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Università degli Studi di Siena
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Introduction

The theory of fundamental particles, called Standard Model (SM), has proven to be

successfully able to describe the way particles interact, over more than 40 years of

attempting to invalidate its structure. Nevertheless, it is well known that the SM is

far from being a “theory of everything”: for instance, it is not able to incorporate

the full gravitation theory and it does not explain the size of the matter-antimatter

asymmetry of the universe. Thus it is necessary to move from the SM to look

for new physics (NP) effects beyond it, representing the missing pieces of a large

puzzle. In the past decades, key players in this quest were the collision machines,

able to perform more and more precise measurements with the increase of energy

and apparatus complexities. The Large Hadron Collider (LHC) at CERN, the

latest and more powerful operating collider today, is able to study processes at the

unexplored region of 7 TeV centre-of-mass energies (14 TeV are expected in the next

run period). It recently reported fundamental results for the comprehension of how

particles interact: amongst others, the observation of the Higgs boson by the Atlas

and the CMS collaborations [1, 2], and the heavy-flavour counterpart measurement,

the first evidence of the B0
s → µ+µ− decay at the LHCb collaboration [3]. So

far, the measurements substantially confirmed the SM predictions, suggesting that

direct searches of unexpected processes could be not straightforward at the present

achievable energies. Therefore, in the current panorama the crucial ingredient to

increase our knowledge is to provide several, different and as precise as possible

physics measurements. This not only reduces the uncertainties of the theoretical

framework but, as a critical consequence, makes possible to increase the predictive

power of the model, over-constraining it from different sides.

The hadronic decays of particles containing b-quark is a very promising field

of research. They show a rich set of topologies: tree, penguin, annihilation-type

diagrams are typically involved, thus providing a powerful probe in searching ef-

fects from new higher mass particles, that may enter through high-order internal

loops. Quantitative SM predictions are affected by significant uncertainties because

a perturbative approach cannot be used to calculate hadronic decays amplitudes.

However, combining several measurements of similar processes allows the cancella-

tion of unknown parameters and consequently the reduction of the uncertainties,

providing a powerful tool to compare experimental results and the theoretical frame-

work. A large amount of important results involving the B0 and the B+ mesons

vii
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has been obtained at the b-factories during the past decade. The upgraded Collider

Detector at Fermilab TeVatron (CDF II), operating until 2011, was able to study

B0, B+, but also the much less accessible B0
s and Λ0

b decay modes in a different

experimental environment. The topic of this thesis is the study of charmless two-

body neutral b-hadrons decay modes at CDF, collectively called B → h+h
′−. We

refer to B → h+h
′− as the decays of a B0

d or a B0
s meson into charged pions or

kaons, and the decays of a Λ0
b baryon into a proton and a charged pion or kaon.

The B → h+h
′− decays offer a rich set of important measurements: not yet ob-

served branching ratios, such as the B(B0
s → π+π−) and B(B0 → K+K−), and

charge conjugation and parity inversion (CP ) violating effects in the B0 → K+π−,

B0
s → K−π+, Λ0

b → pπ−, and Λ0
b → pK− decays.

The measurements of charmless annihilation b-mesons decay modes B0
s → π+π−

and B0 → K+K− is one of the subjects of this work: in spite of a general progress

of the field, this specific class of decay amplitudes has resisted attempts at quan-

titative predictions up to the present, and it is often simply neglected in calcu-

lations. Indeed, these decays proceed only via hard to predict processes, such as

penguin-annihilation and W -exchange topologies. Predictions for their branching

ratios typically lead to values of order ∼ 10−7, but calculations vary greatly between

different theoretical approaches, and even within the same approach. The lack of

knowledge of the size of annihilation-type amplitudes introduces irreducible uncer-

tainties in predictions for several decays of great interest, such as B0 → π+π− and

B0
s → K+K−. However, the annihilation B0

s → π+π− and B0 → K+K− modes

were still unobserved at the time of the analysis: the experimental investigation of

both decay modes was therefore very desirable, and had the potential to provoke

a significant advancement of this theoretical field: precise measurements allow a

better understanding of the b-mesons system, and can be used as a check of the

different theoretical approaches.

The second subject of this thesis are CP violating effect measurements in the

B0
s and Λ0

b unexplored systems and in the well-studied B0 decays. At the time of

this analysis, no observations of CP violation in the B0
s system were performed.

The only existing measurement of ACP (B0
s → K−π+) was achieved in the previ-

ous version of this analysis at CDF, with a significance of more than 2σ. With

the statistics available at the time of the analysis, we would expect to perform an

ACP (B0
s → K−π+) measurement with resolution less than 10%: assuming the SM

prediction of the central value of about 30% to be correct, it should be possible to

obtain the first evidence of this observable. It would also be the first precise mea-

surement of a direct CP violation in the B0
s system. In addition, this measurement

has been proposed as a nearly model-independent test for the presence of non-SM

physics [4, 5]. The relationships between charged-current quark couplings in the

SM predict a well-defined hierarchy between direct CP violation in B0 → K+π−

and B0
s → K−π+ decays, yielding a significant asymmetry for the latter, of about

30%, as mentioned above. This large effect allows easier experimental investigation
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and any discrepancy may indicate contributions from non-SM amplitudes. Thus

simultaneous measurements of ACP (B0 → K+π−) and ACP (B0
s → K−π+) are very

desirable. In this thesis we were also able to perform a precise measurement of

ACP (B0 → K+π−). This effect has already been studied at the b-factories for a

long time, and the first observation was obtained back in 2007. The CP asymmetry

in the B0 → K+π− decay was protagonist of intense experimental and theoretical

activity, together with the same effect in the B+ → K+π0 decays. Under standard

assumptions of isospin symmetry and smallness of contributions from higher-order

processes, similar CP asymmetries are predicted for B0 → K+π− and B+ → K+π0

decays [6, 7]. However, experimental data show a significant discrepancy, referred

to as the Kπ puzzle. Even if the discrepancy can be accommodate within the SM or

using simple extensions of the standard model, uncertainty on the contribution of

higher-order SM amplitudes prevented a firm conclusion. Nevertheless, high accu-

racy measurements of the direct CP asymmetry ACP (B0 → K+π−) remain a very

interesting subject of study.

To complete the picture, we also performed CP asymmetry measurements of

Λ0
b → pK− and Λ0

b → pπ− decays. While over the past two decades the b-meson

CP asymmetries have been deeply and methodically investigated at the b-factories,

the b-baryon system represents a new window to look at: the present predictions for

CP violation in charmless b–baryon decays within the Standard Model (SM) lack

of accuracy, and their branching fractions are observed being larger than expected.

Precise measurements of CP asymmetries in Λ0
b → pπ− and Λ0

b → pK− decays will

increase our understanding of the underlying scenario.

Using the full sample of non leptonic two-body charmless decays of neutral b-

hadrons B → h+h
′− collected at the CDF II experiment, we report:

• the first evidence of the annihilation B0
s → π+π− decay modes;

• the first two-sided limit of the branching ratio B(B0 → K+K−);

• an evidence of ACP (B0
s → K−π+), confirming the first evidence and then the

first observation reported at LHCb [8, 9];

• the world’s unique measurements of ACP (Λ0
b → pπ−) and ACP (Λ0

b → pK−).

The search for the rare modes B0
s → π+π− and B0 → K+K− was performed

in 2011, when only a subsample of the total CDF data sample was available for

the analysis. On the other hand, the CP measurements have been performed in

2012 using the final CDF data sample. The thesis is organized as follows. In

chap. 1 we outline the motivation of the measurements and the dynamics of b-

hadron decays, describing the CP violation phenomenon in detail. In chap. 2 we

describe the experimental apparatus, while chap. 3 contains the description of the

data sample used in the analysis and we show for the first time the sample mass

distribution. Chapter 4 hosts a detailed description of the Monte Carlo samples
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used. The accurate reproduction of the data distributions is one of the key point of

this analysis, because it will be used in the fit of composition to obtain the desired

measurements. In chap. 5 we discuss the fundamental point of the analysis: how

it is possible to obtain statistical separation among the different B → h+h
′− decay

modes combining kinematics and particle identification information. We also report

the structure of the Likelihood fit used to disentangle the different B → h+h
′−

decay modes. In chap. 6 we describe the kinematics templates while in chapter

chap. 7 we report the templates containing the Particle Identification information,

used in the fit of composition. Chapter 8 reports the results and the checks of

the fit of composition. To obtain the physics measurements of branching fractions

from the parameters returned from the fit we need to apply the corrections for

different efficiency of the selection for the various decay modes. These efficiency

corrections are reported in chap. 9. To obtain the physical CP observables desired,

the raw results of the fit must be corrected for the charge asymmetry corrections

between the positively and negatively charged kaons, pions and protons. These

corrections are reported in chap. 10. Chapter 11 discusses the systematics effects

and their uncertainties, and reports the method used to evaluate the significance of

the annihilation decay modes results. Finally, chap. 12 contains a discussion about

the obtained results and their interpretation.



Chapter 1

Two-body charmless b−hadron

decays

This chapter briefly introduces the general aspects of the SM and describes in details

only the most relevant theoretical points for this work. Our treatment will follow

very closely the one presented in Ref. [10].

1.1 The Standard Model: a general introduction

The Standard Model (SM) of particle physics is the theory used to describe the

fundamental nature’s laws. It is the result of the human desire to understand the

surrounding universe, and how does it works. The SM is a quantum field theory

predicting three kind of interactions between elementary particles: the weak, the

strong and the electromagnetic interaction. While the electromagnetic interaction is

responsible for almost all the phenomena encountered in daily life (except gravity),

the weak and strong forces are effective only over a very short range and dominate

only at the level of subatomic particles. The weak force is responsible for phenom-

ena like radioactive decays; the strong interaction holds together quarks to form

proton and neutrons, and also proton and neutron themselves to form atom’s nu-

cleus, thus is strictly connected with nuclear fission phenomenon we use to obtain

nuclear energy. The SM describes the interactions between elementary particles us-

ing the concept of mediation: the particles exchange between themselves the gauge

bosons, that “mediate” the interaction. The gauge bosons introduced are the pho-

ton γ, mediating the electromagnetic interaction, the W± and Z0, mediating the

weak interaction, and the gluons, for the strong force. The elementary particles are

divided into 6 leptons (electron e, muon µ, tau τ , and the corresponding neutrinos

νe, νµ, ντ ) and 6 quarks (up u, down d, charm c, strange s, top t and beauty b),

with the corresponding antiparticles. Both leptons and quarks are effected by elec-

troweak interaction (electromagnetic and weak unification), while only the quarks

are affected by strong interaction. They are organized into three families (three

1
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generations), according to the charge, as follow: As far as today, the SM resisted

1st 2st 3rd charge

Leptons e− µ− τ− -1

νe νµ ντ 0

Quarks u c t +2/3

d s b -1/3

Table 1.1: Quarks and leptons families.

over the years many tests of the accuracy of its predictions, proving to be able to

describe with sufficient accuracy the subatomic world. However the model misses

some important pieces: for example, it is not able to incorporate the most familiar

force in our everyday lives, the gravity. So, even though the SM is currently the best

description we have of the particles’ and forces’ behavior, it does not explain the

complete picture. There are also other important questions it cannot answer: why

our universe in composed mostly of matter, and where is the missing antimatter,

why there are so many elementary particles, why their masses have exactly that

values and many others.

This work of thesis will investigate the heavy flavor sector, involving decays of

particles containing the most massive quarks. In particular, we will study the b-

hadrons, that means particles containing b-quarks. The topic of this work is the

measurements of B and CP asymmetries of two-body charmless decays of neutral

b-hadrons, (B0
(s) → h+h

′− and Λ0
b → ph−, where the h can be a pion or a kaon)

collectively called B → h+h
′−. Next sections describe the theoretical framework

in which the b-hadrons are included. Firstly, it is necessary to introduce the CKM

matrix describing the electroweak interactions between quarks and how the phe-

nomenon of the CP violation manifests itself.

1.2 The CKM Matrix

In the framework of the Standard Model of electroweak interactions [11], CP -

violating effects may originate from the charged-current interactions of quarks, hav-

ing the structure

D → UW−. (1.1)

Here D ∈ {d, s, b} and U ∈ {u, c, t} denote down- and up-type quark flavours,

respectively, whereas the W− is the weak boson. From a phenomenological point

of view, it is convenient to collect the generic “coupling strengths” VUD of the
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charged-current processes in (1.1) in the form of the following matrix:

V̂CKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 , (1.2)

which is referred to as the Cabibbo–Kobayashi–Maskawa (CKM) matrix [12, 13].

From a theoretical point of view, this matrix connects the electroweak states (d′, s′, b′)

of the down, strange and bottom quarks with their mass eigenstates (d, s, b) through

the following unitary transformation: d′

s′

b′

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 ·
 d

s

b

 . (1.3)

Consequently, V̂CKM is actually a unitary matrix. This feature ensures the absence

of flavour-changing neutral-current (FCNC) processes at the tree level in the SM,

and is hence at the basis of the famous Glashow–Iliopoulos–Maiani (GIM) mecha-

nism [14]. If we express the non-leptonic charged-current interaction Lagrangian in

terms of the mass eigenstates appearing in (1.3), we arrive at:

LCC
int = − g2√

2

(
ūL, c̄L, t̄L

)
γµ V̂CKM

 dL

sL

bL

W †µ + h.c., (1.4)

where the gauge coupling g2 is related to the gauge group SU(2)L, and the W
(†)
µ

field corresponds to the charged W bosons. Looking at the interaction vertices

following from (1.4), we observe that the elements of the CKM matrix describe

in fact the generic strengths of the associated charged-current processes, as noted

above. In fig. 1.1, we show the D → UW− vertex and its CP conjugate. Since the

corresponding CP transformation involves the replacement

VUD
CP−→ V ∗UD, (1.5)

CP violation could, in principle, be accommodated in the SM through complex

phases in the CKM matrix. The question is whether there actually are physical

complex phases in that matrix. In can be shown that the constraint of unitarity

of the CKM matrix reduces the matrix observables to three Euler angles and a

complex phase. This phase is the only source of CP violation in the quark sector

allowed by the SM. A commonly used parameterization is due to Wolfenstein[15].

VCKM =


1− λ2

2 λ Aλ3(ρ̄− iη̄)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ̄− iη̄) −Aλ2 1

+O(λ4), (1.6)
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where λ = |Vus| is the sine of the Cabibbo angle, and A, ρ, η are the other three

observables. In particular, η is the phase responsible for the CP violation within

the SM.

(a)

CP
−→

Figure 1.1: CP-conjugate charged-current quark-level interaction processes in the

SM.

1.2.1 Further requirements for CP violation

In order to be able to accommodate CP violation within the framework of the SM

through a complex phase in the CKM matrix, at least three generations are required.

However, this feature is not sufficient for observable CP violating effects. Further

conditions have to be satisfied, which can be summarized as follows [16, 17]:

(m2
t −m2

c)(m
2
t −m2

u)(m2
c −m2

u)(m2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d)× JCP 6= 0, (1.7)

where

JCP = |Im(ViαVjβV
∗
iβV

∗
jα)| (i 6= j, α 6= β) . (1.8)

The mass factors in (1.7) are related to the fact that the CP -violating phase of the

CKM matrix could be eliminated through an appropriate unitary transformation

of the quark fields if any two quarks with the same charge had the same mass.

Consequently, the origin of CP violation is closely related to the “flavour problem” in

elementary particle physics. The second element of (1.7), the “Jarlskog parameter”

JCP [16], can be interpreted as a measure of the strength of CP violation in the SM.

The experimental information on the CKM parameters implies JCP = O(10−5), so

that CP -violating phenomena are hard to observe. However, new complex couplings

are typically present in scenarios for NP.

The Wolfenstein representation of the CKM matrix 1.6, up to the third order

expansion of λ, shows that the complex terms are present in the elements connecting

the first and the third generation of quarks, in the elements representing the t →
d and b → u transitions. Thus, b-hadron decays are particularly suited for the

experimental study of CP violation effects.
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Mode Topology contribution Mode Topology contribution

B0 → π+π− T + P + 2
3P

C
EW + PA+ E B0

s → π+π− PA,E

B0 → K+π− T + P + 2
3P

C
EW B0

s → K−π+ T + P + 2
3P

C
EW

B0 → K+K− PA,E B0
s → K+K− T + P + 2

3P
C
EW + PA+ E

Table 1.2: Diagrams contributing to the amplitudes of each charmless B0
(s) decay

into to two charged mesons. See text for the definitions.

1.3 Decays of b–mesons

The b-meson system consists of charged and neutral B mesons, which are charac-

terized by the following valence-quark contents:

B+ ∼ ub̄, B+
c ∼ cb̄, B0

d ∼ db̄, B0
s ∼ sb̄,

B− ∼ ūb, B−c ∼ c̄b, B̄0
d ∼ d̄b, B̄0

s ∼ s̄b.
(1.9)

As far as the weak decays of b–mesons are concerned, we distinguish between lep-

tonic, semileptonic and non-leptonic transitions. The most complicated B decays

are the non-leptonic transitions, which are mediated by b → q1 q̄2 d (s) quark-level

processes, with q1, q2 ∈ {u, d, c, s}. Non-leptonic two-body charmless decays are

very interesting processes to study flavor physics in the b-meson sector. The large

mass of the b-meson allows for several different channels, which provide multiple

ways for testing the consistency of the Standard Model interpretation of CP viola-

tion. For each channel, observables include the CP -averaged branching fractions,

the direct CP -violating asymmetries and, for certain decays of neutral mesons, the

mixing-induced CP -violating asymmetry.

1.3.1 B0
(s) → h+h

′− decay modes

Among all the non-leptonic two-body charmless decays, we now focus on the topic

of this work of thesis, that are the B0 → π+π−, B0 → K+π−, B0 → K+K−,

B0
s → π+π−, B0

s → K−π+, and B0
s → K+K− decay modes, collectively called

B0
(s) → h+h

′− decay modes.

Amplitudes of B0
(s) → h+h

′− decays are dominated by b̄ → ū (tree-type) and

b̄→ s̄(d̄) (penguin-type) quark transitions (see figs. 1.2–1.5). The different B0
(s) →

h+h
′− decay modes receive contributions from different transitions, summarized in

tab. 1.2. The observed decay-rates are O(10−5) and smaller because the former

processes involve leading-order diagrams that are CKM suppressed (|Vub| � |Vcb|),
while the latter involves higher-order diagrams.

In general, in order to analyse non-leptonic B decays theoretically, one uses

low-energy effective Hamiltonians. The problem of calculating hadronic amplitudes

is simplified by considering that there are two different scales involved: the scale
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(a) (b)

Figure 1.2: Color-allowed (left panel) and color suppressed (right panel) tree (T)

diagrams contributing to B → h+h
′− decays.

(a)

Figure 1.3: QCD penguin (P) diagram contributing to B → h+h
′− decays.

(a) (b)

Figure 1.4: Color-allowed PEW (left panel) and color suppressed PCEW (right panel)

electroweak penguin diagrams contributing to B → h+h
′− decays.

characterizing the electroweak interactions is O(100 GeV), while the scale charac-

terizing the hadronizations of quarks into hadrons is O(mb). Given this difference,

it is possible to factorize the problem using an “effective” hamiltonian approach.

This effective theory is based on point-like interaction in analogy with the early
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(a) (b)

Figure 1.5: Penguin annihilation PA (left panel) and W − −exchange E (right

panel) diagrams contributing to B → h+h
′− decays.

Fermi theory. Effective hamiltonians are calculated by making use of the OPE [18],

“operator product expansion”, yielding transition matrix elements of the following

structure:

〈f |Heff |i〉 =
GF√

2
λCKM

∑
k

Ck(µ)〈f |Qk(µ)|i〉. (1.10)

Using this technique it is possible to separate the short-distance contributions, which

are described by perturbative quantities Ck(µ) (“Wilson coefficient functions”),

from the long-distance ones, described by non-perturbative quantities 〈f |Qk(µ)|i〉
(“hadronic matrix elements”). GF is the Fermi constant, whereas λCKM is a CKM

factor and µ denotes an appropriate renormalization scale appropriately chosen for

the process of interest. i〉 and 〈f | are the initial and final states. The Qk are local

operators, which are generated by electroweak interactions and QCD, and govern

“effectively” the decay in question. The Wilson coefficients Ck(µ) can be considered

as scale-dependent couplings related to the vertices described by the Qk.

For the exploration of CP violation, the class of non-leptonic B decays that

receives contributions both from tree and from penguin topologies plays a key rôle.

If we apply the relation

V ∗urVub + V ∗crVcb + V ∗trVtb = 0 (r ∈ {d, s}), (1.11)

which follows from the unitarity of the CKM matrix, and “integrate out” the top

quark (which enters through the penguin loop processes) and the W boson, we may

write

Heff =
GF√

2

∑
j=u,c

V ∗jrVjb

{
2∑

k=1

Ck(µ)Qjrk +
10∑
k=3

Ck(µ)Qrk

} . (1.12)

Here we have introduced another quark-flavour label j ∈ {u, c}, and the Qjrk can be

divided as follows:

• Current–current operators:

Qjr1 = (r̄αjβ)V–A(j̄βbα)V–A

Qjr2 = (r̄αjα)V–A(j̄βbβ)V–A.
(1.13)
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• QCD penguin operators:

Qr3 = (r̄αbα)V–A
∑

q′(q̄
′
βq
′
β)V–A

Qr4 = (r̄αbβ)V–A
∑

q′(q̄
′
βq
′
α)V–A

Qr5 = (r̄αbα)V–A
∑

q′(q̄
′
βq
′
β)V+A

Qr6 = (r̄αbβ)V–A
∑

q′(q̄
′
βq
′
α)V+A.

(1.14)

• EW penguin operators (the eq′ denote the electrical quark charges):

Qr7 = 3
2(r̄αbα)V–A

∑
q′ eq′(q̄

′
βq
′
β)V+A

Qr8 = 3
2(r̄αbβ)V–A

∑
q′ eq′(q̄

′
βq
′
α)V+A

Qr9 = 3
2(r̄αbα)V–A

∑
q′ eq′(q̄

′
βq
′
β)V–A

Qr10 = 3
2(r̄αbβ)V–A

∑
q′ eq′(q̄

′
βq
′
α)V–A.

(1.15)

The current–current, QCD and EW penguin operators are related to the tree, QCD

and EW penguin processes with the same structure shown for the B0
(s) → h+h

′−

decays in figs. 1.2–1.5. At a renormalization scale µ = O(mb), the Wilson coefficients

of the current–current operators are C1(µ) = O(10−1) and C2(µ) = O(1), whereas

those of the penguin operators are O(10−2) [19, 20]. Note that penguin topologies

with internal charm- and up-quark exchanges [21] are described in this framework by

penguin-like matrix elements of the corresponding current–current operators [22],

and may also have important phenomenological consequences [23, 24].

Since the ratio α/αs = O(10−2) of the QED and QCD couplings is very small,

we would expect näıvely that EW penguins should play a minor rôle in comparison

with QCD penguins. This would actually be the case if the top quark was not

“heavy”. However, since the Wilson coefficient C9 increases strongly with mt, we

obtain interesting EW penguin effects in several B decays: B → Kφ modes are

affected significantly by EW penguins, whereas B → πφ and Bs → π0φ transitions

are even dominated by such topologies [25, 26]. EW penguins also have an important

impact on the B → πK system [27].

The low-energy effective Hamiltonians discussed above apply to all B decays

that are caused by the same quark-level transition, i.e. they are “universal”. Conse-

quently, the differences between the various exclusive modes of a given decay class

arise within this formalism only through the hadronic matrix elements of the rele-

vant four-quark operators. Unfortunately, the evaluation of such matrix elements is

associated with large uncertainties and is a very challenging task. In this context,

“factorization” is a widely used concept and has a long history [28]: during the

time, several different approaches have been developed. The most commonly used

are briefly described in the following.
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1.4 Factorization approaches

1.4.1 QCD factorization

“QCD factorization” [29] is an approach developed in accordance with the old pic-

ture that factorization should hold for certain decays in the limit of mb � ΛQCD

[30], provides a formalism to calculate the relevant amplitudes at the leading order

of a ΛQCD/mb expansion. The resulting expression for the transition amplitudes

incorporates elements both of the naive factorization approach sketched above and

of the hard-scattering picture. Let us consider a decay B̄ →M1M2, where M1 picks

up the spectator quark. If M1 is either a heavy (D) or a light (π, K) meson, and

M2 a light (π, K) meson, QCD factorization gives a transition amplitude of the

following structure:

A(B̄ →M1M2) = [“naive factorization”]× [1 +O(αs) +O(ΛQCD/mb)] . (1.16)

Several input parameters are needed, including quark masses, heavy-to-light form

factors, light-cone distributions amplitudes etc. While the O(αs) terms, i.e. the

radiative non-factorizable corrections, can be calculated systematically, the main

limitation of the theoretical accuracy originates from the O(ΛQCD/mb) terms. In-

frared end-point logarithmic and linear divergences arise when calculating certain

distributions, for example the penguin annihilation diagrams that are one of the

topic of this thesis. In literature, this kind of linear divergences are typically treated

extracting the divergence by introducing a parameter XA:∫ 1

0

dy

y
Φ(y) ≡ XA + c1, (1.17)

where Φ is a function of the amplitudes, XA is an unknown parameter representing

the soft gluon interaction with the quarks, c1 is typically vanishing. Since the

divergence is regulated by a physical scale of order O(ΛQCD), XA is treated as a

complex number of order ∼ ln(mb/ΛQCD). Logarithmic divergences are typically

treated as follows: ∫ 1

0
dy

ln y

y
→ −1

2
(XA)2. (1.18)

These divergences usually need to be regularized parameterizing XA from experi-

mental results, thus introducing large uncertainties in the predictions. In the final

chapter chap. 12 will see how thanks to our results several revisitations of the QCDF

predictions have been performed in the last year. The benefits of the QCDF ap-

proach are that some of the hadronic parameters, namely ratios of tree-to-penguin

amplitudes, strong phases, and corrections to form factors, are obtained from first

principles and independently of models. However, the form factors evaluated at a

point need to be determined from QCD sum-rules [31] or from data. QCDF predicts

that most strong phases, being expansions in αs, are suppressed. As a consequence,

factorization small direct CP asymmetries, possibly in contrast with experimental

data.
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1.4.2 Perturbative QCD factorization

Another QCD approach to deal with non-leptonic B-meson decays, the “perturba-

tive hard-scattering approach” (pQCD), was developed independently in [32], and

differs from the QCD factorization formalism in some technical aspects. Form fac-

tors are assumed to have a perturbative expansion and the meson wave functions

depend on transverse momenta. Non-perturbative parts are organized as univer-

sal hadron light-cone wave functions, which can be extracted from experimental

data, constrained by lattice calculations or QCD sum-rules. It allows more stable

treatment of end-point singularities arising when calculating non-factorizable and

annihilation amplitudes with respect of the QCDF approach.

1.4.3 Other approaches

An interesting technique for “factorization proofs” is provided by the framework of

the “soft collinear effective theory” (SCET) [33], which has received a lot of attention

in the literature and led to various applications. It improves and generalizes QCDF

approach allowing each of the scales m2
b ,Λ

2
QCD etc. to be treated independently

and factorization to be generalized to all orders of αs.

Non-leptonic B decays can also be studied within QCD light-cone sum-rule approach

[34].

1.5 CP violation in b-mesons

There are three kinds of CP violations:

• the direct CP violation: it occurs when the amplitude A(i → f) of a decay

and the amplitude A(̄i→ f̄) of the CP–conjugate eigenstate are different.

• the CP violation in the mixing: it occurs when the mass eigenstates and the

CP eigenstates of a neutral meson are different.

• the CP violation in the interference between a decay without mixing, B0 → f

and a decay with mixing, B0 → B̄0 → f .

The last two effects are usually referred to as “indirect” CP violation effects. Since

the topics of this thesis are only the direct CP violation effects, we will report here

a detailed description of this phenomenon.

Let us consider a non-leptonic decay B̄ → f̄ that is described by the low-energy

effective Hamiltonian in (1.12). The corresponding decay amplitude is then given
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as follows:

A(B̄ → f̄) = 〈f̄ |Heff|B̄〉

=
GF√

2

∑
j=u,c

V ∗jrVjb

{
2∑

k=1

Ck(µ)〈f̄ |Qjrk (µ)|B̄〉+

10∑
k=3

Ck(µ)〈f̄ |Qrk(µ)|B̄〉

} .(1.19)

Concerning the CP -conjugate process B → f , we have

A(B → f) = 〈f |H†eff|B〉

=
GF√

2

∑
j=u,c

VjrV
∗
jb

{
2∑

k=1

Ck(µ)〈f |Qjr†k (µ)|B〉+

10∑
k=3

Ck(µ)〈f |Qr†k (µ)|B〉

} .(1.20)

If we use now that strong interactions are invariant under CP transformations, insert

(CP )†(CP ) = 1̂ both after the 〈f | and in front of the |B〉, and take the relation

(CP )Qjr†k (CP )† = Qjrk (1.21)

into account, we arrive at

A(B → f) = ei[φCP(B)−φCP(f)]

×GF√
2

∑
j=u,c

VjrV
∗
jb

{
2∑

k=1

Ck(µ)〈f̄ |Qjrk (µ)|B̄〉+

10∑
k=3

Ck(µ)〈f̄ |Qrk(µ)|B̄〉

} , (1.22)

where the convention-dependent phases φCP(B) and φCP(f) are defined through

(CP )|B〉 = eiφCP(B)|B̄〉, (CP )|f〉 = eiφCP(f)|f̄〉. (1.23)

Consequently, we may write

A(B̄ → f̄) = e+iϕ1 |A1|eiδ1 + e+iϕ2 |A2|eiδ2 (1.24)

A(B → f) = ei[φCP(B)−φCP(f)]
[
e−iϕ1 |A1|eiδ1 + e−iϕ2 |A2|eiδ2

]
. (1.25)

Here the CP -violating phases ϕ1,2 originate from the CKM factors V ∗jrVjb, and the

CP -conserving “strong” amplitudes |A1,2|eiδ1,2 involve the hadronic matrix elements

of the four-quark operators. In fact, these expressions are the most general forms

of any non-leptonic B-decay amplitude in the SM, i.e. they do not only refer to the

∆C = ∆U = 0 case described by (1.12). Using (1.24) and (1.25), we obtain the

following CP asymmetry:

ACP ≡ Γ(B → f)− Γ(B̄ → f̄)

Γ(B → f) + Γ(B̄ → f̄)
=
|A(B → f)|2 − |A(B̄ → f̄)|2

|A(B → f)|2 + |A(B̄ → f̄)|2

=
2|A1||A2| sin(δ1 − δ2) sin(ϕ1 − ϕ2)

|A1|2 + 2|A1||A2| cos(δ1 − δ2) cos(ϕ1 − ϕ2) + |A2|2
. (1.26)

We observe that a non-vanishing value can be generated through the interference

between the two weak amplitudes, provided both a non-trivial weak phase difference
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ACP BABAR Belle CDF

B0 → K+π− −10.7± 1.6+0.6
−0.4 −9.4± 1.8± 0.8 −8.6± 2.3± 0.9

B0
s → K−π+ − − 39± 15± 8

Λ0
b → pK− − − 3± 15± 8

Λ0
b → pπ− − − 37± 17± 3

Table 1.3: Summary of ACP of B → h+h
′− decays in unit of % at the time of the

analysis from Babar [35], Belle [36], CDF[37].

Mode BABAR Belle CDF

B0 → π+π− 5.5± 0.4± 0.3 5.1± 0.2± 0.2 5.10± 0.33± 0.36†
B0 → K+π− 19.1± 0.6± 0.6 19.9± 0.4± 0.8 −
B0 → K+K− 0.04± 0.15± 0.08 0.09+0.18

−0.13 ± 0.01 0.39± 0.16± 0.12†
B0
s → π+π− − < 12 < 1.2†

B0
s → K−π+ − < 26 5.0± 0.7± 0.8†

B0
s → K+K− − 38+10

−9 ± 7 24.4± 1.4± 4.6†
Λ0
b → pπ− − − 3.5± 0.6± 0.9†

Λ0
b → pK− − − 5.6± 0.8± 1.5†

Table 1.4: Summary of branching fractions in unit 10−6 of B → h+h
′− decays

at the time of the analysis from Babar [38], Belle [39, 40, 41], CDF[42, 43]. The

symbol † labels the case when the relative branching fraction is converted to absolute

branching fraction.

ϕ1 − ϕ2 and a non-trivial strong phase difference δ1 − δ2 are present. This kind of

CP violation is referred to as “direct” CP violation, as it originates directly at

the amplitude level of the considered decay. It is the B-meson counterpart of the

effects that are probed through Re(ε′/ε) in the neutral kaon system,1 and have been

established with the help of B0 → π∓K± decays [44].

1.6 ACP(B → h+h
′−) measurements motivations

One of the topics of this work is the measurement of the CP violation of B0 →
K+π−, B0

s → K−π+, Λ0
b → pπ−, and Λ0

b → pK− decay modes. The experimental

situation at the time of the analysis is reported in tab. 1.3. The ACP (B0 → K+π−)

was measured at b-factories with significance > 5σ, while the ACP (B0
s → K−π+),

ACP (Λ0
b → pπ−), and ACP (Λ0

b → pK−) were measured only at CDF, but they have

not yet been observed. The study of this effect in less investigated areas, such as the

1In order to calculate this quantity, an appropriate low-energy effective Hamiltonian having the

same structure as (1.12) is used.
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D0 and the B0
s sectors, is a very important field of research. Experimental results

that deviates from predictions are the way to increase our understanding of the

whole Standard Model framework. Actually, unexpected hints of CP violation in

the D0 system seem to have been found recently. Thus, nowadays is the adequate

period to increase the effort in these kind of analysis in new windows, such as B0
s

and Λ0
b sectors.

1.6.1 ACP (B0 → K+π−)

The B0 → K+π− decay mode receives contributions from penguin and tree topolo-

gies. Within the usual formalism the decay amplitude can be written as follows:

A(B0 → K+π−) = −P
[
1− reiδeiγ

]
, (1.27)

where P describes the penguin amplitudes, r is the amplitude ratio between tree and

penguin amplitudes, γ is the CP hadronic phase. The quark level transition originate

from b̄→ ūus̄, and contains a factor V ∗ubVus. The penguin amplitude are dominated

by a loop involving the t quark, thus the CKM factor is V ∗tbVts. Because the ratio

V ∗ubVus/V
∗
tbVts ≈ 0.02, the QCD penguin amplitudes are expected to dominate the

B0 → K+π− decay mode. EW penguin topologies are color–suppressed. In general,

it can be observed that the feature of the dominance of QCD penguins applies to all

B → πK modes. In particular, for both the B0 → K+π− and B+ → K+π0 decays,

EW penguins contribute in color–suppressed form and are hence expected to play a

minor rôle. In this assumption, the CP asymmetry of the B+ → K+π0 is expected

to be equal to the direct CP asymmetry in the B0 → K+π− mode [6, 45, 46]. The

experimental results [47], however, differ with a significance of more than 5σ.

Adir
CP(B+ → K+π0) = +0.040± 0.021

Adir
CP(B0 → K+π−) = −0.087± 0.008

This has been for long time a puzzling discrepancy, and has been named the Kπ

puzzle. Simple extensions of the standard model could accommodate the discrep-

ancy [48], but uncertainty on the contribution of higher-order SM amplitudes has

prevented a firm conclusion [49]. Recently, Lipkin suggested a way [50] to accommo-

date this discrepancy within the SM, but ultimately the question about a possible

NP explanation of this discrepancy is still open. High accuracy measurements of the

violation of CP symmetry in charmless modes remains a very interesting subject of

study and may provide useful information to our comprehension of this discrepancy.

1.6.2 ACP (B0
s → K−π+)

The B0
s → K−π+ decay mode originates from a b̄ → d̄ transition, and it receives

contributions from penguin and tree topologies. Within the usual formalism, the
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decay amplitude can be written as follows:

A(B0
s → K−π+) = Ps

√
ε

[
1− 1

ε
rse

iδseiγ
]

(1.28)

Being the B0
s → K−π+ the U–spin partner of the B0 → K+π−, the measurements

of direct CP violation in B0
s → K−π+ decays have been proposed as a nearly

model-independent test for the presence of non-SM physics [4, 5]. The relationships

between charged-current quark couplings in the SM predict a well-defined hierarchy

between direct CP violation in B0 → K+π− and B0
s → K−π+ decays:

Γ(B0
s → K−π+)− Γ(B

0
s → K+π−) = Γ(B

0 → K−π+)− Γ(B0 → K+π−),

(1.29)

ACP (B0
s → K−π+) = −ACP (B0 → K+π−)× B(B0 → K+π−)

B(B0
s → K−π+)

× τ(B0
s )

τ(B0)
.

(1.30)

Using the ACP (B0 → K+π−) = −0.087 ± 0.008 average from the experimental

measurements [47], B(B0
s → K−π+) = (5.4 ± 0.6) × 10−6 and B(B0 → K+π−) =

(19.55+0.54
−0.53)×10−6 from [47], τ(B0) = (1.519±0.007)×10−12 and τ(B0

s ) = (1.497±
0.015)× 10−12 from [51], eq. (12.11) predicts:

ACP (B0
s → K−π+)|SM = 0.31± 0.04. (1.31)

The resulting ACP (B0
s → K−π+) is a significant asymmetry of about 30%. As-

suming this relationship valid only within the SM, a different configuration would

be due to the presence of a different source of CP from NP. In addition, this large

effect allows easier experimental investigations: at the time of the analysis, this CP
violation was not yet observed and it is one of the topic of this thesis.

1.6.3 ACP (Λ0
b → pπ−) and ACP (Λ0

b → pK−)

The Λ0
b baryon is described by:

Λ0
b ∼ bud (1.32)

In a naive factorization approach the Λ0
b → pπ− and Λ0

b → pK− are described in a

similar way with respect to the b-mesons. The diagrams describing the transitions

are the same as figs. 1.2–1.4 with the difference of having two spectator quarks

(ud or ūd̄) instead of only one quark. Using factorization it is possible to write an

effective Hamiltonian as follows:

Heff =
GF√

2

[
VubV

∗
uq

{
C1(µ)Qu1(µ) + C2(µ)Ou2 (µ)− VtbV ∗tq

10∑
i=3

Ci(µ)Oi(µ)

}]
+ h.c.

(1.33)

where q = d, s and Ci(µ) are the Wilson coefficients for different transitions, eval-

uated at the renormalization scale µ. The first two elements are related to tree
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diagrams, the sum is over QCD and electroweak penguins. The Λ0
b → pπ− is

mediated by the b → uūd tree or by a b → d penguin. On the contrary, the

Λ0
b → pK− is mediated by the b → uūs tree or by a b → s penguin. Thus for the

Λ0
b → pπ− the dominant contribution is expected to be from tree diagrams, while

for the Λ0
b → pK− the penguin QCD diagram is supposed to be the dominant one.

