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Abstract

The construction and LHC phenomenology of the razor variables Mg, an event-by-
event indicator of the heavy particle mass scale, and R, a dimensionless variable
related to the transverse momentum imbalance of events and missing transverse en-
ergy, are presented. The variables are used in the analysis of the first proton-proton
collisions dataset at CMS (35 pb™!) in a search for superpartners of the quarks and
gluons, targeting indirect hints of dark matter candidates in the context of supersym-
metric theoretical frameworks. The analysis produced the highest sensitivity results
for SUSY to date and extended the LHC reach far beyond the previous Tevatron re-
sults. A generalized inclusive search is subsequently presented for new heavy particle
pairs produced in /s = 7 TeV proton-proton collisions at the LHC using 4.7+0.1 fb~*
of integrated luminosity from the second LHC run of 2011. The selected events are
analyzed in the 2D razor-space of M and R and the analysis is performed in 12 tiers
of all-hadronic, single and double leptonsfinal states in the presence and absence of
b-quarks, probing the third generation sector using the event heavy-flavor content.
The search is sensitive to generic supersymmetry models with minimal assumptions
about the superpartner decay chains. No excess is observed in the number or shape
of event yields relative to Standard Model predictions. Exclusion limits are derived
in the CMSSM framework with gluino masses up to 800 GeV and squark masses up
to 1.35 TeV excluded at 95% confidence level, depending on the model parameters.
The results are also interpreted for a collection of simplified models, in which gluinos
are excluded with masses as large as 1.1 TeV, for small neutralino masses, and the
first-two generation squarks, stops and sbottoms are excluded for masses up to about

800, 425 and 400 GeV, respectively.



v

With the discovery of a new boson by the CMS and ATLAS experiments in the vy
and 4/ final states, the identity of the putative Higgs candidate must be established
through the measurements of its properties. The spin and quantum numbers are
of particular importance, and we describe a method for measuring the J¢ of this
particle using the observed signal events in the H — ZZ* — 4/¢ channel developed
before the discovery. Adaptations of the razor kinematic variables are introduced
for the H — WW?* — 2(2v channel, improving the resonance mass resolution and
increasing the discovery significance. The prospects for incorporating this channel in

JPC is discussed, with indications that this it could

an examination of the new boson
provide complementary information to the H — ZZ* — 4/ final state, particularly

for measuring CP-violation in these decays.
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Chapter 1

Introduction

It is often said that physics is the study of the world around us. Newtonian dynamics
describes the observed motion of the earth around the sun, thermodynamics how a
car engine operates. These are the physical laws that hold at the energy and length
scales we experience in everyday life. Their predictive power has allowed for the
development of contemporary civilization over centuries and eventually flight and
space travel. They also include symmetries that have shaped our aesthetic tastes for
physical theories. These laws are invariant over time and space, there is not preferred
direction to the universe, and classical fields communicate the forces between matter.
But there is physics that describe worlds very much unlike the one we experience,
which exist at a different scale.

Just as Galilean invariance has given way to Lorentz invariance and finally Ein-
stein’s general relativity, we have seen that the laws of physics change at extreme
speeds and energy densities. Matter can approach the speed of light but never reach
it, a contemporary analogue of Zeno’s paradox. The molecule, atom, and nucleus
have all been split open to reveal a quantum world with its own laws and forces.
This is the world that elementary particle physics describes. The primary difficulty
in studying it is its removal from our own.

The particle/wave duality of light and matter indicates that size and energy go in-
versely; in order to probe increasing smaller length scales, one must use ever-increasing
energies. In some sense, it is as simple as F = mc?. In order to produce new, massive

particles that interact at these small length scale we must produce interactions at a
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commensurate energy scale. With the exceptions of electrons and protons, the first
elementary particles discovered at the beginning of the 20th century came from cos-
mic rays. This source of high-energy particles has since been superseded by terrestrial
particle accelerators in laboratories of increasing size and energy. The first of these
involved shooting high-energy particles at fixed targets, in the model of the earliest
experiments probing atomic structure through scattering. In the Newtonian world
this would be sufficient, but special relativity indicates this is not the optimal way
for converting the energy of relativistic particles into new matter through interac-
tions. The advent of colliding beams particles, first electrons/positrons followed by
proton/proton and proton/antiproton, has improved this efficiency substantially.

Similarly, the technology with which physicists study these high-energy particles
has evolved with their energies. The photographic emulsion plates that captured
the interactions of the cosmic rays have given way to cloud chambers, then bubble
chambers, and now whole detectors made of millions of silicon microstrips, taking our
ability to visualize the trajectories of charged particles from analogue to digital. Fixed
target detectors have evolved into instruments with nearly 47 geometrical coverage
around the interaction point of colliding beams. Never before have we been able to
so efficiently control so much energy in so little space and so completely reconstruct
the interactions of the quantum world.

Of course, our understanding of elementary particles has grown with our access
to them. With increasing numbers of particles discovered, we have been able to piece
together the structure of the quantum world. The discovery of the anti-electron estab-
lished that the symmetry of Dirac’s equations had physical significance [1]. Particle-
puzzle-pieces of mesons and baryons appearing from the sky were assembled into
the Eightfold Way [2] and finally QCD [3,4]. The quark model was confirmed once
energies were achieved that could resolve the lumpiness of the proton, with quark
and gluons jets following from energies large enough to overcome the strong force.
And with this structure has come new symmetries, absolute, approximate and bro-
ken. The Standard Model (SM) [5,6] of particle physics developed to explain these

high-energy interactions has proved to be extremely successful, and for the last 50
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years has survived myriad experimental tests, predicting the existence of the W, 7|
and top before their discoveries. But this is not the end of the story. Just as the laws
of physics have evolved from one energy scale to another, they could change again as
we enter a new world at the TeV frontier.

This thesis concerns this frontier of elementary particle physics, opened through
the highest energy particle collider ever realized, the Large Hadron Collider (LHC)
and the Compact Muon Solenoid (CMS) experiment which is build to study these
proton-proton collisions. It is composed of two parts: The first describes the Standard
Model of particle physics and the CMS detector, and studies of the known elemen-
tary particles at previously unreachable energies. Chapter 2 gives an introduction to
the particle content of the Standard Model, along with overviews of CMS and the
LHC machine. This is followed by chapters explaining each of the subcomponents of
the CMS detector, and how they are used to measure the properties of elementary
particles. Chapter 3 describes the CMS tracking and muon detectors and how, com-
bined with the CMS magnetic field, their measurements are used to reconstruct the
trajectories and momenta of charged particles. The design and operation of the elec-
tromagnetic and hadronic calorimeters are explained in chapters 4 and 5, respectively,
along with the reconstruction of electrons, photons and QCD jets. Chapter 6 talks
about the physics of W and Z bosons, and how they can be used to both calibrate
the detector and study the SM. Finally, part one concludes with a discussion of the
Higgs boson. The CMS and ATLAS experiments recently announced the discovery
of a new boson which could be the Higgs [7,8]. Chapter 7 explains how we can prove
that it is the Higgs through measurements of its quantum numbers, with estimates
of how long remains before we can conclude that the SM is complete.

Part IT of this thesis is about what might be waiting beyond the SM. In chapter 8,
the shortcomings of the SM are explained, along with motivations for expecting evi-
dence of new, heavy degrees of freedom not included in the SM to appear at the LHC.
The phenomenology of the theories describing this beyond the SM (BSM) physics is
explained and used to motivate the development of the razor kinematic variables

which can be used to search for this new physics. The derivation of these variables



4
is explained in chapters 9 and 10, along with the details of searches for BSM physics
using 35 pb~! and 4.7 fb™! of \/s = 7 TeV CMS data, respectively. Null results are
interpreted in the context of models of supersymmetry, with constraints placed on its
hypothetical parameters. The phenomenology of the 2D razor-space is described in
detail, for both hypothetical signal events and SM backgrounds. Finally, chapter 11
describes new kinematic variables designed for future searches at the LHC which can
improve our resolution of the scale of new physics and perhaps uncover the symmetries

that govern BSM phenomena.




Part 1

CMS and the Standard Model



Chapter 2

CMS and Fundamental Particles

2.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics describes the interactions of all of the
known elementary particles. The are the fermions, the spin 1/2 matter that makes up
our universe, and the particle mediators of the forces which act on these fermions, the
spin 1 bosons. The fermions are composed of two groups, leptons and quarks, each
with three families of increasing mass and each particle with a corresponding antipar-
ticle. The force carriers (photons, W/Z bosons, gluons) transmit the electromagnetic,
weak and strong forces, respectively.

Each of the fermions carries an electric charge. The leptons (electrons, muons,
taus) all have charge 1, which is defined by convention to be —1 for leptons and 1
for anti-leptons. The quarks have fractional charges, with quarks coming in an up
and down type for each family, with charges 2/3 and —1/3, respectively. For each
lepton family there is also a neutrino which is neutral and approximately massless.
The charged Dirac fermions and their electromagnetic interactions can be described
by quantum electrodynamics (QED) [9]. This theory, and the full SM, are gauge
theories based on symmetry groups and the requirement of local gauge invariance.
Electromagnetism is based on the U(1),, symmetry group, meaning that its laws
are invariant under complex phases applied to particle fields. Local gauge invari-
ance further requires that the theory be invariant under space-time-dependent phase

changes, requiring that the theory is continuously invariant under gauge transforma-
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tions. In going from a global symmetry to a local one, the charged particles require
a force to communicate between different points in space-time in order to ensure
that the gauge symmetry is not broken. Hence “gauge-ing” U(1)p,, or requiring
that the Lagrangian is invariant under these continuous transformations, introduces
a massless spin 1 gauge boson, the photon, which communicates the electromagnetic
force between charged particles. QED, like all the gauge symmetries of the SM, is
a renormalizable theory meaning that it is free from divergences resulting from loop
Feynman diagrams contributing to particles’ self-energies. The physical consequence
is that the QED interaction-strength coupling, a..,, effectively changes as a function
energy, running with the scale of the interaction.

In addition to electromagnetism, the quarks also interact through the strong force,
which is described by a gauge theory based on the SU(3)c group, called quantum
chromodynamics (QCD) [3,4]. In addition to electric charge, the quarks also carry
a color charge, corresponding to one of three colors. The requirement of local gauge
invariance introduces eight massless gauge bosons, the gluons, which communicate
the strong force. Unlike the photon, these gluons also carry color charge, with two
separate color indices which allow the quarks of different colors to interact through its
exchange. The running of the strong force coupling, ay, through renormalization of
QCD is quite different from the QED coupling due to the different group structure and
corresponding form factors. This has profound consequences on the phenomenology
of colored particles. QCD has the property of asymptotic freedom, implying that the
strong force actual weakens between particles at higher energies large. Unlike the
electromagnetic force which diminishes with distance, the strong force increases on
short distance scales. Colored particle also exhibit a phenomena called confinement,
whereby they can not be isolated singularly or detected directly. The result is that
as two quarks pull apart from each other, the gluon fields form narrow tubes of color
charge, pulling them together like a rubber band. If there is enough energy to pull the
quarks apart, like in LHC collisions of protons, at some point it becomes energetically
favorable for a new quark/anti-quark pair to appear from the vacuum along the color

tube. For very energetic colored particles, this process will repeat recursively, leading
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to a of jet color-neutral baryons and meson flying in the directions of the initial colored
particle. Asymptotic freedom also implies that at small scales the size of baryons and
mesons the individual quarks behave as free particles. At LHC collision energies, the
quarks and gluons of colliding protons interact directly, as if they were free partons.

In the SM, the interactions between the particles are described by a non-Abelian
Yang-Mills type gauge theory based on the group SU(3)c x SU(2), x U(1)y, where
SU(3)¢ is QCD. The SM particles can be organized according to their representations
in the SU(2),, subgroup. The chiral-left component of the lepton and neutrino (which
are all left-handed, as far as we know) form an SU(2),, doublet, while the chiral-right
leptons are each in their own singlet. Similarly, the chiral-left components of each
family’s up and down type quarks are a SU(2), doublet, while the chiral-right quarks
are each singlets. Gauge-ing SU(2) x U(1)y results in a collection of massless spin
1 gauge bosons. The force carriers of the weak force, the W* and Z bosons, do
have mass, which they acquire through spontaneous electroweak symmetry breaking
(EWSB) [10-15]. This is accomplished through the addition of a complex SU(2).,
doublet of spin zero fields, the Higgs field, to the theory. The Higgs acquires a
nonzero vacuum expectation value (VEV) from its quadratic potential which breaks
the SU(2), x U(1)y, or electroweak symmetry. It is denoted such because it is a
unified description of the weak and electromagnetic forces, which are only bifurcated
by the breaking of a global symmetry from EWSB. The VEV is left invariant by once
combination of SU(2);, x U(1)y generators, which gives U(1).,, electromagnetism.
On the other hand, the other gauge bosons associated with SU(2), x U(1)y eat the
degrees of freedom associated with the Higgs doublet, giving masses to the spin 1
weak bosons through the addition of a longitudinal degree of freedom. These are, in
turn, linear combinations of the broken SU(2), x U(1)y generators’ gauge bosons.
Only one neutral scalar of the Higgs doublet is left, which is associated with the Higgs
boson. This same boson gives the fermions their masses through Yukawa couplings

which realize fermion mass terms in the Lagrangian when the Higgs acquires a VEV.
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2.2 The CMS Experiment

The Compact Muon Solenoid (CMS) [16] is a multipurpose detector which surrounds
one of the LHC interaction points. In these high energy proton-proton collisions,
sprays of particles will fly out of the point of interaction. With a collection of dedicated
subdetectors, CMS is able to measure the properties of these particles, reconstruct
their identities and trajectories, and interpret the particles and interactions contained

in the event. CMS is shown in figure 2.1.

Superconducting Solenoid
Silicon Tracker

Very-forward Pixel Detector

Calorimeter

Electromagnetic

Calorimeter ?

Compact Muon Solenoid

Figure 2.1: Hlustration of the CMS detector

The design of CMS is based around the superconducting 4 T solenoidal mag-
net, which is centered on the beam pipe symmetrically around the interaction point.
Charged particles traversing this field will bend as they travel out from the inter-
action point, and the large field is required to measure their momentum precisely.
Inside and around the magnet are layers of subdetectors, each designed to detect
and measure specific types of particles. The cylindrical shape of the magnet informs
the geometries of these subdetectors; each includes a barrel component arranged in

layers of fixed radius from the beam pipe while endcap components are placed in
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layers perpendicular to the beam line, covering each end of the experiment. This
enclosed geometry yields almost 47 angular coverage for observing all of the particles
produced in interactions, with small holes through which the beams pass. The CMS
coordinate system has the origin centered at the nominal interaction point, with the
y-axis pointing vertically upward, the z-axis pointing radially inward toward to the
LHC center, and the z axis points along the beam line. ¢ is measured from the z-axis
in the x-y plane, transverse to the beam line, while the polar angle ¢ is measured
from the z-axis. For convenience, pseudorapidity is defined as n = log [tan #/2] and
is equivalent to the rapidity of a massless particle traveling from the origin of CMS.

Each layer of the CMS detector is built to measure a different type of particle.
At the innermost part of CMS, inside the solenoidal magnet barrel, lies the silicon
pixel tracker, which in turn is surrounded by a silicon strip tracker. These subde-
tectors are used to reconstruct the trajectories of charged particles traveling through
the CMS tracker volume. The large magnetic field combined with the fine spatial
resolution of the tracker results in excellent track reconstruction performance. The
inner tracker is surrounded by an electromagnetic calorimeter, composed of scin-
tillating lead tungstate crystals. This detector is used to precisely reconstruct the
energies of photons and electrons and to identify them through their electromagnetic
showers. Outside of the electromagnetic calorimeter is a hadron calorimeter, made
of interleaved layers of brass absorber and plastic scintillator. This dense sampling
calorimeter is needed to stop the jets of hadrons which are produced in each colli-
sion from flying through the detector, measuring their energy in the process. Finally,
outside of the barrel magnet sit muon detectors, which can measure the trajectories
of muons as they pass through gaseous ionization chambers. With the combined in-
formation of each subdetector layer, events can be precisely reconstructed. In total,
CMS has hadron calorimeters covering the region |n| < 5, electromagnet calorimeter
crystals to |n| < 3 and muon and tracking coverage extending to || < 2.4. The
partons which interact in LHC collisions only carry a fraction of the protons momen-
tum, samples from its parton density function (PDF). As a result, LHC collisions can

have large longitudinal momentum imbalances along the beam line. In the transverse
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plane, momentum is approximately conserved, meaning that the large calorimeter
pseudorapidity coverage is essential in measuring the energy of all of the high en-
ergy particles in the collision in order to infer the transverse momenta of any weakly
interacting particles.

While designed with the optimized reconstruction of particles in mind, each sub-
detector must also satisfy the extreme running conditions of the LHC environment.
Each detector is made of radiation-hard components that can withstand the enor-
mous particle flux from collisions. The crystals of the electromagnetic calorimeter
must be monitored in real time for radiation-induced transparency changes while the
photodetector technology used in each of the calorimeters changes with increasing
pseudorapidity in order to withstand more radiation. Similarly, the muon chamber
technology is chosen according to the expected muon flux and local magnetic field.

In the following chapters each of these subdetectors is described in detail.

2.3 The Large Hadron Collider

The Large Hadron Collider (LHC) [17] is a two-ring superconducting hadron collider.
It is installed in the 27 km LEP tunnel at CERN, in Geneva, Switzerland, and at
its design performance will provide 14 TeV collisions between 747 TeV protons with
an instantaneous luminosity of L = 103 ecm~'s™!. At present, the LHC machine has
achieved 8 TeV collisions and a luminosity exceeding 5 x 1033 cm~'s~!. The protons
are supplied to the LHC through an injector chain of smaller accelerators. Linear
accelerators (LINACS) feed protons into the Proton Synchrotron Booster (PSB),
followed by the Proton Synchrotron (PS) which accelerates them to 25 GeV. This is
followed by the Super Proton Synchrotron (SPS), bringing protons to 450 GeV, and
finally to the LHC, as illustrated in figure 2.2.

The design of the LHC reflects a balance between the desired performance and
restrictions from both its location and cost. With the LEP tunnel as a location,
the maximum beam energy is limited by the superconducting magnet strength. Fur-

thermore, the desired collision energy precludes electron beams because of large syn-
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Figure 2.2: Diagram of LHC proton injection chain.

chrotron radiation. The machine luminosity can be written as

o Nl?nbfrevf}/r

L= 2.1
Aren 21)

where N, is the number of particles per bunch, n;, the number of bunches per beam,
frev the revolution frequency, 7, the relativistic gamma factor, €, the normalized
transverse beam emittance, S, the beta function at the collision point, and F' a geo-
metric factor to a small nonzero crossing angle of the beams at the interaction point.
The strong luminosity dependence on N, implies that a proton/antiproton collider
concept cannot be used, as at the Tevatron, because of the difficulty in achieving the
necessary antiproton beam intensity. Hence, the LHC is chosen to be a proton/proton
colliding machine. Each beam then requires a magnetic field pointing in an opposite
direction in order to push it around the LHC ring. Due to cost restrictions, and the
size of the LEP tunnel a “two-in-one” design was chosen for the LHC, where both
proton beams are contained in the same beam pipe, cryostat and field. The primary

magnets are then dipoles, with the twin-bore design illustrated in figure 2.3.
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Figure 2.3: Illustration of twin-bore LHC dipole magnet. Each of the counterrotating
proton beams are contained within the same cryostat.

The full LHC ring is composed of 1,232 dipole magnets, each with NbTi supercon-
ductors cooled by superfluid helium to a temperature below 2 K and able to operate
at fields above 8 T. They must all have practically identical characteristics in order
to ensure successful operation, with variations in the field shape and strength not

exceeding approximately 10~* during operation.
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Chapter 3

Charged Particles and the CMS
Detector

3.1 The CMS Solenoidal Magnet

The excellent momentum resolution when measuring charged particles with the silicon
tracker, described in section 3.2, is possible because of the enormous field strength
of the CMS superconducting magnet [18-21]. It is designed to reach a 4 T field in
the cylindrical free bore of 6 m diameter and 12.5 m length, where the silicon tracker
and barrel calorimeters are placed, and has achieved 3.8 T for in situ operation. An
illustration of the CMS magnetic is shown in figure 3.1, along with a picture of the

steel support yoke.

Figure 3.1: (Left) Artist’s rendition of magnet cryostat, with view of five models
composing the cold mass. (Right) Steel magnet support yokes.
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A number of new features, relative to previous magnets for particle physics appli-
cations, are introduced in order to achieve the strength and size of the CMS magnet.
Due to the number of ampere-turns required to generate the field (4.2x 107 amp/turn)
the winding is composed of four layers of NdTi conductors, as opposed to the usual
one. The flux is returned through the 10K t steel yoke, which consists of 5 barrel
wheels and two endcaps. Despite the conductor being mechanically reinforced with
an aluminum alloy the large ratio between stored energy (2.6 GJ) and cold mass
(220 t) causes large mechanical deformations during the energizing of the magnet, of
order 0.15%. This stored-energy-to-mass ratio, £/M = 11.6, distinguishes the CMS

magnet from other detector magnets, as shown in figure 3.2.
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Figure 3.2: (Left) Energy-over-mass ratio E/M for a collection of particle-physics
detector magnets. (Right) Steel yoke during early stage of assembly. The 5 barrel
wheels support the vacuum chamber of the superconducting coil while one of two
endcaps is visible at the back.

The magnitude and field direction of the CMS magnet are illustrated in figure 3.3.
The return field is large enough to saturate 1.5 m of iron, meaning that dedicated
muon detectors can be placed outside the iron yoke and calorimeters, giving full
geometric coverage. The strength and uniformity of the magnetic field in the regions of

these muon detectors inform the choice of technology used, as described in section 3.4.
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Figure 3.3: Diagram of the magnetic field throughout a longitudinal section of the
CMS experiment. (Left) Color z-scale indicates the value of |B|. (Right) Field lines

in and outside of the iron yoke, with each representing a magnetic flux increment of
6 Wh. [27].
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3.2 The CMS Tracker

The design of the CMS tracker is motivated by both the required physics performance
and the instantaneous LHC running conditions. Charged particles emerging from
collisions must be measured efficiently and precisely as they move through the 4 T
magnetic field which covers the full tracker volume. At LHC design luminosity [22]
there are expected to be about 1000 particles coming from upwards of 20 overlapping
pp interactions, occurring every 25 ns, with the extreme particle flux resulting in a
high radiation environment. The tracker must be able to distinguish each of these
tracks, measure their trajectory and the interaction primary vertices they come from,
and do so quickly in order to correctly identify the bunch crossing while maintaining
radiation resistant.

The CMS tracker [16], shown in figure 3.6, represents a balance of these con-
siderations with the corresponding material budget from on-detector electronics and
cooling. It consists of two main detectors: a silicon pixel detector, covering the region
from 4 to 15 c¢m in radius (which will have the highest hit-density rate), and 49 cm on
either side of the collision point along the LHC beam axis, and a silicon strip detector,
covering the region from 25 to 110 cm in radius and within 280 ¢cm on either side of
the collision point along the beam axis. With a total of about 200 m? of active silicon

area the CMS tracker is the largest ever built [23,24].

3.2.1 Silicon Pixel Detector

The CMS silicon pixel detector includes about 66 million active elements which in-
strument a surface area of approximately 1m?. It is designed to provide at least
three high-precision hits for each track. This accomplished through three concentric
cylindrical barrel layers at average radii 4.3, 7.3 and 10.2 cm, respectively, and four
fan-blade covers for the endcaps, 35.5 and 48.5 cm from the interaction point. The
geometry of the pixel detector is illustrated in figure 3.5. The barrel layers have an
active length of 53 cm which, along with the endcaps, provides three-hit coverage up

to |n| < 2.2, with two-hit coverage to |n| < 2.5.
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Figure 3.4: r-z slice of the CMS Tracker. (Top) Diagram of tracker with strip lay-
ers and sub-detectors. Double lines indicate overlapping strips for stereo readout.
(Bottom) Three-dimensional visualization of the tracker.

The active elements are n-in-n 100 gm x 150 pm pixels [16], which achieve a spatial
resolution between 15 and 20 ym and with occupancy below 1% with expected particle
fluxes. These pixels are oriented with the smaller pitch in the azimuthal direction
in the barrel and the radial direction in the disks. The resolution in the azimuthal
direction is enhanced by significant Lorentz drift of the collected electrons resulting
from the 3.8 T magnetic field, which leads to charge sharing in that direction and
therefore improves the resolution. The endcaps benefit from both azimuthal and
radial charge sharing through a 20 degree rotation of the disks about their radial axes

with respect to the disk planes.
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Figure 3.5: (Left) Geometrical layout of the pixel detector. (Right) Pixel hit coverage
as a function of pseudorapidity.

3.2.2 Silicon Strip Detector

The CMS silicon strip detector has 9.3 million active elements covering an active
surface area of 198 m?. The detector is composed of three distinct subsystems: The
Tracker Inner Barrel and Disks (TIB/TID), the Tracker Outer Barrel (TOB) and the
Tracker EndCaps (TEC).

The pitches of each of the tracker layers follows from the expected particle flux,
with 10 cm x 80 pum cells in the TIB layers (20 cm < 7 < 55 cm) to a pitch as large as
183 pm in the TOB, with an occupancy of around 2% /3% per strip. At larger radii,
the strip length must be increased in order to accommodate additional channels. The
strip capacitance scales with its length, resulting in the magnitude of electronics noise
scaling linearly with increased size. In order to maintain a signal-to-noise ratio well
above 10, two different thicknesses of silicon micro-strip sensors are used with widths
320 and 500 pm, respectively. The thicker strips have correspondingly larger signal
and are used at larger radii.

The TIB and TID extend in radius to 55cm and are composed of four barrel
layers, supplemented by three disks at each end, of 320 ym thick silicon microstrip
sensors. This subdetector provides up to four r-¢ measurements on a track, with the
strips oriented parallel to the beam axis in the barrel and radially in the disks. The
strip pitch is 80 um in the inner pair of TIB layers and 120 um in the outer pair of
TIB layers, while in the TID, the mean pitch varies between 100 and 141 ym. This

results in single point resolutions ranging between 23 and 35 pm.
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Outside the TIB/TID is the TOB, with an outer radius of 116 cm. It consists of
six barrel layers of 500 pm thick microstrip sensors with strip pitches of 183 um in
the first four layers and 122 ym in the last pair of layers, extending to 118 cm in z,
which give 53 and 35 pm single point resolutions.

On either side of the beam line from the inner and outer barrel trackers are the
two TEC trackers, which cover 124 < |z| < 280 cm and 22.0 < r < 113.5cm. Each one
is comprised of nine disks, which are in turn made of up to seven rings of radial-strip
silicon detectors. The sensor thicknesses are 320 ym in the inner four rings, increasing
to 500 pm in the outer three. The average radial strip pitch varies from 97 to 184 um.

For the inner two layers of the TIB and TOB, the inner two rings of the TID and
TEC and the fifth ring of the TEC a second microstrip detector module is included
which is mounted flat to the first with a stereo angle of 100 mrad. These second
strips enables a measurement of the orthogonal coordinate (z in the barrel and r on
the disks) with a single point resolution of 230 and 530 pm in the TIB and TOB,
respectively.

With all the planes running efficiently the silicon tracker provides between 8 to
14 high precision measurements of track impact points up to |n| < 2.4, not counting
stereo modules. The expected number of tracker hits and material budget, as a

function of pseudorapidity, are shown in figure 3.6.

3.3 Track and Vertex Reconstruction

3.3.1 Track Reconstruction

Track reconstruction in CMS consists of combining the hits in the various tracking
layers, three-dimensional points which indicate the path the took through the detec-
tor, into a reconstructed trajectory of the particle. This is accomplished through an
iterative procedure in which track seeds are used to grow trajectories by searching for
compatible hits, repeating to construct additional tracks.

The track reconstruction algorithm first requires and estimate of the proton-proton
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Figure 3.6: (Left) Number of measurement points in the strip tracker as a function of
pseudorapidity. Open squares indicate the number of stereo layers while filled circles
correspond to all layers. (Right) Material budget of different tracker subdetectors in
units of radiation lengths.

interaction region, or beam spot. In the reconstruction algorithm, the transverse
location of the beam spot is used as an initial estimate for the primary interaction
point. The beam spot is measured over many tracks and events through an iterative
x? fit which exploits the correlation between the transverse impact parameter (d,,)
and the angle of the track at the point of closest approach (¢g). Fill-to-fill variations
of the beam spot are found to be at the level of ~0.5 mm in x and y, and ~2 cm in
z [25].

CMS track reconstruction proceeds according to the combinatorial track-finder
(CFT) algorithm. In the reconstruction of the tracks of a collision event, an initial
round of track and vertex reconstruction is performed using only pixel hits around
the beam spot position. The pixel vertices found at this stage are then included
among the hits from the strip layers. Next, tracks are seeded from either triplets of
hits in the tracker or pairs of hits with an additional constraint from the beam spot
or a pixel vertex. These seeds provide an initial estimate of the track’s trajectory,
with corresponding uncertainty. Each seed is then extrapolated to the other layers
of the tracker searching for compatible hits according to the equations of motion of

a charged particle in a constant magnetic field, accounting for multiple scattering
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and energy loss in the traversed material. As hits are found they are added to the
trajectory, the track is refit, and the track parameters and uncertainties are updated.
This procedure repeats iteratively until either the boundary of the tracker is reached
or no more compatible hits can be found. At this point, an additional search for hits
is performed starting from the outermost tracker layer hits and proceeding inwards.
Finally, the collection of hits associated with a trajectory is fit to obtain the best
estimate of the track parameters. This procedure constitutes one iteration of the
CTF algorithm.

In total, six CTF iterations are performed for each event. At the end of each
iteration, the reconstructed tracks are filtered to remove likely fakes and to provide
a means of quantifying the quality of the remaining tracks. This is accomplished by
appealing to the number of hits, the normalized 2 of the track, and the compatibility
of the track originating from a pixel vertex. Tracks that pass the tightest selection
are labelled High Purity. Between each iteration, the hits that are unambiguously as-
signed to the tracks reconstructed and accepted in the previous iteration are removed
from the collection of tracker hits, leaving the remaining hits to be used in building
additional tracks.

The first two CTF iterations use pixel triplets and pixel pairs as seeds to find
prompt (consistent with the beam spot) tracks with pr > 0.9 GeV /c. This is followed
by an iteration using only pixel triplet as seeds for low-momentum prompt tracks.
In order to identify tracks displaced from the beam spot, the next iteration uses
combinations of pixel and strip layers as seeds. Finally, tracks lacking pixel hits are

seeded by strip pairs in the final two iterations.

3.3.2 Primary Vertex Reconstruction

The reconstruction of interaction vertices in events begins with the collection of re-
constructed tracks. These tracks are grouped according to similar z-coordinate at
the point of closest approach to the beam line. The assignment of these groups fol-

lows from an adaptive vertex fit, where each of the tracks associated to a vertex
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are assigned a weight between 0 and 1 based on their proximity to the commonly
determined vertex.

The resolution of the measured primary vertex strongly depends on the number
of tracks used in the fit and on the transverse momentum of those tracks. Early LHC
collisions at 0.9 and 2.36 TeV were used to measure this resolution [25], with the re-
sults shown in figure 3.7. Here, the tracks in each event with only one reconstructed
vertex are randomly partitioned into two different set. The difference in the posi-
tions of the reconstructed vertex from each set is then interpreted as the resolution
multiplied by v/2 to account for the independent fluctuations of each collection. This
resolution is studied as a function of the number and average pr of the tracks used

in the vertex fit, in each CMS coordinate direction.
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Figure 3.7: Primary vertex resolution distributions in (left) z, (center) y, and (right)
z as a function of the number of tracks used in the vertex fit. Data and simulation
are compared for different average track-py ranges [25].
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3.4 The CMS Muon Detectors

As indicated in the acronym CMS, muon detection is of primary importance to the
CMS physics program. Since, unlike other charged particles, muons only leave MIP
deposits in the calorimeters and travel through the magnetic yoke, they provide a
striking signature of interesting processes, particularly in high pile-up conditions at
high instantaneous luminosity [17,26]. The muon detector system is designed to
identify muons and measure their trajectories with high precision, over the entire
kinematic range of LHC collisions. The performance requirements for the muon sys-
tem with the solenoidal field at 4 T are listed below [27]. The in situ field strength

of 3.8 T results in an approximately 5% degradation to these values.

Momentum Resolution

e Standalone muon: 8-15% at 10 GeV /¢, 20-40% at 1 TeV

e Global muon (+tracker): 1-1.5% at 10 GeV/¢, 6-17% at 1 TeV
Charge Assignment

e Correct to 99% confidence level up to 7 TeV/c

These performance requirements are achieved through three different types of
gaseous particle detectors distributed over a cylindrical barrel region and two planar
endcaps. The chosen detector solution consists of approximately 25,000 m? of reliable,
robust and inexpensive muon detector planes.

Each of the muon subdetectors utilizes gas ionization, with chambers of either
drift tubes, cathode strip proportional plates or resistive plates. Each chamber is
run independently such that they can be used, along with the silicon tracker, as a
spectrometer with the CMS solenoidal magnetic field and the flux return providing
charged particle bending over the detector volume. The geometry of the muon system
follows from the detector and magnetic field-line shapes, with chambers arranged into

barrel and endcap components. In the barrel, chambers are arranged into stations at
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a fixed radial distance r from the beam line. Similarly, endcap stations are put at
fixed distances along the beam direction z from the interaction point. An illustration
of the muon system geometry for a longitudinal slice of CMS is shown in figure 3.8.
There are four stations in the barrel and in each endcap, labeled MB1-MB4 and
ME1-ME4+, respectively. Along the beam line, the barrel stations are divided into
5 wheels while the endcap stations are divided into rings, ME1/n-ME4/n, where n

increases with radial distance from the beam axis.
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Figure 3.8: r—z cross section of a quadrant of the CMS detector with beam axis (z)
running horizontally and radius (r) increasing upward, with the interaction point in
the lower left corner. The various muon stations and the steel disks are shown in red.

3.4.1 Muon Drift Tubes

In the barrel region where the magnetic field is mostly uniform with a small strength
(< 0.4 T) the muon system is composed of drift tube (DT) chambers with rectan-
gular cells and sophisticated electrical field shaping. These DT chambers cover the
pseudorapidity region |n| < 1.2. The four stations and five wheels of DTs are further
divided into 12 ¢-segments per wheel. Each segment contains eight layers of tubes
measuring the position in the bending plane (r—¢) and four layers for the longitudinal

plane (z).
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The basic element of the DT system is the drift cell, illustrated in figure 3.9, each
with a transverse size of 42 x 13mm?2. The cells are filled with a noble gas mixture
(85%/15% of Ar/CO2) which has a saturated drift velocity of about 55.5 pm/ns, with
a maximum drift time of almost 400ns. A 50 um diameter gold-plated stainless-steel
anode wire runs through the center of each cell. The wire operates at a voltage of
+3600V, creating an electric field between the wire and the cathode strips at the
sides of the cell. Four electrodes are used to shape the effective drift field, operating

at —1800 and +1800V, respectively, on each of the cell sides.
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Figure 3.9: (Left) Sliced view of a DT chamber. (Right) Cross-sectional view of a
DT cell with drift lines and isochrones. Cathode and anode strips run perpendicular
to the viewing direction.

Four layers of parallel cells, staggered with respect to each other to maximize
position resolution, form a superlayer (SL). Each chamber consists of two SLs that
measure the r—¢ coordinates using wires parallel to the beam axis, and one orthogonal
SL that measures the r—z coordinate (except for the outermost barrel station). Each
chamber is about 2.5 m long, with transverse lengths ranging from 1.9 to 4.1 m moving

out radially from the beam line.

3.4.2 Muon Cathode Strip Chambers

In the endcap regions of CMS the performance requirements for the muon system are
different with respect to the barrel. The muon flux, along with background rates,
are high and the magnetic field is strong and nonuniform. CMS uses cathode strip
chambers (CSC) in this region. With a short drift path the CSC chambers have a

fast response time, reducing the sensitivity to the nonuniform magnetic field. These
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CSCs cover the |n| region from 0.9 to 2.4 with four stations of chambers at different
distances along the beam line from the interaction point, with faces perpendicular to
the beam.

Each CSC is made up of six layers, each of which provides a 2D measurement of
the muon trajectory, as illustrated in figure 3.10 (left). Cathode strips run radially
outward through the CSCs and provide a measurement in the r—¢ bending plane
while perpendicular wires provide a coarse measurement of the radial distance. Each
of the CSCs operates as a standard multiwire proportional counter (MWPC), with
the additional feature of a cathode-strip readout which can precisely measures the
position at which a muon or other charged particle crosses the gas volume [28], as

indicated by the illustration of the gas ionization avalanche profile shown in figure 3.10

(right).
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Figure 3.10: (Left) Diagram of a CSC. Each is made of six layers with the orientations
of the wires and strips illustrated by a few examples. (Right) Cross-sectional views of
the gas gap in a CSC with the anode wires and cathode planes running parallel. The
gas ionization avalanche and resulting induced charge distribution on the cathode
strips is illustrated.

Several different sizes of CSCs are used, ranging in length from about 1.7 to 3.4 m
in the radial dimension. All chambers are filled with a gas mixture of 50% COs, 40%
Ar, and 10% CF4. Through the gas runs 80 cathode strips projected towards the
beam line and anode wires with a diameter of 50 yum. These anode wires are grouped
according to 5 to 16 wires, with widths from 16 to 51 mm, which limits the position
resolution in the wire coordinate direction. The ME1/1 chambers are operated at an

anode voltage of 2.9kV with the others at 3.6 kV.
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3.4.3 Muon Resistive Plate Chambers

In addition to the DT and CSC muon detectors, there is also a dedicated trigger-
ing detector system with excellent time resolution made of resistive plate chambers
(RPC). These detectors are located in both the barrel and endcap regions where they
can provide a fast, independent trigger with a looser py threshold (relative to the
other detectors) over a large pseudorapidity range (|n| < 1.6).

Each of the RPCs is a double-gap chambers which are operated in avalanche
mode to allow for high rates. An illustration of the RPC geometry is shown in
figure 3.11. Each of the 2 mm thick gas gaps is filled with a mixture consisting of
95.2% freon, 4.5% isobutane and 0.3% sulphur hexafluoride, surrounded by two 2 mm
thick resistive bakelite plates. The plates are coated with a thin conductive graphite
layer, with a voltage of about 9.6kV applied. The readout strips are aligned along
fixed n in between the 2 gas gaps. When a charged particle crosses an RPC the gas
will become ionized in both gap volumes and the avalanches generated by the large
electric field over the gaps induce an image charge which is detected by the readout
strips.

The RPCs are grouped in stations like the DTs and CSCs, with four in the barrel
and three in the endcap. The innermost barrel stations have two RPC layers along
the outside of the DT chambers, with each layer divided into 2 or 3 n partitions
called rolls (figure 3.11). The RPC endcaps stations are divided into three rings with
increasing radial distance from the beam line, with 36 chambers in each ring covering

the full azimuthal range.

3.5 Muon Reconstruction

Muons are identified and their momenta measured in CMS using the combination of
the muon and inner tracker detectors. The muon reconstruction in a collision event

begins by first identifying hits in the detection layers of the muon DT and CSC sys-
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Figure 3.11: Illustration of a generic barrel RPC with two roll partitions.

tems. During this “local” reconstruction phase straight-line track segments from these
hits seed muon candidates. The reconstructed muon tracks from the hits associated
with these seeds are created in the subsequent “global” reconstruction, where infor-
mation from the inner tracker can also be used. Muon tracks reconstructed using hits
from only the muon detectors alone are called “standalone muons,” while those which
combine information from the central tracker and muon chambers are called “global
muons.” The muon system can also be used simply to tag extrapolated tracks coming
from the central tracker measurements; these tracks are denoted “tracker muons.” For
muons with momenta below ~200 GeV /¢, tracker muons have better resolution than
global muons, with the contribution from the later contributing at higher transverse
momentum.

The direction of the magnetic field changes as the muons pass from the solenoidal
barrel to the return yoke, causing a reversal of the curvature in the muon’s trajectory.
This means that the measurements from the innermost muon stations in the barrel
and endcap are crucial for muons with transverse momenta up to a few hundred GeV
since they provide the largest sagitta. For higher momenta muons the importance of
the outer stations increases as multiple scattering effects become less important. The
combined DT and CSC muon detector elements cover the full pseudorapidity interval
In| < 2.4 with no acceptance gaps, ensuring good muon identification over a the entire

range. Offline reconstruction efficiency for the muons is typically 96-99% except in



30

[ --=-- Muon system only

Alp e,

r --=-- Muon system only

Alp ),

—— Full system —— Full system

1 -o-- Inner tracker only 1 -0 Inner tracker only

0<n<0.8

1021 102

12<n<24

10 10? 10° 10 102 10°
p. [GeV/c] p. [GeV/c]

Figure 3.12: Reconstructed muon transverse momentum resolution as a function of
transverse momentum using the muon detectors only, the inner tracking detectors only
or both. Results are provided for muons with |n| < 0.8 (Left) and 1.2 < |n| < 2.4
(Right) [16].

gaps between the 5 wheels of the yoke (at |n| = 0.25 and 0.8) and the transition
region between the barrel outer wheels and the endcap disks [29]. The amount of
absorbing material between the interaction point and the first muon station reduces
the contribution of punch-through to about 5% of all muons reaching the first station,
and to about 0.2% of all muons reaching further muon stations.

The combination of the muon and tracker measurements yields excellent muon
resolution, as shown in figure 3.12, with complementary features that ensure continued

performance for the entire range of muon momenta in LHC collisions.
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3.6 Identification of b-quark jets

Jets that arise from bottom-quark hadronization and decay (b-quark jets) are char-
acteristic of the final states for a wide range of interesting physics processes, like
the decay of top quarks and various SUSY particles. These events can be selected
from among otherwise large backgrounds with jets from gluons and light quarks by
tagging, or identifying, these jets based on their distinguishing properties. Bottom
quarks have hard fragmentation functions and the relatively large mass, and a long
lifetime of the heavy flavor hadrons. The CMS tracking system is well suited to iden-
tify secondary decay vertices coming from long-lived hadrons and use their properties
to identify b-tagged jets.

The b-tagging algorithm used in the search for evidence of SUSY in chapter 10
begins with the collection of reconstructed jets in the event. The creation and iden-
tification of these jets is described in detail in section 5.2. For each jet, the collection
of reconstructed tracks is queried for tracks falling in a cone AR < 0.5 around the jet
axis, with a maximal distance to the axis of 0.2 cm. These tracks must then satisfy
several additional requirements in order to be considered for the b-tagging algorithm:
each must be a high purity track (see section 3.3.1, have a pr of at least 1 GeV/c,
a fit x*/ndof < 5 and have transverse and longitudinal impact parameters (IP), d,,
and d,, smaller than 0.2 and 17 c¢m, respectively.

It is these track impact parameters with respect to the primary vertex which is
used to distinguish decay products of a b-hadron from prompt tracks. The IP is
calculated in three dimensions, relying particularly on the excellent resolution of the
pixel detector along the z-axis. Each tracks’ impact parameters are given a sign
according to the scalar product of the vector pointing from the primary vertex to the
point of closest approach with the jet direction. This means that tracks originating
from the decay of particles traveling along the jet axis will tend to have positive IP
values while the impact parameters of other prompt tracks will have both positive
and negative signs. The resolution on the impact parameter depends strongly on pr

and n of the track. In order to account for this dependency, the impact parameter
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significance S7p, defined as the ratio between the IP and its estimated uncertainty, is
used as a discriminating observable. The distribution of IP values and significances
for selected tracks associated to jets in 2011 CMS running are shown in figure 3.13,
indicating good agreement with expectations from the CMS full simulation. The IP
significance has discriminating power between the decay products of b and non-b jets,

following from displaced decay products of b-mesons.
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Figure 3.13: The impact parameter (Left) and corresponding significance (Right) for
selected tracks associated with jets [30].

The IP significances of tracks associated to a single jet are combined to form a
b-tagging discriminant using the Track Counting (TC) algorithm. Here, the tracks
associated to a jet are sorted according to decreasing values of the IP significance. This
ranking requirement biases the IP significance for the first track to higher values, while
values of the following jets provide a largely unbiased indicator of the displacement of
the tracks’ vertices since probability to have several tracks with high positive values
is low for light flavor jets. The TC algorithm uses the IP significance of the second
and third ranked tracks to calculate a discriminator value, with two different versions
tuned to yield either high efficiency (TCHE) or high purity (TCHP). The analyses
described in this thesis use the TCHE algorithm with medium (TCHEM) working
point, corresponding to a cut of 3.3 on the discriminator whose distribution is shown
in figure 3.14 (Reft).

Even this simple tagging algorithms depends on high tracking efficiency and a

reliable estimation of track parameters and their uncertainties, which makes it poten-
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Figure 3.14: (Left) Discriminator values for the TCHE algorithm for data and simu-
lated events. (Right) Light-flavor mistagging rate vs. b-tagging efficiency for different
pile-up scenarios [30].

tially sensitive to changes in the running conditions of the experiment. The impact
of high pile-up on the b-tagging performance is evaluated in figure 3.14 (right), which
shows the rate for mistagging light-flavor jets as a function of b-tagging efficiency for
the TCHE discriminant evaluated on jets reconstructed in collision events. We ob-
serve that the b-tagging performance is largely insensitive to the number of interaction

vertices in these events.
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Chapter 4

Electrons, Photons, and the CMS
ECAL

4.1 The CMS Electromagnetic Calorimeter

The CMS electromagnetic calorimeter (ECAL) is designed to provide a fast response
with excellent energy resolution to electrons and photons incident on its face. Fur-
thermore, the device must be radiation tolerant, maintaing performance in the high
particle-flux LHC environment. The ECAL is a homogeneous crystal calorimeter
made of 75,848 lead tungstate (PbWOy) crystals. The detector consists of a barrel
region (EB), covering up to pseudorapidity |n| =1.48, and two endcaps (EE), that
extend the coverage up to |n| = 3.0. A silicon/lead pre-shower detector (ES) is in-
stalled in front of the crystal calorimeter in the endcaps in order to improve the ~/7°
discrimination and the vertex reconstruction for photons, covering a pseudorapidity
region 1.65 < n < 2.6. An illustration of the CMS ECAL is shown in figure 4.1 [31,32].

