–>SetFillColor(0);

c1 2–>SetBorderMode(0);

c1 2–>SetBorderSize(2);

c1 2–>SetTickx(1);

c1 2–>SetTicky(1);

//c1 2–>SetLeftMargin(0.1856725);

c1 2–>SetTopMargin(0.0700637);

c1 2–>SetBottomMargin(0.4394904);

c1 2–>SetFrameFillStyle(0);

c1 2–>SetFrameBorderMode(0);

c1 2–>SetFrameBorderMode(0);

mg–>GetXaxis()–>SetTitle(”M {ee} (GeV/c{̂2})”);

mg–>GetXaxis()–>SetRange(5,96);

mg–>GetXaxis()–>SetLabelFont(42);

mg–>GetXaxis()–>SetLabelSize(0.15);

mg–>GetXaxis()–>SetTitleSize(0.2);

mg–>GetXaxis()–>SetTitleOffset(0.9);

mg–>GetXaxis()–>SetTitleFont(42);

mg–>GetYaxis()–>SetTitle(”#frac{data}{prediction(SM)}”);

mg–>GetYaxis()–>SetNdivisions(506);

mg–>GetYaxis()–>SetLabelFont(42);

mg–>GetYaxis()–>SetLabelSize(0.15);

mg–>GetYaxis()–>SetTitleSize(0.12);

mg–>GetYaxis()–>SetTitleOffset(0.4);

mg–>GetYaxis()–>SetTitleFont(42);
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c1 2–>Modified();

c1 2–>SetGrid();

c1–>Update();

gPad–>RedrawAxis();

gPad–>RedrawAxis();

}



187

Appendix D

D.1 Python script for CI Limit calculation

####################

# Module Name : Limit.py

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program uses the official CL95 macro and reads the cross-section from the file

prepared by the cross-section (event) calculator,

# calculates limits, and makes the plots for both interference cases

####################

import string

import os

from array import array

from ROOT import TCanvas,TGraph

from ROOT import gROOT

from math import sin

from array import array
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from ROOT import TCanvas, TMultiGraph,TGraphErrors, TPaveLabel

os.system(‘rm RESULTS OFlt vS.txt’)

LUMI=19482.4

qcd k NLO=[1.2962, 1.3014, 1.3006, 1.3014, 1.299, 1.2932, 1.2901, 1.2833, 1.2757, 1.2713, 1.2664,

1.265, 1.2589, 1.2603, 1.2558, 1.2565, 1.2585, 1.2643]

nnlo factor=1.024 #THIS IS NNLO FACTOR

qcd k=[ A*nnlo factor for A in qcd k NLO]

print qcd k NLO

print qcd k

Data Lambda Const ,Lambda Const max 2s ,Lambda Const max 1s ,Lambda Const ,

Lambda Const min 1s ,Lambda Const min 2s ,Data Lambda Dest ,Lambda Dest max 2s ,

Lambda Dest max 1s ,Lambda Dest ,Lambda Dest min 1s ,Lambda Dest min 2s =[ ],[ ],[ ],[ ],[

],[ ],[ ],[ ],[ ],[ ],[ ],[ ]

myfile=open(“RESULTS OFlt vS.txt”,’a’) # THIS FILE WRITES ALL LIMITS DETAIL IN A

SINGLE FILE

reso nu=5

number step=((len(qcd k)+2)*100-300)/100+1 # THIS NUMBER IS JUST TO READ THE IN-

PUT FILES AS LONG AS OUR MINIMUM MASS IS 300, IT IS GOOD

nondy=[800.8532756,207.5654896,67.9838348,26.2914988,8.9424216,4.6173288,

3.3704552,1.996946,0.9546376,0.3019772, 0.194824,0.1656004,0.0681884,0.0681884, 0,0,0,0]

QED K FACTOR=[0.997, 0.993, 0.989, 0.985 ,0.981 ,0.976, 0.972, 0.968,

0.964 ,0.960 ,0.955 ,0.951 ,0.947 ,0.943 ,0.939 ,0.934 ,0.930 ,0.926]

col wr,col atl,F relt=[ ],[ ],[ ]

MASS RANGE NUMBER=len(qcd k)

def delete these():

del Data Lambda Dest [:]

del Lambda Dest max 2s [:]

del Lambda Dest max 1s [:]
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del Lambda Dest [:]

del Lambda Dest min 1s [:]

del Lambda Dest min 2s [:]

def LIMIT CALCULATOR (X1,Y1,X2,Y2,Y):

return (X2-X1)/(Y2-Y1)*(Y-Y1)+X1

def findlt v(val supply,search which,sp n=6):

ns=[ ]

for ab in range(0,len(search which)):

if val supply.SIG PLUS BKG¡search which[ab].NUMBER:

#print ’len:�’,len(search which)

break

ns.append(round(search which[ab].NUMBER,reso nu))

ns.append(round(search which[ab-1].NUMBER,reso nu))

ns.append(search which[ab].lambda )

ns.append(search which[ab-1].lambda )

ns.append(round(LIMIT CALCULATOR (float(search which[ab].lambda ),search which[ab].NUMBER,

float(search which[ab-1].lambda ),search which[ab-1].NUMBER,val supply.SIG PLUS BKG),reso nu))

return ns

def WRITE FINAL VAL(START,KUN RANGE,DESTRUCTIVE):

fmt1=”%10.2f%10.2f%4s%4s%10.2f%4s”

if DESTRUCTIVE:

else:

myfile.writelines(‘FOR’+‘�’+KUN RANGE+‘: OBS EXP +1SIG +2SIG -1SIG -2SIG RESPEC-

TIVELY:“\n”)

for pl in range(START,len(qcd k)*6,len(qcd k)):

myfile.writelines(fmt1%(F relt[pl][0],F relt[pl][1],F relt[pl][2],F relt[pl][3],F relt[pl][4],’“\n”))
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myfile.writelines(“‘\n”)

def FOR PLOT STUFF(DESTRUCTIVE):

for pl in range(0,MASS RANGE NUMBER):

if not DESTRUCTIVE:

Data Lambda Const .append(float((F relt[pl][4])))

Lambda Const .append(float((F relt[pl+number step][4])))

Lambda Const max 1s .append(float((F relt[pl+number step*2][4])))

Lambda Const max 2s .append(float((F relt[pl+number step*3][4])))

Lambda Const min 1s .append(float((F relt[pl+number step*4][4])))

Lambda Const min 2s .append(float((F relt[pl+number step*5][4])))

else:

Data Lambda Dest .append(float((F relt[pl][4])))

Lambda Dest .append(float((F relt[pl+number step][4])))

Lambda Dest max 1s .append(float((F relt[pl+number step*2][4])))

Lambda Dest max 2s .append(float((F relt[pl+number step*3][4])))

Lambda Dest min 1s .append(float((F relt[pl+number step*4][4])))

Lambda Dest min 2s .append(float((F relt[pl+number step*5][4])))

class FINALlt v(object):

def init (self,OBS CROSS SECTION,OBS SIGNAL,SIG PLUS BKG, 95lt v):

self.OBS CROSS SECTION=OBS CROSS SECTION

self.OBS SIGNAL=OBS SIGNAL

self.SIG PLUS BKG=SIG PLUS BKG

self. 95lt v= 95lt v

class CMS TABLE(object):

def init (self,lambda ,dil rang):

self.lambda = lambda

self.dil rang= dil rang
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class CMS TABLE CLS(object):

def init (self,LowMass,OBSlt v,EXPlt v,EXPlt v P 1,EXPlt v P 2,EXPlt v M 1,EXPlt v M 2):

self.LowMass =LowMass

self.OBSlt v = OBSlt v

self.EXPlt v = EXPlt v

self.EXPlt v P 1 = EXPlt v P 1

self.EXPlt v P 2 = EXPlt v P 2

self.EXPlt v M 1 = EXPlt v M 1

self.EXPlt v M 2 = EXPlt v M 2

class FINAL NO TO CHECK(object):

def init (self,lambda ,NUMBER):

self.lambda =lambda

self.NUMBER=NUMBER

def populate(my supply array,mysupply val):

for a in range(1,len(col atl)):

f vaclass=FINAL NO TO CHECK(0,0.0)

f vaclass.lambda =col atl[a].lambda

f vaclass.NUMBER=col atl[a].dil rang[mysupply val]

my supply array.append(f vaclass)

pramod=input(‘Press 2 for 2 step and 1 for 1 step lambda:’)

if pramod==1:

des file name=“NEW DY CI DES lambda step1.txt”

con file name=“NEW DY CI CON lambda step1.txt”

elif pramod==2:

des file name=“NEW DY CI DES lambda step2.txt”

con file name=“NEW DY CI CON lambda step2.txt”

else:

raise ValueError(‘you typed wrong input, exiting’)