While over the past two decades the b-meson CP asymmetries has been deeply and

methodically investigated at the b-factories, the b-baryon system represents a new

window to look at. The measurement of the CP violation in the Λ0
b → pπ− decay

can be sensitive to NP in the Minimal Supersymmetric Standard Model (MSSM).

SM predicts values of O(8%), while in R–parity violating MSSM scenarios [52]. sup-

pressed values (≈ 0.3%) are expected. Recent pQCD calculations [53], with large

theoretical uncertainties, predict a central value of ACP (Λ0
b → pK−)≈ +5%, while

the expected central value for the ACP (Λ0
b → pπ−) is about +30%.

1.7 B0
(s) → h+h

′− annihilation measurements motivations

The B0
s → π+π− and B0 → K+K− decay modes are of special interest: all quarks

in the final state are different from those in the initial state, so they can be me-

diated solely by amplitudes with penguin-annihilation (PA) and W -exchange (E)

topologies (see fig. 1.6). They resisted attempts at quantitative prediction up to the

present, and they are often simply neglected in calculations. Predictions for these

amplitudes vary greatly between approaches, and even within the same approach.

Estimates based on the QCDF approach are affected by significant uncertainties,

due to end-point singularities. For the B0
s → π+π−, Beneke et all [7] parameterize

the divergent integral arising in the term O(ΛQCD/mb) of eq. (1.17) using:

XPP
s = (1 + ρPPs eiφ

PP
s ) ln

mb

Λh
ρPPs ≤ 1,Λh = 0.5 GeV (1.34)

where φPPs is an arbitrary strong-interaction phase which may be coming from

soft scattering, mb and Λh are the normalization scales, and ρPPs is a parameter

coming from experimental constraints. Thus Beneke et al. predict B(B0
s → π+π−) =

(0.024+0.165
−0.024)× 10−6 and B(B0 → K+K−) = (0.013+0.087

−0.013)× 10−6 [7], in agreement

with Yang et al., that also used QCDF but with a different solution to avoid end-

point divergences, obtaining B(B0
s → π+π−) = (0.124 ± 0.028) × 10−6 [54]. It

can be noted as several approaches from QCDF, with different parameterization

inputs, predict different central values (B(B0
s → π+π−) = (0.26+0.01

−0.09) × 10−6 and

B(B0 → K+K−) = (0.10+0.04
−0.04)× 10−6 [55] or B(B0

s → π+π−) = 0.022× 10−6 [56]).

More recent perturbative QCD calculations (pQCD) provide more precise pre-

dictions, but they tend to be significantly larger than the predictions coming from

QCDF: Ali et al. predict B(B0
s → π+π−) = (0.57+0.18

−0.16) × 10−6 [57]; in the same

approach Li, Lu, Xiao, and Yu calculate B(B0
s → π+π−) = (0.42±0.06)×10−6, but

with Sudakov resummation, and including contributions from electroweak and QCD
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penguin amplitudes [58]. As a general comment, it can be noted in tab. 1.5 how the

QCDF predictions are systematically lower than the pQCD ones. No calculations

are yet available within the soft collinear effective theory (SCET) [59].

Mode QCDF pQCD

B0
s → π+π− 0.024+0.165

−0.024[7] 0.57+0.18
−0.16 [57]

0.124± 0.028 [54] 0.42± 0.06 [58]

0.26+0.01
−0.09 [55]

0.022[56]

B0 → K+K− 0.013+0.087
−0.013[7]

0.10+0.04
−0.04 [55]

Table 1.5: B(B0
s → π+π−) and B(B0 → K+K−) theoretical prediction for different

pQCD and QCDF approaches.

Figure 1.6: PA (left panel) and E (right panel) diagrams contributing to

B0 → K+K− and B0
s → π+π− decays.

The lack of knowledge of the size of annihilation-type amplitudes introduces

irreducible uncertainties in the predictions for several decays of great interest in

the search for new physics effects, such as B0 → π+π− and B0
s → K+K− [60,

61, 62, 63]. Experimental investigation of the issue is therefore very desirable, and

has the potential to enable a significant advancement of the field. A simultaneous

measurement of branching fractions of both modes would be especially useful, as it

would allow a better constraint on the strength of PA and E amplitudes [61] and

would help to improve the pQCD and QCDF approaches calculations. At the time

of the analysis, they have not yet been observed, the best upper limits at 90% CL

being respectively 1.2× 10−6 [42] and 0.41× 10−6 [40]. The experimental situation

of all the B → h+h
′− decay modes at the time of the analysis is reported in tab. 1.4.

1.8 Current experimental status

If the b-hadrons experimental measurements were represented in a comedy drama,

we would see different comedians playing in the stage. The main actors have been
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for long time the two asymmetric e+e− b-factories at SLAC and KEK with their

detectors BaBar and Belle, respectively. The second act of the play was represented

at the Tevatron of Fermilab, where the CDF and D0 collaboration were able to

produce relevant B-physics results. This was the experimental status at the time

of the analysis, back in 2010. With about 9 fb−1 of data available, we expected to

perform ACP (B0
s → K−π+), ACP (Λ0

b → pπ−) and ACP (Λ0
b → ph−) measurements

with a resolution of order 10%, and hopefully to obtain a first evidence for the

B0
s → K−π+ measurement. The goal was also to perform updated measurements

of ACP (B0 → K+π−) and of branching ratios, in particular for the yet unobserved

annihilation modes. Starting 2011, new players from the LHC experiment at CERN

entered the stage: in particular the LHCb experiment, devoted to the b-physics,

becomes in a short time a main character. In addition, the b-factories refined their

measurement strategies and provided updated results. The experimental status at

the time of writing this thesis is reported in tab. 1.6 and tab. 1.7.

ACP BABAR Belle CDF LHCb

B0 → K+π− −10.7± 1.6+0.6
−0.4 −6.9± 1.4± 0.7 −8.6± 2.3± 0.9 −8.0± 0.7± 0.3

B0
s → K−π+ − − 39± 15± 8 27± 4± 1

Λ0
b → pK− − − 3± 15± 8 −

Λ0
b → pπ− − − 37± 17± 3 −

Table 1.6: Summary of ACP of B → h+h
′− decays in unit of % at the time of

writing this thesis from Babar [35], Belle [64], CDF[37], LHCb[9].

Mode BABAR Belle CDF LHCb

B0 → π+π− 5.5± 0.4± 0.3 5.0± 0.2± 0.2 5.0± 0.3± 0.3† 5.1± 0.2± 0.4†
B0 → K+π− 19.1± 0.6± 0.6 20.0± 0.3± 0.6 − −
B0 → K+K− 0.04± 0.15± 0.08 0.09+0.18

−0.13 ± 0.01 0.39± 0.16± 0.12† 0.11+0.05
−0.04 ± 0.06†

B0
s → π+π− − < 12 < 1.2† 0.95+0.21

−0.17 ± 0.13†
B0
s → K−π+ − < 26 5.0± 0.7± 0.8† 5.4± 0.4± 0.6†

B0
s → K+K− − 38+10

−9 ± 7 24.4± 1.4± 4.6† 23.0± 0.7± 2.3†
Λ0
b → pπ− − − 3.5± 0.6± 0.9† −

Λ0
b → pK− − − 5.6± 0.8± 1.5† −

Table 1.7: Summary of branching fractions in unit 10−6 of B → h+h
′− decays at

the time of writing the thesis from Babar [38], Belle [64, 39, 40, 41], CDF[42, 43]

and LHCb[65]. The symbol † labels the case when the relative branching fraction

is converted to absolute branching fraction.



18 Chapter 1. Two-body charmless b−hadron decays



Chapter 2

Experimental apparatus

This chapter describes the CDF II detector at the Fermilab TeVatron collider, used

to collect the data analyzed in this work. We focused on the description of the

tracking and the trigger system, for the crucial role they play in the analysis. A

detailed description of the experimental apparatus can be found in Ref. [66].

2.1 The TeVatron collider

The Fermilab TeVatron was the world most powerful proton-antiproton collider,

until the last collision occurred on September 30th, 2011. The TeVatron is located

at the Fermi National Accelerator Laboratory (FNAL or Fermilab), about 50 km

West from Chicago, Illinois, United States. It is an underground circular proton

synchrotron 1 km in radius and represents the last stage of a system of accelera-

tors, storage rings and transfer lines. While operating in collider mode, it collides

bunches1 of protons, circulating clockwise, against anti-protons accelerated counter-

clockwise, both at energies of 980 GeV. The available center of mass energy
√
s is

thus equal to 1.96 TeV. The TeVatron produced its first collisions in 1985 and since

then various periods of collider operations alternated with fixed-target operations

and shut-down periods for the upgrades of the machine. The TeVatron collider op-

erations periods are conventionally identified as a “Run”: Run I, from 1992 to 1996,

and Run II, from 2001 to the last collision. Between the two Runs the two detectors

installed at TeVatron (called CDF and D0) undergone the most extensive upgrades.

Table 2.1 reports a summary of the TeVatron operations and performances since its

construction, dated back in 1983, until the last collision, on September 30th, 2011.

The performance of the TeVatron collider is evaluated in terms of two key pa-

rameters. The first is the center of mass energy
√
s that defines the accessible

phase-space for the production of resonances in the final states. The second is the

instantaneous luminosity L that represents the coefficient of proportionality between

the rate of a given process and its cross-section σ:

1A bunch is a collection of particles with the same energy gathered togheter.

19
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Figure 2.1: Illustration of the Fermilab TeVatron collider.

(a) (b)

Figure 2.2: Integrated luminosity as a function of the time (or store number) (a).

Initial luminosity as a function of the time (or store number) (b).

rate [events s−1] = L [cm−2s−1] × σ [cm2].

The time-integral of the luminosity (integrated luminosity) is therefore a measure

of the expected number of events, n, produced in a finite time T :

n(T ) =

∫ T

0
Lσdt. (2.1)
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Date
√
s[TeV] L[cm−2s−1]

∫
Ldt [pb]−1

Mar 1983 End of the construction - - -

Jul 1983 Proton energy 512 GeV - - -

Oct 1983 fixed target program began - - -

Feb 1984 Proton energy 800 GeV - - -

Oct 1985 First pp̄ collisions observed 1.6 1024 -

Oct 1986 Proton energy 800 GeV - - -

Jun 1988 -

May 1989 Run 0 1.8 0.02 × 1032 ∼ 4.5

1989-1992 Detectors upgrades - - -

Aug 1992-

Feb 1996 Run I 1.8/0.63 0.28 × 1032 ∼ 180

Aug 2000 Beam energy 980 GeV - - -

Mar 2001-

Sep 2011 Run II 1.96 3.6 × 1032 ∼ 10.000

Table 2.1: Chronological overview of the TeVatron operations and performance.

The third column shows the peak luminosity.

Assuming an ideal head-on pp̄ collision with no crossing angle between the

beams, the instantaneous luminosity is defined as

L = 10−5 NpNp̄Bfβγ

2πβ∗
√

(εp + εp̄)x(εp + εp̄)y
H(σz/β

∗) [1030cm−2s−1]. (2.2)

L depends on the following TeVatron parameters: the number of circulating bunches

in the ring (B = 36), the revolution frequency (f = 47.713 kHz), the Lorentz

relativistic factor (boost, βγ = 1045.8 at 980 GeV), the average numbers of protons

(Np ≈ 250×109) and antiprotons (Np̄ ≈ 25×109) in a bunch, an empiric “hourglass”

factor (H = 0.6–0.7), which is a function of the ratio between the longitudinal

r.m.s. width of the bunch (σz ≈ 60 cm) and the “beta function” calculated at the

interaction point (β∗ ≈ 31 cm), and the 95% normalized emittances of the beams

(εp ≈ 18π mm mrad and εp̄ ≈ 13π mm mrad after injection).2 At the TeVatron

the limiting factor of the luminosity is the availability of antiprotons because it

2The hourglass factor is a parameterization of the longitudinal profile of the beams in the

collision region, which assumes the shape of an horizontal hourglass centered in the interaction

region. The beta function is a parameter convenient for solving the equation of motion of a particle

through an arbitrary beam transport system. The emittance ε measures the phase-space occupied

by the particles of the beam. Three independent two-dimensional emittances are defined. The

quantity
√
βε is proportional to the r.m.s. width of the beam in the corresponding phase plane.

On-line measurements of the transverse emittances are performed at the TeVatron with various

methods, including flying through the beam a 7 µm wire and by measuring the cascade of losses,

which is proportional to the beam intensity, or detecting the synchrotron light radiated by the

particles at the edge of a dipole magnet.
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is difficult to produce and to compact them into bunches and to transfer them

efficiently through the subsequent accelerator stages.

The TeVatron is an approximately circular synchrotron using 772 dipole, 2 half-

pole, and 204 quadrupole superconducting magnets. Each is approximately 6 m

long, 4 tons in mass, and is made of NbTi alloy filaments embedded in copper,

kept at 4.3 K temperature by a large cryogenic system. A 4400 A current flows

through each magnet to produce the 4.2 T magnetic field necessary to keep the

(anti)protons on their orbit, while they are accelerated by eight radio-frequency

cavities (RF) driven at approximately 53.105 Hz. Motions or friction by the about

4000 N/cm of outward pressure are avoided by epoxy-covered steel collars bound

around the magnets.

The TeVatron provides beams for experiments in different modes (fixed-target,

collider, etc.). For the purpose of this analysis, we describe the procedure of ob-

taining a continuos period of collider operation using the same collection of protons

and antiprotons, called a store. Additional details can be found in Ref. [67].

2.1.1 Proton beam

H− ions are produced by ionization of gaseous hydrogen and boosted to 750 keV

by a commercial Cockroft-Walton accelerator. The proton beam, segmented into

bunches, is then injected in a 150 m long linear accelerator Linac which increases

their energy to 400 MeV. A carbon foil is used to strip the electrons from the H−

before the resulting protons are injected to the Booster. The Booster (see fig. 2.1) is

a rapid cycling synchrotron (radius of 75.5 m) that accelerates the protons up to 8

GeV and compacts them into bunches of about 5 · 1012 particles each. The protons

are then transfered to a synchrotron, called the Main Injector, which brings their

energy to 150 GeV. The last stage of the process is the transfer to the TeVatron

this is the beginning of the process of final injection into the TeVatron.

2.1.2 Antiproton beam

While the energy of the protons bunches circulating in the Main Injector reaches 120

GeV, they are slammed to a rotating 7 cm thick nickel or copper target to produce

antiprotons. The target rotates to be more resistant to the radiation. Spatially

wide-spread antiprotons are produced (about one antiproton for every 106 protons

on target) and focused into a beam via a cylindrical lithium lens which separates p̄

from other charged interaction products. The emerging antiprotons have a bunch

structure similar to that of the incident protons and are stored in a Debuncher. It is

a storage ring where the momentum spread of the p̄ is reduced while maintaining a

constant energy of 8 GeV, via stochastic cooling stations. Many cycles of Debuncher

cause the destruction of the bunch structure which results in a continuous beam of

antiprotons. At the end of the process the monochromatic antiprotons are stored
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in the Accumulator (see fig. 2.1) which is a triangle-shaped storage ring where they

are further cooled and stored until the cycles of the Debuncher are completed. After

20 hours the number of antiprotons accumulated is sufficient to create 36 bunches

with the required density. At this point the accumulation process is stopped in

preparation for injection.

2.1.3 The injection and the collisions

When the antiproton accumulation process is stopped, a set of seven proton bunches

is extracted from the Booster and are transfered to a synchrotron, called the Main

Injector, which brings their energy to 150 GeV. Here the seven bunches are coalesced

into a single bunch of about 300 ×109 protons, and then injected into the TeVatron.

This process is repeated until 36 proton bunches, separated by 396 ns, are loaded

into the TeVatron central orbit. The electrostatic separators (about 30 pairs of

metal plates) are then activated in the TeVatron in preparation for antiproton

injection.

Four sets of 7-11 antiproton bunches are extracted from the Accumulator to

the Main Injector, accelerated to 150 GeV, coalesced into four 30 ×109 antiproton

bunches separated by 396 ns, and then injected into the TeVatron where protons are

counter-rotating. Protons and antiprotons circulate in the same enclosure, sharing

magnet and vacuum systems. The electrostatic separators minimize the beam-

beam interactions, by keeping the protons and antiprotons beams into two non-

intersecting closed helical orbits separated by about 5 millimeters. This allows

controlling each beam nearly independently.

When 36 bunches of both protons and antiprotons are circulating in the TeVa-

tron the energy of the machine is increased in about 10 seconds from 150 to 980

GeV and the collisions begin at the two interaction points: DØ (where the homonym

detector is located) and BØ (home of CDF II). Special quadrupole magnets (low-

β squeezers) located at both extremities of the detectors along the beam pipe

“squeeze” the beam to maximize luminosity inside the detectors. A roughly Gaus-

sian distribution of the interaction region along the beam axis is achieved (σz ≈ 28

cm) and its center is shifted on the nominal interaction point by the fine tuning

of squeezers. The transverse shape of the interaction region has an almost circu-

lar spatial distribution with a diameter of σT ≈ 30 µm. Luminosity lifetime is

increased by using electrostatic separators which separate transversely the proton

and antiproton bunches except at the collision regions. Then the ‘scraping’ takes

place, a procedure which shapes the beam transverse profile to its optimized config-

uration, in order to avoid detector damages due to the tails of the p(p̄) distributions

entering the active volumes. The scraping is done by moving iron plates which act

as collimators in the transverse plane toward the beam and sweep away the trans-

verse beam halo. When the beam profile is narrow enough and the conditions are

safely stable the detectors are powered and the data taking starts. This is the end
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of the injection procedure called ‘shot’.

The inter-bunch crossing is 396 ns and this defines an overall time constant which

influences the whole detector design: on this parameter depends the choice of the

active parts, the design of the readout electronics, the structure of the trigger etc..

The number of overlapping interactions N for each bunch crossing is a Poisson-

distributed variable dependent on the instantaneous luminosity and on the number

of colliding bunches. At TeVatron luminosities of L ≈ 10 × 1031 cm−2s−1 N̄ is

approximately 2.

Each time that at least one of the CDF II triggers fires, an event is labeled with an

increasing number. Events are grouped into ‘runs’ ; a run is a period of continuous3

operation of the CDF II Data Acquisition. Most parameter of the CDF II opera-

tions (e. g., the position of the beam) are stored in the database on a run-averaged

format.

While collisions are taking place the luminosity decreases exponentially4 because

of the beam-gas and beam-halo interactions. In the meantime, antiproton produc-

tion and storage continues. When the antiproton stack is sufficiently large (' 1012

antiprotons) and the circulating beams are degraded (∼ 14 hours) the detector

high-voltages are switched off and the store is dumped. The beam is extracted via

a switch-yard and sent to an absorption zone. Beam abortion can occur also acci-

dentally when the temperature of a superconducting magnet shift above the critical

value and the magnet quenches destroying the orbit of the beams. The typical time

between the end of a store and the beginning of collisions of the next one is typically

2 hr. During this time CDF II usually performs calibrations of the sub-detectors

and test runs with cosmics.

2.1.4 TeVatron performance

The initial Run II goal (1996) was to achieve a luminosity of 5 × 1031 cm−2s−1

and an integrated luminosity of 2 fb−1. The final performance was well beyond

this expectation. The peak luminosity exceeded regularly 2 × 1032 cm−2s−1 (with

a record of 4.3× 1032 cm−2s−1, May 2011). Between February 2002 and September

2011 about 10 fb−1 of data were recorded on tape, representing the complete Run

II data sample.

3Many different cases can require the DAQ to be stopped and restarted including the need to

enable or disable a subdetector, a change in the trigger Table, a problem in the trigger/DAQ chain

etc..
4The decrease is about a factor of 2.5-5 for a store (∼ 10-20 hrs), depending from the initial

luminosity also.
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2.2 CDF II detector

The CDF II detector is a large multi-purpose solenoidal magnetic spectrometer

designed with an approximately cylindric symmetry and it is installed at the BØ

interaction point of the TeVatron (see fig. 2.1). CDF II consists of five main sub-

detector systems: tracking, particle identification, calorimetry, muon identification

and luminosity detector. These systems are used to determine energy, momentum

and, whenever possible, the identity of a broad range of particles produced in the

pp̄ collisions.

Figure 2.3: Elevation view of one half of the CDF II detector.

2.2.1 Coordinates and notation in CDF II

CDF II adopts a right-handed cartesian coordinates system with the origin in the

BØ interaction point, assumed coincident with the center of the drift chamber. The
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positive z-axis lies along the nominal beam-line pointing toward the proton direction

(east). The (x, y) plane is therefore perpendicular to either beams, with positive

y-axis pointing vertically upward and positive x-axis in the horizontal plane of the

TeVatron pointing radially outward with respect to the center of the ring.

Since the colliding beams of the TeVatron are unpolarized, the resulting physical

observations are invariant under rotations around the beam line axis. Thus, a

cylindrical (r, φ, z) coordinates system is particularly convenient to describe the

detector geometry. Throughout this thesis, longitudinal means parallel to the proton

beam direction (i.e., to the z-axis), and transverse means perpendicular to the

proton direction, i.e., in the (x, y) ≡ (r, φ) plane.

Since the protons and antiprotons are composite particles, the actual interaction

occurs between individuals partons (valence or sea quarks and gluons) contained

within them. Each parton carries a varying fraction of the (anti)proton momentum,

not known on a event-by-event basis. As a consequence of the possible imbalance in

the longitudinal components of the momenta of interacting partons, possible large

velocities along ẑ for the center-of-mass of the parton-level interaction may occur.

In the hadron collisions environment, it is customary to use a variable invariant

under ẑ boosts as an unit of relativistic phase-space, instead of the polar angle θ.

This variable is the rapidity defined as

Y =
1

2
ln

[
E + pcos(θ)

E− pcos(θ)

]
, (2.3)

where (E, ~p) is the energy-momentum four-vector of the particle. Under a ẑ boost

to an inertial frame with velocity β, the rapidity of a particle transforms linearly,

according to Y → Y ′ ≡ Y + tanh−1(β), therefore Y is invariant since dY ≡ dY ′.

However, a measurement of rapidity still requires a detector with accurate identifi-

cation capabilities because of the mass term entering E. Thus, for practical reasons,

it is often preferred to substitute Y with its approximate expression η in the ultra-

relativistic limit (p >> m), usually valid for products of high-energy collisions:

Y → η +O(m2/p2), (2.4)

where the pseudo-rapidity η ≡ −ln[tan(θ/2)] is only function of the momenta.

As the event-by-event longitudinal position of the actual interaction is distributed

around the nominal interaction point with 30 cm r.m.s width, it is useful to dis-

tinguish the detector pseudo-rapidity, ηdet, measured with respect to the (0,0,0)

nominal interaction point, from the particle pseudo-rapidity, η, measured with re-

spect to the z0 position of the real vertex where the particle originated5.

Other convenient variables are the transverse component of the momentum with

respect to the beam axis (pT), the “transverse energy” (ET), and the approximately

Lorentz-invariant angular distance ∆R, defined as

~pT ≡ (px, py)→ pT ≡ p sin(θ), ET ≡ E sin(θ), and ∆R ≡
√
η2 + φ2. (2.5)

5An idea of the difference is given by considering that ηdet ≈ η±0.2 if the particle was produced

a z = 60 cm from the nominal interaction point
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2.2.2 Overview

CDF II (see fig. 2.3) is a three-story, 5000-ton approximately cylindric assembly of

sub-detectors, ∼ 15 m in length, ∼ 15 m in diameter. The flow of final state particles

in energetic hadronic collisions is well described by quantities of (pseudo)rapidity,

transverse component of the momentum with respect to the beam axis and az-

imuthal angle around this axis. Consequently CDF II detector was designed and

constructed with an approximately cylindrically symmetric layout both in the az-

imuthal plane and in the “forward” (z > 0) - “backward” (z < 0) directions with

spatial segmentation of its subcomponents roughly uniform in pseudorapidity and

azimuth.

CDF II is composed of several specialized sub-systems each one designed to perform

a different task, arranged in a standard layout for multipurpose detectors; starting

from the interaction point, particle emitted within the acceptance region encounter

in sequence: a thin wall beryllium6 vacuum chamber, a high precision tracking sys-

tem, a time of flight detector, a solenoidal magnet, sampling calorimeters and muon

detectors. Its capabilities include high resolution charged particle tracking, electron

and muon identification, low momentum π/K separation, precise secondary vertices

proper time measurements, finely segmented sampling of energy flow coming from

final state hadrons, electrons or photons, identification of ν’s via transverse energy

imbalance. The detector is divided conventionally into two main polar regions. In

the following we shall refer to the detector volume contained in the |ηdet| < 1 as the

central region, while the forward region indicates the detector volume comprised in

1 < |ηdet| < 3.6.

A comprehensive description of the CDF II detector and its subsystems is given

in Ref. [66]. In the following, we emphasize the tracking and the trigger systems,

which are the aspects of the detector more specific to this analysis.

2.2.3 Tracking system

At CDF the tracking system provides measurements of the particle trajectory, re-

ferred to as a track. This allows the determination of the charge and the momenta

of the particles which are essential for the analysis presented in this work, where

mesons decaying to two charged particles are studied. In particular, the only physics

objects used in this analysis are the tracks. Within an uniform axial magnetic field

in vacuum, the trajectory of a charged particle produced with non-zero initial veloc-

ity in the bending plane of the magnet is described by an helix. The arc of an helix

described by a charged particle in the magnetic volume of CDF is parameterized

using three transverse, and two longitudinal parameters:

C – signed helix (half)-curvature, defined as C ≡ q
2R , where R is the radius of the

6The beam pipe is made of beryllium because it has the best mechanical qualities with the

lowest nuclear interaction cross section.
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helix. This is directly related to the transverse momentum: pT = cB
2|C| ;

ϕ0 – φ direction of the particle at the point of closest approach to the z-axis;

d0 – signed impact parameter, i. e., the distance of closest approach to the z-axis,

defined as d0 ≡ q(
√
x2
c + y2

c − R), where (xc, yc) are the coordinates of the

center-guide;

λ – the helix pitch, i. e., cot(θ), where θ is the polar direction of the particle at

the point of its closest approach to the z-axis. This is directly related to the

longitudinal component of the momentum: pz = pT cot(θ);

z0 – the z coordinate of the point of closest approach to the z-axis.

The trajectory of a charged particle satisfies the following equations [68]:

x = r sin(ϕ)− (r + d0) sin(ϕ0) (2.6)

y = −r cos(ϕ) + (r + d0) cos(ϕ0) (2.7)

z = z0 + sλ, (2.8)

where s is the projected length along the track, r = 1/2C, and ϕ = 2Cs+ ϕ0. The

reconstruction of a charged-particle trajectory consists of determining the above

parameters through an helical fit of a set of spatial measurements (“hits”) recon-

structed in the tracking detectors by clustering and pattern-recognition algorithms.

The helical fit takes into account field non-uniformities and scattering in the detector

material.

Three-dimensional charged particle tracking is achieved through an integrated

system consisting of three silicon inner subdetectors and a large outer drift-chamber,

all contained in a superconducting solenoid. (see fig. 2.4).

In the central region (|ηdet| <∼ 1), 7 silicon samplings (one in the (r, φ) view

plus six in the (r, φ, z) view), and 96 chamber samplings (48 (r, φ) plus 48 (r, z))

are available between 1.6 and 132 cm. In the forward and backward regions (1 <∼
|ηdet| <∼ 2), 8 silicon samplings (one in the (r, φ) view plus seven in the (r, φ, z)

view) are available between 1.6 and 29 cm, along with partial information from the

chamber.

The high number of samplings over the 88 cm lever arm of the chamber ensure

precise determination of curvature, azimuth, and pseudo-rapidity of the tracks in

the central region. The chamber provides also track seeds for pattern-recognition

in silicon.

The innermost tracking device, i. e., the Layer ØØ (LØØ), is a light-weight

silicon layer placed on the beam-pipe. It recovers the degradation in resolution of

the reconstructed vertex position due to multiple scattering on the SVXII read-out

electronics and cooling system, installed within the tracking volume. The LØØis

made of state-of-the-art radiation-tolerant sensors, and it will extend the lifetime of
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Figure 2.4: Elevation view of one quadrant of the inner portion of the CDF II

detector showing the tracking volume surrounded by the solenoid and the forward

calorimeters.

the whole system when the effects of radiation damage will degrade the performance

of the inner SVXII layers. The integrated design of the tracking system allowed

commonality of components among subdetectors (read-out chip, support structures,

etc.) thus simplifying the construction and the operation.

The core of the silicon detector is the Silicon VerteX detector (SVXII). It

provides five three-dimensional measurements that extend the lever arm by 41.5 cm

toward the beam thus allowing more precise determination of the trajectories and

identification of decay-vertices displaced from the beam-line. The SVXII has an

outer and an inner extension.

The outer extension, i. e., the Intermediate Silicon Layers (ISL), provides a single

(double) three-dimensional silicon measurement in the central (forward-backward)

region, at intermediate radial distance from the chamber. The ISL allows efficient

linking between tracks reconstructed in the chamber and hits detected in the SVXII,

and extends the track finding at pseudo-rapidities 1 <∼ |ηdet| <∼ 2, where the chamber

coverage is marginal.

The total amount of material in the silicon system, averaged over φ and z, varies

roughly as 0.1X0
sin(θ) in the |ηdet| <∼ 1 region, and roughly doubles in 1 <∼ |ηdet| <∼ 2

because of the presence of cables, cooling bulk-heads, and portions of the support

frame.7 The average amount of energy loss for a charged particle is roughly 9 MeV.

The total heat load of the silicon system is approximately 4 kW. To prevent thermal

expansion, relative detector motion, increased leakage-current, and chip failure due

to thermal heating, the silicon detectors and the associated front-end electronics are

held at roughly constant temperature ranging from −6◦C to −10◦C for LØØ and

SVXII, and around 10◦C for ISL, by an under-pressurized water and ethylene-glycol

7The symbol X0 indicates the radiation length.
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coolant flowing in aluminum pipes integrated in the supporting structures.8

The magnet

A 1.4116 T solenoidal magnetic field is maintained in the region r < 150 cm |z| < 250

cm by circulating a 4650 A current through 1164 turns of a Nb-Ti/Cu supercon-

ducting coil. The field is oriented along the positive ẑ direction and is uniform at

the 0.1% level in the |z| < 150 cm volume where tracking measurements are made

(see fig. 2.4). The tiny non-uniformities, mapped out during detector construction,

are treated as a small perturbation within the track fitting software. The field is

continuously monitored via nuclear magnetic resonance probes during data taking

and any deviation from the mapped values is applied as a correction to measured

track momenta. The threshold to escape radially the magnetic field for a particle

is pT > 0.3 GeV/c while the trajectory of a pT = 30 GeV/c particle deviates only

1.6 cm from a straight path of 150 cm. The solenoid is 4.8 m in length, 1.5 m in

radius, 0.85 X0 in radial thickness9 and is cooled by forced flow of two-phase he-

lium. Outside the coil the field flux is returned through a steel yoke to avoid having

the fields interfere with the proper operations of the calorimeter’s photo-multiplier

tubes.

2.2.4 Layer ØØ (LØØ)

Layer ØØ (LØØ) is the innermost layer of the microvertex silicon detector [69].

It consists of one layer of single sided AC-coupled silicon sensors which covers the

beryllium beam pipe along 80 cm longitudinally. The state-of-the-art 7.85 cm long

silicon sensors of LØØ can be biased to very high (O(500 V)) voltages allowing to

maintain a good signal-to-noise ratio even after high integrated radiation dose (O(5

MRad)). The radiation hardness of such sensors allowed their installation at radii

of 1.35 and 1.62 cm supported by a mechanical structure in direct contact with the

beam pipe. The LØØ strips are parallel to the beam axis allowing the first sampling

of the track within the r − φ plane, the inter-strip pitch is 25 µm but the read-out

strip are alternated with floating ones resulting in 50 µm of readout pitch.

The signals of the 13,824 channels are fed via special optical fiber cables to the

front-end electronic which is placed in a region separated from the sensors and less

exposed to the radiation. The operation temperature of this device is around 0oC

maintained by a forced flux of under-pressurized10 gas through tiny aluminum pipes

installed in between the sensor and the beam-pipe. The cooling circuit increases

the total mass of the LØØ which is about 1%X0 where pass the cooling pipes and

8The pressure of the cooling fluid is maintained under the atmospheric pressure to prevent leaks

in case of damaged cooling pipes.
9This has to be intended for normally incident particles.

10The pressure of the cooling fluid is maintained under the atmospheric pressure to avoid dan-

gerous leaks of fluid in case of damaged cooling pipe.
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reduces to 0.6%X0 where only sensors contribute.

2.2.5 Silicon VerteX detector II (SVXII)

The Silicon VerteX detector II (SVXII) [70] is a fine resolution silicon microstrip

vertex detector which provides five 3D samplings of a track between 2.45 and 10.6

cm of radial distance from the beam (see fig. 2.4). Its cylindrical geometry coaxial

with the beam is segmented along z into three ’mechanical barrels’ for a total

length of 96 cm which provides complete geometrical coverage within |ηdet| < 2

(see fig. 2.5(a)). Each barrel consists of twelve azimuthal wedges each of which

subtends approximately11 30o. One wedge of a given barrel comprises 5 concentric

and equally spaced layers of silicon sensors installed at radii 2.45 (3.0), 4.1 (4.6),

6.5 (7.0), 8.2 (8.7), and 10.1 (10.6) cm from the beam as shown in (see fig. 2.5(b)).

ISL

SVX II

Layer 00

Port Cards

R=29 cm

90 cm 64 cm 

SVX II

 ISL

Layer 00

Figure 2.5: Schematic illustration of the silicon system, in the (r, z) plane (a) and

in the (r, φ) plane (b). z dimension not to scale.

Sensors in a layer are arranged into independent readout units, called ’ladders’

(or electrical barrels). The ladder components are two double sided rectangular

7.5 cm long sensors and the hybrid which is a multilayer board where all the front

end electronics, biasing circuits and fan-out are allocated. The two silicon sensors,

accurately aligned along their major axis, are glued end-to-end on a carbon-fiber

support, with wirebonds connections joining the strips on one sensor to the strips

of the next. It results in strips with an effective length of 15 cm in turn wirebonded

to the front-end electronics of the hybrid which is mounted at one end of the car-

bon fiber support. Two ladders are longitudinally juxtaposed head-to-head within

a barrel’s layer, in order to leave the two hybrids at the two outside extremities of

the barrel.

The active surface consists of double-sided, AC-coupled silicon sensors having mi-

11There is a small overlap between the edges of two adjacent wedges, which helps in wedge-to-

wedge alignment.
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crostrips implanted on a 300 µm thick, high resistivity bulk. Bias is applied through

integrated polysilicon resistors. There are three different possible sort of strip ori-

entations in each sensor’s side: r − φ (axial) strips oriented parallel to the beam

axis, small angle stereo (SAS) strips whose orientation is tilted by 1.2o with respect

to the beam axis and the 90o stereo strips which lie in the transverse plane. All the

five layers have axial strips on one side, three of the other sides have 90o stereo and

two have SAS strips.

The charge pulse from each strip flows to a channel of SVX3D, the radiation-hard

front-end chip [71]. SVX3D operates readout in “sparse-mode” which means that

only signals above a threshold are processed. SVX3D samples the pedestal event-

by-event and subtracts it from the signal. The discriminated differential pulse from

each one of the 405,504 channels is preamplified, ADC-converted to a digital string

and fed through neighbor-logic12 to the DAQ chain. The measured average signal-

to-noise ratio is S/N ≥ 10, with a single hit efficiency greater than 99%.

To prevent thermal expansion, relative detector motion, increased leakage current

and chip failure due to thermal heating the SVX II is held at roughly constant tem-

perature of 10-15oC through the operation of a water-glycol cooling system whose

pipes run all below the detector. The average material of SVX II corresponds to

5%X0.

2.2.6 Intermediate Silicon Layers (ISL)

The Intermediate Silicon Layer [72] detector is a silicon tracker placed at interme-

diate radial distance between the SVXII and the drift chamber (see fig. 2.4). The

polar coverage extends to |ηdet| < 2. In the central region ISL consist of a single

layer of silicon installed over a cylindrical barrel at radius of 22 cm. In the forward

region, two layers of silicon are placed on concentric barrels at radii of 20 and 28 cm.

Each silicon layer is azimuthally divided into a 30o wedge structure matching that

of SVXII. The basic readout unit is the ISL ladder which is similar to the SVXII

ladder but consists of three, instead of two, sensors wirebonded in series resulting

in a total active length of 25 cm.

ISL employs 5.7× 7.5 cm2 double sided AC-coupled 300 µm thick sensors. Each

sensor has axial strips on one side and SAS strips on the other. As in SVXII, signals

from the 303,104 channels are read by SVX3D chips. Average mass of the detector

is 2%X0 for normally incident particles.

2.2.7 Central Outer Tracker (COT)

The outermost tracking volume [73] of CDF II is a large open cell drift chamber

called the Central Outer Tracker (COT).

The COT has a coaxial bi-cylindrical geometry and extends, within the central

12In presence of a channel over threshold also the signal of the neighbor channels is accepted

allowing clustering of the hits.
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region, from 44 to 132 cm radially from the beam axis. The chamber contains 96

radial layers of 0.40 µm diameter gold-plated tungsten sense (anode) wires arranged

into 8 “superlayers”. Each superlayer samples the path of a charged particle at 12

radii (spaced 0.762 cm apart) where sense wires are strung. Four superlayers have

their constituent sense wires oriented parallel to the beam axis in order to measure

the hit coordinates in the r−φ plane. These are radially interleaved with four stereo

superlayers having wires canted at angles of either +3o or −3o with respect to the

beamline. Combined readout of stereo and axial superlayers allows the measure-

ment of the r − z hit coordinates.

Each superlayer is azimuthally segmented into open drift cells. A drift cell, as

shown in fig. 2.6, contains a row of 12 sense wires alternating with thirteen 0.40 µm

diameter gold-plated tungsten potential wires which control the gain on the sense

wires, optimizing the electric field intensity. The cathode of the detection circuit

is the field panel which closes the cell along the azimuthal direction. It is made of

gold on a 0.25 mm thick Mylar sheet and defines the fiducial volume of a cell. The

electric field strength is 2.5 kV/cm. Innermost and outermost radial extremities

(a)

SL2
52 54 56 58 60 62 64 66

R

Potential wires

Sense wires

Shaper wires

Bare Mylar

Gold on Mylar (Field Panel)

R (cm)

(b)

Figure 2.6: A 1/6 section of the COT end-plate (a). For each super-layer is given

the total number of cells, the wire orientation (axial or stereo), and the average

radius [cm]. The enlargement shows in details the slot were wire planes (sense)

and field sheet (field) are installed. Sketch of an axial cross-section of three cells in

super-layer 2, (b). The arrow shows the radial direction.

of a cell are closed both mechanically and electrostatically by the shaper panels,

which are Mylar strips carrying field-shaping wires attached. The architecture of

the cell allows the containment of a possible broken wire inside only one cell and its

dimensions bound to 0.9 cm the maximum drift distance.