When electrons and photons pass through the ECAL crystals they lose energy
through interaction with the Coulomb fields of the crystal matter constituents, bring-
ing the crystal medium into an excited state. In the quick return to the ground state,
blue scintillation light is released in the resulting electromagnetic shower. This light
is detected by avalanche photodiodes (APDs) in the barrel region [33,34] and by
vacuum phototriodes (VPTSs) in the endcaps [35].
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Figure 4.1: Hlustration of the CMS ECAL showing the arrangement of crystal mod-
ules, supermodules and endcaps, with preshowers in front.

4.1.1 ECAL PbWO, Crystals

The properties of the ECAL PbWO, make them ideal for the CMS detector [36]. Their
high density (8.28 g/cm?®) and short radiation length (0.89 cm), with correspondingly
small Moliere radius (2.2 cm) mean that the calorimeter can be compact, and with
fine granularity the direction and shower shape of incident particles can be measured
accurately [37,38]. Example EB and EE crystals are shown in figure 4.2.

The scintillation mechanism in the crystals is fast, such that the decay time is on
the order of the LHC designed inter-bunch-crossing time, with 80% of light emitted
over 25 ns. This light is blue-green with a broad maximum at approximately 425
nm [38,39]. From this scintillation light about 4.5 photoelectron per MeV are col-
lected in the APDs and VPTs. The crystals are polished after machining in order to

maximize internal reflection and hence light collection.

4.1.2 ECAL Crystal Geometry

The EB is composed of 36 supermodules which, in turn, consist of 1,700 tapered

2

crystals with a frontal area of approximately 2.2 x 2.2 ¢cm?® and a length of 23 cm,

corresponding to 25.8 radiation lengths. This granularity is approximately the same
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Figure 4.2: ECAL PbWOy crystals with attached photodetectors. (Left) EB crystal
with APD. Two APDs in insert. (Right) EE crystal with VPT.

as the Moliere radius of the ECAL crystals. The crystals are mounted in a quasi-
projective geometry, relative to the interaction point, to avoid gaps in the geometric
coverage from intercrystal cracks. Each crystal covers An x A¢ = 0.174 x 0.174 in
projective-space.

The crystals individually wrapped in a 0.1 mm thick alveolar structure made with
an aluminum layer facing the crystal and two layers of glass fiber-epoxy resin. The
crystals are arranged into modules, each containing 400 or 500 crystals depending on
7, such that the nominal crystal-to-crystal distance is 0.35 mm, with 0.5 mm between
the crystals of each module. A supermodule is made of four modules separated by 4

mm thick aluminum webs, illustrated in figure 4.3.
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Figure 4.3: Layout of ECAL barrels crystals and modules into one supermodule.
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The two ECAL EEs are constructed from four half-disk “dees,” each composed of
3662 tapered crystals. Each EE crystal has a frontal area of 2.86 x 2.86 cm? and a
length of 22 cm, corresponding to 24.7 radiation lengths. As for the barrel, EE crystals
are arranged in a quasi-projective geometry, focussed at a point 1.3 m farther than
the nominal interaction point along the beam line, with off-pointing angles between
2° and 8°. The crystals are grouped into 5 x 5 supercrystals, with 138 in each dee.
They are arranged in a rectangular z-y grid, with 18 partial supercrystals on the
inner (around the beam line) and outer circumference.

In front of each of the ECAL endcaps is the preshower ES, consisting of two
orthogonal planes of silicon strip sensors interleaved with two planes of lead absorbers
(2 and 1 X, respectively). The sensors have an active area of 61 x 61 mm?, divided

into 32 strips. They are grouped into “ladders” of 7, 8, or 10 sensors.

4.1.3 ECAL Energy Resolution

The ECAL barrel energy resolution for electrons is measured in test-beams (see sec-
tion 4.2 for a description) to be [40]:
OE 2.8% 12%

B _ 0.3%, 41
E - JBGw) © EGew) @ 4y

where the three contributions correspond to the stochastic, noise and constant terms,
respectively. This is measured through the reconstruction of electrons from a 4 x
4 mm? collimated beam incident in the center a a single crystal, to minimize shower
leakage effects. The energy is reconstructed from the 3 x 3 surrounding crystals. For
the in situ environment, crystal intercalibration [41] and transparency monitoring,
the CMS magnetic field and pile-up energy contributions must all be controlled to
maintain a resolution of 0.5% for 100 GeV particles. In practice, the ultimate ECAL
energy resolution in the in situ running environment depends on the material budget
in front of the ECAL detectors and calibration of electrons and photons to account
for inter-crystal energy leakage, radiation-induced crystal transparency changes (sec-

tion 4.1.4) and the recovery of Bremsstrahlung radiation. The energy resolution of
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electrons from Z decays is measured to be better than 2% in the central region of
the ECAL barrel and 3% to 4% elsewhere. Similarly, the energy resolution of recon-

structed photons following from 125 GeV Higgs boson decays varies between 1.1%
and 2.5% in the ECAL barrel and between 2.2% and 5% in the endcaps [42].

4.1.4 ECAL Crystal Laser Monitoring System

The ECAL crystals are radiation resistant in that their scintillation mechanism is
not altered through electromagnetic irradiation [43]. On the other hand, the crystals
show a rapid loss of optical transmission under irradiation due to the production of
color centers. While this damage will self-anneal, the transient color centers reduce the
transparency of the crystals and absorb a fraction of the transmitted light, effectively
reducing the response of the crystals to electromagnetic showers. This effect results
in a dose-rate dependent oscillation of the crystals’ transparency and energy response
which follows the LHC collision fill-cycle, as shown in figure 4.4. In order to maintain
the ECAL resolution these transparency fluctuations are monitored and corrected for
using the ECAL laser monitoring system [44, 45].

Crystals’ transparencies are monitored by injecting laser pulses through optical
fibers directly into the crystals. Their crystals’” APD response is normalized by the
signal from silicon PN photodiodes, which receives the same laser light as the crystals.
The ratio of an APD response to that of the PN, R(t) = APD(t)/PN(t), indicates the
relative response as a function of time. A blue laser (A = 440 nm) is used to monitor
crystal transparency, chosen to correspond to the PbWOQ, scintillation peak. Despite
this attempt to match the light spectra, the different optical paths of scintillation
and laser light through the crystal, respectively, means that the relationship between
the diminished energy response of the crystals to the laser light and to incident

electromagnetic particles is not linear. For small attenuations (R(t) < 10%) the
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Figure 4.4: Relative crystal energy response as a function of time, as measured by
the laser monitoring system. The response is averaged over the 71 ranges listed in the
legend. Long periods without colliding beams are shaded.

relation between the response to scintillation and laser light can be modeled as

St R\
S(to)_(R@o)) ’ (4.2)

where S(t) represents the scintillation light response and « is an effective parameter
characteristic of each crystal which depends on the production method (o ~ 1.5 for
BCTP crystals and o« ~ 1 for SIC). Studies of the dynamics of these transparency
changes and measurements of a were performed in dedicated test beams are described
in section 4.2.

In addition to the blue laser a second wavelength in the infrared (A = 796 nm),
far from the scintillation emission peak, is also used to monitor the crystals. At
this wavelength, the crystal response is little affected by the transparency changes
and is used to monitor the stability of the system. In total there are three light
sources, 2 blue and 1 near infrared, with duplication of the former to provide fault
tolerance during in situ monitoring. Each source includes an Nd:YLF pump laser, a

Ti:Sapphire laser and associated cooling an control electronics. The full pulse energy
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is 1 mJ at the blue wavelength, corresponding to a 1.3 TeV particle in the ECAL, with
a linear attenuator allowing for 1% steps down to 13 GeV. PN diode measurements
monitor the intensity of the laser pulses to at a precision of 0.1%. The light pulses are
distributed to the crystals and PN diodes via a system of optical fibers, illuminating
one of 88 calorimeter regions at a time, with optical fiber fan-outs transmitting light to
each crystal individually. Each crystals’ response is measured once every 20 minutes

during the LHC abort gap in between collision-filled bunch crossings.
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4.2 Test Beam Studies of ECAL Crystal Trans-

parency Changes

The lead tungstate crystals used in the CMS ECAL are radiation hard to high inte-
grated doses but experience a dose-rate dependent transparency change, as described
in section 4.1.4. During LHC accelerator operation this dose-rate for ECAL crystals
will vary significantly, depending on the instantaneous luminosity and the location of
the crystal in the ECAL. At design luminosity a typical dose-rate for the ECAL barrel
crystals will be 15 rad/h and up to a factor of 100 higher for the crystals closest to
the beam pipe. The transparency loss will largely recover when the irradiation stops,
typically in a fast initial recovery, with a time constant on the order of tens of hours,
followed by a slower recovery on the time-scale of hundreds to a few thousand hours.
These transparency changes are monitored continuously by the laser monitoring sys-
tem. The relationship between the crystals’ time dependent response to laser light

(R) and its response to scintillation light (.S) is well modeled by [46]

(-

in the regime where AS = Sy — S is small (< 10%). This relationship can be used
to correct crystals’ energy response for transparency changes, using a parameter «
characteristic to each crystal.

In 2006 and 2007 test beams irradiations of a collection of ECAL crystals, installed
in fully functioning ECAL supermodules, were performed in order to study the dy-
namics of crystal transparency change and understand the the intrinsic variations of
crystals’ o parameters. In these test beams, components of the CMS ECAL were

placed in front of monoenergetic electron beams.

4.2.1 Test Beam Setup

During the 2006 ECAL test beam campaign nine ECAL barrel supermodules (SM)
were intercalibrated and studied in the H4 beam line at the CERN SPS. The SMs were
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mounted on a movable, computer operated table, allowing the electron beam to be
directed at all crystals with the same quasi-projective geometry as the CMS detector
in LHC running, relative to the nominal interaction vertex. As a result, the test beam
setup differs from LHC operation only in the absence of the solenoidal magnetic field
and material between the interaction point and ECAL barrel (beam line and tracker).
The SMs were installed with final versions of readout electronics, high and low voltage
systems, cooling system, temperature monitoring and laser monitoring.

Readout of the SM crystals was triggered using plastic scintillator tiles with a
20 x 20 mm? area, slightly smaller than the front faces of the crystals (~ 22 x 22
mm?). A Time to Digital Converter (TDC) is used to measure the phase between
the triggers given by these tiles and the ADC clock. The transverse position of the
electron beam was measured using four layers of scintillating fibers hodoscopes. An
impact point resolution of 250 pm is achieved [47] in both z and y (corresponding to
n and ¢, respectively, if the SM were installed in CMS). During the 2006 test beam,
five different ECAL crystals were irradiated.

This same setup was used for the 2007 ECAL endcap test beam, with the excep-
tion of an improved movable table for the detector which allowed for more accurate
positioning in front of the beam. In this test beam, 20 EE supercrystals were mounted
in a 4 x 5 rectangular grid. The precision table allowed for shooting the beam at the
corner between four crystals, irradiating all of them simultaneously and increasing

the total number irradiated crystals by almost a factor of 10, relative to 2006.

4.2.2 Estimation of Irradiation Dose Rates

For 2006 test beam irradiations the beam was aligned such that its center was incident
on the center of the face of the crystal being studied. Each crystal was irradiated for
approximately ten hours with a continuous beam of either 120 GeV/c or 90 GeV/c
momentum electrons, for crystals in supermodules 22 and 9, respectively. In order
to permit comparison to earlier irradiation studies (and to better understand the

radiation hardness of the crystals for in situ running) we estimate the dose on each
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crystal during irradiation. This is done by modeling both the electron beam profile in
the plane transverse to the crystal face and the electromagnetic shower profile within
the crystal.

To model the shower profile we note that, on average, only 10% of the energy lies
outside the cylinder with radius Ry, = 2.19 cm, the Moliere radius characteristic of
the crystals. These distributions are often described as the sum of two Gaussians,
but for convenience we will estimate it as a single Gaussian. Assuming the transverse
profile shape remains constant, the restriction that 90% of the energy lies within a
radius R); dictates that the transverse profile has o7 = 1.02 cm.

In the longitudinal direction, we assume that the energy deposition is described

by a gamma distribution [48]:

dE

(bt)aflefbt
i -, N St
dt 0

O (4.4)

where t = /X is a scale variable in units of radiation lengths and Ej is the incident
electron energy. The variables, a and b are set by noting that the longitudinal shower

maximum, t,,,,, can be estimated as
tmaz = (@ —1)/b =1log(Ey/E.) — 0.5, (4.5)

where F, is the critical energy, defined as the energy at which the rates of loss from
ionization and Bremsstrahlung are equal. For lead tungstate crystals, we estimate E.
= 10.8 MeV by noting that Ry, = XoFE,/E. and assuming that |dE/dt|prems ~ F/Xo.
Here, Ej is the scale energy \/M mec® = 21.2 MeV. For the parameter b we assume
b~ 0.5, a reasonable choice a range of materials [48].

With these assumptions, we estimate the dose at shower max (approximately 8.8

Xp and 8.5 X for 120 GeV/c and 90 GeV /c momentum electrons, respectively) as

Dosepmaz(e,120 GeV/e) = 3.7 x 1078 x N,(Gy) , (4.6)
Dosepmaz(e,90 GeV/c) = 2.9 x 107° x N (Gy) , (4.7)
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where NV, is the number of incident electrons.

In order to model the the beam intensity, we use trigger counters placed in the
beam line which record the number of particles crossing a 50 x 50 mm? area centered
on the crystal under study. We approximate the beam profile as normally distributed
in z and y and under that assumption measure for the 120 GeV/c momentum electron
beam (0,,0,) = (0.6 cm, 1.1 cm) and, for 90 GeV/c beam, (o,,0,) = (1.0 cm, 1.9
cm).

With models for the beam and shower profiles we can calculate the average dose
over the entire crystal by convoluting the two profiles, giving an average dose over

the crystal volume as

< Dose > (e,120 GeV/c) = 7.0 x 1077 x N(Gy) (4.8)

< Dose > (e,90 GeV/c) = 4.2 x 107? x N(Gy) , (4.9)

where NV is the number of hits recorded by the trigger counters. Using this estimate,
we find that the average dose rates ranged from 0.005 Gy/h to 0.02 Gy/h, with the
values for the five irradiated crystals from the 2006 test beam summarized in figure 4.5
(bottom). The integrated dose as a function of time for these irradiations is shown

in figure 4.5 (top).

4.2.3 Treatment of Crystal Irradiation Data

During irradiation, electron-beam and laser data were recorded alternatively, with a
period of roughly 10 minutes. An example irradiation, for crystal 168, supermodule
22, is shown in Figure 4.6. Here, each point shows the normalized electron and
laser responses averaged over many events taken in the interval. The electron points
correspond to a Gaussian fit to the 120 GeV electron energy distribution, with error
bars shown. The laser points are calculated by fitting the distribution of 600 APD/PN
values taken for each laser run with a Gaussian function. For each electron event, a
corresponding laser response is calculated by linearly interpolating between the laser

points that proceed and follow the electron run.
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128 90 0.0110 0.0964
148 90 0.0031 0.0475

120 0.0194 0.2141
552 90 0.0048 0.0511
672 90 0.0089 0.0317

Figure 4.5: (Top) Mean dose versus time for the various crystals under electron
irradiation. (Bottom) Dose rates and integrated doses for the irradiated crystals.

The crystal energies are calculated from the 10 ADC samples read from the APDs
of a crystal every 25 ns, as described in section 4.3, and used to calculate the pulse
amplitude. This is converted into GeV, and an intercalibration constant is applied,
derived using the S1 algorithm [49].

For the laser light energy reconstruction in the ECAL crystals, the difference in
pulse shape between the laser and scintillation light means that the weights applied
to the 10 ADC samples to calculate the pulse amplitude are no longer appropriate.
Instead, the pedestals are defined for each crystal’s channel on an event by event basis
using the first 3 digitized samples, occurring before the laser signal in the 10 sample

window. The maximum amplitude is obtained using a fit function [50]

A(t) = A (t _ﬁto) emo(=FE) (4.10)

where [ is the electronics decay time and the product af is the electronics rise time.
The response of the reference PN photodiodes to laser light is much slower, with a

shaping time of about 750 ns, digitized in 50 samples at 40 MHz. Their maximum
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Figure 4.6: Normalized electron, laser and interpolated laser responses for a single
crystal.

response is calculated with a 2"d-degree polynomial fit using the 16 samples around
the maximum sample. The mean of the first five samples is subtracted as a pedestal.

The laser response for each crystal channel is given by the reconstructed APD
amplitude divided by the PN amplitude corresponding to that channel, denoted
APN/PN. Each laser run consists of 600 events for each channel, with the APD/PN
value for the run calculated using an iterative Gaussian fit to these events’ values.
Subsequently, for each irradiated crystal, a reference channel was chosen in the same
5 x b trigger tower away from the electron beam. The irradiated crystal’s APD/PN
value for each laser run is then divided by the APD/PN value from the reference

crystal in order to correct for variations in the laser pulse width.

4.2.3.1 Correction for Impact Point

The energy deposition of an electron in a single crystal depends, among other things,
on its position of incidence on the face of the crystal. Electrons which hit the crys-
tal near an intercrystal boundary will experience larger variations in response due
to shower leakage, degrading the response resolution. A correction is developed by

measuring the crystal response as a function of hodoscope measurement, effectively
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parameterizing the response as a function of incidence position. The correction is
calculated using the data itself, using the approach described in [49] with slight mod-
ifications briefly described here. The position dependence of the crystal response can
be factorized as the product of two 4"'-order polynomials, Py (z) and Py (y), each a

function of one of the hodoscope coordinates

F(z,y) = Px(z) X Pr(y) . (4.11)

Using events selected from a 40 mm x 40 mm region in the (x,y) plane the mean
response of the crystal vs. impact point is fit in the 20 mm x 20 mm region centered
on the point of maximum response, determining the parameters of the polynomials.
A unique pair of polynomials is calculated for each crystal studied. Subsequently, the
corrected response for the i event, S is calculated from the uncorrected response,

SZ"MTLCOTT by

MAX MAX
Sgorr _ Suncorr PX X PY
i = 5.

! = S s f(hy) 4.12
Py(e) X Py (5 S (hi) (4.12)
where (z;,:) = h; are the impact coordinates of the i™® event and PMAX and pMAX

are the maximum values of the polynomials.

4.2.4 Crystal o Parameter Measurement

The traditional approach for measuring « for a crystal is the correlation plot method,
which involves fitting data points which each correspond to the average response of
many laser or electron events for a single crystal, such as in Figure 4.6. A weakness
of the approach is that the response changes over the time interval used to derive
a single point are neglected, as are shower variations leading to sharing of energy
with neighboring crystals. Finally, the method is performed on only one crystal at
a time, rather than over multiple crystals in a way suited to in situ implementation,
where there is no monoenergetic electron beam available for calibration. We propose
a new approach which improves on the shortcomings of the correlation plot method,

whereby we measure « by explicitly appealing to what the parameter is intended to
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in the first place; the energy resolution is interpreted as a likelihood and « is chosen
as the value which maximizes it. We describe this energy resolution minimization
approach, along with the correlation plot method, in the context of these test beam

irradiations.

4.2.4.1 Correlation Plot Approach

A typical example of the crystal response evolution is given in Figure 4.6, where
the normalized electron and laser responses are plotted versus time. For each elec-
tron point, a corresponding laser point is calculated by linearly interpolating between
the proceeding and following laser measurements. The alpha parameter from equa-
tion (4.3) is measured by comparing the electron responses to the corresponding
interpolated laser responses. Specifically, equation (4.3) can be re-expressed using a
logarithmic scale as

logS =alogR+ K |, (4.13)

where K = log Sy — alog Ry. Using this relation, the parameter o can be obtained
from a linear fit of log S as a function of log R. In this case, the normalization factors of
the electron and laser responses contribute only to the constant K and do not directly
affect the determination of o with their uncertainties. An example correlation plot
and « fit are shown in Figure 4.7. In this case, the correlation plot is made using
electron events incident in a 4 mm X 4 mm region centered on the crystal’s point
of maximum response, as measured by the hodoscope. This restriction is imposed
in order to minimize variations from shower leakage. For each electron run, events
are separated into bins by corresponding hodoscope values. The events in each bin
are then grouped, according to time, into subruns such that there are at least 3000
events, giving a finer sampling of response loss evolution over the transverse geometry
of the crystal face. The distribution of approximately 3,000 events is then fit using
a simple Gaussian in a restricted range (one FWHM around the peak) in order to
extract the mean value and error for that sample. This mean and error corresponds

to one electron point in the correlation plot. The number 3000 is chosen so that,
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Figure 4.7: Correlation plot for crystal 128, supermodule 9, with the mean normalized
electron energy loss plotted versus the mean normalized laser signal loss.

assuming roughly 0.5% energy resolution, the error on the mean of the distribution
will be below 0.1%. The error in the measurement of « is then calculated by looking
at the spread of a determined from independent correlation plots in 25 different 2
mm X 2 mm hodoscope bins in a 10 mm x 10 mm region on the face of the crystal,

centered at the point of maximum response.

4.2.4.2 Energy Resolution Minimization Approach

In essence, the energy resolution minimization (ERM) approach to a parameter ex-
traction is algorithmically similar to the correlation plot approach except, rather than
grouping events into distributions according to time bins, events are considered in-
dividually. Each electron event, with a corresponding laser measurement, is used
to construct an energy distribution whose standard deviation is explicitly minimized
with respect to the alpha parameter.

During LHC running, the crystal response will be corrected as

St eorr = S(t)raw (%) . (4.14)

Applying this correction to each individual electron event from test beam irradiation

for a given crystal results in a monoenergetic energy distribution whose standard
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deviation is a function of the crystal’s a parameter. The ERM approach proceeds
by minimizing the standard deviation divided by the mean of the electron response
distribution with respect the a parameter. This ensures that the chosen « is the
one which yields the best energy resolution, which should also correspond to the true
value. In practice, it is more convenient to minimize the equivalent error function

o2 S¥(z)? N 22
Err(oz):?%—l: J (ZNm)QZ?
i Li

, (4.15)

where z; denotes the corrected energy of the jth event and is a function of o, o is
the standard deviation and N the number of events in the energy distribution. With
the error function Err(«) written explicitly, the gradient with respect to o can be

calculated as

oErr 2 L O x2
G = N2~ da <xj_?) | 10

J

Equations (4.15) and (4.16) are general in that they can apply to different formu-
lations of the corrected event energy x;. For example, x; can represent the response of
the central crystal in an electron event, denoted E;. Alternatively, z; can represent
the sum of the crystal responses from a matrix of crystals containing the incident
electron, each response corrected with the corresponding crystal’s o parameter. For
this study, determination of o parameters will be done using both the F; formulation
and Fs; formulation, where FEos represents the sum of the crystal responses from a
5 x 5 matrix of crystals surrounding the central crystal upon which the electron is
incident.

For the F; formulation, the energy response of the single crystal is especially
sensitive to the impact position of the incident electron, as variations in shower con-
tainment result in variations of the deposition of energy in surrounding crystals. Sub-
sequently, it is necessary to correct the E; response using the methods described in
section 4.2.3.1. Denoting the raw central crystal response and corresponding normal-

ized laser response for the j™ event S; and Lj;, respectively, we write equations (4.15)
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and (4.16) in the context of the E; formulation as

v = f(h)S;L;® (4.17)
>, (F(h)S;L;7)? N?
Errg, = J J
@ N (7 (RS
OErrg, _ 2
Oa N f(hi)SiL®)?

hS. L=log(L. Zi(f(Z)SL *)? 7y 7—a
Z[f(hJ)SJLj 1g<LJ)< Z f(ﬁ 1S.L° - f( ])S]L] )] )

where f(h;) is the containment correction factor from equation 4.12 and h; = (z;, ;)
is the hodoscope coordinates of the jth event.

For the FEs5 formulation we consider the o parameter of the central crystal of
incidence, which we denote the kth crystal. Here, the containment correction used
in the F; formulation is unnecessary since, by including the sum of the corrected
responses from all crystals in a 5 x 5 matrix surrounding the central crystal, energy
lost due to showering into neighboring crystals is already accounted for. Denoting,
for the jth event, the raw crystal and normalized laser responses for the /th crystal
as Slj and L{ , respectively, the error function and its gradient with respect to «aj can

be expressed as

25
S asi(E) (4.18)
l

Brrp (o) = 2ot @St N
T'T Eys (O = - -
N (3 S0 s (L)~ )?
OErrp,, 2
Oau N2 300 asi(Li)=o)?

N

Z[cks,zw@—% log(L}) (Zziﬁz%ff;ﬁ;a;f —;asm—@z)] ,

where the sum over [ is over the crystals in the 5 x 5 matrix and ¢ is the inter-

calibration constant of the [th crystal.
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4.2.4.3 ERM Method Implementation

Due to the generality of the ERM formulation there is a great deal of freedom in
specifying the specific details of its implementation, which should be chosen to fit the
form of the data. For this study, electron data is grouped into runs such that, over the
course of one run, the magnitude of crystals’ transparency change is small compared
to that over the course of the entire irradiation. As a result, it is possible to consider
events from the same run together for preselection without a priori knowledge of the
crystals’ o parameters.

One issue is that, given the formulation of this approach, the error function and its
gradient can be disproportionately dominated by outliers in the energy distributions.
Additionally, distributions that are largely nonsymmetric can result in a systematic
error in the determination of a, such as when there is a low energy tail in the distri-
bution. For other studies, where the peak positions of quasi-Gaussian distributions
are of interest, these problems are overcome by fitting the distribution in order to
accurately measure the peak position. Here however, when it is necessary to use an
explicit error function with a well-defined gradient, fitting the distributions in order
to determine the standard deviation results in a non-smooth function of the a param-

eter, as shown in Figure 4.8 (left). A solution is to instead select events in the energy
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Figure 4.8: (Left) Fitted sigma/mean for crystal 168, supermodule 22. (Right)
Sigma/mean for the same crystal, considering only events with energies near the
peak response.

distribution in a symmetric way around the peak of the distribution and to exclude
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outliers. This is accomplished by fitting the energy distributions for a particular
ERM formulation (E; or Ess) using a Gaussian function within a restricted range
around the peak position, and considering only events around the measured peak.
The results of this procedure on the error function are shown in figure 4.8 (right). To
ensure that the range of this event selection cut does not bias the measurement of
the a parameter it is varied and « is recalculated, indicating no dependence on the
cut range.

With an explicit error function and its gradient, the problem of a parameter
measurement is reduced to that of a one-dimensional minimization. For this study, a
parabolic interpolation was used that takes into account the gradient in order to speed
convergence in the determination of a. The convergence qualities of the procedure

for a sample crystal are demonstrated in figure 4.9.
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Figure 4.9: ERM parameters as a function of minimization iteration. (Left) Gradient
of error function (equation (4.15)) with respect to « for the E; formulation. (Center)
Standard deviation of the electron energy distribution. (Right) a.

4.2.5 Test Beam a Measurements from 2006

In addition to the requirements from each o measurement-method, events must satisfy
a 10 mm x 10 mm hodoscope cut in the x and y hodoscope coordinates, centered
at the position of maximum response for the crystal. For each crystal, the data used
to measure « is split into 25 equally sized sets. From the resulting 25 independent
measurements of « the error in the measurement is calculated from the spread in the

distribution. The results of the measurements are summarized in Tab. 4.1. There
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Crystal ID | Correlation plot « F« Fos Change in response
128 1.52 4+ 0.05 1.55 + 0.02 1.52 4+ 0.02 1.2 %
148 2.77 £ 0.51 1.58 + 0.15 1.36 + 0.24 0.5 %
168 1.34 £+ 0.02 1.382 + 0.004 | 1.364 4+ 0.003 3.8 %
552 1.50 + 0.11 1.55 4+ 0.06 1.50 + 0.03 0.9 %
672 0.76 = 0.15 0.73 £ 0.15 0.65 + 0.05 0.4 %

Table 4.1: Measured values for crystal a parameters using different methods.

is a strong correlation between the precision of the measurement of the o parameter
for a crystal and the corresponding magnitude of transparency change during the
irradiation period, as shown in Figure 4.10. This relationship is expected, since the
the energy resolution of the crystal is more dependent on the o parameter when there
is a greater change in response due to crystal transparency change, with a longer lever-
arm for the correlation plot method and deeper error function minimum for the ERM
approach. In general, we conclude that the minimization approaches are more precise
than the correlation plot approach. Despite differences uncertainties, the values for

« measured by each method are consistent, as illustrated in figure 4.11.
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Figure 4.10: Magnitude of crystal response change during the irradiation run vs.
uncertainty in the measured value of a (Ey5) for all crystals
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Figure 4.11: Correlation between « measured from the £y ERM approach and (left)
correlation plot method, (right) Eo; ERM.

4.2.5.1 Efficacy of Correction Procedure

Ultimately, the goal of the laser monitoring system is to correct for the energy loss due
to radiation damage in order maintain the resolution of the calorimeter. Figure 4.12
demonstrates the difference in the resulting energy distributions for crystal 168 for
the single crystal energy (F;), the energy of the 3 x 3 matrix of crystals centered
on 168 (Fy) and the energy of the surrounding 5 x 5 matrix of crystals (Ey;) when
using no laser correction and a correction with o = 1.36 (the value measured for this
crystal using the Fy5 ERM formulation). The distributions where made with a 10 x
10 mm? hodoscope cut and no containment correction was applied. The conversion
of 40 MeV/ADC is used as the default of the reconstruction code, but should clearly
be calibrated to a different value (the energy response peaks at 110 rather than 120
GeV) . When the laser monitoring correction is applied, the surrounding crystals
are corrected with their respective normalized laser measurements using o« = 1.6,
although since the magnitude of their transparency change is small the dependency
of the Fy and Fs5 values on these neighboring crystals’ a values is negligible.
Although relatively small, a clear difference in energy resolution can be observed
between the distributions corresponding to the transparency corrections using a de-
fault o = 1.6 parameter and the measured o parameter for the irradiated crystal, as

illustrated in Tab. 4.13. The contribution to energy resolution from uncertainty in
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Figure 4.12: FE; (left), Ey (center) and Fss (right) energy distributions for crystal
168, with and without laser corrections.

E1 0(E)/E | Eg o(E)/E | Ess; o(E)/E
uncorrected 1.69% 1.41% 1.36%
a = 1.60 0.722% 0.535% 0.539%
a=1.36 0.700% 0.528% 0.527%

Figure 4.13: Fitted energy resolutions for crystal 168 during irradiation with and
without laser monitoring corrections. With corrections, the resolution is restored to
values achieved before irradiation.

the crystal o parameter can be described by

AFE S\ Aa
— =1 — | — 4.1
w —loe(2) 3 (4.19)

where S/Sy is the normalized crystal electron response. Observing the difference in
peak energy between the energy distributions corrected with the measured o and
default « = 1.6 (110.5 and 109.9, respectively, for E;), one can estimate the con-
tribution to the energy resolution from the systematic uncertainty of o as (110.5 —
109.9)/109.9 = 0.55%. Taking the value of S/Sy = 0.962 for crystal 168 from Tab. 4.1
and an error in « of 16 %, equation (4.19) yields an estimation on the corresponding
shift in the peak energy from using the incorrect a of 0.6 %, consistent with the value

observed in data.
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4.2.6 Test Beam o measurements from 2007

The EE Dee used in the 2007 test beam was equipped with 20 supercrystals, with
individual crystals produced by either BTCP (russian, same as all the barrel) or SIC
(chinese). The channel numbering and location of irradiated crystals is illustrated
in figure 4.14. The 2007 test beam o measurements differed from 2006 in both the
number of irradiations performed (12 unique positions, some multiple times in 2007)
and the irradiation technique; Rather than irradiating the center of a single crystal,
the electron beam was aimed at the corner between four crystals. This increased the

number of irradiated crystals for which o could be measured by a factor of four.
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[ Position | Irradiated Crystals | Manufacturer |
1 131, 132, 151, 152 BTCP
2 136, 137, 156, 157 BTCP
3 236, 237, 256, 257 SIC
4 336, 337, 356, 357 BTCP
5 437, 438, 457, 458 BTCP
6 x431, 432, 451, 452 SIC
7 231, 232, 251, 252 BTCP
9 422, 423, 442, 443 BTCP
10 127, 128, 147, 148 SIC
11 123, 124, 143, 144 SIC
12 174, 175, 194, 195 BTCP

Figure 4.14: (Top) Channel numbering of the 20 super crystals used in the 2007
EE test beam. Positions in yellow correspond to crystals from BTCP, with purple
indicating SIC. (Bottom) Irradiated crystals.

An additional advantage to the corner-shooting scheme is that the ERM method
could be generalized to extract multiple values of « at once. Instead of the energy of
a single crystal or 5 x 5 matrix the energy of the electron is estimated from a 6 x 6

matrix of crystals centered on the four irradiated ones. The total energy of these
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crystals, Esg, is corrected from the laser measurement making its value dependent on
the four central-crystal o values, and the energy resolution is minimized as a function
of all their values simultaneously through a conjugate gradient-descent numerical
minimization. The correlation between the a values measured with the correlation
method and the four-crystal ERM approach are shown in figure 4.15 along with the
distribution of « values for the BTCP crystals measured. The measurements from
each method are in agreement, with more precise measurements following from the Esg
four-a ERM approach. This is an important demonstration of the ERM approach
being applied to multiple crystals simultaneously, indicating that the prospect for
generalizing the method for an in situ o determination is good. The spread in «
among the different BTCP crystals is as expected, ~10%. The evaluation of the laser
monitoring correction in section 4.2.5.1 indicates that not measuring each crystals o
parameter independently will have an adverse effect on the ECAL energy resolution,
with the 10% uncertainty in o when using one common value growing in significance

with increasing transparency changes.
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Figure 4.15: (Left) Correlation between values of a measured for endcap crystals
using the fit method (correlation plot) and the minimization method (ERM) which
measures « for the four central crystals simultaneously. (Right) Distribution of mea-
sured crystal « values for BTCP ECAL endcap crystals from test beam 2007 from
ERM method. Values are corrected for the transverse orientation of light injection
fibers to the dose profile (see section 4.2.6.1).

4.2.6.1 Effect of Fiber Geometry on the Measurement of «

In the 2007 test beam irradiations the beam center was aligned at the corner of
four crystals. For endcap crystals, the laser light injection fibers are located at a

specific corner, rather than in the center of the crystal face, as for the barrel. As a
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result, the transverse dose profile has an orientation w.r.t. this fiber that is different
for each crystal depending where the fiber is located. We identified four classes of
orientations, corresponding to the fiber being located in the same corner of the crystal
as the irradiation dose (denoted “1”), the fiber being located in the opposite corner
( denoted “2”) and the fiber being located in an adjacent corner (“0” and “3”). The
adjacent corner orientation is further separated into two classes by the orientation of
the crystal w.r.t. to the beam, which affects the dose profile w.r.t. the fiber. The raw

measured « values for these different orientation classes are shown in figure 4.16.
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Figure 4.16: Measured « values for BTCP crystals in the 2007 test beam separated
by fiber/dose orientation. (Top) All crystals. (Center left) Class 0. (Center right)
Class 1. (Bottom left) Class 2. (Bottom right) Class 3.

We observe that the spread in « values within each orientation class is significantly
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smaller than the spread over all the crystals, indicating that the different orientations
result in a systematic change in the measured o value. This suggests that laser
light sampling of the crystal is geometrically biased by where the light is injected,
whereas the scintillation light from electromagnetic showers uniformly samples the
whole crystal bulk, effectively experiencing different densities of color centers. This
effect will not be present in in situ conditions, where the transverse gradient of the
dose profile over a single crystal is negligible.

This effect is corrected for by normalizing the values from each separate class such
that the mean of that individual distribution is equal to the mean from figure 4.16,
yielding the distribution shown in figure 4.15. There are still residual effects from this
dose/fiber orientation shift present in this corrected result, due to the fact that this
should be a continuous correction, since the beam was asymmetric and not perfectly
oriented at the corner of the four crystals. The larger spread in classes 1 and 2
(same corner/opposite corner) reflect this, since for these orientations the amount
of transmission change (darkening) that the laser light samples is more sensitive to
systematic misalignment of the beam in the corner of the four crystals, and any time

dependent shift in the beam profile.
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4.3 Electron Reconstruction

In a collision event, the signals from each ECAL crystals’ photomultiplier are digitized
by a sampling ADC, resulting in a series of 10 samples separated by 25 ns [51], each
indicating the collected charge from the crystal’s APD in that time slice. The ampli-
tude of the signal is reconstructed from these samples [52] using a linear combination
of their amplitudes: A = > jwj - Sj, where S; is the sample value in ADC counts
and w; is a weight, optimized using the measured average pulse shape. The pulse
amplitude A;, in ADC counts, of each crystal 7 is then multiplied by an ADC-to-GeV
conversion factor G, which is measured separately for EB and EE crystals, and a
crystal-by-crystal intercalibration constant C;.

Since the lateral size of ECAL crystals are approximately one Moliere radius, the
electromagnetic showers from incident particles generally spread over a few crystals
in the lateral plane over the face of the ECAL. The ECAL clustering algorithm be-
gins with the formation of “basic clusters” corresponding to local maxima of energy
deposits. Due to the silicon tracker material in front of the ECAL (ranging from
one to two radiation lengths depending on 7) electrons and positrons will undergo
Bremsstrahlung, with the magnetic field spreading this radiated energy in the ¢ di-
rection. This energy is recovered through the formation of superclusters (SC), which
are formed from groups of nearby basic clusters, extending further in ¢ in order to
include clusters from radiated photons. In the barrel, this supercluster algorithm is
called the “hybrid” algorithm, and is described in Ref. [53]. Due to differences in ge-
ometry, clustering in the EE and ES uses a slightly different algorithm, which merges
together fixed-size 5 x 5 crystal basic clusters.

At this stage, the energies of superclusters are corrected to account for poten-
tial unclustered energy resulting from shower leakage Bremsstrahlung losses. These
corrections are dependent on the type of the particle, its momentum, direction and

impact point position. The supercluster energy can be expressed as

E.,=F., [G- Z Si(t) - Ci - Ay + Egs] (4.20)
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where the sum is over the crystals ¢ belonging to the supercluster, S;(t) is the laser
monitoring correction for crystal transparency changes and the factor F., ., represents
the supercluster energy correction. For endcap superclusters the preshower energy
Fgg is also added.

Electron reconstruction proceeds by combining these energy-corrected superclus-
ters with tracks reconstructed in the silicon tracker (section 3.3.1). This is performed
by two complementary algorithms, where electrons are either seeded from ECAL su-
perclusters or from tracks. In the former, the supercluster position is used to select
pairs or triplets of hits in the innermost tracker layers in order to initiate the elec-
tron track reconstruction. The latter uses tracks as seeds and tries to match them
to ECAL clusters by extrapolating the track measurement to the face of the ECAL.
Regardless of the electron seed provenance, all the selected elements (track+SC) are
used to reconstruct the electron tracks using including a modeling of the energy loss
in the tracker material and a Gaussian Sum Filter (GSF) to fit the trajectories [53].

Electron candidates are built from the combination of ECAL superclusters and
their associated GSF tracks and the properties of both, and their interconsistency, are
used to identify electrons. The electron candidate’s quality is based on the shower
shape, its track/supercluster position and momentum agreement, and its isolation

relative to signals in each of the subdetectors.

Shower shape

The shape of the energy shower in the ECAL and HCAL, reconstructed using
the granularity of both detectors, is a good discriminator between energy deposition
resulting from electromagnetic particles and those following from the hadronization

of jets.

e HCAL/ECAL energy ratio The large number of radiation lengths covered
by each ECAL crystal indicates that electromagnetic showers are unlikely to
leak through the back of the crystal into the HCAL. As a result, the ratio of
the electron’s supercluster energy to that measured behind the electron in the

HCAL, H/FE, can be used to reject fake candidates.
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e Shower moment: The shape of the ECAL supercluster can be used to identify
candidates that are likely to result from electrons by looking at the distribution

of energy through the crystals forming the cluster. The covariance oy, is

defined as

2 Z?XS (Mi + Nseed — 775_><5)2 w;

iin T 5x5 )
Zi w;

(4.21)

g

where the sum ¢ is over the crystals in the cluster, E; and 7, are the energy
and pseudorapidity of the ith crystal and w; = max(0,4.7 + log(E;/Esc) is an
energy-dependent weight (the same used in the determination of SC position).
Small ;,, is indicative of the tightly clustered signature of an electron or photon
while larger values show a more diffuse structure consistent with jet hadroniza-
tion products. The n-direction covariant is used because it is not affected by

shower-spreading in the azimuthal direction resulting from the magnetic field.

Track cluster comparison
Fake electron candidates can be rejected by requiring that the track and super-

cluster measurements of the electron momentum are consistent.

e Position consistency: Tracks are extrapolated to the face of the ECAL and

the difference in angle, An = ngc — Nyack and Ap = dpsc — dirack, 1S calculated.

e E/p: The ratio of ECAL cluster energy to track momentum should be in agree-

ment for real electrons.

Isolation

The energy and momentum deposits measured from the subdetectors in the vicin-
ity of electron candidates can be examined for traces of particles produced with
the electrons, whose presence is indicative of particles coming from jets rather than

promptly from, for example, W and Z bosons.
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e Tracker isolation: Tracks in a cone around the electron candidate of AR =
\/m = 0.3 are selected, excluding those within AR < 0.04 and also
those falling in an 7 — ¢ = 0.015 x 0.4 strip to remove the electron track and
deposits from photon conversions, respectively. The scalar sum of the pr of

these tracks corresponds to the tracker isolation.

e ECAL isolation: The sum of transverse energies of ECAL cells in a AR = 0.3
cone around the candidate are summed, excluding the region AR < 0.06 and

ann — ¢ = 0.04 x 0.4 strip.

e HCAL isolation: The sum of transverse energies of HCAL cells in a AR = 0.3

cone around the candidate are summed, excluding the region AR < 0.015.
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Chapter 5

Jets, Missing Transverse Energy,
and the CMS HCAL

5.1 The CMS Hadron Calorimeter

The CMS detector must be able to reconstruct all of the particles produced in LHC
pp collisions and, given the strongly interacting partons, many of these particles will
be quarks and gluons which will hadronize into jets of particles. The CMS detector
includes many interaction lengths of material in order to stop these particles and
measure their energies. These measurements, along with the geometry and granularity
of the HCAL, can be used to reconstruct the the momenta of jets appearing in collision
events.

Hadrons are detected and reconstructed using the CMS hadron calorimeter (HCAL).
The HCAL is composed of several subdetectors, covering different intervals of pseu-
dorapidity and interaction depths. The HCAL barrel (HB) covers |n| < 1.3 and sits
between the ECAL barrel and the solenoid’s magnetic coil (1.77 m < R < 2.95 m)
with HCAL endcaps (HE) placed on either side behind the those of the ECAL, cover-
ing |n| < 3. Beyond that is the forward hadron calorimeter (HF), which completes the
CMS calorimetric coverage to |n| = 5.2. In addition to geometric coverage, the HCAL
system must also have enough stopping power to measure the full shower energies of
incident hadrons. This is accomplished with the outer hadron calorimeter (HO) which

is placed outside of the solenoid in front of the barrel muon systems. Between the full
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HCAL detector, illustrated in figure 5.1, and the magnetic solenoid the material be-
tween the interaction point and the back of the HCAL detectors constitutes between

12 and 17 interaction lengths.

Figure 5.1: Longitudinal cross section of a quadrant of CMS, with the HCAL sub-
detectors HB, HE, HO and HF labelled. Interaction point is in the lower left corner.
Dashed lines correspond to constant pseudorapidity.

5.1.1 Barrel Hadron Calorimeter

The HB is a sampling calorimeter composed of alternating layers of brass absorbers
and plastic scintillating tiles. It consists of 36 azimuthal wedges which form two half
barrels, one on either side of the interaction point, as shown in figure 5.2 (left). Each
of these wedges is further divided into four azimuthal sectors, giving a granularity
of A¢ = 0.087. In the longitudinal direction, the plastic scintillators are divided
in 16 intervals, constant in the interval of pseudorapidity they cover, which yields a
granularity of An = 0.087, matching the azimuthal direction.

Each HB module has either 12 or 13 layers of 3.7 mm thick plastic scintillators,
which are radiation hard. Between each of these layers are brass plates between 50.5
mm and 56.5 mm thick, increasing at larger radial distances from the beam line. The

front and back plates are made of 40 and 75 mm thick steel, respectively. The layout
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Figure 5.2: (Left) Illustration of transverse slice of HB with individual wedges num-
bered. (Right) Schematic view of an HB wedge, with design on scintillator sampling.

of an HB wedge is shown in figure 5.2 (right).

When particles are incident on the HCAL their shower develops in the absorber
plates, while the energy of the particles produced in the shower are measured in the
plastic scintillators. The scintillator light is collected with wavelength shifting fibers
which brings the light to a hybrid photodiode [54], which has a gain of about 2000.

5.1.2 Endcap Hadron Calorimeter

The HE endcaps cover a large solid angle (13.2%) and as a result have a large particle
flux, with approximately 34% of particles produced in LHC collisions falling in that
interval. The same radiation-hard detector technology as the HB is used, with al-
ternating layers of plastic scintillators connected to HPDs and brass absorber plates.
Each HE layer is set at fixed distance from the interaction point along the beam line,
meaning that the cells are arranged perpendicularly to the HB. As shown in figure 5.3
(left), the azimuthal granularity of the HE is the same as for the HB. The HE and
HB sub-detectors are designed to overlap in pseudorapidity in the transition region
between the two detectors in order to prevent gaps in geometrical coverage.