192

def WHOLE THING(DESTRUCTIVE):

del col atl[:]

del col wr[:]

del F relt[:]

if DESTRUCTIVE:

Atlas style=open(des file name).read().split(“\n”)

else :

Atlas style=open(con file name).read().split(“\n”)

sp n=len(Atlas style)-3

lines atlas,lines wrapper=[ ],[ ]

INPUT FROM CLS=open(“MYWRAPPER.txt”).read().split(“\n”)

for stuff in INPUT FROM CLS:

lines wrapper.append(stuff.strip().split(‘,’))

for stuff in Atlas style:

lines atlas.append(stuff.split())

for i in range(1,len(lines atlas)-1):

ATLAS TABLE=CMS TABLE(‘’,[ ])

for j in range(0,len(qcd k)+1):

if j==0:

ATLAS TABLE.lambda =lines atlas[i][j]

else:

ATLAS TABLE.dil rang.append(float(lines atlas[i][j])*qcd k[j-1]*QED K FACTOR[j-1]+nondy[j-

1])

col atl.append(ATLAS TABLE)

for i in range(0,len(lines wrapper)-1):
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W cls=CMS TABLE CLS(0.0,0.0,0.0,0.0,0.0,0.0,0.0)

W cls.LowMass =lines wrapper[i][0]

W cls.OBSlt v =lines wrapper[i][7]

W cls.EXPlt v =lines wrapper[i][8]

W cls.EXPlt v M 1 =lines wrapper[i][9]

W cls.EXPlt v P 1 =lines wrapper[i][10]

W cls.EXPlt v M 2 =lines wrapper[i][11]

W cls.EXPlt v P 2 =lines wrapper[i][12]

col wr.append(W cls)

for stuff in col atl:

if stuff.lambda ==‘9’:

print fmt1%(str(stuff.lambda )+‘ ’),

else:

print fmt1%(str(stuff.lambda )+‘’),

for i in range(0, len(stuff.dil rang)):

length=‘ ’* (7-(len(str(round(stuff.dil rang[i],2)))))

print str(round(stuff.dil rang[i],2))+length,

print

for i in range(0,len(qcd k)):

print round(col atl[0].dil rang[i],2)

tot stor=[ ]

for val in range(0,len(qcd k)):

tot stor TEMP=[ ]

F lt=FINALlt v(0.0,0.0,0.0,0.0)

F lt.OBS CROSS SECTION=float(col wr[val ].OBSlt v)

F lt.OBS SIGNAL=float(col wr[val ].OBSlt v)*LUMI

F lt.SIG PLUS BKG=float(col wr[val ].OBSlt v)*LUMI+col atl[0].dil rang[val ]

tot stor TEMP.append(F lt)
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F lt=FINALlt v(0.0,0.0,0.0,0.0)

F lt.OBS CROSS SECTION=float(col wr[val ].EXPlt v)

F lt.OBS SIGNAL=float(col wr[val ].EXPlt v)*LUMI

FINALlt v.SIG PLUS BKG=float(col wr[val ].EXPlt v)*LUMI+col atl[0].dil rang[val ]

tot stor TEMP.append(F lt)

F lt=FINALlt v(0.0,0.0,0.0,0.0)

F lt.OBS CROSS SECTION=float(col wr[val ].EXPlt v P 1)

F lt.OBS SIGNAL=float(col wr[val ].EXPlt v P 1)*LUMI

F lt.SIG PLUS BKG=float(col wr[val ].EXPlt v P 1)*LUMI+col atl[0].dil rang[val ]

tot stor TEMP.append(F lt)

F lt=FINALlt v(0.0,0.0,0.0,0.0)

F lt.OBS CROSS SECTION=float(col wr[val ].EXPlt v P 2)

F lt.OBS SIGNAL=float(col wr[val ].EXPlt v P 2)*LUMI

F lt.SIG PLUS BKG=float(col wr[val ].EXPlt v P 2)*LUMI+col atl[0].dil rang[val ]

tot stor TEMP.append(F lt)

F lt=FINALlt v(0.0,0.0,0.0,0.0)

F lt.OBS CROSS SECTION=float(col wr[val ].EXPlt v M 1)

F lt.OBS SIGNAL=float(col wr[val ].EXPlt v M 1)*LUMI

F lt.SIG PLUS BKG=float(col wr[val ].EXPlt v M 1)*LUMI+col atl[0].dil rang[val ]

tot stor TEMP.append(F lt)

F lt=FINALlt v(0.0,0.0,0.0,0.0)

F lt.OBS CROSS SECTION=float(col wr[val ].EXPlt v M 2)

F lt.OBS SIGNAL=float(col wr[val ].EXPlt v M 2)*LUMI

F lt.SIG PLUS BKG=float(col wr[val ].EXPlt v M 2)*LUMI+col atl[0].dil rang[val ]

tot stor TEMP.append(F lt)

tot stor.append(tot stor TEMP)

f va300,f va400,f va500,f va600,f va700,f va800,

f va900,f va1000,f va1100,f va1200,f va1300,f va1400,f va1500,f va1600,f va1700,
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f va1800,f va1900,f va2000=[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ]

populate(f va300,0)

populate(f va400,1)

populate(f va500,2)

populate(f va600,3)

populate(f va700,4)

populate(f va800,5)

populate(f va900,6)

populate(f va1000,7)

populate(f va1100,8)

populate(f va1200,9)

populate(f va1300,10)

populate(f va1400,11)

populate(f va1500,12)

populate(f va1600,13)

populate(f va1700,14) populate(f va1800,15)

populate(f va1900,16)

populate(f va2000,17)

for a in range(0,6):

F relt.append(findlt v(tot stor[0][a],f va300,sp n,) )

F relt.append(findlt v(tot stor[1][a],f va400,sp n,) )

F relt.append(findlt v(tot stor[2][a],f va500,sp n,) )

F relt.append(findlt v(tot stor[3][a],f va600,sp n,) )

F relt.append(findlt v(tot stor[4][a],f va700,sp n,) )

F relt.append(findlt v(tot stor[5][a],f va800,sp n,) )

F relt.append(findlt v(tot stor[6][a],f va900,sp n,) )

F relt.append(findlt v(tot stor[7][a],f va1000,sp n,) )

F relt.append(findlt v(tot stor[8][a],f va1100,sp n,) )
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F relt.append(findlt v(tot stor[9][a],f va1200,sp n,) )

F relt.append(findlt v(tot stor[10][a],f va1300,sp n,) )

F relt.append(findlt v(tot stor[11][a],f va1400,sp n,) )

F relt.append(findlt v(tot stor[12][a],f va1500,sp n,) )

F relt.append(findlt v(tot stor[13][a],f va1600,sp n,) )

F relt.append(findlt v(tot stor[14][a],f va1700,sp n,) )

F relt.append(findlt v(tot stor[15][a],f va1800,sp n,) )

F relt.append(findlt v(tot stor[16][a],f va1900,sp n,) )

F relt.append(findlt v(tot stor[17][a],f va2000,sp n,) )

for i in range(0,len(qcd k)):

WRITE FINAL VAL(i,str((i+3)*100),DESTRUCTIVE)

FOR PLOT STUFF(DESTRUCTIVE)