Wire planes are not aligned with r̂. A 35o azimuthal tilt is provided in order to

offset the Lorentz angle of the drift paths which results from the combined effect

of crossed electrical and magnetic field and the characteristics of the gas mixture.

Moreover the tilted-cell geometry helps in the drift-velocity calibration as every

high-pT (radial) track samples the full range of drift distances within each super-
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layer. Further benefit of the tilt is that the left-right ambiguity13 is cleared-up for

track coming from the origin since the ghost track in each superlayer appears ro-

tated of a large azimuthal angle becoming unfittable by pattern recognition. The

volume of the COT is filled with a Ar(50%)/Ethane(50%) gas mixture. Drift elec-

trons follow approximately azimuthal trajectories at speed v ≈ 100 µm/ns. The

resulting maximum drift time is about 100 ns, well smaller than the inter-bunch

spacing 396 ns, providing the read-out and processing of the COT data available

for the Level 1 trigger.

The analog pulses from the 30,240 sense wires flow to preamplifiers where are ampli-

fied and shaped. The discriminated differential output encodes charge information

in its width to be used for dE/dxmeasures and is fed to a TDC which records leading

and trailing edge of the signals in 1 ns bins. COT has 99% efficiency on tracks with

measured single hit resolution σhit ' 175 µm and pT resolution is σpT/p
2
T ' 0.13%

GeV/c−1. The material of the COT is about 1.6% X0 for tracks at normal incidence.

Performance of tracking system

For this analysis, only COT-seeded silicon tracks were used, because the pattern

recognition algorithms that use stand-alone silicon information would have given

marginal contribution for two reasons. First, the impact of silicon stand-alone

tracking becomes important in the region 1 <∼ |η| <∼ 2 where the COT coverage is

incomplete. This region of acceptance is already excluded in our analysis, since the

trigger that collects B0
(s) → h+h

′− events uses the COT information (see sec. 2.4).

Secondly, the algorithms for silicon stand-alone tracking were not yet optimized as

of this analysis.

All tracks were first fit in the COT and then extrapolated inward to the silicon.

This approach guarantees fast and efficient tracking with high track purities. The

greater radial distance of the COT with respect to the silicon tracker results in

a lower track density and consequent fewer accidental combination of hits in the

track reconstruction. A concise overview of the tracking algorithms is given in the

following, see Ref. [75] for more details.

COT performance

The COT efficiency for tracks is typically 99%. The single-hit resolution is 140 µm,

including a 75 µm contribution from the ≈ 0.5 ns uncertainty on the measurement of

the pp̄ interaction time. Internal alignments of the COT cells are maintained within

10 µm using cosmic rays. Curvatures effects from gravitational and electrostatic

sagging are under control within 0.5% by equalizing the difference of E/p between

13Each pulse on a given wire has a two fold ambiguity corresponding to the two incoming az-

imuthal drift trajectories. The signals from a group of nearby radially wires will satisfy the config-

uration for two tracks, one from the actual particle trajectory and another “ghost track” originated

by the two fold ambiguity.
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electrons and positrons as a function of cot(θ). The typical resolutions on track

parameters are: σpT/p
2
T ≈ 0.0015 (GeV/c)−1, σϕ0 ≈ 0.035◦, σd0 ≈ 250 µm, σθ ≈

0.17◦, and σz0 ≈ 0.3 cm for tracks fit with no silicon information or beam constraint.

Performance of the silicon detectors

The silicon information improves the impact parameter resolution of tracks which,

depending on the number (and radial distance) of the silicon hits, may reach

σd0 ≈ 20 µm (not including the transverse beam size). This value, combined with

the σT ≈ 30 µm transverse beam size, is sufficiently small with respect to the typical

transverse decay-lengths of heavy flavors (a few hundred microns) to allow separa-

tion of their decay-vertices from production vertices. The silicon tracker improves

also the stereo resolutions up to σθ ≈ 0.06◦, and σz0 ≈ 70 µm, while the trans-

verse momentum and the azimuthal resolutions remain approximately the same of

COT-only tracks.

2.3 Other CDF II subdetectors

In this section the subdetectors not used in this analysis are briefly discussed.

2.3.1 Time of Flight detector

The Time of Flight detector (TOF) is a cylindrical array made of 216 scintillating

bars [76] and it is located between the external surface of the COT and the cryostat

containing the superconducting solenoid. Bars are 280 cm long and oriented along

the beam axis all around the inner cryostat surface at an average radial distance

of 138 cm. Both longitudinal sides of the bars collect the light pulse into PMT

and measure accurately the timing of the two pulses. The time between the bunch

crossing and the scintillation signal in these bars defines the β of the charged particle

while the momentum is provided by the tracking. PID information is available

through the combination of TOF information and tracking measurements. The

measured mean time resolution is now 110 ps. This guarantees a separation between

charged pions and kaons with pT
<∼ 1.6 GeV/c equivalent to 2σ, assuming Gaussian

distributions. Unfortunately, in high (L & 5×1031 cm−2s−1) luminosity conditions,

the occupancy of the single bars determines a degradation in efficiency, which is

about 60% per track.

2.3.2 Calorimeters

Outside the solenoid, scintillator-based calorimetry covers the region ηdet ≤ 3.6, and

is devoted to the measurement of the net energy deposition of photons, electrons

and hadrons using the shower sampling technique.
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The basic structure consists of alternating layers of passive absorber and plastic

scintillator. Neutral particles and charged particles with a transverse momentum

greater than about 350 MeV/c are likely to escape the solenoid’s magnetic field and

penetrate into the CDF II calorimeters. Here particles undergo energy loss, strik-

ing the absorber material, and produce daughter particles which also interact in a

cascade process, giving rise to a shower of particles. Showers propagate through

many layers of absorber before they exhaust their energy generating a detectable

signal, roughly proportional to the number of particles in the shower, within the

active scintillator layers. The sum of the signals collected by all the sampling active

layers is proportional to the energy of the incident particle.

The CDF II calorimeters are finely segmented in solid angle around the nominal

collision point, and coarsely segmented radially outward from the collision point (in-

depth segmentation.) Angular segmentation is organized in projective towers. Each

tower has a truncated-pyramidal architecture having the imaginary vertex pointing

to the nominal interaction point and the base is a rectangular cell in the (ηdet, φ)

space. Radial segmentation of each tower instead consists of two compartments, the

inner (closer to the beam) devoted to the measure of the electromagnetic compo-

nent of the shower, and the outer devoted to the measure of the hadronic fraction

of energy. These two compartments are read independently through separated elec-

tronics channels.

A different fraction of energy release in the two compartments distinguishes pho-

tons and electrons from hadronic particles. CDF II calorimetry is divided in several

independent subsystems presented in the following subsections.

Central region: CEM, CHA, WHA

The radial extension of the calorimeters in the central region is 1.73 m < r < 3.5 m.

The Central ElectroMagnetic calorimeter (CEM) [77] is constructed as four az-

imuthal arches (NE, NW, SE, SW) each of which subtends 180o and is divided into

twelve 15o wedges. A wedge consists of 31 layers of 5 mm thick polystyrene scin-

tillator interleaved with 30 aluminum-clad lead 3.2 mm thick sheets, divided along

ηdet into ten towers (∆ηdet ≈ 0.11 per tower). To maintain a constant thickness in

X0, compensating the sin(θ) variation between towers, some lead layers are replaced

with increasing amounts of acrylic as a function of ηdet
14. Light from each tower is

collected by sheets of acrylic wavelength shifter at both azimuthal tower boundaries

and guided to two phototubes per tower. The spatial resolution of the CEM is

about 2 mm. The outer two towers in one wedge (known as chimney towers) are

missing to allow solenoid access, for a resulting total number of 478 instrumented

towers.

At a radial depth of 5.9X0, which is approximately the depth corresponding to the

peak of shower development, the CEntral Strip multi-wire proportional chambers

14The number of lead layers varies from 30 in the innermost (|ηdet| ≈ 0.06) tower to 20 in the

outermost (|ηdet| ≈ 1.0).
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(CES) measure the transverse shower shape with ∼ 1.5 cm segmentation. A further

set of multi-wire proportional chambers, the Central Pre-Radiator (CPR) [78] is

located in the gap between outer surface of the solenoid and the CEM. It monitors

eventual photon conversions started before the first CEM layer. Phototube gains

are calibrated once per store using an automated system of Xenon or LED light

flashers.

The hadronic compartment is the combination of two sub-systems: the Central

HAdronic (CHA) and Wall HAdronic (WHA) [79] calorimeters. Analogously as in

the CEM, in both systems four “C”-shaped arches contain 48 wedges. Each CHA

wedge is segmented into 9 ηdet towers matching in size and position the CEM tow-

ers. The WHA wedge instead consists of 6 towers of which three are matching CHA

towers. Radially a CHA tower is constructed of 32 layers of 2.5 thick steel absorber

alternating with 1.0 cm thick acrylic scintillator. WHA towers structure is similar

but there are only 15 layers of absorber which is 5.1 cm thick.

The total thickness of the electromagnetic section corresponds to approximately

19X0 (1λint, where λint is the pion nuclear absorption length in units of g cm−2), for

a relative energy resolution σE/E = 13.5%/
√
E sin(θ)⊕2%.15 The total thickness of

the hadronic section corresponds to approximately 4.5λint, for an energy resolution

of σE/E = 50%/
√
E sin(θ)⊕3% for the central, and σE/E = 75%/

√
E sin(θ)⊕4%

for the end-wall.
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Figure 2.7: Schematic illustration of an azimuthal sector of the central electromag-

netic calorimeter (a). Elevation view of one quarter of the plug calorimeter (b).

15The first term is called the “stochastic” term and derives from the intrinsic fluctuations of

the shower sampling process and of the PMT photo-electron yield. The second term, added in

quadrature, depends on the calorimeter non-uniformities and on the uncertainty on the calibrations.

All energies are in GeV.



38 Chapter 2. Experimental apparatus

Forward region: PEM, PHA

The coverage of the 1.1 ≤ |ηdet| ≤ 3.6 region relies on the scintillating tile Plug

calorimeter [80] which is composed of two identical devices, one installed in ηdet > 0

region and the other in the ηdet < 0. Each of these two halves has electromagnetic

and hadronic compartments (see fig. 2.7(b)).

In each half the absorber of the Plug ElectroMagnetic calorimeter (PEM) consists

in 23 “doughnuts”-shaped lead plates, 2.77 m in outer diameter, which have a cen-

tral hole where the beam pipe is allocated. Each plate is made out of 4.5 mm thick

calcium-tin-lead sandwiched between two 0.5 mm thick stainless-steel sheets. Be-

tween the absorber plates are inserted the 4 mm thick scintillator tiles organized

azimuthally in 15o triangularly-shaped wedges. The signal of each tile is collected

independently by embedded wavelength-shifter fibers which guide it to the photo-

multipliers. A preshower detector consist of a thicker (10 mm) amount of scintillator

installed in the first layer of PEM, while shower maximum sampling is performed

at radial depth of ∼ 6X0 by two tilted layers of scintillator strips (pitch 5 mm).

Each half of the hadronic compartment, Plug HAdronic calorimeter (PHA), is az-

imuthally subdivided in 12 wedge-shaped modules each subtending 30o. In depth

each module consists of 23 layers of 5 cm thick iron absorber alternated with 6 mm

scintillator layers. Within each sampling layer the scintillator is arranged in tiles

similar to those used in the PEM.

The total thickness of the electromagnetic section corresponds to approximately

21X0 (1λint), for an energy resolution of σE/E = 16%/
√
E sin(θ)⊕1%.16 The total

thickness of the hadronic section corresponds to approximately 7λint, for an energy

resolution of σE/E = 74%/
√
E sin(θ)⊕ 4%.

2.3.3 Muon systems

CDF II is equipped with scintillating counters and drift tubes [81] installed at

various radial distances from the beam to detect muons and shielded by the iron

structure of the inner detector. Scintillators serve as trigger and vetoes while the

drift chambers measure the φ coordinate using the absolute difference of drift elec-

trons arrival time between two cells, and the z coordinate by charge division.

These systems cover the whole range of pseudorapidity |ηdet| < 2 and are used only

to identify the penetrating muon reconstructing a small segment of their path (stub)

sampled by the chambers. The momentum measurement is performed by pointing

back the stub to the corresponding, track in the COT. The shield is constituted

by the iron of the calorimeter, the return yoke and further steel walls intended to

filter out the punch-through of hadrons. Different muon sub-systems cover different

geometrical regions. In the |ηdet| < 0.6 region moving outward from the beam we

encounter the inner CMU (Central MUon detector) chambers at radial distance of

16See footnote at pag. 37 for an explanation of terms.
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3.5 m. Approximately 5.4λint(π) of material17 separate the luminous region from

the CMU resulting in about 1/220 high energy hadrons traversing the calorimeter

unchecked. In order to recognize and discard them, the CMP (Central Muon uP-

grade) chambers lie in the same ηdet region separated radially from the CMU by a

60 cm thick wall of steel achieving a rejection of 95% of the fake muons.

The muon coverage in the 0.6 < |ηdet| < 1 volume is ensured by the CMX (Central

Muon eXtension) chambers, embedded in scintillator counters and placed at radius

of 3.5 m. The Intermediate MUon (IMU) detectors are instead drift tubes covering

the pseudorapidity range of 1 < |ηdet| < 2.0.

CDF II triggers on muons only emerging at |ηdet| < 1.5 where the muon coverage is

segmented with sufficient granularity to survive high occupancies. The granularity

of muon devices in the forward regions is less fine and not adequate for trigger-

ing, but sufficient for offline muon assignation to high pT tracks going through that

region.

2.3.4 Cherenkov Luminosity Counters

The luminosity (L) is inferred from the average number of inelastic interactions per

bunch crossing (N) according to N×fb.c. = σpp̄−in.×ε×L, where the bunch-crossing

frequency (fb.c.) is precisely known from the Tevatron RF, σpp̄−in. = 59.3 ± 2.3

mb is the inelastic pp̄ cross-section resulting from the averaged CDF and E811

luminosity-independent measurements at
√
s = 1.8 TeV [82], and extrapolated to√

s = 1.96 TeV, and ε is the efficiency to detect an inelastic scattering.

The Cherenkov Luminosity Counters (CLC) are two separate modules, covering

the 3.7 <∼ |ηdet| <∼ 4.7 range symmetrically in the forward and backward regions

[83]. Each module consists of 48 thin, 110–180 cm long, conical, isobutane-filled

Cherenkov counters. They are arranged around the beam-pipe in three concentric

layers and point to the nominal interaction region. The base of each cone, 6–8

cm in diameter and located at the furthest extremity from the interaction region,

contains a conical mirror that collects the light into a PMT, partially shielded from

the solenoidal magnetic field. Isobutane guarantees high refraction index and good

transparency for ultraviolet photons. With a Cherenkov angle θC = 3.4◦, the mo-

mentum thresholds for light emission are 9.3 MeV/c for electrons and 2.6 GeV/c

for charged pions. Prompt charged particles from the pp̄ interaction are likely to

traverse the full counter length, thus generating large signals and allowing discrim-

ination from the smaller signals of particles emitter at the same angle due to the

beam halo or to secondary interactions. In addition, the signal amplitude distribu-

tion shows distinct peaks for different particle multiplicities entering the counters.

This allows a measurement of N with 4.4% relative uncertainty in the luminosity

range 1031 <∼ L <∼ 1032 cm−2s−1. This accuracy, combined with the 4% relative

17This defines also a pT threshold for muons reaching the CMU which is approximately 1.4

GeV/c.
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uncertainty on the inelastic pp̄ cross-section, results in an instantaneous luminosity

measured with 5.9% relative uncertainty. This uncertainty does not affect the re-

sults of this analysis since ratios of branching fractions, instead of absolute branching

fractions, are measured.

2.4 Trigger system and data acquisition

The trigger system plays a fundamental role in hadron collider experiments, because

the typical collision rate is much higher than the rate at which data can be stored

on tape.

At the typical TeVatron instantaneous luminosity approximately 2.6 × 106 in-

elastic collisions per second occur, corresponding on average to one interaction per

bunch crossing. The interbunch space is 396 ns, corresponding to a collision rate of

about 2.5 MHz. Unfortunately, the storage rate attainable at CDF II is well below

this value: the writing cannot proceed faster than about 100 Hz. Thus, the read-out

system faces the challenge of reducing the 2.5 MHz rate to 100 Hz. This is achiev-

able evaluating the partial information provided by the detector in real time and

rejecting uninteresting events, representing the majority of collision events18. The

CDF II Data AcQuisition system (DAQ) is divided into three levels, represented

in fig. 2.8, each receiving data events from the previous one. Each level provides

a rate reduction sufficient to allow for processing in the next level with minimal

deadtime19.

2.4.1 Data acquisition

Prior to any trigger level, the bunched structure of the beam is exploited to reject

cosmic ray events by gating the front end electronics of all subdetectors in corre-

spondence of the bunch crossing. The front end electronics of each subdetector has

a 42 cells deep pipeline synchronized with the TeVatron clock cycle, set to 132 ns.

The TeVatron clock picks up a timing marker from the synchrotron RF and forwards

this bunch crossing signal to the trigger and to the front end electronics. Since the

inter bunch time is 396 ns, three times the TeVatron clock cycle, the pipeline can

collect data corresponding to a maximum of 14 bunch crossings. The pipeline depth

gives the amount of time that Level 1 (L1) trigger has to decide to accept or reject

an event otherwise the buffer content is overwritten: 14×396 ns = 5.5 µs. An event

accepted by the L1 is passed to the Level 2 (L2) buffer, where the number of buffers

in the pipeline is 4, that gives 4 × 5.5 µs = 22 µs. This means that if an event is

18For example, the b production cross section is 10−3 times smaller than the generic pp̄ inelastic

one.
19Since the read-out of the entire detector needs about 2 ms on average, after the acquisition of

one event another 5,000 interactions approximately occur and remain unrecorded. The percentage

of events which are rejected solely because the trigger is busy processing previous events is referred

to as trigger deadtime.
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Figure 2.8: Functional block diagram of the CDF II trigger and data acquisition

systems.

accepted by the L1 and the L2 does not have a free buffer, deadtime will incur. L2

output rate is low enough to avoid in general deadtime problem in the connection

between L2 and Level 3 (L3). It is now useful to define some relevant quantities

used in the trigger selection, giving the reasons why they are useful in our analysis.

All quantities are calculated in the laboratory frame, and are illustrated in fig. 2.9.

For the present description we neglect the curvature of particles with momentum

∼1 GeV/c.

Transverse momentum (~pT ) − the projection of the momentum vector onto

the transverse plane, calculated in the point of closest approach between the

track and the beam line. This quantity is the simplest discriminant between

heavy-flavor signals and background because, in pp̄ collisions, charged particles

from b-hadron decays have average transverse momenta higher than particles

from generic QCD-backgrounds. Another useful quantity used in the selection

is the scalar sum of the transverse momenta of the two particles ΣpT ≡ pT(1)+

pT(2).

Primary vertex − the space-point of the reconstructed primary pp̄ interaction,

where the b-quark, once produced, quickly hadronizes to a b-hadron pair.

Secondary vertex − the space point in which the decay of a long-lived particles

occurs. The components of its displacement with respect to the primary vertex
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Figure 2.9: Illustration of a pp̄ event containing a two-body decay, projected into the

transverse plane. Ellipses indicate vertices, arrows indicate the transverse momenta

(i. e., the direction) of charged particles. Nothing is to scale.

in the transverse plane are indicated by the vector ~xv = ~βTγct = (~pT/m)ct,

for a particle of mass m and momentum p that decays at time t after its

production.

Transverse decay-length (LT)− the displacement of the secondary vertex with

respect to the primary one, projected onto the transverse momentum vector of

the decaying particle (~pT(B)). The transverse displacement of the secondary

vertex (~xv) may not be collinear with ~pT(B) because of the measurement

uncertainties. Thus, the transverse decay-length,

LT ≡
~pT · ~xv
pT

, (2.9)

is usually preferred to ~xv as an estimator of transverse decay-length travelled

before decay. This quantity is typically positive for a true long-lived decays,

while it is negative or positive with almost equal probability for decays from

a fake secondary vertex or for combinations of prompt tracks, although in the

latter case its value is comparable with its resolution.

Impact parameter (d0) − the component of the distance of closest approach
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between a track and the primary vertex in the transverse plane. This is a

signed quantity defined as

d0 ≡
ẑ · (~pT ∧ ~xv)

pT
, (2.10)

where the scalar product with the unit vector pointing toward the proton

direction (ẑ) determines its sign and the symbol “∧” indicates the cross prod-

uct. The impact parameter is typically different from zero for products of

long-lived decays, while it is comparable with the convolution of its resolution

and the transverse size of the beam for particles produced in the vicinity of

the primary vertex (prompt background).

Azimuthal opening angle (∆ϕ0) − the opening angle between the two outgo-

ing particles projected in the transverse plane. The distribution of this quan-

tity in B0
(s) → h+h

′− decays depends on the distributions in impact parameter

and transverse momentum. However, it has generally a slowly-varying shape

for signal candidates, while it shows two enhancements around 0◦ and 180◦ for

background candidates. Pairs of quasi-collinear tracks are found in hadronic

jets, due to light-quark fragmentation, or in highly occupied regions of the

detector, due to combinations of fake tracks; pairs of azimuthally-opposed

tracks are found in back-to-back jets of generic QCD background.

In the following, we give a brief description of the three levels of the trigger.

Level 1

At L1, a synchronous system of custom designed hardware processes a simplified

subset of data in three parallel streams to reconstruct coarse information from

the calorimeters (total energy and presence of single towers over threshold), the

COT (two dimensional tracks in the transverse plane), and the muon system (muon

stubs, i. e., segments of hits in the muon chambers). A decision stage combines the

information from these low resolution physics objects, called primitives, into more

sophisticated objects, e. g. track primitives are matched with muon stubs, or tower

primitives, to form muon, electron, or jet20 objects, which then undergo some basic

selections.

The eXtremely Fast Tracker (XFT) Using information from the COT, at

L1, the eXtremely Fast Tracker (XFT) [84, 85] reconstructs trajectories of charged

particles in the (r, ϕ) plane for each proton-antiproton bunch crossing. The XFT

is a custom processor that uses pattern matching to first identify short segments

of tracks and then to link them into full-length tracks. After classifying the hits of

20A particle jet is a flow of secondary particles produced in a spatially collimated form, as a

consequence of the hadronization of partons produced in the hard collisions.



44 Chapter 2. Experimental apparatus

the four axial super-layers in prompt (0-66 ns) or delayed hits (67-220 ns), depend-

ing upon the observed drift-time within the cell, track segments are reconstructed

in each axial super-layer. A pattern-matching algorithm searches for coincidences

between the observed combinations of hits in each super-layer (a minimum of 11

out of 12 hits is required) and a set of predetermined patterns. If a coincidence

between segments crossing four superlayers is found, two-dimensional XFT tracks

are reconstructed by linking the segments. The segments are compared with a set

of about 2,400 predetermined patterns corresponding to all tracks with pT > 1.5

GeV/c originating from the beam-line. The comparison proceeds in parallel in each

of the 288 azimuthal 1.25◦ sectors in which XFT logically divides the chamber.

If no track is found using all four super-layers, then the best track found in the

innermost three super-layers is output. The track-finding efficiency and the fake-

rate with respect to the offline tracks depend on the instantaneous luminosity and

were measured to be about 96% and 3%, respectively, at L ' 1031 cm−2 s−1. The

observed momentum resolution is σpT /pT ≈ 1.7% (GeV/c)−1, and the azimuthal

resolution is σϕ6 ≈ 0.3◦, where ϕ6 is the azimuthal angle of the track measured at

the sixth COT super-layer, located at 106 cm radius from the beam-line. Events

are selected for further processing when two XFT-tracks satisfying trigger criteria

on basic variables are found. The variables are the product of any combination of

two particles charges (opposite or same sign), the opening angle of the two tracks in

the transverse plane (∆ϕ6), the two particles’ transverse momenta and their scalar

sum.

Level 2

At L2, an asynchronous system of custom designed hardware processes the time

ordered events accepted by the L1. Additional information from the shower maxi-

mum strip chambers in the central calorimeter [74] and from the axial layers of the

SVX II detector is combined with L1 primitives to produce L2 primitives. A rough

energy clustering is done in the calorimeters by merging the energies in adjacent

towers to the energy of a seed tower above threshold. L1 track primitives matched

with consistent shower maximum clusters provide refined electron candidates whose

azimuthal position is known with 2◦ accuracy. Information from the (r, ϕ) sides of

the SVX II is combined with L1 tracks primitives to form two dimensional tracks

with resolution similar to the offline one. Finally, an array of programmable proces-

sors makes the trigger decision, while the L2 objects relative to the following event

accepted at L1 are already being reconstructed.

Silicon Vertex Trigger (SVT) The Silicon Vertex Trigger (SVT) detects im-

pact parameters of the charged particles, which is faster than fully reconstruct-

ing the decay vertices, but still provides information on the lifetime of the decay-

ing particle[86]. This feature is of crucial importance for this analysis, because

b-hadrons decays are characterized by longer decay lengths with respect to light
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flavour decays or other backgrounds. The full spatial resolution of silicon detectors

is used to discriminate O(100 µm) impact parameters from the O(10 µm) beam

spot. Since the silicon signals are digitized only after the L1 accept decision, the

SVT is used at L2. Here the information from the SVX II detector and the output

tracks of the XFT are incorporated into the trigger track reconstruction by the SVT.

It first finds charge clusters in the silicon, by converting a list of channel numbers

and pulse heights into charge-weighed hit centroids. These information are then

used by a pattern recognition algorithm, which is formed of two subsequent stages.

First, a low-resolution stage is implemented by grouping together adjacent detector

channels into “super-bins”. Their width in the azimuthal direction is programmable,

with 250-700 µm typical values. A set containing about 95% of all super-bin com-

binations compatible with the trajectory of a charged particle with pT > 2 GeV/c

originated from the beam-line (“patterns”) is calculated in advance from simula-

tion and stored in a special design memories called Associative Memories (AMs).

For each azimuthal sector, the 32,768 most probable patterns are stored. Online,

an algorithm detects low-resolution candidate tracks, called “roads”, by matching

super-bins containing hits with the stored patterns. A road is a combination four

excited super-bins in different SVX II layers plus the XFT track parameters, which

are logically treated as additional hits (see fig. 2.10 (a)).

A maximum of 64 roads per event, each one having a maximum of 8 hits per

super bin, is output. At this stage, pattern recognition is done during detector

readout with no additional processing time. The resolution is coarse enough to

reduce the fraction of accidental combinations, but fine enough to separate most

tracks. Once a track is confined to a road, most of the pattern recognition is done,

leaving the remaining ambiguities, as multiple hits in the same superbin, to the

stage of track fitting.

In principle, no exact linear relation exists between the transverse parameters

of a track in a solenoidal field, and the coordinates at which the track intersects

a radial set of at detector planes. But for pT > 2 GeV/c, |d0| < 1 mm and

|∆φ0| < 150◦, a linear fit biases the reconstructed d0 by at most a few percent. The

trackfitting process exploits this feature by expanding the non-linear constraints and

the parameters of the real track to first order with respect to the reference track

associated to each road. A linear expansion in the hit positions of both the track

parameters and the χ2 is used. The fit process is thus reduced to computing a few

scalar products, which is done within 250 ns per track. The needed constants, which

depend on detector geometry and alignments, are evaluated in advance and stored

in an internal memory. The output of the SVT are the reconstructed parameters

of the twodimensional track in the transverse plane: pT, φ0 and d0. The list of

parameters for all found tracks is sent to L2 for trigger decision.

The SVT measures the impact parameter with a r.m.s. width σd0(SV T ) ≈
35 µm with an average latency of 24 µs. This resolution is comparable with the

offline one, for tracks not using L00 hits, and yields a distribution of impact pa-
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rameter of prompt tracks with respect to the z axis with σd0(SV T ) ≈ 47 µm when

combined with the transverse beamspot size, as shown in fig. 2.10 (b). The SVT
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Figure 2.10: Illustration of roads in the transverse plane (a). Impact parameter

distribution as measured by SVT (b).

efficiency is higher than 85%.21 The impact parameter is a quantity measured with

respect to the beam. If the actual beam position in the transverse plane is shifted by

an amount dbeam with respect to the origin of the SVT reference frame, all prompt

tracks appear to SVT as having O(dbeam) impact parameters. This is relevant since

the beam is usually displaced from its nominal (0, 0, z) position. Between TeVatron

stores, O(500µm) displacements in the transverse plane and O(100µrad) slopes with

respect to the detector axis may occur. In addition, the beam can drift by O(10µm)

in the transverse plane even during a single store. However, a simple geometric re-

lation prescribes that the impact parameter of a track, calculated with respect to a

point displaced from its production vertex, is a sinusoidal function of its azimuthal

coordinate:

d0 = y0 cosφ0 − x0 sinφ0, (2.11)

where (x0, y0) are the coordinates of the production vertex. Using eq. (2.11) SVT

measures the actual coordinates of the beam position with respect to the detec-

tor system and subtracts them from the measured impact parameters, in order to

provide physical impact parameters. Using about 105 tracks every 30 seconds, six

transverse beam positions (one for each SVXII semi-barrel) are determined online.

The six samplings (one for each SVX II barrel) along the z direction provide a

measurement of the slope of the beam with respect to the nominal z axis. For the

proper measurement of impact parameters, the beam slope is more harmful than

the transverse drift, because it breaks the cylindrical symmetry of the system. The

SVT does not have access to the z0 coordinate of tracks. For each track, only the

21Efficiency definied as the ratio between the number of tracks reconstructed by SVT and the

XFT-macthed offline silicon tracks.
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longitudinal coordinate of the SVX II halfbarrel that detected the track is known.

But halfbarrels are too long (16 cm) to allow for a reliable correction of the beam

slope. When significant slopes are observed, the TeVatron beam division is alerted

and they apply a corrective action on the magnets.

Level 3

The digitized output relative to the L2 accepted event reaches L3 via optical fibers

and it is fragmented in all subdetectors. The output of L2 is collected by a custom

hardware switch that arranges it in the proper order and transfers it to commercial

computers, organized in a modular and parallelized structure of 16 subsystems. The

ordered fragments are assembled in the event record, a block of data that univocally

corresponds to a bunch crossing and is ready for the analysis of the L3 software. The

L3 trigger uses a simpler tracking algorithm and preliminary calibrations relative

to the ones used off-line and re-tests the criteria imposed by L2. In addition, the

difference in z of the two tracks at the point of minimum distance from the primary

vertex, ∆z0 , is required not to exceed 5 cm, removing events where the pair of tracks

originate from different collisions within the same crossing of p and p̄ bunches.

If an event satisfies the L3 requirements, the corresponding event record is trans-

ferred to mass storage at a maximum rate of 20 MB/s. A fraction of the output

is monitored in real time to search for detector malfunctions, to derive calibrations

constants and to graphically display events. The L3 decision is made after the full

reconstruction of the event is completed and the integrity of its data is checked.

2.5 Operations and data quality

The proper operation of the detector and the quality of the on-line data-taking is

continuously ensured by “crews” of five members of the CDF Collaboration plus

one technician who alternate on duty with eight-hours shifts, plus several subde-

tector experts available on request. The on-line crew, in communication with the

Tevatron crew, ensures smooth data-acquisition, monitors the crucial parameters

of all subdetector, and intervenes in case of malfunctions. The average data-taking

efficiency is 85%. The inefficiency is approximately equally shared in a 5% arising

at the beginning of the store, when the detector is not powered while waiting for

stable beam conditions, a 5% due to trigger deadtime, and a 5% due to unexpected

detector or DAQ problems.

When no beam is present, cosmic-rays runs are taken, or calibrations of the sub-

detectors are done. During the Tevatron shut-down periods, the crew coordinates

and helps the work of experts that directly access the detector.

Each time that at least one of the trigger paths fires, an “event” is labeled with

a progressive number. Events are grouped into runs, i. e., periods of continuous

data-taking in constant configurations of trigger table, set of active subdetectors
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and so forth.22 Several parameters of the operations (e. g., beam-line position and

slope, set of calibrations, etc.) are stored in the database on a run-averaged format.

All data manipulations occurring some time after the data are written to per-

manent memories are referred to as off-line processes, as opposed to the on-line

operations which take place in real time, during the data-taking. The most im-

portant off-line operation is the processing with a centralized production analysis

that generates collections of high-level physics objects suitable for analysis, such

as tracks, vertices, muons, electrons, jets, etc. from low-level information such as

hits in the tracking subdetectors, muon stubs, fired calorimeter towers, etc. [87].

During the production, more precise information about the detector conditions

(e. g., calibrations, beam-line positions, alignment constants, masks of malfunc-

tioning detector-channels, etc.) and more sophisticated algorithms are used than

those available at the Level-3 of the trigger. The production may be repeated when

improved detector information or reconstruction algorithms become available: this

typically occurs once or twice every year. The reprocessing uses large farms of com-

mercial processors that reconstruct approximately 107 events per day employing

approximately 2–5 s per event with 1 GHz CPU.23 The added information increases

the event size by typically 20% after production.

To ensure homogeneous data-taking conditions, each run undergoes a quality

inspection. On-line shift operators, off-line production operators, and subdetec-

tor experts certify in what fraction of data the running conditions for all relevant

subdetectors are compliant to physics-quality standards.

When detectable problems of the detector occur, the data-taking is quickly

stopped, so very short runs are likely to contain corrupted data. Runs with fewer

than 108 live Tevatron clock-cycles, or fewer than 104 (103) Level-1 (Level-2) accepts,

or containing data corresponding to an integrated luminosity
∫
Ldt < 1 nb−1 are

excluded from physics analysis. On-line shift operators further exclude the runs in

which temporary or test trigger tables were used.24 Runs whose data underwent

problems or software crashes during the production are excluded off-line.

Accurate integrated luminosity measurements are ensured in physics-quality

data by requiring the CLC to be operative during the data-taking and by veri-

fying that a set of luminosity and beam-monitor probe quantities are within the

expected ranges. Shift operators ensure that Level-1 and Level-2 trigger operate

correctly and that the rate of SVXII data corruption errors is smaller than 1%.25

22The data acquisition might need to be interrupted and recovered for several motivations, in-

cluding the need for enabling or disabling a subdetector, the need for a change in the trigger table,

a problem in the DAQ chain etc.
23The event size, and the processing-time increase roughly linearly with the instantaneous lumi-

nosity.
24It is sometimes necessary to test new configurations of the trigger selections in a real data-

taking condition to monitor trigger rates, performance and so on.
25The read-out of the silicon detector and the proper integration of the information in the on-line

infrastructure is a complex operation which, occasionally, leads to a certain fraction of data to be
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SVT experts verify that the on-line fit and subtraction of the beam position is done

correctly and that the SVT occupancy is within the expected limits. In addition,

higher level quantities, such as event yields of J/ψ → µ+µ−, D0 → K−π+, and

D∗+ → D0π+ decays are monitored on-line and are required to be within the ex-

pected ranges. For analyses that use COT information, the minimum integrated

luminosity required is 10 nb−1 and the fraction of noisy COT channels is required

to be smaller than 1%.

improperly processed.
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Chapter 3

Sample selection

This chapter describes the reconstruction and selection of the sample of B → h+h
′−

decay candidates used in the measurements of CP asymmetries.

3.1 Introduction

The analysis of B → h+h
′− decay modes uses the full CDF data sample, collected

between December 2004 (run 190697) and September 2011 (run 312510). After the

application of standard CDF data-quality requirements (see sec. 2.5), the sample

size corresponds to an integrated luminosity of 9.3 fb−1. B → h+h
′− decay modes

have a relatively simple topology: two charged particles decay from a B0 or a B0
s

meson or a Λ0
b baryon. The B → h+h

′− decays lack most of the standard dis-

criminating features: there are no leptons in the final states, so it is impossible to

use the good CDF muon and electron identification capability; in addition, there

aren’t intermediate resonances that could be used to provide useful kinematics con-

straints. Furthermore, the final states are pions, protons or kaons, which are the

most common particles present in the background: the signal to background ratio

in these conditions is O(10−9). As explained, the trigger bandwidth available at

CDF II is not sufficient to record all events, so it is necessary to select on-line the

interesting decay modes. The strategy to reject undesirable events exploits the in-

formation of the decay time of the heavy particles, subject of this analysis. The

b-hadrons decay length is O(400 µm), typically longer with respect to the light

flavour or other backgrounds decays. If the momentum of the b-hadron has a suffi-

ciently large component in the plane transverse to the beam-line, the displacement

between production and decay positions of the b-hadron can be measured with the

silicon tracker. The Displaced-Tracks Trigger introduced in sec. 2.4 is therefore used

in this analysis.

51
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3.2 The displaced-tracks trigger

The data have been collected with the Displaced-Tracks Trigger, that is composed

by several trigger paths. A trigger path is a well defined sequence of Level-1, Level-2,

Level-3 requirements. Specifically, this analysis uses more than 50 different trigger

paths, that can be classified into two different groups sharing similar requirements:

the B PIPI (or med) and the B PIPI HIGHPT (or high) paths. The main difference

between the two groups are the different requirement in transverse momentum of

the two tracks (pT(1,2)) and
∑
pT = pT(1)+pT(2). At high luminosity, with higher

purity, but less efficiency, the B PIPI HIGHPT selection is employed. As the lumi-

nosity decreases over the course of a store, trigger bandwidth becomes available and

the B PIPI is utilized to fill the available trigger bandwidth and maximize the signal

yield. In the following, we will briefly describe the two trigger paths requirements.

At each level of the trigger, more complete information are added, to obtain higher

efficiency while having larger background rejection. This is achieved using param-

eters capable of discrimination between our B → h+h
′− signals and background.

Kinematics requirements are applied on the sample to select only candidates in

the desirable kinematic region. Additional information, such as the track’s charge,

the opening angle between tracks and the impact parameter, are applied to reject

background events having different distributions. Other requirements, such as the

tracks fit quality or the decay length, complete the set of requirements, as reported

in tab. 3.1.