There are 17 layers of 9 mm thick scintillators in each HE unit, interleaved with
79 mm thick brass plates as shown in figure 5.3 (right). The HE constitutes about

10 interaction length for particles coming from the interaction vertex. Given the
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Figure 5.3: (Left) Illustration of HE endcap mounted on iron yoke, with transverse
and longitudinal views. (Right) Diagram of longitudinal HE view, with layer segmen-
tation shown as red and blue lines. Dotted lines point towards the interaction point
and indicate the segmentation of separate HE towers.

geometry of the HE, the effective granularity of the individual cells changes from
An x A¢ = 0.087 x 0.087 in the region |n| < 1.6 to An x A¢p ~ 0.17 x 0.17 at larger
pseudorapidity.

5.1.3 Outer Hadron Calorimeter

In the barrel region the HB covers between 5.82 and 10.6 interaction lengths, depend-
ing on the polar angle relative to the interaction point. In order to complement this
coverage, an outer hadron calorimeter (HO) is placed outside of the solenoidal mag-
net in order to catch the tails of hadronic showers that are not contained in the HB
alone. With a contribution from the solenoidal coil of 1.4/ sin(#) interaction lengths,
the HO gives the depth of CMS in the |n| < 1.3 barrel region to between 12 and 17
interaction lengths, depending on 7. The HO is composed of one (two) cylindrical
layers of scintillating fibers located outside (outside and inside) of a 19.5 cm thick
piece of iron at a radial distance of four meters from the beam line. The HO geometry
matches that of the barrel muon system, with five separate wheels at different fixed
distances along the beam line. Only the HO for the central ring has two scintillator
layers. Each of these rings has 12 segments in ¢ and six longitudinal slices, roughly

matching the granularity of the HB. An illustration of the HO detector in CMS is



shown in figure 5.4.
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Figure 5.4: Longitudinal (left) and transverse (right) views of the HO detector, with
different layers labeled.

The radial size of the HO is restricted by the muon system, with only 40 mm
for the detector. In addition to an aluminum support structure, this leaves 16 mm
for the detector layer, with 10 mm thick active scintillators. Like the HB and HE,

scintillation light is collected by a wavelength shifting fiber and measured in HPDs.

5.1.4 Forward Hadron Calorimeter

In the far forward region, the LHC particle flux reaches unprecedented level at a par-
ticle detector, meaning that the components of the forward hadron calorimeter (HF)
must be extremely radiation resistant. The scintillator-tile/wavelength-shifting fiber
paradigm used in the other HCAL subdetectors would not withstand the expected
LHC radiation rates, particularly up to |n| = 5 where 500 fb~! of data would result in
the HF experiencing ~MGy of integrated dose [55]. For this reason, radiation-hard
quartz fibers are used as the HF active material.

The HF consists of a steel absorber composed of 5 mm thick plates. Through the
full depth of this absorber (165 cm ~ 10 interaction lengths) run long quartz fibers,
with smaller one starting at 22 cm from the front of the detector. Each of these fibers
is 600 pm in diameter for the fused-silica core, extending to 800 pum with polymer
hard-cladding and a protective acrylate buffer. When charged particles from showers
in the steel absorbers pass through the fibers above the Cherenkov threshold (£ > 190

KeV for electrons in this material) Cherenkov light is produced. This implies that
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the HF is sensitive mostly to the electromagnetic component of showers [56], and the
short and long quartz fibers can be used in conjunction to distinguish showers coming
from electrons and photons from those of other particles.

Located 11.2 m from the interaction point, the HF is a cylindrical steel structure
with an outer radius of 130 cm and extending within 12.5 cm of the beam line. It
is subdivided azimuthally into 18 modular wedges, with a set of wedges on each side
of the interaction region. The quartz fibers run parallel to the beam line and are

grouped to form towers with granularity An x A¢ = 0.175 x 0.175.

5.2 Jet Reconstruction

The energy depositions left by particles in the ECAL and HCAL are used to build
representations of hadron jets by clustering them together. Each 5 x 5 cell of ECAL
crystals is matched to single cells in either the HB or HE to form calorimeter towers
(CaloTowers) which are the input to the clustering algorithm. Each CaloTower is
interpreted as a massless particle with energy equal to the sum of measured energies
in the constituent ECAL and HCAL cells. The direction of the CaloTower is assigned
using the projective CMS geometry, assuming that the particles traveled from the
interaction point. Section 5.4 discusses optimization schemes for this momentum
assignment using reconstructed primary vertices in the event and the shape of showers
within the CaloTowers.

The CaloTowers are clustered into jets using the anti-kr clustering algorithm [57]
with a size parameter R = 0.5 in the n — ¢ space, implemented in the FastJet
package [58,59]. The clustering is performed by four-momentum summation, such
that each jet is the sum-total of all its constituents. The energies of these jets is
then for corrected with jet-energy-scale (JES) factors derived from data. These are
especially important in accounting for the energy lost in the noncompensating HCAL
and the variable material budget between the interaction point and the calorimeters.

In 2011 running, the high instantaneous luminosity meant that single events can

contain many interactions, leading to lower energy particles from softer interactions
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biasing the reconstruction of jet energies coming from the primary interaction. This
effect is corrected for by use of the FastJet pile-up subtraction algorithm. Here, the
average energy density in n — ¢-space is calculated from the collection of CaloTowers
used to cluster the jets. The area of each jet is then estimated, and its energy
is corrected by an amount equal to the product of its area and the event energy
density. Analyses using these jets (see sections B.7 and C.6) have demonstrated that
this subtraction approach renders kinematic observables calculated from these jets
momenta insensitive to pile-up conditions.

The performance the jet reconstruction algorithm is measured in samples of QCD
multijet events using the dijet asymmetry method [60]. This approach exploits mo-
mentum conservation in the transverse plane for dijet events, using the imbalance
of the jets as an estimator of the two jets’ resolutions. The idealized topology of
exactly two jets recoiling perfectly against each other in an event is violated by ad-
ditional activity from the underlying event, soft radiation or lost energy from jet
fragmentation effects. For dijet momentum balance, these effects are accounted for
by measuring the dependence on extra event activity and extrapolating to zero con-
tribution. The results of the asymmetry measurements from QCD multi-jet data are

shown in figure 5.7.

5.3 Missing Transverse Energy Reconstruction

The presence of weakly interacting particles in collision events is inferred by appealing
to conservation of momentum in the transverse plane of LHC collisions. By looking at
the transverse balance of all of the reconstructed energy and momentum appearing in
the detectors, the transverse momentum of any weakly interacting particles is inferred.
The estimate of this quantity is denoted missing transverse energy (MET),! and it is

defined as the negative vectorial sum of the momenta of all measured constituents in

I'MET is a misnomer, since it is a vectorial quantity representing momenta. Historically, it has
been calculated from the measured energies in calorimeters.



-3
[\]

\s=7 TeV

. . CMS simulation
\s=7 Tev CMS Simulation = . ‘ ——
E T T L A A é‘ o :] total systematic uncertainty (_?a|oJets N
r CaloJets (Anti_k R:O.S) B > 60 I~ :] soft radiation (50%) (Antl'kT R:OS) 1
T = - b
0.3 0< |ﬂ| <0.5 ] E | [: particle level imbalance (25%) 0 < ml < 05 i
A B l © .
w r - + Fooe- MC scaling
%Q,_ B asymmetry ) 8 40 . MC closure (50%) N
o 02 [ —5— reconstructed resolution | c I 1
v . —A— MC-truth ] 3
= —o— particle level imbalance r b
i I 1 2201 .
e [ 1 s ]
£ o4l B T S — ]
°© r B O e e
[ O 0 ¢ . l -
L | s ° o] +
= 20 ] i o0l B
ui 10 & E! 20 i
Z|e o Sty B A S 3 |
ElF 10E E s
A 20k L ‘ N 50 100 200
50 100 200 300 400 1000
P, [GeV] pT [GeV]

Figure 5.5: (Left) Jet resolution measured using the asymmetry method for jets
in |n| < 0.5. The reconstruction-level (green circle) and particle-level (magenta dia-
mond) results are shown together with the final measurement (blue square), compared
to the generator-level MC (denoted as MC-truth) derived resolution (red triangle).
(Right) Relative systematic uncertainty of the asymmetry method.

the final state
MET = - "/ | (5.1)

where the sum is over all of the momentum reconstructed in the detector. Since a large
portion of final state particles are neutral, and cannot be measured in the tracker, the
ECAL and HCAL are of primary importance in MET reconstruction. A measurement
of MET can proceed from the collection of the CaloTower constituents that are used
to cluster jets, or by considering a different representation of the energy measured
in the detector. In the studies described in this thesis, MET is reconstructed using
the particle-flow algorithm [61,62] which attempts to construct every particle present
in the collision event individually. Charged hadrons, electrons and muons are recon-
structed from tracks in the tracker matched to the relevant calorimeters while photons
and neutral hadrons are reconstructed from energy clusters separated from the ex-
trapolated positions of tracks in ECAL and HCAL, respectively. A neutral particle

overlapping with charged particles in the calorimeters is identified as a calorimeter
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energy excess with respect to the sum of the associated track momenta. The energy
of charged hadrons is determined from a combination of the track momentum and
the corresponding ECAL and HCAL energy, corrected for zero-suppression effects,
and calibrated for the nonlinear response of the calorimeters. Finally, the energy
of neutral hadrons is obtained from the corresponding calibrated ECAL and HCAL
energy.

By identifying each particle independently, calibrations are applied according to
the particle type which allows the effective resolution of the HCAL measurements to
be improved through use of the more-precise silicon tracker measurements. Similarly,
the identification of photons, electrons and muons allows for particle-specific energy
calibrations to be applied. This results in an improved MET resolution, in both scale
and direction, relative to the calorimeter-only based analogue.

The performance of the PF MET measurement was evaluated in the earliest data
from 2010, corresponding to about 10 nb~! of 7 TeV collision data. During this early
run period the low instantaneous luminosity allowed for low-prescale minimum bias
triggers. In this dataset, the vast majority of events feature low v/ QCD, where
there are no intrinsic sources of hard, weakly interacting particles. This implies that
the MET measured in these events is reflective of the MET resolution, which is larger
than smaller effects that would cause the true transverse momentum imbalance to
deviate from exactly zero in these minimum bias events. The PF MET distribution
from this early data is shown in figure 5.6. The MET resolution depends strongly
on the scalar sum of the measured energy of the particles used to calculate it. This
is due to the fact that this resolution depends on the individual resolutions of the
detectors used to calculated MET, which in turn depend on the total energy rather
than the magnitude of its imbalance. Since MET is a vectorial quantity, it is usually
decomposed into two scalar quantities by projecting it along two perpendicular axes
in the transverse plane. The MET projected along the CMS z and y coordinate
axes is shown in figure 5.6. The width of the distribution for this scalar quantity is
indicative of the MET resolution. A more useful decomposition can be performed,

event by event, along the axes parallel and perpendicular to the transverse thrust
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Figure 5.6: PF MET distributions measured from early 2010 data. (Left) Magni-
tude of the scalar sum of PF particle transverse momenta. (Right) Magnitude of
the PF MET. (Bottom) PF MET magnitude projected onto the x and y directions,
respectively.

axis. At larger scalar energy sums, many events will show characteristics of QCD dijet
events, where the energy in the event is collimated along one axis in the transverse
plane. This transverse thrust axis can be calculated using the precision silicon tracker

by maximizing the quantity

TT — max > 1P COS(¢TT — o) ’
¢TT Zz Pr

(5.2)

where the sum i is over the tracks in the event with transverse momentum p% and
azimuthal angle ¢;. TT is the event thrust and ¢rr represents the transverse thrust
axis. The MET can be projected along these two axes into a TT parallel (MET)
and perpendicular (MET ) component

MET) = MET - fizy . MET, = /IMET]? - MET} (5.3)
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where npr gives the direction of the transverse thrust axis. The parallel MET com-
ponent’s resolution, with increasing scalar energy, is most sensitive to the calorimeter
noncompensating response to jets and its resolution. Conversely, the perpendicular
component depends strongly on the noise in the calorimeters. The resolution of PF

and calorimeter-only MET, as a function of the calorimeter scalar energy sum, are

shown in figure 5.7 for the first CMS 7 TeV data.
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Figure 5.7: MET resolution as a function of the scalar sum of calorimeter energy in
the event. (Top) MET from calorimeter measurements only. (Bottom) PF MET.

The PF improved over the calorimeter-only approach in resolution, although not
to the magnitude predicted in simulated events. The calorimeter-only MET perfor-
mance was in reasonable agreement with expectations. This was attributed to the
early calibrations used in the PF reconstruction algorithm for charged and neutral
hadrons. With subsequent calibrations the MET performance was improved, and it

performance measured with the full 2010 CMS dataset [63].
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5.4 Optimization of Momentum Assignment for

Calorimeter Energy Deposits

The projective geometry of CMS associates each calorimeter cell with a position (1,¢)
in pseudorapidity and azimuthal angle, respectively. When jets are clustered from
the energy depositions in these cells, the momentum of these energy depositions are
assigned a direction which implicitly assumes that the jet resulted from an interaction
at the center of CMS, (0,0,0) in (z,vy, 2) coordinates. This assumption is justified by
the fact that the size of the beam spot is negligible in the transverse plane and small
on the z axis, when compared to the distance of the inner surface of ECAL from
the center of the detector. It is know from previous work at the Tevatron [64] that
an accurate projection of the energy deposits with respect to the true position of
the event vertex is preferable, especially for search analyses based on multiple jets
and/or MET. In particular, by removing the bias induced by incorrectly projecting
the energy deposits to an incorrect interaction vertex, event migration from the core
to the tails of the jet pr and MET distributions can be reduced.

We explore two complementary approaches to improving the direction assignment
to CaloTowers and jets. The first is to correct their direction for the true position of
the primary vertex. As described in section 3.3.2, the position of every interaction
vertex in LHC collisions is reconstructed precisely by the silicon pixel detector and
strip tracker. FEffectively, this measurement can be used to improve the position
resolution of the calorimeters. We also consider a momentum assignment scheme
that exploits the added granularity of the ECAL relative to the HCAL cells and
CaloTowers. This wvariable positioning approach uses the shower shape in the 5 x 5
ECAL grid assigned to each CaloTower in order to improve the position assignment.
We evaluate the effect of applying these improved position-assignment strategies to
the CaloTowers before jet clustering (a priori corrections) or to the clustered jets (a
posteriori corrections). Both correction schemes are found to improve jet position

and energy resolution and reduce biases in their determination.
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5.4.1 Correcting for the Primary Vertex Position

By default, each CaloTower is assigned an 1, and ¢4 coordinate based on its position
with respect to the nominal (0,0, 0) interaction point. Assuming that the interaction
occurs precisely at this point, this assignment is sufficient, as it uniquely describes the
CaloTowers’ positions on the 2-sphere perpendicular to the nominal interaction point.
When the primary event interaction occurs in a position displaced from the nominal
interaction point these two coordinates are no longer describing the rapidity of the
particles that impact a given CaloTower. We specify the CaloTower’s position in three
dimensions in order to assign its “physics” position on the 2-sphere perpendicular to
the actual event interaction point. More specifically, the position of CaloTowers (and
subsequently the jets clustered from them) can be described as a function of the n; and
¢q coordinate (relative to (0,0,0)) and a “depth,” or reference length, specifying the
distance of the CaloTower/jet from the beam line, or the CMS z-axis. The geometry

of a displaced primary vertex is illustrated in figure 5.8.
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Figure 5.8: The geometry of a primary event vertex displacement along the CMS z-
axis (beam line). In addition to a value of n; and ¢, relative to the nominal interaction
point, an additional parameter, L™/, is necessary to uniquely identify the position of
a CaloTower/Jet.

When the interaction occurs at the point (0,0,0) the points p; and p, have an

equivalent 7y and ¢q, regardless of the reference length, L™/, chosen. This is a
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direct consequence of the projective geometry of the CMS detector. On the other
hand, when the event primary vertex (denoted as PV in figure 5.8) is displaced from
(0,0,0) the resulting value for the corrected n (or ) coordinate for the CaloTower/jet
depends on the chosen reference length, L™/. This length corresponds to the distance
between the energy depositions and the beam line and essentially requires the entire
CaloTower/jet be described as a single point. Strategies for assigning this reference
length are discussed in section 5.4.2.

Given the dimensions of the beam-spot (large spread on the order of 10 cm in z,
10’s of pm in x/y), we only consider displacements of the primary event vertex in
the CMS z coordinate, which implies that these corrections improve only the 1 and
pr/Er measurements of the CaloTowers/jets. Significant displacements in the x/y
(transverse) coordinate of the interaction point from (0,0, 0) should also be corrected
for should they occur. The geometry of this correction implies that central CaloTowers
and jets are more sensitive to the z-coordinate of the primary event vertex position
relative to more forward objects. This effect is demonstrated in figure 5.9. Here, a
toy Monte Carlo was implemented assuming a calorimetry object at each value of
1g shown. The primary interaction vertex position was varied in z, taken from a
Gaussian distribution with mean 0 and ¢ = 5.3 cm. Additionally, a reference length
of L™/ =159 cm was used for all values of 7, (roughly the back of the ECAL). Given
the relative magnitudes as a function of 7, one finds that barrel calorimetric objects’

reconstructed positions are more sensitive to the choice of L™/,

5.4.2 CaloTower and Jet Depth Assignment for PV Correc-

tions

As illustrated in figure 5.8 the correction to CaloTowers/jets is sensitive to the choice
of depth, especially in the barrel region. In principle, the correct choice for this value
would correspond to the distance from the beam line of the intersection between a
line projected from (0,0,0) through the detector n; and ¢4 and the actual trajectory

of the physics object (jet or single particle) from the actual interaction point when the
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Figure 5.9: Toy Monte Carlo study of the event PV smearing around (0, 0, 0). The
z coordinate of the primary vertex is assumed to be normal distributed with mean 0
and ¢ = 5.3 cm. A reference length, L™/, of 159 cm is used. Points correspond to
the mean of the |1y — 7eor| distribution while the error bars correspond to the RMS.

detector has infinite granularity. In practice, it is not possible to determine this point
given the finite granularity of the calorimeters, bending of the charged components
of jets in the magnetic field, and the fact that the calorimeters are designed to be
projective relative to the nominal interaction point. A well-motivated approach would
be to assign L™ according to the location of the longitudinal shower maximum of
the jet/single particle. Unfortunately, for hadronic showers this point varies from
event to event, even at a fixed incident energy for a single hadron. This is due
to, among other things, fluctuations in the starting point of the shower, varying 7°
content in the shower and differences in noncompensation between the ECAL and
HCAL components of the CaloTower. One could assign the depth as a function of
the energy and electromagnetic fraction of the CaloTower or jet on an event-by-event
basis. This ratio however strongly depends on the hadronization model chosen when
simulating jets and is sensitive to the relative calibrations of the different components
of the CaloTower (ECAL and HCAL) and their relative energy resolutions. To avoid
introducing sensitivity to these effects we instead identify a “global optimal depth”
which optimizes the results of these corrections. The jet 7 resolution as a function of n

is shown in figure 5.10 for different choices of this depth. Here, we define “resolution”
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Figure 5.10: Jet 7 resolution as a function of n for jets with pr > 50 GeV/c and a
prior: primary event vertex correction.

as the mean absolute residual. For a Gaussian distribution with mean zero this is
equivalent to o x \/2/_7r ~ 0.8 x 0. It is calculated from a simulated sample of QCD
multijet events by comparing the reconstructed jet momentum to that of generator-
level jets clustered from the simulated particles in the event. The depth is quoted
as a percentage of the distance between the front of the ECAL (~140 c¢m) and back
of the HO (~410 cm) for the barrel region. Correspondingly, for the endcap region
L"¢f is defined as a percentage of the distance along the z axis between the front of
the EE and back of the HE (320 cm and 570 cm from (0, 0, 0), respectively). The

optimal choice for this depth is revisited in the context of other position corrections.

5.4.3 Variable Positioning for CaloTowers

In the absence of a displaced event primary vertex, each CaloTower is assigned a de-
fault ny and ¢4 coordinate. This assignment reflects the granularity of the HCAL cells,
which have roughly a one-to-one correspondence with the CaloTowers. Fortunately,
there is additional position information available from the increased granularity in

ng and ¢g of the individual ECAL crystals associated with each CaloTower in the
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barrel and endcap regions. In general, the strategy is to use the granularity of the
ECAL cells in the transverse plane w.r.t. the nominal interaction point in order to
derive an event-by-event variable position for each CaloTower based on ECAL cell
energy depositions. There are a number of ways to implement this strategy, including
not only variations of different parameters but entire formulations. For example, one
could treat each of the CaloTower’s calorimetric cells, ECAL and HCAL, as a separate
four-vectors and combine them in some prescribed way. Depending on the approach
to this four-vector combination, this can lead to massive CaloTowers. Alternatively,
one could use just ECAL cells to determine an 7y and ¢4 for the entire CaloTower,
and set the depth according to some fixed parameter (as described in section 5.4.2) or
as a function of CaloTower electromagnetic fraction, Er, 14, etc. Such an approach
would, as a result, be sensitive to these calorimeters’ relative calibrations, resolutions
and variations in hadronization and hadronic shower development in the calorimeters.
For the sake of robustness we will consider here only those approaches that use the
ECAL granularity to calculate an ny and ¢, coordinate (relative to (0,0,0)) and will
assign a value of L™/ according to an approximate“global optimization.” With this
formulation, the calculation of the CaloTower positions can be expressed as
S S G

Ner = dellswi ) qu'T: zfellswi ) (54)

where nor and ¢or are the positions of the CaloTower in the transverse plane relative
to (0,0,0), the sum is over the ECAL cells assigned to the tower, and w; is a cell
weighting factor. With this parameterization, variations include different choices for
the calculation of the weights (energy dependence, n dependence) and restrictions on
which cells are included in the sum (for example, an absolute minimum cell energy
or a cut on the cell energy relative to the total electromagnetic component of the

CaloTower). We consider two different weighting schemes. The first, denoted the

) : (5.5)

“log-method,” uses logarithmic energy weighting

E;
w; = wy + log S B
5
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where the sum is over the same ECAL cells summed in equation (5.4) and FE; is
the measured energy of the i ECAL cell. An additional requirement is that only
positive weights w; are considered, so that the parameter wy acts as a relative energy
cutoff. Without optimization in the context of the CaloTowers, we use the value
wo = 4.2, the same as in the assignment of ECAL cluster positions [65], implicitly
including only cells with more than 1.5% of the total electromagnetic energy in the
sum. Furthermore, the “Scheme B” threshold requirements are maintained for all the

CaloTower calorimetric cells.

Thresholds (GeV)
[B [HO | HE | S EB | S EE
09| 11]14] 0.2 0.45

Table 5.1: Scheme B minimum calorimeter energy thresholds for CaloTowers.

The effect on the jet 1 resolution of varying the value of L™/, for both a priori and
a posteriori primary vertex corrections, is illustrated in figure 5.11 for this variable
positioning scheme. The two types of primary vertex correction result in degenerate
performance. Interestingly, the depth hierarchy is enhanced when using the variable
positioning scheme relative to the fixed positioning case, demonstrating that a value
of depth = 6% is roughly optimal, which is consistent with the “optimal” range for
fixed CaloTower positioning discussed in section 5.4.2. It is clear that this is not
precisely the optimal value for all values of 1 but also that, in a range of several
percent around this value, n resolution performance is effectively degenerate. Hence,
we choose depth = 6% as a benchmark value. The 7 distribution for a priori primary
vertex corrected leading jets (pr > 50 GeV/c) is shown in figure 5.12 for fixed and
variable CaloTower positioning, respectively. For fixed positioning, the spikes in the
71 distribution are clearly visible, with 54 of them corresponding precisely to the 54
positions of CaloTower 7 segmentation in this n range. For variable positioning, this
feature is less pronounced, resulting in a much smoother 7 distribution.

We consider a second formulation for CaloTower position calculation called the
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Figure 5.11: Jet n resolution as a function of n for jets with pr > 50 GeV/c for
(Left) a priori primary event vertex correction and (Right) a priori corrections. A
logarithmic-weighted variable positioning scheme is applied.
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Figure 5.12: Distribution of leading jet n for jets with py > 50 GeV/c. (Left) Fixed

CaloTower positioning. (Right) variable positioning.
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“linear-method,” where the ECAL cell weights are chosen as

With no explicit energy requirements applied to the ECAL cells, this approach is
roughly equivalent to combining the four-vectors of each of the ECAL cells when
deriving the CaloTower position, with either an energy or Er recombination scheme.?
The jet ¢ and n resolutions for the log-method and linear-method position calculation
approaches are compared in figure 5.13. The two methods perform almost identically
w.r.t. to this metric (and also in position bias). The linear-method performs slightly
better in ¢ resolution than the log-method while the opposite appears true for 7
resolution. One possible explanation for this effect is the difference in the physics
that the two weighting approaches address. The log-method is motivated by the fact
that hadronic and electromagnetic showers can be parameterized with exponential-like
functions for the transverse shower development [66]. Hence the better the transverse
profile of a shower can be described by a single exponential, the better the log-method
will perform. Conversely, the more a shower drops off linearly with radius, the better
the linear-method description will perform. This consideration affects both the n and
¢ resolutions. For ¢ resolution, there is an additional effect due to the bending of
charged particles in the magnetic field which degrades the position resolution and
introduces additional bias. This effect is directly related to the transverse momenta
of the particles and, as a result, is better captured by the linear-method. We proceed
by choosing the log-method as default for the variable positioning scheme, keeping in
mind that marginal improvements from other ECAL weighting approaches could be

achieved.

2Due to the small 1 range of ECAL cells within each CaloTower the factor 1/cosh(n), which is
applied to translate measured energy to Er, is approximately the same for each ECAL cell.
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Figure 5.13: Jet position resolution as a function of 7 for jets with pr > 50 GeV /¢ with
two different variations on the weighting of ECAL cells for the position calculation.
(Left) ¢ resolution. (Right) 7 resolution.

5.4.4 Corrected Jet Momentum Resolution and Bias

In figure 5.14 we compare the jet resolution achieved with the different correction
schemes considered: primary vertex corrections, variable CaloTower positioning using
the granularity of the ECAL and schemes where these corrections are performed before
and after jet clustering, respectively. We observe that not correcting for the primary
vertex position results in an appreciable degradation of the jet 7 resolution, especially
in the central region where the jets’ positions are most sensitive to the geometry of the
correction. The ¢ resolution is unchanged by this correction. The variable positioning
systematically improves jet position resolution relative to fixed positioning, except in
the region of nontrivial overlap between the HB and HE (|n| ~ 1.3). With the
exception of this region, which can benefit from a better description of the complicated
ECAL, HB and HE overlap geometry, the improvements from the variable positioning
scheme over fixed positioning are as large as 50% for jets in the calorimeter endcaps.

While jet position resolution is an important metric, it is also essential to ensure
that low position bias is achieved. Not correcting for the primary vertex position
results in a significant position bias as the primary vertex z coordinate deviates from 0,

as demonstrated in figure 5.15. The variable positioning yields lower n bias, although
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this result should be put in the context of figure 5.15 in that negligible bias (relative

to the n resolution) results from correcting for the primary vertex position, regardless

of CaloTower position calculation.
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Chapter 6

The W and Z Boson Standard
Candles

The fact that the W and Z bosons are massive is of tremendous theoretical and
practical importance. These masses regulate the strength of the weak force, allowing
for the hydrogen fusion reaction in the sun and for life to exist. They also indicate that
the gauge symmetries of the SM are broken, through the predicted Higgs mechanism.
For studying LHC collision events these masses are relevant not only because of the
physics these bosons are associated with, but also because of their utility as standard
candles which can be used to calibrate the detectors and measure their performance.

The relatively large masses of the W and Z bosons means that they are an abun-
dant source of isolated, high transverse momentum leptons and neutrinos. Z(¢¢)
events can be used with a tag-and-probe technique, described in section 6.1, to mea-
sure the efficiency of lepton reconstruction algorithms in data, exploiting the Z mass
in selecting events without biasing the measurement. Heavy bosons can also be used
to tag particular event topologies in order to study their other properties. Z(uu)-+jets
events can be used to measure the jet energy scale by using the well-measured Z kine-
matics to calibrate the recoiling jets’ [60]. W ({v) events provide a control sample of
events with weakly interacting particles which allows for measurements of the MET
performance which and can be selected by identifying the decay lepton.

W and Z bosons, the force carriers of the electroweak part of the SM, can also be

used to study strong interactions by identifying the bosons in events with associated
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jet production. Studies of the scaling behavior of W/Z+jets yields with increasing
number of jets is described in section 6.2, and produces a measurement which directly

test perturbative QCD.

6.1 Lepton ID Efficiency Measurements Using Z({/)

A challenge for validating reconstruction and identification algorithms is doing so for
leptons in events collected from LHC collisions. Simulated events give the benefit
of knowing the true magnitude or identity of every quantity and particle in the,
which provides a simple metric for comparison with reconstructed particles. Such
information is not available in data, where the actual performance must be measured
in order to understand the errors associated with physics analyses. In the case of
lepton identification, the Z boson and its decays can be used as a standard candle
to tune and measure lepton reconstruction performance. As an example, we consider
the tag-and-probe measurement of the lepton identification efficiencies for the SUSY
search analysis described in chapter 10.

From 2011 Z(¢¢) events are selected by requiring that events contain two lepton
candidates, either two electrons or two muons. Furthermore, one of these candidate
(the tag) must satisfy a tight lepton identification requirement and the invariant mass
of the two candidates must be close to the Z pole. This yields a relatively pure sample
of Z(¢¢), which can be used to evaluate the efficiency of identifying the second lepton
candidate (the probe) as good, already knowing that the candidate is likely an actual
lepton from independent information. The efficiencies of the offline lepton selection
are measured using this tag-and-probe approach in 1.55 fb=! of 2011 7 TeV data in
different kinematic regions (bins in pr and 1) which match the granularity of ECAL
for electron and of the muon chambers for the muons.

For Z(ee) events, the electron selection efficiency can be factorized into the two

contributions: the selection requirements involving the invariant mass and for an elec-
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tron to be identified from the probe candidate. After the event selection, the only
requirement on the probe electron is that it has a supercluster with loose properties.
A fit is performed to determine the electron identification efficiency for supercluster
candidates by considering the m(e'*eP™P) invariant mass distribution. Z(ee) events
are modeled as a signal peak while potential non-Z(ee) backgrounds are represented
as a falling continuum. We assume that peaking events are real electrons, while con-
tinuum events are fake candidates since the contribution from continuum Drell-Yan
di-lepton production is small at these masses relative to the fake contributions from
QCD multi-jet events. These shapes are used to constrain the two contributions in a
maximum likelihood fit, from which the electron identification efficiency is extracted
by simultaneously considering a sample with probes failing identification and those
satisfying it. Two example fits for two n bins of samples with electron probes 20

< pr < 25 GeV/c are shown in figure 6.1.

Figure 6.1: Distribution of e™e™ invariant mass in the electron tag-and-probe sample.
Probes are selected to have 20 < pr < 25 GeV/c and (Left) || < 1 and (Right)1.566
< |n| < 2.0. Super-imposed are the likelihood functions from the fit for samples of
passing probes (green), failing probes (red), all probes (blue). Selection applied to
probe corresponding to WP80 electron identification described in section 10.4.

This procedure is repeated for samples from each py and n bin, and performed sim-
ilarly for a sample of Z(uu) events to measure muon identification efficiencies. The
measured efficiencies are then compared to values extracted from simulated Z(¢¢)

events, with the same procedure applied. Each pair of these efficiencies are used to
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form data/MC ratios which can be used to correct other simulated events samples
for residual data/simulation differences. The data/MC efficiency ratios measured for
electrons and muons (using the identification criteria from section 10.4) are summa-

rized in figure 6.2.
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Figure 6.2: Offline lepton selection efficiency data/MC scale factors measured in
different pr and 5 bins for (Left) muons and (Right) electrons in the full 1.55 fb~*
dataset.

6.2 W/Z Production with Associated Jets

With the combined performance of all the subdetectors, CMS has the ability to
efficiently select on-shell W and Z bosons in collision events through their decays to
leptons and neutrinos. This well-controlled signature can be used to tag events with
these bosons and measure other properties of the events in a largely unbiased way, such
as the study of jet production in association with W or Z bosons, providing stringent
tests of perturbative QCD calculations. Such a test can be performed through the
measurement of the W(Z) + n jets cross section, for different n. At present, next-to-
leading-order (NLO) predictions are available for n up to four [67-70] and indicate

that that these cross section exhibit Berends-Giele scaling with increasing n [71-73].
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This hypothetical scaling follows

=, (6.1)

On41

where 0, = o(W(Z)+ > n jets), and « is a constant. At tree level, this behavior
can be explained by noting that each extra strong emission comes with an additional
factor of ay, the QCD coupling. Hence the ratio of cross sections for different numbers
of emissions should follow a power law related scaling as a”. Recent works show
that this scaling is not altered by fixed order QCD corrections [67,68] and previous
experimental measurements [74-78] have shown no significant deviation from scaling.
The W(Z) + n jets cross section is not only of theoretical importance, but also of
practical importance for new physics searches where this process constitutes a large

background, such as those described in chapters 9 and 10.

6.2.1 o(V+ > n jets) Cross Section Measurement Strategy

The CMS measurement of the W and Z + n jet cross sections [79] is performed on 36
pb~! of 2010 y/s = 7 TeV collision data. In this analysis, the high-py electrons and
muons from W and Z decays are used to trigger and select events. The lepton selection
is identical to that described in section 9.4 for the 2010 search for supersymmetry, for
this measurement requiring that each event contains a lepton has a pr > 20 GeV/c.
The efficiency and uncertainties for triggering, reconstructed and identifying leptons
are evaluated using an inclusive (with respect to jet activity) sample of Z(¢¢) events
with a tag-and-probe technique like that described in section 6.1.

The identification requirements on leptons significantly reduce backgrounds from
non-W/Z contributions, particularly isolation requirements which reject events where
leptons are located near other particle activity in the detectors, indicative of leptons
coming from decays in jets. Despite a large rejection factor, a portion of these events
survive the selection. These other backgrounds have a different rate dependence with
requirements on the number of reconstructed jet and, as a result, would bias the

W and Z + n jet cross section measurements if not properly accounted for. To
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Figure 6.3: Di-lepton invariant mass for the Z + 1 jet samples in the electron channel
(Left) and the muon channel (Right). The fit result for the signal is indicated by
the yellow-filled area while the backgrounds are too small to be seen for this jet
multiplicity.

discriminate between W/Z-+jets events and these backgrounds we use the known
masses of the W and Z bosons.

Z (£0)+jets event cross sections are measured using an extended maximum-likelihood
fit to the di-lepton invariant mass (M (¢¢)) distribution. As for the tag-and-probe
analysis, the invariant mass provides powerful discrimination between Z(¢¢) events,
which peak with a narrow width at the Z-pole, and other backgrounds which, with-
out on-shell Zs, populate a falling continuum. Example fits for Z + 1 jet samples
are shown in figure 6.3. The contamination from background processes with hard,
prompt leptons are dominated by tf and W+jets and comprises a relatively small
yield, without a peaking structure. The shape of backgrounds without heavy bosons
is determined from a control sample selected with inverted lepton identification and
isolation criteria. These fits are performed independently for exclusive samples with
different numbers of reconstructed jets, where jets are counted according to how many
have |n| < 2.4 and Er > 30 GeV, and are a distance greater than AR = 0.3 from the
reconstructed leptons in the event. The 7 acceptance is limited to the region covered
by the silicon tracker, restricting the analysis to jets that can benefit from tracker
information ffor more precise measurements of jet energy.

Measuring the cross sections of W (¢v)+jets events is more difficult than for Z
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bosons for several reasons. With only one lepton in the final state, backgrounds are
naturally larger without a second lepton requirement to suppress them. Furthermore,
the decay neutrino is weakly interacting and escapes the detector unseen. This means
that the invariant mass of the W cannot be measured directly. There are also other
backgrounds containing W bosons, namely events with top quarks which decay to
Wh. These are predominantly ¢t+jets events, and having at least two jets in the event
means this background grows, relative to W (¢v)+jets, with increasing jet multiplicity.

The first two challenges can be overcome by using an analogue to the invariant
mass suitable for open final states. The measured MET in each event can be inter-
preted as the transverse momentum of the escaping neutrino and, with the measured

lepton, is used to calculate the transverse mass, My ({v):

Mr(ev) = \/2(F£IMET]| — 5 - MET) , (6:2)

where 7. is the lepton transverse momentum and MET is the measured missing
transverse momentum. For W (¢v) events, this variable will have a Jacobian-peaking
structure with a kinematic edge at the W mass, while other backgrounds fall as a
continuum. The transverse mass is a precursor to the razor variables, described in
chapters 9 and 10, which are mass-sensitive variables for studying events with multiple
weakly interacting particles.

Of course, events with top quarks will also have a peaking My distribution. This

background is controlled by counting the number of b-tagged jets, n}’e;tagged

, appearing
in the event. W (fv)+jets events contain predominantly light-flavored jets while events
with top quarks will naturally have an enhancement in b-quarks. Hence, the total se-
lected single lepton sample can be organized into two components, one which exhibits
a peaking structure in My (¢v), dominated by W+jets and ¢, and another which does
not, dominated by QCD multijet events. Similarly, events with top quarks naturally
contain an enhancement of b-tagged jets while W +jets and QCD events do not. The

yield of each of these three contributions is measured through a two-dimensional fit

to the My (¢v) distribution and the number of b-tagged jets. Each dimension is used
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Figure 6.4: Fit results for the W (¢v) + n jets sample with n = 1 in the muon final
state (Top) and n = 3 for the electron final state (Bottom). (Left) My (¢v) projection.
(Right) Number of b-tagged jets projection. Fit results for each signal and background
species in the fit are identified according to color.

to discriminate against each of the background types. The likelihood function is built
under the assumption that there are few b-quark jets in the signal events, meaning
that W events produced in association with heavy-flavor jets are attributed to back-
ground yields. Given the statistical precision of the measurement, this assumption
has a negligible effect on the W+jets cross section result. This fits are performed
using exclusive jet multiplicity bins for n < 3, with the last bin selected inclusively

with n > 4. Examples of these fits are shown in figure 6.4.
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6.2.2 Results

The yields measured for Z(0¢)+jets and W (fv)+jets events, in different jet multi-
plicity bins, are corrected for lepton identification efficiencies which can vary with
the number of jets due to isolation requirements. Many of the uncertainties from
these measurements are reduced by considering the V+n jets cross sections relative
to the inclusive W and Z cross sections, o(V+ > n jets)/o(V), and to the (n-1)
jets cross sections, o(V+ > n jets)/o(V+ > (n — 1) jets). An advantage of using
ratios is that common uncertainties, like the absolute normalization from integrated
luminosity measurements and the lepton selection and identification efficiencies, can-
cel. The measured V+n jets cross sections are shown in figures 6.5 and 6.6 for W
and Z bosons, respectively. These yields are not the absolute values measured in the
M (¢0) and My distributions, but rather are unfolded quantities which account for
the matrix which describes the probability of observing a certain number of recon-
structed jets as a function of the true number of particle-jets in the event, derived
from simulated events. This unfolding contributes to the systematic uncertainties of
the measurements, along with jet-energy-scale uncertainties and associated pile-up
effects.

Finally, these measurements can be used to test the Berends-Giele scaling hypoth-
esis and measure the scaling parameter C,, from equation (6.1). To allow for deviation
from constant scaling due to for example, phase-space effects, a second parameter, 3,
is introduced:

Chn=a+0n. (6.3)

The V+jets cross section yields are fit using this parameterization with the measured
values of o and f shown in figure 6.7 for each of the different final stats (W/Z,
electron/muon). The scaling expressed in equation (6.3) is not expected to hold
for n = 0 due to the different production kinematics where no jets recoil against the
vector boson, so it is not included the in the fit. The Berends-Giele scaling hypothesis
is confirmed to work well up to the production of four jets, with the § parameter lying

within one standard deviation from zero for both the W+jets and Z+jets cases.
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Figure 6.5: W (¢)+n jet cross sections. (Top) The ratios o(W+ > n jets)/o(W) and
(Bottom) a(W+ > n jets)/o(W+ > (n — 1) jets) in the (Left) electron and (Right)

muon channels.

Measured yields are compared with expectations from simulated

events generated with MADGRAPH [80] and PYTHIA [213]. The uncertainties due
to the energy scale and unfolding procedure are shown as yellow and hatched bands,
respectively, while the error bars represent the total uncertainty.
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Figure 6.6: Z({()+n jet cross sections. (Top) The ratios o(Z+ > n jets)/o(Z) and
(Bottom) o(Z+ > n jets)/o(Z+ > (n — 1) jets) (bottom) in the (Left) electron
and (Right) muon channels. Measured yields are compared with expectations from
simulated events generated with MADGRAPH [80] and PYTHIA [213]. The uncer-
tainties due to the energy scale and unfolding procedure are shown as yellow and
hatched bands, respectively, while the error bars represent the total uncertainty.
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Chapter 7

Spinning the Higgs

On July 4th, 2012 the CMS and ATLAS experiments at the CERN LHC announced
the discovery of a new particle. Both experiments observed a boson in the v and
Z(00)Z*(£0) final states, with each experiment indicating a discovery with signifiance
exceeding 5 0. CMS measures the mass of this new boson to be 125.3 + 0.4 (stat) +
0.5 (syst) while ATLAS finds 126.0 + 0.4 (stat) £ 0.4 (syst), indicating a consistent
observation between the experiments. This discovery comes in the context of a search
for the SM Higgs boson and the cross section, decay channels and mass are in agree-
ment, so far, with expectations from the Higgs. It may be that the final component
of the SM has finally revealed itself.

Because the idea is so venerable, one may have grown insensitive to how special
a Higgs boson would be. Its quantum numbers must be those of the vacuum, which
its field permeates. Its couplings to the electroweak gauge bosons W= and Z are
proportional to their masses, as are its couplings to quarks and leptons. Any deviation
from the predicted quantum numbers or couplings of a putative Higgs boson would
have deep ramifications for particle physics. After this discovery, the experimental
program for Higgs physics must be focused on the rigorous determination of these
fundamental quantities to confirm whether or not it is the Higgs.

We discuss here how the quantum numbers of a Higgs look-alikes (HLLs) can be
measured. The study focuses on the so-called “golden channel” for Higgs physics,
namely the Higgs decay H — ZZ* — 4¢ , where Z* denotes that one of the Zs may

be strongly off-shell, as is the cases for the events attributed to the new boson in CMS
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and ATLAS. This channel has the advantage that the kinematics of the Higgs and its
decay products are fully reconstructible from a completely leptonic final state. The
information in the corresponding decay angles can be used to infer the quantum num-
bers of the decaying H, and distinguish between SM Higgs bosons and an imposter.
This study, performed in 2010 with with Alvaro De Rujula, Joseph Lykken, Maurizio
Pierini and Maria Spiropulu [81] did not have the benefit of knowing the mass of a
putative Higgs and so considers three test masses, 145, 200 and 350 GeV/c. Similarly,
the study examined the possibility that an HLL could have spin 1. If the observed
resonances in the vy and 4/ final states correspond to the same bosons this possibility
is excluded by the Landau-Yang theorem [82,83], and hence we will not discuss it in
this context. Regardless, theories of physics beyond the SM predict that there could
be other new bosons which decay through the golden channel, such that these test
mass results and spin 1 cases would still apply if there are additional discoveries. We
will see that early CMS studies of the new bosons quantum numbers, applying the
techniques from this study, are in relatively good agreement with the expectations
from the my = 145 GeV/c? test case described here.

In our analysis we compare a SM Higgs signal to a variety of Higgs look-alikes. We
consider the most general Lorentz invariant couplings of a massive, spinless boson to
Z 7 or ZZ*; this corresponds to gauge-invariant couplings up to dimension six. Some
of the corresponding HLLs can be considered as modifications of the SM Higgs prop-
erties via P or C'P violation or Higgs compositeness. Another spin 0 HLL corresponds
to a new massive pseudoscalar, a particle occurring in models with extended Higgs
sectors such as supersymmetry. We also discuss as one of our HLLs a massive spin
2 resonance coupling to the ZZ energy-momentum tensor, not necessarily with the
universality of a graviton-like coupling. Although universally-coupled massive gravi-
tons are already experimentally excluded in the relevant mass range [84], general spin

2 HLLs are a natural example of our study of spin discriminations.
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7.1 The Golden Channel: H — ZZ* — 4/

The purpose of this study is to quantify the degree to which one can discriminate
a SM Higgs boson from HLLs at, or close to, the moment of discovery at the LHC.
There is a vast literature about determining Higgs properties from signals in a variety
of final states (for a review, see [85]), but this research mostly addresses only the
related question of whether it is possible at all to determine Higgs quantum numbers
and couplings at a hadron collider. The current situation in this respect is similar
to the LHC experimental program for supersymmetry, where only recently are there
quantitative studies of the potential to discriminate supersymmetry look-alikes at the
moment of discovery [86-90].

Our study focuses on the so-called “golden channel” for Higgs physics, namely the
Higgs decay H — ZZ* — (] (55, where EfZ denotes an electron or a muon, and
Z* denotes that one of the Zs may be strongly off-shell. Approximately half of the
events will be putu~ete™, where all four leptons are easily distinguishable, and even
in the 44 and 4e final states all four leptons can be distinguished by the requirement
that one or both Z bosons are reconstructed within an on-shell mass window. A
well-measured, four-body, closed kinematic final state provides many independent
observables for determining properties of the observed resonance; thus this channel
provides more information than, e.g., the Higgs decay into two photons, where the
photon polarizations are not measured.

We factorize the HLL problem into observables related to production and observ-
ables related to decay. In this paper we perform a systematic analysis including all of
the information from the putative Higgs decays, leaving the analysis of Higgs versus
HLL production to later work. While this factorization of production and decay is not
completely clean, we find that the resulting model-dependent uncertainty introduced
into the decay analysis is small. A full analysis will include production information
and could produce stronger results than those presented here, since large cross section
differences are expected between SM Higgs production and the production of many

Higgs look-alikes. However, including Higgs and HLL production also introduces
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new theoretical and measurement uncertainties and assumptions involving associated
hadronic jets and the parton distribution functions that describe the initial state.