### MAKE PLUS POINT##################################

# THIS IS TO PUT THE PLUS SIGN IN LIMIT PLOT

ci dilepton dest p=[12.6, 0]

mass ci dilepton dest= [1300, 1400]

ci dilepton const p=[17, 0]

mass ci dilepton const= [1100, 1200]

ci dilepton dest p array= array( ‘f’,ci dilepton dest p )

mass ci dilepton dest array= array( ‘f’,mass ci dilepton dest )

ci dilepton const p array= array( ‘f’,ci dilepton const p )

mass ci dilepton const array= array( ‘f’,mass ci dilepton const )

thoplo ci dilepton dest =TGraph(1, mass ci dilepton dest array, ci dilepton dest p array)

thoplo ci dilepton dest.SetMarkerStyle(34)

thoplo ci dilepton dest.SetMarkerColor(kRed)

thoplo ci dilepton dest.SetMarkerSize(1.3)

thoplo ci dilepton const =TGraph(1, mass ci dilepton const array, ci dilepton const p array)
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thoplo ci dilepton const.SetMarkerStyle(34)

thoplo ci dilepton const.SetMarkerColor(kRed)

thoplo ci dilepton const.SetMarkerSize(1.3)

int lumi=LUMI/1000.

t = ROOT.TPaveLabel(0.18, 0.85, 0.86, 0.99, ‘CMS, #sqrts = 8 TeV, %0.1f fb{̂-1}’% round(int lumi,1),‘brNDC’)

t.SetTextSize(0.35)

t.SetBorderSize(0)

t.SetFillColor(0)

t.SetFillStyle(0)

MyStyle =TStyle(“MyStyle”,“My Style”)

MyStyle.SetCanvasBorderMode(0)

MyStyle.SetCanvasColor(10)

MyStyle.SetPadBorderMode(0)

MyStyle.SetPadColor(10)

MyStyle.SetPadBottomMargin(0.15)

MyStyle.SetPadLeftMargin(0.15)

MyStyle.SetPaperSize(18,24)

MyStyle.SetLabelSize(0.06,“XY”)

MyStyle.SetLabelOffset(0.01,“XY”)

MyStyle.SetTitleOffset(1.1,“XY”)

MyStyle.SetTitleSize(0.057,“XY”)

gROOT.SetStyle(“MyStyle”)

c1 = TCanvas( ’c1’,“”)

c2 = TCanvas( ’c2’,“”)

def LAST ABA PLOT(t):

gROOT.Reset()

c1.cd()

gStyle.SetOptFit(1)
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gStyle.SetOptStat(0)

gStyle.SetOptTitle(0)

c1.Range(200,4,2000,16)

c1.SetFillColor(0)

c1.SetBorderMode(0)

c1.SetBorderSize(2)

c1.SetTickx(1)

c1.SetTicky(1)

c1.SetLeftMargin(0.13)

c1.SetRightMargin(0.15)

c1.SetTopMargin(0.15)

c1.SetBottomMargin(0.15)

c1.SetFrameFillStyle(0)

c1.SetFrameBorderMode(0)

c1.SetFrameFillStyle(0)

c1.SetFrameBorderMode(0)

hr1=c1.DrawFrame(600,5,2000,16)

hr1.SetYTitle(“ 95% C.L. #Lambda [TeV] ”)

hr1.SetXTitle(“M eeL̂ow (GeV/c2̂)”)

hr1.GetXaxis().SetNdivisions(506)

c1.GetFrame().SetFillColor(21)

c1.GetFrame().SetBorderSize(12)

t.Draw(‘no pave’)

mg1 =TMultiGraph()

pt = TPaveText(0.3104027,0.8618881,0.7466443,0.9055944,“brNDC”)

pt.SetFillColor(kWhite)

pt.SetTextSize(0.14321678)

pt.Draw(“no pave”)
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pt1 =TPaveText(0.3137584,0.7622378,0.75,0.8059441,“brNDC”)

pt1.SetLineColor(kBlack)

pt1.SetFillColor(kWhite)

pt1.SetTextAlign(12)

pt1.SetTextSize(0.04020979)

text = pt1.AddText(“destructive interference”)

pt1.Draw(“no pave”)

x1=[ ]

for i in range(0,number step):

x1.append((i+3)*100)

print x1

n=number step

Low Mass = array( ’f’,x1 )

Lambda Dest min 1s= array( ’f’,Lambda Dest min 1s )

Lambda Const min 1s= array( ’f’,Lambda Const min 1s )

Lambda Dest min 2s= array( ’f’,Lambda Dest min 2s )

Lambda Const min 2s= array( ’f’,Lambda Const min 2s )

Lambda Dest max 1s= array( ’f’,Lambda Dest max 1s )

Lambda Const max 1s= array( ’f’,Lambda Const max 1s )

Lambda Dest max 2s= array( ’f’,Lambda Dest max 2s )

Lambda Const max 2s= array( ’f’,Lambda Const max 2s )

Lambda Const= array( ’f’,Lambda Const )

Lambda Dest= array( ’f’,Lambda Dest )

Data Lambda Const= array( ’f’,Data Lambda Const )

Data Lambda Dest= array( ’f’,Data Lambda Dest )

grmin 1s Dest = TGraph(n, Low Mass, Lambda Dest min 1s)

grmin 1s Const = TGraph(n, Low Mass, Lambda Const min 1s)

grmin 2s Dest = TGraph(n, Low Mass, Lambda Dest min 2s)
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grmin 2s Const = TGraph(n, Low Mass, Lambda Const min 2s)

grmax 1s Dest = TGraph(n, Low Mass, Lambda Dest max 1s)

grmax 1s Const = TGraph(n, Low Mass, Lambda Const max 1s)

grmax 2s Dest = TGraph(n, Low Mass, Lambda Dest max 2s)

grmax 2s Const = TGraph(n, Low Mass, Lambda Const max 2s)

gr Dest =TGraph(n, Low Mass, Lambda Dest)

gr Dest.SetLineStyle(7)

gr Dest.SetLineColor(kBlue)

gr Dest.SetLineWidth(3)

gr Const= TGraph(n, Low Mass, Lambda Const)

gr Const.SetLineStyle(7)

gr Const.SetLineColor(kBlue)

gr Const.SetLineWidth(3)

grshade 1s Dest =TGraph(2*n)

grshade 1s Const =TGraph(2*n)

grshade 2s Dest = TGraph(2*n)

grshade 2s Const =TGraph(2*n)

gr3 Dest =TGraph(n, Low Mass, Data Lambda Dest)

gr3 Const =TGraph(n, Low Mass, Data Lambda Const)

gr3 Const.SetLineColor(kBlack)

for i in range(0,n):

grshade 1s Dest.SetPoint(i,Low Mass[i],Lambda Dest max 1s[i])

grshade 1s Dest.SetPoint(n+i,Low Mass[n-i-1],Lambda Dest min 1s[n-i-1])

grshade 1s Const.SetPoint(i,Low Mass[i],Lambda Const max 1s[i])

grshade 1s Const.SetPoint(n+i,Low Mass[n-i-1],Lambda Const min 1s[n-i-1])

grshade 2s Dest.SetPoint(i,Low Mass[i],Lambda Dest max 2s[i])

grshade 2s Dest.SetPoint(n+i,Low Mass[n-i-1],Lambda Dest min 2s[n-i-1])

grshade 2s Const.SetPoint(i,Low Mass[i],Lambda Const max 2s[i]);
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grshade 2s Const.SetPoint(n+i,Low Mass[n-i-1],Lambda Const min 2s[n-i-1])

grshade 2s Dest.SetFillColor(kGreen);

grshade 2s Dest.Draw(“f”)

grshade 1s Dest.SetFillColor(kYellow);

grshade 1s Dest.Draw(“f”)

gr3 Dest.Draw(“L”)

gr Dest.Draw(“same”)

thoplo ci dilepton dest.Draw(‘P same’)

line = TLine(2.0,0.95,7.95297,0.95)

line.SetLineStyle(3)

line.Draw(“same”)

line1 = TLine(7.95297,0.00,7.95297,0.95)

line1.SetLineStyle(3)

line1.Draw(“same”)

leg = TLegend(0.3912752,0.1562937,0.7402685,0.3818182)

leg.SetFillColor(kWhite)

leg.SetTextSize(0.03)

leg.AddEntry(gr Dest,“Expected limit”,“L”)

leg.AddEntry(grshade 1s Dest,“Expected limit 1#sigma”,“f”)