Version Level 1 Level 2 Level 3

med pT(1, 2) > 2.0 GeV/c confirmed confirmed∑
pT > 5.5 GeV/c confirmed confirmed

Track’s opposite charge confirmed confirmed

0◦ < ∆φ6 < 135◦ 20◦ < ∆φ0 < 135◦ confirmed

0.01 cm < d0(1, 2) < 0.1 cm confirmed

LT (B) > 200 µm confirmed

|d0(B)| < 140 µm confirmed

χ2
SV T < 25 confirmed

|∆z0| < 5 cm

|η(1, 2)| < 1.2

4 < mππ < 7 GeV/c2

high pT(1, 2) > 2.5 GeV/c confirmed confirmed∑
pT > 6.5 GeV/c confirmed confirmed

Table 3.1: Selections for the two displaced triggers used in this work. The two

trigger paths share all the requirements, except for the pT and
∑
pT requirements

as discussed. The labels (1,2) refers to requirements applied to both tracks, while

the other criteria refer to track-pairs. Finally mππ is the invariant mass calculated

in assumption of two pions in the final state.
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Over the course of a TeVatron store, the available trigger bandwidth varies

because trigger rates decrease as instantaneous luminosity falls. Higher trigger rates

at high luminosity arise from both a larger rate for real physics processes as well as a

larger fake trigger rate due to multiple pp̄ interactions. To fully exploit the available

trigger bandwidth, for the work of this thesis we employed two prescaled1 variants

of the displaced-tracks trigger. In addition, to better use the trigger bandwidth, a

dynamic prescale (DPS) has been added to particularly high trigger accept-rates.

The DPS adjusts the prescale factor according to the instantaneous luminosity,

since the instantaneous luminosity of the store decreases with time. This is due to

the interactions of the proton and anti-proton bunches with the residual gas in the

beam-pipe and due to the degradation process of the transverse section of bunches

in many hours of collisions. The dynamic prescale factor decreases along the store

to keep the trigger bandwidth fully occupied.

B CHARM trigger paths

In this work we also used different data samples, as control samples or to extract

efficiency corrections. One of the sample used is the D0 → h+h
′− decay modes,

where the h can be a pion or a kaon. These decays are kinematically and topolog-

ically similar to the B0
(s) → h+h

′− decay modes: in both the decay channels start

with a meson (the b-hadron or the D0) and end with pions or kaons. Also, the kine-

matical requirements in the trigger selections are similar, making the D0 → h+h
′−

a reliable control sample. The selection used to collect the D0 → h+h
′− sample is

collectively called B CHARM: to fully exploit the available trigger bandwidth, there

are three main variants of the displaced tracks trigger. The three selections are

referred to as the low pT, medium pT and high pT selections, according to their

requirements on minimum transverse momentum. The B CHARM medium pT trigger

path has similar requests to the B PIPI trigger paths, while the B CHARM high pT is

similar to the B PIPI HIGHPT. Table 3.2 summarizes the requirements.

3.3 Extraction of the B → h+h
′− signal

The first step of the off-line analysis consists in applying a baseline selection to

the events collected by the B PIPI and B PIPI HIGHPT trigger paths. Trigger re-

quirements are reapplied using high-resolution off-line quantities to remove the

B → h+h
′− candidates not satisfying the trigger selection.

3.3.1 Tracks

This analysis is based on tracks. Tracks are reconstructed by the standard CDF II

production executable using LØØ, SVXII, ISL and COT hits, the detailed magnetic

1Prescaling a trigger of a factor < N means to accept randomly 1 event every N events.
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Version Level 1 Level 2 Level 3

Low pT(1, 2) > 2.0 GeV/c pT(1, 2) > 2.0 GeV/c pT(1, 2) > 2.0 GeV/c∑
pT > 4 GeV/c

∑
pT > 4 GeV/c

∑
pT > 4 GeV/c

Track’s opposite charge Track’s opposite charge Track’s opposite charge

0◦ < ∆φ6 < 90◦ 2◦ < ∆φ0 < 90◦ 2◦ < ∆φ0 < 90◦

100 µm < d0(1, 2) < 1000 µm 100 µm < d0(1, 2) < 1000 µm

LT (B) > 200 µm LT (B) > 200 µm

|∆z0| < 5 cm

|η(1, 2)| < 1.2

Medium pT(1, 2) > 2 GeV/c pT(1, 2) > 2 GeV/c pT(1, 2) > 2 GeV/c∑
pT > 5.5 GeV/c

∑
pT > 5.5 GeV/c

∑
pT > 5.5 GeV/c

High pT(1, 2) > 2.5 GeV/c pT(1, 2) > 2.5 GeV/c pT(1, 2) > 2.5 GeV/c∑
pT > 6.5 GeV/c

∑
pT > 6.5 GeV/c

∑
pT > 6.5 GeV/c

Table 3.2: Selections for the B CHARM triggers used in this work. When the three

triggers share the requirements, only the difference are reported. The labels (1,2)

refers to requirements applied to both tracks, while the other criteria refer to track-

pairs.

map of the tracking volume, and taking into account the measured angular and

translation mis-alignments among LØØ, SVXII, ISL, COT and the beam-line. Since

the measurements described in this thesis are not lifetime-based, but they are decay

rate measurements and since the lifetime information enters only in the selection

(see tab. 3.1) through the cuts on impact parameter and decay transverse length, the

improvement due to the LØØ hits is marginal, as already proved in the previous

version of this analysis [88]. We therefore used only tracks whose reconstruction

included silicon hits of SVXII, ISL. Mis-alignments and noise hits in the silicon

detectors and in the COT cause a contamination of fake or mis-reconstructed tracks.

The fraction of such undesirable tracks was reduced by selecting tracks reconstructed

using at least 40 hits in the COT layers. Each track was also required to result from

a converged helix-fit with a positive error matrix.

The default 3-D silicon tracking code uses a stepwise fit that starts from a COT

track pointing to the silicon detector fiducial volume and progressively adds hits

within the search road2 as the fit moves from the outer silicon radii to the inner

radii. We required the tracks to be associated to at least 3 hits in the axial, at

least 2 hits in 90◦ and at least 1 hit in small angle stereo silicon super-layers. The

requirement of tracks with sufficient r − z information reduces the contamination

from those tracks coming from two distinct heavy-flavors in the event, which have

sizable impact parameter but are separated along the z direction. This additional

requirement has a ∼ 90% efficiency on signal yield while it reduces the background

by a factor ' 2. The error matrix of the track fit in the COT is estimated by

default disregarding the effect of multiple scattering in the COT. According to the

standard CDF prescriptions, we compensated for this approximation by refitting the

tracks, after rescaling the covariance matrix of the COT track with an appropriate

set of empirical scale factors. The rescaled COT track is used to seed the refit

of the combined COT-SVXII tracks. The refitting uses the algorithm based on

2Silicon hits are searched in a 4σ-wide extrapolation of the COT track in the silicon layers,

where σ are the uncertainties on the estimated track parameters.
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the Kalman filtering [89] and includes energy-loss corrections for kaons, pions and

protons, according to the chosen mass assignment for each particle. The refitting

procedure, the tracking alignments, and the GEANT description of the detector

material have been carefully studied and validated by independent analyses for the

measurement of b-hadron masses [90].

3.3.2 Trigger confirmation

Since SVT tracks are reconstructed with a different fitting algorithm with respect

to the off-line tracks, the sample selected by the off-line analysis may contain can-

didates which did not satisfy the trigger selection (“volunteers”). Since the Monte

Carlo does not reproduce volunteers, we need to exclude them also from data. They

were excluded by requiring the matching3 between the off-line track pair forming

the B → h+h
′− candidate and two SVT tracks in each event; then the complete set

of trigger requirements was applied to the SVT quantities of the matched tracks,

thus repeating the real trigger decision in the off-line analysis.

3.3.3 Reconstruction of B → h+h
′− candidates

The off-line reconstruction of B → h+h
′− candidates was solely based on tracking,

disregarding any form of particle identification. The use of particle identification

is reserved for later, within an overall fit of the sample, in order to keep a high

selection efficiency. In each event, the two particle invariant mass was computed

for all possible pairs of oppositely-curved tracks satisfying the criteria described in

sec. 3.3.1 and 3.3.2. We used the measured momenta and we arbitrarily assigned

the charged-pion mass to both tracks. The two tracks were constrained by the

vertex fit algorithm to originate from a common vertex in the 3-D space. In case

of a converged vertex-fit with satisfactory quality, the pair was promoted to a B →
h+h

′− candidate, and retained for further processing. During reconstruction we

reapplied the trigger selection off-line quantities in addition with other kinematics

informations: for example, we rejected tracks reconstructed outside the SVT fiducial

acceptance (|η| ≤ 1), and pairs with a positive product of impact parameters. The

cuts optimization procedure has been specifically made to optimize the probability

of discovery and limit setting of the B0
s → K−π+ mode. It was developed in the

previous version of this analysis: a more detailed description of the optimization

technique, based on the Minimum Variance Bound method, is reported in [88]. The

selection is also well-suited to measure all the observables related to rare modes

(B0
s → π+π−, B0 → K+K−, Λ0

b → pπ−, and Λ0
b → pK−). In the final set of cuts

the trigger requirements (see tab. 3.1) were tightened, and two variables with good

separation power signal to background are added: the isolation of the B candidate

(I(B)) and the 3-D vertex quality (χ2
3D(B)).

3The algorithm required proximity in curvature and azimuthal opening angle between SVT

tracks and off-line tracks.
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Figure 3.1: Illustration of the fragmentation of a b-quark into a b-hadron. The

isolation cone is shown in red, the directions of the charged particles produced in

the fragmentation are shown in yellow.

Isolation of the B meson (I(B))

One of the useful variable used to discriminate the B → h+h
′− signals from the

background in the off-line selection is the “isolation”. Given their hard fragmenta-

tion, b-hadrons tend to carry a larger fraction of the transverse momentum of the

particles produced in the fragmentation, with respect to lighter hadrons [91]. We

used an estimator of the fraction of momentum carried by the b-meson:

I(B) =
pT(B)

pT(B) +
R∑

i 6=j:B →j
pT(i)

, (3.1)

where the sum in the right-hand term of the denominator runs over all fragmenta-

tion tracks, identified as tracks (other than those of the B candidate decay-chain)

satisfying standard track-quality requirements and found in a local region around

the flight direction of the B candidate. Such region is parameterized as a cone in

the (η−φ) space, unitary in radius (R =
√
φ2 + η2 = 1), whose apex is the primary

vertex and the axis collinear with ~pT(B) (see fig. 3.1). When the decay products

of the b-meson are contained in the cone, I(B) is just the fraction of transverse

momentum within the cone carried by the b-meson. Candidates with large isolation

are more likely to be b-mesons than candidates with low isolation, as shown by the

comparison in fig. 3.2. The introduction of the isolation adds further complexity

in the analysis: its distribution depends on the mechanism of hadronization of the

b-quark, which is not described by the signal-only simulation, as will be discussed

in chap. 4. Therefore real data has been used to characterize this observable; for

more details, see [88].

3-D vertex quality (χ2
3D)

Vertexing includes a large amount of information and it is sensitive to many issues,

including alignments, geometry and track parameter errors. A quantity that sum-
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Figure 3.2: Isolation distribution for background-only events (red triangles) ex-

tracted from high mass sidebands and signal events (black dots) extracted from

a sideband subtraction procedure. The line shows the cut required in the final

selection of the sample.

marizes all information of the three-dimensional vertex fit quality is the χ2/1 d.o.f.

of the vertex fit. The χ2
3D is the minimum χ2 resulting from the vertex fit minimiza-

tion, when in the minimization all 3-D tracking information from the drift chamber

and silicon detectors is used. This variable rejects a large amount of combinatorial

background with an high efficiency for the signal.

List of cuts

The final selections are reported in tab. 3.3. The final samples contain just one

B → h+h
′− candidate per event. The invariant mass distribution of the candidates

(with the pion mass assigned to both tracks) is shown in fig. 3.3.

3.3.4 Sample composition

The invariant ππ-mass distribution provides a first insight on the sample compo-

sition. Contributions to the background may in principle include mixture of rare

events from heavy-flavors, light-quarks, resolution tails and so forth. In the signal

region, at about the nominal masses of the b-mesons, we expect a peak correspond-

ing to the presence of the B → h+h
′− decay channels. To give a rough estimate

of the signal yield and of the purity of the sample, a simple χ2-binned fit was per-

formed. Two Gaussian shapes were assumed to parametrize the two “signal” peaks,

while two different distributions were used to parameterize the distinct background

components visible in the distribution: an exponential for the background sparse in
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Quantity of the track Units Requirement

Axial silicon hits − ≥ 3

90◦ silicon hits − ≥ 2

Small angle stereo silicon hits − ≥ 1

Total COT hits − ≥ 40

pT GeV/c > 2.0(2.5)

|η| − < 1.0

Impact parameter µm [120, 1000]

Quantity of the candidate

Product of track’s charges e2 −1

Product of track’s impact parameter µm2 < 0

Transverse decay length µm > 350

Scalar sum of track’s pT GeV/c > 5.5 (6.5)

Impact parameter µm < 60

Track’s azimuthal separation Degrees [20◦, 135◦]

|η| − < 1.0

Isolation − > 0.525

χ2
3D of the vertex fit − < 5

mπ+π− GeV/c2 [5.0, 5.8]

Table 3.3: Summary of the final selection requirements.
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Figure 3.3: Invariant ππ-mass distribution of the events passing the final selection.

Two Gaussians (signal) plus exponential (combinatoric background, light grey) plus

a smeared Argus (physics background, dark grey) fit function is overlaid. For Argus

function definition see text or Ref. [92].

all the mass window and an Argus function4 convoluted with a Gaussian distribu-

4Argus(x; c,m) = 1
Norm

· [xe−c(
x
m

)2
√

1− ( x
m

)2] if x ≤ m, Argus(x; c,m) = 0 if x > m. See

Ref. [92].
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tion centered at zero with a width equal to the mass resolution (≈ 25 MeV/c2) for

the events with mπ+π−< 5.16 GeV/c2, where a change in the slope is clearly visible.

We estimate a yield of 20, 267 ± 341 B → h+h
′− events. The standard deviation

of the main gaussian is σ = 39.8 ± 0.4 MeV/c2 and the purity is S/B ≈ 61 at the

peak.

Signal composition

The observed width of the main gaussian, corresponding to the region of B0
(s) →

h+h
′− signal, is approximately 39 MeV/c2, much larger than what expected from

the simulation for a single decay ≈ 25 MeV/c2 (e.g., B0 → π+π− or B0 → K+π−).

This indicates that the main peak visible in fig. 3.3 is the overlap of signals from

different B0 and B0
s decay modes with different proportions. Theoretical and exper-

imental knowledge at the time of this analysis (see tabs. 1.4 and 1.5) predict sizable

contributions of B0 → π+π−, B0 → K+π−, and B0
s → K+K− for the main bulk

near 5.25 GeV/c2, while B0
s → K−π+, Λ0

b → pπ−, and Λ0
b → pK−modes populate

a smaller peak at a higher masses (5.4 - 5.5 GeV/c2) than the main peak. Smaller

contributions come also from the B0
s → π+π− and the yet unobserved B0 → K+K−

modes. A B0
s → π+π− signal is expected at the nominal B0

s mass (5.3663 GeV/c2),

while a B0 → K+K− signal would appear as a small enhancement around 5.18

GeV/c2.

Background composition

The invariant ππ-mass distribution indicates the presence of two different kinds of

backgrounds:

combinatorial background − it is mostly composed of random pairs of charged

particles, displaced from the beam-line, accidentally satisfying the selection

requirements. Its dominant sources include generic QCD background of light-

quark decays, lepton pairs from Drell-Yan processes, pairs of mis-measured

tracks, combinations of a mis-measured track with a track from an heavy-

flavor decay, or combinations of two tracks originated from two independent

heavy-flavor decays of the event (bb̄ and cc̄ production). This is consistent with

the smooth, slowly decreasing invariant ππ-mass distribution in the signal

sample for masses above 5.5 GeV/c. In this region, as well as in the signal

region, the combinatorial component is the prominent source of background.

Partially-reconstructed heavy-flavor decays − (referred to also as “physics

background”) a change in the slope of the mass distribution of the signal sam-

ple, at masses just smaller than the signal mass, indicates the presence of an

additional background source. This contribution has been interpreted as mis-

reconstructed b-hadron decays: these are multi-body b-hadron decays (e. g.,

B0 → ρ∓π±, B0 → ρ−K+, B0
s → ρ∓π±, B0

s → ρ+K− and many others), in
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which only two tracks were reconstructed, resulting in the typical shoulder-

shape, that is suppressed around 5.15 GeV/c2, because their contribution is

kinematically limited to the mπ+π− < mB0
(s)

region.

However, this one-dimensional binned fit is only a qualitative tool to estimate

the yield and the purity of the sample in a quick way. The Gaussian distributions

used to describe the signal peaks are not adequate to describe the overlapping of

the different signals. In order to obtain the branching fraction measurements, that

are the subject of this analysis, it is necessary to separate the contributions of

the different signal components. Therefore, a very accurate study of B → h+h
′−

simulated samples is needed to understand the sample composition. Chapter 4

describes the B → h+h
′− simulated samples obtained using the CDF official Monte

Carlo, and how they were specifically tuned for the purposes of the analysis.
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Monte Carlo Simulation

A sample of simulated B → h+h
′− decays is needed to study the kinematics infor-

mation of the different signal components. We used the official CDF II simulation,

that takes into account all the changes of detector (changes of the silicon cover-

age, of the XFT and the SVT configurations) and trigger configurations during the

data-taking.We provide here a short overview of the CDF II simulation used in this

analysis, while more details can be found in [93].

4.1 CDF II simulation

Hadrons generation

The bgenerator[94] and the pythia[95] packages can be used to generate the

b−hadrons. The bgenerator package simulates only the production and the de-

cay of b-hadrons: no fragmentation products, pile-up events1 or collision remnants

are simulated, allowing a fast processing. Thus no information about QCD back-

grounds or fragmentation can be extracted from the simulated samples. In the

pythia package this information is available, but a large amount of computing

power would be needed to generate background samples of adequate size for this

analysis, with O(109) rejection factors of background. Also, using this package in

precision measurement would require extensive checking. So we decided to use the

simpler approach of using bgenerator to simulate the signals, while we extracted

the background information from collision data.

Given a spectrum in rapidity and transverse momentum, bgenerator can cre-

ate and fragment heavy quarks (a single q or a qq pair). The single quark generation

follows the theory from P. Nason, S. Dawson and R. K. Ellis [96, 97], while the quark

pair generation the ones from M. Mangano, P. Nason and G. Ridolfi [98].

We generated 30 millions events for each decay (B0 → π+π−, B0 → K+π−,

1During a single bunch crossing there may be more than one registered collisions. These multiple

interactions are said to be “piling-up’.
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B
0 → K−π+, B0 → K+K−, B0

s → π+π−, B0
s → K−π+, B

0
s → K+π−, B0

s →
K+K−, Λ0

b → pπ−, Λ
0
b → pπ+, Λ0

b → pK−, and Λ
0
b → pK+). We included also the

effect of QED radiation in the final state with the loss of energy from soft photon

emission from charged final state particles (final state radiation FSR). This effect

is modeled in Monte Carlo through PHOTOS [99, 100], an algorithm that includes

leading and next to leading order calculations of the QED effects of the soft-photon

radiation. For the Λ0
b → ph− modes we turned off the soft photon emission because

of the presence of a proton in the final state. The expected yield of Λ0
b → ph−

decays are about a factor 10 smaller than the B0 → π+π− yield, thus we neglect

the effect of the FSR (already small) for these rare modes.

Fragmentation was turned off and the rapidity and pT(B) distributions were

taken from an external histogram containing a smooth fit to the data published

in CDF Run II measurement [101], according to the CDF standard prescription.

Decays were forced to B0
(s) → h+h

′− and Λ0
b → ph− using the EvtGen package and

we took into account the differences between decays, as the input masses and the

lifetimes.

Input masses and lifetimes in the Monte Carlo

Since the selection relies on both impact parameter and transverse decay length cuts,

the choice of the B lifetimes in the Monte Carlo is important for the correct determi-

nation of the efficiencies. We use the PDG 2010 [51] value of cτ(B0) = 457.2±2.7 µm

for the B0 lifetime and cτ(Λ0
b) = 417 ± 11 µm for the Λ0

b lifetime. For the

B0
s → K−π+ lifetime we used the PDG 2010 value measured on semileptonic decays:

cτ(B0
s ) = 441 ± 8 µm. The choice of the cτ(B0

s → K+K−) is less straightforward

because in principle it depends both on the CP content of this mode and on the

value of ∆Γs/Γs which are both unknown so far. One can write:

Γ(B0
s (t)→ K+K−) + Γ(B

0
s(t)→ K+K−) ∝ RHe−ΓH(s)t +RLe

−ΓL(s)t (4.1)

where RH (RL) is the relative fraction of “heavy” (“light”) mass eigenstate for

this mode. However in literature [102] the B0
s → K+K− mode is expected to be

dominated by the “short” eigenstate, with a “long”eigenstate contribution smaller

than 5%. Therefore we calculated the value of cτ(B0
s → K+K−) used in our analysis

using the following assumptions:

• the B0
s → K+K− mode is 100% “short” eigenstate;

• ∆Γs/Γs = 0.092+0.051
−0.054 [51];

• the semileptonic widths for B0
s and B0 mesons are equal, according to the

Standard Model: Γs = Γd.
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From these assumptions we extracted the following relation:

cτ(B0
s → K+K−) =

c

Γshorts

=
c

Γs + ∆Γs/2
=

c

Γd + 0.12 · Γd/2
(4.2)

= [437 ± 2.7 (Γd) ± 11 (∆ΓSMs )] µm (4.3)

We split the uncertainty on cτ(B0
s → K+K−) into the part coming from the uncer-

tainty on Γd, which contributes 0.6%, and the part coming from the 0.05 uncertainty

on ∆Γs/Γs expected from the SM. We assume cτ(B0
s → π+π−) = cτ(B0

s → K+K−),

because π+π− final state is a CP even (+1) eigenstate as the B0
s → K+K−.

Table 4.1 reports the input masses and lifetimes used to generate the simulated

samples. The values are taken from PDG 2010 [51]. Once the generation is done, we

Mode m [MeV/c2] cτ [µm]

B0 5279.5 457

B0
s → π+π− 5366.3 437

B0
s → K−π+ 5366.3 441

B0
s → K+K− 5366.3 437

Λ0
b 5620.2 417

Table 4.1: Summary of the input masses and lifetimes in the simulation.

proceed in simulating the detector characteristics, in order to reproduce interactions

with materials and subdetectors responses. GEANT takes care of the full detector

simulation.

Detector and trigger simulation

The generated sample was processed using the GEANT simulation modeling the

detector geometry and materials (GEANT v3, [103]). GEANT receives in input

the positions, the four-momenta and the identities of the simulated particles with

enough lifetime to exit the beam pipe. It simulates their paths in the detector, mod-

eling their interactions (bremsstrahlung, multiple scattering, nuclear interactions,

photon conversions...) and the consequent generation of signals on a single channel

basis. Then the actual trigger logic is simulated. The detector and trigger config-

uration undergo variations during data-taking (for example, after a TeVatron shut

down period). For a more detailed simulation of the actual experimental conditions,

the simulation has been interfaced with the online database that reports, on a run

by run basis, all known changes in configuration (position and slope of the beam

line, relative misalignments between subdetectors, trigger table used...) and local

or temporary inefficiencies in the silicon tracker (active coverage, noisy channels...).

This allows a realistic simulation for any possible subset of data. The output of the

simulated data mimics the structure of collision data, allowing the reconstruction

with the same programs used for real collision data.
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4.2 B → h+h
′− simulated sample data-tuning

The official CDF Monte Carlo is sophisticated enough to reproduce with good ac-

curacy real collision data samples. However, since by construction there exists no

simulation that is able to reproduce perfectly the data, we need to investigate pos-

sible differences between data and Monte Carlo. For example, we know that the

Monte Carlo has no access to the information relative to the prescales applied dur-

ing the data-taking: as a consequence, we need to rescale the simulated distribution

using information from data. Another tuning has to be done for the mass resolution

of the simulated distributions, found to be narrower with respect to the correspon-

dent data ones. Next subsections sec. 4.2.1, sec. 4.2.2, and sec. 4.2.3 describe the

tunings performed on the Monte Carlo distributions.

4.2.1 B → h+h
′− sample trigger composition

As introduced in sec. 3.2, the B → h+h
′− sample is collected using two different

trigger paths, med and high, whose main differences are the following requirements:∑
pT > 5.5 GeV/c, pT(1, 2) > 2.0 GeV/c (med)∑
pT > 6.5 GeV/c, pT(1, 2) > 2.5 GeV/c (high).

(4.4)

The high requirements are tighter than the med ones, and therefore all the events

triggered by the high path would also be triggered med path. A pictorial repre-

sentation is given in fig. 4.1(a). The presence of prescales complicates this picture.

Prescaling a trigger of a factor N means to accept randomly 1 event every N events,

therefore it is possible that one event satisfying the high path requirements (thus

automatically satisfying med path requirements) is not accepted by the med path.

This feature makes our sample the result of a linear combination between the two

different kinematics (scenarios) where the relative fractions are known thanks to

the trigger bits2. There are approximately an overlap of 41% (M ∩H) of events in

common, a fraction of exclusive med of 26% (M ∩ H̄), and a fraction of exclusive

high of 33% (M̄ ∩H). Using this notation the total sample is M ∪H. A pictorial

representation is given in fig. 4.1(b).

We described how the only difference between the med and high paths are the

different thresholds in pT(tracks) and in
∑
pT observables. Consequently, the mo-

menta related distributions show an enhancement, in correspondence of the turn on

of the trigger (see fig. 4.2). The knowledge of this characteristic is crucial in our

analysis, since the momentum distributions will be used in a fit of composition (as

will be described in sec. 5.6). To avoid technical difficulties in the parameterization

of the distributions with the enhancement, we divided the sample in two statisti-

cally independent sub-samples A ≡ M and C ≡ M̄ ∩H: using this notation the total

sample is A∪C (see fig. 4.3). By definition the first sample A is pure med kinematics,

2That is, the numerical label associated to a unique trigger path.
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(a) (b)

Figure 4.1: Illustration of trigger scenarios relationships in absence of prescales (a),

and in presence of prescales (b). In red, the events triggered exclusively by med

path, in blue events triggered simultaneously by med and high paths, and in light

blue events triggered exclusively by high path.

with events triggered by med path, and this is independent on the trigger bit of the

high path. The second sample C is a pure high kinematics, since these events were

triggered (unprescaled bit) simultaneously by the med and the high paths, but they

are written on tape (prescaled bit) only as high. For these reasons, the two sam-

ples are independent samples, with different features. Thus all the technical work

of this thesis, such as simulations comparisons, parameterizations and so forth is

performed independently on the two trigger scenarios. When possible, for the con-

venience of the reader we will avoid the insertion of all the plots doubled: typically,

we will show plots from the more abundant A sample. The other relevant plots can

be found in the appendices.

4.2.2 pT (B) reweighting of the Monte Carlo.

We observed a discrepancy in the pT(B) spectrum between simulated b-hadrons

candidates and real data (see fig. 4.4). The pT(B)-distribution in the data has

been determined by applying the standard procedure of sideband subtraction to the

B → h+h
′− sample described in chap. 3. Only the upper mass sideband has been

used in the procedure to avoid the contamination of the partially/misreconstructed

B decays in the lower mass sideband, that are only a small effect under the signal

region. The observed discrepancy can be mainly explained by the fact that the data

candidates have been selected requiring isolated b-hadrons candidates (IB > 0.525),

while simulated candidates do not have any information about fragmentation pro-

cess, since only signal decays modes have been generated. By construction, the isola-

tion variable is strongly related to the pT(B) distribution. We therefore reweighted

the Monte Carlo pT(B) distribution in order to obtain a better agreement between

the simulation and the data. The simulated inclusive pT(B) distribution has been

reweighted bin by bin to the distribution observed on data. We assumed the same
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Figure 4.2: Data
∑
pT (a) and pT(2) distribution after trigger requirements. The

arrows refer to the med and high thresholds, respectively
∑
pT > 5.5 and pT > 2.0

GeV/c and
∑
pT > 6.5 and pT > 2.5 GeV/c.

Figure 4.3: Pictorial representation of subsamples A and C.

effect of the isolation for all B0
(s) → h+h

′− signals [104]. Since the sculpting due

to the isolation requirement has been observed to be the main source of discrep-

ancy, the described reweighting is also able to adjust the other smaller data-MC

differences, such as the ones due to inaccuracies in the input kinematic spectrum.

4.2.3 Mass resolution.

We checked the reliability of our simulation using huge samples available of D0 →
h+h

′− decays, selected and reconstructed with the same strategy of B0
(s) → h+h

′−

decays which are used in this analysis. We checked that the simulation reproduces

all kinematic features of two body charmless decays, and in particular if the invariant
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Figure 4.4: Data-simulation comparison of the pT(B) distribution after reweighting

for the run distribution. med (a) and high (b) scenarios. Yellow histograms are

Monte Carlo, dots with errors are data.

mass line-shape is well simulated. In particular, we are interested in checking the

squared mass, because this will be the variable used in the fit of composition, as

described in chap. 5. By the comparison of the invariant mass peak of the D0 →
K−π+ decays with its relative simulated peak we noticed that the simulated squared

mass width is narrower than that observed in data by a factor ≈ 1.094. This factor

is extracted with a procedure performed in two steps: 1) we first fit the template

of the square invariant mass from simulation using the probability density function

(p.d.f.) exploited for the fit of composition, that will be described in eq. (6.1). The

result of the fit is reported in fig. 4.5(a); 2) in the second step, we use the same p.d.f.

to fit data in which we apply the following variable change x → (x −m)/s where

m and s are the only free parameters of the signal shape. For the background we

used an exponential function whose normalization and slope are free to vary in the

fit. We found m = −0.284± 0.002 and s = 1.094± 0.001 and the result is reported

in fig. 4.5(b). We fit about 7× 106 D0 → K−π+. The agreement between data and

our model is very satisfactory.

The scale factor extracted in such a way refers to the D0 → K−π+ decays, while

we are interested on how the square invariant mass scales in the B0 → K+π− decays

(and in general in all B0
(s) → h+h

′− decays). To move from D0 to B mesons we

used the Fast Monte Carlo described in Ref. [105]. The Fast Monte Carlo is a C++

code based on the official CDF Monte Carlo which generates the decay of a generic

B or D meson into two scalar or pseudo-scalar particles. Since the FMC is not able

to reproduce all the official Monte Carlo features, such as trigger configurations or

temporary inefficiencies of the detector, it is very fast, but it is still found to be

reliable for what concerns the kinematics observables. We generated several samples
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Figure 4.5: Comparison of square mass resolution between data and simulation using

D0 → K−π+. (a) Parameterization of the square mass line shape from simulation.

(b) Fit to data to extract m and s.

of D0 → K−π+ and B0 → K+π− in which we scaled the curvature resolution

function using a global scale factor. Then we looked at the square invariant mass

for both decays to understand how the mass resolution varies as a function of scaled

curvature. Table 4.2 shows the curvature scale factor, the RMS of the D0 → K−π+

(and B0 → K+π−) squared invariant mass, and the ratio between the scaled RMS

and the unscaled RMS for the D0 → K−π+ (and B0 → K+π−) decays. From

tab. 4.2 we extract the scale factor for the B0
(s) → h+h

′− decays. We then enlarged

the Monte Carlo templates using a scale factor of s = 1.103, which corresponds to a

mass scale factor of 1.094 for the D0 → K−π+ decays, and a scale factor of 1.11 for

the curvature resolution. The enlarged templates will be used for the templates of

the fit of composition as described in chap. 6. This study was performed using med

scenario requirements. The results agree with the ones obtained from an equivalent

study performed using high scenario requirements.

Check of the method using Υ(1s)→ µ+µ− sample

We checked the correctness of the method using data and Monte Carlo samples of

Υ(1s)→ µ+µ−. We chose this sample because the Υ(1s) mass mΥ(1s) = 9.5 GeV/c2

is larger than the b-mesons masses ∼ 5.3 GeV/c2, extrapolating the results of the

method in another mass region. By the comparison of the invariant mass peak
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scaling RMS [GeV2/c4] ratio

1.00 0.0368 1

1.05 0.0382 1.038

1.09 0.0396 1.075

1.10 0.0397 1.079

1.11 0.0403 1.095

1.12 0.0405 1.100

1.13 0.0408 1.108

1.14 0.0411 1.118

1.15 0.0416 1.132

scaling RMS [GeV2/c4] ratio

1.00 0.282 1

1.05 0.293 1.041

1.09 0.306 1.085

1.10 0.308 1.092

1.11 0.311 1.103

1.12 0.311 1.102

1.13 0.316 1.121

1.14 0.320 1.135

1.15 0.322 1.143

Table 4.2: Studies on mass resolution of the D0 → K−π+ (left) and B0 → π+π−

(right) using the FMC. The first column reports the curvature scale factor, the

second column the RMS of the square invariant mass, the third column the ratio

between the scaled RMS and the unscaled RMS.

of the Υ(1s) decays with its relative simulated peak we extracted the resolution

factor. The extraction has been done with the same two steps procedure used for

the D0 → h+h
′−: 1) we first fit the template of the square invariant mass from

simulation using the standard p.d.f. of eq. (6.1) as reported in fig. 4.6(a), 2) and

then we use this p.d.f. to fit data in which we apply the following variable change

x → (x − m)/s where m and s are the only free parameters of the signal shape.

For the background we used an exponential function whose normalization and slope

are free to vary in the fit. We found sΥ = 1.122 ± 0.001 and the result of a fit on

900, 000 Υ(1s) decays is reported in fig. 4.6(b). The check demonstrates an accuracy

in the our method of evaluating the resolution at level of 2%. Because the Υ(1S)

has higher mass with respect to the B decays, and there is larger background in

the sample, a conservative systematic uncertainty will be assessed in sec. 11.2.8 as

a consequence of the discrepancies observed.
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Figure 4.6: Υ(1s) → µ+µ− distribution from Monte Carlo (a) and data (b). Fit

function overlaid.
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4.3 Comparison data - Monte Carlo

We report the comparison plots between data sideband subtracted and B → h+h
′−

simulated modes: each mode is normalized to the branching fractions derived from

the current experimental results (see tab. 1.4). Plots for the med, figs. 4.7–4.9, and

for the high scenario, figs. 4.10–4.12. The agreement between data and simulation

for all interesting kinematic variables is satisfactory, although small residual discrep-

ancies can be observed (for example in the d0(B) distributions). This achievement is

important, because the simulated kinematic distributions information will be used

in a fit of composition to disentangle the signal decay modes.
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Figure 4.7: Comparison of background-subtracted distributions in B0
(s) → h+h

′−

decays and equivalent Monte Carlo distributions for the med scenario:
∑
pT (a), ptot

(b) LT (c), ∆ϕ0 (d). Data (points with error bars) are compared with reweighted

Monte Carlo simulation (filled histogram).
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Figure 4.8: Comparison of background-subtracted distributions in B0
(s) → h+h

′−

decays and equivalent Monte Carlo distributions for the med scenario: d0(B) (a),

η(B) (b), β (c), pT(1) (d), η(1) (e), η(2) (f). Data (points with error bars) are

compared with reweighted Monte Carlo simulation (filled histogram).
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Figure 4.9: Comparison of background-subtracted distributions in B0
(s) → h+h

′−

decays and equivalent Monte Carlo distributions for the med scenario: d0(1) (a),

d0(2) (b), z0(1) (c), z0(2) (d). Data (points with error bars) are compared with

reweighted Monte Carlo simulation (filled histogram).
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Figure 4.10: Comparison of background-subtracted distributions in B0
(s) → h+h

′−

decays and equivalent Monte Carlo distributions for the high scenario:
∑
pT

(a), ptot (b) LT (c), ∆ϕ0 (d). Data (points with error bars) are compared with

reweighted Monte Carlo simulation (filled histogram).
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Figure 4.11: Comparison of background-subtracted distributions in B0
(s) → h+h

′−

decays and equivalent Monte Carlo distributions for the high scenario: d0(B) (a),

η(B) (b), β (c), pT(1) (d), η(1) (e), η(2) (f). Data (points with error bars) are

compared with reweighted Monte Carlo simulation (filled histogram).
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Figure 4.12: Comparison of background-subtracted distributions in B0
(s) → h+h

′−

decays and equivalent Monte Carlo distributions for the high scenario: d0(1) (a),

d0(2) (b), z0(1) (c), z0(2) (d). Data (points with error bars) are compared with

reweighted Monte Carlo simulation (filled histogram).
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4.4 First look at the Monte Carlo mass distributions

Before going into the details of the analysis used to perform the CP and B mea-

surements, we consider the mass distributions of the simulated events. Figure 4.13

shows the invariant ππ-distribution of the simulated events, where each mode is

normalized: we used the branching fractions derived from the current experimental

results (see tab. 1.4). It is evident how all the different B0
(s) → h+h

′− decay modes

overlap in a single peak, whose dominant contribution are given by B0 → K+π−,

B0 → K+K−, and B0
s → K+K−. This single-peaking structure is expected, and it

is due to the broadening of the invariant mass distributions of modes with wrong

assigned final state masses, as discussed in sec. 3.3.4. It would be difficult to disen-

tangle the different decay modes by means of mass information only.
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Figure 4.13: Invariant ππ-mass distribution of the simulated events. Linear scale

(a) and log scale (b).
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Chapter 5

Separation of B → h+h
′− modes

This chapter describes the methodology used to discriminate the different contributes

present in the data sample. The resolution in mass and in particle identification

information is not sufficient for an event-by-event separation. Therefore we will

combine them to increase as much as possible the separation between the signals

and the backgrounds, and between the different B → h+h
′− decay modes.

5.1 Separation strategy

In a decay of a neutral particle into two charged bodies of momenta ~p+ and ~p−
and masses m+ and m−, where the symbol +(−) labels the positively (negatively)

charged particle, the invariant mass is defined as follows:

m2
m+m− =

(√
p2

+ +m2
+ +

√
p2
− +m2

−

)2

− (~p+ + ~p−)2 (5.1)

Assigning the pion mass to the outgoing particles, we obtain the ππ invariant mass:

m2
mπmπ =

(√
p2

+ +m2
π +

√
p2
− +m2

π

)2

− (~p+ + ~p−)2 (5.2)

Figure 5.1 shows the data invariant ππ-distribution compared with the same dis-

tribution from Monte Carlo simulation described in chap. 4, where each mode is

normalized using the current experimental knowledge (see tab. 1.4). Figure 5.1

shows that the different decays are too closely spaced to be solved: they appear

overlapping in a single peak, broader than the expected O(25 MeV/c2) mass res-

olution for an individual decay. In fact, given a specific mass assignment for the

outgoing particles, the invariant mass distributions of modes with wrong assigned

masses are broadened. The broadening is inevitable and it is due to the invari-

ant mass dependence on the momenta of the outgoing particles. For example, if

we assign to the outgoing particle the π mass, the mass r.m.s. width is about 25

MeV/c2 for the properly reconstructed B0 → π+π− and B0
s → π+π− simulated

79
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Figure 5.1: Comparison invariant ππ-mass distribution for data and simulation.