The analysis depends on five distinct angles that describe the H — ZZ* — 4(
decay process. In the case where one of the Z bosons is strongly off-shell, the SM Higgs
versus HLL decays also differ in their dependence on the reconstructed Z* invariant
mass. Because we are interested in HLL discrimination with small data samples, at or
near the moment of discovery, we need to use all of the decay information in the events,
including not just the distributions but also the correlations between all five (or six) of
the relevant observables. Previous analyses of the Higgs golden mode decay properties
have examined the dependence on some of the relevant angular distributions [91-96]
and have shown the potential for LHC measurements to discriminate a SM Higgs from
look-alikes with different spin and parity assignments or C'P properties [85,94-110].
However, none of these studies utilized all of the decay information in the events, and
all of them have ignored the effects of detector phase space sculpting of the angular
distributions, which are accounted for here.

We will denote the putative Higgs and its mass by H and mpy, regardless of
whether it is a SM Higgs or a look-alike. This notation is also used to describe
background events, where the four-lepton object is treated as a Higgs or HLL in the
sense that my stands for my,. Since the events are fully reconstructible the lab frame
kinematics of the candidate H particles are known: their transverse momentum pr,
pseudorapidity 7, and azimuthal angle. These three variables define the direction
and boost from the lab frame to the H rest frame. All other observables can then be
defined with respect to the H rest frame, as illustrated in figure 7.1.

The H azimuthal angle plays no physical role, while the pr and 7 distributions
influence the way the detector selects events, sculpting the distributions of the final-
state lepton’s directions and energies. Once an event is boosted back to the 4/¢
rest-system (the rest system of the two initial-state fusing partons), the memory of
pr and 7 is lost, modulo these phase space acceptance effects.

In the approximation that the final-state leptons are massless, 12 observables are

measured per event. Since all 12 are well-measured there is no experimental reason
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not to reexpress these in terms of whatever combinations most naturally capture the
underlying physics. Thus we choose four observables to be my and the three pro-
duction observables just described that define the H rest frame. The remaining eight
observables are taken to be the two reconstructed masses of the Z bosons together
with six decay angles defined with respect to the H rest frame.

In the H rest frame the reconstructed Z bosons are back-to-back. We label these
bosons as Z;, Z, and take the direction of Z, as defining the positive z-axis. Because
of Bose symmetry, the labeling is arbitrary; in the case of an e*e”u™ ™ final state
we will follow the literature [106] and choose Z; to be the Z boson that decayed to
muons. We then adopt the additional convention that the transverse direction of the
1~ lies along the positive y-axis; thus the Z, decay leptons lie in the y-z plane.

With the above choices, the reconstructed Z boson masses m; and ms also define
the longitudinal boosts from the H rest frame to the rest frames of the decaying 7;

and Z5 bosons. The boost parameters are given by

2 2
my m? — m3
= — |1+ ——= 7.1
m 2m1( + m2 )’ (7.1)
2 2
my m3 —ms
= —(1l—-—— . 7.2
ke 2m2( m ) (7.2)

We let 0, ¢ denote the /] decay angles in the Z; rest frame, while 65, o denote the
(5 decay angles in the Z; rest frame.

There are two additional angles ©, ® defining the direction of the initial state
partons as reconstructed in the H rest frame. For a gluon-gluon initial state these
angles measure a rotation from the z-axis defined above to the direction of the ini-
tial state gluon with positive z-component of momentum. For quark-antiquark (¢q)
initiated production of an HLL we have the problem that we do not know event-by-
event which proton contributed the antiquark; this is resolved by symmetrizing the
expected angular distributions under the replacement cos © — —cos ©.

As expected, one combination of the three azimuthal angles ®, ¢, and s is
physically redundant. We take advantage of this fact to make the replacements ¢; —

® + ¢, o — P. Thus ¢ then represents the azimuthal rotation between the Z, and
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7, decay planes.
In summary, the 4-momenta of the process g9 — H — Z1Zy — (7 {{{5 (5 are

explicitly parametrized in the H rest frame as

Pgy = %(1,SCOS@,SSHICD, a),

Dy = % (1,—Scos®,—Ssin®, —C),
k = mu(1,0,0,0),

p2 = ma(y, 0, 0,87),

p1 = g (717 0 Oa_ﬁ171)7

Py = 72 (72(1 4 Faca), 0, s9,72(B2 + ¢2)) (7.3)
Py = m? (121 = Bac2), 0, —s2,72(82 — c2))

P = 5t (n(l+Bier), —s s, —csi—m(Bi+a))

P = %(71(1—5101), s s1, ¢s1,—7(61 — 1)) -

Here k denotes the 4-momentum of H, while p;, py are the 4-momenta of 7, Z,. We
used the condensed notation C, S=cos ©, sin ©, ¢, s=cos ¢, sin ¢, ¢, s;=cos 1, sin by,
and cg, Sg=cos 05, sin 0.

Of the five relevant angles, © and ® are Z-pair production angles, while the

remaining three are 4¢ production angles. We will use the notation

Q = {®, cosO},
= {¢, cosby, cosby} . (7.4)

&l

For a SM Higgs, the distributions in © and ® are flat if we ignore the phase space
acceptance effects inherent in any experimental analysis. In previous studies these
two angles have typically been integrated over.

Although we have tried to conform to the literature in our parametrization of the
decay angles, we note that the literature itself is divided over the choice of which

decay plane orientation corresponds to ¢=0 rather than ¢=n. We conform to the
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convention of Buszello et al. [106], which is opposite to that of Djouadi [85] and
Bredenstein et al. [122].

Figure 7.1: The Cabibbo-Maksymowicz angles [111] in the H — ZZ decays.

The decay amplitudes defined in the next section depend on two combinations of

the boost parameters v; and 7., defined by

Yo = me(l+5162), (7.5)

Y% = (b + B), (7.6)

which are in fact just the cosh and sinh of the rapidity difference of Zy and Z;, such
that

More explicitly, we have
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7.2 The Quantum Numbers of the Higgs Boson

and Other Possibilities

7.2.1 General Couplings to ZZ*

The vertex Feynman rules for the most general coupling of a spin-less particle to the
polarization vectors €] and €5 of two Zs of four-momenta p; and ps are given by the

expression
pip2
o 2
Mz,

ko k )
Lo =X gua— (Y +1i2) M2“+(P+z@)e
Z

(7.9)
where we have suppressed repeated indices in the contraction of the four-index e
tensor, k=p; + p2 and only Lorentz-invariance has been assumed. The dimensionless
form factors X to @ are functions of k% and p; - p» which, with no loss of generality,
can be taken to be real (but for their absorptive parts, expected to be perturbatively
small). The rescalings by 1/M% are just for definiteness, since the true mass scale of
the underlying operators is as yet unspecified. In practice we also remove an overall
factor of igM /cos Oy, so that X=1 corresponds to the tree level coupling of a SM
Higgs boson.

Similarly, most general parity-conserving vertex describing the coupling of a J=27

particle of polarization tensor €’ to our two vector bosons is

[ poHe — XO m?{ g,up gao
+(X1+1iY1) (07 05 g7 + Pl ph 9°%)

+(Xs + 1 Ys) pf pg g™, (7.10)

where we have dropped contributions that have more than two derivatives or are
odd under parity, and again with all coefficients real. The special case of tree level

graviton-like couplings corresponds to

1
X0:—§I€, Xlzli, XQZ_K/, (711)
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with all other coefficients vanishing and s an overall coupling strength.
These general couplings, with naive mass dimensions d = 3, 4, and 5, can arise
from SU(2); x U(1)y invariant operators of dimension 5, 6, or higher. Since, for
HLLs with nonvanishing weak charges this parentage introduces model dependence,

we relegate it to a brief discussion in Appendix A.2.

7.2.2 “Pure” Cases of Specified JF€

We specify in this section the results for four cases (scalar, pseudoscalar, vector and
axial vector) that would be “pure” in the sense of having a single dominant term in
their HZ Z couplings, which we use to define their spin and parity. This allows one to
illustrate the mass and angular dependences of the predictions, setting the stage for
the later discussion of the impure cases for which P and/or C'P are not symmetries
of the theory, and to establish comparisons with the existing literature.

The general expressions for the angular correlations in the ZZ* case (which in-

cludes ZZ when the two Z masses are fixed at My) are given in section A.4, where

2 ¢y Vg
(¢ +c2)

n ~ (.15, (7.12)

denotes the quantity arising from the SM couplings of the Z bosons to the final state

leptons.

7.2.2.1 The Standard Higgs, JFC = 0++

The tree level SM coupling of the Higgs to two Zs of polarization €; and €5 is o €;-€9
(see equation (7.9)). The angular distribution of the leptons in H — ZZ — 41 decay,
for on or off-shell Zs of mass m; and ma, is

dl'[07]

dCl dCQ d¢
427, ¢ 51853 162 + 202 (16 + Ve cs182)] (7.13)

2 9 4 2 2 2 2\ 2 .2
X My My mH[l +cicy + (v + ¢7)s183
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7.2.2.2 A Pure Pseudoscalar, JF€ =0

The coupling of a JP“=0"" pseudoscalar to two Zs of polarization €; and ey and
four-momenta p; and ps is proportional to €[ey, €2, p1, po], (see equation (7.9)). The

angular distribution of the leptons in its ZZ — 41 decay is

dr'jo”] 4,42
dey degdp 12T
(14 — Psiss + 20" crea) (7.14)

7.2.2.3 A Pure Massive Graviton, JFC = 2++

Since the general analysis of spin 2 coupling to off-shell Zs is quite cumbersome, we
will only quote results for the example of a positive parity spin 2 with graviton-like
couplings produced by gluon fusion and decaying to two on-shell Z’s. Defining the
on-shell ratio x = mpy /My and using the massive graviton formalism of [112], we

obtain the tree level angular distribution

dl'lgg — graviton — ZZ]
dC dcy deg dP dg

+822 52 [[2 + 5% 4+ (2 — 35%)c3]sT cos(® + @)* + [2 + S* + (2 — 35%)cd]s5 cosZ(I)}

oc 162*C? + 2(z* 4+ 16)S* + s7s2[(2* + 16)S* — 4a? (2 + 4)S? + 42]

+8%s7s5[xt cos(2® + ¢)* + 16 ] — (s] + s3)[(2° + 4)*C* + 2(3z* — 16)C? + (2 — 4)?]

+25%¢; ¢3 81 82 [wQ [2(2* +4) — (2% + 12)5%|cos(2® + @) + 4 [42* — (32* + 4)52]6} . (7.15)

We note the cos* © dependence characteristic of a spin 2 resonance.

7.2.3 Tests of Symmetries

Now we discuss the behavior of the HZ Z couplings under various symmetries, includ-
ing C'P and Bose-Einstein statistics. The discussion attempts to clarify the literature
on these issues.

Consider the J=0 case. The most general coupling of a spin-less particle to the
polarization vectors €; and €; of two Zs is that of equation (7.9). In computing the

ensuing H — ZZ* — 40 process one finds that the X P interference term is of the
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form:

dr'[0, Todd]

dey deydp
3

2m mi my; p s1828 [s182¢+ Ve (cre2 +17)] (7.16)
where the term sin ¢, sinflsing o< pe+ - p,~ X p,+. By definition, this observable
is T-odd: it changes sign as all three-momenta are reversed (the tilde in “ T-odd”
emphasizes that past and future are not being interchanged).

The Born approximation is, by definition, the result of squaring the amplitude
dictated by the Lagrangian to lowest order in its couplings: a quadratic result, in our
case, in any pair of the quantities X to @) in equation (7.9). To this order, a T-odd
observable must vanish if C'P is a symmetry, as shown in [113]. Thus, a nonvanishing
T-odd observable such as that of equation (7.16) can only arise if C'P-invariance is
violated.

The X (@ interference term resulting from equation (7.9) is

dr'[0, Codd]

deydegdp
3

—2nm3mim3; v [c1 4 ca] (1 + crey + Ya5152¢) . (7.17)
This term is C'P odd and T-even, a combination not addressed by the theorem quoted
above. It is a C'-odd observable, in that it changes sign under the interchange of

Pet < Pe- and p,+ <> p,—, tantamount to cos 0; <> —cos#; in our chosen notation.

7.2.4 Tests of Compositeness

If the couplings of an HLL conserve P and C'P, but the object is not point-like,
there will be deviations from the standard g,, coupling to Zs. To lowest order in
the dimensions of the corresponding effective operators, these will be of two types.
The first is a nonvanishing Y in equation (7.9), and the second is a nontrivial form
for X. Barring large effects (quite conceivable in a model with multiple SM Higgs-

like fields) deviations in X are much harder to limit or measure than a nonzero
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Y/ X which is governed by the shapes of angular distributions. Contributions to Y
can arise from gauge invariant operators of dimension 5 containing a non SM-like
spin 0 HLL (Appendix A.2) or from higher dimension operators containing the SM
Higgs [114-116].
It is useful to introduce the notation tan& = Y/X. In this notation, the “com-

posite” HLL angular distribution is of the form:
dle = cos?¢ dTl x x + cos&sin € dl xy + sin®E dlyy | (7.18)

where dI'x x is the standard result of equation (7.13). The interference term is

dl'xy
—
dCl dCQ d¢
—2m3 mimi; g 8182 (CreaC + Yo 5152 + 17 C), (7.19)
and the last term is
dl'yy

Contrary to all of the other cases we study, the interference term in this instance
is between two operators whose P and C' are identical: the HLL is not point-like, but
it is ‘pure’ 0. As a consequence, the angular distribution of the interference term
is not very different from that of the X X and Y'Y terms and the interference can, for
certain values of Y/ X be very destructive. This can be seen even at the level of the

H — ZZ branching fraction, the integral of equation (7.18) over cos 6y, cos 6, and ¢,
Lo o< mim3 [2cos”€ + (y4c08 € — mymaypsin €)?]. (7.21)

If ¢ has a value close to the (mass-dependent) point of maximal interference, the
golden mode channel can be suppressed by a large factor. For this to happen X and
Y ought to be of the same order of magnitude, signifying a low dynamical scale for a

composite Higgs.
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7.3 Measuring Higgs Quantum Numbers

7.3.1 Statistical Approach

In this section we discuss the statistical formulation we use to address comparisons
between different hypotheses as well as relevant measurements for the characterization

of an HLL resonance. We focus on four statistical approaches:
e (1) Comparisons between two “pure” spin-parity hypotheses (such as 07 vs. 07).

e (2) Comparisons between two spin-parity hypotheses, with at least one of the
two being an “impure” admixture of two pure HLL states (e.g., 0T vs. a com-
bination of 07 and 07). This case is similar to (1), except for the presence of

one or more nuisance parameters.

e (3) The measurement of mixing parameters in the case of impure Higgs look-

alikes.

Each of these cases involves attempting to establish the nature of a newly discovered
particle. As described in section A.l, statistical subtraction techniques based on a
fit to the four-lepton invariant mass distribution can be used to effectively remove
background events from the same. In this study, measurements of the Higgs quantum
numbers are performed on samples composed exclusively of signal events, with back-
ground assumed to have been removed. This is judged to give a good approximation
to an actual experimental analysis.

The cases (1) and (2) involve tests between different J* interpretations for signal
events appearing in the four-lepton resonance. In the (1) scenario the two hypotheses
under consideration are simple, i.e., the corresponding likelihoods are fully specified
once the values X are fixed. In the (2) case the unknown mixing angles for the
impure hypothesis, referred to as E (and including, e.g., various mixing angles), are
treated as nuisance parameters. The analysis in case (3) is a traditional parameter
estimate, based on the ML fit, for which we obtain a confidence interval by using the

Feldman-Cousins approach [117]. We discuss the three cases starting from the last.
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7.3.1.1 Coupling Admixtures

Consider the example of a one-parameter mixture of two types of HZZ coupling,
such as the composite case discussed in section 7.2.4. For a fixed value of the reso-
nance mass my and the mixing angle £, equation (7.18) is the theoretical probability
distribution of the events as a function of the variables X for ZZ and ZZ* final
states. The experimental pdf is a numerical representation of the result of sieving
(with a specific detector and its resolution, trigger and analysis requirements) a very
large number of events, generated with the theoretical pdf of equation (7.18). This
experimental pdf, referred to as P, is a function P=PF,,, (¢, X ) of my, (which is kept
fixed through this exercise), &, and X. The dependence on §} = {cos ©, ®} is, in this
example, exclusively a phase space acceptance effect.

Many experiments with a fixed number of events Ng are simulated, assuming the
same detector response. The probability of each event, evaluated with the exper-
imental pdf, is P;. The likelihood of a given experiment is £(¢) = [[X% P. The
experimentally measured value of the £ parameter, f corresponds to the value that
maximizes £(§). The simulation is repeated many times, as a function of the true
value of the mixing angle ¢&. Running many experiments one can derive the confidence
interval, i.e. the range covering the true value of £ for some confidence level and some
measured value & [117].

It is customary to estimate the error (or the number n of standard deviations o)
in the measured ¢ from the expression £(&pee =1 0) = L(Emaz) — n?/2. While this
method is accurate for large samples with Gaussian errors, it is not the one used to
draw the o contours in figure 7.2 (where {={x¢ as given in equation (7.25) and in
the similar figures of section 7.3.2). Instead, the confidence level (CL) is evaluated

measuring the frequency of a given result in the set of generated pseudoexperiments.
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Figure 7.2: Confidence intervals for measured values of {x¢g for a C-violating J=0
resonance with a mass 200 GeV /c?.

7.3.1.2 Confronting J¥ hypotheses

Consider two hypotheses, Hy 1, for the spin-parity assignment of a signal candidate
sample, detected via its ZZ mass peak and background-subtracted using the Plot
method. Large numbers of events are generated assuming each hypothesis and used
to construct two unbinned experimental pdfs: Pu,, = P, (X | Ho,). For our pure
spin-parity cases, the simple nature of the hypotheses considered guarantees through
the Neyman-Pearson (NePe) lemma [118] that the hypothesis test is universally most
powerful. Next, we explicitly identify one hypothesis as Hy and the other as Hj.
Additionally, we specify the test statistic A which we define as the log-likelihood ratio
log[£(H)/L(Hp)]. Finally, we must a priori choose the acceptable probability level «
of rejecting Hly in favor of Hy, even though H is true (Type I error). We generate a
series of pseudoexperiments with a fixed number of events Ng to construct the pdf of A
for the two hypotheses. A typical result is illustrated in figure 7.3. We first generate
pseudoexperiments considering Hy as true. For each experiment we construct two
likelihoods L(H,) = Hi]isl Py, (X;) for the correct interpretation of the true theory,
and L(H,;) = Hi]isl Py, (X,) for its incorrect interpretation. With the ensemble of
experiments one constructs the distribution P(A |Hy) with A = log[£(H;)/L(Hy)].

The result is the leftmost (red) curve in figure 7.3. The exercise is repeated with the

pseudoexperiments generated considering H; as true and the result is the rightmost
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(blue) curve in the figure. An a priori chosen value of « implicitly defines a value
Ala) via

a:[ P(A|Hyo) dA . (7.22)
Ala)

This fixed value A(a) implies that

A(a)
B(a) = / P(A[HL) dA (7.23)

—00

is the probability of accepting Hy even though H; is correct (Type II error). The
value 1 — f is called the power of the test. When the real experiment is performed,
a specific value Ay, is obtained for A. The associated p-value = [~ . P(A|Hp)dA ,
is compared to a to determine if the measurement favors one hypothesis versus the
other.

Instead of the o and [ values, the significance ¢ is commonly used. To convert
to an equivalent number of ¢’s using figure 7.3 we calculate the same a-area in a
Gaussian distribution centered at 0 with =1. The number n of a-equivalent standard

deviations is obtained by inverting

(7.24)
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Figure 7.3: Distribution of A for my=200 GeV/c?* and Ng=23, constructed with
~ 10° pseudoexperiments. The hypotheses being confronted are Hy=0" and H;=0".
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The a priori (subjective) choice of a (and subsequently 5 and corresponding sig-
nificances) is heavily discussed in the literature. The Physical Review, for example,
requires a 5o (30) significance to claim discovery (evidence). The caveat is, of course,
that when one minimizes as much as possible the probability of an error of Type
I (wrongly claiming a discovery) one risks making an error of Type II (and, e.g.,
delaying the claim of a discovery to the next luminosity upgrade).

A pure vs. impure HLL hypothesis test has an additional complication due to the
dependence of the likelihood function on the mixing angles E in at least one of the two
hypotheses. In this case, we are testing the simple (i.e. mixing angle independent)
hypothesis against a class of alternative hypotheses, connected by the variation of a
continuous unknown parameter(s). The test is performed by comparing the simple
hypothesis to the impure hypothesis with values of E that best fit the data.

The impure vs. impure Higgs look-alike test is technically identical to the pure
vs. impure. Here, we try to exclude some value of the mixing angle parameter for one
of the two composite hypotheses in favor of the alternative impure hypothesis, where
the mixing angles are treated as nuisance parameters. With fixed mixing angles, one
impure look-alike becomes a simple hypothesis (like a pure one) tested against an

impure hypothesis.

7.3.2 Results

We present results for three HLL masses: my=145, 200, and 350 GeV/c?, using

pseudoexperiments built with the full X pdf.

7.3.2.1 0" vs. 0~

We consider here two different “pure” scalar hypotheses: 07, corresponding to a
SM Higgs, and 07, a pseudoscalar. Neither of these possibilities has an explicit
dependence on the angles Q) in their differential cross section, meaning that only
the variables @ (and the off-shell Z mass, my=Myz«, for my < 2My) are used to

discriminate between the two hypotheses.
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Figure 7.4: Distributions of the variables ¢ (left) and cosf; (right) for 07 and 0~
resonances with myz=350 GeV/c?. All distributions are normalized to a unit integral.

In figure 7.4 we show the distributions in ¢ and cosf; at my=350 GeV/c? for
JP=0" and 0. These angular variables (along with cos 5, whose distribution is iden-
tical to that of cosf; except when Z, is off-shell) provide the discrimination between
these two hypotheses at all masses my. For masses my below the 2 M threshold, the
kinematic factors in equations (7.13) and (7.14) result in the differential cross section
dependences on the off-shell Z mass My« that differ for the 0% and 0~ cases. This
is illustrated in figure 7.5 (left) for my=145 GeV/c?. For all the discriminating vari-
ables we consider, the ability to distinguish between two hypotheses is degraded when
their correlations are neglected. This is shown in figure 7.5 (right) where we present
the results of the NePe hypothesis test between 07 and 0~ for likelihoods built using
different subsets of variables and correlations thereof. Specifically P(Mz+,d) denotes
the use of the full set of variables while in P (&) the probability distribution of My«
is ignored. The product of all one-dimensional probabilities, ignoring correlations, is
IL, P(X;). As expected, the likelihood including all discriminating variables and their
correlations is optimal. The other two definitions give similar results. We note that,
regardless of the results, the use of [[, P(X;) is an improper approximation, since the
X, variables are far from being uncorrelated.

The significance for discriminating between the 07 and 0~ hypotheses (assuming
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Figure 7.5: (Left) Distribution of My« for 07 and 0~ H — ZZ* decays at my=145
GeV/c?, normalized to a unit integral. (Right) Median significance for rejecting 0~
in favor of 0%, assumed to be correct, as a function of Ng. The different likelihood
constructions are specified in the text.

one or the other to be correct), as a function of Ng, where Ng is the number of
observed signal events, is shown in figure 7.6 for my=145 GeV/c?. In all cases,
results correspond to the case where H; is the true hypothesis (see section 7.3.1).
The model discrimination is based on a NePe test between these simple hypotheses
with test statistic log(L[0%]/L£[07]). The variables & (and My, when applicable),
along with their correlations, are used in the likelihood construction. The significance
for rejecting one hypothesis in favor of the other at around the time of 5o excess in
this single channel is better than 3o for mg=145, 200, and 350 GeV/c* while a 5o
discrimination can be achieved with twice the observed signal events (less than ~40

events in both mass cases presented here).

7.3.3 0" vs. 27

We consider one “pure” spin 2 model: a J=2% heavy graviton-like resonance. A
J=2 object has pdfs with nontrivial dependence on the angles 0 up to quartic order
in cos®©. In figure 7.7 we show the corresponding distributions in the Q) variables
for my=200 and 350 GeV/c?. The ability to discriminate between the 0T and J=2

hypotheses improves with increasing resonance mass. Despite the presence of quartic
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Figure 7.6: Significance for rejecting 0~ in favor of 07, assuming 0% is true (left),
and vice-versa, 07 <> 0~ (right), for mpy=145. The dashed central line is the median
significance. The 1 and 20 bands correspond to 68% and 95% confidence intervals,
centered on the median.
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Figure 7.7: Distributions of the variables cos© (left) and ® (right) for 0%, 2% res-
onances with masses of 200 and 350 GeV/c? (top, bottom). All distributions are
normalized to a unit integral.
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terms in cos © in the 2% pdf and the absence of this variable in the 0" pdf, their corre-
sponding one-dimensional pdfs are similar for the 0" and 2% resonances for values of
my close to 2 Mz, as shown in figure 7.7. Similar behavior is observed in the distribu-
tions of cos 1 and cos 6, as illustrated in figure 7.8. Nevertheless, the inclusion of all
angular variables and their correlations improves the discrimination power between

these hypotheses as shown in figure 7.9.

my, =200 GeV/c? my, =200 GeV/c?

my, = 350 GeV/c?

P(cos 8,

cos 0,

Figure 7.8: Distributions of the variables cosf; (left) and ¢ (right) for 01, 2% res-
onances with masses of 200 and 350 GeV/c? (top, bottom). All distributions are
normalized to a unit integral.

The significance for discriminating between 0% and 2% as a function of Ng, is
summarized in figure 7.10 for my=350 GeV/c?. For these tests the variables Q and
@ and their correlations were used in the likelihood. Model discrimination is based
on the NePe test between simple hypotheses with test statistic log(L£[0%]/£[27]) and
log(L[07]/L[27]).
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Figure 7.9: Median significance for rejecting 2% in favor of 0%, assuming 0" is true,
for the different likelihood constructions discussed in the text.
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Figure 7.10: Significance for rejecting 2% in favor of 0%, assuming 07 is true (left) or
vice-versa (07 <+27, right), for my= 350 GeV/c?.
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7.3.4 0" vs. Mixed Scalar States

Consider the vertex Feynman rules of equation (7.9) for the most general Lorentz-
covariant coupling £,, of a spinless object to a Z pair. Rather than studying the
general case, for which any of the quantities X to ) can be nonzero, we investigate
three cases, each with only two nonvanishing types of coupling, resulting in one free

mixing “angle” and an overall normalization (which we ignore):

e X #0, P+#0: A scalar whose ZZ coupling violates C'P, described in terms of

an angle £xp as
L0 X< co8(Exp) Gua + Sin(Exp) €uaprpa/ M3

e X #£0, @ #0: A scalar whose ZZ coupling violates C, described in terms of

an angle as

Lo x c08(6x0Q) Gua + 18I0(Exq) €uapr2/ My

e X #£0, Y #0: A composite 0", parameterized in terms of an angle as
L0 x cos(Exy) Gua — sin(€xy) k;ak:M/Mg

As a function of Ng we estimate the significance with which one can determine:

e (a) What range of values of the angles can be excluded in favor of a pure 0" for

a SM-like resonance;

e (b) Whether a pure 0" can be excluded in favor of a nontrivial mixture when

the resonance corresponds to one of the three mixed cases discussed above.

We consider first the example of a C'P-violating HZZ coupling with my=350
GeV/c?.

To address (a) we construct a series of simple hypothesis tests of the type we

JPC

considered earlier for distinguishing between pure states. Specifically, for a given
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number of observed signal events at a fixed value of my, we perform a NePe test
between two simple hypotheses: that the resonance is 0% (denoted hypothesis Hj)
or that the resonance is J=0 with {xp fized to a specific nonzero value (denoted
hypothesis Hy). The test statistic we use is log[LX (Exp)/L(07)], where £(0T) and
LXP(Exp) denote the likelihoods for a set of events agreeing with the hypotheses H;
and Hl, respectively. The test cannot be performed for £xp=0, since in this case the
H, C'P-violating hypothesis we want to test reduces to the alternative H; hypothesis
(the CP-conserving SM Higgs).

The result of this test is the significance with which hypothesis Hj can be rejected
in favor of the hypothesis H;, or similarly, the significance with which a particular
value of {xp can be excluded in favor of the 0T hypothesis. This test is then repeated
with different fixed values of £xp, i.e. different NePe tests with different hypotheses
Hy. The results for a large ensemble of such tests are shown in figure 7.11. Here,
Hy = 0%F denotes the simple J=0 C P-violating hypothesis with {xp fixed at values

chosen on the z-axis.

my = 350 GeV/c?| 50 Observed M 16 band
H,=0*" H,=0"| Signal Events |2 c band

FT T T T T[T T[T T[T [TTTT[TTTT[TH

Significance

0:\\‘\\\\‘\\\\‘\\\‘\\\‘\\\\‘\\\\‘\%
45 -1 05 0 05 1 15

&

XP

Figure 7.11: Significance for excluding values of £xp in the C'P-violating J=0 hypoth-
esis in favor of the 0T one, assumed to be correct, for my=350 GeV/c? and Ng=>50.
The dashed line corresponds to the median of the significance. The 1 and 2 ¢ bands
correspond to 68% and 95% confidence intervals centered on the median value.
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In this example we see that, for Ng=50, the significance for excluding a CP-
violating coupling exceeds 3 o for |{xp| > 0.5 and 50 for [Exp| > 0.9.

In addressing (b) we cannot construct a simple NePe test between 07 and a fixed-
Exp hypothesis. Instead, we treat {xp as a nuisance parameter and choose a value,
é xp, that maximizes the C P-violating likelihood for the given set of observed events.
Specifically, we fix £xp at a particular value (the “true” value) to generate events and
perform NePe tests comparing {xp=0 (denoted hypothesis Hy) and {xp = f xp (Hy).
This test is repeated for many different values of the fixed “input” £xp.

An example of results from an ensemble of these tests is shown in figure 7.12.
Because of the addition of a nuisance parameter, the figure’s interpretation is not sim-
ply related to the interpretation of figure 7.11, which answered question (a). What
figure 7.12 shows is the expected significance with which one can exclude the SM
hypothesis in favor of the C' P-violating hypothesis with & Xp:§C xp, as a function of
the true value of xp (given on the z-axis). No a priori knowledge of the actual

value of £xp is required to perform this test. From figures 7.11 and 7.12 we observe

my, = 350 GeV/c?| 50 Observed |16 band
H,=0" H,=0""| Signal Events 26 band

Significance

G:\\‘\\\\‘\\\\‘\ ;;;;;;
45 -1 05 0 05 1 15

Figure 7.12: The significance for excluding a pure 0" in favor of a CP-violating
HZZ coupling ((xp # 0), assuming the latter to be correct, with {xp given by its
r-axis values. Example for Ng=50, my=350 GeV/c?. Dashed line and bands as in
figure 7.11.

that the expected significances are symmetric around £xp=0. This is due to the pdfs
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of the “pure 0" and “pure 077 terms being even under {xp — —E&xp, while the
T-odd interference term vanishes under the integration of cos 6y, cos 6, or ¢. We shall
see that there are exceptions to this trivial statement. Comparing these two figures
we observe a remarkable similarity of the significances of the two tests. Since two
different statistics are used, this is somewhat of a coincidence. To explain it, con-
sider the example with {xp=m/5, which corresponds to vertical slices of figures 7.11
and 7.12. We denote the two different test statistics A™*=log[LXF (Exp)/L(07)],
with £xp fixed at its true value, corresponding to a simple hypothesis test and
Amax—]og[max L5 (Exp)/L(0T)], profiled to the value Exp at which it peaks. The

distributions of A and A™# are shown in figure 7.13.
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Figure 7.13: Distributions of the two statistics A, defined in the text, for my=350
GeV/c? and Ng=50. The hypotheses are Hy=0", and H;=0*" with the C'P-phase
Exp fixed at w/5. (Top) Probability distributions P(A|H). (Bottom) The same with
the 0" results traded for 1 minus their cumulative values. The two nearly indis-
tinguishable vertical dotted lines correspond to the median values of the P(A|H;)
distributions.

In the top figure the bell-shaped curves P(A™X|0) and P(A®|0XF) are charac-
teristic of a simple hypothesis test. The distributions of A™** have a sharp cutoff
at AM*=(, since the 0T model is a member of the 07 family with {xp=0, and
max LXP(xp)/L(0T) > 1, which are also features characteristic of this type of test.

The reason for two very different hypothesis tests to end up in the similar-looking
results of figures 7.11 and 7.12 is that the statistically significant features of the
different-looking P(A) distributions shown in figure 7.13 are actually very similar.

P(A™]|0XP) and P(A™>|0XF) differ, but the distributions of xp close to the max-
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ima are localized around the true input value, their median values and 68% and 95%
confidence intervals are nearly identical (try to tell apart the two vertical dotted lines
in the lower half of figure 7.13, at A ~ 7). Also, the tails of one-minus-cumulative
distributions for P(AS|0*) and P(A™*]0*) coalesce for p-values exceeding 2o sig-

nificance, despite large differences in the distributions themselves.

my, = 145 GeV/c2| 50 Observed |l 16 band my, = 145 Gev/c?| 50 Observed |l 16 band
H0=0XP H,=0"| Signal Events |2 c band H,=0" le()XP Signal Events .20band
N Eamm==
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Figure 7.14: (Left) Significance for the exclusion of values of a C'P-violating {xp # 0
in favor of 07 (£xp=0), assumed to be correct. (Right) Significance for excluding a
pure 0T in favor of {xp # 0, assumed correct with xp given by its z-axis values.
Results for my= 145 and Ng=50.

In figure 7.14 we show the results for the distinction between pure 07 and CP-
violating J=0 hypotheses for my=145 GeV/c?. The “flat” behavior around xp=0 is
due to the coupling strength of the 0 part relative to 0~, an order of magnitude larger
for my=145 GeV /c? and closer to unity for the higher my values. The corresponding
results at my=350 GeV/c? are those of figures 7.11 and 7.12.

The next mixed J=0 case that we consider is that of a C-violating scalar, with
mixing angle x¢g. This scenario is very similar to that of the C'P-violating scalar:
only the interference term between the 07 and 0~ amplitudes is different (C-odd,
instead of T-odd). The expected results of hypothesis tests distinguishing between a
C-violating scalar and a 0" state are shown in figure 7.15. Comparing this figure with
7.14, we observe identical behavior in all the results. This shows that the relative

strength between the 07 and 0~ parts of the matrix element squared, rather than the
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nature of the interference term, is the most relevant factor in resolving the values of

Exp and fXQ-
my, = 145 GeV/c?| 50 Observed |l 16 band my, = 145 GeV/c?| 50 Observed |16 band
HO=()XQ H, = 0*| Signal Events |2 ¢ band H, = 0" Hl=0XQ Signal Events 26 band
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Figure 7.15: (Left) Significance for excluding values of a C-violating x¢ # 0 in favor
of 0% (£x¢=0), assumed to be correct. (Right) Significance for excluding a pure 0"
in favor of {xg # 0, assumed correct for the {x¢g-values on the z-axis. Hypothesis
tests are for my=145 and Ng=50.

If a pure 0" hypothesis is rejected in favor of both {xp # 0 and {xg # 0, the
next question would be whether it is possible to distinguish between these two cases.
To address this question, we perform a series of hypothesis tests similar to the one
described to answer type (2) questions. Specifically, we first assume a given CP-
violating £xp # 0 as “true.” We then assess the expected significance with which
particular values of {x¢ can be excluded in favor of the true hypothesis. Hence, for
each fixed value of {xp we perform a test against the C-violating case using a fixed
Exq. The test statistic is A = log[max LXP (€xp)/L(€xq)], where the 0X9 hypothesis
is simple (fixed {x¢g) and L(Exp) is profiled “experiment by experiment.” The test
is repeated over a matrix of values for {xp and {xg. Next, we switch the roles of
the hypotheses to assess the significance for excluding given values of £xp in favor of
¢xqg # 0. The results are shown in figure 7.16. The color-coded z-axis is the median
of the significance for ruling out the hypothesis Hy with the value of £y, given on the
y-axis in favor of the H; hypothesis with £y, # 0, assumed to be correct for &y, -values

chosen on the z-axis.
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Figure 7.16: The median of the significance (colored z-“axis”) for excluding values
of &y, (y-axis) in favor of the &g, # 0 hypothesis assuming as correct the values &y,
of the z-axis. The tests are performed for H;=0%" Hy=0%? (Left) and H,=0%%,
Hy=0*" (Right); mz=145 and 350 GeV/c? (top and bottom), for Ng=>50.

The similarities between the C- and C'P-mixed scalars are reflected in the y << =z
symmetries of figures 7.16. Moreover, switching the roles of the two hypotheses (com-
paring the figures on the left with those on the right) one only sees small changes.
Still, the fact that the diagonals (|{xp| = |€x¢l|) are not all at the same significance
shows that the tests are sensitive to the differences between the T- and C-odd inter-
ference terms, but it would require an order of magnitude larger Ng to draw 5 o-level
conclusions over most of the ({xp,{x¢g) plane. For example, we show in figure 7.17
the significance with which one can distinguish between the two cases, as a function
of the number of observed events, for £xy xo=7/4 and my=200 GeV/c*. The am-
biguity between %5, —E¥5°, Exo=EXp" and Exg = —&%p° would be very hard to
lift.

The last J=0 mixed case that we consider has unique features; this is the “com-
posite Higgs” in which a term oc k,k, is present in the HZZ coupling. This case is
different from the previous ones in that a composite scalar has well defined J7¢=0*7,

regardless of the value of the angle £xy characterizing the mixing between its point-
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Figure 7.17: The significance for excluding the C-violating J=0 hypothesis in favor of
a C'P-violating case, assuming the latter to be correct, with {xp xg=n/4. Example
for mp=200 GeV /c?%.

like and derivative couplings. As a consequence, the angular integrals of their inter-
ference term do not vanish, and there is no symmetry around £ xy=0. All the terms in
the pdf having the same discrete symmetries and similar angular dependences; there
happen to be large cancellations in the pdf for a “critical” mpy-dependent value of

Exy, as in the example shown in figure 7.18 for the fully angular-integrated result.

M my = 350 GeV /2
IM(0)[2 o1
1 |
o 5 = ngi

-15-10-05 00 05 10 15

Figure 7.18: The fully angularly-integrated matrix element squared for a “composite”
0", showing a strong destructive interference at a given £xy. The result, shown here
for mp=350 GeV /c?, is normalized to &xy=0.

The appearance of an order of magnitude enhancement of the squared matrix ele-

ment in figure 7.18 for O(1) values of { xy can be regarded as an artifact of our choosing
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a rather low mass scale (M) in the definition of the dimensionless coupling Y in equa-
tion (7.9); if, e.g., we instead chose the compositeness scale at mg=350 GeV /c?, this
enhancement would be much smaller. Nevertheless the possible enhancement from a
nonzero Y coupling, and the possible suppression from XY interference, signifies an
interesting scenario: it is possible to discover an HLL that is in fact a 0™ resonance,
and is produced by exactly the same pp production processes as a SM Higgs, but
for which the cross section times branching fraction to ZZ is several times higher or
several times lower than Standard Model expectation.

We evaluate the significance with which one can distinguish between a point-like
and a composite 0T using the same hypothesis-test approach described earlier for the
C P-violating scalar case. The results are shown in figure 7.19. We observe a nontrivial
behavior of the significance values at and around the critical {xy. Interestingly,
the qualitative nature of these cancellations also changes with mass. For mpy=145
GeV/c? the composite scalar with xy near the critical point is 07-like, relative to
nearby values of £xy. For mpy=350 GeV/c?, it is very difficult to distinguish between
the composite and elementary hypotheses, except if £xy is close to critical. Near this
critical value the significance is greatly improved, because after the large cancellations
the angular distributions of the pure 07 and the mixed case no longer resemble each
other.

As we discussed for the C- and CP-violating cases, an additional question is
whether one can distinguish a composite scalar from other mixed scalars. We find
that, compared to the composite case, the two other mixed cases are nearly identical.
The results for the distinction between the C'P-violating and composite cases are
shown in figure 7.20. For large values of {xy and &xp, it is possible to distinguish
between the two hypotheses at a large significance with a mere Ng=50. For my=350
GeV/c?, the composite scalar is very similar to the point-like 0 and cannot be
distinguished from it except if £xy is near its critical point. Replacing the CP-
violating scalar with the C-violating one yields results nearly identical to the ones in

figure 7.20.
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Figure 7.19: (Left) significance for excluding values of {xy in favor of a point-like 0"
(€xy=0), assumed to be correct. (Right) significance for excluding a point-like 0
in favor of a “composite” one ({xy # 0), assumed correct for the £xy values on the
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Figure 7.20: The median of the significance (colored-labeled z-“axis”) for excluding
values of {xp (y-axis) in favor of the composite scalar assuming it to be correct with
the Exy values of the z-axis, for my=145 and 350 GeV/c? (left and right) and Ng=>50.
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7.3.5 Lagrangian Parameter Estimation in Mixed J = 0 Cases

Were one to find out from real data and the hypothesis tests discussed in the previous
section that a mixed J=0 state is the preferred description, the next item in the
context of this analysis would be the measurement of its mixing parameters (in a
larger context one would include at this stage the measurement of decay branching
ratios).

We have seen in section 7.3.4 that our hypothesis tests can demonstrate, if correct,
that a standard 0" particle is disfavored relative to a mixed scalar with unspecified
HZZ coupling ratios (or mixing angles). In these tests, the angles were treated as
nuisance parameters. Their measurement proceeds along the same line; the preferred
value is simply that which maximizes the likelihood, but the treatment of confidence
intervals need be different.

More specifically, each mixed hypothesis family is characterized by mixing angles
E. For each “experiment,” N events are simulated, each one characterized by a

vector 7, = {@,Q, My}

¢. The likelihood for a particular family of hypotheses is
E(g) = Hivzl P.(Z,, 5) The measured values of the mixing angles, Epeas, are chosen
to be those that maximize the likelihood. To assign confidence intervals to these
measurements we use a fully frequentist approach. An ensemble of “experiments” is
performed with fixed input values 5 zénput. For each experiment, the measured values
of 5’ are taken from the maximization of the likelihood. This procedure is repeated
for a fine matrix of input values, covering the allowed parameter space. From the
probability distribution functions P(fme%@npm), estimated using this ensemble of
experiments, the Feldman-Cousins unified approach [117] is used to choose which
elements of probability are included in confidence intervals.

As an example, consider the C' P-violating scalar case, discussed in section 7.3.4.
The confidence intervals for measured values of {xp (the mixing parameter that char-
acterizes this hypothesis) are shown in figure 7.21 for different values of my. The way

to interpret these figures is as follows: For a particular set of data (one experiment,
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Figure 7.21: Confidence intervals for measured values of {xp for a CP-violating
J=0 resonance, for my=145, 200 and 350 GeV/c? (left, center and right), all for
Ng=50. For measured values of £xp on the y-axis, confidence intervals should be
read horizontally, see text.

which in this case includes Ng=50 observed events) an input value of {xp (to be read
on the z-axis) results in a measured value to be read (with its error bands) on the
y axis. The confidence intervals are obtained by drawing a horizontal line passing
through the measured £xp. The overlap of this line with the n o bands dictates which
values of “input xp” should be included in the n o confidence intervals. For example,
for my=200 GeV/c? (middle of figure 7.21) we see that, if £2%5=0, the 3 o confidence
interval is approximately {xp € [—1,1].

The 10 bands in figure 7.21 are centered on the diagonal £2%5=¢"2"  implying
that there is no significant bias in the measurement. In addition to this, the 2o
and 30 bands also cover most of the diagonal {Y3° = —fi;(lpput. This confirms our
observation from section 7.3.4 that our ability to pin down this parameter comes
predominantly from measuring the relative strengths of the 0t and 0~ parts of the
pdf rather than the nature (T-odd) of its interference term. An increased number of
observed events is needed to fully resolve this sign ambiguity.

In figure 7.21 we see that for mp=145 GeV/c? (but not for myz=200 GeV/c?) the
size of the confidence intervals for £xp decreases with increasing |£xp|. This is due
to the effective coupling strengths of the 0% and 0~ parts of the pdf differing by a
factor of ~10 at my=145 GeV/c? but not at the other masses. Hence, at the lowest
mass, only at tan?(£xp) ~ 10 does the pdf exhibit 07- and 0~-like behaviors of similar

magnitude.
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Figure 7.22: Confidence intervals for measured values of {x¢ for a C-violating J=0
resonance for my=145, 200 and 350 GeV/c? (left, center and right), all for Ng=>50.

For measured values of {x¢g on the y-axis, confidence intervals should be read hori-
zontally, see text.

H=0XY my = 145 GeV/c? NE'=50 H=0XY my =200 GeV/c? Ng"' =50 H=0YY my; =350 GeV/c?

& S i
{B 1o band 2
{26 band E
1 3oband

XY
XY

XY

36 band | 3cband

0.5F

Measured &
Measured &
Measured &

i )
05 05 1 15 . .
Input& Input&

Figure 7.23: Confidence intervals for measured values of {xy for a “composite” J=0
resonance, for my=145, 200 and 350 GeV/c? (left, center and right), all for Ng=>50.

For measured values of {xy on the y-axis, confidence intervals should be read hori-
zontally.

Confidence intervals for measurements of the parameter {x¢ for a scalar with C-
violating H L L couplings are shown in figure 7.22; These are nearly identical to those
in figure 7.21, reflecting the difficulty of discriminating the {xp # 0 and {xqo # 0
hypotheses, as discussed in section 7.3.4. For the C-odd case, the sign ambiguity of

§X0" is slightly worse than for the T-odd one as demonstrated by the 1o confidence
bands appearing on the {¥7° = — i)?gut diagonal for my=350 GeV/c?. This is also

expected, since the C-odd interference term is proportional to the relatively small
number 7 & 0.15, see equation (7.17). One’s ability to distinguish between J=0 C-
and T-odd admixtures relies on the resolution of the interference terms. With a factor
of 10 more statistics (Ng ~ 500), one would be able to resolve the sign ambiguity in

Exp and {xg and to distinguish between the two cases.
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The confidence intervals associated with measurements of {xy for a composite

scalar are shown in figure 7.23. We observe that, for mgz=145 and 200 GeV/c?, the

1 o intervals are centered on the diagonal £¥§** = ?{}“t. There are no bands along
meas — ¢ since the interference term is of a different nature than that of the

discrete-symmetry violating cases. The extensions of the 2 and 3 o bands along almost
horizontal and vertical lines around £xy ~ 1.3 result from large cancellations in the
pdf, discussed in section 7.3.4.