leg.AddEntry(grshade 2s Dest,“Expected limit 2#sigma”,“f”)

leg.AddEntry(gr3 Dest,“Observed limit”,“L”)

leg.AddEntry(thoplo ci dilepton dest, ”best expected limit”, ”P”);

leg.Draw(“same”)

pt = TPaveText(0.35,0.94,0.786,0.97)

pt.SetLineColor(0)

pt.SetFillColor(kWhite)

pt.SetTextAlign(12)

pt.SetTextSize(0.03496503)
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text = pt.AddText(“CMS Preliminary DESTRUCTIVE”)

pt.Draw(“nopave”)

c2.cd()

gPad.DrawFrame(600,6,2000.0,16)

gStyle.SetOptFit(1)

gStyle.SetOptStat(0)

gStyle.SetOptTitle(0)

c2.Range(200,4,2000,16)

c2.SetFillColor(0)

c2.SetBorderMode(0)

c2.SetBorderSize(2)

c2.SetTickx(1)

c2.SetTicky(1)

c2.SetLeftMargin(0.19)

c2.SetRightMargin(0.11)

c2.SetTopMargin(0.15)

c2.SetBottomMargin(0.15)

c2.SetFrameFillStyle(0)

c2.SetFrameBorderMode(0)

c2.SetFrameFillStyle(0)

c2.SetFrameBorderMode(0)

hr2=c2.DrawFrame(300,5,2000,25)

hr2.SetYTitle(“ 95% C.L. #Lambda [TeV]”)

hr2.SetXTitle(“M ee{̂Low} (GeV/c2̂)”)

hr2.GetXaxis().SetNdivisions(506)

hr2.GetYaxis().SetNdivisions(508)

new pt = TPaveText(0.3104027,0.8618881,0.7466443,0.9055944,“brNDC”)

new pt.SetLineColor(0)
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new pt.SetFillColor(kWhite)

new pt.SetTextAlign(12)

new pt.SetTextSize(0.04321678)

new pt.Draw(“nopave”)

new pt1 =TPaveText(0.4137584,0.7622378,0.75,0.8059441,“brNDC”)

new pt1.SetLineColor(kBlack)

new pt1.SetFillColor(kWhite)

new pt1.SetTextAlign(12)

new pt1.SetTextSize(0.04020979)

text = new pt1.AddText(“constructive interference”)

new pt1.Draw(“nopave”)

c2.GetFrame().SetFillColor(21)

c2.GetFrame().SetBorderSize(12)

grshade 2s Const.GetXaxis().SetTitle(“M ee{̂Low} (GeV/c{̂2})”)

mg2 = TMultiGraph()

grshade 2s Const.SetFillColor(kGreen)

grshade 2s Const.Draw(“f”)

grshade 1s Const.SetFillColor(kYellow)

grshade 1s Const.Draw(“f”)

thoplo ci dilepton const.Draw(‘P’)

r3 Const.Draw(“L”)

gr Const.Draw(‘L’)

gPad.Modified()

line2 = TLine(10.0054,0.00,10.0054,0.95)

line2.SetLineStyle(3)

line2.Draw(“SAME”)

line3 = TLine(2.0,0.95,10.0054,0.95)

line3.SetLineStyle(3)
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line3.Draw(“SAME”)

leg1 = TLegend(0.3912752,0.1562937,0.7402685,0.3818182)

leg1.SetFillColor(kWhite)

leg1.SetTextSize(0.03)

leg1.AddEntry(gr Const,“Expected limit”,“L”)

leg1.AddEntry(grshade 1s Const,“Expected limit 1#sigma”,“f”)

leg1.AddEntry(grshade 2s Const,“Expected limit 2#sigma”,“f”)

leg1.AddEntry(gr3 Const,“Observed limit”,“L”)

leg1.AddEntry(thoplo ci dilepton const, ”best expected limit”, ”P”);

leg1.Draw(“same”)

pt 1 = TPaveText(0.3,0.8576224,0.736,0.9013287,“brNDC”)

pt 1.SetLineColor(0)

pt 1.SetFillColor(kWhite)

pt 1.SetTextAlign(12)

pt 1.SetTextSize(0.03321678)

pt 1.Draw(“nopave”)

t.Draw(‘no pave’)

pt new = TPaveText(0.35,0.94,0.786,0.97,“brNDC”)

pt new.SetLineColor(0)

pt new.SetFillColor(kWhite)

pt new.SetTextAlign(12)

pt new.SetTextSize(0.03496503)

text2 = pt new.AddText(“CMS Preliminary CONSTRUCTIVE”)

text2.Draw(‘no pave’)

c2.Update()

c1.Update()

c1.SaveAs(‘des electron 19p5ifblt v.pdf’)

c2.SaveAs(‘con electron 19p5ifblt v.pdf’)
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WHOLE THING(True)

myfile.writelines(“\n”)

WHOLE THING(False)

myfile.close()

LAST ABA PLOT(t)

D.2 Python script for K-factor calculation

####################

# Module Name : kfactor.py

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program calculates k-factor as a function of minimum di-lepton mass starting

# from 200 GeV to 2 TeV using the root files prepared by programs given in B

####################

from ROOT import *

from glob import glob

from ROOT import TChain

import math

from ROOT import TCanvas, TFormula, TF1,TFile,TH1F

from ROOT import gROOT, gObjectTable

import ROOT

import math

from math import *

import os
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from array import array

ROOT.gROOT.Reset()

class EVENT INFORMATION(object):

def init (self,evn,evr):

self.evn=evn

self.evr=evr

pth=[ ]

mcat=[ ]

def make bin(ROOT FILE,sig,ev,WHICH MC,START MASS SAMPLE):

pramod=EVENT INFORMATION(0.0,0.0)

TARGET LUMI TO NORMALIZE ALL SAMPLES=143687.4

f=TFile(ROOT FILE)

GEN HIS=f.Get(‘INVMASS RECOPTETA’)

LUMI OF THIS SAMPLE=ev/sig # IN PICO BARN INVERSE

SCALE FACTOR=TARGET LUMI TO NORMALIZE ALL SAMPLES/LUMI OF THIS SAMPLE

EVENT COUNT=0.0

evr=0.0

for i in range((START MASS SAMPLE/10)+1,(4000/10)+2):

EVENT COUNT+=GEN HIS.GetBinContent(i)

evr+=pow(GEN HIS.GetBinError(i),2)

if evr>0.0:

evr=math.sqrt(evr)

pramod.evn=EVENT COUNT*SCALE FACTOR

pramod.evr=evr*SCALE FACTOR

if WHICH MC==‘pth’:

pth.append(pramod)

if WHICH MC==‘mcat’:

mcat.append(pramod)
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fmt=”

def CALCULATION PART(pth,mcat):

for i in range(0,len(pth)):

to PY ENTRY,to PY ERROR,to mcn ENTRY,

to mcn ERROR,k factor,k factor err=0.0,0.0,0.0,0.0,0.0,0.0

to PY ENTRY=pth[i].evn

to PY ERROR=pth[i].evr

to mcn ENTRY=mcat[i].evn

to mcn ERROR=mcat[i].evr

k factor=to mcn ENTRY/to PY ENTRY

k factor err=k factor

*math.sqrt((pow(to PY ERROR/to PY ENTRY,2)+pow(to mcn ERROR/to mcn ENTRY,2)))

fmt=”make bin(‘mcn 200.root’, 1.500 , 177287 , ‘mcat’,200)

make bin(‘mcn 300.root’, 0.3383 , 179591 , ‘mcat’,300)

make bin(‘mcn 400.root’, 0.1130 , 180655 , ‘mcat’,400)

make bin(‘mcn 500.root’, 4.6255E-02, 181476 , ‘mcat’,500)

make bin(‘mcn 600.root’, 2.1451E-02, 182044 , ‘mcat’,600)

make bin(‘mcn 700.root’, 1.0854E-02, 182880 , ‘mcat’,700)

make bin(‘mcn 800.root’, 5.8270E-03, 183259 , ‘mcat’,800)

make bin(‘mcn 900.root’, 3.2788E-03, 183737 , ‘mcat’,900)