Linear (a) and logarithmic scale (b).
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Figure 5.2: Comparison of invariant ππ-mass distribution (a) and pK-mass distri-

bution (b) of simulated Λ0
b → pK− decay modes.

modes, while the widths of the misreconstructed modes are larger: it is approxi-

mately equal to 38 MeV/c2 for the B0 → K+π− and B0
s → K−π+ modes, where

only one mass assignment is uncorrect, while it is maximally larger ≈ 58 MeV/c2.

for Λ0
b → pK− mode, where both assignments are uncorrect. Figure 5.2 shows the

comparison of the widths of Λ0
b → pK− mass distribution for the uncorrect ππ mass

assignment (a) and of the correct pK mass assignment (b). In conclusion, to distin-

guish the different decay modes the mass distribution is not sufficient, despite the

excellent CDF II mass resolution1. That holds whatever choice of mass assignment

1See for instance the observed mass widths σm ≈ 14 MeV/c2 in J/ψ → µµ decays, or σm ≈ 9

MeV/c2/ in D0 → h+h
′− decays.
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to the outgoing particles and even with an infinitely precise mass resolution. We

therefore need additional information to distinguish the different contributions of

the B → h+h
′− data sample. We have the possibility to use all the information

available, but it is preferable to have a tool to select only those variables capable

of maximum discrimination. The identification performance of a variables x (or a

set of variables x1, x2...) relies on the difference in the distributions between the

classes of events to be identified. Such difference is generally expressed in terms of

a separation between those distributions.

5.1.1 Separation power

The conventional way to quote the separation is to provide an estimation of the dis-

tance between the centers of the distributions in units of their standard deviations

(σ). The reliability of this estimation degrades increasingly as the distributions

deviate from the Gaussian shape. In presence of long tails or strongly asymmetric

distributions, the separation estimated with this approach is not reliable. In ad-

dition, this choice has limited applicability: if the information is given in form of

a multi-dimensional observable, no straightforward and unambiguous way to quote

the separation is provided. Since in our analysis we will use multi-dimensional dis-

tributions, we chose a different approach [106]. Suppose that one uses a particular

information in a sample of N events given by the sum of two different class of events,

A and B. The fraction f are A events and a fraction 1−f are B events (see fig. 5.3).

An unambiguous characterization of the separation power is given by quoting the

minimum achievable σf , that is the statistical uncertainty on the fraction f . This
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Figure 5.3: Illustration of the x variable in case of partial (a) and complete (b)

event separation.

resolution is bounded from above by the value σbest
f =

√
f(1− f)/N obtained in
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the ideal case of classes of events being totally separated, i. e., the distributions of

the chosen observable having zero overlap (see fig. 5.3(b)). In this limiting case,

the only uncertainty in assigning an event to one of the two classes comes from the

Binomial fluctuation due to the finite sample-size.

We quote the separation between A and B events as the ratio of the ideal case

resolution with respect to the observed resolution s = σbest
f /σf . The resolution σf

can in principle be determined by repeating a maximum Likelihood fit of the fraction

f on a sufficient number of pseudo-experiments that simulate the experimental data,

and evaluating the spread of results around the input values. An approach exploiting

the Minimum Variance Bound (MVB)[106, 107] can also be used: choosing a variable

x to separate the classes of events, in the simple case of two classes, the MVB is

written as follows:

σ2
f =

1

N

[∫
(℘A(x)− ℘B(x))2

f℘A(x) + (1− f)℘B(x)
dx

]−1

, (5.3)

where ℘A(x) and ℘B(x) are the probability distributions of x, normalized to unit

area, for A and B events respectively (see fig. 5.3).2 Following our approach, the

separation power of the variable x in the given sample is determined by evaluating

s = σbest
f /σf =

√
f(1− f)

∫
(℘A(x)− ℘B(x))2

f℘A(x) + (1− f)℘B(x)
dx. (5.4)

This quantity is independent of the sample size, but depends on the true values of

fractions as generally happens for resolutions. This is also intuitive, since an easier

separation is expected among populations similar in size. The quantity s ranges

from zero, i. e., no separation corresponding to completely overlapping distribu-

tions, to one, i. e., the maximum achievable separation in the given sample. The

quantity s is well-defined whatever the shape and the dimensionality of the observ-

able distributions involved. In addition, any s value can be analytically converted in

an “equivalent nσ separation” to quote, in a more conventional way, the separation

in σ units one would have observed if the distributions of the chosen variable were

Gaussian. The achieved separation power depends on the variable (i. e., x) used to

measure it, and a wise choice of the variable (or set of variables) may enhance the

actual separation. For the specific goals of this analysis, the set of observables must

have the maximum separation power possible to distinguish:

• between signals and backgrounds;

• between different signals contributing to the B → h+h
′− peak: kinematics

differences between modes will be exploited in a strategy described in sec. 5.2.

Charged particle identification information is an additional tool used to in-

crease the separation power: we will explain the strategy in sec. 5.3.

2The symbol x may stand for a set of many variables, discrete or continuous, and the integral

extends over the whole x domain.
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5.2 Kinematic separation

Separation power can be exploited using kinematic differences between decay modes.

Obviously, one useful information is the mass difference between B0, B0
s and Λ0

b

decay modes, respectively mB0 ≈ 5.30 GeV/c2,mB0
s
≈ 5.36 GeV/c2 and mΛ0

b
≈

5.62 GeV/c2. However, we explained in the previous sections that using a single

mass-assignment for all events will lead to the broadening of the mass resolution. As

a consequence, the mass information alone is not sufficient to allow discrimination

between the different decay modes, overlapping each others. Now let us consider

the invariant mass definition of eq. (5.1): it is written as a function of the masses of

the final states and the momenta. In addition, we have also the charge information

of the final state particles. Thus the structure of the eq. (5.1) gives the opportunity

to add, in a simple way, other kinematics information: the momentum and the

charge of the final state particles. In particular, for the CP measurements, having

a variable capable of discriminating between CP conjugates final states (K+π− and

K−π+, ph− and ph+) is of fundamental importance.

Consider the invariant mass for any mass assignment mm+m− from eq. (5.1) and

the invariant mass in assumption of ππ in the final state given on eq. (5.2). Their

difference can be written as:

m2
ππ −m2

m+m− = (m2
π +m2

π)− (m2
+ +m2

−)+

2 ·
(√

p2
+ +m2

π ·
√
p2
− +m2

π −
√
p2

+ +m2
+ ·
√
p2
− +m2

−

) (5.5)

where, for simplicity, we used m2
ππ ≡ m2

mπmπ (following the same notation, m2
Kπ =

m2
mKmπ

and so forth for the other B0
(s) → h+h

′− decay modes). The relation

eq. (5.5) allows writing the invariant mass of any possible decay m2
m+m− as a func-

tion of three variables: the invariant ππ mass squared m2
ππ and the momenta p+

and p−. So for each event (i. e., for each set of observed m2
m+m− = m2

ππ, p+ and

p−) eq. (5.5) takes different forms, depending on the decay mode one is referring to.

In particular, the presence of the final state particles charge information introduces

differences in the functional form between a decay mode and its CP conjugate: for

example, for the B
0
s → K+π− mode m+ = mK+ , m− = mπ− , p+ = pK+ , p− = pπ−

and m2
m+m− = m2

B0
s
. On the contrary, for the B0

s → K−π+ mode m+ = mπ+ ,

m− = mK− , p+ = pπ+ , p− = pK−
3. This difference in the functional form trans-

lates into different trends in the distributions making possible to obtain separation

power between the different decay modes. As an alternative, we could evaluate the

invariant mass with the correct mass assignment and use all of them in the fit of

composition. With this strategy, large correlations between the likelihood terms

would arise. In addition, this choice would increase the number of variables in the

fit of composition. For these reasons we decided not to follow this strategy.

Given the structure of the relation eq. (5.5), it is possible to use a set of less

3In assumption of trascurable Cabibbo suppressed decay modes B0
s → K+π−. Same holds for

the other decay modes.
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correlated variables. We define a charge momentum asymmetry:

β ≡ p+ − p−
p+ + p−

=
p+ − p−
ptot

(5.6)

where ptot is the scalar sum of the momentum of the final state particles. β takes

values in the finite interval [-1,1] and p+(−) can be written as a function of β, ptot:

p+ =
1 + β

2
· ptot (5.7)

p− =
1− β

2
· ptot (5.8)

Using a change of variables, eq. (5.5) can be written as

m2
m+m− = m2

ππ − 2m2
π + (m2

+ +m2
−)+

−2 ·

(√(
1+β

2 ptot

)2
+m2

π ·
√(

1−β
2 ptot

)2
+m2

π

)
+

+2 ·

(√(
1+β

2 ptot

)2
+m2

+ ·
√(

1−β
2 ptot

)2
+m2

−

) (5.9)

Using eq. (5.9) it is possible to calculate the analytical expressions for the m2
m+m−

of each B → h+h
′− decay, as a function of β and ptot: for example, the m2

m+m− for

the B0
s → K−π+ mode is written as follows:

m2
πK = m2

ππ − 2m2
π + (m2

π +m2
K)+

−2 ·

(√(
1+β

2 ptot

)2
+m2

π ·
√(

1−β
2 ptot

)2
+m2

π

)
+

+2 ·

(√(
1+β

2 ptot

)2
+m2

π ·
√(

1−β
2 ptot

)2
+m2

K

)

Using eq. (5.9) we can summarize all the kinematic information and the charge in-

formation in just three, loosely correlated variables (m2
ππ, β and ptot)

4. Figure 5.4

shows the distributions of m2
ππ as a function of β, visualizing the differences between

the kinematic distributions of the different modes due to the mass-momentum cor-

relation. In spite of the smearing effect of the mass resolution, the different trends

of the different modes are clearly visible. A general feature of these plots is that

the slopes are enhanced at the boundaries of the β domain (|β| ≈ 1), suggesting

that the kinematic separation is more effective in the decays where the momenta of

the final particles are strongly unbalanced. Differences between B0 → K+π− and

B
0 → K−π+ decays, between B0

s → K−π+ and B
0
s → K+π− decays and between

Λ0
b → pπ−(Λ0

b → pK−) and Λ
0
b → pπ+(Λ

0
b → pK+) are also visible. The latter

are used to measure the CP -violating decay-rate asymmetry in these modes. The

shape of the B0 → π+π−(B0
s → π+π−) mode is a straight line centered at the

B0(B0
s ) meson mass, since the chosen mass assignment is correct for this mode.
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Figure 5.4: Square invariant ππ-mass of the simulated B0
(s) → h+h

′− and Λ0
b → ph−

decays as a function of β.

Figure 5.6 shows the maximum separation power among the modes, that is between

the B0 → K+K− and the Λ0
b → pπ− decay modes, and the minimum separation

power between B0 → π+π− and B0
s → K+K− where the mass wrong assignment

to the kaon final particles has the effect of counter-balancing the wrong mass as-

signment in mBs . The two resulting mass shapes are very similar: only a small tail

is visible for the B0
s → K+K− decay modes, due to the momentum dependence

of the m2
ππ. In tab. 5.1 we reported the list of the separation powers between the

different B → h+h
′− decay modes.

4The correlation between p+ and p− is ≈ 5.0%, while the correlation between β and ptot is

≈ 0.2%
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Figure 5.5: Profile plots of the square invariant ππ-mass as a function of charged

momentum asymmetry β for all simulated signal modes.
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(right panel) decay modes.
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The separation power among the modes given by the ptot variable is small, order

O(m/p), and since it is not possible to visualize in a three-dimensional space a four-

dimensions surface (m2
ππ, β, ptot and z−axis), in the figures only the correlations

between the invariant ππ-mass and β are plotted. ptot has a limited separation

power for the signal modes, but it provides some discrimination between signals and

background, as you can see from fig. 5.7 (right). Figure 5.7 (left) shows the difference

between the combinatorial background m2
ππ versus β distribution, sparse in all the

mass region, and the simulated B0 → π+π− decay modes m2
ππ versus β distribution,

peaking in the region corresponding to the nominal B0 mass: a separation power of

about 2.4 σ is evaluated. It is evident how it would be impossible, relying only in

the kinematics information, to disentangle the different B → h+h
′− decay modes,

and to perform accurate measurements of CP violations and B. Therefore, we need

additional information: a common strategy to discriminate between particles is the

use of Particle Identification (PID).
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Figure 5.7: Comparison between combinatorial background distributions and sim-

ulated B0 → π+π− decay modes: β versus m2
ππ on the left, ptot on the right.
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5.3 Particle Identification (PID) separation

Identification of hadrons is difficult at CDF II, since the detector was designed

for high-pT physics measurements [108], and not optimized for these capabilities5.

For charged particles with pT & 2 GeV/c, a reasonably effective separation can

be obtained from the rate of energy loss through ionization (dE/dx ) in the gas

that fills the active volume of the drift chamber (the COT, introduced in chap. 2).

We would like to exploit the dE/dx information to obtain a variable statistically

discriminating between charged particles such as pion, kaons and protons. In this

way we can obtain separation power between the final states of the B → h+h
′−

decays modes consisting in particle pairs: for instance, between π+π− and K+K−,

or between π+π− and pK−, but in particular between π+K− and K+π−. The

last separation power would be fundamental for CP measurements, because allows

discriminating between the B0 → K+π− and B
0 → K−π+ decay modes, where

the separation from the kinematics information is not large. Let us suppose the

possibility to obtain such a variable for positively- and negatively-charged particles,

and suppose this variable can allow a statistical separation power between kaons

and pions of about 1.4σ. The separation between a final state between a couple of

K+K− and a couple π+π− would be about
√

2 · 1.4σ ≈ 2σ. The same holds for CP
related states, for example between the couple K+π− and K−π+. Obtaining this

variable is actually possible: it is called “kaonness” κ+(−), and will be described

in detail in chap. 7. The protons κ distribution are observed to be very similar to

the kaon’s one, thus proton are almost indistinguishable from kaons using dE/dx

information. To appreciate the separation power among the signal modes achievable,

we report the κ+ versus κ− distributions in fig. 5.8, extracted from control samples

(the details will be described in chap. 7). The use of the κ is important for the

aim to separate the different B → h+h
′− contributions, in particular if we consider

that the kinematics and the dE/dx are perfectly complementary. For example the

kinematic separation power between the B0 → π+π− and B0
s → K+K− modes is

almost null (see fig. 5.6), while the dE/dx power separation is maximum, about 2σ

(see fig. 5.8). In tab. 5.2 we reported the list of the separation powers between the

different B → h+h
′− decay modes.

5The TOF is the only detector entirely devoted to this function, but its performance is marginal

for particles with momenta greater than 2.0 GeV/c. Similarly, specific ionization from the silicon

tracker is of little help, because its identification power is only effective for particles with pT
<∼

800 MeV/c
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Figure 5.8: κ+ versus κ− distributions for different pairs of final state particles.

final states π+π− K+π− π+K− K−K− pπ− π+p̄ pK− K+p̄

π+π− 0

K+π− 1.38σ 0

π+K− 1.38σ 2.02σ 0

K+K− 1.91σ 1.38σ 1.38σ 0

pπ− 1.93σ 0.54σ 2.42σ 1.53σ 0

π+p̄ 1.93σ 2.42σ 0.54σ 1.53σ 2.75σ 0

pK− 2.25σ 1.40σ 1.90σ 0.54σ 1.38σ 2.15σ 0

K+p̄ 2.25σ 1.81σ 1.44σ 0.54σ 1.96σ 1.44σ 0.77σ 0

Table 5.2: PID separation power in unit of σ between B → h+h
′− decays, extracted

from the κ+ versus κ− distributions.
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5.4 Combining information to separate the B → h+h
′−

modes

We discussed how, separately, the kinematic distributions and the PID information

do not allow to distinguish the different decay modes contribution to the B → h+h
′−

peak. Thus it is necessary to use all the information available. The strategy followed

combines the dE/dx and the kinematics information all together in a multidimen-

sional Likelihood fit. This strategy is particularly convenient, if we consider that the

kinematics and the PID information are complementary, and the same holds for the

separation obtained from them. To have a glimpse of the global separation achiev-

able with this strategy, we report in tab. 5.3 the separation between the B → h+h
′−

decay modes evaluated assuming the kinematic information as completely indepen-

dent of PID information. This is a good approximation of the final separation power

expected. In the modes where the kinematics is similar (for instance between the

B0 → π+π− and B0
s → K+K− modes) and thus the kinematic separation power is

not large, the PID information makes possible to obtain an appreciable separation

power (about 2σ). The same holds for the B → h+h
′− decay modes with the same

final states, indistinguishable using PID information, but with different kinematics,

such as B0 → K+K− and B0
s → K+K−.

To obtain the PID and kinematics information of the different B → h+h
′− decay

modes is only the first step of the analysis, that also is complicated by the presence of

the backgrounds (combinatorial and physics). In sec. 5.5 we report a brief analysis

overview, underlining the crucial points of the work, while sec. 5.6 describes the

structure of fit of composition used to disentangle the different B → h+h
′− decay

modes between themselves and also between the backgrounds.
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5.5 Analysis overview

In the next chapters we describe in details the analysis used to obtain the CP and

the B results. The challenge is to disentangle the different decay modes between

themselves and between the background (physics and combinatorial). In particular,

the rarer decay modes (B0
s → π+π−, B0 → K+K−, B0

s → K−π+, and Λ0
b → ph−)

represent together at most 10% of theB → h+h
′− events and are hidden by the other

more abundant B → h+h
′− modes (B0 → K+π−, B0 → π+π−, and B0

s → K+K−).

The following points are crucial for the search:

• mass resolution description; high accuracy of mass distribution compre-

hension is needed. The B0
s → π+π−, B0 → K+K−, B0

s → K−π+ and

Λ0
b → ph− decay modes are rarer with respect the modes dominating the

peak, i. e., the B0 → K+π−, B0 → π+π− and B0
s → K+K−. In particular,

the more abundant mode B0 → K+π− represents about 50% of the all signal

peak. Its tails hide the other interesting decays, and the results of the analysis

may strongly depend on the detailed shape on the invariant mass distribution.

An accurate description of the mass line shape, including the tails, is crucial

to obtain correct results. The kinematics templates will be described in detail

in chap. 6.

• PID; the PID information is a fundamental information for two reasons. At

first, it is necessary to disentangle the rarer modes (B0
s → K−π+, B0

s → π+π−,

B0 → K+K− and Λ0
b → ph−) from the other B → h+h

′− modes: that

would be impossible relying only on the kinematic information. Secondly,

it is fundamental to distinguish the charge conjugates modes: B0 → K+π−

from B
0 → K−π+, B0

s → K−π+ from B
0
s → K+π− and so on. An accurate

description of the PID information is then crucial to obtain correct results.

The PID templates will be described in detail in chap. 7.

• physics background; the B0 → K+K− search is made more difficult by the

overlapping of the partially reconstructed decay modes. Some of them are

not yet measured and have large theoretical uncertainties, some others have

large uncertainties on the B measurements. Thus the final state composition

is not known with high accuracy and this diminishes the effect of using the

PID information. In addition, the left tail of the B0 → K+π− and of the

B0 → K+K− distributions overlap with the tail of the physics background

modes. The kinematic limits of the physics background mass distribution

are unknown a priori, because we do not know the exact composition of the

physics background. An inaccurate description of the physics background

mass distribution can therefore strongly affect the B(B0 → K+K−) result,

and can also influence the shape of the B0 → K+π− distribution. To obtain

correct results, an accurate description of the template modes has been done

in sec. 6.2.
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5.6 Fit of composition

We used the following five discriminating observables:

1. m2
ππ – square invariant mass of the pair with pion mass assignments6;

2. β – charged-momentum asymmetry between the two particles;

3. ptot – scalar sum of the particle momenta;

4. κ+ – kaonness7 (function of the dE/dx ) of the positively charged particle;

5. κ− – kaonness of the negatively charged particle.

The Likelihood function L is the product of the Likelihoods Li of all events:

L (~θ) =
N∏
i=1

Li(~θ|~xi) (5.10)

where the index i runs over the events. N is the total number of events passing

the final selection, ~θ is the vector of parameters that we want to estimate, ~x is the

vector of the discriminating observables ~xi = {m2
ππ, β, ptot, κ+, κ−}i.

The Likelihood of each event is written as the sum of a signal term and a background

term:

Li = b ·L bck
i + (1− b) ·L sig

i . (5.11)

The index sig (bck) labels the part of the function that describes the signal (back-

ground) term; b is the fraction of background events and 1− b is the fraction of the

B → h+h
′− events (b ∈ ~θ). The Likelihood of the signal events is factorized as a

product of three probability density functions (p.d.f.’s):

L sig =
s∑
j=1

fj · ℘mj (m2
ππ|β, ptot) · ℘

p
j (β, ptot) · ℘PID

j (κ+, κ−|β, ptot), (5.12)

in which the index j runs over the twelve expected components: B0 → π+π−, B0 →
K+π−, B

0 → K−π+, B0
s → K−π+, B

0
s → K+π−, B0

s → K+K−, B0 → K+K−,

B0
s → π+π−, Λ0

b → pπ−, Λ
0
b → pπ+, Λ0

b → pK−, Λ
0
b → pK+8. The parameters fj

are their fractions (of the total signal), and are determined by the fit. From the

(s− 1) independent fractions resulting by the normalization condition,

fs = 1−
s−1∑
j=1

fj , (5.13)

6It is particular convenient to use the square invariant ππ-mass (m2
ππ) instead of the more

commonly used invariant ππ-mass (mπ+π−) because eq. (5.9), given β and ptot, is a linear

transformation, when square masses are considered as variables. This implies that the jacobian

|dm2
ππ/dm

2
j | = 1 instead of a complicated function of β and ptot different for each signal.

7The variable “kaonness” will be properly described in chap. 7, together with the correspondent

template.
8C-conjugate modes are considered distinct for decays in Kπ, pπ and pK final states that are

distinguishable on the basis of the final particle types.
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we determined the yield of each mode. We conventionally label as ℘m the term that

describes the invariant-mass distributions (“mass term”), ℘p the term that describes

the momentum distributions (“momentum term”), and ℘PID the term that models

the dE/dx density (“PID term”). This factorization is not trivial since the three

terms of the p.d.f. are inter-related by the dependencies between mass, momentum,

and dE/dx observables.

The Likelihood of the background factorizes in a similar way to the signal term,

and it consists of the sum of two contributions:

L back =
∑
l=A,E

fl · ℘ml (m2
ππ|β, ptot) · ℘pl (β, ptot) · ℘PID

l (κ+, κ−|β, ptot), (5.14)

where the index l runs over the different kinds of background, combinatorial (l = E)

and physics (l = A) background. The parameters fl are their fractions (of the

total background) and are determined by the fit. From the normalization condition

results fE = 1 − fA. In Equations (5.11)–(5.14) the functional dependence on the

vector ~θ was omitted, since in the equations we wrote explicitly some terms of this

vector, as fi, fA and b. The kinematic templates will be discussed in detail in

chap. 6, while in chap. 7 we will report the modeling of the PID observables.

Simultaneous fit of A and C samples

The probability density function of the fit of composition we wrote keeps into ac-

count only one kinematics, for instance the one of the A subsample. As explained in

detail in sec. 3.1, the data sample is composed by two different kinematics, the med

and the high ones, corresponding to two independent subsamples A and C. There-

fore we can perform a simultaneous fit of these two sub-samples and we can write

the total Likelihood function L of all events:

L (~θ) =

NA∏
i=1

L A
i (~θA|~xi) ·

NC∏
i=1

L C
i (~θC|~xi) (5.15)

where the index i runs over the events. NA is the number of events of A sample, NC

is the number of events of C sample, and where N = NA +NC is the total number of

events. ~θA(C) is the vector of parameters that we want to estimate, ~x is the vector

of the discriminating observables ~xi = {m2
ππ, β, ptot, κ+, κ−}i.

The likelihood function written in such a way does not keep into account the

poissonian uncertainty due to the finite size of the total sample N and the binomial

uncertainty due to the fact we splitted the sample in two subsamples N = NA +NC.

This means that we have to consider N as a Poisson variable with mean ν and and

that NA and NC are binomially distributed, with a probability p to have NA, and

1 − p to have NC events, when the sum is constrained to be, in our specific case,
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equal to N. Then the new extended Likelihood function can be written as:

L (ν, p, ~θ) =
νN

N !
e−ν · N !

NA!(N −NA)!
pNA(1−p)N−NA ·

NA∏
i=1

L A
i (~θA|~xi) ·

NC∏
i=1

L C
i (~θC|~xi)

(5.16)

and if we define nA and nC as

nA = νp (5.17)

nC = ν(1− p) (5.18)

the Likelihood function can be rewritten as a function of nA(C), instead of ν and p,

that are the observables we want to estimate. Other parameters remain unchanged,

as described in the previous sections, except that they are much more since we are

fitting two different kinematics. They did not double because some of them are in

common between the two samples. The p.d.f for all signal and background compo-

nents are parameterized as described in next chapters, respectively for med and high

scenarios, as two different analyses.



Chapter 6

Kinematics templates

As introduced in chap. 5, a very accurate description of the kinematics distribu-

tions is needed to disentangle the rarer decay modes (B0 → K+K−, B0
s → π+π−,

B0
s → K−π+, and Λ0

b → ph−) from the surrounding and more abundant others

B → h+h
′− decay modes. This chapter describes the kinematic templates used in

the Likelihood fit: we extracted the templates of the B → h+h
′− decay modes and

of the physics background using the official CDF Monte Carlo simulation. The

combinatorial background templates are extracted directly from data.

6.1 B → h+h
′− signal templates

6.1.1 Probability density function of the signal mass term

Using the mass information in a Likelihood fit requires modeling the distributions

of the desired observable. The squared invariant ππ-mass distribution of the non-

ππ components depends on the mass shift, which is a function of the charged-

momentum asymmetry β and of the scalar sum of the momenta ptot of the decay

products. It is due to mis-assigned masses of the outgoing particles, as discussed in

sec. 5.2. We will account for this effect by writing a ππ-mass p.d.f. as a conditional

probability density function for a given charged-momentum asymmetry and scalar

sum of the momenta.

Using the simulated sample described in chap. 4, we parameterized the squared

invariant mass distribution m2
j , computed with the correct mass assignment (j =

B0 → π+π− =⇒ m2
j = m2

ππ; j = B0 → K+π− =⇒ m2
j = m2

Kπ; etc.), using the

following analytical function:

Rj(m2
j ) = f jbulk

[
f j1G (m2

j ;m
2
H0
j

+ δj1, σ
j
1) + (1− f j1 )G (m2

j ;m
2
H0
j

+ δj2, σ
j
2)
]

+(1− f jbulk)T (m2
j ; b

j , cj ,m2
H0
j

+ δj1) (6.1)

97
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where:

G (x;µ, σ) =
1√
2πσ

e−
1
2(x−µσ )

2

(6.2)

T (x; b, c, µ) =
1

K
eb(x−µ) · Erfc(c(x− µ)) (6.3)

K =

∫ x2

x1

eb(x−µ) · Erfc(c(x− µ))dx (6.4)

Erfc(x) = 1− Erf(x) =
2√
π

∫ +∞

x
e−t

2
dt. (6.5)

in which the index j runs over all components. We used a sum of two Gaussians

to parameterize the bulk of the distribution, while the long lower-mass tail due to

the soft photon emission is parameterized with the function in eq. (6.3). f jbulk is

the relative fraction of the double-Gaussian bulk with respect to the total (bulk

plus tail), while 1− f jbulk is the fraction of the tail term. f j1 is the relative fraction

of the more abundant Gaussian labeled with the index 1 with respect to the sum

of two Gaussians, while σj1(2) is the the width of the Gaussian 1(2). δj1(2) is the

shift from the squared mass value of the hadron H0
j (j = B0 → π+π− =⇒ m2

H0
j

=

m2
B0 ; j = B0

s → K+K− =⇒ m2
H0
j

= m2
B0
s
; etc.). The values of the parameters

{fbulk, f1, σ1, σ2, δ1, δ2, b, c}j are fixed in the fit; they were extracted from the MC

simulation described in the previous sections. Figures 6.1–6.4 show the squared

invariant mass kinematic templates for all the B → h+h
′− decay modes.
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Figure 6.1: Squared invariant mass distribution of the simulated B → h+h
′−

histograms. Linear (top) and logarithmic (bottom) scale.
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Figure 6.2: Squared invariant mass distribution of the simulated B0 → h+h
′−

decays. On the top linear scale, on the bottom logarithmic scale. The template is

overlaid.
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Figure 6.3: Squared invariant mass distribution of simulated B0
s → h+h

′− decays.

On the top linear scale, on the bottom logarithmic scale. The template is overlaid.
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Figure 6.4: Squared invariant mass distribution of the simulated Λ0
b → ph− decays.

On the top linear scale, on the bottom logarithmic scale. The template is overlaid.
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The distribution of the signal mass term Rj(m2
j ) was written, in eq. (6.1), as a

function of different mass observables m2
j , because for each decay mode (j) we have

a different invariant mass variable. In sec. 5.2 we discussed why it is convenient to

write the different squared mass assignments m2
j as a function of a single invariant

mass observable m2
ππ and the momenta observables β and ptot. Therefore, for each

jth decay mode we can write the probability density function as a function of m2
ππ

given β and ptot, through a simple change of variables m2
j → m2

ππ:

Rj(m2
j ) = Rj(m2

j (m
2
ππ))× dm2

ππ

dm2
j

= Rj(m2
ππ|β, ptot), (6.6)

where dm2
ππ

dm2
j

= 1. With this substitution we can write the probability density of

the signal mass term as follows:

℘mj (m2
ππ|β, ptot) = f jbulk

[
f j1G (m2

ππ −∆j
β,ptot

;m2
H0
j

+ δj1, σ
j
1)

+(1− f j1 )G (m2
ππ −∆j

β,ptot
;m2

H0
j

+ δj2, σ
j
2)
]

+(1− f jbulk)T (m2
ππ −∆j

β,ptot
; bj , cj ,m2

H0
j

+ δj1). (6.7)

(6.8)

where ∆j
β,ptot

= 2m2
π−(m2

++m2
−)+2

(√(
1+β

2 ptot

)2
+m2

π ·
√(

1−β
2 ptot

)2
+m2

π

)
−

2

(√(
1+β

2 ptot

)2
+m2

+ ·
√(

1−β
2 ptot

)2
+m2

−

)
from eq. (5.9).

Momentum dependence of the m2
ππ resolution

So far we treated the invariant mass resolution as independent of the momentum

observables, however the invariant mass resolution depends on the momentum of the

mother particle and therefore, on the momenta of the decay products. We explicitly

introduced this dependence to keep into account the changes of the mass resolution

as a function of our momentum observables β and ptot (less than 10 MeV2/c4 as

a function of β and about 80 MeV2/c4 as a function of ptot, spanning the range

5.5 <∼ ptot
<∼ 35 GeV/c). The variation as a function of β is a small residual

dependence on ptot, since selecting different regions in β we bias our sample toward

high ptot values.

The choice of β and ptot as variables in the fit rather than equivalent p+ and p−
variables turns out to be very convenient in this case, because β and ptot are almost

independent observables, and this is reflected in the factorizability of the momenta

mass resolution dependence. The mass resolution can be written as the product of

two independent functions of β and ptot: σ(β, ptot) ≈ σβ(β) · σptot(ptot). Since the

variation as a function of β is small, in the ℘(m2
ππ) we neglected this dependence.

The ptot dependence was parameterized with a straight line. Figure 6.5 shows the

m2
ππ resolution, as a function of ptot, for B0 → K+π− decay mode as an example.
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Figure 6.5: Dependence of the squared mass resolution on ptot for the B0 → K+π−

decays parameterized with a first order degree polynomial.

The values σj1 and σj2 extracted in the parameterization of ℘mj (m2
j ) (see eq. (6.1))

are averaged along all momenta: σj1 → σj01 and σj2 → σj02. Then we introduced the

ptot dependence in the fit and the new momentum dependent values for σj1 and σj2
to insert in eq. (6.1) become:

σj1 = σj01 ·

(
1 +

bj1
σj01

(ptot − 〈ptot〉)

)

σj2 = σj02 ·

(
1 +

bj1
σj02

(ptot − 〈ptot〉)

)
(6.9)

where the index j runs over all possible signal modes and 〈ptot〉 is the average ptot

value.
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6.1.2 Probability density function of the signal momentum term

The momentum p.d.f. is extracted from the simulated signal samples described in

chap. 4. Selection requirements and kinematic correlations between the outgoing

particles cause the domain and shape of the β distribution to vary as a function of

ptot. In fact, both momenta (p+ and p−) are necessarily larger than 2(2.5) GeV/c,

and their sum is larger than 5.5(6.5) GeV/c, because of the trigger requirements on

their transverse momenta. This translates into the following conditions on β and

ptot:

p± = ptot

(
1± β

2

)
> 2(2.5) GeV/c and ptot > 5.5(6.5) GeV/c. (6.10)

Thus the domain of the joint distribution β, ptot is defined by eq. (6.10), explicitly:

ptot >
4(5)

1− β
GeV/c (6.11)

ptot >
4(5)

1 + β
GeV/c (6.12)

The domain is visible in fig. 6.6(a) (for scenario med) and in fig. 6.6(b) (for scenario

high). For these reasons, the β distribution varies as a function of ptot. Table 6.1
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Figure 6.6: β versus ptot distribution for the B0 → π+π− simulated decay modes for

med (a) and high (b) scenarios. The function overlaid corresponds to the domain

requirements ptot = 4(5)/(1-β) and ptot = 4(5)/(1+β).

reports the variation of β in function of different slice of ptot. The domain require-

ments translate into an increasing RMS of the β distribution with the increasing

of ptot. Figure 6.7 shows the distribution of the β variable as a function of ptot,

spanning the range ptot < 30 GeV/c, for the B0 → π+π− decay mode.
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Figure 6.7: ptot distribution of simulated B0 → π+π− decays, divided for the dif-

ferent ptot ranges (a). β distribution of simulated B0 → π+π− decays spanning

different ptot ranges: ptot< 7 GeV/c (b), 7 < ptot< 8 GeV/c (c), 8 < ptot< 9.5

GeV/c (d), 9.5 < ptot< 11 GeV/c (e), 11 < ptot< 13 GeV/c (f), 13 < ptot< 16

GeV/c (g), ptot> 16 GeV/c (h).
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ptot interval (GeV/c) mean rms

ptot < 7.0 0.00 0.19

7.0 < ptot < 8.0 0.01 0.22

8.0 < ptot < 9.5 0.00 0.25

9.5 < ptot < 11.0 0.00 0.28

11.0 < ptot < 13.0 0.01 0.31

13.0 < ptot < 16.0 0.00 0.34

ptot > 16.0 0.00 0.35

Table 6.1: β mean and RMS as a function of ptot.

Performing the parameterization of such a joint distribution is challenging: the

β dependence on ptot must be reproduced by the fit function. To simplify the

problem, we define two new variables, β′ for med and β′′ for high path:

β′ = β · ptot

ptot − 4
; β′′ = β · ptot

ptot − 5
(6.13)

The definition of these two variables incorporates the β dependence on ptot due to

the trigger requirements. Therefore the β′ and β′′ dependence on ptot is almost null

(see fig. 6.8): for example, the correlation factor between β′ and ptot is ≈ 0.5% for

B0 → π+π− simulated decay modes. Still, as you can see in fig. 6.9, a small depen-
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Figure 6.8: β′ versus ptot distribution for the B0 → π+π− simulated decay modes

for med sample (a). β′′ versus ptot distribution for the B0 → π+π− simulated decay

modes for high sample (b).

dence between β′ and ptot is unavoidable (the same holds for β′′): the RMS of the

distribution decreases with the increasing of ptot. Thus, we wrote a bi-dimensional

function where the β′ term is able to vary in function of ptot, to take into account

the small dependence discussed. To avoid repetitions, from now on we will describe
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Figure 6.9: β′ distributions of B0 → π+π− decays in different ptot intervals.

only the procedure used to obtain the scenario med p.d.f.s. The same method has

been used for the scenario high p.d.f.s. We followed a three steps strategy: in

the first step, we fitted the ptot distribution using the Laguerre polynomials1. In

the second step, we fitted the ptot-integrated β′ distribution using the Chebyshev

polynomials2. In the final step, we fitted the (β′, ptot) joint distribution with a

bidimensional function using the information obtained from the previous steps.

ptot parameterization

We empirically chose a parameterization of ptot density, whose parameters were de-

termined with a binned fit of simulated events distributions. The technical challenge

is to reproduce the shape behaviour: a rapid turn on due to the trigger require-

ments is followed by a smoothly declining tail (fig. 6.10 (a)). Thus the p.d.f.(ptot)

is written as the product of an exponential function times a 6th-degree Laguerre

polynomial:

℘pj (ptot) =
1

Nj

(
ecjptot

6∑
l=0

aljLl(ptot)

)
(6.14)

where the index j labels the dependence on the decay mode and Nj is a normaliza-

tion term. The exponential part reproduces the tail of the distribution, while the

Laguerre polynomials parameterize the turn on region.

1Ln(x) = ex

n!
dn

dxn
(e−xxn)

2Tn(x) = cos(n · arccos(x))
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Figure 6.10: Fit of ptot distribution (a) and β′ distribution (b) for B0 → π+π−

simulated decays.

β′ parameterization

The ptot-integrated β′ p.d.f. is written as a 6th degree Chebyshev polynomial, where

the parameters bi, with i = 0...6, are free to vary. We chose these functions because

they are a set of orthogonal polynomials in the interval [-1,1], that is the β′ domain.

The fit function agreement with respect to the data distribution is satisfactory (see

fig. 6.10 (b)).

℘j(β
′) =

6∑
m=0

bmjTm(β′), (6.15)

Bidimensional β′,ptot parameterization

In the final step of this procedure we wrote a bidimensional function parameterizing

the joint p.d.f. ℘(β′,ptot). The parameters are fixed to the corresponding parameters

of the one–dimensional functions obtained in the first two steps. To take into

account the a small β′ dependence on ptot, we let the Chebyshev parameters bmj
vary in function of ptot:

bmj → bmj(1 + d1
mj · ptot + d2

mj · p2
tot + d3

mj · p3
tot + d4

mj · p4
tot) (6.16)

This method allows us to satisfactorily reproduce the simulated distribution, be-

cause the variations with respect to the bmj values are small. As a matter of fact,

the dkmj coefficients decrease as the ptot power increases. Thus the momentum p.d.f.
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of the jth signal mode is written as:

℘pj (β
′, ptot) = ℘j(ptot)× ℘j(β′|ptot)

=
1

Kj

(
ecjptot

6∑
l=0

aljLl(ptot)

)
×

(
6∑

m=0

bmj(ptot)Tm(β′)

)
,

(6.17)

where the ptot density is the product of an exponential function times a 6th-degree

Laguerre polynomial, whereas the conditional p.d.f. of β is a 6th-degree Chebyshev

polynomial in β′. The index j of the alj , bmj , and cj parameters denotes their

dependence on the decay mode. While alj and cj are constants, bmj is a function of

ptot through a 4th-degree polynomial bmj =
∑4

k=0 d
k
mjp

k
tot, where dkmj are constants.