The figure for my=350 GeV/c? is hard to decipher. With a magnifier one sees
that at the critical value of {xy the confidence intervals are tiny. Everywhere else,
the intervals essentially include all possible values except the critical one. This is
tantamount to saying that at this mass we cannot tell, on the basis of our analysis, a
composite from a point-like scalar unless is has a particular value of {xy, a fact made

clearer by figure 7.19.

7.4 Conclusions and Outlook

These studies demonstrate that small signal samples in the ZZ — 4¢ or ZZ* — 44
decay channels could be sufficient to characterize a putative Higgs particle. Below we

summarize these each of the results.

7.4.1 Summary of Pure Case Discrimination

Amongst the many comparisons considered in our analysis, the ones between simple
hypotheses are the most readily summarized. This we do in Tables 7.1 and 7.2 for
mp=145 GeV/c? for all pure-case comparisons between J=0, 1 parent particles, and
in Tables 7.3, 7.4 (7.5, 7.6) for mx=200 (350) GeV/c?, for all pure-case comparisons
between J=0, 1, 2 parent particles.

Overall, the discrimination power of the hypothesis tests is very impressive. The
mp=200 GeV/c? benchmark example is the one requiring the largest statistics to
reach a given discrimination at a given level of confidence. Compared with the

my=350 GeV /c? case, this is because various coefficients of the angular dependences



134
(HUH = Jorfo I [17]

0t - | 17112 | 16
0~ 14| — | 11| 17
1~ 1111 — | 35
1t 17118 | 34 | —

Table 7.1: Minimum number of observed events such that the median significance for
rejecting Hy in favor of the hypothesis H; (assuming H; is right) exceeds 3o with
my=145 GeV/c%.

(Ho UH = Jorjo [ 1 | 1" |

0t - | 52| 37 | 50
0~ 41 — | 34 | 4
1~ 33132 — | 112
1t 54 | 55 | 109 | -

Table 7.2: Same as Table 7.1, but requiring that the median significance exceeds 5o.

(Hy UH = 0T [0 [1° [1V]2" |

0t — 12414562 | 86
0~ 191 - 11919 38
1~ 40 | 18 | — |90 | 48
1t 56 | 19 | 85 | — | 66
2t 86| 45|54 | 70 | —

Table 7.3: Minimum number of observed events such that the median significance for
rejecting Hy in favor of the hypothesis H; (assuming H; is right) exceeds 3o with
mu=200 GeV/c2.

vanish at the myg=2 My threshold. The my=145 GeV/ c? example fares better than
the 200 GeV/c? one for the same reason, amplified by the extra lever-arm supplied
by a non-trivial Mz« distribution.

The tables also show that the discriminating power between two given hypotheses
is approximately symmetric under the interchange of “right” and “wrong.” Telling
1% from 17 is always difficult but not impossible, a fact of relevance for a Z’ look-alike
analysis. The level of significance does not obey a naive N(o) o< v/Ng law. However
we find by inspection that an approximation of the form N (o) = a + b+/Ng works
well, allowing one to extrapolate to larger numbers of events than presented here.

Other lessons from the tables are case-by-case specific, reflecting the mass-dependent

quantum-mechanical entanglement between the decay variables. Some examples are:
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(HUH = [ 0f [0 [1° |17 [2"

0t — | 76 | 146 | 203 | 287
0~ 99 | — | 60 | 61 | 123
1~ 130 | 57 | — | 297 | 156
1t 182 | 58 | 278 | — | 217
2+ 287 | 146 | 178 | 230 | —

Table 7.4: Same as Table 7.3, but requiring that the median significance exceeds 5 o.

(H UH = Jor [0 [1 [1F]2" ]

0t - | 8 1212411
0~ 9 | — [22]22| 36
1~ 24 122 | — | 81 46
1t 26 | 22 | 80 56
2% 15139 |55 | 73| —

Table 7.5: Minimum number of observed events such that the median significance for
rejecting Hy in favor of the hypothesis H; (assuming H; is right) exceeds 3o with
mu=350 GeV/c2.

distinguishing the “natural-parity” J=0" and 1~ hypotheses for my=145 GeV/c?
requires only a dozen signal events for 3¢ discrimination. For 200 GeV/c?, discrim-
inating 0 from 0~ is relatively easy, but distinguishing 0% from 2% is difficult. For
350 GeV/c?, contrariwise, 2% is relatively easy to disentangle from 0, but not from

0.

7.4.2 Summary of Mixed Cases, CP, and Compositeness Dis-

crimination

We find that direct sensitivity to C'P odd, parity odd X P interference effects, or

to C'P odd, parity even X() interference effects, will require signal samples about

[HoUH = Jorjo |1 [17 ]2 |

0t - | 25 | 67 | 77 | 35
0~ 26 | — | 68 | 68 | 118
1~ 76 | 68 | — | 268 | 149
1t 83 | 68 | 263 | — |184
2+ 46 | 127 | 181 | 240 | —

Table 7.6: Same as Table 7.5, but requiring that the median significance exceeds 5 o.
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an order of magnitude larger than considered here. We have also observed that with
much smaller statistics it may be possible to conclude that a mix of X and P (or X and
Q) couplings is favored over just the pure X (i.e., 0T) or pure P (i.e., 07) couplings
alone. Such a conclusion would be tantamount to demonstrating C' P violation in
the Higgs sector. However this scenario relies on large C'P violation, and even in this
favorable case one cannot tell an X and P mixture from an X and () mixture without
more data than what is required to establish discovery.

In the case of a composite Higgs, it may be conceivable that the Higgs is as
“soft” as a pion, in the sense of having an inverse radius and a mass of comparable
magnitude. In this scenario we have seen that the angular distributions associated
to the X and Y couplings are similar after integrating over the decay angles. As a
result there can be strong destructive interference between these contributions. For
our lighter mass benchmarks we find good discrimination of pure 0" from the mixed
composites. For the heavier my=350 GeV /c? example, discrimination based on decay
angles is poor unless the strong interference effects are present; here we also observed
that substantial enhancement or suppression of the HLL— ZZ branching fraction
can provide another important discriminator.

For mixed cases, one could worry that certain combinations of exotic couplings
might let an HLL successfully masquerade as a 07 Higgs, even when all the pure case
exotics are excluded. For spin 1 HLLs we have shown that this does not happen. In
fact we find that when we have an SM Higgs, the entire family of mixed coupling
spin 1 HLLs can be excluded at approximately the same expected level of significance
as for the pure 17 or 17 cases. An even stronger result is that the general spin 0
hypothesis can be conclusively discriminated from the general spin 1 hypothesis, at

or close to the moment of discovery.

7.4.3 Confronting CMS Data

In our analysis we focused on decay information, exploiting an approximate factor-

ization between observables related to Higgs (or HLL) production and observables
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related to decay. The factorization is only approximate because of phase space accep-
tance effects and, in the case of spin > 0 HLLs, correlations between the initial and
final state particles. In a real data analysis one would want to include production in-
formation, which in turn would require a detailed knowledge of radiative corrections,
PDFs, and full detector simulation for the HLLs. While beyond the scope of this
study, such an analysis is currently being performed with CMS data.

The QCD corrections to the signal predictions for d?c/dprdn are large, as is
well-studied for the SM Higgs (see, e.g., [85,119,120] and references therein.) The
impact on the total cross sections is not relevant to our analysis, but the corrections
to the (pr,n) distributions will modify the phase space acceptance effects on the dis-
tributions of the final-state leptons. For the SM Higgs these corrections are included
at NLO in the CMS analysis, and a recent study shows that the effects of NNLO
corrections on the final-state lepton distributions are not dramatic [121].

There are electroweak radiative corrections that directly involve the final-state
leptons. For the SM Higgs these corrections have been computed and studied in
detail [122]; the corrections are of the order of 5-10% and cause a mild distortion of
the angular distributions. These effects are included in the CMS analysis, but they do
not introduce anything conceptually new to the methodology proposed in this study,
and their inclusion involves details of the experimental treatment of the vertex and
subsequent radiations by electrons and muons.

Preliminary CMS studies [123] have tested the simple 0 and 0! cases, with the
NePe hypothesis test-statistic distributions shown in figure 7.24. At this stage, the
0~ hypothesis is disfavored by more than 2 o with respect to the SM Higgs. The
sensitivity of the hypothesis test is roughly consistent with expectations from the
mpy = 145 GeV /c? test case, summarized in Tab. 7.1.

Of course this is only the beginning in determining the identity of the putative
Higgs candidate. Our treatment of couplings and HLLs was not exhaustive, since
we have ignored gauge invariant operators with dimension greater than 6, have only
examined one case of spin 2 HLL, and have not even mentioned the possibility of HLLs

with spins higher than 2. In addition to the rich possibilities involving mixed scalars,
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Figure 7.24: Expected distributions of the NePe test statistic comparing the the JF¢

hypotheses 0~ and 0". The observed value, calculated using CMS data in the 4/ final
state, is indicated by the arrow [123].

compositeness and gravitons there may be more exotic possibilities to consider.
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Part 11

Symmetries Beyond the Standard
Model
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Chapter 8

Beyond the Standard Model

Physics: Motivations and
Possibilities

The Standard Model of particle physics has succeeded in describing the physical
world to a remarkable precision to energies up to the weak scale. To date there are
no significant deviations between experimental observations and the predictions of
the model. If the new boson observed by the CMS and ATLAS experiments proves to
be consistent with the Higgs, then the Standard Model will be complete. As we enter
an new energy regime with the LHC an important questions are what, if anything,
lies beyond the Standard Model (BSM)? The answer is currently unknown, but in
this chapter we discuss some reasons to expect that there is physics BSM and how it
could manifest itself in LHC collisions. New physics models that mitigate the perceive
shortcomings of the SM tend to involve new symmetries of nature; we discuss how
these symmetries, and the resulting phenomenology of new physics, can inform our

experimental searches for BSM possibilities.

8.1 The Aesthetics of the Standard Model

Despite its enormous theoretical and experimental success, the SM has several short-
comings. To begin with, there are a range of experimental observations that, while

not in contradiction with the SM, are not explained by it. The universe we inhabit
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is observed to be matter-antimatter asymmetric, and a dynamic explanation from
the early universe would require particles and interactions not contained in the SM.
Also within our universe, we have inferred the presence of dark matter which only
interacts weakly with the SM particles our world is composed of, and so far only
detectably through gravity. There is no particle candidate in the SM spectrum which
can account for the observed abundance of dark matter, implying that it is composed
of BSM particles. The observation of neutrino masses and mixings is, in some sense,
evidence of new physics by construction since we have not observed right-handed neu-
trinos and they don’t have a place in the SM. Each of these experimental conclusions
strongly implies the presence of BSM physics, but its nature is unknown.

In addition to experimental challenges to the completeness of the SM there are
aesthetic and theoretical aspects which suggest that there could be something beyond
it. According to our understanding of the SM, all of the masses and mixings of
fermions are free, unpredicted parameters. In the context of the SM, the number of
fermion generations appears arbitrary (although it is interesting to note that three is
the minimum for CP violation) and their masses span several orders of magnitude.
The corresponding Yukawa couples, all playing a similar roll in the theory, range from
order 1 to 107°, for no apparent reason. Similarly, the difference in size of the gauge
couplings in unexplained. The unification of the weak and electromagnetic forces
is an important component in the SM; perhaps the complete theory of the universe
should include the unification of the electroweak and strong forces. Gravity is also not
included in the SM and is 10%? times weaker than the weak force, with its unification
an even more difficult prospect.

Perhaps the most instructive problem in the SM for divining the nature of new
physics comes as a direct consequence of the masses of the SM particles and the
difference in magnitude between the Planck and electroweak scales. If we consider a
Dirac fermion (f) in the SM, its mass my come from its interaction with the Higgs
field (H). When the Higgs field gains a VEV the chiral symmetry of the fermion
is broken by a spontaneously generated mass term appearing in the Lagrangian. In

addition, an interaction term between the Higgs and fermion appears (—A;H f f). Just



142
as the Higgs gives the fermion mass, this interaction term contributes to quantum
corrections to the Higgs mass through diagrams like the one shown in Fig. 8.1 (left).
The shift to the Higgs mass from that diagram is

As]?
Am?, = FJ;? [—2A% 4 6m7log(Ayy /my) + -], (8.1)

where Ay is the cutoff scale for the fermion momentum running in the loop and the
ellipses correspond to high-order terms in 1/A%. The correction to the Higgs mass is
quadratically divergent in Ay, as are similar 1-loop diagrams coming from couplings
to the heavy gauge bosons and the Higgs’ self-interaction. The total effect of each of

these contributions on the physical Higgs mass at 1-loop can be summarized as

m7; (phys) ~ m3; + WA%]V , (8.2)
where m?; is the parameter appearing in the Lagrangian, ¢ depends on the various
coupling constants of the SM and Ayy represents the ultraviolet completion of the
SM, or the scale up to where the theory is valid. If the SM is to provide a description
of nature all the way to the Planck scale, Mp ~ 2.4'® GeV, then it naively seems
that the physical Higgs mass should be of this same order. Perturbative unitarity
arguments [124,125] imply nearly the opposite, that the mass should be smaller than
a few hundred GeV. The new boson discovered at 125 GeV by the CMS and ATLAS
experiments [7, 8], if it is the Higgs, would confirm this fact. These considerations
beg the question: how is the Higgs able to stay relatively light?

It is possible that the Lagrangian parameter mpy cancels the large Ayy term in
the right-hand side of equation (8.2) but if Ayy is at the GUT scale ~10'® this
would require my to be fine-tuned to 1 part in 10%%. This is known as the gauge
hierarchy problem. 1t is an issue of aesthetics and can be thought of as a question
of symmetry. The masses of the fermions are protected by chiral symmetry, in that

these masses break that symmetry, which in term protects them from quadratically

divergent cutoff contributions. Similarly, quadratic divergences to the gauge boson
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Figure 8.1: Examples of quadratically divergent Feynman diagrams contributing to
the Higgs boson mass.

masses are removed through gauge-invariant dimensional regularization, such that
they are prevented from being dragged to a high scale by the local gauge symmetries
of the SM. On the other hand, there is no such symmetry in the SM which protects
the Higgs mass. As a scalar, the number of degrees of freedom associated with a
massive and massless particle are the same and hence, its mass will be sensitive to
the UV completion of the theory in the absence of new BSM dynamics.

A new symmetry could keep the Higgs mass light by guaranteeing that the quadrat-
ically divergent 1-loop contribution is cancelled through the appearance of new par-
ticles in the theory with their own quantum corrections to the Higgs mass. If we
consider a massive scalar (S) which also interacts with the Higgs, through a term
—Xs|H|?|S]? in the Lagrangian, then this particle will also result in 1-loop correction

to the Higgs mass, illustrated in Fig. 8.1 (right), with the value calculated to be

by 2
Aty = 2L [andy 4 6m og(hoy my) ] (83)

This contribution has an opposite sign relative to the fermion contribution; if there is
a relation between the couplings A\g and A fixes their relative values of the right type
the strongly divergent contributions from each particle will cancel. Such a symmetry
is supersymmetry (SUSY) [126,127]. For every SM particle there is an additional
superpartner particle, with spin differing by 1/2, which is related by a new supersym-
metry between bosons and fermions. In this case, the supersymmetry protects the

scalar Higgs mass and ensures the cancellation of divergences.
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There are other possible approaches to new symmetries which result in similar
cancellations. Little Higgs [128,129] models introduce new strong dynamics at scales
above 10 TeV which include new same-statistic partners of the SM particles which
cancel divergent effects. Some BSM possibilities do not even require these cancella-
tions to mitigate the gauge hierarchy problem. Models of extra dimensions [130, 131]
effectively reduce the the Planck scale by allowing gravity to propagate in a bulk
other than the four dimensions we are most familiar with, such that its magnitude is
geometrically reduced relative to the other forces. If this were the case, it could be
that the Planck scale and the weak scale are actually the same, and the size of the
extra dimensions puts Ayy at the same scale as the physical Higgs mass.

Each of these BSM theories suggest possible solutions to the gauge hierarchy
problem through different approaches, but with strong similarities in their general
implications. They all indicate that there is a strong reason to believe that some-
thing new happens at the TeV scale. Whether it is TeV~! extra dimensions, or new
symmetries manifested through new particles there should be new degrees of freedom
which only appear at these higher energies related to the stabilization of the weak
scale. As we shall see, the phenomenology of these BSM possibilities indicates that

we may be able to infer their existence from new physics searches at the LHC.

8.2 Symmetric Possibilities

8.2.1 Supersymmetry

Supersymmetry (SUSY) is a hypothetical symmetry between fermions and bosons. In
order to ensure cancellations to quadratically divergent contributions to scalar masses
a new superpartner is added for each of the SM particles. The simplest SUSY model
which reproduces the SM at the electroweak scale is the Minimal Supersymmetric
Standard Model (MSSM) [132], and is a direct symmetrization of the SM fields,
based on the SU(3)¢ x SU(2);, x U(1)y gauge group.

Each of the SM particles are put into supermultiplets with their superpartners,
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which have the same gauge quantum numbers. The fermion fields are promoted to
chiral scalar superfields, with a SU(2) superfield for the left-handed fermions and a
singlet for the right-handed ones. Their scalar superpartners are sfermions (selectrons,
smuons, staus), with one for each chirality. Similarly the gauge bosons are put into
gauge superfields with their own fermionic superpartners, gauginos. The SM Higgs
SU(2) doublet becomes a doublet of left-chiral superfields. In order to give down-
type fermions mass a second left-chiral superfield must be introduced, giving a more
expansive Higgs sector than the SM. One of the SUSY Higgses is a light scalar,
resembling the SM Higgs. The gauge-eigenstate fermionic superpartners of the SM
analogues, winos and binos for the W and B fields, respectively, mix with the higgsinos
to form mass eigenstates: Neutral gauginos and higgsinos mix to give four neutralinos,
while the charged fields result in four charginos. An attractive feature of SUSY is
that the three gauge couplings unify at the GUT scale, potentially pointing towards
a unified theory.

In the SM, lepton and baryon number are conserved in all renormalizable inter-
actions. For the MSSM, this is no longer the case since there are now scalars which
carry these quantum numbers (the superpartners of the quarks and leptons) and B
or L violating renormalizable interactions are possible which are also invariant under
the SM gauge symmetries. The presence of such terms appearing in the Lagrangian
is strongly constrained by experiment, particularly B-violation would result in decays
of the proton, which are so-far unobserved. These terms can be forbidden by requir-
ing that the theory is invariant under a new parity-like symmetry called R-parity,
or matter parity. Under this new parity the the quark and lepton superfields are
odd, while the Higgs and gauge superfields are even. The conserved R-parity can be

expressed as
R — (_1)3(37[/)4’28 , (84)

where s is the spin of the field. This conserved Z, parity has important phenomeno-

logical consequences for observing evidence of sparticles. It implies that there must
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be an even number of superpartners in each interaction, implying that these sparticles
are produced in pairs in LHC collisions. This same restriction means that the lightest
supersymmetric particle (LSP) will be stable, unable to decay to SM particles. SUSY
with weak-scale LSPs could potentially give a particle interpretation of dark matter.
If produced in LHC collisions, the LSPs will escape the detector without interacting.

If SUSY exists, it must be a broken symmetry since sparticles with mass the same
as their SM partners have been excluded experimentally. This implies that there
are also supersymmetry-violating terms appearing in the Lagrangian. In order to
maintain the cancellation of quadratic divergences these are restricted to soft breaking
terms related to the scalar sparticle and gaugino masses. With these additional terms
the MSSM has more than 100 new masses, phases and mixing angles relative to the
SM.

Experimental search results are often interpreted in a simplified subspace of the
MSSM called minimal supergravity (mSUGRA) [133]. Supergravity refers to the
nature of SUSY breaking, which follows from a SUSY-violating hidden sector which
communicates only through gravity with the SM. In the minimal SUGRA model, the
first-two generation slepton and and gaugino mass matrices are assumed to be trivial,
as are the Yukawa coupling matrices, with no complex phases in any soft terms,
such that the full theory is described by only five parameters: Common soft mass
parameters mg and m;/, for the sfermions and and gauginos, respectively, a universal
trilinear coupling Ay for the Yukawa interactions, the ratio of the Higgs’ VEV’s tan (8
and the sign of the Higgs mass parameter, . This tractable theory space is useful
for presenting experimental results and is often referred to as the constrained MSSM
or CMSSM.

There are a vast number of possible signatures for SUSY at the LHC. The hadron-
hadron collider environment implies that the cross sections for strongly interacting
sparticles will be larger than for the electroweak-inos. Heavy squarks and gluons
could be produced, decaying through lighter sparticles to SM particles like heavy
gauge bosons, leptons and jets. R-parity conservation leads to signatures of MET

from escaping LSPs.
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8.2.2 Little Higgs Models

An alternative approach to SUSY for explaining the lightness of the Higgs is a class
of possibilities called Little Higgs Models [134-138]. Here, the Higgs is constructed
as a pseudo-Goldstone boson of a nonlinearly realized approximate global symmetry,
analogous to the pions and kaons in QCD. In these theories a larger symmetry group,
like SU(5), is broken to a smaller subgroup, like SO(5). The broken symmetries result
in a pseudo-Goldstone multiplet. The larger symmetry group must contain two copies
of SU(2) x U(1) and two additional subgroups which contain generators transforming
like SU(2) doublets which commute with the former. It is then constructed that only
the combination of both weak gauge interactions breaks all global symmetries acting
on the Higgs, meaning the quadratically divergent contributions must involve both
couplings, and can only appear at two loops. The Higgs is radiatively stable up to a
cut-off of around 10 TeV while having gauge, Yukawa and self-interactions of order
one. This is accomplished, as in SUSY, by adding new partners of the SM particles
related by a new symmetry.

Like SUSY, some of the possible interactions associated with these Little Higgs
models conflict with experimental constraints. These interactions can be removed
by appealing to a new conserved parity, called T-parity. The new, heavy, particles
associated with one copy of SU(2) x U(1) are T-parity even, while the SM fields from
the other are T-parity odd. As for SUSY, this Zy symmetry results in a potential
dark matter candidate, as the lightest T-parity odd particle will be stable and weakly
interacting. The dominant production mode in these models are new colored particles,
analogous to the squarks and gluinos in SUSY. Similarly, there can appear heavy T-

odd partners of the leptons and electroweak gauge bosons.

8.2.3 Extra Dimensions

Theories of extra dimensions feature a very different approach to explaining the hier-
archy between the electroweak and Planck scales. If the SM is confined to a four di-

mensional space, but there are additional dimensions in which gravity can propagate,
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the weakness of gravity can follow as a geometric consequence. These include models
of compact extra dimensions [139-145] and also with warped geometries, where the
hierarchy between scales is generated by large curvature of extra dimensions [146]. It
is also possible to embed supersymmetry, or other BSM symmetry theories into these
scenarios [147,148].

In models of compact extra dimensions with small enough size, the SM fields can
propagate in these compact dimensions resulting in a Kaluza-Klein (K K) tower of
excitations from each SM particle. At the first level, the SM bosons have a new
particle partner while each SM fermion has two. With one extra dimension, each
of these new particles is odd under a K K-parity which is a remnant of the broken
translational invariance in this fifth dimension. The lightest K K-odd particle is
weakly interacting and due to this conserved Z, symmetry would be a candidate
for matter. At the LHC, a variety of KK odd partners could be pair produced
if additional interactions are present in the model, with mass spectra potentially

resembling SUSY.

8.3 BSM Phenomenology

While different in the physics they encompass, the phenomenological properties of
models which attempt to mitigate the gauge hierarchy problem are very similar. Each
introduces a spectrum of new particles which are partners with their SM counterparts
under a new symmetry of nature. In the cases where experimentally disfavored in-
teractions are removed by appealing to a further symmetry, each includes a new
conserved quantum number or parity. This feature is particularly desirable because
it means the lightest of these new particles is unable to decay to SM particles, so it is
weakly interacting and could maybe explain the dark matter scattered throughout the
universe. These BSM models also make predictions about the scale of new physics.
In explaining why the electroweak and Planck scales are not the same, they predict
the appearance of new, heavy degrees of freedom near the electroweak scale. In LHC

collisions, this could be manifested through the production of new, heavy particles



149
which have exceeded the energy capabilities of previous accelerators. These particles
can interact with the SM in a variety of ways, leading to a rich collection of possible
BSM signatures.

In the searches for new physics described in chapters 9 and 10, two common
characteristics of these hypothetical events are exploited. As is the case for W and Z
particles, the decays of new massive particles can be identified by reconstructing the
mass, or a mass-sensitive variable, from the decay products detected in these event.
An excess of events at a particular mass not explicitly present in the SM would
indicate the discovery of a new one. Hence the scale of new physics can be used to
discover it. The conserved Zs parities in these models imply that these new particles
must be produced in pairs, and that at the end of each of their the decay chains
at least one weakly interacting particle must appear (or disappear). This implies a
very particular topology for LHC events: two new massive particles each decaying
to a system of detectable SM particles and the appearance of missing transverse
momentum. The razor variables used in these new physics searches were designed
specifically to study this signature.

It can be argued that this Zs-parity-inspired topology is more general than the
models discussed. The existence of dark matter, without an SM explanation, indicates
that there is another type of matter that is yet to be identified. Its weakly interacting
nature suggests that if this new particle(s) is heavier than some of the SM particles
that there is a new, at least approximate, symmetry preventing its decay. The absence
of a discovery at previous experiments, operating at lower energies, implies that any
new particles which do interact with the SM have large masses. A light Higgs hints
that the SM should interact with new degrees of freedom around the TeV. Occam’s
razor implies that each of these indications of BMS phenomena should be related,
making searches at the LHC targeting this signature a well-motivated approach for
observing evidence of BSM physics with new particle spectra satisfying these general
characteristics.

Of course, the interactions of the SM are complicated, and the new physics which

could appear at the LHC might be no different. The models discussed all contain
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an additional copy of the SM, and have an enormous variety of possible interac-
tions involving new particles. General consideration about the production and decay
topologies of these models should be complemented by searching for anomalously
large numbers of SM particles in these events, like leptons, jets and gauge bosons,

which could come from the decays of new particles.
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Chapter 9

Razor Searches for Supersymmetry

In chapter 8 several theories of new physics were described which mitigate perceived
problems in the Standard Model, particularly related to the naturalness of the scales
appearing and the amount of fine-tuning of theory parameters necessary to realize
them. In each of these BSM theories, this is achieved by predicting new symmetries of
nature which generally imply the existence of new, undiscovered fundamental particles
and interactions which we would like to study at the LHC.

Of particular interest are theories that include a discrete Zy symmetry, or a new
type of parity quantum number like R-parity in SUSY, T-parity in Little Higgs mod-
els and K K-parity in models with extra dimensions. These theories are phenomeno-
logically appealing since the Z, symmetry often forbids interactions problematic to
precision electroweak constraints from appearing in the Lagrangian. Additionally,
these symmetries can prevent the lightest new particle from decaying, resulting in a
possible particle explanation for the abundance of dark matter in the universe. In
the following chapter, we describe a search for new particles associated with these
BSM possibilities using the CMS detector with 35 pb™! of v/s = 7 TeV pp collision
data. New event kinematic variables, denoted razor variables, are derived specifically
for discovering and characterizing new BSM particles through interactions motivated
by Zy symmetries. We describe the phenomenology of the Standard Model in terms

of razor variables and how this is used to infer the presence or absence of anomalous
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events in our data sample in hadronic and leptonic final states. The results of this
search are interpreted R-parity conserving SUSY scenarios, putting constraints on

sparticle masses in hypothetical models.

9.1 Razor Kinematic Variables

In LHC pp collisions, a Zs, symmetry implies that new BSM particles can only be
produced in pairs. Once produced, each of these new particles can decay through
a cascade of SM particles, with an odd number of BSM particles appearing at each
decay step. These decays can proceed down the new particle mass spectrum until
reaching the lightest new particle which, since it is stable and will not decay to SM
particles, is weakly interacting and will not be detected. This general BSM event

signature is illustrated in figure 9.1.
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Figure 9.1: Z, symmetry motivated BSM LHC event signature. Two massive parti-
cles, S;, are produced in a pp collision and each decay to a system of detectable SM
particles, @);, and a system of weakly interacting particles, y;.

In the past years the development of kinematical variables that assist the discovery
of this type of event topology has been intense and rich [87,149-162]. In general, these
methods try to exploit one or more characteristic features of these events which can
distinguish them from similar ones with only SM particles. Coming from different
decays, the systems of visible particles (); do not have to recoil against each other
in momentum, as they would for SM processes without weakly interacting particles
in the final state. Similarly, the presence of the particles represented by x; in these

BSM events can be inferred by looking at the imbalance of transverse momentum
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among the visible particles.! Finally, the fact that we haven’t discovered these new
particles in the past indicates that they are probably massive; the raison d’étre for
these new particles and symmetries, explaining the relation between the weak and
Planck scales, implies they should generally have masses close to the weak scale. We
derive two new, complementary kinematic variables which are independently sensitive
to different distinguishing characteristics of these events, M and R. The variable My
is sensitive to the scale, or masses, of these new physics particles. The dimensionless
variable R, the razor, indicates the amount of transverse imbalance of momentum in
collision events, a signature of independent decay chains initiated by pair-produced

particles and decaying to weakly interacting particles.

9.1.1 The Scale of New Physics: Mg

In order to derive the kinematic variable Mg, we consider the simplest topology
corresponding to figure 9.1, where the interactions at the 5;Q;x; vertices are direct
two-body decays S; — Q);x;. This situation could represent, for example, the pair-
production of right-handed squarks where each squark decays directly to a light quark
and a weakly interacting, potentially massive, neutralino. If an event like this occurred
in an LHC collision, the momentum of the decay products @); would be measured
(if if they are within the angular acceptance of the detector) while the particles y;
would escape undetected, taking their momentum with them. We assume here that
Ms, = Mg, = Mg and M,, = M,, = M,. This means that, in each of these events,
there are two new types of particles, S and Yy, each with an unknown mass.

What we would like to have is a procedure, event by event, for accurately recon-
structing the masses Mg and M,. If these masses are sufficiently different from the
masses of the SM particles then we could use this information to distinguish events
with these two new particles present from SM background events, looking for excesses

at fixed values in the reconstructed Mg and M, distributions. Unfortunately this is

1Since the interaction which produces the particles S; is initiated by the parton constituents of
protons, which do not carry all of the protons’ momentum, conservation of momentum will only
approximately hold among the visible particles in the directions transverse to the beam-line in a
collision event.
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not possible. Since the particles x; escape undetected the kinematics of the particles
Mg and M, cannot be reconstructed using only the visible ); decay products of the
the system. The reason is that the event is kinematically underconstrained by the
measurements we are able to make. As we shall see shortly, in this case the number
of kinematic degrees of freedom (d.o.f.), N, and the number of kinematic constraints
available in each reconstructed event, M, satisfy N — M = 4. This means that we
would need four more kinematic constraints to fully solve the system (possibly only
up to some number of discrete ambiguities); even if we knew the masses Mg and M,
a priori we could not completely reconstruct these events.

With these considerations in mind, we can ask a slightly less ambitious question:
Is there a characteristic scale, related to Mg and M,,, that we can partially reconstruct
event by event? The answer is yes, and to understand what this characteristic scale is

we consider the different reference frames relevant to these types of events, illustrated

in figure 9.2.
p;A Qi ) ) gT
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Figure 9.2: The four reference frames describing the pair production of particles S,
each decaying S; — Q;x;. (Left) In each of the respective S; rest frames the particles
@; and x; are traveling with equal and opposite momentum, with the magnitude of
their momentum set by the particle mass differences. (Center) In the CM frame, the
two particles S; and Sy are traveling with equal and opposite velocities Sopr, with
V5 representing the S; + S, CM object. (Right) In the laboratory frame, the CM
system is traveling with a longitudinal velocity 8, due predominantly to differences
in the longitudinal momentum of the interacting partons. In the transverse plane,
the CM system can have a nonzero velocity ET coming from other final state particles
recoiling against the CM system.

Since each S; is undergoing a two-body decay, the decay products are traveling
with equal and opposite momentum in the S; rest frame. If the masses Mg and M,

are the same event by event, the magnitude of the decay products’ momentum in the
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S; rest frames is also fixed. Assuming that the objects Q; are approximately massless

we observe that
= — MA 1m%~—m2
BE =1 = S = g ©0.1)

For this event topology, M is the characteristic scale. It is the same for each event
of this type, and the momentum of the final state particles in the laboratory frame
will be related to its value. To calculate Ma we must reconstruct an approximation
of the 5; rest frames based only on our observations in the laboratory frame. This is
accomplished through a series of physics-motivated approximations which effectively
eliminate the extra unknown d.o.f. from the problem.

Let us denote the four-vectors of the particles S; as s; and s,. Similarly, we
call the four-vectors of the @); and y; particles ¢; and v;, respectively. Throughout
this discussion, superscripts on these four-vectors (and corresponding three-momenta)
indicate which reference frame they correspond to. In the S;.S5 rest frame (CM frame)

the S; and S, four-vectors are given by

p[S1]
p[SQ]

= Msyom {1, Bom} = {ESM, 5 M},

= Msyom {1, —Bou} = {EGM, 5,5M} (9.2)

such that (s; + s9)? = § = 492,,M2, where § is the usual Mandelstam variable
describing the hard partonic subprocess. The boost ECM, and corresponding yoas
indicate how far above the 2Mg energy threshold the two .S; are produced. We need
not consider off-shell production of the particles S; here.

In their respective S; rest frames (S-frames), the decay products of each S; have

four-momenta defined as

Q) = qu%{l i} = (55,3}
p[Xi] = Vis {RSX7 ul}_{ sz_; }7 (93)
M32+M?2

X and each 4; is a unit vector. In the laboratory frame (I-frame),

where RSX = ]\4STJ\4§
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the momentum of the particles ¢;' and 7,! are related to their momenta in their
respective S frames through a series of Lorentz transformations. To move from the
rest frame of S; (S5) to the CM frame, ¢ and v{ (¢5 and v5) are boosted to a frame
traveling at a velocity Sem (—Bem) with respect to the Sp (Ss) rest frame. Finally, to
move from the CM frame to the lab frame, each of the final state particles is boosted
to a frame traveling at a velocity ﬁz = (ET, B.), where ET and [, are the transverse
and longitudinal components of this boost, respectively. The transformations taking
the final state particles from their respective S; rest frames to the lab frame can be

schematically described as

s s Bem, oM oM Br. 1 i
qisV1 — q1 V1 —q, Y,

w3 T g g B g, o) (94)
This series of Lorentz transformations is equivalent to moving through the reference
frames of figure 9.2 from left to right. To calculate Mx in the respective S;-frames we
would need to perform the inverse series of transformations to the particles ¢); which
we have measured in the lab frame. With this goal in mind, we observe that the under-
constrained d.o.f. in this problem can be expressed in terms of these unknown boosts.
In the final state, the two escaping y particles represent 4 + 4 = 8 unknown d.o.f.,
in that we don’t know their three-momenta and masses. The constraints Mg, = Mg,
and M,, = M,, yield two constraints, while assuming conservation of momentum in
the direction transverse to the beam axis provides two additional constraints, leaving
four under-constrained d.o.f.. Viewing the problem in terms of the unknown boosts
BCM and EL, we observe that these four d.o.f. are equivalent to the direction and
magnitude of Bcy (three d.o.f.) and the longitudinal component of £, (1 d.o.f.).2
While these extra d.o.f. cannot be constrained by kinematic measurements, they can
be eliminated through approximations motivated by the underlying physics of these

events.

21f Ec »m and the longitudinal component of EL are known then conservation of transverse mo-
menta can be used to calculate the transverse part of S up to a discrete ambiguity.
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In practice, |Br| ~ p$M /V/5 < p§™M /2Myg, where pM is the transverse momenta
of the CM system resulting from initial state radiation and underlying event particles.
Even though p$M scales with V3, the spectrum of | §T| will get softer for increasingly
large values of Mg. Motivated by expectations of large masses Mg in the models we
are searching for we approximate ET — 0. Similarly, if the mass My is sufficiently
large relative to the hadron-hadron collider energy +/s, the particles S; and Sy will
be mostly produced near the v/§ ~ 2Mg threshold, such that ycas ~ 1. The approxi-
mation vopr = 1 implies that the particles S; are produced exactly at threshold, with
EC M — 0.

With the yop = 1 approximation the S; rest frames and the CM frame are the
same, and we denote this reference frame the rough approximation frame, or R-frame.

In the R-frame the particles (Q; satisfy the constraint

R|: R|:]WA

- (9.5)

7" =12
Additionally, with the ET — 0 approximation the R-frame is now related to the lab
frame by a single longitudinal boost, which we will denote Sr. We can solve for Sr
by using the constraint in equaton (9.5) and calculating the longitudinal boost that
will move the visible particles (); to a reference frame where the magnitude of their

momenta is equal. We find that

=1 =1
ay| — |4
b~ 112 (9.
1z 2z
Finally, we define the R-frame mass, Mg, as
. . (1 |gb. — 1d5'lq1.)
Mg = 2|3, = 2|¢,%| = 2 R T (9.7)
' ’ (4. — ¢5.)* — (I4'] — 1d'])?

If our approximations hold the R-frame will be equivalent to the two 5; rest frames
and our variable Mz will be equal to MAa.

We have derived a variable, Mg, sensitive to the characteristic scale Ma which
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we can calculate using only the visible particle momenta ¢;' measured in the lab
frame. In the limit that our approximations hold, yoy — 0 and ET — 0 imply that
Mpr — M. We observe that Mpg is invariant under longitudinal boosts such that
even if oy # 1, My is independent of the true value of .. In the following sections
we will examine the efficacy of this approximate reconstruction approach, testing the

other properties of My with a collection of toy models.

9.1.2 The yocm = 1 Approximation

In order to understand how well our y¢); = 1 approximation holds in practice we
must consider how 7o, is distributed in reality and what happens to My when
Yom # 1. To address the former question, we consider the simple model with two
scalar particles: @, with zero mass and ®; with mass Mg, where these scalars are
approximating the interacting partons and S; particles from figure 9.1, respectively.

We consider contact interaction pair production of ®; through a A|®q|?|®;|? vertex,
where ) is the dimensionless ®2®? coupling, which we set to 1 without a loss of

generality. The subprocess cross section is proportional to

1 —4M2/3 1 —1/~2
5(3) o 2 VLT AMS/S V= Lo (9.8)

2 2
S Yenr M3

From equation (9.8) we observe that vy, = 1 is kinematically forbidden, and that
the cross section for the subprocess will decrease asymptotically as 1/92,,.
Additional suppression of large values of y¢), is caused by the parton distribution
functions (PDFs) in hadron-hadron collisions. Assuming the two initial state ®
particles are partons from colliding protons with momentum fractions x, and =,

respectively, and PDFs fi(x) and fo(z) we can write the total cross section as

do
dx,dzy,

X [fi(xa) fa(zp) + a <> b6 (8 = sxaxp) (9.9)

where s is the proton-proton CM energy. Changing variables from x; to o, through

the relation sz,x, = 472,,M2 and integrating over z, we find that the differential
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cross section with respect to yop is given by

do vl_l/V%MX
s

dyem SYem
! 47%’MM§' d-ra
AV%MME‘ [fl(xa)fQ(T) +a 4> b] 7 (910)

s

In figure 9.3 we show the probability distribution function for voy, for /s = 7
TeV pp collisions, where we have numerically integrated equation (9.10) for gg-like (u
and sea quark PDFs) and gg-like production. We use PDF parameterizations of the
form z f;(x) = Aiz% (1 — )" (1 + €;/7 +yix) + Alx% (1 — )" with NNLO parameters
determined from a global PDF fit at Q* = 1 GeV? [163]. Larger values of Mg result
in lower values of yoys, with all distributions peaking at approximately vons ~ 1.1
and falling quickly with increasing ycop. The PDFs are fast-falling functions of z,
resulting in a steeply-falling oy, distribution. We conclude that, for nonresonant

particle pair production, the vo)r = 1 approximation is quite good.

T T T T T
— Mg=.5TeV (q@) ]
....... Mg=.5TeV (gg) |
— Mg=1TeV ()

....... Mg=1TeV (gg)

— Mg=15TeV (qt)
....... Mg=15TeV (gg)

T 12 14 16 18 2
Yy

Cc™M

Figure 9.3: Distribution of yoy, for ¢g-like and gg-like production at /s = 7 TeV for
different values of Mg.

The exact dependence of the subprocess cross section on ¢y, will vary depending
on the nature of the interacting final and initial state particles in the 2 — 2 process,
but the resulting distribution of ¢y, should be qualitatively similar to the result

shown in figure 9.3: vo,s exactly equal to 1 is kinematically forbidden, but values of
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You near 1 are preferred to larger values due to the falling subprocess and total cross
sections with increasing v/§ = V/8TaZy X Your-

In order to understand the behavior of Mg when vopr # 1 we return to the
example introduced in section 9.1.1. Using the same notation, we again consider the
pair production of massive particles S; and S, and continue to use the approximation
ET — 0, this time with ~¢r not equal to 1. We consider a toy simulation of .S pair
production, with decays S; — @Q;x;, where we have taken flat matrix elements for
the angular distribution of the S; decay products (decay axis randomly distributed
as a sphere in the S; rest frame). The resulting distributions of My, for different
fixed values of voyr, are shown in figure 9.4. We observe that the peak value of
My scales as yop Ma, with the width of the My distribution increasing with voa.
Hence, in practice, the distribution of Mpz will peak near Ma, even when vyop # 1,

with resolution degrading with increasing yeo .

0.8

0.6

a.u.

02f |

Figure 9.4: Distribution of Mg, in units of yoy Ma, for different values of vop.
Distributions are normalized such that their maximum value is equal to one.

9.1.3 The Razor R

In section 9.1.1, we derived the kinematic variable Mg which is sensitive to the mass
difference Ma for events of the type shown in figure 9.1, a property that can be

used to distinguish these events from SM background processes. Unfortunately, for
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searches in most final states this is not sufficient to suppress large backgrounds; the
SM production cross section at v/§ ~ Ma is generally much larger than the cross
section of the models we are searching for. In order to be able to identify events
with the production of new particles, we can exploit a characteristic of the class of
Zo symmetry model we are looking for: pair production of particles each indepen-
dently decaying to a weakly interacting particle, leading to a transverse imbalance of
momentum in the event.

In order to understand how this property can be used to distinguish these events
from SM backgrounds, we consider a search for the pair production of squarks, each
decaying to a quark jet and a weakly interacting particle. The largest background to
this two jet and missing transverse momentum final state is QCD dijet production,
where nonzero missing transverse energy can result from instrumental backgrounds,
jet mis-measurements, finite detector acceptance and non-Gaussian tails in the de-
tector response, in addition to the production of neutrinos. To understand how the
variable My will behave for backgrounds of this type we consider the simple case of
QCD dijet production in more detail. In the dijet rest frame, we express the two jets’

four-vectors as

kl = \/7§ {17@} )
ky = \/75 (1,-0} (9.11)

where V/3 is the dijet invariant mass and © is a unit vector. If we assume that the
Lorentz transformation from the dijet rest frame to the laboratory frame is simply
a longitudinal boost, (3., (the CM system has no transverse momentum) we find
that for this type of event Mgz = v/5. Therefore, Mg will be distributed as v/3 for
this background process, falling steeply, while the signal distribution will peak near
MA. The question of whether or not we can identify signal events in the presence
of this background becomes a question of whether the effective dijet cross section is
sufficiently small for v/ in the range of the signal peak around Ma, which it is most

likely not.
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Examining the expression for My in equation (9.7), we see that there is additional
kinematical information in our events that we have not yet exploited. For example,
Mp is independent of the azimuthal angle, A¢, between the two final state jets. In
QCD dijet events the jets should be largely back to back in the transverse plane,
with A¢ peaking at w. On the other hand, the two jets in the SUSY signal events
result from the decay of two separate squarks, implying that their direction in the
transverse plane is largely independent of each other apart from spin-correlations and
effects resulting from ECM # 0. Hence, the distribution of A¢ for signal events will
be significantly flatter than for the background. Rather than simply cutting on the
variable A¢, we incorporate this information into a new variable denoted MF.

In this particular final state, we assume that in signal events there are two escaping
weakly interacting particles y; and o with four momenta v} and v, with each particle

“paired” with an observed jet with four-momenta ¢} and ¢, respectively. From these

four-vectors we define the variable Myg = +/(1/2)[(¥} + ¢})2 + (V4 + ¢4)?], which is
equal to Mg for signal events. The only constraint we have on the four-vectors v/} is
that the vectorial sum of their transverse momenta should be equal to the observed

missing transverse energy, M. Setting (v/)2 = 0 (if only because we don’t know it a

. B . . o . l l .
priori) and minimizing Msg over v;, and vy, yields

Hl}in Mg = \/‘Jlé“||ﬁlé“| Q1T V1T + ’qQTHV2T| qu ﬁzé“ - (9.12)

Motivated by the backgrounds we are considering, where missing transverse mo-
mentum often results from imperfect measurements of the jets’ momenta, we assign

half of the measured missing transverse momenta to each escaping particle such that

7k = 7,k = M /2 and define ME as:

ME = min Myg

Viz

|M Lo oy o
. \/ (155 + @57 ]) — §M (@ + &) - (9.13)
=P

Like Mg, the variable M# also contains information about the scale of the process we

are studying. If we assume that oy = 1 then the ME distribution has a kinematic
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endpoint at Ma for signal events. We note that MF is an additional measurement
of the scale of the process that uses information independent of the Mpg. Therefore,
rather than cutting on M¥ we form the dimensionless R-frame razor, R, as the ratio
of ME and Mp, such that R = MPE/Mpg. For the signal process, the distribution
of R peaks near 0.5, since this is the ratio of two measurements of the same scale,
M, with an additional geometrical factor due to the fact that MF contains only
transverse information. For the QCD dijet background, if M = 0, then R is 0, for
any value of V5.