make bin(‘mcn 1000.root’, 1.9114E-03, 184054 , ‘mcat’,1000)

make bin(‘mcn 1100.root’, 1.1484E-03, 184581 , ‘mcat’,1100)

make bin(‘mcn 1200.root’, 7.0549E-04, 184862 , ‘mcat’,1200)

make bin(‘mcn 1300.root’, 4.4213E-04, 185211 , ‘mcat’,1300)

make bin(‘mcn 1400.root’, 2.8160E-04, 185494 , ‘mcat’,1400)

make bin(‘mcn 1500.root’, 1.8186E-04, 185760 , ‘mcat’,1500)

make bin(‘mcn 1600.root’, 1.1885E-04, 186023 , ‘mcat’,1600)
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make bin(‘mcn 1700.root’, 7.8392E-05, 186076 , ‘mcat’,1700)

make bin(‘mcn 1800.root’, 5.2184E-05, 186189 , ‘mcat’,1800)

make bin(‘mcn 1900.root’, 3.5070E-05, 186676 , ‘mcat’,1900)

make bin(‘mcn 2000.root’, 2.3689E-05, 186916 , ‘mcat’,2000)

make bin(‘PY 200 INF.root’, 1.17700000,199994,‘pth’,200)

make bin(‘PY 300 INF.root’, 0.26170000,199992,‘pth’,300)

make bin(‘PY 400 INF.root’, 0.08690000,199998,‘pth’,400)

make bin(‘PY 500 INF.root’, 0.03556000,199996,‘pth’,500)

make bin(‘PY 600 INF.root’, 0.01650000,199999,‘pth’,600)

make bin(‘PY 700 INF.root’, 0.00836200,199996,‘pth’,700)

make bin(‘PY 800 INF.root’, 0.00450800,199998,‘pth’,800)

make bin(‘PY 900 INF.root’, 0.00254500,200000,‘pth’,900)

make bin(‘PY 1000 INF.root’,0.00149100,200000,‘pth’,1000)

make bin(‘PY 1100 INF.root’,0.00090080,200000,‘pth’,1100)

make bin(‘PY 1200 INF.root’,0.00055450,200000,‘pth’,1200)

make bin(‘PY 1300 INF.root’,0.00034910,199999,‘pth’,1300)

make bin(‘PY 1400 INF.root’,0.00022260,199998,‘pth’,1400)

make bin(‘PY 1500 INF.root’,0.00014450,200000,‘pth’,1500)

make bin(‘PY 1600 INF.root’,0.00009428,199999,‘pth’,1600)

make bin(‘PY 1700 INF.root’,0.00006236,200000,‘pth’,1700)

make bin(‘PY 1800 INF.root’,0.00004152,200000,‘pth’,1800)

make bin(‘PY 1900 INF.root’,0.00002785,200000,‘pth’,1900)

make bin(‘PY 2000 INF.root’,0.00001874,200000,‘pth’,2000)

CALCULATION PART(pth,mcat)
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D.3 Python script for PDF uncertainty calculation

####################

# Module Name : PDF.py

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program calculates PDF uncertainty as a function of minimum di-lepton

# mass starting from 200 GeV to 2 TeV using the root files prepared by programs given in B

####################

from ROOT import TCanvas, TGraph

from ROOT import gROOT

from math import sin

from ROOT import*

import ROOT

from array import array

from ROOT import TCanvas, TGraphErrors

pramod lamichhane=[ ]

scale to68=1.64485 # Supply 1 if the chosen PDFSET gives at 68%

COMMON LUMI=5252 # in picobarns

CROSS SECTION=[12.16,1.517,1.517,1.517,0.1112, 0.4515 , 0.4515, 0.01048,0.01048,0.005615,0.005615,

0.005615,0.001837, 0.001837 , 0.001837 , 0.001837 ,1.744e-4,1.744e-4,1.744e-4]

ROOTFILES=[‘tr evdy120’,‘tr evdy200’,‘tr evdy200’,‘tr evdy200’,

‘tr evdy400’,‘tr evdy500’,‘tr evdy500’,‘tr evdy700’,

‘tr evdy700’,‘tr evdy800’,‘tr evdy800’,‘tr evdy800’,‘tr evdy1000’,‘tr evdy1000’,‘tr evdy1000’,

‘tr evdy1000’,‘tr evdy1500’,‘tr evdy1500’,‘tr evdy1500’]

EVENTS NUMBER=[99987,99991,99991,99991,99986,99986,99986,
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99990,99990,99990,99990,99990,99992,99992,99992,99992,99999,99999,99999]

pdf un v UP=[ ]

pdf un v DOWN=[ ]

ALL 100GEV INFORMATION=[ ]

def pdf uncertainty calc(ROOT FILE NAME,SURU MASS,ANTIM MASS,a):

pl1=ROOT.TFile(ROOT FILE NAME+’.root’)

PLUS=pl1.Get(‘Dimuon reco PLUS’)

MINUS=pl1.Get(‘Dimuon reco MINUS’)

CENTRAL=pl1.Get(‘Dimuon reco CENTRAL’)

PLUS ,CENTRAL ,MINUS =0.0,0.0,0.0

for i in range((SURU MASS/10)+1,(ANTIM MASS/10)+1):

PLUS +=PLUS.GetBinContent(i)

CENTRAL +=CENTRAL.GetBinContent(i)

MINUS +=MINUS.GetBinContent(i)

PLUS =PLUS *COMMON LUMI/(EVENTS NUMBER[a]/CROSS SECTION[a])

CENTRAL =CENTRAL *COMMON LUMI/(EVENTS NUMBER[a]/CROSS SECTION[a])

MINUS =MINUS *COMMON LUMI/(EVENTS NUMBER[a]/CROSS SECTION[a])

ALL 100GEV INFORMATION.append([PLUS ,CENTRAL ,MINUS ])

for i in range(0,len(ROOTFILES)-1):

pdf uncertainty calc(ROOTFILES[i],(i+2)*100,(i+3)*100,i)

pdf uncertainty calc(ROOTFILES[18],2000,4001,18)

fmt=“%s%i%s%10.1f%s%10.1f \t %10.5f%10.5f%10.5f”

for i in range(0,len(ALL 100GEV INFORMATION)):

up events,central,down events=0.0,0.0,0.0

for a in range(i,len(ALL 100GEV INFORMATION)):

up events+=ALL 100GEV INFORMATION[a][0]

central+=ALL 100GEV INFORMATION[a][1]

down events+=ALL 100GEV INFORMATION[a][2]
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pdf un v UP.append(round((up events-central)/central*100/scale to68,5))

pdf un v DOWN.append(round((down events-central)/central*100/scale to68,5))

print fmt%(‘MINMASS \t ’,(i+2)*100,‘ \t UP % \t ’,

round((up events-central)/central*100/scale to68,1),

‘ \t DOWN% \t ’,round((-down events+central)/central*100/scale to68,1),

round(up events,5),round(central,5),round(down events,5))

D.4 Python script to count the events as a function of

minimum di-electron mass

####################

# Module Name : COUNER.py

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program calculates cross-section and errors as a function of

# minimum di-lepton mass starting from 300 GeV to 2.5 TeV using the root files prepared

# by programs given in B

####################

from ROOT import *

from glob import glob

from ROOT import TChain

import math

from ROOT import TCanvas, TFormula, TF1,TFile,TH1F

from ROOT import gROOT, gObjectTable
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import ROOT

import math

from math import *

import os

from array import array

ci,ci MUON,ci ELECTRON=[ ],[ ],[ ]

ELECTRON KI MUON=input(‘PRESS 1 FOR ELECTRON AND 2 FOR MUON:\t \t’)

cl y=0.0

if ELECTRON KI MUON==2:

cl y=20000. #lumi o f the latest json release

if ELECTRON KI MUON==1:

cl y=20000. #lumi o f the latest json release

cl y CORRECT VALUE=input(‘IF THIS LUMI IS NOT CORRECT, SUPPLY CORRECT LUMI

IN PICOBARNS (IF CORRECT,JUST TYPE 0 TO SKIP):\t \t’)

if not cl y CORRECT VALUE==0:

cl y=cl y CORRECT VALUE

M300 RANGE=[300,600]