The normalization factor Kj for each mode is calculated with a numerical two-

dimensional integration of the p.d.f. in the appropriate domain of β′ and ptot.

Since in the Likelihood function the parameters chosen are m2
ππ, β, ptot, κ+, κ−

and not β′ (nor β′′), we rewrote eq. (6.17) in function of β. Thus the momentum
p.d.f. of the jth signal mode used in the Likelihood fit is written as follows:

℘pj (β, ptot) = ℘j(ptot)× ℘j(β′(β)|ptot)×
dβ′

dβ

=
1

Kj

(
ecjptot

6∑
l=0

aljLl(ptot)

)
×

[
6∑

m=0

bmj(ptot)Tm

(
β

ptot

ptot − 4

)]
× ptot

ptot − 4
,

(6.18)

Figure 6.11 shows the distribution of the scalar sum of momenta as a function of

the momentum imbalance of the simulated B0 → π+π− mode. Similar distributions

are obtained for all signal modes. These are fitted to the functions of eq. (6.18) to

obtain the momentum templates. We checked the agreement between the model

and the simulated distributions by overlaying the templates to the β-distributions of

simulated data integrated in the ptot variable (see fig. 6.11), and, as a further check,

sampled in different ptot ranges (fig. 6.12). We performed the same parameterization

for all the B → h+h
′− decay modes, for both med and high kinematics. To not

weight down the text, only the plots for simulated B0 → K+π− and B
0 → K−π+

are reported in appendix A. Similar plots are obtained for all the other B → h+h
′−

modes.
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Figure 6.11: Distribution of the scalar sum of the momenta as a function of the

charged-momentum asymmetry in the B0 → π+π− simulated decays (a). The

projection (red) is overlaid (b).
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Figure 6.12: β distribution of simulated B0 → π+π− decays spanning different ptot

ranges: ptot< 7 GeV/c (a), 7 < ptot< 8 GeV/c (b), 8 < ptot< 9.5 GeV/c (c), 9.5 <

ptot< 11 GeV/c (d).
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6.2 Physics background template

6.2.1 Physics background simulation

The main contribution to the partially-reconstructed heavy flavor decays comes

from decay modes B+ → h+
1 h
−
2 h

+
3 , B0 → h+

1 h
−
2 h

0
3 and B0

s → h+
1 h
−
2 h

0
3, where h = π

or K, and B0 → π−`+ν` and B0
s → K−`+ν`. In particular, they include also all the

decay modes involving an intermediate resonance as a ρ or a K∗ meson plus a pion

or a kaon: B+ → ρ−π+, B+ → ρ0K+, B0 → ρ∓π±, B0 → ρ−K+, B0
s → ρ∓π±,

B0
s → ρ+K− (where ρ → ππ) and B+ → K∗0π+, B+ → K∗+π0, B0 → K∗+π−,

B0 → K∗0π0 (where K∗ → Kπ) and many others. Many branching fractions of the

decays involving the B+ and B0 mesons were measured at the B-Factories [51] while

those of the B0
s mesons are still unknown with large theoretical uncertainties. For

these reasons, we simulated only some of the decays listed above, in particular those

involving the ρ meson resonance which represent about 50% of the low-mass bump

(see fig. 6.14). We summed the contributions according to their relative branching

fractions. For the B+ and B0 we used the measured values from [51]. We generated

5 millions events for each of the following decay:

• B(B0 → ρ−K+) = (8.4+1.6
−2.2)× 10−6;

• B(B0 → ρ∓π±) = (23.0± 0.023)× 10−6;

• B(B+ → ρ0K+) = (3.7± 0.5)× 10−6;

• B(B+ → ρ−π+) = (8.3± 1.2)× 10−6;

• B(B0 → π−e+νe) = (142± 0.06)× 10−6;

• B(B0 → π−µ+νµ) = (142± 0.06)× 10−6;

• B(B0
s → ρ+K−) = (24.5+15.2

−12.9)× 10−6.

For the same reasons explained for the signal simulation, also the physics back-

ground sample has to be reweighted for pT(B) distribution of data sideband-subtracted

in order to obtain a better agreement between the simulation and the data. The

simulated pT(B) distribution has been reweighted bin by bin to the distribution ob-

served on data sideband subtracted, extracted in the region mπ+π− < 5.16 GeV/c2.

Then we checked that the agreement between data and simulation for the kinematic

variables used in the fit of composition is satisfactory. The comparison plots are

reported fig. 6.13.

6.2.2 Probability density function of the physics bkg mass term

The m2
ππ distribution was modeled with the convolution of a resolution function,

a Gaussian centered in zero with the width of an individual signal mode (σexp ≈
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Figure 6.13: Comparison plots of ptot and β distributions between the physics bkg

simulated sample (full histograms) and data in mπ+π− < 5.16 GeV/c2 sideband

subtracted (dots).
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Figure 6.14: Squared invariant ππ-mass distribution of simulated B+ → h+
1 h
−
2 h

+
3

and B0 → h+
1 h
−
2 h

0
3 decay modes, the fit function (eq. (6.19)) is overlaid.

0.25 GeV2/c4), and an Argus function [92], whose cut-off falls just on the left-hand

side of the B0
(s) → h+h

′− peak:

℘mA (m2
ππ|β, ptot;m

2
A, cA) = G (m2

ππ; 0, σexp) ∗A (m2
ππ;m2

A, cA), (6.19)
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A (m2
ππ;mA, cA) =


1
KA
·

m2
ππ ·

√
1−

(
m2
ππ

m2
A

)2
· e
−cA·

(
m2
ππ
m2

A

)2
 if m2

ππ < m2
A,

0 if m2
ππ > m2

A,

(6.20)

where the normalization KA is:

KA =

∫ m2
A

a2

m2
ππ ·

√
1−

(
m2
ππ

m2
A

)2

· e
−cA·

(
m2
ππ
m2

A

)2

dm2
ππ with a2 ≤ m2

A. (6.21)

Although the Argus function reproduces well the mass line shape of an inclusive data

sample of multibody partially-reconstructed decays, it introduces some problem in

the convergence of the fit. The convolution of eq. (6.19) is performed numerically,

with a sum of a finite number of terms. Therefore the likelihood function has several

terms with an infinite derivative at the value of the cut-off m2
A. To solve this problem

the minimization of the cut-off is done repeating the fit with different fixed cut-off

values. The chosen cut-off value, m2
A = 26.64 GeV2/c4, is the minimum of the

−2 log(L ) profile obtained repeating the central fit where the cut-off value (fixed

in the fit) spans the range [26.4, 26.8] GeV2/c4 with a step of 0.001 GeV2/c4. This

corresponds to 400 different central fits. The likelihood profile reported in fig. 11.2

shows a parabolic behaviour as expected for a regular likelihood. A systematic

uncertainty is assessed on the observable of interest taking the difference between

the the central fit (minimum of the profile) and the fits intersecting the horizontal

line at −2∆ log(L ) = 4, corresponding to a of 95% confidence interval. More details

on the systematics will be reported in sec. 11.2.6. Since in the most part of these
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Figure 6.15: −2 log(L) as a function of the cut-off value m2
A.

fits, performed for the cut-off likelihood scan, the parameter cA goes to its limit,

which is zero, we decide to fix this parameter to zero in the central fit, simplifying
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the expression in eq. (6.19). cA is necessary only when the shape of partially-

reconstructed decays at lower masses goes down. As a further cross-check, we

verified that a simple one-dimensional fit of just the mass shape of the B0
(s) → h+h

′−

candidates yields, for the Argus function, similar estimated parameters as the full

composition fit.

6.2.3 Probability density function of the physics bkg momentum

term

As for the signal, the momentum p.d.f. of the physics background is written as:

℘E(β, ptot) = ℘(ptot)× ℘(β|ptot)×
dβ′

dβ

=
1

K

(
ecEptot

6∑
l=0

aE
l Ll(ptot)

)
×

[
6∑

m=0

bEm(ptot)Tm

(
β

ptot

ptot − 4

)]
× ptot

ptot − 4
,

(6.22)

where the ptot density is the product of an exponential function times a 6th-degree

Laguerre polynomial, whereas the conditional p.d.f. of β is a 6th-degree Chebyshev

polynomial in β scaled by a factor (ptot)/(ptot − 4) deriving from the constraint on

the domain of β given by eq. (6.10) for the med scenario. For the high scenario, the

scale factor is (ptot)/(ptot−5). While aE
l and cE are constants, bEm is a function of ptot

through a 4th-degree polynomial bEm =
∑4

k=0 d
E
mkp

k
tot, where dE

mk are constants. The

normalization factor K is calculated with a numerical two-dimensional integration

of the p.d.f. in the appropriate domain of β and ptot. We checked the agreement

between model and data by overlaying the template to the β-distribution of the

background events, sampled in different ptot ranges (fig. 6.16).
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Figure 6.16: ptot distribution (a) and β distribution (b) of simulated physics back-

ground decays, with the fit function overlaid. β distribution spanning different ptot

ranges: ptot< 7 GeV/c (c), 7 < ptot< 8 GeV/c (d), 8 < ptot< 9.5 GeV/c (e), 9.5 <

ptot< 11 GeV/c (f), with the fit function overlaid.
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6.3 Combinatorial background template

Combinatorial background templates were extracted directly from data. A sample of

pure combinatorial background is expected in the region with mπ+π− > 5.6 GeV/c2,

where the Λ0
b → ph− contributions are kinematically limited. By construction, this

sample is not accurate in reproducing the kinematic distributions (m2
ππ, β and

ptot) in the whole mass range, spanning in a range mπ+π− [5.0, 5.8] GeV/c2. In

order to choose an independent sample where to extract the templates, we studied

an alternative sample of two generic random tracks extracted from the same B →
h+h

′− data, and compared this with the combinatorial background visible at higher

masses.

6.3.1 The inverted χ2 sample

We looked at the distributions of the events passing the final selection (continuous

line in fig. 6.17, labeled as “signal sample”) and the corresponding distribution of

the events with “opposite-χ2” requirement. The opposite-χ2 sample contains events

that pass the final selections of tab. 3.3 except for the requirement on the 3-D vertex

quality, which is “reversed” to χ2 > 40 (see fig. 6.17, dashed line). The opposite-

χ2 sample is enriched of “unphysical” decays, i. e., decays which have two tracks

with an identical kinematics on the transverse plane to the B → h+h
′− modes

but coming from two distinct heavy-flavors in the event, which have sizable impact

parameter but are separated along the z direction. This threshold was chosen to
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Figure 6.17: Squared invariant ππ-mass distribution (a) and azimuthal angle ∆φ

distribution (b) of the events passing the final optimized selection (full histrograms,

χ2
3D < 5) and events passing the final optimized selection with an opposite require-

ment on the 3-D vertex quality (point with error), χ2
3D > 40. The ∆φ distributions

have been selected requiring events lying at higher masses than the peak (right-hand

side of the signal).
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remove as much as possible the contamination of B → h+h
′− signal events and to

obtain a reasonable statistics of background events. To check if the invariant-mass

shape of these random pairs of tracks is slightly dependent (or independent) on

the χ2 cut value, we compared distributions for the main kinematic variables in

the same mass range requiring events lying at higher masses than the peak, right-

hand side of the signal. While we observed small discrepancies comparing momenta

observables of the two background samples, the lifetime related observables are

not compatible. Indeed, inverting the χ2 cut value means selecting tracks with

an unsatisfactory vertex fit, so lifetime related distributions (such as d0(B) or LT

distributions) in disagreement with the ones of the events passing the standard

cuts selection are expected. However, we are interested only in the mass line shape,

whose features depend, at the first order, on the momenta distributions: the lifetime

related observables distributions enter only at higher order level. Therefore we

reweighted the ∆φ distribution of the the opposite-χ2 sample to the one of the

signal sample (the comparison of ∆φ distributions before the reweighting is shown

in fig. 6.17(b)). Then a good agreement is found between momenta observables, as

shown in fig. 6.18. Thus, the opposite-χ2 sample provides an useful model of the

mass and momenta shapes of the combinatorial background of the signal sample in

the whole mass range.

6.3.2 Probability density function of the combinatorial bkg mass

term

Given the slope of the distribution shown in fig. 6.17, the squared invariant ππ-mass

of the combinatorial background was modeled with a decreasing exponential:

℘mE (m2
ππ|β, ptot; cE) =

1∫ b
a e

cEm2
ππdmπ+π−

· ecEm2
ππ (6.23)

whose slope cE has been extracted with an one-dimensional fit of the squared in-

variant ππ-mass distribution of the opposite-χ2 sample. In the central fit, the slope

cE of the combinatorial background mass shape is fixed. We checked that the slope

extracted in this way is compatible with the slope obtained fitting the events lying

at masses (m2
ππ > 31.5 GeV/c2) higher than the B → h+h

′− peak (right-hand side

of the signal). We estimate respectively for med and high:

cA
E = −0.064± 0.003 (GeV2/c4)−1 (6.24)

cC
E = −0.060± 0.004 (GeV2/c4)−1.

6.3.3 Probability density function of the combinatorial bkg mo-

mentum term

As for the signals, the momentum p.d.f. of the background is written as a joint

p.d.f. ℘(β, ptot). The combinatorial background ptot distribution shown in fig. 6.19
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has a different shape respect to the signal distribution: in particular, the mean and

the RMS have lower values.

Thus we empirically chose a different parameterization: instead of the product
between Laguerre polynomials and an exponential function used for the signals, we
use the sum of three Gaussians. This has been done because of the technical diffi-
culties on parameterizing the very rapid turn at low momentum. The momentum
p.d.f. of the background is written as:

℘E(β, ptot) = ℘(ptot)× ℘(β|ptot)×
dβ′

dβ

=
1

K

(
3∑
l=1

fE
l G (ptot;µl, σl)

)
×

6∑
m=0

bEm(ptot)Tm

(
β

ptot

ptot − 4(5)

)
× ptot

ptot − 4
,

(6.25)

where the ptot density is the sum of three gaussians G (defined in eq. (6.2)), whereas,

as for the signal, the conditional p.d.f. of β is a 6th-degree Chebyshev polynomial in

β scaled by a factor (ptot)/(ptot− 4(5)) deriving from the constraint on the domain

of β given by eq. (6.10). While µl and σl are constants, bEm is a function of ptot

through a 4th-degree polynomial bEm =
∑4

k=0 d
E
mkp

k
tot, where dE

mk are constants. The

normalization factor K is calculated with a numerical two-dimensional integration

of the p.d.f. in the appropriate domain of β and ptot.
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Figure 6.18: Comparison of distributions between the combinatorial signal sample

and the opposite-χ2 sample reweighted using the ∆φ distribution:
∑
pT (a), ptot

(b) LT (c), ∆ϕ0 (d), β (g), pT(1) (i), pT(2) (j), d0(1) (m), d0(2) (n).
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Figure 6.19: ptot distribution (a) and β distribution (b) of combinatorial back-

ground, with the fit function overlaid. β distribution in different ptot ranges: ptot<

7 GeV/c (c), 7 < ptot< 8 GeV/c (d), 8 < ptot< 9.5 GeV/c (e), 9.5 < ptot< 11 GeV/c

(f).



Chapter 7

PID templates

A detailed description of the dE/dx information is crucial for this analysis: adding

the PID to the kinematics information allows gaining separation power between

decay modes with different final states, even when the separation power due to kine-

matics information is almost null. This chapter describes the work we especially

made for the B → h+h
′− analysis.

7.1 dE/dx control data samples

To parameterize the templates to model the dE/dx response of each particle we used

CDF data, exploiting the available control samples. In order to describe correctly

the signal and the background we need a model for all particle involved. The B →
h+h

′− modes decay into kaons, protons or pions. In addition, in the background we

expect also the presence of muons and electrons.

pions and kaons − For pions and kaons a sample of ' 2.7 × 106 D0 → K−π+

decays from the decay chain D∗+ → D0π+ → [K−π+]π+ was used. This

sample was introduced in sec. 4.2.3 since it was used as control sample in the

parameterization of the invariant mass distribution. The signal reconstruc-

tion is based solely on tracking and on the information of the identity of D0

decay-products provided by the charge of the soft pion. One D0 → K−π+ and

one D
0 → K+π− candidate were formed for each pair of oppositely-curved

tracks found in the XFT fiducial region (|η| < 1). The list of all requirements

is reported in tab. 7.1. Candidates with reconstructed invariant mass within

8 MeV/c2 of the world–average D0 mass [51] were combined with a third

charged particle with pT > 0.4 GeV/c (soft pion) to form a D∗+ → D0π+

candidate. The charged pion mass is assigned to the like-sign pair of particles.

To select a very pure sample, the analysis has been restricted to candidates

found within ±0.8 MeV from the world average D?+ mass [51]. The invari-

ant D0π-mass distribution resulting is shown in fig. 7.2(a). A simple binned

χ2-fit of the distribution to a double Gaussian function for the signal, over a

123
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primary vertex

D∗+ decay

D0 decay

LT

(soft) π+

π+

K−

Figure 7.1: Schematic sketch of the D∗+ → D0π+ → [K−π+]π+ decay chain in the

plane transverse to the proton beam direction.

straight line function for the background, provides an estimate of about 2.7

M signal events, over a very low background that includes random triplets of

tracks satisfying accidentally the selection requirements and random tracks

combined with a real D0 (fake D∗+). The D0 → h+h
′− decay sample is thus

almost ideal for calibrations and parameterizations: the resulting signal sam-

ple is huge and pure at 99% level. Moreover, the sample was collected by the

B CHARM(B CHARM HIGHPT) triggers (see sec. 3.2), a path belonging, along with

the B PIPI(B PIPI HIGHPT) path, to the Displaced-Tracks Trigger. A large

fraction of trigger requirements is common to these two paths. Most trigger-

dependent effects on the dE/dx of B0
(s) → h+h

′− final states are automatically

accounted for the calibration and for the templates parameterization.

protons − A sample of Λ → pπ− decays was used to calibrate the proton re-

sponse. These two-body decays were reconstructed with the same prescription

of the B0
(s) → h+h

′− decays, (see chap. 3) and were collected using the same

B PIPI(B PIPI HIGHPT) trigger path (see sec. 3.2). It is important to notice

that the Λ→ pπ− decays are volunteers in the B PIPI(B PIPI HIGHPT) trigger

path, because one of two tracks in the final state (in most of cases the pion)

does not satisfy the trigger requirements. This is due to the small energy

available in the Λ rest frame (mΛ − mp − mπ ' 38 MeV/c2). The trigger

requirements on the transverse momentum of the particle pT > 2 GeV/c, on

the scalar sum of the transverse momenta of the particles
∑
pT > 5.5 GeV/c

and on the invariant ππ-mass requirement 4 < mπ+π− < 7 GeV/c2 suppress

almost totally the signal. For these reasons, the trigger cuts confirmation

was required only for the proton. To select a pure sample of Λ → pπ, the

analysis has been restricted to candidates found within ±3.6 MeV from the

world average Λ mass [51], and supplementary requirements were added to

exclude the contamination of Ks → ππ decays. The obtained sample is pure

at 99.4% level. The invariant pπ-mass distribution of the resulting samples

selected with the requirement summarized in tab. 7.2 are shown in fig. 7.2(b).
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Tracks Units Requirement

Axial Si hits − ≥ 3

90◦ − z Si hits − ≥ 2

SA Si hits − ≥ 1

Axial COT hits − ≥ 10

Stereo COT hits − ≥ 10

Total COT hits − ≥ 40

dE/dx COT hits − ≥ 40

pT GeV/c > 2.2

|η| − < 1.0

|d0| µm [100, 1000]

D0 candidates

Has Primary Vertex − true

q(1)× q(2) e2 −1

LT µm > 200∑
pT GeV/c > 4.5

|d0| µm < 100

χ2 − < 30

χ2
xy − < 15

|η| − < 1.0

∆ϕ0 Degrees [2◦, 90◦]

mπ+π− GeV/c2 [1.8, 2.4]

Soft Pion

|z0| cm < 1.5

|d0| cm < 0.06

pT GeV/c > 0.4

|η| − < 1.0

Total COT hits − ≥ 30

dE/dx COT hits − ≥ 40

Total Si hits − ≥ 2

Table 7.1: Summary of the selection cuts for D0 → h+h
′− decays from D∗+ →

D0π+. Variables names are self-explanatory.

A simple binned χ2-fit of the distribution to a double Gaussian function for

the signal, over a straight line function for the background, provides an esti-

mate of about 518,000 signal events. The kinematics allows a total separation

between Λ→ pπ− and Λ→ pπ+.

electrons and muons − For particles with transverse momentum greater than

2 GeV/c and with the available dE/dx response the muons can be considered

indistinguishable from pions. For this reason and since a large fraction of

muons is unlikely, the background of muons and pions in this analysis will
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be considered as an unique background of pions. In the pion background we

incorporated also the electrons component, since a very small fraction of elec-

trons in the B0
(s) → h+h

′− background is expected, coming from semileptonic

decays of heavy flavors.

Quantity of the track Units Requirement

pT(p) GeV/c > 2.0

|η(p)| − < 1.0

|d0(p)| µm [100, 1000]

Quantity of the candidate

q(p)× q(π) e2 −1

d0(p)× d0(π) µm2 < 0

corr((d0(p), d0(π))) µm < 51

LT cm [0.5, 2.2]∑
pT GeV/c > 1.1

|d0| µm < 70

|z0(p)− z0(π)| cm < 2

χ2
T − < 10

mpπ GeV/c2 [1.10, 1.13]

mππ GeV/c2 [0.35, 1.5]

|mππ −mK0
s
| GeV/c2 > 0.0126

Table 7.2: Summary of the off-line selection used to reconstruct the Λ → pπ−

decays. corr(d0(p), d0(π)) is a variable related to the correlation between the proton

and the pion impact parameters. It selects a region in the two-dimensional space

(d0(p), d0(π)), for more details see [110].
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Figure 7.2: Invariant Kπ-mass of the D0 → K−π+ reconstructed from D∗+ →
D0π+ → [K−π+]π+ decays passing the selection summarized in tab. 7.1 (a). Invari-

ant pπ-mass for the Λ→ pπ− decays passing the selection summarized in tab. 7.2.

The lines represent the mass windows requirements added to purify the sample.
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7.2 Universal Curves

The average total energy-loss per unit length of a particle (heavier than the electron)

of charge q traversing a gas volume with velocity cβ is approximated by the Bethe-

Bloch formula [111]:〈
dE

dx

〉
=

4πNe4

mec2β2
q2

[
ln

(
2mec

2β2γ2

I

)
− β2 − δ(β)

2

]
, (7.1)

where N is the electron density in the medium, me (e) is the electron mass (charge),

I is the mean excitation energy of the medium atoms, and δ(β) is the correction

that accounts for the density effect at high velocities. To a good approximation,

the most probable dE/dx value of a charged particle is a function of its velocity. If

the momentum of the particle is measured, the mass can also be determined. In the

COT, the signal induced on each sense-wire depends on the amount of ionization

charge produced by the passage of the charged particle near the wire. It is measured

in nanoseconds because it is encoded as the digital pulse-width between the leading

and the trailing-edge time of the hit. Multiple samplings along the trajectory of

the charged particle allow a more reliable estimation of dE/dx , which has usually a

broad distribution. The COT samples a maximum of 96 dE/dx measurements per

track, from which a 80% truncated mean is calculated to avoid the adverse effect of

long positive tails in the estimation of the average dE/dx .

The empirical equation that better models the COT average energy-loss as a

function of velocity is the following variant of the Bethe-Bloch curve:〈
dE

dx

〉
=

1

β2

[
c1 ln

(
βγ

b+ βγ

)
+ c0

]
+ a1(β − 1) + a2(β − 1)2 + C, (7.2)

with ai, b, cj , and C parameters extracted from data. The above function has all

the features that are present in the Bethe-Bloch curve (eq. (7.1)). The parameters

c0 and c1 represent the intensities of the 1/β2 fall and of the relativistic rise. The

parameter b is associated with the COT gas properties, e. g., mean excitation energy

of the gas atoms, etc.. The parameters a1 and a2 provide a further adjustment,

especially in the low βγ region. Figure 7.3 shows average values of the dE/dx as

a function of βγ, separately for pions, kaons, and protons, divided into positively-

and negatively-charged particles. Fit of these curves (with ai, b, cj , and C free

parameters) with the empiric modification of the Bethe- Bloch curve in eq. (7.2)

are overlaid (blue line). The fits are in agreement with those obtained using the CDF

official parameterization up to 3fb−1. Figure 7.4 shows the summary for universal

curves as a function of the momentum for all kind of particles separated by charge.

While for electrons we used the old parameterization as it is in the CDF official

functions up to 3 fb−1, we explicitly updated up to 9 fb−1 the parameterizations

for protons, kaons and pions using the samples described in sec. 7.1. Currently, our

parameterizations are the CDF official functions, and are used in different kinds of

analysis. Details on this work are reported in the appendix B.
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Figure 7.3: Parameterization (blue) of the Universal Curves for charged pions and

kaons from D0 → K−π+ decays; protons from Λ→ pπ− decays.
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Figure 7.4: Universal curves as a function of particle momentum.

The individual charge collections output by the COT are subject to several

corrections (hit-level corrections), applied in the off-line production, to eliminate a

number of detector related conditions: hit merging, electronic pedestal subtraction,

path-length correction high-voltage correction, z correction, angle and drift distance

corrections, wire correction, super-layer correction, and pressure correction. An

exhaustive description of these corrections can be found in [112, 113]. In addition

to the hit-level corrections [113] an accurate calibration of the uniformity of the

dE/dx response in time and over the chamber volume was required. These were

determined using track-oriented parameters (like ϕ0, η, hit multiplicity and time)

which allowed complementary corrections accounting for some “macroscopic” effects

(i.e. the track length dependence). We especially checked that the CDF official

calibration, performed up to about 3 fb−1, is valid for the B0
(s) → h+h

′− analysis

purpose, up to more than 9 fb−1. The details of this check are reported in appendix

B. This improved the PID performance in terms of separation power to distinguish

different classes of particles and reduced the effects due to the correlations between

the dE/dx response of tracks. Understanding the dE/dx correlations is crucial to

avoid bias in the estimate of physical observables.

7.3 dE/dx residual correlations

As introduced in sec. 5.3, in the fit of composition we will use the information given

by the dE/dx . This strategy is completely inherited by the previous version of this

analysis and has been reported in detail in [88], we just updated the distributions

and checked the correctness of updated results. The dE/dx residual (in mA mass

hypothesis) of a charged particle with momentum p and observed specific energy-loss
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dE/dx obs, is defined as follows:

δA =
dE

dx obs
− dE

dx A
, (7.3)

where dE/dx obs is the observed specific energy-loss and dE/dxA is the expected

dE/dx in hypothesis of a particle with mass A, determined from the empirical

function eq. (7.2) modeling the COT average energy loss, evaluated at βγ = p/mA.

With an ideal PID detector, no correlation is expected between independent

measurements. A non-vanishing correlation indicates the presence of residual dE/dx

gain variations from event to event. An uncorrected gain variation would induce a

correlation between the observed ionizations of distinct particles, through the in-

evitable correlations present in the calibration sample. The presence of correlations

is dangerous for the present analysis. While a small separation power only degrades

the statistical uncertainty on the relative fractions of the different signal modes, a

large correlation strongly biases the central values. Therefore this effect was care-

fully studied. Figure 7.5 shows the distribution of the residual for kaons (with kaon

hypothesis) as a function of the residual for pions (with pion hypothesis) and the

same two-dimensional distribution of the residual for protons (with proton hypoth-

esis) as a function of the residual for pions (with pions hypothesis). A non-zero,

positive correlation is visible from the shape of the distributions, corresponding to

a correlation coefficient ρ ' 8% for kaons and pions from D0 → K−π+ decays and

ρ ' 11% for protons and pions from Λ→ pπ− decays (see fig. 7.5).1 The sources of

correlation can be divided into two groups:

Global effects – these are all the effects unrelated to the kinematics. Suppose the

dE/dx shows gain variations as a function of the instantaneous luminosity:
dE
dx = dE

dx (βγ,L). Then, since the kaon and the pion from a D0 decay are

reconstructed in the same event (e. g., in the same conditions of luminosity),

their observed dE/dx would appear correlated by the common dependence

on luminosity. This may apply to a variety of global variables, such as time,

pressure or temperature of the gas, and so forth.

Local effects – these are all effects related to kinematics. Suppose that the dE/dx

shows gain variations as a function of the azimuthal angle of emission of the

particle: dE
dx = dE

dx (βγ, ϕ0). Then, since the azimuthal angle of a kaon and

a pion from a D0 decay are correlated by the kinematic of the decay and by

the selection cuts, their observed dE/dx would become correlated. This may

apply to a variety of local variables, such as η, z0, hit multiplicity, etc.

We investigated the combined effect of all possible residual gain variations by

allowing for a generic, time-dependent common-mode fluctuation c(t) that affects

1The correlation coefficient in this case is ρ =
E[δπ×δK(p)]−E[δπ ]×E[δK(p)]

σδπ×σδK(p)

, in which E[x] indicates

the expected value of x, and σ are sample standard-deviations.
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Figure 7.5: Residual for pions (with pion hypothesis) as a function of the residual

for kaons (with kaon hypothesis) (a,b). Residual for pions (with pion hypothesis)

as a function of the residual for protons (with proton hypothesis) (c,d).

and correlates the observed dE/dx values of the tracks in the event. In particular,

we extracted the variance (σ2
c ) of the distribution of the common mode, as an

estimator of the size of the correlation. We denote the probability distribution of

the dE/dx residual for pions (with pion mass-hypothesis) as ℘π(δπ), with standard

deviation σπ. A similar notation is used for kaons. If δπ and δK were independent

variables, the probability distribution of their sum (δK + δπ) would satisfy

℘(δπ + δK) = ℘π(δπ) ∗ ℘K(δK), (7.4)

in which the symbol ∗ indicates the Fourier convolution product.2 Similarly, their

difference δπ − δK would be distributed as

℘(δπ − δK) = ℘π(δπ) ∗ ℘−K(−δK), (7.5)

2Henceforth, “convolution” always denote the Fourier convolution product.
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where ℘−K(−δK) is the distribution of the negative residual for kaons (dEdx K −
dE
dx obs

), whose variance satisfies the condition σ2
K = σ2

−K . Since the variance of

a convolution product is the sum of variances of the convoluted distributions, the

standard deviations of the distributions of sum and difference are equal:

σπ+K = σπ−K =
√
σ2
π + σ2

K . (7.6)

On the other hand, if the two residuals are correlated by a common-mode fluctua-

tion, the observed residual (δobs) is written as the sum of the intrinsic, uncorrelated

residual with the common-mode shift:

δobs
π = δπ + c and δobs

K = δK + c. (7.7)

Therefore, the sum of the observed residuals, δobs
π +δobs

K = δπ+δK+2c, is distributed

as

℘(δobs
π + δobs

K ) = ℘π(δπ) ∗ ℘K(δK) ∗ ℘c(2c), (7.8)

whereas their difference, δobs
π − δobs

K = δπ + c− δK − c = δπ − δK , is distributed as

℘(δobs
π − δobs

K ) = ℘π(δπ) ∗ ℘−K(−δK). (7.9)

Equations (7.8) and (7.9) show that, in presence of a common mode, the sum of

residuals has greater variance than their difference, σ2
π+K > σ2

K−π. The standard

deviation of the correlation is easily obtained:

σc =
1

2

√
σ2
π+K − σ2

π−K . (7.10)

Following eq. (7.10), we used the distributions of sum and difference of the observed

residual to estimate the magnitude of time-dependent common modes. For Λ→ pπ−

decays, the standard deviation of the time-dependent common-mode is:

σc =
1

2

√
σ2
π+p − σ2

π−p. (7.11)
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7.4 Model of the dE/dx distributions

Using the dE/dx information in a Likelihood fit requires modeling the distributions

of the desired observables. It is convenient to stress the difference between observed

dE/dx quantities, i. e., those affected by common-mode fluctuations, and intrin-

sic quantities, the quantities which would have been observed if the correlations

were not present. Since the intrinsic residuals and the correlation are, by construc-

tion, independent variables (see eq. (7.7)), the (known) distribution of the observed

residuals is the convolution of their unknown distributions:

℘(δobs) = ℘(δ + c) = ℘(δ) ∗ ℘(c). (7.12)

The model of the intrinsic residuals, ℘(δ), and of the correlations, ℘(c), were ex-

tracted from the distributions of the observed residuals, ℘(δobs), of pions and kaons

from D0 decays. We expanded each term of the right-hand side of eq. (7.12) in sum

of Gaussian distributions, and we fit the distributions of the observed residuals to

extract the unknown parameters. In practice, the first three terms of the expansion

were sufficient to model accurately the intrinsic residuals and correlations:

℘K(δK) = q′ · GK′(δK) + q′′ · GK′′(δK) + (1− q′ − q′′) · GK′′′(δK) (7.13)

℘π(δπ) = p′ · Gπ′′(δπ) + p′′ · Gπ′′(δπ) + (1− p′ − p′′) · Gπ′′′(δπ) (7.14)

℘c(c) = r · Gc′(c) + (1− r) · Gc′′(c) (7.15)

where we used the following notation for the Gaussian distribution:

Gs(x) = G (x;µs, σs) =
1

σs
√

2π
e
− (x−µs)2

2σ2
s .

Independent parameterizations were assumed for the distributions of intrinsic resid-

uals for positively and negatively-charged particles. Mean (µ), variance (σ2) and

fraction of each Gaussian were determined with a simultaneous, binned ML fit of

the following combinations of observed residuals:

℘K(δobs
K ) = ℘(δK) ∗ ℘(c) = (GK′ + GK′′ + GK′′′) ∗ (Gc′ + Gc′′) (7.16)

℘π(δobs
π ) = ℘(δπ) ∗ ℘(c) = (Gπ′ + Gπ′′ + Gπ′′′) ∗ (Gc′ + Gc′′) (7.17)

℘(δobs
π + δobs

K ) = (Gπ′ + Gπ′′ + Gπ′′′) ∗ (GK′ + GK′′ + GK′′′) ∗ (G2c′ + G2c′′) (7.18)

℘(δobs
π − δobs

K ) = (Gπ′ + Gπ′′ + Gπ′′′) ∗ (G−K′ + G−K′′ + G−K′′′), (7.19)

where the relative normalization factors (p, q, r) were included in the fit, but omitted

above for a clearer notation. If in the equations above (eqs. (7.13)–(7.19)) we replace

the kaon index (K) with the proton index (p) we obtain the equivalent relations to

model the probability density functions of protons and pions from Λ→ pπ− decay.

In this case we parameterized a different correlation function with respect to the

D0 → K−π+ case since we used a different sample.
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The technique used to extract the parameters of the dE/dx templates, of the in-

trinsic residuals and correlation, is based on an iterative method of one-dimensional

binned fits of the distributions of δobs
π , δobs

K , δobs
π + δobs

K and δobs
π − δobs

K .

Figures 7.6 and 7.7 show a satisfactory agreement between the chosen model

and the distributions of the observed residuals and correlations. Although we al-

lowed for independent residual distributions for kaons, pions and protons (negative

and positive particles) the extracted shapes are similar, all showing non-Gaussian

positive tails. The differences between the residuals of positively and negatively-

charged particles are tiny. These small differences between kaons and pions and

between positively and negatively-charged particles have been ascribed to a system-

atic dependence of the dE/dx response on track curvature, caused by the geometric

and electrostatic asymmetry of the COT drift-cells. For a given Lorentz boost, the

trajectories of charged particles with different masses or charge have different curva-

tures, and are sensitive to the systematic effects in the efficiency of charge-collection

of the COT sense-wires.

Figure 7.9 shows the extracted probability density functions for the correlation.

We extracted two models for the correlation function: one from the D0 → K−π+

sample and the other one from the Λ→ pπ− sample. Both models show a non neg-

ligible correlation, as expected from the distributions of the sum and the difference

of the residuals. These correlation functions show small differences. The correlation

function extracted from pions and kaons from D0 → K−π+ decays has a tighter

RMS than the correlation extracted from protons and pions from Λ→ pπ− decays.

The core of the distribution is centered at zero for D0 → K−π+ decays, while it is

shifted by ≈ 0.06 ns for Λ→ pπ− decays (see fig. 7.9).
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Figure 7.6: Distribution of observed dE/dx residual (℘(δobs) = ℘(δ + c) =

℘(δ) ∗ ℘(c)), for pions (with pion mass hypothesis) (a,b), for kaons (with kaon

mass hypothesis) (c,d) and for protons (with proton mass hypothesis) (e,f). The

results of the fit to the functions in eq. (7.17) and eq. (7.16) are overlaid (blue, solid

line).



7.4. Model of the dE/dx distributions 137

) [ns]
+

)+res(K­
πres(

­10 ­5 0 5 10

F
re

q
u
e
n
c
y
 p

e
r 

0
.1

 n
s

0.000

0.005

0.010

0.015

0.020
/ndf = 192.98/1992χ(a)

) [ns]
­

)+res(K+
πres(

­10 ­5 0 5 10

F
re

q
u
e
n
c
y
 p

e
r 

0
.1

 n
s

0.000

0.005

0.010

0.015

0.020
/ndf = 222.67/1962χ(b)

) [ns]
+

)­res(K­
πres(

­10 ­5 0 5 10

F
re

q
u
e
n
c
y
 p

e
r 

0
.1

 n
s

0.000

0.005

0.010

0.015

0.020 /ndf = 362.67/1992χ(c)

) [ns]
­

)­res(K+
πres(

­10 ­5 0 5 10

F
re

q
u
e
n
c
y
 p

e
r 

0
.1

 n
s

0.000

0.005

0.010

0.015

0.020 /ndf = 391.32/1992χ(d)

Figure 7.7: Distribution of the sum (a,b) and the difference (b,d) of the residuals

for a kaon (in kaon hypothesis) and a pion (in pion hypothesis) from D0 → K−π+

decays. The results of the fit to the functions in eq. (7.18) and eq. (7.19) are overlaid

(blue, solid line).
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Figure 7.8: Distribution of the sum (a,b) and the difference (b,d) of the residuals

for a proton (in proton hypothesis) and a pion (in pion hypothesis) from Λ→ pπ−

decays. The results of the fit to the functions in eq. (7.18) and eq. (7.19) are overlaid

(blue, solid line).
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Figure 7.9: Correlation probability density functions for pions and kaons from D0 →
K−π+ decays (a), for pions and protons from Λ→ pπ− decays (b).
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7.5 Probability density function of the signal PID term

The p.d.f. of the PID information can not be factorized in the probability densities of

the two particles, because of the correlation between the observed dE/dx values. We

therefore wrote a two-particle, joint p.d.f. that incorporates the probability densities

of the intrinsic dE/dx observables of each particle, and of the correlation function.