As was discussed previously, there are several mechanisms for the measurement
of M to be nonzero in QCD dijet events. For example, one or both jets in the final
state could be mis-measured due to calorimeter noncompensation, uninstrumented
regions of the detector or weakly interacting particles, causing an imbalance in the
event and resulting in nonzero missing transverse momentum. To evaluate how these
possibilities affect the measured values for Mz and ME in background events, we
return to equation (9.11) which describes the kinematics of the dijet system in it’s
CM frame. We now realistically assume that the measured jet momenta, ¢!, are
scaled relative to their true values, so that ¢! = f;k;. Here, we are assuming that
the direction of the two jets is not changed, but rather that only a fraction f; of the
jets” momentum is observed, where f; > 0, while 1 — f; is incorrectly interpreted as
missing transverse momentum. Additionally, without loss of generality we adopt the
convention f; > fs.

With these mis-measurements, we find that My takes a value:

B Af2f38(0 - 2)
M= \/(fl + )20 22 = (fr = f2)*

(9.14)

independent of the longitudinal boost, 3., that takes the jets from their CM frame
to the laboratory frame. The missing transverse energy can now be nonzero, with

M = (fy— fl)lZIT and MF can be expressed as

-2

y (9.15)

M7 = \/(fl — )i
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From equation (9.14) we see that these mis-measurements decrease the value of
Mp, assuming that f; < 1. Therefore the distribution of Mg for the background will
not have events promoted to the tail of the distribution due to these types of mis-
measurements; instead, these mis-measurements will suppress the background Mg
distribution. Furthermore, if we require that R > C', where C' is some cut value, this
implies that CMzr < ME. To understand the effect of this cut, we change variables
(0 - 2)% = cos(6,)? and f; = focos(f2)?. With these substitutions, the inequality

CMpr < MFE can be re-expressed as

160 cos(0;1)? cos(62)* + sin(6;)* sin(6y)® < (9.16)

4sin(6)? cos(;)? sin(hs)? cos(ha)? .

This inequality implies that if C' > 1/2, no background events of this type will satisfy
the requirement on R. If C' ~ 0.4, some events can pass, but M will reach its
allowed maximum, for fixed v/3, at ME ~ \/E/ 5, with the razor inequality implying
that Mz < ME/C < v/5/2. Hence for this type of background event to result in
Mp ~ Ma, it must have v/ > 2Ma. Therefore, we observe that adding a requirement
on R to our event selection will remove most QCD dijet events with mis-measurements
of the type described above.

Another possibility resulting in nonzero missing transverse momentum in these
background events is that there are additional particles, whose vectorial sum of trans-
verse momentum is nonzero, and that escape detection. For example, jets resulting
from initial state radiation could remain unseen due to limited detector acceptance,
causing a transverse imbalance in the visible momentum in the event. In order to
understand the effect of this type of background on My and M¥, we consider a sim-
ple example. We denote the vectorial sum of the transverse momentum of particles
escaping detection as Pr. Returning again to the QCD dijet example described by
equation (9.11), a nonzero value of Py will result in two significant changes to the
final state particle kinematics. Firstly, the missing transverse energy will be nonzero,

with M = Pr. Secondly, this missing momentum will result in the dijet system un-
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dergoing an additional transverse boost when moving from the dijet rest frame to the
laboratory frame (any additional contribution to the longitudinal momentum imbal-
ance in the event is absorbed into the longitudinal boost, (., which moves the dijets
from their CM frame to the laboratory frame). Specifically, the dijets are moved to
a frame traveling at a velocity 3 = M /(yV/3), where v = (1 — |3|2)"/2 and V/3 is the

dijet invariant mass. In this case, My is given by
- ~1/2
2073 . 52
My =3 (1 - u) , (9.17)
/l) .

while M can be expressed as

. \/75§(\/(1 T8 018,

where the approximate equality holds up to order 3?. We observe that that for fixed
V3, after applying a requirement on R, remaining background events will have Mg
with an upper bound that goes as /735 if the jets have a large transverse component
in their rest frame, otherwise as v3v/s. Recalling that v = |}3T| /\/3, we observe
that the asymptotic behavior of these upper bounds can be re-expressed as |15T| and
(|Pr|v/3)Y/2, respectively. Hence, we see that in order for these types of background
events to populate the My distribution in the neighborhood of some value of Mx, the
magnitude of the vectorial sum of the transverse momentum of any missing particles
needs to be on the order of My,, in addition to the invariant mass of the visible
particles independently having the same scale.

In the case of the jets plus missing transverse momentum final state, this example
is not only relevant for the QCD multijet background, but also for the so-called
irreducible background Z(vv)+dijets. Here, |Pr| ~ pZ, and hence has an intrinsic
scale on the order of M. The distribution of Mg still falls off exponentially for this
background when My < Mp.

The variables Mz and R?, used in conjunction, are powerful variables for distin-

guishing new physics events from the relevant backgrounds, exploiting both the scale
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of new physics and transverse momentum balance of events to suppress backgrounds

with spurious missing transverse momentum.

9.1.4 Generalizing to Inclusive Final States

To derive the variables Mr and R we have not only made assumptions about the
kinematics of new physics events, but also about the underlying interactions within
them. Specifically, we have assumed that the pair produced particles have the same
mass and that they decay directly to a weakly interacting particle and visible SM
particle. In reality, new particles of different types, with different masses, can be
produced together and their decays can be complicated, and asymmetric, cascades
with multiple steps. In this section we explore how the kinematic variables Mgz and
R behave in these more complicated production and decay scenarios and develop an
approach for generalizing their application to events with more than two measured
particles in the final state.

We first return to the example described shown in figure 9.1, except we now allow
for the two massive particles, S7 and S5, to have different masses. Alternatively, we
observe that allowing the masses of the weakly interacting particles resulting from
the decays of S; and S5 to be different will have a similar effect; the value of Ma for
each decay chain is what dictates the kinematics of the event in the CM frame. Using

the notation of section 9.1.1, we will assume that each of the two decay chains has a
2 2

different value for M% = 1\4511\4—512\/1)(17 such that M3 = MA(1 +6) = Ma(1 + ).
Assuming oy = 1, we numerically integrate over flat matrix elements for the
S; decay angles to derive the distribution for My, for different values of o, which is
shown in figure 9.5. We find that My peaks precisely at the geometric mean of M}
and M3. Hence Mp, in some sense, is sensitive to the average characteristic scale of
the two different decay chains.
If the particles S; do not undergo direct two body decays, either by going through

a multibody decay or through an additional decay step with an intermediate massive

particle, then each of the two decay chains can produce more than one visible SM
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Figure 9.5: Distribution of Mg, in units of Ma+v/1+ 9, for different values of §.
Distributions are normalized such that the maximum value is equal to 1.

particle in the final state. To generalize the kinematic variables to these cases, events
with multiple particles in the final state are cast into a two object topology through
the formation of two mega-jets, or two objects made from grouping all of the observed
particles into two unique partitions. The two mega-jet four-momenta are defined as
the sum of four-vectors for all the assigned objects, requiring that at least one object
is assigned to each mega-jet. The combination of assignments that is chosen is the
one which minimizes the invariant masses of the two mega-jets summed in quadra-
ture. This choice of assignment combines particles together that are traveling in the
same direction, attempting to group the common decay products of each particle S;
together. Mg and R are defined as before, except using the momenta of the two

mega-jets to construct the variables.

As an example, we consider a more complicated decay topology, shown in fig-
ure 9.6. In this scenario, the particles S and S, have the same mass (Mg), as do x;
and o (M, ), except now one or both of the particles S; undergoes a two-body decay
to a visible particle, @;;2, and another particle, G;, with mass Mg = Mg(1—0). The
particle G; then decays to another visible particle, @;, and ;. Numerically integrating
over all the decay angles in this scenario (using flat matrix elements) with vy, = 1,

and requiring R > 0.4, we derive the distributions for Mg, shown in figure 9.7, where
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Figure 9.6: Two massive particles, 5;, are produced in a pp collision. S; can decay
directly to a visible SM particles, @);, and a weakly interacting particle, x;, as illus-
trated for the decay of S,. Alternatively, S; can decay directly to an intermediate
heavy particle GG; and a visible SM particles, Q; 12, with G; subsequently decaying to
a visible particle @); and a weakly interacting particle, y;, as illustrated for the decay
of Sl.

we have assumed either one or both of the particles S; decays through an interme-

diate GG;. We find that, in both of these cases, the resulting Mg distribution peaks

at Ma = M%\;SME, regardless of the value of ¢ (for the values considered here) and
irrespective of whether all of the visible decay products resulting from a particular S;
are assigned to the same mega-jet. Even in more complicated cases, the variable Mg
is able to resolve the characteristic scale of the parent particle and weakly interacting

particle mass splitting.
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Figure 9.7: Distribution of M when one (left) or both (right) of the particles S;
decays to an intermediate particle G; with mass Mg = Mg(1 —§), for different values
of 9. Distributions are normalized such that the maximum value is equal to 1

The variables Mz and R are well suited for searching for a general class of signals,
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including variations that violate the symmetries used to derive them. Mg peaks at the
characteristic scale of events, reflecting the mass splitting between the new massive
particles initially produced and the weakly interacting particles they decay to. R
can be used in conjunction with Mg, suppressing backgrounds at this characteristic
scale using the transverse shape of events, even in the presence of detector mis-

measurements and other experimentally difficult effects.

9.2 Razor Phenomenology and Mg Scaling

In the canonical approach to searching for SUSY experimenters look for an excess of
events with large missing transverse energy indicating the presence of escaping weakly
interacting particles. The challenge is that the tails of the MET distribution are both
difficult to model and difficult to clean a priori from spurious instrumental effects. In
Section 9.1 we introduce a new approach to searching for SUSY phenomena using the
razor kinematic variables, Mz and R, designed to compensate for these difficulties.
Like MET, the variable My is sensitive to the characteristic mass scale of new physics
events. When used in conjunction with R, background events events with My values
which are not reflective of their true scale can be suppressed. In order to understand
the phenomenology of the razor variables in signal and SM background events we
consider a collection of data and simulated events corresponding to the search to
the 2010 CMS search for SUSY described in section 9.3. The details of how these
events are selected in data or simulated, how physics objects are reconstructed and
the selection applied are explained in section 9.4.

We first consider simulated SM background events with jets and MET final states.
One of the most The Mp distribution for some of the largest backgrounds to SUSY
searches are shown in figure 9.8. For each of these backgrounds, the Mg distribution
peaks at its respective scale. QCD multijet events, with an intrinsic scale of order
Agcep, peak at the minimum scale set by the jet pr requirements applied to the
objects used to calculate My. tt+jets and Z(vv)+jets events, which can both have
MET resulting from neutrinos in the event (from W decays for tt) peak at scales set by
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the top and Z masses, respectively. Without a requirement on R, the QCD multijet
yield is larger than the other backgrounds (and potential signals) by several orders of
magnitude, even at large values of Mg. As described qualitatively in section 9.1.3, an
increasingly tight requirement on R suppresses backgrounds with Mp values larger
than the true scale of the process. This effect is clear in figure 9.8; with tighter cuts
on R the tail of the Mg distribution for these backgrounds is exponentially reduced,
falling increasingly steeper. With a moderate cut on R the QCD multijet background
is now the smallest background with My above a few hundred GeV by at least several
orders of magnitude. The cuts on R reduce the tails of all the backgrounds in Mg, but
significantly more so for backgrounds without neutrinos resulting from heavy boson
decays. Backgrounds with high transverse momentum weakly interacting particles,
like the signals we are searching for, can have large momentum imbalances in the
transverse events plane, yielding naturally large values of R in events with Mg near

the true scale of the process.
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Figure 9.8: Mp distribution for simulated event samples, for different cuts on the
razor, R. (Left) QCD multijet events. (Center) tt+jets events. (Right) Z(vv)+jets
events.

The signal events we are searching for are expected to exhibit the same behavior in
the variables My and R as the SM backgrounds, but at a new, higher scale. Here, we
consider two benchmark SUSY scenarios, LM1 and LM5, which are parameter points
in the mSUGRA class of models and defined in section B.1. The Mg distribution,
as a function of R requirement, for LM1 and LM5 events are shown in figure 9.9
and 9.10, respectively. Also included in those figures are the sparticle mass spectra

for the two models. The signal models’ events are composed primarily of strong
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production of pairs of squarks or gluinos, which subsequently decay directly or through
cascades down the sparticle mass spectrum to the LSP, which is weakly interacting and
escapes detection. The correspondence between the behavior of My and these spectra
is clear, with pronounced peaks corresponding to the squark/gluino and LSP mass
splittings. With increasing cuts on R the mass peak remains largely unchanged while,
like the backgrounds considered in figure 9.8, the right-hand tail of the distribution

falls increasingly quickly.
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Figure 9.9: (Left) the Mp distribution after different R selections for the LMI1
mSUGRA benchmark model. (Right) the superpartner spectra for the corresponding
model. The prominent Mpz peak corresponding to strong pair-production of squarks
and gluinos with masses ~600 GeV decaying to 100 GeV LSPs. The peak position
indicates the characteristic scale of this mass splitting.

A search for evidence of new physics using the razor variables can be summarized
most succinctly by considering the two-dimensional Mg vs. R razor plane and where
the events from each process are expected to appear, shown in figure 9.11. SUSY
events appear at larger values of My due to the large mass splittings in the particles
produced while the SM backgrounds peak at their own, lower, mass scales. The pair of
weakly interacting particles appearing in the R-parity conserving SUSY events leads
to a transverse momentum imbalance and larger values of R, relative to backgrounds.

Identifying a region of phase space enriched in potential signal events and a small

amount of background is straightforward in terms of the razor variables. The following
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Figure 9.10: (Left) the Mg distribution after different R selections for the LM5
mSUGRA benchmark model. (Right) the superpartner spectra for the corresponding
model. The prominent My peak corresponding to strong pair production of squarks
and gluinos with masses ~ 850 GeV decaying to 150 GeV LSPs. The peak position
indicates the characteristic scale of this mass splitting. A smaller Mg peak appears
at a lower value from events with pair production of charginos and second mass
eigenstate neutralinos.

section describes an approach to predicting SM backgrounds at large Mg/R in the

razor plane using control measurements in the low Mg/R region.

9.2.1 Mg Scaling

The My, distribution for simulated QCD multijet events, shown in figure 9.8 and 9.11
demonstrates a dramatic dependence on the value of the R requirement, with the slope
of the Mp tail becoming steeper with increasing R cut. To confirm this predicted
behavior in data, we select a QCD multijet control sample using prescaled jet triggers
requiring at least two jets with an average uncorrected pr > 15 GeV. Because of the
low jet threshold, the QCD multijet background dominates this sample for low Mg,
allowing us to study the Mg shape dependence on R thresholds.

The Mp, distributions for events satisfying the QCD control selection, for different
values of the R threshold, are shown in figure 9.24 (left). We find that the Mg
distribution is exponentially falling, after a turn-on at low Mg resulting from the pr

threshold requirement on the jets entering the Mg calculation. This turn-on can be
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Figure 9.11: The razor plane: My versus R simulated event yields for L = 10 pb™*.
Shown are Monte Carlo simulated samples: QCD multijets, all simulated backgrounds
combined, W+jets, Z+jets, Z — viv+jets, t+X, di-boson, CMS SUSY benchmark
models LM1 and LM5, respectively and as labeled. Yields correspond to the baseline

HAD box selection described in section 9.4.

modeled as an asymmetric Gaussian, while the tail is well described by an exponential

function. We perform a likelihood based fit on the Mg distribution for different R

thresholds, modeling it with the function

(z—p)?

fl(l') = Ngause_ 20%
(w—p)?
F@) =9 folz) = Nwe 3
f3(x) = Nexpe™

<,

ve(ut) . (9.19)

x>t

where the parameters Ny, and ¢ follow from the others, which are floated in the fits,
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and the continuity conditions

L) = fs(t),  ft) = f5(t). (9.20)
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Figure 9.12: (Left) Mg distributions for different values of the R threshold for data
events in the QCD control box. Fits of the My distribution to an exponential function
and an asymmetric Gaussian at low Mg, are shown as dotted black curves . (Right)
The exponential slope S from fits to the Mg distribution, as a function of the square
of the R threshold for data events in the QCD control box.

The dependence of the exponential slope parameter, S, on the R threshold is
shown in figure 9.24 (right). We observe that the slope parameter, indicating how
quickly the tail of the My distribution falls, has a linear dependence with the square
of the R threshold requirement, such that

S =a+b- (R threshold)” . (9.21)

The R threshold shapes the Mg distribution in a simple, and therefore predictable,
way. Adherence to this My scaling implies that with knowledge of the parameters a

and b from equation (9.21) we can predict the the shape of the Mg distribution at
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large R thresholds.

The qualitative similarities between the shapes of the different SM background in
the razor plane, illustrated in figure 9.11 is indicative of the fact that, at values of
My, past their intrinsic mass scale and at sufficiently high R threshold, each of the
different SM backgrounds exhibit this same My scaling, albeit with different values
of the parameters a and b. Apart from QCD multijet backgrounds, which we see
populate the low Mg/ R region of the razor plane, the other backgrounds are processes
with energetic neutrinos and muons from massive vector boson decays (including W's

from top decays).

9.2.2 The Razor Box Concept

In some sense, the canonical R-parity conserving SUSY signature are events with
jets and MET. Strong production of new sparticles, if kinematically accessible, will
dominant over electroweak production at a hadron collider and the produced squarks
and gluinos will decay into jets and escaping LSPs. A search for these events could
proceed by vetoing the presence of reconstructed leptons but a peculiarity of the SM
is that a large portion of the background events would still have leptons in them. The
reason is that, at high R and Mg, most of the background made up of events with
W (lv) decays present, with high pr neutrinos resulting in large values of R. The
remaining background events also involve heavy vector bosons, through Z(vv)+jets
production. Conversely, squark and gluon decays could also result in lepton final
states, perhaps also through intermediate W and Z decays.

By classifying events according to their lepton content, in different bozes, we can
isolate background processes like W (¢v)+jets and use them to make inferences about
other kinematically similar background processes, like Z(vv)+jets events. Addition-
ally, we can search for signal events in these different final state boxes, benefitting
from this classification for signals with an abundance of leptons. The largest back-
ground appearing in each of the final states considered in the razor SUSY search is

events with on-shell W bosons which decay leptonically W — fv. We recall that the
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razor variables My and R are calculated using the momentum of two event mega-jets
which are constructed from all of the objects recorded in the event. This means that,
in order to result in at least two final state objects that can seed these mega-jets,
W (lv) decays must be accompanied by other final state objects, such as associated
production jets or other top decay products in top+X events. In the former, the
yields of W+n jet events falls exponentially with increasing n (see Chapter 6 for
more information about Berends-Giele scaling), with a factor of 5-10 less events for
each additional reconstructed jet (depending on pr threshold). Whether the lepton
from the W decay is included among the objects making mega-jets dictates whether
this background is composed of mostly W (fv)+1 jet or W (lr)+2 jet events. The
value of R calculated in these events will depend largely on the kinematics of the
neutrinos, and hence on the W themselves, as will My if decay leptons are included
in its calculation.

In the SUSY search described in section 9.3 we consider three different final states,
or boxes, based on the presence or absence of electrons and muons: the ELE, MU
and HAD boxes, respectively. The SM backgrounds appearing in each of these boxes
can generally be thought of as corresponding to the two different types of W decay
events described above where, in the HAD box in particular, events of both qualita-
tive types can appear. In order to understand how these two different background
contributions behave in our Mg scaling model we consider W ({v) events with two

different kinematic views of the decay leptons:

e The lepton (muon or electron) participates with its energy and momentum in
the mega-jet and Mpg reconstruction. This is the default approach used in the
SUSY search and corresponds to the MU and ELE boxes for single muon and

single electron events, respectively.

e The lepton is treated as “invisible” both in the mega-jet, Mr and R recon-
struction. This treatment corresponds to the MU* and ELE* boxes for single
muon and single electron events, respectively. In this case, all of the W decay

products are effectively weakly interacting, meaning these events will behave
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kinematically like Z(vv)+jets events. This correspondence is exploited in the

HAD box background prediction.

In the following, we describe the My scaling behavior for each of the SM back-
grounds appearing in the ELE, MU, ELE* and MU* boxes, and how they are related
to similar backgrounds in the HAD box, using simulated events. These scaling rela-

tions and correspondences between final states form the basis for the strategy of the

CMS razor SUSY search.

9.2.3 MU* and ELE* Boxes: Leptons+Jets Processes with
the

Lepton Treated as Invisible

Some of the largest backgrounds in the HAD box are processes with a heavy vec-
tor boson’s transverse momentum escaping the detector, such as Z(vv)+jets and
W (uv)+jets. To derive control samples and study the behavior of kinematically sim-
ilar processes with respect to the variables R and Mpg, we implement a lepton box
selection in which we treat the identified leptons as “invisible,” kinematically mim-
icking the presence of an additional neutrino; we denote these selections the MU* and
ELE* Boxes for muons and electrons, respectively.

By treating leptons as invisible in W (¢v)+jets events we can create a source of
kinematically similar events to Z(vv)+jets, one of the largest backgrounds in the
hadronic final state. Technically, this is accomplished in reconstruction through two
different approaches for electrons and muons. In the case a muon is identified satis-
fying the muon box criteria, it is assumed that the muon did not leave a significant
calorimetric deposit, such that the reconstructed jet collection is not affected by its
presence. In the calculation of the MET the momentum from the muon is ignored,
effectively treating it as an escaping neutrino. For electrons, the treatment of the
MET reconstruction is the same, ignoring the electron momentum in its calculation.
If a reconstructed jet is found to match the direction of the electron three-momentum

within 0.3 in \/An? + A¢? it is removed from the collection of objects used in the cal-
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culation of Mgk and the mega-jets, effectively removing the electron energy footprint

from among the reconstructed particles.
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Figure 9.13: (Left) Mp distributions for different values of the cut on R for simulated
W (uv)+jets events satisfying the MU* Box selection. Fits to the exponential part
of the Mg distribution are shown as dotted black lines. (Right) Value of the expo-
nential slope S from fits to the My distribution, as a function of R cut for simulated
W (uv)+jets events satisfying the MU* Box selection.

The largest contributor to yields in the single lepton MU* and ELE* boxes is
W (lv)+jets. Since the lepton does not participate in the construction of the hemi-
spheres, at least two additional high-pr objects must be present in the event, resulting
in the selection of events with W bosons produced in association with two or more
jets and MET from the recoiling W. The Mg distribution for simulated W (uv)+jets
events, for different R cuts, is shown in figure 9.13 (left).

For Mp values above a characteristic scale (determined by the minimum jet pp
requirement and the minimum Q2 for the partonic subprocess), the Mg distribution
falls exponentially. The value of the exponential slope S that describes this exponen-
tial behavior exhibits Mg scaling, as was the case for QCD multijet events, illustrated
in figure 9.13 (right).

The analogous figures for W (ev)+jets events are shown in figure 9.14. We observe

both qualitatively and quantitatively the same behavior in the Mg distribution as a



179
function of R. With the lepton ignored in the calculation of the kinematic variables
R and Mg, the W (uv) and W (ev) processes are kinematically identical as expected,

and exhibit the same Mg scaling behavior.
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Figure 9.14: (Left) Mg distributions for different values of the cut on R for simulated
W (ev)+jets events satisfying the ELE* Box selection. Fits to the exponential part
of the Mg distribution are shown as dotted black lines. (Right) Value of the expo-
nential slope S from fits to the My distribution, as a function of R cut for simulated
W (ev)+jets events satisfying the ELE* Box selection.

The signature of a heavy vector boson decaying into two neutrino-like objects
also reproduces the kinematic phase-space of Z(vv)+jets events contributing to the
background of the HAD box. The Mpg distribution for Z(vv)+jets events selected in
the HAD box is shown in figure 9.15 (Left). As expected, these events behave in a
nearly identical way to the W (¢v)+jets events selected in the MU* and ELE* boxes.
These similarities allow us to use the MU* and ELE* boxes to infer the shape of
the My distribution and relative efficiency with respect to the R cuts for Z(vv)+jets
events.

Apart from W (¢v)+jets the other large background in the MU* and ELE* boxes
is tt+jets production with at least one W boson decaying leptonically. Kinematically,
these events events are very similar to the previously discussed processes, in that they

include a leptonically decaying W recoiling against jets. The Mg distributions for ¢
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Figure 9.15: (Left) Mp distributions for different values of the cut on R for simulated
Z(vv)+jets events satisfying the HAD Box selection. Fits to the exponential part of
the Mp distribution are shown as dotted colored lines. (Right) Value of the expo-
nential slope S from fits to the My distribution, as a function of R cut for simulated
W (pv)+jets events satisfying the MU* Box selection and for Z(vv)+jets events that
satisfy the HAD Box selection.

events with a lepton satisfying the MU* and ELE* Box requirements are shown in
figure 9.16 and 9.17, respectively. As was the case for W ({v)+jets events, the tt Mg
distribution falls exponentially once Mg exceeds the relevant scale for the process,
with the slope of the exponential fall scaling with R2. The primary difference between
W and tt events is the difference in the process’ scale. For example, if we consider
tt events where both W’s decay to leptons which are not observed in the detector
then kinematically these events are identical to the SUSY-motivated events which
we are searching for. In this case, the Ws play a role analogous to the escaping
neutralinos in the canonical SUSY di-jet final state. Similarly, the two reconstructed
b-jets are not constrained to be back to back in the transverse plane (as is the case for
jets coming from squark decays for example). Hence, before falling off exponentially
these tt events peak at a scale set by the top and W masses, analogous to the peaking

behavior of signal events.

Despite the differences in the intrinsic scale between W (¢v)+jets and ti+jets pro-
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Figure 9.16: (Left) My distributions for different values of the cut on R for simulated
tt)+jets events satisfying the MU* Box selection. Fits to the exponential part of the
My, distribution are shown as dotted black lines. (Right) Value of the exponential
slope S from fits to the My distribution, as a function of R cut for simulated tt+jets
events satisfying the MU* Box selection.
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Figure 9.17: ELE* Box selection and treatment of leptons. (Left) Mpg distributions
for different values of the cut on R for simulated ti+jets events satisfying the HAD
Box selection. Fits to the exponential part of the Mpg distribution are shown as
dotted colored lines. (Right) Value of the exponential slope S from fits to the Mg
distribution, as a function of R cut for simulated tf+jets events satisfying the MU*
Box selection.
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cesses, we observe that their parameters b describing the R? scaling behavior are
nearly identical. Comparing the Mz exponential slope parameters for t{+jets events
with those for W (¢v)+jets in the MU* and ELE* Boxes, for example, we see that the
largest difference in the R? scaling behavior of these slopes is in the parameter a. This

is the result of the W’s from top decays having some intrinsic transverse momenta

on the order of (M?

2 «“ O
iop — Miiy) /2M,, compared to the “intrinsic” transverse momenta

of the W in W (uv) events being smaller and resulting largely from the minimum jet
pr requirements in the mega-jet calculation. This difference in intrinsic W pp shifts
the ME distributions and R distributions relative to each other, acting as an effective
“R-offset” which results in the ¢t slope being systematically steeper for W (uv)+jets
events, as indicated by the systematically larger value of a. Despite this difference,
the two processes have parameters b that are nearly identical.

The kinematic similarities between the previously discussed processes indicate
that any differences between simulated events and data will affect each of these pro-
cesses the same way in the context of the variables R and Mpk. With insufficient
integrated luminosity to resolve the R? scaling behavior of ¢ and Z events selected
in di-lepton boxes we instead infer the shapes of these backgrounds by directly mea-
suring the R? scaling parameters for W ({v)+jets events in data and deriving relative
data/simulation slope correction factors to apply to the shapes of the other kinemat-
ically similar backgrounds.

The values of the R? scaling slope parameters measured in simulated events for

processes contributing to the MU* and ELE* boxes are summarized in Table 9.1.

Process / Box a b
W () +jets / p* Box || (-95 £ 1) x 107 | (-307 £ 9) x 102
W (ev)+jets / e* Box ((92+ 1) x 107 | (-282 £ 9) x 104
tt / p* Box (-614 + 5) x 107° | (-337 £ 5) x 10~*
it / ¢ Box (1603 £ 5) x 107 | (-326 £ 5) x 10~
| Z(vv)+jets / HAD Box || (-926+ 8) x 10~ [ (-289 +7) x 10~* |

Table 9.1: Values of parameters describing the My evolution with R? for simulated
events of different processes selected with the MU* Box, ELE* Box and HAD Box re-
quirements. For the lepton boxes, leptons are treated as neutrinos, better reproducing
the HAD box kinematic configuration of Z(vv)+jets.
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9.2.4 MU and ELE Boxes: Leptons+Jets Processes with the

Lepton Treated as Visible

As mentioned earlier, one of the largest backgrounds in the HAD box is W ({v)+jets
events. These events, with respect to R and Mg, are of two qualitatively different
types. One component is the one discussed in the previous section; namely, W ({v)
produced in association with two or more jets, with the charged lepton from the W
decay contributing minimally or not at all to the calculation of R and Mpg. Here, the
missing transverse momentum is essentially the I transverse momentum.

The other W (fv)+jets background component to the HAD box results from the
lepton giving a nontrivial contribution to the calculation of the mega-jets and R/Mpg.
Since the collection of objects used to calculate R/Mp is based on calorimeter deposi-
tions, this occurs when the W decays to an electron, or a 7 which subsequently decays
either hadronically or to an electron. In each of these cases, part of the W decay is
reconstructed as a jet and contributes to the mega-jets going into the calculation of
Mpk.

In order to isolate a control sample of events with phase-space kinematically sim-
ilar to this “visible-lepton” background in the HAD box we implement a lepton box
selection in which we treat the identified leptons as “visible,” kinematically mimick-
ing this background; we denote these selections the MU and ELE Boxes for muons
and electrons, respectively. In this treatment, the identified lepton momentum con-
tributes to the calculation of My or R and participates in the construction of the
mega-jets. This implies two technically different procedures for reconstructed muons
and electrons.

In the case a muon is identified satisfying the muon box criteria, it is assumed that
the muon did not leave a significant calorimetric deposit, such that the reconstructed
jet collection is not affected by its presence. Given this consideration, we include the
muon in the list of objects used in the construction of the mega-jets without concern
of redundancy in the jet collection. For electrons, if a reconstructed jet is found

to match the direction of the electron three-momentum within 0.3 in /An? + A¢?
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it is removed from the collection of objects used in the calculation of Mgz and the
mega-jets and replaced by the reconstructed electron object. This is done in order to
prevent mis-calibration of electrons when they are included in the jets collection and
calibrated as such.

The backgrounds in the single lepton ELE and MU Boxes are essentially the same
processes that appeared in the ELE* and MU* Boxes, with W ({r)+jets being the
largest. Since the lepton is included in the mega-jet and Mpg reconstruction, this
background is predominantly composed of W bosons produced in association with at
least one hadronic jet. This results in the W (fv) yields in the ELE and MU Boxes
being larger relative to those in the ELE* and MU* Boxes, respectively for smaller
values of Mpg. At the same time, this also implies that the observed MET in the
event will result predominantly from the escaping neutrino only, rather than both of
the W decay products. Since the neutrino is the primary source of MET, and the
lepton comes from the same mother particle, we observe two different components to
W (fv)+jets MU and ELE Boxes which can be understood as follows:

In one case, the decay lepton is sufficiently hard such that one of the mega-jets
contains a large contribution from this lepton. Here, increased lepton momentum will
roughly translate into increased Mg. Simultaneously, the neutrino is coming from the
same W decay, so a harder lepton, on average, means a softer neutrino and a smaller
value of R. This direct anti-correlation between the two particles results in component
with a more steeply falling My distribution relative to the W (¢v)+jets contribution
to the MU* and ELE* boxes which is predominantly W41 jet production. We denote
this the 1% component of W ({v)+jets in the MU and ELE boxes.

In the second case, there are at least two jets recoiling against the W boson. Here,
these two other jets are sufficient for forming two mega-jets, and the lepton needs
only have a transverse momentum exceeding the lepton box threshold requirement
(ph > 15 GeV/c) and does not need to participate significantly in the construction of
the mega-jets for the event to yield a large value of Mpg. This can be achieved even
if the lepton is anti-aligned with the direction of the W’s transverse boost, assuming

that this boost is sufficiently large (which is precisely the phase space of interest in the
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high R/Mpg plane). Hence, for this 24 component of W (¢v)+jets there is no tug-of-
war between the neutrino and lepton resulting from the W decay, since the neutrino
can be directly aligned with the boosted W and the resulting MET will be roughly
proportional to the W pp, with a small offset correction due to the momentum of the
lepton which will detract from the MET.

The Mpg distribution for simulated W (uv)+jets and W (ev)+jets events selected
in the MU and ELE boxes are shown in figure 9.18 and 9.19 (top left), respectively.
We model the distributions with two different exponential components, such that
the exponential part, f3(x), of the background shape function of equation (9.19) is
replaced by

f3(2) = Nexp [€77 + fe77] . (9.22)

For simulated events we fit the Mg distributions using this function, floating each
of the free parameters independently. The results of these fits for W (uv)-+jets and
W (ev)+jets events are shown in figure 9.18 and 9.19. We observe that the fits identify
two distinct contributions to the My distribution, and that both contributions feature
exponentially falling behavior with slopes that follow the R? scaling seen in the MU*
and ELE* boxes. Comparing the MU and ELE Box results, we also see that this
fit identifies the same two components in the muon and electron cases, in that the
exponential slope parameters are inter-consistent.

This same two-component behavior is present in W (fr)+jets processes contribut-
ing to the hadronic box when the lepton contributes to the calculation of Mz and R,
i.e., when the W decays to an electron which does not satisfy the electron ID criteria
but makes a significant contribution to a reconstructed calorimeter jet or similarly if
the W decays to a 7 which hadronizes and appears as a jet. In figure 9.20 and 9.21 the
results from 2-component exponential fits to these hadronic box samples are shown.
We observe that these fits identify the same two components in My as in the MU and
ELE boxes for W ({v)+jets, with inter-consistent values of the R? exponential slope
scaling parameters.

A clear picture emerges as to the slopes parameters of the two components for
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Figure 9.18: W (uv)+jets in the MU Box. (Top left) Mg distribution as a function of
R. Two-component fits are shown as dotted black lines. (Top right) The parameter
fMC describing the relative amplitude of the second W +jets component to the first,
as returned from the fit to simulated events. (Bottom left) Fitted values of the 1%
component slope parameter as a function of R%. (Bottom right) Fitted values of the
1%t component slope parameter as a function of R2.
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Figure 9.19: W (ev)+jets in the ELE Box. (Top left) Mg distribution as a function of
R. (Top right) The parameter fM¢ describing the relative amplitude of the second
W+jets component to the first, as returned from the fit to simulated. (Bottom) Fits
of the two slope parameters as a function of R?
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Figure 9.20: W (ev)+jets in the HAD Box. (Top left) Mg distribution as a function
of R. (Top right) The parameter f*¢ describing the relative amplitude of the second
W+jets component to the first, as returned from the fit to simulated events. (Bottom)
Fits of the two slope parameters as a function of R2.
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Figure 9.21: W (rv)+jets in the HAD Box. (Top left) My distribution as a function
of R. (Top right) The parameter f*¢ describing the relative amplitude of the second
W+jets component to the first, as returned from the fit to simulated events. (Bottom)
Fits of the two slope parameters as a function of R2.
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these W ({v) processes. The f factor depends largely on the rate of W+1 jet to W +
> 2 jet events in the high R/Mpg region, and as a result is sensitive to the modeling
of the jet energy scale near the jet pr threshold of 30 GeV. Rather than assuming a
value for this parameter from data, we float it in the lower Mg side-band of each of
the signal boxes.

In the kinematic region probed by the SUSY search the two-component behavior
in My does not appear in the other large background processes in the MU, ELE and
HAD boxes. For each background process, we perform binned maximum likelihood
fits to the My distributions, for different values of the R cut, fitting the distributions
with a single exponential component and then independently with a double expo-
nential function. We take the ratio of the likelihoods from the two fits and asses
the significance of the second exponential component. We find that only the four
processes discussed above have significant second exponential components (where we
assume that the likelihood ratio of these fits is distributed as a x?(1) distribution).
For example, The Mp distributions for simulated ¢t+jets and W (uv)+jets events in
the MU and HAD Boxes shown in figure 9.22 indicate that these distributions are well
described by a single exponential function. The reason for this can be understood by
looking at the slope parameters which describe the R? scaling of each of these pro-
cesses. Comparing the values of the b slope parameters in these samples with those
of the second component from W (¢v)+jets events we observe good agreement. The
reason is that these processes only have a significant 2°¢ W ({v)-+jets component-like
contribution. For example, in the case of W (uvr)+jets events selected in the HAD
box, the W decay muon cannot contribute significantly to the mega-jet construction
since it does not leave a significant calorimetric deposit, and hence cannot result in a
calorimetric jet. This implies that the W boson must be produced in association with
at least two jets in order to form two mega-jets, resulting in a kinematic configuration
equivalent to events constituting the 2°¢ W (fv)+jets component. Similarly, for semi-
and fully-leptonic tf+jets events, the lepton from the W decay does not need to con-
tribute to the mega-jet construction since there are at least two other b-jets, decay

products of the second W and any additional initial or final state radiation which
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can form two mega-jets. Hence, these ¢t events appear kinematically, with respect to
the variables R and Mg, as a W boson, whose decay products escape the detector,
recoiling off of at least two jets.

The exponential slope parameters of the background processes to the MU, ELE
and HAD Boxes measured from simulated events are summarized in Table 9.2. The
kinematic similarities between these backgrounds indicate that any differences be-
tween simulated events and data will affect each of these processes the same way in
the context of the variables R and Mpg. With insufficient integrated luminosity to
resolve the R? scaling behavior of t¢ and events selected in di-lepton boxes we choose
instead to infer the shapes of these backgrounds by directly measuring the R? scaling
parameters for W (¢v)+jets events in data and deriving data/MC slope correction

factors to apply to the shapes of the other backgrounds.

Process / Box

a

b

W (uv)+jets / u Box (1%%)
W (uv)+iets / p Box (2°9)

(-126 £ 3) x 10
(-58 & 6) x 10~

(171 £3) x 109
(-52 + 5) x 1073

(
W(ev)+jets / e Box (1)
W (ev)+jets / e Box (27)

(-124 £ 3) x 10
(-67 4 6) x 10~

(-189 £ 4) x 103
(-52 4 5) x 1073

W (ev)+jets / HAD Box (1%)
W (ev)+jets / HAD Box (2"

(-131 £ 3) x 10
(-48 + 5) x 10~

(-119 £ 3) x 103
(-52 4 4) x 1073

)
W (rv)+jets / HAD Box (1%)
W (rv)+jets / HAD Box (2"4)

(-132 £ 3) x 10
(-60 + 3) x 10~

(-125 £ 3) x 103
(-43 4 3) x 1073

W (pv)+jets / HAD Box

(-103 £ 1) x 10

(43 +1)x 1073

it / i Box (733 £9) x 107 | (-450 £ 10) x 102

Single top / u Box (-97 £2) x 107* | (-670 + 20) x 10~*

it / e Box (721 £ 8) x 105 | (-430 £ 10) x 10~

Single top / e Box (-101 £+ 2) x 107* | (-620 + 20) x 10~*

#(u + X) / HAD Box (1663 £8) x 107 | (459 £ 9) x 10

tt(no W — pv) / HAD Box | (-735 £5) x 107° | (-398 £ 6) x 10~*
(_

Single top / HAD Box

(-896 + 9) x 107

550 + 9) x 10

Table 9.2: Values of parameters describing the My evolution with R? for simulated
events of different processes selected with the MU Box, ELE Box and HAD BOX
requirements. Two sets of slope parameters are listed for processes with a significant
second component.
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Figure 9.22: (Left) Mp distributions for different values of the cut on R for simulated
tt(u + X) events satisfying the HAD Box selection. (Center) My distributions for
different values of the cut on R for simulated tf events satisfying the MU Box selection.
Fits to the exponential part of the Mg distribution are shown as dotted black lines.
(Right) Value of the exponential slope S from fits to the My distribution, as a function
of R cut for simulated W (uv)+jets and ¢t events satisfying different selections.
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9.3 The 35 pb~! CMS Razor Search for SUSY

Experimental limits from the Tevatron and LEP showed that superpartner particles,
if they exist, are significantly heavier than their Standard Model counterparts. Thus
proposed experimental searches for R-parity SUSY [164-168] at the LHC have focused
on a combination of two SUSY signatures: multiple energetic jets and/or leptons from
the decays of pair-produced superpartners, and large missing transverse energy from

the two lightest superpartners produced in those same decay chains.

p o

S1 X1

Sg X2

p Q2
Figure 9.23: General R-parity conserving SUSY LHC event signature. Two massive

sparticles, S;, are produced in a pp collision and each decay to a system of detectable
SM particles, @;, and a system of weakly interacting particles, ;.

Here, we present an inclusive search for SUSY based on the razor kinematic vari-
ables [169]. In this approach, all the reconstructed final state objects in each event
a grouped into two mega-jets, mimicking the the expected R-parity conserving sig-
nal topology of two pair-produced sparticles each decaying to a system of visible SM
particles and one or more stable, weakly interacting LSPs, illustrated in figure 9.23.
From the three momenta of these mega-jets we calculate, event by event, the razor

variables Mp and R, which are derived in section 9.1

— (16 7 [p2* |7 72|p."")?
Mp = 2\/<pf;1—p£2)2—<|ﬁ S-p )
MR = \/|M\<|5Tﬂ\+\ﬁTf2|2>—M~(ﬁTﬂ+ﬁTﬂ> 7 (9.23)
R = MQE/MR )

where p 7! and p’ 72 are the three momenta of the two mega-jets and M is the missing
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transverse energy. As described in section 9.2, the phenomenological properties of
these variables make them ideal for distinguishing between SM backgrounds and
SUSY collision events.

The variable My, is sensitive to the scale of events, such that for signal events of the
type shown in figure 9.23 it will resolve the mass splittings between the parent sparti-
cles S; and the masses of the weakly interacting systems of particles, x;. The variable
R is sensitive to the transverse imbalance of events, and will suppress topologies that
have less than two weakly interacting particles in the final state. This is accomplished
without making strong assumptions about the missing transverse energy spectrum or
any details of the intermediate decay chains. If the difference between the masses of
new sparticles and those of the SM are resolvable, SUSY events will appear at larger
values of Mz and R than the vast majority of SM background events. Using the
phenomenological Mg scaling of these backgrounds, as described in section 9.2.1, we
can make measurements of these background shapes and yields at low Mg and R and
use this information to predict these same backgrounds in the high My and R razor
plane where we could observe excesses of signal events.

The strategy and execution of the 2010 CMS razor SUSY search, performed on
35 pb~! of pp collision data at /s = 7 TeV, can be summarized as follows:

1. Events are selected by triggers identifying events by the presence of high trans-
verse momentum calorimetric energy depositions or the presence of signals con-

sistent with leptons. This is described in section 9.4.1.

2. Jets and leptons are reconstructed and identified in these events, as described

in section 9.4.2.

3. The reconstructed objects in each event are combined into two mega-jets, which
are used to calculate the variables Mpr and R. Several baseline kinematic re-
quirements are applied to clean the event samples of mis-reconstructed events.

This procedure is described in section 9.4.3.

4. Events are assigned to boxes based on the presence or absence of a reconstructed
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lepton. This box partitioning scheme allows us to isolate individual background
processes based on final state particle content and kinematic phase space in
order to measure their shape and yield. The details of how each box is defined

and what measurements are made in each one are provided in section 9.5.

e ELE and MU Boxes: if there is a reconstructed electron or muon events
are assigned to the ELE or MU boxes, respectively. These selections, along
the razor variables, allow us to identify W (fv)+jets background control
regions where we can measure the shape and normalization of this back-
ground and use it to predict W, Z and top quark backgrounds in the high

Mpr/R signal regions in each of the boxes

e HAD Box: Events without leptons are assigned here, and must also sat-
isfy the Hp trigger signal selection trigger requirements. The backgrounds
populating this box include QCD multi-jets, Z(vv)+jets, W (Lv)+jets and
top events, some with charged leptons that did not satisfy the standard

CMS electron and muon selection.

e QCD control Boxes: For each of the ELE, MU and HAD boxes we also
define a QCD multi-jet control sample analogue with additional require-
ments designed to enhance this contribution. For the lepton final states,
we reverse the lepton identification requirements in order to get a multi-jet
enriched, and EWK background suppressed, sample of events with leptons.
In the hadronic final state, we use prescaled, low-threshold jet triggers to
select events in low Mg/R kinematic phase-space, where the relative pro-
duction cross sections ensure us a pure QCD multi-jet sample. The control

samples are used to predict the QCD multi-jet background contributions

to the ELE, MU and HAD boxes.

5. The R and Mg shape and normalization of various backgrounds are measured
in different box control regions. These measurements are used to predict the
SM backgrounds to the high R and Mp signal regions in the ELE, MU and
HAD boxes, as described in section 9.6.
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6. The observed yields in the ELE, MU and HAD box signal regions are compared
with the predicted yields and used to make inferences about the presence or
absence of SUSY events in these data samples. section 9.7 explains how these
search results are used to constrain the parameter space of hypothetical SUSY

models.

9.4 Event Selection and Reconstruction

Throughout this analysis, we use two different sources of collision event samples. The
first are events triggered and reconstructed during 2010 pp collision running of the
LHC using the CMS detector. The second are Monte Carlo (MC) events samples,
where event generators are used to simulate the particles produced in proton collisions,
propagate these particles through a representation of the CMS detector, digitize the
hypothetical signals these particles would leave in the detector and reconstruct the
event as if it were recorded in data taking. The different event samples used in this

analysis are described in section B.1.