M500 RANGE=[600,1000]

M800 RANGE=[1000,4001] #INCLUDING OVER FLOW

WHOLE THING=[ ]

ROOT.gROOT.Reset()

class INFORMATION(object):

def init (self,RECO EVENT,re r):

self.RECO EVENT=RECO EVENT

self.re r=re r

fmt str1=”%10.2f”

fmt str=”%s%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f%10.f”

class sample(object):
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def init (self, name,cross section,events,filter eff):

self.name = name

self.cross section = cross section

self.events= events

self.filter eff=filter eff

ci MUON=[

sample(‘CIToMuMu ITCM5 M-300 TuneZ2star’, 0.2619, 50970 , 0.766 ),

sample(‘CIToMuMu ITCM5 M-500 TuneZ2star’, 0.03549, 24832 , 0.873 ),

sample(‘CIToMuMu ITCM5 M-800 TuneZ2star’, 0.004512, 25343 , 0.902 ),

sample(‘CIToMuMu Con Lambda-9 M-300’, 0.3026, 49833 , 0.786 ),

sample(‘CIToMuMu Con Lambda-9 M-500’, 0.0568 , 25281 , 0.861 ),

sample(‘CIToMuMu Con Lambda-9 M-800’, 0.01454, 25052 , 0.917 ),

sample(‘CIToMuMu Con Lambda-11 M-300’, 0.2847 , 52138 , 0.748 ),

sample(‘CIToMuMu Con Lambda-11 M-500’, 0.04717 , 23564 , 0.923 ),

sample(‘CIToMuMu Con Lambda-11 M-800’, 0.009625, 26822 , 0.855 ),

sample(‘CIToMuMu Con Lambda-13 M-300’, 0.2779 , 48959 , 0.766 ),

sample(‘CIToMuMu Con Lambda-13 M-500’, 0.04288, 25099 , 0.863 ),

sample(‘CIToMuMu Con Lambda-13 M-800’, 0.007523 , 14312 , 0.917 ),

sample(‘CIToMuMu Con Lambda-15 M-300’, 0.272 , 49943 , 0.779 ),

sample(‘CIToMuMu Con Lambda-15 M-500’, 0.04031 , 24997 , 0.869 ),

sample(‘CIToMuMu Con Lambda-15 M-800’, 0.006455 , 25714 , 0.89 ),

sample(‘CIToMuMu Con Lambda-17 M-300’, 0.2697, 49647 , 0.79 ),

sample(‘CIToMuMu Con Lambda-17 M-500’, 0.03913, 25528 , 0.849 ),

sample(‘CIToMuMu Con Lambda-17 M-800’, 0.005868 , 24659 , 0.926 ),

sample(‘CIToMuMu Con Lambda-19 M-300’, 0.2676, 49758 , 0.786 ),

sample(‘CIToMuMu Con Lambda-19 M-500’, 0.03817 , 24931 , 0.866 ),

sample(‘CIToMuMu Con Lambda-19 M-800’, 0.005514, 25154 , 0.911 ),

sample(‘CIToMuMu ITCM5 M-300 TuneZ2star’, 0.2619 ,50970 , 0.766 ),
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sample(‘CIToMuMu ITCM5 M-500 TuneZ2star’, 0.03549 ,24832 , 0.873 ),

sample(‘CIToMuMu ITCM5 M-800 TuneZ2star’, 0.004512 ,25343 , 0.902 ),

sample(‘CIToMuMu Des Lambda-9 M-300’, 0.2559 , 49393 , 0.802 ),

sample(‘CIToMuMu Des Lambda-9 M-500’, 0.0391 , 25620 , 0.865 ),

sample(‘CIToMuMu Des Lambda-9 M-800’, 0.008847 , 25167 , 0.93 ),

sample(‘CIToMuMu Des Lambda-11 M-300’, 0.2539 , 50532 , 0.78 ),

sample(‘CIToMuMu Des Lambda-11 M-500’, 0.03531 , 25531 , 0.861 ),

sample(‘CIToMuMu Des Lambda-11 M-800’, 0.005811 , 24955 , 0.933 ),

sample(‘CIToMuMu Des Lambda-13 M-300’, 0.2543 , 50248 , 0.778 ),

sample(‘CIToMuMu Des Lambda-13 M-500’, 0.03399 , 24100 , 0.868 ),

sample(‘CIToMuMu Des Lambda-13 M-800’, 0.004776, 24990 , 0.926 ),

sample(‘CIToMuMu Des Lambda-15 M-300’, 0.2565 , 49444 , 0.791 ),

sample(‘CIToMuMu Des Lambda-15 M-500’, 0.03391 , 25890 , 0.844 ),

sample(‘CIToMuMu Des Lambda-15 M-800’, 0.004429 , 25040 , 0.922 )]

ci ELECTRON=[

sample(‘CIToEE ITCM5 M-300 TuneZ2star’, 0.2621 , 55751 , 0.778 ),

sample(‘CIToEE ITCM5 M-500 TuneZ2star’, 0.03562 , 26056 , 0.886 ),

sample(‘CIToEE ITCM5 M-800 TuneZ2star’, 0.004503 , 25672 , 0.929 ),

sample(‘CIToEE Con Lambda-9 M-300’, 0.3041 , 57300 , 0.76 ),

sample(‘CIToEE Con Lambda-9 M-500’, 0.05713 , 26797 , 0.866 ),

sample(‘CIToEE Con Lambda-9 M-800’, 0.01445 , 26111 , 0.918 ),

sample(‘CIToEE Con Lambda-11 M-300’, 0.2852 , 55922 , 0.778 ),

sample(‘CIToEE Con Lambda-11 M-500’, 0.04739 , 25322 , 0.918 ),

sample(‘CIToEE Con Lambda-11 M-800’, 0.009645 , 28215 , 0.849 ),

sample(‘CIToEE Con Lambda-13 M-300’, 0.2761 , 56620 , 0.764 ),

sample(‘CIToEE Con Lambda-13 M-500’, 0.04289 , 26748 , 0.868 ),

sample(‘CIToEE Con Lambda-13 M-800’, 0.007542 , 26514 , 0.9 ),

sample(‘CIToEE Con Lambda-15 M-300’, 0.2722 , 55469 , 0.782 ),
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sample(‘CIToEE Con Lambda-15 M-500’, 0.04034 , 27087 , 0.856 ),

sample(‘CIToEE Con Lambda-15 M-800’, 0.00648 , 26689 , 0.897 ),

sample(‘CIToEE Con Lambda-17 M-300’, 0.2693 , 55000 , 0.79 ),

sample(‘CIToEE Con Lambda-17 M-500’, 0.03915 , 26595 , 0.87 ),

sample(‘CIToEE Con Lambda-17 M-800’, 0.005877 , 25983 , 0.919 ),

sample(‘CIToEE Con Lambda-19 M-300’, 0.2676 , 54189 , 0.799 ),

sample(‘CIToEE Con Lambda-19 M-500’, 0.03821 , 26380 , 0.875 ),

sample(‘CIToEE Con Lambda-19 M-800’, 0.005518 , 26022 , 0.916 ),

sample(‘CIToEE ITCM5 M-300 TuneZ2star’, 0.2621 , 55751 , 0.778 ),

sample(‘CIToEE ITCM5 M-500 TuneZ2star’, 0.03562 , 26056 , 0.886 ),

sample(‘CIToEE ITCM5 M-800 TuneZ2star’, 0.004503 , 25672 , 0.929 ),

sample(‘CIToEE Des Lambda-9 M-300’, 0.2555 , 55269 , 0.791 ),

sample(‘CIToEE Des Lambda-9 M-500’, 0.03886 , 26553 , 0.882 ),

sample(‘CIToEE Des Lambda-9 M-800’, 0.008843 , 26328 , 0.917 ),

sample(‘CIToEE Des Lambda-11 M-300’, 0.2536 , 56049 , 0.778 ),

sample(‘CIToEE Des Lambda-11 M-500’, 0.03516 , 26246 , 0.891 ),

sample(‘CIToEE Des Lambda-11 M-800’, 0.005808 , 25814 , 0.933 ),

sample(‘CIToEE Des Lambda-13 M-300’, 0.2542 , 55248 , 0.789 ),

sample(‘CIToEE Des Lambda-13 M-500’, 0.03418 , 33874 , 0.685 ),

sample(‘CIToEE Des Lambda-13 M-800’, 0.004786 , 26239 , 0.916 ),

sample(‘CIToEE Des Lambda-15 M-300’, 0.2554 , 56123 , 0.774 ),

sample(‘CIToEE Des Lambda-15 M-500’, 0.0338 , 26563 , 0.871 ),

sample(‘CIToEE Des Lambda-15 M-800’, 0.004403 , 26297 , 0.91 )]

file event=open(‘ci EVENT.txt’,’a’)

file error=open(‘ci ERROR.txt’,’a’)

if ELECTRON KI MUON ==1:

HISTO NAME RECO=‘W DiELECTRON reco’



216
APPENDIX
APPENDIX

APPENDIX D
ci=ci ELECTRON

else:

HISTO NAME RECO=’Dimuon reco’

ci=ci MUON

for i in range(0,len(ci),3):

h300=TFile(‘TRIGGER EVENT ’+ci[i].name+’.root’)

h500=TFile(‘TRIGGER EVENT ’+ci[i+1].name+’.root’)

h800=TFile(‘TRIGGER EVENT ’+ci[i+2].name+’.root’)

his 300=h300.Get(HISTO NAME RECO)

his 500=h500.Get(HISTO NAME RECO)

his 800=h800.Get(HISTO NAME RECO)

MY 100 GEV VALUES=[ ]

for a in range(3,26):

re300,re r 300,re500,re r 500,re800,re r 800=0.0,0.0,0.0,0.0,0.0,0.0

pramod 300=INFORMATION(0.0,0.0)

pramod 500=INFORMATION(0.0,0.0)

pramod 800=INFORMATION(0.0,0.0)

last number=(a+1)*10+1

if a==25:last number=402

SCALE 300,SCALE 500,SCALE 800=0.0,0.0,0.0

for ii in range(a*10+1,last number):

re300+=his 300.GetBinContent(ii)

re r 300+=pow(his 300.GetBinError(ii),2)

re500+=his 500.GetBinContent(ii)

re r 500+=pow(his 500.GetBinError(ii),2)

re800+=his 800.GetBinContent(ii)

re r 800+=pow(his 800.GetBinError(ii),2)

if re r 300>0.0:
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re r 300=math.sqrt(re r 300)

if re r 500>0.0:

re r 500=math.sqrt(re r 500)

if re r 800>0.0:

re r 800=math.sqrt(re r 800)

SCALE 300=(ci[i].filter eff*cl y*ci[i].cross section)/(ci[i].events)

SCALE 500=(ci[i+1].filter eff*cl y*ci[i+1].cross section)/(ci[i+1].events)

SCALE 800=(ci[i+2].filter eff*cl y*ci[i+2].cross section)/(ci[i+2].events)

pramod 300.RECO EVENT=re300*SCALE 300

pramod 300.re r=re r 300*SCALE 300

pramod 500.RECO EVENT=re500*SCALE 500

pramod 500.re r=re r 500*SCALE 500

pramod 800.RECO EVENT=re800*SCALE 800

pramod 800.re r=re r 800*SCALE 800

MY 100 GEV VALUES.append([pramod 300,pramod 500,pramod 800])

WHOLE THING.append([MY 100 GEV VALUES,ci[i].name.strip(‘M-300’).strip(‘TuneZ2star’)])

file event.writelines(fmt str%(‘SAMPLE NAME -> Min Mass :’,300,400,500,600,700,800,900,1000,

1100,1200,1300,1400,1500,1600,1700,1800,1900,2000,2100,2200,2300,2400,2500))

file error.writelines(fmt str%(‘SAMPLE NAME -> Min Mass :’,300,400,500,600,700,800,900,1000,

1100,1200,1300,1400,1500,1600,1700,1800,1900,2000,2100,2200,2300,2400,2500))

file event.writelines(‘\n’ )

file error.writelines(‘\n’ )

for stuff in WHOLE THING:

newlength=len(‘SAMPLE NAME -> Min Mass :’)-len(stuff[1]+’:’)

mero afnaistring=’ ’*newlength

file event.writelines(stuff[1]+mero afnaistring+’:’,)
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file error.writelines(stuff[1]+mero afnaistring+’:’,)

RECO TEMP,RECO ERR TEMP=0.0,0.0

for m in range(0,23):

RECO TEMP,RECO ERR TEMP=0.0,0.0

if m<3:

for i in range(m,3):

RECO TEMP+=stuff[0][i][0].RECO EVENT

RECO ERR TEMP+=pow(stuff[0][i][0].re r,2)

for i in range(3,7):

RECO TEMP+=stuff[0][i][1].RECO EVENT

RECO ERR TEMP+=pow(stuff[0][i][1].re r,2)

for i in range(7,23):

RECO TEMP+=stuff[0][i][2].RECO EVENT

RECO ERR TEMP+=pow(stuff[0][i][2].re r,2)

if m>2 and m<7:

for i in range(m,7):

RECO TEMP+=stuff[0][i][1].RECO EVENT

RECO ERR TEMP+=pow(stuff[0][i][1].re r,2)

for i in range(7,23):

RECO TEMP+=stuff[0][i][2].RECO EVENT

RECO ERR TEMP+=pow(stuff[0][i][2].re r,2)

if m>6:
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for i in range(m,23):

RECO TEMP+=stuff[0][i][2].RECO EVENT

RECO ERR TEMP+=pow(stuff[0][i][2].re r,2)

file event.writelines(fmt str1%(RECO TEMP,))

file error.writelines(fmt str1%(math.sqrt(RECO ERR TEMP),))

file event.writelines(‘\n’ )

file error.writelines(‘\n’ )

file event.close()

file error.close()

D.5 Python script to produce generator and FULL-

simulation config files for Contact Interaction pro-

cess

####################

# Module Name : CONFIG CREATOR.py

# Author : Pramod Lamichhane

# Date : Aug 2013

# Last modified : Feb 2013

# Purpose : This program creates all the configuration files (gen fragments, GEN config and

FULL-SIM config) required for CI analysis

####################

import os

import string

lambda =[9000,11000,13000,15000,17000,19000]

ckin1=[300,500,800]
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ckin2=500

CI CONFIG2,CI CONFIG3=‘’,‘’

CI CONFIG1=’cmsDriver.py Configuration/GenProduction/python/EightTeV/’

FULL SIM KI GEN=input(‘1 FOR FULL SIM AND 2 FOR VALIDATION STUFF:\t \n’)

if FULL SIM KI GEN==1:

CI CONFIG2=‘ -s GEN,SIM,DIGI,L1,DIGI2RAW,HLT:GRun,RAW2DIGI,RECO –pileup

2012 Startup 50ns PoissonOOTPU –conditions auto:startup –datatier GEN-SIM-RECO –eventcontent

AODSIM -n 10 –no exec’

else:

CI CONFIG2=‘ -s GEN –conditions START53 V6::All –beamspot

Realistic8TeVCollision –datatier GEN-SIM –eventcontent RAWSIM -n 50000 –no exec’

CI CONFIG3=‘ -s GEN,SIM –conditions START53 V6::All –beamspot

Realistic8TeVCollision –datatier GEN-SIM –eventcontent RAWSIM -n 20 –no exec’

FRAGMENT ONE=“‘

import FWCore.ParameterSet.Config as cms

source = cms.Source(”EmptySource”)

from Configuration.Generator.PythiaUEZ2starSettings cfi import *

generator = cms.EDFilter(”Pythia6GeneratorFilter”,

pythiaHepMCVerbosity = cms.untracked.bool(False),

maxEventsToPrint = cms.untracked.int32(0),

pythiaPylistVerbosity = cms.untracked.int32(0),

filterEfficiency = cms.untracked.double(1.0),

comEnergy = cms.double(8000.0),

PythiaParameters = cms.PSet(

pythiaUESettingsBlock,

processParameters = cms.vstring(
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”’