We used the shapes of the intrinsic residuals and correlation determined in sec. 7.4

to write the p.d.f., which results from a convolution integral plus a transformation of

variables. The convolution combines the intrinsic dE/dx residuals of both particles

in the final state l and m (δl and δm) through the p.d.f. of correlation, ℘c(c), yielding

the following p.d.f. for the jth mode:

℘j(δ
obs
l , δobs

m ) = ℘H→lm(δobs
l , δobs

m ) = [℘l(δl)× ℘m(δm)] ∗ ℘c(c)

=

∫ +∞

−∞
℘l(δl − c)℘m(δm − c)℘c(c)dc, (7.20)

which, at this stage, is independent of momenta. The index j, which runs over

all components, is splitted in three indices H → lm because the PID term depends

only on the identity of particles in the final states of the jth mode and not on

the initial mother particle H = B0, B0
s or Λ0

b . The indices l,m = K±, π±, p or p̄

determine the choice of the shapes for intrinsic residuals within the integral. The

p.d.f. in eq. (7.20) is function of a different set of observables for each mode, e. g.,

(δπ+ , δπ−) for the B0 → π+π− case, (δK+ , δπ−) for the B0 → K+π− case and so on.

To avoid possible biases related to using different sets of observables in different

terms of the Likelihood function δl and δm [109], we rewrote the Likelihood in

terms of a single observable summarizing all the PID information, the “kaonness”

κ, defined as:

κ =
dE/dx obs − dE/dxπ
dE/dxK − dE/dxπ

. (7.21)

The average of this quantity is, by construction, zero for pions and one for kaons,

with almost momentum-independent distribution for both types of particles (see

fig. 7.10). This is particularly convenient in our case, since all B0
(s) → h+h

′− modes

have only pions and kaons in their final states, and also the background composition

is expected to be dominated by these particles.



7.5. Probability density function of the signal PID term 141

­κ

­4 ­2 0 2 4

F
re

q
u

e
n

c
y
 p

e
r 

0
.0

5

0.00

0.01

0.02

0.03
­

π
­

K(a)

+κ

­4 ­2 0 2 4

F
re

q
u

e
n

c
y
 p

e
r 

0
.0

5

0.00

0.01

0.02

0.03 +
π

+
K(b)

Figure 7.10: The kaonness κ for pion and kaons from D0 → K−π+ decays recon-

structed from D∗+ → D0π+ → [K−π+]π+ decays. Negative particles (a), positive

particles (b).

Changing variable from residual to kaonness induces an additional dependence

on momentum in the PID term. In fact, for each particle type, the following relation

holds:

δ = (κ− 〈κ〉)
(

dE

dx K
− dE

dx π

)
≡ (κ− 〈κ〉) ∆ (7.22)

where ∆ indicates the difference between the expected dE/dx values evaluated in

kaon and pion mass-hypothesis, which is function of momentum. The advantage to

use the kaonness in lieu of the residuals in different hypothesis is that the kaonness

is defined for all kind of particles in the same way. In fact the residuals in all mass

hypothesis are function of kaonness and momentum particle. The joint p.d.f. as a

function of κ is

℘lm(κobs
+ , κobs

− ) =

∫ +∞

−∞
℘(δl − c)℘(δm − c)

∣∣∣∣∣ ∂(δl, δm)

∂(κ+, κ−)

∣∣∣∣∣℘c(c)dc, (7.23)

where δ ≡ δ(κ). Following the same notation of chap. 5 where we labeled the

outgoing particles according to the charge, index “+” labels the kaonness (κ+)

of the positive particle, while index “-” labels the corresponding quantities of the

negative particle. After writing out the Jacobian, the above equation becomes

℘lm(κobs
+ , κobs

− ) =

∫ +∞

−∞
℘(δl − c)℘(δm − c)∆1∆2℘c(c)dc. (7.24)

The transformation from residual to kaonness brings the momenta into the proba-

bility density through the differences of expected dE/dx values, ∆1(β, ptot) and

∆2(β, ptot). Hence, the correct expression of the joint p.d.f. function of κ be-

comes a conditional probability density at given momenta: ℘lm(κobs
+ , κobs

− ) −→
℘lm(κobs

+ , κobs
− |β, ptot).
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An event in which δl and δm are the observed dE/dx residuals of the particle

pair, contributes to the jth signal mode of the PID p.d.f. with the following term:

℘PID
j (κobs

+ , κobs
− |β, ptot) = ℘PID

l,m (κobs
+ , κobs

− |β, ptot) (7.25)

=
1

Kj

∫ +∞

−∞
℘l(δl − c)℘m(δm − c)∆1∆2℘c(c)dc,

which includes Kj = 1/
∫ +∞
−∞ ℘j(κ

obs
+ , κobs

− |β, ptot)dκ
obs
+ dκobs

− as a normalization fac-

tor. The explicit expression of the p.d.f. was evaluated analytically; we omit here

its explicit expression because of its length.

7.6 Probability density function of the background PID

term

The PID p.d.f. for combinatorial background uses the same joint two-particle p.d.f.

as for the signal. The term corresponding to each possible pair of particle types

(l,m) in background, is weighed by a factor wlwm. Each weight wl is proportional

to the fractional contribution of particles of type l to the background, and it is a

free parameter in the fit. We allowed for independent kaon, proton, electron and

pion (or muon) contributions, and for positive and negative particles for the com-

binatorial background, while, for physics background, we allowed for independent

kaon and pion contributions, averaging on the particle charge, since in this case we

do not expect electrons and protons in the final state and any asymmetry between

positive and negative particles. Muons and pions were not differentiated since their

contributions are indistinguishable; the ≈ 1.5 ns dE/dx resolution is insufficient to

resolve the difference between their ionization rates, which is inappreciable because

of the small difference in mass mπ± − mµ ' 34MeV/c2. This does not affect the

signal composition, since muon contamination in the signal peak is negligible, if any,

due to the small rates expected for B0
(s) meson decays in muon pairs [114, 115], and

muons from semileptonic heavy-flavor decays do not have a peaking distribution

in mass. A candidate decaying to particles with κobs
+ and κobs

− observed “kaon-

nesses”, sum of observed scalar momenta ptot, and observed momentum imbalance

β, contributes to the PID term of the Likelihood of background with the following

probability density function:

℘PID
A(E) =

∑
l,m

w
A(E)
l wA(E)

m [℘l,m(κobs
+ , κobs

− |β, ptot) + ℘m,l(κ
obs
+ , κobs

− |β, ptot)]. (7.26)

The explicit expression of ℘l,m(κobs
+ , κobs

− |β, ptot) is shown in eq. (7.26). While in the

signal case the l,m indices run over kaons, pions and protons (K±, π±, p and p̄)

according to the decay of B0
(s) → h+h

′− and Λ0
b → ph−, in the above equation they

include also electrons (e±) for the combinatorial background (E), while for physics

background l,m indexes run over kaons, pions (K, π) only, where wA
K+ = wA

K− and

wA
π+ = wA

π− .
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7.7 Sample dependence of correlation

The dE/dx correlation has been parameterized using a sum of two gaussians as

described in sec. 7.4. Since we are fitting a data sample different from the calibration

sample (D0 → h+h
′−), in the central fit we added an additional free parameter

δcdE/dx which is a global shift of the correlation template. This has been done to

keep into account that the dE/dx parameterization (universal curves and residual

templates) has been performed averaging over all data sample. Thus if we use the

dE/dx templates on a different sample everything is accurate except for a small

global shift of the order 1 nano second or less.

Since the templates of protons were extracted using Λ → pπ− decays, which is

a third sample, we added an additional free parameter δpdE/dx which is a common

global shift of the proton and anti-protons residual templates. This has been done

to keep into account, as in the previous case, the fact that the template has been

parameterized averaging over all data sample, which is, also in this case, different

from Λ0
b → ph−.

We have now all the ingredients to perform the maximum likelihood fit. The

next chap. 8 describes the results obtained and the checks made to test the fitting

code.
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Chapter 8

Fit results

This chapter reports the results of the fit of composition, not yet corrected for the

charge asymmetries and the relative efficiency corrections. The checks produced to

ensure the correctness of the fitting code are also reported.

8.1 Introduction

The analysis described in this thesis produced several physics results of branching

ratios and CP violating asymmetries. We first searched for the rare annihilation

decays modes B0
s → π+π− and B0 → K+K− with the data sample available at that

time, corresponding to 6.11 fb−1 of integrated luminosity. Afterwards, we performed

the measurements of CP violating asymmetries of B0 → K+π−, B0
s → K−π+, Λ0

b →
pπ−, and Λ0

b → pK− decay modes with the full CDF data sample, corresponding

to 9.3 fb−1. The two sets of measurements are performed with the same analysis,

except for the addition of new available data and some small refinements. The fit

of composition described in the previous chapters is the one performed for the CP
measurements on the full data sample, while the small differences with the search

for annihilation modes are described in appendix C.

8.2 Fit results: search for annihilation modes

The analysis of the annihilation decay modes was performed using data collected

between February 2002 (run 138809) and February 2010 (run 289197) by the trigger

on displaced tracks. After the application of standard CDF data-quality require-

ments (see sec. 2.5), the sample size corresponds to an integrated luminosity of

about 6.11 fb−1. After the selection, a total number of about 24,000 events is

found. The results of the fit are shown in tab. 8.1 (top), while tab. 8.1 (middle)

shows the signal yields. Table 8.1 (bottom) also summarizes the relevant physics

quantities determined by the fit parameters: the relative fraction of B0
s → π+π−

and B0 → K+K− with respect to the B0 → K+π− are used to obtain the B mea-

145
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surements and the B0 → π+π− and B0
s → K+K− fractions. The B(B0 → π+π−)

and the B(B0
s → K+K−) are known with high experimental precision, being larger

with respect to the other charmless B values, so these two parameters represent a

standard “candle” to check the global reliability of the fit. The statistical uncertain-

ties on these quantities have been calculated using the covariance matrix returned

from the fit. These results are in agreement with the values obtained in the previ-

ous published version of this analysis, performed on a data sample corresponding

to 1 fb−1 [88].

We observed some hints for the presence of the B0
s → π+π− and B0 → K+K−

modes. A simple estimation of the statistical significance obtained dividing the

results of the fit over their statistical uncertainty is of about 3σ for the B0
s → π+π−

decay mode, and of about 2σ for the B0 → K+K− decay mode. However, particular

attention has been given to the evaluation of the significance, as will be described in

sec. 11.8.2. Since the method will take into account both statistical and systematic

uncertainties, we will describe it after the evaluation of the systematics of chap. 11.

Fit parameter value

f̂B0→π+π− 0.148 ± 0.006

f̂B0→K+π− 0.579 ± 0.008

f̂B0
s→π+π− 0.005 ± 0.001

f̂B0→K+K− 0.007 ± 0.003

f̂B0
s→K+K− 0.170 ± 0.006

Raw yield value

N (B0
s → π+π−) + N (B

0
s → π+π−) 94 ± 28

N (B0 → K+K−) + N (B
0 → K+K−) 120 ± 49

Physics observable value
f̂B0→π+π−

f̂B0→K+π−
0.256± 0.013

f̂B0→K+K−

f̂B0→K+π−
0.012± 0.005

f̂
B0
s→π+π−

f̂B0→K+π−
0.009± 0.003

f̂
B0
s→K+K−

f̂B0→K+π−
0.295± 0.013

Table 8.1: Results of fit of composition performed on 6.11 fb−1 and physics observ-

ables derived from their values.
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8.3 Fit results on the full data sample (ACP)

The fit of composition was applied to the B → h+h
′− sample, consisting of a total

number of events N = 28, 230. We minimized the quantity −2 ln(L ) using the

minuit numerical minimization package: the likelihood converges to the minimum

−2 log(L ) = −85, 368.98. The results of the fit are shown in tab. 8.2, and the corre-

sponding correlation matrix is shown in sec. 8.4. Tables 8.4 and 8.3 summarize the

most relevant physics quantities and yields determined by the parameters returned

from the fit. The statistical uncertainties on these quantities have been calculated

using the covariance matrix returned from the fit. We report a brief description

of the parameters of the fit; the detailed definitions are in chap. 6 and chap. 7.

The numbers refers to those parameters free to float in the fit, and corresponds

to the legend of tab. 8.2. The parameters without numbers are fixed in the fit.

Using the same notation introduced in sec. 4.2.1, the suffix A refers to the A sample

parameters, while the suffix C labels the C sample parameters.

• fi: relative fraction of i-th decay mode with respect to the sum of all B →
h+h

′− decay modes (par n. 1-11).

• b: relative fraction of background (combinatorial plus physics) events with

respect to the sum of background plus signals events (par n. 13,14).

• cE: the slope of the exponential function used to write the p.d.f. of the

combinatorial bkg m2
ππ distribution eq. (6.23).

• wE
K+(−) : fraction of K+(−) events with respect to combinatorial bkg events

(par n. 18,21,24,27).

• fA : relative fraction of physics bkg events with respect to the sum of physics

bkg events + comb bkg events (par n. 29, 30).

• mA : Cutoff of the function describing the m2
ππ distribution of the physics bkg

events (par n. 33, 35).

• wA
π : relative fraction of π+(−) events with respect to the physics bkg events

(par n. 39).

• dc1: fraction of the 1st gaussian with respect to the sum of the two gaussians

used to write the p.d.f. of the correlation (par n. 43).

• µc1 : the mean of the 1st gaussian used to write the p.d.f. of the correlation

(par n. 44).

• σc1: the σ of the 1st gaussian used to write the p.d.f. of the correlation (par

n. 45).

• µc2: the mean of the 2nd gaussian used to write the p.d.f. of the correlation

(par n. 46).
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parameter value error parameter(#)

f̂B0→π+π− 0.149 0.006 1

f̂B0→K+π− 0.5634 0.007 2
f̂
B

0→K−π+ − f̂B0→K+π−

f̂
B

0→K−π+ + f̂B0→K+π−
−0.089 0.013 3

f̂B0
s→K−π+ 0.044 0.003 4

f̂
B

0
s→K+π−

− f̂
B0
s→K−π+

f̂
B

0
s→K+π−

+ f̂
B0
s→K−π+

0.226 0.074 5

f̂B0
s→π+π− 0.006 0.001 6

f̂B0→K+K− 0.005 0.002 7

f̂Λ0
b→pK−

0.029 0.002 8
f̂
Λ

0
b→pK+ − f̂

Λ0
b
→pK−

f̂
Λ

0
b→pK+ + f̂

Λ0
b
→pK−

0.089 0.081 9

f̂Λ0
b→pπ−

0.022 0.002 10
f̂
Λ

0
b→pπ+ − f̂

Λ0
b
→pπ−

f̂
Λ

0
b→pπ+ + f̂

Λ0
b
→pπ−

−0.080 0.074 11

f̂B0
s→K+K− 0.181 0.006 -

b̂ (A) 0.288 0.004 13

b̂ (C) 0.230 0.005 14

ĉE (A) −0.064 fixed -

ĉE (C) −0.060 fixed -

ŵE
K+ (A) 0.405 0.025 18

ŵE
K− (C) 0.397 0.025 21

ŵE
K+ (A) 0.602 0.055 24

ŵE
K− (C) 0.575 0.056 27

f̂A (A) 0.577 0.010 29

f̂A (C) 0.778 0.014 30

m̂A [GeV2/c4] (A) 26.64 fixed -

m̂A [GeV2/c4] (C) 26.64 fixed -

ŵA
π 0.697 0.010 39

d̂c1 0.013 fixed -

µ̂c1 [ns] 0.905 fixed -

σ̂c1 [ns] 1.435 fixed -

µ̂c2 [ns] −0.012 fixed -

σ̂c2 [ns] 0.398 fixed -

δ̂cdE/dx [ns] −0.059 0.012 49

δ̂pdE/dx [ns] −0.386 0.066 48

δ̂m −0.001 0.001 31

N̂ 28230 168 52

p̂ 0.667 0.003 53

Table 8.2: Results of fit of composition. Signal (background) related quantities are

reported in the upper (lower) section. The last column reports the legend to convert

the parameter number into physics quantity for interpreting the correlation matrix

shown at tab. 8.6; the missing codes refer to parameters which are not part of the

set of primary fit parameters (~θ). C-conjugate modes are implied except for the

parameter in the third, fifth, ninth and eleventh row.
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• σc2: the σ of the 2nd gaussian used to write the p.d.f. of the correlation (par

n. 47).

• δcdE/dx : correlation global shift (par n. 49).

• δpdE/dx : correlation global shift for the p.d.f. with proton contributions (par

n. 48).

• δm: shift on the nominal b−hadron masses (par n. 31).

• N : total number of events (par n. 52).

• p: fraction of sample A events with respect to the total number of events (par

n. 53).

mode

N (B0 → π+π−) + N (B
0 → π+π−) 3074 ± 121

N (B0 → K+π−) 6348 ± 117

N (B
0 → K−π+) 5313 ± 109

N (B0
s → K−π+) 354 ± 46

N (B
0
s → K+π−) 560 ± 51

N (B0
s → K+K−) + N (B

0
s → K+K−) 3738 ± 122

N (B0
s → π+π−) + N (B

0
s → π+π−) 126 ± 30

N (B0 → K+K−) + N (B
0 → K+K−) 107 ± 51

N (Λ0
b → pK−) 270 ± 30

N (Λ
0
b → pK+) 324 ± 31

N (Λ0
b → pπ−) 242 ± 24

N (Λ
0
b → pπ+) 206 ± 23

Table 8.3: Yields returned from the fit of composition.
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observable raw

ÂCP (B0 → K+π−) =
f̂
B

0→K−π+ − f̂B0→K+π−

f̂
B

0→K−π+ + f̂B0→K+π−
−0.089± 0.013

ÂCP (B0
s → K−π+) =

f̂
B

0
s→K+π−

− f̂
B0
s→K−π+

f̂
B

0
s→K+π−

+ f̂
B0
s→K−π+

0.226± 0.074

ÂCP (Λ0
b → pπ−) =

f̂
Λ

0
b→pπ+ − f̂

Λ0
b
→pπ−

f̂
Λ

0
b→pπ+ + f̂

Λ0
b
→pπ−

−0.080± 0.074

ÂCP (Λ0
b → pK−) =

f̂
Λ

0
b→pK+ − f̂

Λ0
b
→pK−

f̂
Λ

0
b→pK+ + f̂

Λ0
b
→pK−

0.089± 0.081

f̂B0→π+π−

f̂B0→K+π−
0.264± 0.012

f̂B0→K+K−

f̂B0→K+π−
0.009± 0.004

f̂
B0
s→π+π−

f̂B0→K+π−
0.011± 0.002

f̂
B0
s→π+π−

f̂B0→π+π−
0.041± 0.009

f̂
B0
s→π+π−

f̂
B0
s→K+K−

0.034± 0.008

f̂
B0
s→K−π+

f̂B0→K+π−
0.079± 0.006

f̂
B0
s→K−π+

f̂
B0
s→K+K−

0.245± 0.021

f̂
B0
s→K+K−

f̂B0→K+π−
0.321± 0.013

f̂
Λ0
b
→pK−

f̂B0→K+π−
0.051± 0.003

f̂
Λ0
b
→pπ−

f̂B0→K+π−
0.038± 0.003

f̂
Λ0
b
→pπ−

f̂
Λ0
b
→pK−

0.754± 0.080

Table 8.4: Physics observables. The quantities reported in boldface are used to

evaluate the final measurements. C-conjugate modes are implied in the lower section

of the table.
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Table 8.4 reports a significant result for the ACP (B0 → K+π−), with statistical

uncertainty of order 1.3%, that is comparable with the current measurements from

the b-factories, but larger than the one recently reported by LHCb [9]. However,

a detailed comparison will be presented in chap. 12, after the evaluation of the

systematic uncertainties.

We observed from tab. 8.4 some hints for the presence of the ACP (B0
s → K−π+).

A simple estimation of the statistical significance obtained dividing the result of

the fit over the statistical uncertainty is of about 3σ; in assumption of non relevant

systematic uncertainty, this measurement could become an evidence of CP violation

effect in the B0
s system, confirming the first observation recently obtained at LHCb

[9]. The significance is discussed after the evaluation of the systematic uncertainties.

The results for the ACP (Λ0
b → pπ−) and ACP (Λ0

b → pK−) are the most precise

up to date. No hints for the presence of CP violation in these decay modes are

indicated by the results of the fit of tab. 8.4.

The results determined by the fit of composition are in agreement with the

values obtained in the previous published version of this analysis, performed on a

data sample corresponding to 1 fb−1 [88]. The agreement is less satisfactory in

the ACP (Λ0
b → pK−). However, an accurate comparison takes into account also the

systematics. Table 8.5 reports the comparison between the fit results. The statistical

uncertainty of physics observables is decreased by a factor ≈ 2. This achievement

was possible thanks to an increase in statistics of ≈ 3 and to several improvements

introduced in the current analysis: more accurate kinematic (mass and momentum)

signal templates, a PID analysis especially made for the B → h+h
′− analysis, a more

accurate treatment of the physics and combinatorial background model.

Observable Fit result using 1 fb−1 Fit result using 9 fb−1

ÂCP (B0 → K+π−) −0.089± 0.025 −0.089± 0.013

ÂCP (B0
s → K−π+) 0.39± 0.15 0.23± 0.07

ÂCP (Λ0
b → pπ−) −0.03± 0.16 −0.08± 0.07

ÂCP (Λ0
b → pK−) −0.36± 0.15 0.09± 0.08

Table 8.5: Comparison of the fit results with the previous published results of this

analysis.

8.4 Correlation matrix

The correlation matrix corresponding to the fit of composition is shown: it reports

the correlation coefficients, defined as ρij = Cov(θ̂i, θ̂j)/σ̂θ̂i σ̂θ̂j , where Cov(θ̂i, θ̂j) is

the off-diagonal element of the estimated covariance matrix of the fit. The legend

for the fit parameters is in third column of tab. 8.2. We looked at this matrix to

search for possible large correlations that may suggest a better choice of the fit

parameters.



152 Chapter 8. Fit results

P
a
r.

G
lo

b
a
l

1
2

3
4

5
6

7
8

9
1
0

1
1

1
3

1
4

1
8

2
1

2
4

2
7

2
9

3
0

3
1

3
9

4
8

4
9

5
2

5
3

1
0
.7

9
7

1
.0

0
0

2
0
.8

0
0

-0
.4

4
8

1
.0

0
0

3
0
.1

1
6

-0
.0

2
0

0
.0

3
0

1
.0

0
0

4
0
.5

9
0

-0
.1

1
2

-0
.1

6
9

-0
.0

0
2

1
.0

0
0

5
0
.1

9
9

0
.0

2
4

0
.0

1
3

0
.0

5
0

-0
.1

2
5

1
.0

0
0

6
0
.4

8
0

0
.0

3
3

-0
.0

4
9

-0
.0

0
1

-0
.3

1
5

0
.0

4
7

1
.0

0
0

7
0
.6

0
9

-0
.2

1
6

-0
.1

5
0

0
.0

0
5

-0
.0

9
7

0
.0

1
2

-0
.0

4
2

1
.0

0
0

8
0
.4

5
5

-0
.0

7
2

-0
.0

7
2

0
.0

0
2

-0
.0

9
2

0
.0

1
0

-0
.0

8
5

0
.0

4
6

1
.0

0
0

9
0
.1

9
2

0
.0

0
5

0
.0

0
2

0
.0

0
3

0
.0

0
6

-0
.0

1
1

-0
.0

0
3

-0
.0

0
3

-0
.0

3
2

1
.0

0
0

1
0

0
.4

5
5

0
.0

3
0

-0
.1

4
1

-0
.0

0
2

0
.0

2
4

-0
.0

0
9

-0
.0

5
2

-0
.0

4
3

-0
.2

6
2

0
.0

2
8

1
.0

0
0

1
1

0
.2

7
8

-0
.0

0
1

-0
.0

0
1

0
.0

1
8

0
.0

0
4

-0
.0

1
0

-0
.0

1
3

0
.0

0
0

-0
.0

1
5

-0
.1

8
2

0
.0

4
1

1
.0

0
0

1
3

0
.3

0
9

0
.0

1
4

0
.0

6
3

-0
.0

0
1

-0
.0

3
1

0
.0

0
8

-0
.0

5
4

-0
.0

8
0

-0
.0

4
9

0
.0

0
2

-0
.1

1
6

-0
.0

0
7

1
.0

0
0

1
4

0
.2

6
8

0
.0

1
9

0
.0

3
4

0
.0

0
0

-0
.0

1
8

0
.0

0
3

-0
.0

1
7

-0
.0

6
8

-0
.0

3
8

0
.0

0
0

-0
.0

5
0

-0
.0

0
7

0
.0

2
2

1
.0

0
0

1
8

0
.3

2
1

-0
.0

6
4

-0
.0

0
7

0
.0

5
6

-0
.0

2
6

-0
.0

8
0

0
.0

7
1

0
.0

0
2

-0
.0

5
4

-0
.0

0
0

-0
.0

1
1

0
.1

2
4

0
.0

2
0

0
.0

0
3

1
.0

0
0

2
1

0
.3

1
4

-0
.0

6
3

-0
.0

0
9

-0
.0

5
6

-0
.0

1
4

0
.0

7
8

0
.0

6
3

-0
.0

0
4

-0
.0

6
2

-0
.0

0
6

-0
.0

1
0

-0
.1

2
0

0
.0

1
2

0
.0

0
5

0
.0

5
9

1
.0

0
0

2
4

0
.1

9
4

-0
.0

2
4

0
.0

0
8

0
.0

3
1

-0
.0

1
6

-0
.0

5
3

0
.0

4
9

-0
.0

1
7

-0
.0

4
7

-0
.0

0
3

0
.0

1
4

0
.0

7
5

-0
.0

0
4

0
.0

5
1

0
.0

5
5

0
.0

2
3

1
.0

0
0

2
7

0
.1

8
6

-0
.0

2
4

0
.0

0
7

-0
.0

3
0

-0
.0

1
1

0
.0

5
6

0
.0

5
1

-0
.0

1
7

-0
.0

5
1

-0
.0

0
1

0
.0

1
0

-0
.0

7
0

-0
.0

0
3

0
.0

4
4

0
.0

2
3

0
.0

5
3

0
.0

0
9

1
.0

0
0

2
9

0
.3

1
9

-0
.0

1
0

-0
.0

5
6

0
.0

0
2

0
.0

3
0

-0
.0

0
7

0
.0

6
6

0
.0

2
5

0
.0

6
0

-0
.0

0
2

0
.1

3
8

0
.0

0
8

-0
.2

6
5

-0
.0

2
0

-0
.0

0
7

0
.0

0
0

0
.0

0
3

0
.0

0
1

1
.0

0
0

3
0

0
.3

0
6

-0
.0

2
4

-0
.0

3
9

0
.0

0
0

0
.0

2
5

-0
.0

0
3

0
.0

2
9

0
.0

3
5

0
.0

7
0

0
.0

0
0

0
.0

8
8

0
.0

1
1

-0
.0

3
0

-0
.2

5
0

-0
.0

1
4

-0
.0

1
7

-0
.0

8
1

-0
.0

6
6

0
.0

3
6

1
.0

0
0

3
1

0
.7

2
1

-0
.3

6
1

0
.5

5
5

0
.0

2
6

-0
.2

9
4

0
.0

4
2

-0
.0

4
2

0
.3

3
7

0
.0

4
7

-0
.0

0
2

-0
.0

9
9

0
.0

0
2

0
.0

1
9

0
.0

0
5

-0
.0

0
3

-0
.0

1
0

-0
.0

0
2

-0
.0

0
4

0
.0

0
2

0
.0

1
2

1
.0

0
0

3
9

0
.4

8
8

0
.2

3
5

0
.0

3
0

0
.0

0
0

-0
.0

0
9

0
.0

0
3

0
.0

4
6

-0
.0

7
7

-0
.0

6
6

0
.0

0
5

0
.0

2
0

0
.0

0
2

0
.0

0
8

-0
.0

0
1

0
.0

1
3

0
.0

1
4

0
.0

2
3

0
.0

2
1

-0
.0

3
2

-0
.0

6
5

-0
.0

3
1

1
.0

0
0

4
8

0
.3

2
5

0
.1

0
5

-0
.0

2
0

0
.0

0
0

-0
.0

0
7

-0
.0

0
2

-0
.0

9
2

-0
.0

5
3

0
.1

1
8

-0
.0

0
1

0
.1

3
9

0
.0

2
5

-0
.0

7
7

-0
.0

3
6

-0
.0

1
8

-0
.0

2
6

0
.0

0
4

0
.0

0
4

0
.0

9
3

0
.0

6
2

-0
.0

2
6

0
.0

9
0

1
.0

0
0

4
9

0
.7

7
9

-0
.5

4
3

-0
.0

6
5

-0
.0

0
1

-0
.0

0
4

-0
.0

0
6

-0
.0

6
5

0
.2

8
6

0
.0

8
6

-0
.0

1
1

-0
.0

6
2

-0
.0

0
3

-0
.0

2
7

-0
.0

0
9

0
.2

0
5

0
.2

0
1

0
.0

8
4

0
.0

8
3

0
.0

1
0

-0
.0

0
2

0
.0

9
8

-0
.4

4
7

-0
.1

9
9

1
.0

0
0

5
2

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

1
.0

0
0

5
3

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

1
.0

0
0

T
ab

le
8.

6:
C

or
re

la
ti

on
m

at
ri

x
re

tu
rn

ed
b
y

th
e

fi
t.



8.5. Fit projections 153

8.5 Fit projections

In order to test the goodness of our fit we compare the distributions of data with the

joint p.d.f. corresponding to the Likelihood function evaluated with the maximizing

set of parameters ~θ =
~̂
θ. If ~x = x1, ..., xn is a generic vector of observables and

℘(~x|~θ) is the probability density function of the observables ~x we can define the

projection onto the observable xi as the following one-dimensional function:

℘i(xi; ~θ) =

∫
℘(~x|~θ)dx1...dxi−1dxi+1...dxn, (8.1)

which is the predicted distribution for xi under the assumed values for the fit param-

eters, and can be overlaid to the experimental data. This allows a way of detecting

possible discrepancies between the observed distributions and the model. Distri-

butions of the discriminating observables with fit projections overlaid are shown in

fig. 8.1, fig. 8.2 and fig. 8.3. The fit reproduces well all the observed distributions.

To better visualize the agreement between the PID discriminating observables and

the data we complemented the projections of κ+ and κ− with the projections of

their linear combination κ+ + κ− and κ+ − κ−. As a very accurate check on the

method, fig. 8.4 shows the distributions of the average value of κsum = κ+ + κ−
and κdif = κ+ − κ− as a function of m2

π+π− , with fit projections overlaid. While

κsum distribution shows the absolute scale of the dE/dx response, crucial in dis-

entangling the B0 → π+π− from the B0
s → K+K−, the three structures present

in the κdif distribution are produced by the observed uncorrected CP asymmetries

of B0 → K+π−, B0
s → K−π+ and Λ0

b → ph−, respectively. If no asymmetry was

present, the distribution of the difference would be constant at zero. This allows

to check if the fit reproduces well the shape of the correlation function between the

dE/dx response of the two particles. We find that the fit reproduces accurately the

data both in the central part of the distribution, where the signal is present, and in

the tails at lower (higher) values of κ, where the contribution is mainly given by the

backgrounds. In particular, fig. 8.5 reports the distributions of the discriminating

observables for candidates in the signal region only (5.17 < mπ+π− < 5.33 GeV/c2)

for a further check on whether the fit properly determines the sample composition

below the signal peak. The same kind of check was repeated in the Λ0
b → ph− mass

region only (5.3 < mπ+π− < 5.6 GeV/c2) in fig. 8.6.
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Figure 8.1: Fit projections onto the m2
ππ. Linear scale (a) and log scale (b).
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Figure 8.2: Fit projections onto the mπ+π− . Linear scale (a) and log scale (b).



8.5. Fit projections 155

β
­1.0 ­0.5 0.0 0.5 1.0

C
a

n
d

id
a

te
s
 p

e
r 

0
.0

4
 

0

500

1000

1500

­1 = 9.30 fbL dt∫CDF Run II Preliminary 

data

total
­π

+
 K→

0
B

­
K

+
 K→0

sB
­π+π →0

B
+π­ K→0

sB
­

 pK→0

b
Λ

­π p→0

b
Λ

­
K

+
 K→0

B
­π+π →0

sB
Multibody

B decays

Combinatorial
bkg

(a)

]c [GeV/
tot

p
5 10 15 20 25 30

c
C

a
n

d
id

a
te

s
 p

e
r 

0
.5

 M
e

V
/

0

500

1000

1500

2000

]c [GeV/
tot

p
5 10 15 20 25 30

c
C

a
n

d
id

a
te

s
 p

e
r 

0
.5

 M
e

V
/

0

500

1000

1500

2000

­1 = 9.30 fbL dt∫CDF Run II Preliminary 

data

total

­π
+

 K→
0

B
­

K
+

 K→0
sB

­π+π →
0

B
+π

­
 K→0

sB
­

 pK→0

b
Λ

­π p→0

b
Λ

­
K

+
 K→

0
B

­π+π →0
sB

Multibody B decays

Combinatorial bkg

(b)

+κ
­4 ­2 0 2 4

C
a

n
d

id
a

te
s
 p

e
r 

0
.1

0

500

1000

­1 = 9.30 fbL dt∫CDF Run II Preliminary 

data

total

­π
+

 K→
0

B
­

K
+

 K→0
sB

­π+π →
0

B
+π

­
 K→0

sB
­

 pK→0

b
Λ

­π p→0

b
Λ

­
K

+
 K→

0
B

­π+π →0
sB

Multibody B decays

Combinatorial bkg

(c)

­κ
­4 ­2 0 2 4

C
a

n
d

id
a

te
s
 p

e
r 

0
.1

0

500

1000

1500
data
total

­π
+

 K→
0

B
­

K
+

 K→0
sB

­π+π →
0

B
+π

­
 K→0

sB
­

 pK→0

b
Λ

­π p→0

b
Λ

­
K

+
 K→

0
B

­π+π →0
sB

Multibody B decays
Combinatorial bkg

­κ
­4 ­2 0 2 4

C
a

n
d

id
a

te
s
 p

e
r 

0
.1

0

500

1000

1500

­1 = 9.30 fbL dt∫CDF Run II Preliminary 

(d)

­κ + +κ
­4 ­2 0 2 4

C
a

n
d

id
a

te
s
 p

e
r 

0
.1

0

500

1000

data
total

­π
+

 K→
0

B
­

K
+

 K→0
sB

­π+π →
0

B
+π

­
 K→0

sB
­

 pK→0

b
Λ

­π p→0

b
Λ

­
K

+
 K→

0
B

­π+π →0
sB

Multibody B decays
Combinatorial bkg

­κ + +κ
­4 ­2 0 2 4

C
a

n
d

id
a

te
s
 p

e
r 

0
.1

0

500

1000

­1 = 9.30 fbL dt∫CDF Run II Preliminary 

(e)

­κ ­ +κ
­4 ­2 0 2 4

C
a

n
d

id
a

te
s
 p

e
r 

0
.1

0

500

1000

data
total

­π
+

 K→
0

B
­

K
+

 K→0
sB

­π+π →
0

B
+π

­
 K→0

sB
­

 pK→0

b
Λ

­π p→0

b
Λ

­
K

+
 K→

0
B

­π+π →0
sB

Multibody B decays
Combinatorial bkg

­κ ­ +κ
­4 ­2 0 2 4

C
a

n
d

id
a

te
s
 p

e
r 

0
.1

0

500

1000

­1 = 9.30 fbL dt∫CDF Run II Preliminary 

(f)

Figure 8.3: Fit projections onto the variables β (a), ptot (b), κ+ (c), κ− (d), κ+ +κ−
(e), κ+ − κ− (f) in all fit mπ+π− range [5.0, 5.8] GeV/c2.
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Figure 8.5: Fit projections onto the variables β (a), ptot (b), κ+ (c), κ− (d), κ+ +κ−
(e), κ+ − κ− (f) in signal mass range mπ+π− [5.17, 5.33] GeV/c2.
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Figure 8.6: Fit projections onto the variables β (a), ptot (b), κ+ (c), κ− (d), κ+ +κ−
(e), κ+ − κ− (f) in signal mass range mπ+π− [5.3, 5.6] GeV/c2.
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8.6 Checks

The fitting code was extensively tested on ensembles of simulated pseudoexperi-

ments of variable size. Additional checks were performed under several configu-

rations of the most critical parameters, such as the contamination of background,

absolute scale of the masses, kinematics and PID performance. For the convenience

of the reader, when possible we report only the results of the checks made on the full

data sample, while we will omit the non relevant checks performed on the sample

used for the annihilation decay modes measurements.

8.6.1 Pulls

To investigate the presence of a possible estimation bias, and the stability of the

minimization code we studied the the pulls distributions of the fit results. The pull

of each fit parameter θi is defined as:

P(θi) =
θ̂i − θi
σ̂θ̂i

, (8.2)

where θ̂i is the estimate of the parameter, and σ̂θ̂i is the estimate of its uncertainty.

We evaluated the pulls using an ensemble of 500 pseudoexperiments that simulated

the experimental circumstance of the fit on B → h+h
′− data. Each pseudoexperi-

ment consisted of the simulated distributions of the five discriminating observables

(mass-squared, charge momentum asymmetry, scalar sum of momenta, and dE/dx

of both tracks) corresponding to 28,230 total events. The distributions of each signal

mode and background component were generated according to the corresponding

Likelihood term, using a pseudorandom number generator. The fractions of each

signal mode and of background fluctuated from sample to sample according to a

poisson distribution with mean the set at true parameters ~θ, while the total number

of events fluctuated according to a poisson distribution around the observed number

of total events 28,230. We fit the composition of all pseudoexperiments using the

same Likelihood function used for the data; we then derived the pull distributions

of the relevant physics quantities from the estimated parameters and uncertainties

(see fig. 8.7 and fig. 8.8).

The pulls are Gaussian-distributed with approximately unit variance and neg-

ligible bias (see tab. 8.7) for each estimated parameter, which is not obvious with

finite samples and complicated probability densities. This ensures that the esti-

mated uncertainty of each parameter σ̂θ̂i to be such that the range [θ̂i− σ̂θ̂i , θ̂i+ σ̂θ̂i ]

contains the true value θi with about 68% probability. We observed that the relative

fraction and the raw yield of the B0 → K+K− decays are biased towards positive

values. A systematic will be assessed to take into account this effect.
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Fit parameter Pull mean Pull standard deviation χ2/d.o.f.