9.4.1 Trigger Selection

Events are recorded by the CMS detector if they satisfy one or more online trigger
requirements. These triggers are based on fast, approximate reconstruction of the
event that mimics later reconstruction requirements that will be applied in identifying
jets and leptons. In the 2010 CMS razor search we employ triggers based on three
different types of physics object based in data:

e Muon triggers: Events with high-pr muons are selected and recorded online
using the Level-1 muon trigger and the high-level trigger (HLT'), which require
information from the muon chambers (both Level-1 and HLT) and the inner
tracker (just HLT). The HLT trigger paths used in this analysis consider HLT
muons in the || < 2.1 region with py thresholds varying according to which

instantaneous luminosity trigger menu was deployed during the run. The HLT
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paths used, HLT Mu9, HLT Mull and HLT Mulb, with HLT pgy thresholds of 9,
11 and 15 GeV/c, respectively, are all found to be fully efficient for muons

satisfying the offline identification and kinematic requirements.

Electron triggers: High-pr electrons are selected and recorded online using
the Level-1 electron trigger and the HLT trigger which require information from
the ECAL (with coarse granularity at Level-1 and the full granularity and pre-
cise energy calibration at the HLT). Depending on the HLT menu deployed
during running, various electron trigger paths are used to efficiently select elec-
tron events. At HLT an ECAL cluster with Er > 15 GeV is required for trigger
paths, HLT Photon15 Cleaned L1R. In higher luminosity running, we use the
path HLT Elel5 SW CaloEleId L1R, which has additional shape requirements
on the HLT ECAL cluster. Each of these triggers is determined to be fully
efficient with respect to the offline electron reconstruction and identification

requirements.

Jet triggers: Events with jets are selected and recorded online using the Level-
1 single jet trigger and the HLT di-jet trigger which require information from
ECAL and HCAL. The trigger HLT DiJetAvel5U corresponds to a requirement
of two jets with arithmetic Er average above 15 GeV. These HLT jet energies are
not corrected for non-unity calorimeter energy response. For high-luminosity

running, these triggers were pre-scaled.

HT triggers: The Hp trigger paths used to select signal events in the HAD
box are recorded online using the Level-1 single jet trigger and additional HLT
requirements based on calculations of Hy. HLT jets with uncorrected Ep > 20
GeV are included in the HLT Hp definition,

jets

H' =N "EL. . (9.24)

Depending on the run period, three different Hy threshold triggers were the low-
est threshold, un-pre-scaled trigger: HLT_HT100U, HLT _HT140U and HLT HT150U.
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section B.2 describes how the kinematic effects of these triggers are accounted

for in the analysis

9.4.2 Physics Object Reconstruction and Identification
9.4.2.1 Primary Vertex Reconstruction

Selected events are required to have a least one Primary Vertex (PV) reconstructed in
the event satisfying several conditions. The vertex must be constructed with at least
13 associated degrees of freedom (at least 14 tracks matched to this vertex) and must
be within a distance |Az| < 25 ¢cm from the beam spot along the beam axis. When
multiple PV are reconstructed in an event the one with highest associated ), ... pr

is used to project physics object from when calculating their momenta.

9.4.2.2 Muon Identification and Selection

CMS muon identification is based on a number of quality criteria resulting from
muon candidate reconstruction and is designed to suppress the rates of non-muons
resulting in mis-identification. More details about muon reconstruction can be found
in section 3.5.

For the typical range of transverse momenta explored in this analysis, the muon
momentum resolution is dominated by the inner tracker measurements. A good con-
sistency between tracker and muon detector measurements is essential to reduce the
contamination from muons produced in decays in flight of hadrons and from punch-
through. For the muons in this search, each muon must be identified by two different
algorithms, one that starts from the inner tracker information (“tracker muons”), and
another one that starts from the segments in the muon chambers (“global muons”).
A requirement of y? per degree of freedom of < 10 is imposed on a global fit contain-
ing tracker and muon hits. The presence of at least two levels of muon stations in
the measurement is required to ensures a sensible momentum estimate at the muon
trigger level and to further suppress remaining punch-through and sail-through can-

didates, since these are unable to penetrate deeply in the iron yoke of CMS. For a
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precise estimate of momentum and impact parameter, only tracks with more than 10
tracker hits and at least one hit in the pixel detector are used. Cosmic ray particles
are rejected by requiring a transverse impact parameter distance to the beam spot
position of less than 2 mm. Furthermore, the track must have at least one pixel de-
tector hit. Dedicated studies of muons in cosmic runs show that the high-py cosmic
contamination after these cuts is negligible in the present sample. More details and
studies on muon identification in CMS at /s = 7 TeV can be found in reference [170].

For the definition of the MU box in this search we require that the sum of the
transverse momentum of tracks in an isolation cone of 0.3 in AR = \/m
around the muon candidate track are less than 15% of the candidate momentum. In

addition to all of the above requirements, muons must have |n| < 2.1 and pr > 20

GeV/e.

9.4.2.3 Electron Identification and Selection

Electrons are identified in the CMS detector as clusters of ECAL energy deposits
matched to tracks from the silicon tracker. The reconstruction of electrons is described
in detail in section 4.3. In order to qualify as a reconstructed electron candidates must
satisfy a number of quality criteria based on the properties of its ECAL clusters, its
matched track and the inter-consistency of the energy and momentum measurements
of the two, respectively.

For electrons in this search, we require that candidates have an ECAL cluster
with Er > 20 GeV with |n| < 1.4442 for barrel (EB) clusters or 1.566 < |n| < 2.500
for endcap (EE) clusters. ECAL clusters are required to match tracks using an al-
gorithm [171] which accounts for possible energy loss due to Bremsstrahlung in the
tracker layers. Particles misidentified as electrons are suppressed by requiring the
track trajectory n and ¢, extrapolated to the face of the ECAL from the interaction
point, to matches the position of the ECAL cluster n and ¢. Additional misidenti-
fication is reduced by limiting the amount of HCAL energy measured in a cone of
AR < 0.15 around the ECAL cluster direction and by requiring a narrow ECAL

cluster width in 7. Misidentified particles, as well as real electrons arising from jet
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fragmentation, are suppressed by imposing isolation cuts: limits on the additional
sums of HCAL Er, ECAL Er, and track pr in a cone of AR < 0.3 around the elec-
tron candidate direction. Tracks and ECAL energy associated with the electron are
excluded from these sums. Limits range from 3% to 10% of the electron candidate

E7, depending on the subdetector and ECAL region.

9.4.2.4 Jet Identification and Selection and

Missing Transverse Energy Reconstruction

Jets are reconstructed from calorimeter towers which are composed of a 5 x 5 array
of ECAL crystals and a HCAL module. The energy depositions in these towers are
clustered into jets using the infrared and collinear-safe anti-kt jet algorithm [57] with
a cone size Reone = 0.5 in the (7 X ¢) space. More details about jet reconstruction in
CMS events can be found in section 5.2. The jets are corrected for noncompensating
calorimetric energy response using Monte Carlo derived corrections, and they are
required to have a pr > 30 GeV threshold and be within |n| < 3.0.

The missing transverse energy is calculated as the negative transverse vectorial
sum of all of the reconstructed particle flow (PF) candidates in the event. The PF
reconstruction algorithm is described in section 5.2. Effectively, this collection of PF
candidates accounts for all of the reconstructed energy and momentum in each of the
CMS subdetector systems.

In addition to jets clustered from calorimeter deposits, we also consider jets clus-
tered from tracks (track-jets) [172] and PF candidates (PF-jets). Intermediate results
using these alternative jet types provide useful cross-checks to the primary calorime-
ter jets in the analysis, in that they rely on measurements from different subdetectors

and have different calibrations.
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9.4.3 Kinematic Requirements and Mega-Jet Reconstruction

Each event is required to have at least two reconstructed objects (jets or leptons) in
order to create two mega-jets. If there are more than two reconstructed objects in
an event every partition of the objects into two non-empty groups is considered. A
mega-jet is formed from the objects assigned in its partition by summing their four

vectors,

Phis =Y Pk, (9.25)
ien
where the index n runs over the two mega-jet four vectors p},;, and the index g
indicates the objects’ four vectors p! which are assigned to mega-jet n. Out of all
the possible partitions of the reconstructed objects into two mega-jets the one which
minimizes the mega-jet masses, (p%,,)?, summed in quadrature is chosen, an algorithm
adopted from [173].

This choice of mega-jet construction algorithm implicitly maximizes the momenta
of the two mega-jets. On the other hand, the same choice leads to more balanced events
than other potential algorithms, in that the total momentum of the two mega-jets
pirs + i 1s also implicitly maximized. The net result is that alternative algorithms
could yield larger values of Mg with smaller values of R, on average. In practice, we
find the algorithm to be quite stable and effective at rejecting background with the
kinematic variables of interest.

When constructing mega-jets, one can choose whether to include reconstructed
leptons in the final state among the visible objects used to build the mega-jets; al-
ternatively, the leptons can be treated as invisible and removed from consideration
in the calculation of the kinematic variables (as if they were escaping weakly inter-
acting particles). For backgrounds like W (¢v)+jets, the former choice yields more
transversely balanced mega-jets, and lower values of R, due to the fact that, since

they come from the same decay, harder neutrinos (and hence larger MET) will also
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produce leptons. For this background, when leptons are treated as invisible, the MET
corresponds to the entire W transverse momentum, similar to the case of Z(vv)+jets
events.

In this analysis, electrons are treated as visible, and included in the mega-jet
calculation in the default ELE box treatment, while muons are treated as invisible for
the MU box. This choice was made to maintain consistency with the reconstruction
of the kinematic variables at the trigger level, which is based on calorimetric objects
that are not sensitive to MIP muons. While the background in muon final states can
be artificially less constrained by the kinematic variables with this choice, this allows
us to use W (uv)+jets events to study and constrain the shape of Z(vv)+jets events
in the HAD box.

The longitudinal boost velocity that relates the laboratory frame to the R frame

described in section 9.1.1, (g, is calculated from the mega-jets momentum, py;;, as

b P = 173ls] 926
Prygz — Puig

If Bgr < 1 the boost is well-defined, as is the variable Mg, and we can include the
event in the selected event sample. A fraction of events have mega-jets that lead
to ill-defined configurations with Sz > 1. In order to minimize the frequency of
ill-defined events, we calculate Sr for each possible pair of mega-jets when deciding
how to partition the objects in an event, considering only assignments that result in
Br < 1, if one exists. We further require that Sz < 0.99 in order to remove events for
which the variables used in the analysis would be singular, in particular rare QCD
multi-jet events that can have erroneous My values. The efficiency of this requirement

for typical signal events is close to 100%.
This is the entirety of the baseline selection for the analysis. The razor variables
Mpg and R are calculated from the mega-jet’s momentum, event by event, and the
analysis consists of making measurements of and putting additional requirements on

these kinematic variables.
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9.5 Control Regions and Boxes

9.5.1 Hadronic QCD Control Box

In section 9.2 we describe the phenomenological properties of the SM background in
terms of the razor variables, in particular Mg scaling. The tail of backgrounds’ Mg
distribution falls exponentially, with the slope of the decay set by the requirement on
R. The shape of the My distribution for the QCD mutlijet background is particularly
sensitive to this R requirement, changing more dramatically than other backgrounds.
This is because these events have no source of high transverse momentum weakly-
interacting particles that are isolated from the visible SM particles in the event, unlike
backgrounds with on-shell W and Z bosons. This means that at larger values of Mg
and R the rate of QCD mutlijet events is small relative to EWK and top backgrounds
while at low Mgz and R the mutlijet event yield dwarves the others by several orders
of magnitude. In order to measure the shape of this background in the razor plane,
which can be used to predict its contribution at large Mz and R, we must be able
to select events at low Mgk and R values with extremely high efficiency so that the
shapes are not kinematically biased. This is not possible with the signal Hp triggers
used to select events in the HAD box since the trigger requirement dramatically alters
the Mg distribution in in the interval of interest for isolating QCD mutlijet events
(see section B.2).

We define a hadronic QCD control box by applying the HAD box base-line selec-
tion (lepton veto) and requiring a low-threshold jet trigger, HLT_DiJetAvel5U. The
trigger requires at least two uncorrected jets with average pr > 15 GeV, a threshold
low enough such that it doesn’t bias the offline Mg distribution in the range required
for measuring the Mp scaling parameters for QCD mutlijet events. Given the high
prescale of this trigger and the expected signal rates, there is no contamination from
signal events in the QCD control box. In fact, in the Mg range considered for these
mutlijet shape measurements there is negligible contamination from any SM back-
ground process (EWK, top) other than QCD mutlijets, an observation discussed in

section B.8.
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With a pure sample of QCD mutlijet events without kinematic bias from trigger
requirements, we study the Mz shape of these events and measure its evolution as a
function of R requirement. The Mpg distributions for events selected in the hadronic
QCD control box, for different values of the R cut, are shown in figure 9.24 (left). We
observe that the Mg distribution, after an approximate Gaussian turn-on at low Mg
resulting from the py threshold requirement on jets entering the mega-jet calculation,
drops exponentially. The exponential slope, S, of the distribution scales linearly with
the square of the R requirement, the characteristic feature of the My scaling described

in section 9.2.1 and exhibited in figure 9.24 (right).
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Figure 9.24: (Left and Center) My distributions for different values of the cut on R
for events in data selected in the QCD control box. Fits to the exponential part of
the Mg distribution are shown as dotted black lines. (Right) Value of the exponential
slope S from fits to the Mg distribution, as a function of R cut.

In order better understand the Mpg scaling behavior appearing in QCD mutlijet
events we repeat the same set of measurements for events reconstructed with track-
jets and PF-jets. The results for these alternative jet types are shown in figure 9.25
and 9.26. We observe the same qualitative Mg scaling of the slopes S.

If we parameterize the R requirement dependence on the Mg exponential slope as
S =a+b- (R requirement)? (9.27)

we can then compare the quantitative features of the Mg scaling for QCD mutlijet
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Figure 9.25: (Left) My distributions (using track-jets) for different values of the cut on
R for events in data selected in the hadronic QCD control box. Fits to the exponential
part of the Mp distribution are shown as dotted black lines. (Right) Value of the
exponential slope S from fits to the track-jet My distribution, as a function of R cut.
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Figure 9.26: (Left) Mg distributions (using PF-jets) for different values of the cut on
R for events in data selected in the hadronic QCD control box. Fits to the exponential

part of the Mg distribution are shown as dotted black lines. (Right) Value of the
exponential slope S from fits to the track-jet Mg distribution, as a function of R cut.

events using different jet types. The values of the parameters a and b describing the
Mpg scaling of the slopes S for all jet types are summarized in Table 9.3.

Comparing the Mpg in these different jet types is interesting for a number of
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’ Jet Type H a \ b ‘
Calo Jets | (101l £ 9) x 10 ° | (381 £ 4) x 10 °
Track Jets | (-336 + 3) x 107* | (-306 + 4) x 1073

PF Jots | (187 £2) x 10 | (352 £ 5) x 10

Table 9.3: Measured values of the slope parameters a and b for different jet types in
the QCD control box.

reasons. The calorimeter jets which the razor SUSY search is based on are recon-
structed exclusively using the ECAL and HCAL while track-jets are clustered only
from tracks reconstructed in the inner detector. This means that the majority of sys-
tematic detector-related effects which could alter the My and R distributions should
be entirely different between these two jet types. Similarly, PF-jets provide a use-
ful comparison to calorimeter jets in that they include information from other sub-
detectors apart from the calorimeters and are also calibrated independently to have
unity energy response. This allows for meaningful quantitative comparisons between
the scaling parameters of the different jet types.

The relative values of the parameter a between jet types is understood as the
ratio of the relative physics object energy scales. Jet energy scale (JES) corrected
calorimeter and PF-jets are calibrated so that the modal energy response is equal
to the true jet energy in simulated events. Raw track-jets are made only of charged
tracks, which only carry about 60% of a jet’s momentum, on average, with large jet-
by-jet fluctuations. This means that the momentum response of track-jets, relative to
the true jet energy is only ~60% of that for PF-jets or calorimeter jets. Comparing

the a result of the PF and track-jets in the table above we measure

a(PF Jet) 187+ 2 H
= =(BH+1)x10 9.28
aftrack Jot) ~ 336£3 ) x 107, (9:28)
in agreement with the expectations based on the relative energy response of the two
jet types. Correspondingly, the value of the a parameters for calorimeter and PF-jets
are indistinguishable. Energy scale dependencies are absorbed in the value of a. The
differences in b among the types of jets result from variations in the implicit phase

space requirements placed on jets in order to be reconstructed. The pr thresholds
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applied in order for each type of jet to enter their respective mega-jet calculations are
chosen to correspond roughly to the same particle-level jets (30 GeV /c for calorimeter
and PF jets, 15 GeV/c for track jets). This results in the similarities of measured
values b for different jet types. Residual differences in b encapsulate the differences
in geometrical acceptance and position/momentum resolution of the sub-detectors
contributing to the different jet reconstruction schemes.

With the Mg scaling parameters a and b measured for QCD mutlijet background
event we can predict their My slope for large R values, where we would like to
search for SUSY events. When measuring the slope parameters a and b we fit the
Mpg exponential slopes, as a function of R requirement, as if they were statistically
independent measurements. This approach neglects the fact that the dataset used in
each fit is a small subset of the one with slightly looser R requirement. We study the
effect of neglecting these statistical correlations in the fitting procedure in section B.4
and conclude that it is a small effect, with a correspondingly small systematic error
added to background yield predictions which rely on the a and b parameters, described
in section 9.6.

Finally, the HAD QCD control sample is useful for monitoring the stability of
SM backgrounds’ Mg shape as a function of time and instantaneous luminosity. Sec-
tion B.7 discusses potential biases resulting from these effects and constrains them to

be negligible based on measurements in with this control sample.

9.5.2 ELE and MU QCD Control Boxes

The lepton identification requirements which define the ELE and MU boxes are opti-
mized to efficiently identify leptons coming from heavy boson decays while rejecting
leptons resulting from the hadronization and decay products of quarks and gluons
or mis-identified particles. These requirements heavily suppress the yields of QCD
multijet events in the lepton final state boxes. However, we cannot a priori conclude
that this multijet contribution to the SM background in our high Mz R signal regions
is negligible. In order to infer the Mz shape and scaling behavior of these lepton fi-
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nal state multijet events, we define lepton QCD control box requirements which can
isolate a pure sample of QCD multijet events in selected data which have trigger-ing
lepton candidates and kinematics similar to the backgrounds expected in the ELE
and MU boxes.

The ELE and MU QCD control boxes are defined by the same baseline require-
ments as the ELE and MU boxes, apart from the fact that the isolation requirements
on the leptons are inverted, resulting in a sample of multijet events with non-isolated
leptons. This is the same methodology used for the “anti-lepton” heavy flavor control
samples described in [174,175]).

The Mp distributions for data and simulated QCD multijet events satisfying the
ELE box selection are shown in figure 9.27. A comparison between the My shape for
simulated QCD multijet events in the ELE and ELE QCD control boxes demonstrates
that they are indistinguishable with the available simulated event statistics. We see
that the expected contribution of EWK and top backgrounds to the ELE QCD control

box sample is negligible relative to the QCD multijet yield. The Mg distribution falls

exponentially.
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Figure 9.27: (Left) Mp distribution for events selected in the ELE box for data with
QCD electron control selection and for simulated QCD events with default electron
selection and with inverted electron isolation selection. A cut of R > 0.1 is ap-
plied. (Right) Mp distribution for the ELE box QCD control selection for data and
simulation.

We measure the My scaling parameters for events selected in the MU and ELE
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QCD control boxes, with the Mg shape and slope fits shown in figure 9.28 and 9.29,
respectively. The fit parameters a and b which describe the My exponential slopes
in these lepton-enriched QCD multijet samples are summarized in Table 9.4 and are

used to constrain the contribution to the ELE and MU box event yields from this

background.
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Figure 9.28: (Left) My distributions for different values of the cut on R for events in
data satisfying the QCD muon control selection. Fits to the exponential part of the
Mp, distribution are shown as dotted colored lines. (Right) Value of the exponential
slope S from fits to the Mp distribution, as a function of R cut for data events
satisfying the QCD muon control selection.

’ QCD control selection H a \ b ‘
QCD HAD Box (-1911 £ 9) x 107 | (381 £4) x 10°
QCD MU Box (-1576 = 4) x 107 | (-1224 £ 8) x 107
QCD ELE Box (-1717 £ 2) x 107 | (-1902 + 6) x 102

Table 9.4: e Box Slope Measurements (MC and Data)

The values of a and b for QCD multijet events appearing in the ELE and MU QCD
control boxes are not the same, due to differences in the kinematics of these final states

and the experimental treatment of the relevant reconstructed physics object.
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Figure 9.29: (Left) Mg distributions for different values of the cut on R for events in
data satisfying the QCD electron control selection. Fits to the exponential part of the
Mp, distribution are shown as dotted colored lines. (Right) Value of the exponential
slope S from fits to the Mg distribution, as a function of R cut for data events
satisfying the QCD electron control selection.

9.5.3 ELE and MU Boxes

The high Mgz and R part of the razor plane in the lepton final states is a region of
phase space where we will look evidence of SUSY sparticle production. As we saw in
section 9.5.1 and 9.5.2, differences in intrinsic scale and Mg scaling behavior between
the SM backgrounds and hypothetical signal events mean that the relative yields
from different contributions can vary dramatically across the razor plane. In this
case, this allows us to identify a region in the razor plane in the ELE and MU boxes,
not including the region where we will look for signal events, where the background
is made up almost exclusively of W (¢v)+jets events. Hence, while searching for
new physics in one part of the razor plane we can measure the shape and yield of
background events in another.

Using the MU Box selection, we identify Mg intervals for different R cuts where we

expect the yield W (uv)+jets events to be significantly higher than other background
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contributions. In particular, we are sensitive to the Mg scaling parameters of the
15t component of this W (fv)+jets background, with two distinct scaling components
results from events with different numbers of associated jets produced with the W
bosons. This two component phenomenology is discussed in section 9.2.4. The R?

dependence of the My exponential slope is measured for these events and shown in

figure 9.30.
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Figure 9.30: (Left) Mp distributions for different values of the cut on R for data events
satisfying the MU box selection. Fits to the exponential part of the Mg distribution
are shown as dotted colored lines. (Right) Value of the exponential slope S from fits
to the Mp distribution, as a function of R cut.

Here, the Mp distribution is modeled with two independent exponential com-
ponents, simultaneously floating both slopes along with their relative and absolute
normalizations. From this fit we extract the slope parameters characterizing the expo-
nential behavior of the 15 W (¢v)+jets component. We observe that these exponential
slopes exhibit Mg scaling behavior, in agreement with predictions, and find the values
of the parameters a and b which describe the R? scaling to be in good agreement with
the values extracted from simulated W (uv)+jets events.

The differences (and their uncertainties) between the values of these scaling param-
eters measured in data and in simulated events are used to construct data/simulation

DATA/MC

shape scale factors (SFs), p , which are calculated as the ratio of the data and

simulation measurements for the parameters a and b. From the MU Box we find
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paTa/Mc 117 +3
=—=093+0.
p(a)2 e p = 09320.03,
paTA/MC 172+ 4
= —=1.00£0.03 .
()P g~ 100003

This same procedure is repeated for W (ev)+jets events in the ELE Box. The
results of the two component exponential fit, along with the extracted 15 component
slope parameters are shown in figure 9.31. We observe R? scaling behavior for the
slope of the extracted 1°* W (ev)+jets component and find the values of the parameters
describing this scaling in good agreement with the extracted values from simulated

events. For the DATA /MC slope SFs we find from the ELE Box:

(a)DATA/ME 125%3 4 004003
ELE 12443 T
paTA/MC 176 -4
b)prp = —=10.931+0.03.
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Figure 9.31: (Left) Mp distributions for different values of the cut on R for data
events satisfying the ELE Box selection. Fits to the exponential part of the Mg
distribution are shown as dotted colored lines. (Right) Value of the exponential slope
S from fits to the Mg distribution, as a function of R cut.

The DATA/MC correction factors measured independently in the MU and ELE
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boxes can be combined, yielding

p(a) XM = 0.97 +0.02 ,

p(b)PATAME — 0 97 +0.02 .

These shape SFs are used to predict the shapes of backgrounds to the ELE, MU
and HAD boxes which are kinematically to the W (¢v)+jets events studied here. These
backgrounds are also predicted to exhibit Mg scaling, with shape parameters a and
b taken from fits to simulated events (see section 9.2) and corrected with the shape
SF's derived from the ELE and MU boxes.

These SF's are used to predict the shape parameters of all the backgrounds to the
ELE, MU and HAD boxes, with the exception of the 22 W (fv)+jets components in
each box and Z(vv)+jets in the HAD Box. For these background processes, we can
perform measurements using the ELE* and MU* selections described in section 9.2.3,
where the reconstructed leptons are treated as if they were weakly interacting particles
in the calculation of R and Mp. This means that the W ({v)+jets events that make
up the majority of the background to the ELE* and MU* selections is kinematically
almost identical to the Z(vv)-+jets and 2°¢ W (fv)-+jets component backgrounds.

We use the MU* box selection and lepton treatment in order to measure the
Mp, slopes of W (uv)+jets events in selected data. The fits of the MU* box Mp
distribution, as a function of R cut, are shown in figure 9.32.

We find no significant second exponential component in the fit regions consid-
ered, and compare the Mp scaling parameters with expectations from simulated
W (uv)+jets events satisfying the MU* box selection, observing that the SFs are
indistinguishable from one. We use these values to derive DATA/MC shape cor-
rection SFs for the 2 W (¢v)+jets component and Z(vv)+jets events in the HAD

Box:
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Figure 9.32: (Left) Mp distributions for different values of the cut on R for data
events satisfying the MU* Box selection. Fits to the exponential part of the Mg
distribution are shown as dotted colored lines. (Right) Value of the exponential slope
S from fits to the Mg distribution, as a function of R cut.

+2
p(a)DATAME BE2 o1 +0.02,

2 T 95+1
29 + 2
DATA/MC
— T _0.9440.07.
p(b)s T 0.94 + 0.07

The results of these DATA /MC slope comparison measurements are summarized

in Table 9.5.

| Process / Box | a \ b |
DATA / MU Box (W (uv)tjets 1%) || (-117 £ 3) x 10 1 | (-172 + 4) x 10~ °
W (jv)+jets / MU Box 1 ((126 £ 3) x 10 1 | (-171 £ 3) x 10 °
DATA / ELE Box (W (ev)+jets I7) | (-125 £ 3) x 102 | (-176 £ 4) x 10-°
W (ev)+jets / ELE Box 1* (-124 + 3) x 107* | (-189 + 4) x 1073
DATA MU* Box (W (uv)+jets) | (96 £ 2) x 107 | (29 £ 2) x 103
W (uv)+jets / u* Box (-95+ 1) x 107" | (-307 £ 9) x 104

Table 9.5: Comparison of parameters describing the My evolution with R? for MU,
MU* and ELE Box data and simulated events of different processes selected with the
same box requirements.
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9.6 Signal Region Yield Predictions and Observa-

tions

9.6.1 ELE and MU Box Background Predictions

In the ELE and MU final state boxes we define signal regions by applying additional
requirements on the variables Mp and R, selecting events in the region of the razor
plane where we expect potential signal events to appear with suppressed background
yields. Without using observations of the event yields in these signal regions we
predict the expected SM background contribution to these yields; the compatibility
of these predictions to the actual, independent observations of events yields allows us
to make statistical inferences about the contributions from SUSY signal events.

The procedure for assembling the total SM background predictions in the ELE

and MU signal boxes can be summarized as follows:

e Calculate shapes in My for each SM process using Mp scaling parameters a
and b and the signal region R requirement. If the parameters a and b were not
measured directly in a data control box then we use the values measured from
simulated events (section 9.2) corrected with shape scale factors p derived from

kinematically similar control samples.

e Set the relative normalizations of the EWK and top backgrounds using process
cross section measurements from CMS in different final states than the ones

considered in this search.
e Set an overall normalization by measuring the event yield in a My side-band.

e With the EWK and top backgrounds fixed, determine the normalization of
the residual QCD multijet background in the low Mg region using the shapes

measured from the lepton QCD control boxes (section 9.5.2).

e Float the relative normalization of the first and second W (fv)+jets component

in an intermediate Mg side-band, orthogonal to the signal region.
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Here, we describe each of these steps in detail. In some cases, we briefly review
measurements and observations that are described in greater detail earlier in this
chapter.

The first step in the background prediction consists of setting the initial Mg shape
of the EWK and top background components. The Mg distribution for each of these
components is distributed (at sufficiently high Mg) as a falling exponential, %,
and the exponential slope S exhibits a dependence on the value of the R value that

can be described as

S=a+b-R*, (9.29)

the characteristic feature of My scaling, described in section 9.2.1. Each process
contributing as a background in the leptonic boxes is modeled as having different
values of the parameters a and b, which are measured in simulated event samples
(section 9.2). These MC measurements provide initial values for these parameters.
In the case of the W+jets background, we identify regions in the razor plane of
the different lepton boxes (ELE, MU, ELE*, MU*) where, because of selection and
kinematics, we can select a pure sample of W (fr)+jets events and measure the Mg
scaling slope parameters a and b from equation (9.29).

We compare the measured values of these parameters a and b between data and
simulated events, calculating DATA /MC correction factors p(a) and p(b) defined as
the ratio of the data and MC values of the parameters. This is done independently
for W (lv)+jets events selected in each of the ELE, MU and MU* box selections.
We observe that, in data and simulated events, the measurements of a and b agree
between the electron and muon final states and between data and MC in each case.
This implies that the DATA/MC correction factors p measured for each of the boxes
are consistent with 1, with a precision set by measured errors of the data and MC
values of a and b.

The values of the p parameters measured in the ELE and MU boxes correspond
to regions of phase space where the background is composed almost entirely by the

first W+jet component. The p parameters from these two boxes are combined to
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give p(a); and p(b);, DATA/MC scale factors that are used to correct the shape
parameters a and b measured for other, kinematically similar SM backgrounds in
simulated events. The scale factors p(a); and p(b); are used in the shape prediction
for all of the backgrounds in the ELE, MU and HAD boxes, except for the W+jets
second component and Z(vv)+jets in the HAD Box. For these two backgrounds, the
p parameters measured from W (uv)+jets events in the MU* box are used. In the
alternative MU* lepton treatment the muon is reconstructed as a “neutrino” in that
it is excluded from the calculation of R and My as if it left no measurable momentum
in the detector. This reproduces the kinematic configuration of the W+jets second
component and Z(vv)+jets backgrounds, in that in each case there are at least two
reconstructed jets recoiling against an invisible, heavy vector boson.

For each background ¢, we correct the values of a; and b; measured in simulated
events by these parameters p, such that the values of these parameters used in the

background prediction is given by
a; = p(a)a™® | b = p(b)bMC . (9.30)

These values are used to calculate, for a given R cut, the value of the Mg exponen-
tial slope parameter for each background process according to equation (9.29). The
background shape prediction for each process i at high Mp is defined by this slope
parameter and an additional normalization parameter B;, such that the background

shape of process ¢ can be expressed as
JPXP (MR) = Bie™ M., (9.31)

For each process, before the distribution of Mz becomes exponential it has a turn-
on region where it peaks at an Mg value, m;, set by a characteristic scale for that
process and the jet pr and acceptance requirements. We find that this Mg region
is well described by an asymmetric normal (Gaussian) distribution, with the widths

olt £ ol We use values of m;, o and ¢ measured in simulated events, as a function
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of the R cut, to model this part of the background function for the box prediction.
The exponentially decaying portion of the background function is attached to the
asymmetric Gaussian peak by requiring continuity of the background function and its
first derivative in M. It is important to emphasize that these asymmetric Gaussian
shape parameters derived from simulated events do not contribute to the background
predictions in the signal region in that all measurements and fits that dictate this
prediction are restricted to ranges where the Mg distribution is well described by an
exponential function. Rather, this part of the prediction is included primarily to test
for closure of this background prediction method in the low My region.

The shape of the My distribution for each background process 1 is fully determined

by the parameters of*, o¥, m; and S; (with corresponding systematic errors), except
for the W+jets second component processes appearing in each box, whose exponential

Mpg distributions are given by
FIXP(Mp) = By |5 4 fieSiMr | (9.32)

with values f; describing the relative normalization of the two components that are
of the order 1073 to 1072. We initialize each f; to the value observed in simulation
and ultimately float the values in fits to My side-bands in data.

With the shapes of the Mg background determined, the next step in the back-
ground prediction is to set the normalization, B;, of each background. In general, the

elements entering the normalization of a particular background ¢ can be factorized as

inclusive cross section, o;

l
7

lepton trigger /reconstruction/ID efficiency, €

Selection cuts efficiency (R cut), e

Integrated luminosity, L

For the EWK and top backgrounds in the lepton boxes, the W, Z and tt cross

sections measured by CMS are used in normalizations, with corresponding errors.
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The W and Z cross section measurements are performed in inclusive (with respect
to jet multiplicity) electron and muon final states [176] while the ¢t cross section
measurement is performed in the di-lepton channel. In each of these cases, the data-
set overlap with the ones used in this analysis is negligible. The measured values of

these cross sections are summarized below:

o(pp - WX) x BE(W — fv) = 9.951+0.073 (stat) £ 0.280 (syst) & 1.095 (lum) nb
olpp = ZX) x BF(Z — 0¢) = 0.931 +£0.026 (stat) + 0.023 (syst) &+ 0.102 (lum) nb

o(pp — tt) = 194+ 72 (stat) £24 (syst) = 21 (lum) pb .

0

[

For the initial normalization, BY, of a background process i we use values of €
and e calculated from simulated event samples. €/ is multiplied by a DATA/MC
correction factor, p, measured using the tag-and-probe method with Z(¢¢) events in
data and simulated events [176]. The variables BY are expressed as a cross sections,
in units of pb. We assign their values by calculating the integral, for a given R cut,
of the My distribution from where it transitions to an exponential shape to infinity
using simulated events, weighted to correspond to the expected yield for 1 pb~! of
data and using the above cross sections. This same integral is calculated analytically,
as a function of BY, using the background shape function of equation (9.31) or (9.32).
We solve for the normalizations BY by requiring that the two integrals are equal. At
this stage, all the parameters describing the shapes and normalizations of the different
backgrounds contributing to the ELE and MU boxes predictions are specified.

The total background normalization at this stage is arbitrary, with the relative
normalization of different background processes set by measured cross sections and
parameters taken from simulation. The next step is to re-normalize the background
predictions using an My control region in the data. We choose the region 125 GeV
< Mg < 175 GeV in the ELE and MU Boxes to measure the event yield, Nf 2%, for
different values of the R cut. In this interval the expected QCD multijet contribu-

tion is small and the dominant background process is W (¢v)+jets. We propagate a
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systematic error accounting for possible contamination from Z and ¢t events by eval-
uating the relative contributions of each process to these event yields, as predicted
using the initial MC background normalizations. Errors on the MC efficiencies used
in this initial normalization are included. A summary of these numbers is presented,
for the MU and ELE Boxes, in Tables 9.6 and 9.7, respectively.
We compare Nj 2 with the sum of the integrals of each of the functional EWK

and top background process predictions in the same interval, denoted Aj 2. The

ratio of these two numbers, Aff Box ig calculated as

N@ Box \/W O'(Aé Box) NE Box

AZ Box _ ) )
f AL Box AL Box Af Box  pZBox (9.33)
| Process \ \ uncertainty |
R>04 NMUBox — 1937 | AMU Bo% — 331 + 2.4 pb~ |
W (lv)+jets MU Box 93% -
Z(£0)+jets MU Box 1.4% 19%
top+X MU Box 5.2% 40%
R > 0.45 NMUBox — 743 1 AMU Box =412 £ 3.1 pb™!
W (¢v)+jets MU Box 92% -
Z(00)+jets MU Box 1.3% 19%
top+ X MU Box 7.0% 40%
R> 0.5 NMU Box — 389 | AMU Box — 42,0 + 3.8 pb~!
W (lv)+jets MU Box 91% -
Z(00)+jets MU Box 1.2 % 19%
top+X e Box 7.5% 40%

Table 9.6: Fraction of the contribution to the sum of integrals A}V B for each

process, along with the fractional initial normalization. Measured values of NMU Box
and AMY Box are also listed.

The factor Aﬁc Box has dimensions of integrated luminosity and, given the conven-
tions of our initial normalizations, can be interpreted as measurement of the effective

total integrated luminosity of the selected data sample,

6R,DATA
¢ Box w
‘w
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’ Process \ expected yields \ uncertainty ‘
R> 04 NELE Box — 7085 | APLE Box = 363 + 1.1 pb™!
W (lv)+jets e Box 94% -
Z(0)+jets e Box 0.3% 19%
top+X e Box 5.5% 40%
R > 0.45 NELE Box — 596 [ APLE Box — 3654 1.5 pb~?
W (lv)+jets e Box 93% -
Z(00)+jets e Box 0.2% 19%
top+X e Box 6.5% 40%
R > 0.5 NELE Box — 988 | APkl Box — 35 8 4 2.1 pb~!
W (lv)+jets e Box 93% -
Z(ll)+jets e Box 0% 19%
top+X e Box ™% 40%

Table 9.7: Fraction of the contribution to the sum of integrals AFLE Box for each

process, along with the fractional initial uncertainty of that processes’ normalization.
Measured values of NFLE Box and AFLE Box are also listed.

DATA M . Lo : .
where ef,%[,’ and 6{}}  are the R requirement efficiencies for W +jets measured in

data and MC simulated events, respectively. The consistency of the measured fac-
tors with the CMS measured integrated luminosity of 36.1 pb™!, listed in Tables 9.6
and 9.7, validates the two efficiencies used for the lepton boxes. The unfolding of
these efficiencies from the integrated luminosity isn’t required in the normalization
procedure in that the parameter A? Box is a measurement of the product of the in-
tegrated luminosity and of the DATA/MC correction factor which is applied to the
other EWK and top background predictions.

The final normalization of each of the EWK and top backgrounds in the lepton
boxes is calculated as the product of the initial normalization and the factors Afc Box_
At this stage, we have a prediction for the shape and normalization for the entire Mg
distribution for each of these backgrounds.

The next step of the background prediction focuses on the low My region. The
EWK and top background predictions are fixed, in both shape and normalization,
with corresponding errors. Using the lepton box QCD multijet shapes measured from
the data (section 9.5.2) we constrain the contribution of QCD multijet events to the

ELE and MU box event yields by floating the normalization of this background in a
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fit to the low Mg region 80 GeV < Mpi < 120 GeV. This Mg interval is independent
of that used to normalize the EWK and top contributions. In these low Mp fits, the
pdf is the sum of the QCD multijet and EWK /top predictions, where the shapes have
all been fixed to measured values and only the normalization of the QCD multijet
component is allowed to vary.

For R > 0.4 we find that the amplitude of the QCD component is consistent with
zero in both the ELE and MU boxes, which is consistent with MC expectations. This
same procedure is validated in closure tests covering the entire background estimation
described in section B.9.

Finally, to complete the background prediction we return to the predominantly
W (Lv)+jets region of the Mg distribution just below the signal region. In a binned
likelihood fit in the region 200 < Mpi < 400 GeV we float the parameter f describing
the relative normalization between the two W (¢v)+jets components while keeping all
other background parameters fixed (shapes and normalizations). Because of the Mg
interval considered, this fit is independent of the low Mz QCD multijet, and these
two steps of the background prediction do not depend on each other.

Using the value of f that maximizes the fit likelihood in the Mg sideband, with
corresponding systematic error as returned from the fit, the final background pre-
diction in the lepton boxes is obtained. This is a prediction of the inclusive Mg
background distribution, where each background is represented by a function whose
shape and normalization have systematic errors corresponding to the various con-
tributing factors that have been discussed. Every component that goes into the final
background prediction is either measured directly from data or is inferred from val-
ues measured in simulated events multiplied by DATA /MC correction factors. Thus,
each of the systematic uncertainties entering the background prediction is extracted
using measurements from data. The final background prediction in the MU Box for
different values of the R cut is shown in figure 9.33. Similarly, The final background
prediction in the ELE Box for different values of the R cut is shown in figure 9.34.

In the lepton box signal regions, expected integrated yields are calculated as the

integrals of the functional background predictions, with corresponding systematic
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indicates the systematic uncertainties.



224
uncertainties. The integrated yields for different R and Mp
the predicted yields, are summarized in Tables 9.8 and 9.9

cuts from data, with

for the ELE and MU

Boxes, respectively. We observe agreement between the predicted and observed yields

in all cases considered. A summary of the uncertainties entering these background

measurements is presented in Table 9.10.
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| R cut /Mg cut

\ Predicted \Observed‘

R > 0.40 / Mg > 400 GeV

10.3 £ 3.1 9

R > 0.40 / Mg > 500 GeV

227 £ 0.78

R > 0.40 / Mg > 600 GeV

0.51 £ 0.19

R > 0.45 / Mg > 400 GeV

34£1.1

R > 0.45 / Mg > 500 GeV

0.63 £ 0.23

R > 0.45 / Mz > 600 GeV

0.12 £ 0.05

R > 0.50 / Mg > 400 GeV

1.25 + 0.46

R > 0.50 / My > 500 GeV

0.18 £ 0.07

R > 0.50 / Mg > 600 GeV

OO W OO OO

0.03 £ 0.01

Table 9.8: Predicted and observed yields for ELE Box with different R/Mpg cuts.

| R cut /Mg cut | Predicted | Observed |
R>0.40 / Mg > 400 GeV | 10.3 £+ 3.6 18
R > 0.40 / Mg > 500 GeV | 2.33 +0.91 10
R > 040 / Mr > 600 GeV | 0.53 4+ 0.23 4
R > 045/ Mg > 400 GeV | 2.68 4+ 0.99 8
R > 045/ Mgr > 500 GeV | 0.51 4+ 0.20 3
R > 045/ Mgr > 600 GeV | 0.10 £+ 0.04 2
R > 0.50 / Mg > 400 GeV | 1.10 4+ 0.45 3
R > 0.50 / Mg > 500 GeV | 0.17 £ 0.07 2
R > 0.50 / Mg > 600 GeV | 0.025 + 0.010 1

Table 9.9: Predicted and observed yields for the MU Box with different R/Mpg cuts.

’ Parameter H Description \ Relative Magnitude ‘
Slope parameter a systematic bias from correlations in fits 5%
Slope parameter b systematic bias from correlations in fits 10%
Slope parameter a uncertainty from Monte Carlo 1%-10%
Slope parameter b uncertainty from Monte Carlo 1%-10%

p(a)PATA/MC measured from DATA 3%
p(b)PATA/MC measured from DATA 3%
Normalization systematic+statistical component 3%-8%
f extracted in MLFit (W only) 15%-30%
W /tt cross section ratio CMS measurements (top only) 40%
W /Z cross section ratio CMS measurements (Z only) 19%

Table 9.10: Summary of non-negligible uncertainties entering the background predic-
tions for the MU and ELE Boxes.

selections which result in optimal expected (without appealing to observed yields)

reach in the CMSSM, described in section 9.7. For the ELE and MU boxes, we use
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the selection R > 0.45 and Mg > 500. The SM process-by-process breakdown of the
background predictions for these cuts are tabulated in section B.5.

To test the robustness of this background prediction approach against potential
biases or oversights we have performed a number dedicated studies. Section B.3
explains studies of the potential for correlations between the lepton identification
requirements used in this analysis and the variables Mg and R. We conclude that the
lepton identification does not bias the shape of the kinematic variables. Section B.4
evaluates the effect of neglected statistical correlations between fit samples in our
determinations of the shape parameters a and b. We assign systematic uncertainties,
shown in Tab. 9.10, with magnitudes derived in this study.

In section B.6 we evaluate whether the background predictions shown in Tab. 9.8
and 9.9 are biased and whether the errors we quote actually cover a 68% probability
interval. Our studies indicate that the central values we predict for backgrounds are
accurate and that the errors have their intended meaning. In general, the predictions
for background yields in the Mpg/R based are in good agreement with observations.
The largest discrepancies appear the the MU box. We find that, when taking into
account systematic uncertainties and Poisson sampling statistics, the observed yields
are consistent with statistical fluctuations around the predicted mean, within the
quoted uncertainties as described in section B.6.1.

Finally, we repeat the full exercise of the background prediction, including mea-
surements in control samples, on simulated event samples generated to have the same
yields as what we have observed in data. In this controlled environment, we can test
whether the method closes, in that it predicts the same background yields that are
put in. This simulation closure test is described in section B.9, where we conclude

that the method successfully closes.

9.6.2 HAD Box Background Prediction

The procedure for calculating the Mp background prediction in the HAD box is
very similar to that for the predictions in the ELE and MU boxes, described in
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section 9.6.1. The added complication in the HAD box is that events are selected with
and Hrp trigger, with nontrivial thresholds ranging from 100 to 150 GeV throughout
LHC running and based on HLT jet energies that are not corrected for calorimeter
noncompensation. This results in a nontrivial shaping of the Mpg distribution for
backgrounds in the HAD box since the efficiency for an event to pass these Hy triggers
depends strongly on Mg, illustrated for simulated Z(vv)-+jets events in the HAD box
in figure 9.35. We observe that the effect of this trigger inefficiency only extends up
to values of Mz ~ 400 GeV, such that it will efficiently select SUSY events, if they
are present in the event sample, in the signal regions. On the other hand, we need
unfold the effects of these nontrivial Hr trigger requirements in the Mp side-band
(Mg values lower than the signal region requirement) if we would like to use this as

an additional control region.
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Figure 9.35: HLT_HT100U trigger efficiency as a function of My for simulated
Z(vv)+jets events that satisfy the HAD box selection and R > 0.5.

The procedure for assembling the total SM background predictions in the ELE

and MU signal boxes can be summarized as follows:

e Calculate unbiased (with respect to the Hyp trigger) shapes in My for each SM
process using Mp scaling parameters a and b and the signal region R require-
ment. If the parameters a and b were not measured directly in a data control box
then we use the values measured from simulated events (section 9.2) corrected

with shape scale factors p derived from kinematically similar control samples.