FRAGMENT TWO=“‘

‘MSEL = 0 !User defined process’,

‘MSUB(165) = 1 !CI+g*/Z–>ee’,

‘MSTP(32) = 4 !forcing a 2–>2 process to 2–>1 process’,

”’

CONSTRUCTIVE=“‘

‘RTCM(42) =-1 !Constructive Interference’,

”’

DESTRUCTIVE=“‘

‘RTCM(42) =1 !Destructive Interference’,

”’

FRAGMENT MSUB=“‘

‘MSEL = 0 !User defined process’,

‘MSUB(1) = 1 !Inclusive Z/Gamma* production’,

‘MSTP(43) = 3 !Both Z0 and gamma*’,

‘MDME( 174,1) = 0 !Z decay into d dbar’,

‘MDME( 175,1) = 0 !Z decay into u ubar’,

‘MDME( 176,1) = 0 !Z decay into s sbar’,

‘MDME( 177,1) = 0 !Z decay into c cbar’,

‘MDME( 178,1) = 0 !Z decay into b bbar’,

‘MDME( 179,1) = 0 !Z decay into t tbar’,

‘MDME( 182,1) = 1 !Z decay into e- e+’,

‘MDME( 183,1) = 0 !Z decay into nu e nu ebar’,

‘MDME( 184,1) = 0 !Z decay into mu- mu+’,

‘MDME( 185,1) = 0 !Z decay into nu mu nu mubar’,

‘MDME( 186,1) = 0 !Z decay into tau- tau+’,
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‘MDME( 187,1) = 0 !Z decay into nu tau nu taubar’,

”’

ITCM5 0=“‘

‘ITCM(5) = 0 !LL, all upper quarks composite’,

‘KFPR(165,1) = 11 !e+ e- final state’,

”’

LAMBDA PACHHIKO=“‘

’ITCM(5) = 2 !LL, all upper quarks composite’,

’KFPR(165,1) = 11 !e+ e- final state’,

”’

FRAGMENT THREE=“‘

parameterSets = cms.vstring(‘pythiaUESettings’,

’processParameters’)

)

)

eegenfilter = cms.EDFilter(“MCParticlePairFilter”,

Status = cms.untracked.vint32(1, 1),

MinPt = cms.untracked.vdouble(30, 30),

MaxEta = cms.untracked.vdouble(3.0, 3.0),

MinEta = cms.untracked.vdouble(-3.0, -3.0),

ParticleCharge = cms.untracked.int32(-1),

ParticleID1 = cms.untracked.vint32(11),

ParticleID2 = cms.untracked.vint32(11)

)
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ProductionFilterSequence = cms.Sequence(generator*eegenfilter)

”’

kun process=input(‘Which process you want?

MSUB=1,ITCM(5)=2,CI(CONSTRUCTIVE)=3,CI(DESTRUCTIVE=4)’)

for b in range(0,len(ckin1)):

CKIN1=“ ‘CKIN(1) = ”+str(ckin1[b]) +” !Minimum sqrt (s hat) value’),\n”

CKIN2=“ # ‘CKIN(2) = ”+str(ckin2)+” !Maximum sqrt (s hat) value’),”

if kun process==1:

fil=open(‘DYToEE MSUB1 M ’+str(ckin1[b])+’ TuneZ2star 8TeV pythia6 cfi.py’,’w’)

str pramod=’DYToEE MSUB1 M ’+str(ckin1[b])+’ TuneZ2star 8TeV pythia6 cfi.py’

fil.writelines(FRAGMENT ONE)

fil.writelines(FRAGMENT MSUB)

fil.writelines(CKIN1)

fil.writelines(CKIN2)

fil.writelines(FRAGMENT THREE)

fil.close()

print str pramod,’�is generated and successfully written.’

os.system(CI CONFIG1+str pramod+CI CONFIG2)

if FULL SIM KI GEN ==2:

os.system(CI CONFIG1+str pramod+CI CONFIG3)

if kun process==2:

fil=open(‘CIToEE ITCM5 M ’+str(ckin1[b])+’ TuneZ2star 8TeV pythia6 cfi.py’,’w’)

str pramod=‘CIToEE ITCM5 M ’+str(ckin1[b])+’ TuneZ2star 8TeV pythia6 cfi.py’

fil.writelines(FRAGMENT ONE)
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fil.writelines(FRAGMENT TWO)

fil.writelines(ITCM5 0)

fil.writelines(CKIN1)

fil.writelines(CKIN2)

fil.writelines(FRAGMENT THREE)

fil.close()

print str pramod,‘�is generated and successfully written.’

os.system(CI CONFIG1+str pramod+CI CONFIG2)

if FULL SIM KI GEN ==2:

os.system(CI CONFIG1+str pramod+CI CONFIG3)

if kun process==3:

for a in range(0,len(lambda )):

ENERGY=“ ‘RTCM(41) = ”+str(lambda [a])+“ !Lambda = ”+str((lambda [a])/1000)

+“ TeV’,”

fil=open(‘CIToEE Con Lambda ’+str((lambda [a])/1000)+‘ M ’

+str(ckin1[b])+‘ TuneZ2star 8TeV pythia6 cfi.py’,‘w’)

str pramod=’CIToEE Con Lambda ’+str((lambda [a])/1000)+‘ M ’

+str(ckin1[b])+‘ TuneZ2star 8TeV pythia6 cfi.py’

fil.writelines(FRAGMENT ONE)

fil.writelines(FRAGMENT TWO)

fil.writelines(CONSTRUCTIVE)

fil.writelines(ENERGY)

fil.writelines(LAMBDA PACHHIKO)

fil.writelines(CKIN1)

fil.writelines(CKIN2)

fil.writelines(FRAGMENT THREE)
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fil.close()

print str pramod,‘\t is generated and successfully written.’

os.system(CI CONFIG1+str pramod+CI CONFIG2)

if FULL SIM KI GEN ==2:

os.system(CI CONFIG1+str pramod+CI CONFIG3)

if kun process==4:

for a in range(0,len(lambda )):

ENERGY=“ ‘RTCM(41) = ”+str(lambda [a])+“ !Lambda = ”+str((lambda [a])/1000)

+“ TeV’,”

fil=open(‘CIToEE Des Lambda ’+str((lambda [a])/1000)+‘ M ’

+str(ckin1[b])+‘ TuneZ2star 8TeV pythia6 cfi.py’,‘w’)

str pramod=‘CIToEE Des Lambda ’+str((lambda [a])/1000)+‘ M ’

+str(ckin1[b])+‘ TuneZ2star 8TeV pythia6 cfi.py’

fil.writelines(FRAGMENT ONE)

fil.writelines(FRAGMENT TWO)

fil.writelines(DESTRUCTIVE)

fil.writelines(ENERGY)

fil.writelines(LAMBDA PACHHIKO)

fil.writelines(CKIN1)

fil.writelines(CKIN2)
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fil.writelines(FRAGMENT THREE)

fil.close()

print str pramod,‘\t is generated and successfully written.’

os.system(CI CONFIG1+str pramod+CI CONFIG2)

if FULL SIM KI GEN ==2:

os.system(CI CONFIG1+str pramod+CI CONFIG3)

globals().clear()
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A possible explanation of mass hierarchy, which is not explained by the Standard Model,

is that quarks and leptons are composite objects made of more fundamental particles known

as preons. The existence of preons will be manifest as a four fermion contact interaction in

the annihilation of a quark and anti-quark, in a p-p collision, producing positron-electron

pairs. At high mass, such pairs are also produced from off-shell Z and γ bosons. This

thesis provides a detailed discussion of the analysis strategy to study these processes using

the Compact Muon Solenoid Experiment at the Large Hadron Collider. The study utilizes

data recorded in 2012 at
√

s = 8 TeV, corresponding to an integrated luminosity of 19.6

fb–1. The dielectron mass spectrum above 300 GeV shows no significant deviation from

the prediction of the Standard Model. In the framework of the left-left iso-scalar model of

eeqq contact interactions, 95% CL lower limits on the energy scale parameter are found for

destructive (13.1 TeV) and constructive (18.3 TeV) interference between the contact and

standard model amplitudes. These limits are the most stringent to date.
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