228
e Set the relative normalizations of the EWK and top backgrounds using process
cross section measurements from CMS in different final states than the ones

considered in this search.

e Set an overall normalization by measuring the event yields in ELE and MU box

control regions.

e With the unbiased shapes and normalizations of the EWK and top backgrounds
fixed (with the exception of the 2" W component fraction, which is varied),
we determine the normalization of the multijet background and parameters
describing the Hyp trigger efficiency as a function of Mg (see section B.2) from

a maximum likelihood fit to the low Mg control region of the HAD box.

The first step is executed in the same manner as for the lepton boxes (sec-
tion 9.6.1); each process contributing as background to the HAD box has its shape
predicted predicted for the signal region R requirement using the Mp scaling rela-
tion described in equation (9.29). Each background is modeled as an exponential,
with the slope calculated from the parameters a and b (unique to each background
process) from equation (9.29). The parameters a and b are measured in simulated
events for each background process contributing to the HAD box (see section 9.2),
and these MC derived parameters are multiplied by correction factors p, according
to equation (9.30) which are derived from kinematically similar event configurations
in control regions (see section 9.5). The non-exponential part of the My distribution
is described by an asymmetric normal distribution, with shape parameters measured
from simulated events. The Mp interval used for the final fit in the HAD box is
chosen as to minimize any dependence on these shape parameters in the background
prediction (the predictions in the high Mg signal regions are not sensitive to these pa-
rameters). The initial normalizations of each background process, BY, are calculated
in the same way as the analogous factors in the lepton box background predictions.

Because of the nontrivial Hy trigger turn-on, we do not measure the overall back-
ground normalization in the HAD Box. We instead use the normalization factors

A? Box measured in the ELE and MU boxes. When using these measured normal-
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izations in the lepton boxes, we don’t need to account for lepton identification effi-
ciencies, since any dependence on them cancels when making predictions within the
same box and the Mp shape is insensitive to them (see section B.3). In order to
apply these measured normalizations to predictions in the HAD box we must correct
for discrepancies in lepton reconstruction and identification between simulation and
data.

We measure the muon and electron reconstruction, ID and trigger efficiencies
using Z(¢¢) events and the tag-and-probe strategy, finding values [176]: e =
0.834 + 0.010 and e*™¢** = 0.753 & 0.023. These measured values are compared
with the analogous values measured in simulated W ({v)+jets events: e#M¢ = 0.829

eMC — (.776. Using these comparisons, we construct DATA /MC correction

and €
factors p(e’) that we use to correct efficiencies measured in simulated events. These
measurements describe these efficiencies for the inclusive VBTF selection with no
requirements on R/Mpg. With additional R/ Mg requirements these efficiencies change
by a few percent due to correlations between the lepton kinematics, the W boson
kinematics and the reconstructed values of R/Mpg. We use the lepton efficiencies
measured in simulated events for the more restrictive regions of phase-space, corrected

with p(ef). We also include the difference between the inclusive efficiencies and those

from restricted phase space as a systematic error on the efficiency.

¢ Box

corr )

The efficiency corrected normalization factors, A measured in the lepton
boxes are summarized in Table 9.11. We recall that these factors represent both a
measurement of the integrated luminosity of the data sample, but also a DATA /MC
correction factor for the efficiency of the (lepton unrelated) selection requirements.
We observe agreement between these measured effective integrated luminosities and
expectations, indicating that acceptance efficiencies related to R/Mpg requirements
are well modeled in the simulation.

Ultimately, the factors from the MU and ELE boxes are combined and used to
normalize all of the EWK and top background contributions, with the exception of

Z(vv)+jets. For this background, the corresponding normalization measured in the

MU* Box is used.
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| Box/Rcut | AE Box |

corr

MU* Box R > 0.40 | 42.0 £ 4.7 pb~!
MU* Box R > 0.45 | 39.8 &+ 5.0 pb !
MU* Box R > 0.50 | 39.4 &+ 5.7 pb !
MU Box R > 040 | 38.1 & 2.4 pb !
MU Box R > 0.45 | 40.9 £ 3.3 pb*
MU Box R > 0.50 | 41.7 & 4.5 pb !
ELE Box R > 0.40 | 37.4 &+ 1.8 pb~!
ELE Box R > 0.45 | 37.6 &+ 2.1 pb™!
ELE Box R > 0.50 | 36.9 & 2.6 pb~ !

Table 9.11: Lepton efficiency-corrected normalizations, A% B from measurements in
the lepton boxes.

We are exploiting the kinematic similarities between backgrounds in different fi-
nal state boxes, measuring normalizations in the lepton boxes in regions of the razor
plane that are nearly identical for the different boxes. As a result, any systematic
shortcomings in the Monte Carlo simulation description of R or Mg acceptance effi-
ciencies or values of the exponential slope parameters (which should effect events in
the different boxes the same way) are accounted for in this normalization procedure
through DATA /MC correction factors.

At this stage, the unbiased Mz shape and normalizations of the EWK and top
backgrounds in the HAD box are specified and fixed, with the exception of the param-
eter f relating the normalization of the W background 2"¢ component to the 1. The
unbiased multijet background My shape is calculated using the appropriate scaling
parameters measured in the HAD QCD control box, as described in section 9.5.1. We
multiply these unbiased predictions by Hy trigger efficiency curves, f7#% (Mg | u, \),
with an example shown in figure 9.35. The parameters p and A\ describe the shape
of the efficiency curve in our model, and are specific to each background process. A
complete description of these trigger efficiency functions can be found in section B.2.

For Runs 2010A and 2010B the HAD box selects events using three different
Hrp threshold triggers: HLT_HT100U, HLT_HT140U and HLT_HT150U. This means that
our trigger efficiency functions need to be integrated-luminosity-weighted averages

of the respective curves for the different triggers. The shape parameters p and A
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are measured in simulated events for each background process in the HAD box. In
order to account for differences between data and simulation we introduce additional
free parameters W& and MW which are common for all non-multijet background
processes and are used to scale the MC derived values of p and .
The total Hp trigger turn-on function which is multiplied with the unbiased Mg
shape prediction can be expressed for the ith EWK or top background process as

FTRIGEWK (@) EWK \EWK 5 3 (9.35)

NTRIG
_ Z ¢l fTRIG ‘MEWK7)\EWK,ﬁi’Xi> 7
j
where fi; and XZ are the trigger turn-on parameters measured from simulated events,
independently for each process. The index j indicates which of the three Hp trigger
thresholds is being referenced while the factors ¢/ indicate what fraction of the HAD
box data sample was selected with each trigger.

By introducing the additional parameters p“"* and \*WX and allowing them
to float in a likelihood fit to the data, we permit our description of these turn-on
curves to reflect possible deviations in the behavior of these shapes between data
and simulation. For example, DATA /MC discrepancies in the jet energy scale which
change the relative scales between uncorrected HLT level jets (used in the Hr triggers)
and the reconstructed jets (used in the construction of Mg) would affect all the trigger
turn-on functions in a uniform way. These discrepancies would be absorbed into the
parameters pZ"E and \PWE  allowing our modeling of these turn-ons to conform
to the data. Similarly, any systematic discrepancy between the estimated integrated
luminosity for which each trigger is used and the true value will be absorbed into
pEWE and will also be reflected in the error on this parameter.

We introduce similar flexibility into our modeling of the QCD trigger turn-on
shapes by introducing additional parameters p?“?P and A2¢? and redefining the en-

semble of trigger turn-ons for QCD multijet events as
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TRIG
FTRIGQCD (4| ,QCD \QCDY _ NZ e FTRIG (o | (HTY /HT) RSP, \eCPY | (9.36)
j
where HTV denotes the Hp threshold (in units of energy) for the jth trigger. Hence,
PP and AP are used to fully describe the shape of the QCD trigger turn-on
curves, with the additional constraints that \ is the same for each of the different
Hyp threshold triggers, with respect to these events, and that the p parameters for
multijet event trigger turn-ons are related by the ratios of Hr thresholds, conclusions
supported by observations in simulated QCD events (section B.2).
With all other elements (normalizations and shapes) fixed, the final HAD box
background prediction follows from a binned likelihood fit of the total background
shape to data in the interval 80 < Mz < 400 GeV where the parameters p?"«,

)\EWK’ QCD’ )\QCD

1 and a parameter A®“P which dictates the normalization of
the QCD multijet background, are simultaneously floated in the fit. Additionally,
the parameter, f, describing the relative normalization between the two W (fr)-+jets
components, is floated.

The values of these parameters that maximize the likelihood agree with expecta-
tions from simulation. In particular, we find that the QCD multijet trigger turn-on
parameters, 9P and A?“P | are in agreement with direct observations of the turn-on
shape in the QCD control box.

The values of the parameters floated in the fit which correspond to the maximum
of the likelihood, along with the errors on these parameters (as calculated from the
fit) are used to calculate the final background prediction and its error (including both
shape and normalization parameters). This allows for the uncertainty associated
with these trigger turn-on curves to be treated in a rigorous and consistent, relative
to manner with other uncertainties in the analysis.

The final HAD box background prediction for R > 0.5 is shown in figure 9.36. We
find agreement between the predicted Mg distribution and the Mpg yields observed

in data, over the inclusive Mg distribution. In particular, predicted and observed
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background yields in the high Mg signal regions are summarized in Table 9.12. A

summary of the uncertainties going into these background predictions is listed in

Table 9.13.

] Mg cut cut H Predicted \Observed‘

Mp > 400 GeV || 25.3 £ 5.5 29

Mpgr > 500 GeV | 55+ 14 7

Mpg > 600 GeV | 1.09 £ 0.32 3
Table 9.12: Predicted and observed yields for different Mg cuts with R > 0.5 in the
HAD Box.
’ Parameter \ Description \ Relative Magnitude ‘

Slope parameter a systematic bias from correlations in fits 5%

Slope parameter b systematic bias from correlations in fits 10%
Slope parameter a uncertainty from Monte Carlo 1%-10%
Slope parameter b uncertainty from Monte Carlo 1%-10%

p(a)PATA/MC measured from DATA 3%

p(b)PATA/MC measured from DATA 3%

Normalization systematic + statistical component 8%

Trigger Parameters systematic from fit toys 2%

f extracted in MLFit (W only) 13%

W /tt cross section ratio CMS measurements (top only) 40%

W /Z cross section ratio CMS measurements (Z only) 19%

Table 9.13: Summary of non-negligible uncertainties entering the background predic-

tions for the HAD Box.

We perform an ensemble dedicated studies to check that the HAD box background

prediction is unbiased and that the errors are estimated correctly (section B.6), that

the method closes for simulated event datasets (section B.9) and that lepton re-

construction and identification requirements do not bias shape and normalization

measurements between final state boxes (section B.3).
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Figure 9.36: Final background prediction for the HAD Box with R > 0.5 linear scale
(Left) and R > 0.5 log scale (Right).
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9.7 Results Interpretation in SUSY Parameter Space

The predicted and observed yields from 35 pb~! of data in the ELE, MU and HAD
box are summarized in Table 9.14. Since we observe no significant excess of events
beyond the SM expectations, we can make inferences about which SUSY models
can be excluded by these results in the cases where we would have observed more
events than we saw. These results are used to new physics possibilities through the
calculation of a model-independent 95% confidence level (C.L.) limit on the number

of signal events.

Final state box

MR/RCUt

predicted yield

observed yield

ELE box 500 GeV / 0.45 | 0.63 £+ 0.23 0
MU box 500 GeV / 0.45 | 0.51 £ 0.20 3
HAD box 500 GeV / 0.45 5.5 £ 14 7

Table 9.14: Summary of predicted and observed yields used for SUSY interpretations

The likelihood for the number of observed events n in a particular box is modeled
as a Poisson function, given the sum of the signal, s, and the background events, b.
A posterior probability density function for the signal yield is derived using Bayes
theorem, assuming a flat prior for the signal and a log-normal prior for the background
shown in Fig 9.37 for each of the final state boxes. The different posteriors reflect the
predictions and observations in each box. The excess of events observed in the MU
box results in the posterior peaking at a small, nonzero value.

A 95% probability model independent upper limit is calculated by finding the

signal yield s* which satisfies

*

" P(s)ds =095 | P(s)ds (9.37)
/ /

where P(s) is the posterior pdf. These 95% probability intervals are indicated by the
filled areas in figure 9.37. The observed limit in the HAD box is s* < 8.4 (expected



236

[7] [7] [7]
c € 0.008 c 0.002
@ ] ]
o o o [
> > > [
= E 0.006 £ 0.0015F
a K] 8
] [ S
a a 2
° © 0.004 O o.001
o o o
0.002 0.0005f
0 Il Il 0
5 10 15 20
Sy Se Shad

Figure 9.37: Posterior pdf for signal yield in the MU (Left), ELE (Center) and HAD
(Right) boxes, obtained modeling the likelihood of the observed yield n as a Poisson
function P(n|s + b) and using a flat prior for the signal yield s and log-normal prior
for the background yield b.

limit 7.2 £ 2.7); in the MU box s* < 6.3 (expected 3.5 £+ 1.1); and in the ELE box
s* < 2.9 (expected 3.6 £ 1.1). For 10% of the pseudoexperiments in the MU box
the expected limit is worse than the observed. The stability of the result was studied
against different choices of the prior. In particular, using the reference posterior
derived with the methods described in Ref. [177] the observed limits in the HAD, MU
and ELE boxes are 8.0, 5.3 and 2.9, respectively.

These results can be interpreted in the context of the CMSSM, which is a simplified
subset of the full SUSY parameter space motivated by minimal supergravity scenarios
for spontaneous soft supersymmetry breaking. Model points in the CMSSM are
specified by five soft breaking parameters: three mass parameters mg, m;/2 and Ag
which are, respectively, universal scalar and gaugino masses and a universal trilinear
scalar coupling, as well as tan/3, the ratio of the up-type and down-type Higgs vacuum
expectation values, and the sign of the supersymmetric Higgs mass parameter u. More
details about the CMSSM can be found in Ch. 8. The models realized by scanning over
these parameters are widely varied in their superpartner spectra, production channels
and decay chains and can produce events in many different final states, although
they aren’t exhaustively representative of all SUSY possibilities. This means that
by interpreting these results in this model framework, we can confront a significant

collection of potential signal kinematics and final states. The efficiency for selecting



237
the events produced in these hypothetical models can vary from ~1% to 15%, and
are shown in section B.10 for each of the signal models considered and each final state
selection.

We project the upper limits on s* in each final state box on the my and m
plane comparing by comparing them with the expected signal event yields and ex-
cluding any model if s(mg, m1/2) > s*. The systematic uncertainty on the signal yield
(coming from the uncertainty on the luminosity, the selection efficiency, and the the-
oretical uncertainty associated to the cross section calculation) is modeled according
to a log-normal prior. The uncertainty on the selection efficiency includes the effect
of jet energy scale (JES) corrections (section B.12) corrections, parton distribution
function (PDF) uncertainties [178]) (section B.11) and the description of initial-state
radiation (ISR). All of these effects are summed in quadrature to calculate the the

total systematic error on the signal yield and are summarized in Table 10.4.

box MU ELE HAD
Experiment

JES 1% 1% 1%

Data/MC e 6% 6% 6%

L [179] 4% 4% 4%
Theory

ISR 1% 1% 0.5%

PDF 3%-6% 3%-6% 3%-6%

Total 8%-9% 8%-9% 8%-9%
CMSSM

NLO o 16%-18% 16%-18% 16%-18%

Total 17%-19%  17%-19% 17%-19%

Table 9.15: Breakdown and total systematic uncertainties on the signal yield. For
the CMSSM scan the NLO cross section uncertainty is included.

The observed limits from the HAD, ELE and MU boxes are shown in figure 9.38
in the CMSSM (mg,m1/2) plane for tanf = 3 or tanf = 10, Ay = 0, sgn(u) = +1,
along with the 68% probability band around the expected limits which is obtained
by applying the same limit setting procedure described above to an ensemble of

background-only pseudoexperiments. The band is calculated around the median of
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the expected limit distribution. Observed limits are also interpreted for CMSSM
models with tans = 50, Ag = 0, sgn(p) = +1, shown in figure 9.39.

We also interpret these NULL search results in the context of simplified mod-
els [180-182]. These are SUSY-inspired signal event topologies with only two sparti-
cles in the new physics spectrum: a strongly interacting squark or gluon which will
be pair-produced in LHC collisions and a weakly interacting LSP, which the strongly
interacting sparticles decay to. Cross section upper limits can be placed on these
models directly as a function of the sparticle masses appearing in the spectra. The
95% C.L. cross sections upper limits as a function of the physical masses for two
benchmark simplified models (four-flavor squark pair production and gluino pair pro-
duction) are shown in figure 9.40. In the former, each squark decays to one quark
and the LSP, resulting in final states with two jets and missing transverse energy.
Similarly, the in the second model gluinos undergo three body decays to two light
quarks and the LSP, yielding events with four jets and missing transverse energy.

The qualitative features of these simplified model results reinforce our under-
standing of the razor variables and the kinematics of these new physics events. The
cross section upper limits in figure 9.40 and the selection efficiencies for these models
(shown in section B.10) do not depend linearly on Msquark/gluino OT Mrsp but rather

on

2 2
msquark/gluino — Mpgp

Ma = , (9.38)

Msquark/gluino

due to the fact that the My peak position for these events scales with this value.
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Figure 9.38: Observed (solid curve) and expected (dot-dashed curve) 95% CL limits in
the (mo, m1/2) CMSSM plane with tan 5 = 3 (Left), tan 8 = 10 (Right) and Ay = 0,
sgn(p) = +1. Results are shown for the HAD box (Top), the MU box (Center) and
the ELE box (Bottom). The + one standard deviation equivalent variations in the
uncertainties are shown as a band around the expected limits.
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Figure 9.40: Upper limits on two simplified models: di-squark production (Left)
resulting in a 2-jet + MET final state and di-gluino (Right) production resulting in
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9.8 Conclusion

We performed a search for squarks and gluinos using a data sample of 35 pb~! inte-
grated luminosity from pp collisions at /s = 7 TeV, recorded by the CMS detector
at the LHC. The search was based on the razor variable, Mz and R, which are used
to distinguish between events containing two or more weakly interacting particles
resulting from the decays of new, heavy sparticles and the SM backgrounds in final
states with jets, missing transverse energy and with and without leptons.

The search relied on predictions of the SM backgrounds determined from data
samples dominated by SM processes. No significant excess over the background ex-
pectations was observed, and model-independent upper limits on the numbers of
signal events were calculated. The results were presented in the (mg, mi/2) CMSSM
parameter space. For simplified models the results were given as limits on the pro-
duction cross sections as a function of the squark, gluino, and LSP masses.

The constraints placed by this analysis on SUSY parameter space demonstrate
the strengths of the razor analysis approach; the simple exponential behavior of the
various SM backgrounds when described in terms of the razor variables is useful in
suppressing these backgrounds and in making reliable estimates from data of the
background residuals in the signal regions. Hence, the razor method provides an

additional powerful probe in searching for physics beyond the SM at the LHC.
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Chapter 10

Searching Through Razor Space

In chapter 9 we described a search for new physics focusing on models with new, heavy
particles and conserved Z, symmetries, like R-parity and SUSY. Using the kinematic
variables Mg and R, event yields in hadronic and single lepton final states were used
to place constraints on new physics parameters and particle masses that were, in
many cases, the most restrictive ever. But there are a number of ways that this
search could be improved. In the following chapter, we describe a new search for new
physics based on adaptations of the original razor variables using the CMS detector
with 5 b=t of /s = 7 TeV pp collision data. With new variables that avoid ill-defined
event configurations and an increase in kinematic phase-space and the number of
final states the search considers, there is a large increase in sensitivity relative to the
previous search. In chapter 10, we describe the search through the two dimensional
Mpg/R? plane in final states with zero, one or two leptons, with and without b-quark
tagged jets. The results of this search are interpreted in R-parity conserving SUSY
scenarios, along with a collection of Zs symmetry-inspired simplified models, including
cases featuring the production and decays of new-symmetry partners of SM tops, like

stops in SUSY.

10.1 A Better Mpgr

The kinematic variable Mg, derived in section 9.1.1, satisfies a number of useful

properties. It is sensitive to the mass scale of new physics events and is invariant under
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boosts along the beam axis, an essential feature at a hadron collider. Unfortunately
it is not always well-defined. For some event configurations the longitudinal boost
which takes particles from the lab frame to the R-frame, (g, is greater than one,
corresponding to an R-frame that is traveling faster than the speed of light. This can
occur when the approximations used to derive Mg lead to unphysical cases. In this
section we derive a new variable which shares all of Mg’s useful properties, but that
is always well-defined.

To see how this is accomplished, we return to the simple scenario of the produc-
tion of two, identical particles of type S, each decaying to a visible SM particle ) and
a weakly interacting particle x, such that each decay chain has an identical particle

content. This type of event is illustrated in figure 10.1.

p 1

51 X1

S, X2

p Q2

Figure 10.1: Canonical SUSY production scenario. Two massive particles, .S;, are
produced in a pp collision and each decay to a SM particle ();, and a weakly interacting
particle, ;.

Firstly, we identify the kinematical characteristics that are associated with events
with |Sg| > 1. Using the notation of section 9.1.1, we recall that the decay angles
in the S; rest frames were denoted by unit vectors 4, and 5. It is these directions,
relative to the S particles’ axis of motion in the CM frame, Ec , that dictate whether
|Br| < 1. Setting yopr = 1.1, we scan over values for the unit vectors @y, 1y and BCM in
a toy simulation, noting for which values and with what frequency we find |5g| > 1. In
figure 10.2 we show the correlation between the normalized z-components of momenta
of Q1 and () in the rest frames of their respective parents S; for events where the
R-frame is ill-defined. We find, as perhaps one could infer from the expression of

Tl |71
Br = ‘q}—_ff', that these longitudinal momentum components tend to be equal in
1z 2z
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both direction and magnitude. In fact, as yoy tends toward one, the distribution
shown in figure 10.2 (left) tends toward a discrete line along the ;-2 = 1y 2 diagonal.
Similarly, in figure 10.2 (right) we see the correlation of the difference in azimuthal
angles between the momenta of (); and (2 and the momenta of (), and ECM. We
find that events with |Sg| > 1 tend to have 4, and 4y pointing in the same direction

in the transverse plane, with ECM pointing in either the same or opposite direction.

%107
0.8

) (G, By

-0.5

Figure 10.2: (Left) Correlation between 4 - Z and 4y - 2 for events with yop = 1.1

and |Sr| > 1. (Right) Correlation between Ag(iy,us) and A¢(ﬂ1,BCM) for events
with yop = 1.1 and |Sg| > 1. Distributions are normalized to unit volume.

These observations indicate that the cases where the R-frame is ill-defined result
from the neglecting of the transverse component of ﬁc M in the approximations made
in the derivation of Mp. We recall that in the R-frame approximation we assumed
that ECM — 0, and when the transverse components of ECM are large, and point
along the S; decay axes, Mg can become imaginary. In order to derive a new variable
that is always well defined we relax this assumption, instead assuming only that
ECM -2 — 0. Now, there are two unknown boosts relating the lab frame and our
rough approximations of the S; rest frames: a longitudinal boost, S+, which moves
from the lab frame to an approximation of the CM frame (R-frame) and a transverse
boost, EJE*, which acts in equal and opposite directions on the two particles Q); to take
them from the approximate CM frame to their respective S; rest frames (R*-frames).

The series of Lorentz boosts taking )1 and )o from the laboratory frame to their
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respective R*-frames can be summarized as:

R*
ql I

(AN
g 2y oF 6—>q2 . (10.1)

There are three d.o.f. associated with these transformations but only one constraint:
Since the decay chains have identical particle content the momenta of )1 and @)
must have the same value in their respective R*-frames. This can be re-expressed as

a constraint equation on the variables 8z- and 8%,

@' = 13') = v Br- (a1, — ahe) = BF - (@7 + @) » (10.2)

Y+ (

which can be used to solve for the magnitude of f&°, BB = |GE|, in terms of B

and /BL*;

@' = 1% ) — v+ Br-(dh, — db.)

< e
br = AR* (7l 4 71
B (@ + Gor)

(10.3)

Just as we did in the R-frame, we will define the R*-frame mass, Mg+, as two
times the magnitude of the momentum of () in its respective R*-frame. Mg+ can be

expressed as

M = 237 =237
290 BF - (13 Gr + | @ Ty) — B (4@l + db.a))]
% R 2
VIBE (@ + @) = vee [ - 18] — Boe (¢l — ¢b.)]

(10.4)

In order to calculate Mg+, we must specify values of 8« and Bﬁ* We have allowed
Yr« to be nonzero but the considerations that led to the vz, — 1 approximation still
hold; instead of setting the under constrained d.o.f. to zero as we did for Mg we will

minimize it away. We find that the choice of 82" which minimizes vz, is given by

1 1

A Gir +4q

pE == (10.5)
"hT dor

illustrated in figure 10.3.



Figure 10.3: The particles” ¢); and ()2 momenta in the plane transverse to the beam
axis. The direction of S%" which minimizes g, points in the direction ¢} + G4

For the remaining d.o.f. corresponding to 8.« we will take a similar approach, for
slightly different reasons. We would like our final kinematic variable expressions (for

Mg, and 7Yg) to be invariant under boosts along the beam axis. This property will

OMps
o5 = U

With each unknown quantity now specified, Mg« can be expressed, event-by-event,

be guaranteed by choosing the [z« which satisfies

as

. . arl* =g
M = (@ + @1 = (& + gb.)? — Ul = '22). (10.6)
‘qlT q2T’

e = (L= |BE [2)71/2 s given by

L (] 1~ (dh w0
2l 12_171 122 ° *
(U + 1302 = (¢, + gb,)? — Ul %

|q1T+q2T|2

As is the case for Mg, Mg~ is invariant under longitudinal boosts, as is yg+. Analogous
to the R-frame, we define the R*-frame razor, R*, as the ratio of MF and Mg-, with
MZE given by equation (9.13).

To understand how the distribution of Mg- changes with ycon, we numerically
integrate over all the decay angles assuming isotropic decays. The resulting Mg« and

Yr Mg+ distributions are shown in figure 10.4. We find that the peak value of the
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Mg+ distribution is at approximately M, regardless of yos, while yr« Mg+ peaks at

YemuMAa.
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Figure 10.4: Distribution of Mg« (Left) and g+ Mg« (Right) for different values of
Yom- Distributions are normalized such that their maximum value is equal to one.

Comparing figure 10.4 and figure 9.4, we see that the peak position of the vz« Mg«
distribution scales like the peak of the My distribution. Mpg is a variable most useful
for treating the case vop = 1 which, in practice, is kinematically forbidden. The
quantity yr« Mg+ reproduces the same peaking behavior, without ill-defined configu-
rations and better resolution on the quantity yon Ma.

In fact, the variables Mg+, Y« Mg+ and Mg share many properties. We consider
two of the examples from section 9.1.4, now in the context of Mg« and yg«. The first
scenario is of two massive particles, S; and Sy, with different masses decaying each
to a visible particle and potentially massive weakly interacting particle, such that
MZ = MX(1+46) = Ma(1+6). Assuming oy, = 1, and numerically integrating over
the decay angles, we calculate Mg as a function of §, with the resulting distributions
shown in figure 10.5 (left). We observe that Mg+, like Mg, has a peak whose position
scales with /1 + .

The second example from section 9.1.4 involves two particles S; and Sy, with the
same mass. 57 undergoes a two-body decay to a visible particle, ()3, and another
particle, G1, with mass Mg = Mg(1 — §). The particles Sy and G; then each decay

to a weakly interacting particle and a visible particle, where the mass of the weakly
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Figure 10.5: (Left) Distribution of Mg-, in units of May/1 + 9, for different values of 6.
(Right) Distribution of vz« Mg+« when one of the particles S; decays to an intermediate
particle G; with mass Mg = Mg(1 — 0), for different values of §. Distributions are
normalized such that their maximum value is equal to one.

interacting particles is M,. The numerically integrated yp«Mpg- distributions, for

different values of §, are shown in figure 10.5 (right). We observe that, like Mg, the

quantity vygr+ Mg+ peaks at Ma = ng\;sMi, regardless of the value of §.

In general, we see that the quantity vz« Mg+ behaves almost identically to Mpg.
This correspondence also hold for SM background processes. This fact is illustrated in
figure 10.6 with early 2011 CMS data, comparing the Mz and g+ M+ scaling behavior
in QCD dijet events. We see that yr- Mg« exhibits Mpg/R? scaling qualitatively
and qualitatively identical to Mg. The construction yr« Mg+ shares all the useful
of properties of Mg and is guaranteed to be well-defined. In fact, for realistic v,
distributions, yr+ Mg+ is a better indicator of the scale M than Mg.

Having found suitable replacements for the variables Mg and R in vz« Mg- and
R* we take the notational liberty to retire the original expressions for these variables

and replace them with those of vz« My« and R*. Having been superseded by superior

concepts, the original Mz and R will not be discussed again; may they rest in peace.

Mp = M = (G + G102 — (0 +q)?
e ME

R = —.
VR*MR*

(10.8)
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10.2 Phenomenology of the 2D Razor Plane

The razor variables Mg and R provide a distinctive description of SM background
and SUSY signal events which allows us to identify a preferred region of kinematic
phase space where we can search for signs of new physics. This kinematic separation
is illustrated in the two dimensional Mp/R? distributions for simulated signal and
background events shown in figure. 10.7.

The variable Mp, is sensitive to the scale of each of these events and can distinguish
SUSY events containing new sparticles with large masses from background events
containing only lighter SM particles. Backgrounds like QCD multijets, whose events
don’t contain particles with large masses, have a preferred scale set by the convolution
of minimal object momentum requirements in the selection of events (described in
section 10.4.2) and steeply falling parton luminosities. R-parity conserving SUSY
events, like the example of LMG6 illustrated in figure 10.7 which features predominantly
gluino pair production, have a peaking Mg distribution indicating the mass difference
between the heavy pair-produced parent particles and escaping LSPs. The variable
R is sensitive to the presence of weakly interacting particles, having larger values
for events with at least two weakly interacting particles following from the decay
of different particles, like our intended signal events. In the 2D razor plane, we
expect the SM backgrounds to be restricted largely to the low Mpg/low R region,
while events with the pair production of heavy particles each decaying to visible and
weakly interacting particles, our desired signal, will populate the high Mpg/low R
region.

For a given process, the events which populate the region of the razor plane above
the characteristic scale of that process (set by the masses of particles in these events,
or the center of mass energy threshold above which these events have a maximum
production rate) follow hyperbolic constant-yield contours in the variables My and
R. The reason for this can be understood in the construction of the razor variables.
For a fixed center of mass (CM) energy in a hard collision, the energy of the event

is shared between detected and undetected particles. The variable Mg will increase
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Figure 10.7: Scatter plot in the (R?, Mg) plane for simulated events: (Top left)
multijets, (Top right) W+jets and Z(vi+jets, (Bottom left) tt+jets, and (Bottom
right) the SUSY benchmark model LM6 [173] with Ma = 831 GeV. The yields
are normalized to an integrated luminosity of ~ 4.7 fb~!, except for the multijet
background where the integrated luminosity of the generated sample is used. The bin
size is (20 GeV x 0.005).

in value if more energy is contained in detected particles, which are included in the
event mega-jets. On the other hand, R reflects the ratio of undetected to detected
momentum in the event; its value will decrease with more detectable energy and
increase with less. The product of My and R? is approximately constant for a fixed
CM energy while the total energy can be shared differently between the two variables.
The steeply falling distribution of CM energy, once it has exceeded the threshold value
for a given process, results in the yields of each of these hyperbolic contours falling
steeply towards the upper right hand corner of the razor plane.

Similarly, the interplay between these two variables can be used to suppress back-

ground events with spurious instrumental effects. Backgrounds with enormous rela-
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tive cross sections, like QCD multijet production, can be especially pernicious since
the large event yields give opportunities for rare and dramatic instances of detector
noise and mis-reconstruction. For example, a large under-measurement of a single
jet in a multijet event could make it incorrectly appear as if it has a large miss-
ing momentum component, and the tail of a missing transverse energy distribution
will be populated with similar events. For the razor variables, the same concept of
sharing a fixed CM energy between detected and undetected particles in the event
applies here, accept now instead of weakly interacting particles, energy now escapes
the event due to mis-measurements. An event containing an object whose energy is
measured to be artificially small will be measured to have larger values of R, since
the event will appear to have missing momentum, but will also decrease the measured
value of Mi. With respect to over-measurements of objects’ energies, the fact that
the object resolution functions fall more steeply than the parton luminosity distribu-
tions with increasing over-measurement ensures that events at large values of Mg and
R are made up predominantly of events with truly large CM energies, rather than
mis-reconstructed examples of large backgrounds, which are resigned to the lower left
corner of the razor plane

At larger values of R and Mp in excess of the SM particle masses, background
events are comprised of processes with genuine missing transverse energy resulting
from the decay of W and Z bosons to neutrinos, with CM energies in excess of
the boson masses. In this hyperbolic regime of the razor plane we find that we can
analytically model the shapes of each of the SM backgrounds by exploiting empirically
observed Mp/R? scaling.

10.2.1 2D Mg/R? Scaling

The one dimensional consequence of the hyperbolic two dimensional correlation be-
tween My and R? illustrated in figure 10.7 for the variable My is that, for increasing
values of R, the My distribution will fall more steeply. In section 9.2, we observed

that this scaling behavior obeys a simple analytic model, which is demonstrated in a
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sample multijet events selected from 2011 /s = 7 TeV CMS data shown in figure 10.8

(see section 10.4.2 and C.1 for details about the reconstruction and selection of this

sample).
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] Dijet QCD control data O -0016F .. CMS V{s=7TeV
g a 0.018F- e Dijet QCD control data
- B 002 ..
= © -0.022F
= % -0.024 e
[ = E T
2 5 0026 “§o.
i o -0.028F
L 003 gope b=0.307 +0.01 * {
O -0.032F
A ¢ 4 ) _0.034E I L L | L L e
500 250 300 350 700 0.01 0.02 0.03 0.04 0.05 0.06 o.(2)7
Mg [GeV] Rt

Figure 10.8: (Left) Mp distribution for different values of the R2, for events in data

selected in the HAD box with low threshold, prescaled jet triggers. Each distribution
is fit with an exponential function. (Right) The exponential slope parameter, S, from
a fit to the My distribution as a function of R?

cut*

These events are selected with low-threshold jet triggers which ensures that, in
the region of the razor plane illustrated in figure 10.8, they are comprised almost
exclusively of multijet events because of relative production rates at low CM energy.

With this single process isolated, we observe that the Mg distribution (integrated

SMg

Y

above some value of R) is well described by a single exponential function, e~

where S' is the exponential slope. Furthermore, we observe that the slope S exhibits

2

a linear dependence on the value of the cut on RZ,,

S =a+bR%, . (10.9)

cut

This same hyperbolic behavior of backgrounds suggests that R? should behave
similarly when applying cuts on Mg. In figure 10.9 we consider the same sample of
multijet events selected in data, except now look at the R? distribution for different
values of a cut on Mp. We observe that the R? distribution, like My, is well described

by an exponential function and that the exponential slope scales linearly with Mg*,

S =c+dMg* . (10.10)
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Figure 10.9: (Left) R? distribution for different values of the Mg for events in data
selected in the HAD box with low threshold, prescaled jet triggers. Each distribution
is fit with an exponential function. (Right) the exponential slope parameter, S, from
a fit to the R? distribution as a function of Mg*.

2

From linear fits to the measured values of Mg and R? slopes with increasing R?,

and Mg" (figure 10.8 and 10.9 right, respectively) we find that the measured values of
the scaling parameters b (from the Mg view) and d (from the R? view) are consistent.
In fact, we note that in order for this event sample to follow the scaling behavior of
equations (10.9) and (10.10) these two parameters must be the same, and the most
general two-dimensional function of these variables that exhibits this scaling behavior

is given by
Fy(Mp, B?) = [k; (Mg — My, )(R* = Rj ;) — 1] x e (M- Ma,) 05, (10.11)

where j indicates the background process the function describes, k; = b; = d; from the
one-dimensional exponential views of the variables and M}, ; and Rg ; are constants
specific to the process. Integrating this function over either R? or My, above a fixed
value, recovers the one-dimensional exponential behavior in the other variable.

As was the case for the one-dimensional My scaling described in section 9.2, we
observe that each SM background can be described in the razor plane by the function
Fj(Mg, R?), with some backgrounds having distinct kinematic subcomponents that
require two instances of F;. One such background is W ({v)+jets, one of the largest
SM backgrounds in the high Mg/R region of the razor plane events. These events
can have large values of Mr when two or more associated jets are produced with large

energies (and invariant mass), and large R when the these jets are recoiling against
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Figure 10.10: (Top) Mpg distribution of simulated W (¢v)+jets events as a function

R? ., requiring a reconstructed muon and an absence of b-tagged jets. Each distri-

bution is fit independently with two exponential components. (Bottom left) value of
exponential slope S of the first (steeper) component of Mg distribution, as a func-
tion R2,,. (Bottom right) value of exponential slope S of the second component as a

- 2
function RZ,.

the weakly interacting neutrino from the W decay. The My distribution for simulated

2

W +jets events in the muon final state is shown In figure 10.10, as a function of RZ .

We see that the distributions are well described by two exponential functions, and
that the slope of each component scales linearly with M, with different parameters.

Similarly, the analogous one-dimensional R?* distributions for the same simulated
W +jets data sample are shown in figure 10.11. We observe that the two exponential-
component model describes the event sample well, and that the two exponential
slopes evolve independently as a function of Mg™. Comparing the slope parameters
bIMC and v2MC€ from the one-dimensional My view with d1MC and d2M° from the
R? view we observe agreement, implying the two-dimensional distribution follows the
functional form of equation (10.11).

In order to confirm this two dimensional scaling behavior in data for W (uv)-+jets
events, we select an event sample comprised almost entirely of this background process

by requiring events have an isolated, well-identified muon (physics object reconstruc-
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Figure 10.12: (Top) Mp distribution of data events selected requiring a reconstructed

muon and an absence of b-tagged jets as a function RZ,. This event sample is com-

posed almost exclusively of W ({v)+jets events. Each distribution is fit independently
with two exponential components. (Bottom left) value of exponential slope S of the
first (steeper) component of My distribution, as a function R? . (Bottom right) value
of exponential slope S of the second component as a function R?,.
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tion and identification is described in section 10.4) and an absence on b-tagged jets,
which rejects backgrounds with top quarks. With the selected event sample we per-
form two-exponential-component fits to the Mg(R?) distributions as a function of
R% (Mg"), with the results shown in figure 10.12 (10.13). We observe that this data
sample exhibits the two component scaling behavior in each of the one-dimensional
Mp, and R? distributions, and that the values of b19%® and 292t are in agreement with
d19ata and d24at2 demonstrating that the sample can be described by two instances of

equation (10.11). Additionally, we find that the values we measure for these parame-

ters from data are in agreement with those extracted from our simulated W (¢v)+jets

sample.
= .
@ f CMS Preliminary Vs =7 TeV
o
S MU box zero b-tagged jet data ])
> "W+iets' control data | L = 250 pb~) — Mg > 250 GeV
e (W] PP ) e = 300 Gev
0 Mg > 350 GeV
2 — Mg > 400 GeV
)
o
10
L % L i
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
R2
o P 6
£ CMS Vs =7 TeV ) 2 CMS 5=7TeV
5 { MU box zero b-tagged jet data £ 7 % MU box zero b-tagged jet data
g 5 (W+jets' control daIaI L=250 pb”) g } (‘W+jets' control dataJ. L=250 pb)
o 30 o 8
2 g
g = g o }
[ %]
b 40 T }
A1 «
slope d1%®= 0.074 + 0.010 -11 slope d2%?=0.015 + 0.003
-50 | 1 | e | | L | e |
250 300 350 400 450 500 250 300 350 400 250 500
cut.
Mg (GeV) Mg" (GeV)

Figure 10.13: (Top) R? distribution of data events selected requiring a reconstructed
muon and an absence of b-tagged jets as a function M§™. This event sample is com-
posed almost exclusively of W (¢v)+jets events. Each distribution is fit independently
with two exponential components. (Bottom left) Value of exponential slope S of the

cut

first (steeper) component of Ry distribution, as a function M3*". (Bottom right) Value

of exponential slope S of the second component as a function Mg"™.

In the majority of final states in which we will search for evidence of SUSY, the
other large background is comprised of tt-+jets production, particularly in final states
with b-tagged jets. The corresponding one-dimensional Mg and R? distributions for

simulated tf + jets events in final states with at least one b-tagged jet and no leptons
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are are shown in figure 10.14-10.15. We see that this background is also well described

by a two-component model.
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Figure 10.14: (Top) My distribution of simulated tf+jets events as a function R,

requiring an absence of reconstructed leptons and at least one b-tagged jet. Each
distribution is fit independently with two exponential components. (Bottom left)
Value of exponential slope S of the first (steeper) component of My distribution, as a

function R?,. (Bottom right) Value of exponential slope S of the second component

as a function R2.

In the search for SUSY described in section 10.3, each of the dominant back-
ground in various final states, W (v)-+jets, Z(0¢,vv)+jets and ti+jets, follow this
two dimensional Mpg/R? scaling behavior. For a given background type, we find that
the parameters k;, MI%J and Rg,j are nearly identical between final states. We also
observe that the parameters describing the second, or flatter, instances of F} are
nearly identical between different backgrounds, corresponding to a large initial-state
radiation limit where we can no longer kinematically resolve the difference between,
for example, semi-leptonic tt+jets events and W (lv)+jets events as the tf and W
systems recoil against hard jets. In this limit, the product of My and R? falls like
the partonic luminosity as a function of v/3, with little sensitivity to the masses of
the particles present in the event. All of the details of how the various backgrounds

are modeled, and the observed relations between modeling parameters, are given in
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Figure 10.15: (Top) R? distribution of simulated t{+jets events as a function Mg*,
requiring an absence of reconstructed leptons and at least one b-tagged jet. Each
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section 10.5.2

It is important to note that the analytical description of the SM backgrounds in
the razor plane given by equation (10.11) is empirical in nature, and will not hold
to an arbitrary precision. Furthermore, the function F; only describes backgrounds
in a subset of the razor plane, at values of Mg in excess of the SM particles masses
and intervals of R that can be process dependent. Despite these caveats, we find
that this analytic approach provides an accurate description of SM backgrounds well
within the precision we are sensitive to given the size of the dataset and the region of
the razor plane we will search for SUSY; in fact, simulated events indicate that this
background parameterization provides an adequate description for a dataset more
than one hundred times as large as the one considered here.

With this 2D background prediction we can relate the shape of backgrounds in
the low Mpz/R? region to the shape at large values, meaning that we can measure the

shape parameters of each background in a signal free region and extrapolate the full
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analytic background prediction, with corresponding uncertainties, to the full razor
plane. This procedure is described in detail in section 10.5.2. A fully continuous,
2D background predictions allows us to extract evidence of new physics not only
through anomalously high event yields, but also through the shape of our selected

data samples.

10.2.2 SUSY in the 2D Razor Plane

With the shape and yield of SM backgrounds in the razor plane understood, the task
of identifying evidence of SUSY events amounts to identifying an excess of events that
is shaped like SUSY. Since we have descriptions of both Mgz and R, we can exploit
our knowledge of both variables to identify and characterize signal events.

To illustrate the phenomenological properties of Mz and R? for SUSY events, we
consider two example sparticle production and decay topologies: Di-squark produc-
tion, where each squark decays to a quark (which hadronizes and is reconstructed as
a jet) and an LSP, and di-gluino production, where the gluinos each decay to two
quarks and an LSP. These example topologies are shown in figure 10.16. The details

of event simulation for these samples can be found in section C.1.

p

p q p
Figure 10.16: Example R-parity conserving SUSY production and decay topologies.
(Left) Di-squark production. Each squark, ¢, decays directly to a quark, ¢. and
a weakly interacting LSP, x°. (Right) Di-gluino production with each gluino, g,
decaying to two quarks, ¢, and an LSP, y°.

For samples of each of these types of events, the My distribution is sensitive to

the mass difference between the squarks/gluinos and the weakly interacting LSPs,
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peaking at a characteristic scale

m2 - m%()

MR Ny = X (10.12)
Mg/g

This peaking behavior is shown for our two example topologies in figure 10.17. Despite
the fact that the di-gluino topology features three-body decays, and the quark-jets
coming from those decays are not consistently paired in mega-jets with the correct
gluino assignment, the My distribution still identifies with characteristic scale as if
the decays were two-body to only one visible and invisible particle. This feature
allows us to identify these events using their mass scale, even when decay topologies
deviate form the simplest case illustrated by our d-squark example. It also means

that, kinematically, the Mg distribution alone is not able to strongly distinguish

between these two possibilities.
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Figure 10.17: Mpg distribution of simulated SUSY events as a function of different
sparticle masses. (Left) Di-squark production where each squark decays to a quark
and LSP. (Right) Di-gluino production where each gluino undergoes three-body decay
to two quarks and an LSP.

The variable R can be used to distinguish between the two cases. R is sensitive
to the partitioning of energy in the event between visible and invisible particles.
Relative to the squark case, the di-gluino events have more visible, detectable jets in
the final state and these objects carry more of the momentum on average than do

the LSPs. The result is, on average, smaller values of R for di-gluino events than for
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di-squarks, illustrated in the R? distributions shown in figure 10.18. In both cases,
two weakly interacting particles in the final state result in larger values of R than the

SM backgrounds, but more so for di-squarks. We also observe in figure 10.18 that the
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Figure 10.18: R? distribution of simulated SUSY events as a function of different
sparticle masses. (Left) Di-squark production where each squark decays to a quark
and LSP. (Right) Di-gluino production where each gluino undergoes three-body decay
to two quarks and an LSP.

shape of the R? distribution for our examples is largely independent of the sparticle
masses in these events. This implies an interesting phenomenological picture: The
My distribution is sensitive to the masses of the particles in the event and largely
insensitive to the decay topology. Conversely, the R? distribution is largely insensitive
to the sparticle masse