ACP (B0 → K+π−) −0.02± 0.05 1.04± 0.04 14/14

ACP (B0
s → K−π+) −0.13± 0.05 0.99± 0.03 16/14

ACP (Λ0
b → pπ−) +0.00± 0.04 0.90± 0.03 10/11

ACP (Λ0
b → pK−) +0.07± 0.05 0.99± 0.03 15/13

fB0
s→π+π−/fB0→K+π− −0.07± 0.05 1.06± 0.04 13/16

fB0→K+K−/fB0→K+π− +0.28± 0.05 0.97± 0.03 16/14

NB0
s→π+π− +0.06± 0.04 0.93± 0.03 13/11

NB0→K+K− +0.23± 0.05 1.05± 0.04 4/10

Table 8.7: Results of the Gaussian fit of the pull distributions for the ACP (top

section) and B0
s → π+π− and B0 → K+K− measurements (bottom section) results.

The pulls for the annihilation modes are obtained with the same methods explained

in sec. 8.6.1.

8.6.2 Additional fits

We performed some additional fits of the B → h+h
′− data sample, and we compared

them with our central results of tab. 8.2.

central resol resol cutoff opt

f̂B0→π+π− 0.149 ± 0.006 0.149 ± 0.006 0.149 ± 0.006

f̂B0→K+π− 0.563 ± 0.007 0.571 ± 0.008 0.571 ± 0.008
f̂
B0→K−π+ − f̂

B0→K+π−

f̂
B0→K−π+ + f̂

B0→K+π−
−0.089 ± 0.013 −0.089 ± 0.013 −0.089 ± 0.013

f̂B0→K+K− 0.005 ± 0.002 0.003 ± 0.003 0.003 ± 0.003

f̂B0
s→π+π− 0.006 ± 0.001 0.006 ± 0.001 0.006 ± 0.001

f̂B0
s→K−π+ 0.044 ± 0.003 0.040 ± 0.004 0.040 ± 0.004

f̂
B0
s→K

+π− − f̂
B0
s→K

−π+

f̂
B0
s→K

+π− + f̂
B0
s→K

−π+
0.226 ± 0.074 0.243 ± 0.082 0.245 ± 0.082

f̂B0
s→K+K− 0.181 ± 0.006 0.181 ± 0.006 0.181 ± 0.006

f̂Λ0
b
→pπ− 0.022 ± 0.002 0.022 ± 0.002 0.022 ± 0.002

f̂
Λ0
b→pπ

+ − f̂
Λ0
b
→pπ−

f̂
Λ0
b→pπ

+ + f̂
Λ0
b
→pπ−

−0.080 ± 0.074 −0.077 ± 0.074 −0.077 ± 0.074

f̂Λ0
b
→pK− 0.029 ± 0.002 0.029 ± 0.002 0.029 ± 0.002

f̂
Λ0
b→pK

+ − f̂
Λ0
b
→pK−

f̂
Λ0
b→pK

+ + f̂
Λ0
b
→pK−

0.089 ± 0.081 0.090 ± 0.083 0.090 ± 0.083

resol 1. (fixed) 1.045 ± 0.014 1.053 ± 0.014

cut-off 26.64 GeV2/c4 26.64 GeV2/c4 26.61 GeV2/c4

Table 8.8: Top table: comparisons between the central fit, the equivalent fit where

a global resolution scale factor has been left free to vary in the fit (resol) and the

equivalent fit where a global resolution scale factor has been left free to vary in the

fit and the cut off value was optimized using the procedure described in sec. 8.3.
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Figure 8.7: Distribution of the pulls of the quoted fit parameters: (a) ACP (B0 →
K+π−), (b) ACP (B0

s → K−π+), (c) ACP (Λ0
b → pπ−), and (d) ACP (Λ0

b → pK−).

Results of χ2-fits to Gaussian functions are overlaid in blue.

Mass resolution scale factor (resol)

In the central analysis we scaled the mass resolution extracted from the simulation

by a factor obtained from D0 → h+h
′−. This has been done to keep into account

the observed discrepancy between data and simulation, as described in sec. 4.2.3.

To check the correctness of our procedure, we added in the fit an additional free

parameter: a global scale factor of the mass resolution which is in common for all

signal decays. The value returned from our fit for this parameter is σ = 1.045±0.014;

while the values for the other parameters are reported on tab. 8.8. The likelihood

value at the minimum is −2 log(L ) = −85382.33 which is better than 13 units

with respect to the central fit having −2 log(L ) = −85368.98. This difference has
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Figure 8.8: Distribution of the pulls of the quoted fit parameters: (a)

fB0
s→π+π−/fB0→K+π− , (b) fB0→K+K−/fB0→K+π− , (c) NB0

s→π+π− , and (d)

NB0→K+K− . Results of χ2-fits to Gaussian functions are overlaid in red.

been ascribed to the sensitivity of the fit to the mass distribution near the regions

corresponding to the falling down of the B0 → K+π− decay mode: at lower mass

near 5.16 GeV/c2, corresponding to the cut-off of the distribution describing the

physics background, and at higher mass near 5.35 GeV/c2, in presence of the B0
s →

K−π+ signal peak. In these regions, the fitter could be sensitive to small changes of

the distributions. To verify this assumption, we performed 400 additional fits where

the cut-off was optimized using the procedure described in sec. 8.3. The minimum

of the −2 log(L ) profile obtained indicates a scaling factor of σ = 1.053 ± 0.014

and a cut-off value m2
0 = 26.61 GeV2/c4, different from the nominal m2

A = 26.64

GeV2/c4 used in the fit. These results seems to indicate a small sensitivity of the

fitter to the mass distributions, and support our choice of evaluating the scaling
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central A C

f̂B0→π+π− 0.149 ± 0.006 0.145 ± 0.007 0.150 ± 0.010

f̂B0→K+π− 0.563 ± 0.007 0.564 ± 0.009 0.570 ± 0.012
f̂
B0→K−π+ − f̂

B0→K+π−

f̂
B0→K−π+ + f̂

B0→K+π−
−0.089 ± 0.013 −0.085 ± 0.017 −0.095 ± 0.023

f̂B0→K+K− 0.005 ± 0.002 0.008 ± 0.003 0.001 ± 0.004

f̂B0
s→π+π− 0.006 ± 0.001 0.006 ± 0.002 0.007 ± 0.002

f̂B0
s→K−π+ 0.044 ± 0.003 0.042 ± 0.004 0.051 ± 0.006

f̂
B0
s→K

+π− − f̂
B0
s→K

−π+

f̂
B0
s→K

+π− + f̂
B0
s→K

−π+
0.226 ± 0.074 0.195 ± 0.095 0.242 ± 0.112

f̂B0
s→K+K− 0.181 ± 0.006 0.182 ± 0.007 0.174 ± 0.010

f̂Λ0
b
→pπ− 0.022 ± 0.002 0.025 ± 0.002 0.016 ± 0.002

f̂
Λ0
b→pπ

+ − f̂
Λ0
b
→pπ−

f̂
Λ0
b→pπ

+ + f̂
Λ0
b
→pπ−

−0.080 ± 0.074 −0.017 ± 0.084 −0.239 ± 0.143

f̂Λ0
b
→pK− 0.029 ± 0.002 0.028 ± 0.002 0.030 ± 0.003

f̂
Λ0
b→pK

+ − f̂
Λ0
b
→pK−

f̂
Λ0
b→pK

+ + f̂
Λ0
b
→pK−

0.089 ± 0.081 -0.015 ± 0.107 0.226 ± 0.123

Table 8.9: Top table: comparisons between the central fit, the equivalent fit per-

formed only on med events and the equivalent fit performed only on the esclusive

high events.

factor using an independent D0 → h+h
′− sample.

Separate fits on the A data sample and the C data sample

Table 8.9 reports the comparison between the central fit and a fits performed on

the A data sample and the C sample. The agreement between fits is very good,

offering a good cross check that the samples and their different kinematics have

been modeled correctly. This ensures that the simultaneous fit correctly combines

information from the two scenarios.

Kinematic-only fit (kine)

We performed a fit of composition using only the kinematic information, by turning

off the PID information in the Likelihood function: we used only the information

from the variables mπ+π− , β and ptot. Since the PID information (contained in κ+

and κ− variables) and kinematics are crucial independent ingredients of the analysis,

we want to check for possible disagreements between these two informations.

Table 8.10 reports the comparison between the fits with the method explained

above, and the agreement obtained is satisfactory. Without the PID information

the fit of composition loses much separation power in disentangling among the

signal components. In particular, using only the kinematic information it is very

difficult to separate the B0 → π+π− and B0
s → K+K− modes, which are very

similar kinematically, and to obtain precise CP measurements. In addition, it is

very difficult to disentangle the B0
s → π+π− and B0 → K+K− modes from the
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central kine

f̂B0→π+π− 0.149 ± 0.006 0.159 ± 0.021

f̂B0→K+π− 0.563 ± 0.007 0.573 ± 0.012
f̂
B

0→K−π+ − f̂B0→K+π−

f̂
B

0→K−π+ + f̂B0→K+π−
−0.089 ± 0.013 −0.150 ± 0.029

f̂B0→K+K− 0.005 ± 0.002 0.027 ± 0.007

f̂B0
s→π+π− 0.006 ± 0.001 0.001 ± 0.003

f̂B0
s→K−π+ 0.044 ± 0.003 0.035 ± 0.005

f̂
B

0
s→K+π−

− f̂
B0
s→K−π+

f̂
B

0
s→K+π−

+ f̂
B0
s→K−π+

0.226 ± 0.074 0.559 ± 0.024

f̂B0
s→K+K− 0.181 ± 0.006 0.148 ± 0.017

f̂Λ0
b→pπ−

0.022 ± 0.002 0.021 ± 0.002
f̂
Λ

0
b→pπ+ − f̂

Λ0
b
→pπ−

f̂
Λ

0
b→pπ+ + f̂

Λ0
b
→pπ−

−0.080 ± 0.074 −0.011 ± 0.109

f̂Λ0
b→pK−

0.029 ± 0.002 0.027 ± 0.003
f̂
Λ

0
b→pK+ − f̂

Λ0
b
→pK−

f̂
Λ

0
b→pK+ + f̂

Λ0
b
→pK−

0.089 ± 0.081 0.007 ± 0.117

Table 8.10: Comparisons between the central fit, the equivalent fit that uses only

the kinematic information (kine).

other signals. The fits are however in good agreement, providing another cross

check of the correctness of the procedures.

8.7 Probability ratio plots

The fit of composition disentangles the individual signal components by combining

kinematics (m2
ππ, β, ptot) and PID (κ+, κ−) information. It is useful to visualize

the effective total separation power of the fit. This can be done by looking at the

probability ratio variable:

PR =
℘B0→K+π−

℘B0→K+π− + ℘
B

0→K−π+

, (8.3)

where ℘B0→K+π− and ℘
B

0→K−π+ are the total p.d.f. respectively for the B0 →
K+π− and B

0 → K−π+ modes, and they are functions of the complete set of ob-

servables (m2
π+π− , β, ptot, κ+, κ−). PR takes values within the interval [0, 1]. If we

evaluate this variable with an event of B0 → K+π− PR has a high probability

to be close to 1, while if we take an event of B
0 → K−π+ PR tends to 0. Any

other event is distributed between 0 and 1. The probability ratio is a function

of the discriminating observables, then we can plot its distribution obtained using

the fitted data sample and also the distribution obtained by generating signals and
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background events directly from the total p.d.f.s of the fit of composition. Visu-

alization of these plots allows to put into evidence possible discrepancies between

the fit model and the distribution of the actual data. Figure 8.9 shows the com-

parison between the distribution of PR obtained from the data (point with error

bars) ad the distribution of PR obtained by generating events with the p.d.f.s of

the fit of composition. The different colors of the histogram show how the events

of B0 → K+π− (red), B
0 → K−π+ (blue), other signals and background (yellow)

are distributed in the variable PR. The agreement between data distribution and

projection is satisfactory. In addition it is possible to visualize the sizable effective

separation power between B0 → K+π− and B
0 → K−π+ which allows to perform a

precision measurement of the direct CP asymmetry ACP (B0 → K+π−). The same

procedure can be repeated for any two signal components S1 and S2:

PRS1S2 =
℘S1

℘S1 + ℘S2

(8.4)

(8.5)

℘S1 and ℘S2 are the total p.d.f.s respectively for the signal component S1 and S2.

The probability ratio is also a very instructive variable to visualize the separation

power of the fit between a signal S1 and all the other signals S2, S3, ..., SN plus all

backgrounds, that we will indicate with the label “rest”. We can define:

PRS1rest =
℘S1

℘S1 + ℘rest
. (8.6)

where ℘S1 is the total p.d.f. for the signal component S1, while ℘rest is the sum of the

total p.d.f.s of all other signals except S1 plus the total p.d.f.s of all backgrounds.

Each term of the ℘rest sum is weighted with the relative fraction estimated by the

fit of composition without the contribution of the signal S1. PR takes values within

the interval [0, 1]. If we evaluate this variable with an event of the signal compo-

nent S1 PR has a high probability to be close to 1. Any other event is distributed

between 0 and 1. Figure 8.10 shows the comparison between the data distribution

and the projection of the probability ratio in different cases. The agreement ob-

tained is satisfactory. This fig. 8.10 diplays also the individual contributions of each

components (stacked) from other components. Several components are visible in

the region close to PR = 1, but they spread all over the PR interval [0,1], while

B0
s → π+π− and B0 → K+K− are the only component that peaks sharply at the

end of the distributions, being mostly confined to the last two bins. It is indeed this

segregation that allows us to obtain a clear result: B0
s → π+π− cannot be replaced

by an increase of the size of any other component. Figure 8.10 is also a rough pic-

torial representation of the significance of the B0
s → π+π− and B0 → K+K− decay

modes.
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Figure 8.9: Distribution of the probability ratio (PR) in the signal mass re-

gion (5.22 < mπ+π− < 5.28 GeV/c2 for the B0 → K+π−, 5.25 < mπ+π− < 5.4

GeV/c2 for the B0
s → K−π+, 5.3 < mπ+π− < 5.6 GeV/c2 for the Λ0

b → pπ−, and

5.25 < mπ+π− < 5.55 GeV/c2 Λ0
b → pK−). The points with the error bars show

the distribution obtained on the fitted data sample while the histogram shows the

distributions obtained by generating signals and background events directly from

the total p.d.f.s of the fit of composition.
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Figure 8.10: Distribution of the probability ratio (PR) where the individual con-

tributions of each components are stacked, for the B0 → K+K− (top) and the

B0
s → π+π− (bottom). The points with the error bars show the distribution ob-

tained on the fitted data sample while the histogram shows the distributions ob-

tained by generating signals and background events directly from the total p.d.f.s

of the fit of composition.
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Chapter 9

Measurement of relative

efficiency corrections

In order to translate the parameters returned from the fit of composition into physics

measurements of branching fractions we need to apply the corrections for different

efficiency of the selection for the various decay modes. This chapter is devoted to

the evaluation of these efficiency corrections extracted from real data.

9.1 Efficiency correction

In order to translate the results returned from the fit of composition into measure-

ments of relative branching fractions we need to apply corrections for the relative

efficiencies of the selection between the various decay modes. For each channel, the

fraction output by the fit must be corrected by an efficiency factor ε. Below we

show how the efficiency corrections are applied to the results determined by the fit.

B(B0 → K+K−)

B(B0 → K+π−)
=

f̂B0→K+K−

f̂B0→K+π−
· ε(B

0 → Kπ)

ε(B0 → KK)

fs
fd
× B(B0

s → π+π−)

B(B0 → K+π−)
=

f̂B0
s→π+π−

f̂B0→K+π−
· ε(B

0 → Kπ)

ε(B0
s → ππ)

The notation ε(B0
(s) → hh′), where the particles in the final state are labeled without

the charge, indicates the CP-averaged efficiency for the decay B0
(s) → h+h

′−. The

total reconstruction efficiency ε used in the above relations factorizes as the product

of three terms:

ε = εkin · cXFT · εiso. (9.1)

εkin − this is the reconstruction efficiency (trigger and offline cuts). This term

mostly accounts for the acceptance effects. It includes the trigger efficiency
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and the efficiency of the off-line reconstruction and selection. We extract the

kinematic efficiency from Monte Carlo simulation. Any geometric acceptance

effect is properly taken into account, since the simulation reproduces the kine-

matic distributions of the decays and it includes an accurate description of

the detector geometry. This term does not include the contribution of the

isolation requirement and of tracking efficiency which are treated separately.

cXFT − this correction takes into account detector-induced charge asymmetries

between positively and negatively charged particles in the detectors. They

are mainly due to the relative efficiency of the XFT on charged kaons and

pions, which is not accurately reproduced by the CDF Monte Carlo, and to

the COT cell-geometry.

εiso − this is the efficiency that a signal event satisfies the isolation cut. It was

determined from real data and it depends only on the initial meson type

εiso(B0
(s) → h+h′−) = εiso(B0

(s)). This is due to the fact that our Monte Carlo

does not simulate the underlying event, but only the signal, as explained in

chap. 4.

9.1.1 Kinematic efficiencies

In order to evaluate the total reconstruction efficiency εkin we used the realistic

simulation described in chap. 4. The CP-averaged kinematic efficiency, for each

signal mode B0
(s) → h+h

′−, is defined as the ratio between the number of events

passing the selection (Npassing) and the number of events initially generated by the

simulation (Ngeneration):

εkin =
Npassing

Ngeneration
. (9.2)

Using simulated samples is reliable for this purpose. The effects contributing to the

kinematic efficiency are well reproduced by the simulation and are similar among

all the signal modes. Any possible small systematic discrepancy between real data

and the simulation vanishes in the efficiency ratio between two different modes. The

kinematic efficiency corrections extracted from the simulation are :

εkin(B0 → Kπ)

εkin(B0 → KK)
= 1.065± 0.003 (MC) (9.3)

εkin(B0 → Kπ)

εkin(B0
s → ππ)

= 0.946± 0.003 (MC) (9.4)

(9.5)

The uncertainty referred as (MC) is due to the finite statistics of the simulated

samples used to estimate the kinematic efficiency εkin and it corresponds to the

Poisson fluctuation of the number of events passing the selection. This uncertainty

will be used to evaluate the relative associated systematics (see chap. 11).
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9.1.2 Trigger bias corrections

A separate correction is needed to account for the different XFT efficiency to re-

construct charged kaons and pions. This is due to the different specific ionization

of pions and kaons in the COT volume [116, 121]. In the typical momentum range

of the B0
(s) → h+h

′− decay products, charged pions (with typical Lorentz boost

βγ ≈ 15) ionize more than charged kaons (βγ ≈ 4). The consequence is a larger

pulse width of pions than of kaons and, as a consequence a larger hit multiplicity

of the pions in the COT. The requirement of the XFT on the minimum number

of axial COT hits reflects in a different trigger efficiency for kaons than for pions.

This introduces different relative efficiencies between the B0
(s) → h+h

′− modes with

different number of kaons and pions in the final state. This effect is not repro-

duced by the CDF II simulation, and was instead measured by a study on pions

and kaons from D0 → h+h
′− decays. Using the huge sample of D0 → h+h

′−

events from D∗ → D0π decays available at CDF, we measured the efficiency ratio

ε(D0 → π+π−)/ε(D0 → K−π+) from data as follows:

ε(D0 → π+π−)

ε(D0 → K−π+)

∣∣∣∣
data

=
N(D0 → π+π−)

N(D0 → K−π+)

∣∣∣∣
data

· B(D0 → K−π+)

B(D0 → π+π−)
(9.6)

where B(D0→K−π+)
B(D0→π+π−)

is taken from pdg [51], and the signal yields of D0 → π+π− and

D0 → K−π+ are extracted from a binned χ2-fit on the invariant D0π-mass distri-

butions, as shown in fig. 9.1. For signals and backgrounds we used the templates

described in [118].

The reconstruction efficiency extracted in such a way can be compared to the

same quantity estimated from the CDF simulation:

ε(D0 → π+π−)

ε(D0 → K−π+)

∣∣∣∣
MC

=
N(D0 → π+π−)

N(D0 → K−π+)

∣∣∣∣
MC

(9.7)

By this comparison we can define a correction factor c
π/K
XFT as follows:

c
π/K
XFT =

N(D0 → π+π−)

N(D0 → K−π+)

∣∣∣∣
data

· B(D0 → K−π+)

B(D0 → π+π−)
· N(D0 → K−π+)

N(D0 → π+π−)

∣∣∣∣
MC

(9.8)

We measure:

c
π/K
XFT = 0.943± 0.014, (9.9)

where the uncertainty is quoted as the quadrature sum of the uncertainties of the

terms involved in the ratio. The main contribution to the uncertainty is due to the

finite statistics of the simulated D0 → h+h
′− decays used to estimate the Monte

Carlo efficiency of eq. (9.7).

The same method has been used on D0 → K+K− and D0 → K−π+ samples to

obtain the c
K/π
XFT correction:

c
K/π
XFT = 0.969± 0.015. (9.10)
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Figure 9.1: Invariant D0π-mass for D∗− → D̄0π− → [π+π−]π− decays (a) and

D∗+ → D0π+ → [π+π−]π+ decays (c). Invariant D0π-mass for D∗− → D̄0π− →
[K+π−]π− decays (b) and D∗+ → D0π+ → [π+K−]π+ decays (d). The fit function

is overlaid; the random pions component of the fit function is described by a gray

curve.

Figure 9.2 reports the binned χ2-fit on the invariantD0π-mass to extract the number

of D0 → K+K− signal events. We naively expected the c
K/π
XFT to be the inverse of

c
π/K
XFT, but our results do not support this assumption. This can be due to the

different fit conditions of the D0 → K+K− decays distributions: as reported in

fig. 9.2, for the D0 → K+K− decays we expect the presence of a sizable multibody

D decays component. The correctness of the fit can affect the c
K/π
XFT evaluation. Thus

we evaluated a systematic uncertainty for c
π/K
XFT and c

K/π
XFT, given by the difference

of their values with respect to a different evaluation, based on a different method

(details are reported in [88]).

Since this correction has to be applied to the B → h+h
′− simulation, exhibiting
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Figure 9.2: Invariant D0π-mass for D∗− → D̄0π− → [K+K−]π− decays (a) and

D∗+ → D0π+ → [K+K−]π+ decays (b). The fit function is overlaid; a multibody

D decays component of the function is drawn as a red line, while the random pions

component is described by a gray curve.

a different kinematic, we investigated possible dependence of the correction on some

kinematics variables, such as the transverse momentum of the tracks. The correction

is found to be almost independent on the transverse momentum, as shown in fig. 9.3,

and similar checks have been done for other kinematics variables. Thus we can

assume that our correction is valid with good approximation also in the B → h+h
′−

decay modes. We have now all the ingredients: assuming that track efficiency can

 track [GeV/c]
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p
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/d

a
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Figure 9.3: c
π/K
XFT in function of the transverse momentum of the track. The constant

function used in the fit is overlaid.
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be factorized, the corrected kinematic efficiencies with their uncertainties are:

εkin(B0 → Kπ)

εkin(B0 → KK)
· cK/πXFT = 1.032± 0.016 (9.11)

εkin(B0 → Kπ)

εkin(B0
s → ππ)

· cπ/KXFT = 0.893± 0.014 (9.12)

The uncertainty is due to the statistical and systematic uncertainty on the measure-

ment of the parameters c
π/K
XFT and c

K/π
XFT of eq. (9.9) and eq. (9.10). This uncertainty

will be used to evaluate the relative associated systematics (chap. 11).

Checks

We observed in the data sample an increasing trend corresponding to different

periods of data-taking defined in tab. 9.1. Thus we checked if the simulation shows

the same behaviour. The trend observed in data is also well reproduced by the

simulation (fig. 9.4). We found that the ratio between data and simulation of the

efficiency ratio in reconstructing pion and kaon is approximately constant in time.
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Figure 9.4: N(D0→π+π−)
N(D0→K−π+)

from data (a) and ε(D0→π+π−)
ε(D0→K−π+)

from simulation (b) for

different periods of data taking. The red lines and the yellow bars are the time-

integrated value and the uncertainty.
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Period name Run range

xd 138425 - 186598

xh 190697 - 203799

xi 203819 - 233111

xj 233133 - 246231

xk 252836 - 261005

xn 261119 - 264071

xm 264101 - 289197

xp 289273 - 312510

Table 9.1: Definition of the data-taking periods.

9.1.3 Efficiency of the B-isolation cut

The isolation of B meson depends on the multiplicity and momenta of the tracks

produced in the b-quark fragmentation, which is not described by the signal-only

simulation discussed in chap. 4. We therefore had to use real data to characterize

this observable. Ref. [104] describes the measurement of the isolation efficiency

for the values of the cut used in the previous analysis [122, 42, 37] using fully

reconstructed B0
(s) → J/ψX decays. The efficiency ratio value averaged on the

transverse momentum distribution of the B0
(s) → h+h

′− decays is:

εiso(B0)

εiso(B0
s )

= 1.000± 0.028, (9.13)

This statistical uncertainty will be used to evaluate the relative associated system-

atics (see sec. 11.4.3).

The isolation efficiency, along with the kinematic, XFT efficiencies completes

the set of corrections used to obtain the remaining ratios of branching fractions.

9.2 B0 → K+K− results

Using the kinematic efficiency, ε(B0→Kπ)
ε(B0→KK)

' 1.032 (see eq. (9.11)), we corrected the

fit results to extract the following measurement of relative branching fraction:

B(B0 → K+K−)

B(B0 → K+π−)
= 0.012± 0.005 (stat.). (9.14)

9.3 B0
s → π+π− results

Following eqs. (9.12) and (9.13), we corrected the fit result for the efficiency ra-

tio ε(B0→Kπ)
ε(B0

s→ππ)
' 0.893, to extract the following measurement of relative branching

fraction:
fs
fd
× B(B0

s → π+π−)

B(B0 → K+π−)
= 0.008± 0.002 (stat.). (9.15)
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Chapter 10

Measurement of charge

asymmetries

10.1 Introduction

In the measurement of CP asymmetry the relevant acceptance effects are the detector-

induced charge asymmetry between positively and negatively charged particles due

to their different probability of strong interaction with the tracker material, and

the charge asymmetry induced by the COT cell-geometry. The terms related to the

detector-induced charge asymmetry for the b-mesons are the ratios:

ε(B0 → K+π−)

ε(B
0 → K−π+)

and
ε(B

0
s → K+π−)

ε(B0
s → K−π+)

. (10.1)

Below we show how the efficiency corrections in eq. (10.1) are applied to the results
determined by the fit.

ACP (B0 → K+π−) =
B(B

0 → K−π+)− B(B0 → K+π−)

B(B
0 → K−π+) + B(B0 → K+π−)

=
f̂
B

0→K−π+ · ε(B
0→K+π−)

ε(B
0→K−π+)

− f̂B0→K+π−

f̂
B

0→K−π+ · ε(B
0→K+π−)

ε(B
0→K−π+)

+ f̂B0→K+π−

ACP (B0
s → K−π+) =

B(B
0

s → K+π−)− B(B0
s → K−π+)

B(B
0

s → K+π−) + B(B0
s → K−π+)

=
f̂
B

0
s→K+π−

· ε(B
0
s→K

−π+)

ε(B
0
s→K+π−)

− f̂B0
s→K−π+

f̂
B

0
s→K+π−

· ε(B
0
s→K−π+)

ε(B
0
s→K+π−)

+ f̂B0
s→K−π+

The terms related to the detector-induced charge asymmetry for the b-baryons are

the ratios:
ε(Λ0

b → pπ−)

ε(Λ
0
b → pπ+)

and
ε(Λ0

b → pK−)

ε(Λ
0
b → pK+)

. (10.2)
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The corrections in eq. (10.2) are applied to the results of the fit to extract the
measurements:

ACP (Λ0
b → ph−) =

B(Λ0
b → ph−)− B(Λ̄0

b → p̄h+)

B(Λ0
b → ph−) + B(Λ̄0

b → p̄h+)
=

f̂Λ̄0
b→p̄h+ · ε(Λ

0
b→ph

−)

ε(Λ̄0
b→p̄h+)

− f̂Λ0
b→ph−

f̂Λ̄0
b→p̄h+ · ε(Λ

0
b→ph−)

ε(Λ̄0
b→p̄h+)

+ f̂Λ0
b→ph−

Although some CDF measurements confirm that the geant package reproduces

with good accuracy these effects [116] we preferred to measure it directly from real

data, to achieve the best precision and the confidence in the result needed for this

delicate measurement.

10.1.1 K+π−/K−π+ corrections

We measured the efficiency ratios in eq. (10.1) using an unbiased sample of D0 →
K−π+. By unbiased we mean that the D0 → K−π+ decays were reconstructed

without requiring they were produced in the decay of a D∗+, which is usual in CDF

when a clean D0 sample is desired. The request of an additional charged pion in

the final state and of the explicit reconstruction of the D∗+ → D0π+ → [K−π+]π+

decay chain, would generate an artificial asymmetry, since the CDF II tracking has

a different efficiency for reconstructing the tracks associated to π+ and π− with

low momentum, which would introduce extra uncertainties. For this reason we

selected for our purpose about 30× 106 prompt D0 → K−π+ decays and analyzed

them with the same methods used for the B0
(s) → h+h

′− decays and described

here. This is a powerful check of all the analysis since we actually used the same

reconstruction and fitting code of the B0
(s) → h+h

′− analysis. In this way, we are at

same time eliminating possible spurious effects hidden in our procedure. Since the

Standard Model predicts a very small O(10−6) [117] direct CP asymmetry in the

D0 → K−π+ decay, and since the current experimental measurements1 [51] do not

show any indication of a deviation from this prediction, we assume that:

B(D
0 → K+π−)− B(D0 → K−π+)

B(D
0 → K+π−) + B(D0 → K−π+)

� 10−3. (10.3)

We will then evaluate a systematic uncertainty on this assumption. If we write

relation (10.3) in terms of the measured relative fractions of D0 → K−π+ and

D
0 → K+π− and efficiency correction, we obtain:

B(D
0 → K+π−)− B(D0 → K−π+)

B(D
0 → K+π−) + B(D0 → K−π+)

=
f̂
D

0→K+π−
· ε(D

0→K−π+)

ε(D
0→K+π−)

− f̂D0→K−π+

f̂
D

0→K+π−
· ε(D

0→K−π+)

ε(D
0→K+π−)

+ f̂D0→K−π+

� 10−3

(10.4)

from which we can extract the desired ratio ε(D
0→K+π−)

ε(D0→K−π+)
. The work is documented

in detail in Ref. [118]. Here we summarize only the relevant aspects.

1The current experimental sensitivity is O(10−2).
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The detector-induced asymmetry in D0 → K−π+ decays is determined through

a simultaneous binned χ2 fit of D0 → K−π+ and D
0 → K+π− samples. For all

components, templates are the same for positive and negative sample.

The mass line shape of the D0 → K−π+(D
0 → K+π−) signal is parameterized

using the sum of two Gaussians, and a tail function to parameterize the low mass

tail due to the soft photon emission. Similar distributions have been used to pa-

rameterize the D0 → π+π− component. The mass distributions of the background

and of the partially reconstructed decays are parameterized using two different ex-

ponential functions. From the results of the fit shown in fig. 10.1 we obtain the

following correction:

ε(D0 → K−π+)

ε(D
0 → K+π−)

= 0.9835± 0.0006 (stat .)± 0.0011 (syst .) (10.5)

ε(D
0 → K+π−)

ε(D0 → K−π+)
= 1.0168± 0.0007 (stat .)± 0.0012 (syst .). (10.6)

Prompted by recent hints of CP violation in the charm system [119, 120] we added a

systematic uncertainty on a possible non-vanishing CP violation, using the available

experimental knowledge ACP (D0 → K−π+) = (0.1± 0.7)% [51]. We found:

ε(D0 → K−π+)

ε(D
0 → K+π−)

= 0.9835± 0.0006 (stat .)± 0.0011 (syst .)± 0.0033(pdg) (10.7)

ε(D
0 → K+π−)

ε(D0 → K−π+)
= 1.0168± 0.0007 (stat .)± 0.0012 (syst .).± 0.0034(pdg)(10.8)

By adding in quadrature we obtain:

ε(D0 → K−π+)

ε(D
0 → K+π−)

= 0.9835± 0.0035 (10.9)

ε(D
0 → K+π−)

ε(D0 → K−π+)
= 1.0168± 0.0037 (10.10)

Momentum correction

To keep into account the different momentum distribution of the D0 and B0
(s) decays

we reweighted the joint distribution of (β, ptot) using the B0
(s) → h+h

′− Monte Carlo.

We first evaluated the efficiency ratio ε(B0
s→K−π+)

ε(B
0
s→K+π−)

without any reweighting, and

second reweighting the (β, ptot) distribution of B0
s → K−π+ to that of D0 → K−π+.

The ratio of these two quantities is equal to 1.0055 and is applied as a multiplicative

correction to the values of eq. (10.7) and eq. (10.8), to account for the different

D0 and B0
(s) meson momentum spectrum. The small difference in the momentum

(β,ptot) distribution between B0 → K+π− and B0
s → K−π+ has a negligible effect.
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Figure 10.1: Invariant K−π+-mass for D0 → K−π+ decays (a), invariant K+π−-

mass for D
0 → K+π− decays (b), and the resulting asymmetry (c). Fit functions

overlaid: signal D0 → K−π+(D
0 → K+π−) peak (red), the CP–conjugated decay

contribution (green), the small D0 → π+π− contribution at high masses (pink), and

a small contribution given the partial reconstructed decays in the low mass region

(dark red).
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Thus we obtain the final acceptance corrections:

ε(B
0 → K−π+)

ε(B0 → K+π−)
=
ε(B0

s → K−π+)

ε(B
0
s → K+π−)

= 0.9889± 0.0006 (stat .)± 0.0034 (syst .)

(10.11)

ε(B0 → K+π−)

ε(B
0 → K−π+)

=
ε(B

0
s → K+π−)

ε(B0
s → K−π+)

= 1.0112± 0.0006 (stat .)± 0.0036 (syst .).

(10.12)

As a check, we compared these results with the ones obtained using the official CDF

Monte Carlo. The agreement obtained is satisfactory.

10.1.2 ph−/p̄h+ corrections

We used a sample of about 300,000 Λ→ pπ decays to determine the efficiency ratios
ε(Λ0

b→pπ
−)

ε(Λ
0
b→pπ+)

and
ε(Λ0

b→pK
−)

ε(Λ
0
b→pK+)

. Assuming no CP asymmetry in the Λ→ pπ decays and

assuming the production rate of Λ and a Λ̄ to be the equal, if any asymmetry is

found in the number of Λ with respect to the Λ̄ this is ascribed to the detection

asymmetry. The detector-induced asymmetry in Λ → pπ decays is determined

through a simultaneous binned χ2 fit of Λ and Λ̄ samples. The kinematics of this

sample allows distinguishing without ambiguity between a Λ and a Λ̄ decay mode,

by evaluating the invariant mass under the hypothesis that the momentum of the

proton is always greater than the pion’s one. The mass line shape of the signal

is parameterized using a double Gaussian function and the mass line shape of the

combinatorial background is parameterized using an exponential function, as shown

in fig. 10.2. From the results of the fit we obtain the correction:

ε(Λ0
b → pπ−)

ε(Λ
0
b → pπ+)

= 1.0235± 0.0054 (stat .). (10.13)

In the fit the charge asymmetry is assumed to be independent of the transverse

momentum of the pion and of the proton. While this has been proven in similar

conditions [118] to be a very fair assumption for the pions, we checked a possible

dependence for the proton case, where no independent studies were available. We

repeated the fit to obtain the charge asymmetry in different bins of transverse mo-

mentum of the protons, and we evaluated the dependence on the transverse momen-

tum using the results of the linear fit shown in fig. 10.3. A systematic uncertainty

was evaluated as the difference between the central value charge asymmetry, with

the assumption of no dependence, and the charge asymmetry evaluated considering

the dependence.

The charge asymmetry result, including statistical and systematic uncertainties,

follows:

ε(Λ0
b → pπ−)

ε(Λ
0
b → pπ+)

= 1.0235± 0.0054 (stat .)± 0.0090 (syst .). (10.14)
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Figure 10.2: Invariant pπ−-mass for Λ → pπ− decays (a), invariant p̄π+-mass for

Λ̄→ p̄π+ decays (b), and the resulting asymmetry (c).

Assuming that reconstruction efficiencies factorize as follows:

ε(Λ0
b → pπ−) = ε(p) · ε(π−), (10.15)

ε(B0
s → K−π+) = ε(K−) · ε(π+), (10.16)

and combining with the estimate of ε(B0
s → K−π+)/ε(B

0
s → K+π−) = 0.9889 ±
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Figure 10.3: Detector-induced charge asymmetry for Λ→ pπ− decays as a function

of transverse momentum of the proton. Fit with a straight line is overlaid.

0.0006 (stat .)± 0.0034 (syst .) from eq. (10.11) we obtain:

ε(Λ0
b → pK−)

ε(Λ
0
b → pK+)

= 1.0121± 0.0054 (stat .)± 0.0096 (syst .)

ε(Λ
0
b → pK+)

ε(Λ0
b → pK−)

= 0.9880± 0.0053 (stat .).± 0.0094 (syst .).

These results can be compared with the same numbers extracted from the full CDF

simulation for Λ0
b → pπ− and Λ0

b → pK− decays:

ε(Λ0
b → pπ−)

ε(Λ
0
b → pπ+)CDF−MC

= 1.044± 0.005 (stat .)

ε(Λ0
b → pK−)

ε(Λ
0
b → pK+)CDF−MC

= 1.045± 0.005 (stat .)

where the uncertainty comes from the finite size of the generated samples. The full

CDF simulation, that should reproduce the particles interactions with the tracker

material (for instance for ε(B0
s → K−π+)/ε(B

0
s → K+π−) the agreement between

data and simulation is excellent), returns efficiency ratios values higher than ones

found in this work. This may be due to lack of accuracy in the way the simu-

lation reproduces protons behavior in the tracker material, being in general less

experimentally studied with respect to kaons and pions, or this may due to some

“incorrect” assumptions to the strategy adopted to extrapolate the efficiency ratio

from Λ→ pπ− decays to Λ0
b → pπ− decays. For this reasons we decided to get the

average between the result obtained from the real Λ → pπ− decays and the result



184 Chapter 10. Measurement of charge asymmetries

obtained from CDF simulation. The averaged result is:

ε(Λ0
b → pπ−)

ε(Λ
0
b → pπ+)

= 1.033± 0.004 (stat .)± 0.009 (syst .)± 0.010 (aver.)

ε(Λ0
b → pK−)

ε(Λ
0
b → pK+)

= 1.028± 0.004 (stat .)± 0.010 (syst .)± 0.016 (aver.) (10.17)

where we added a systematic uncertainty (aver.), given by the semi-difference of

the two estimates.

10.2 Corrected results

At this point we have all the corrections for those measurements involving the

charge asymmetry correction, and we can extract the corresponding CP asymmetry

measurements.

Following eq. (10.12), we corrected the fit results for the charge-asymmetry

factor, ε(B
0→K+π−)

ε(B
0→K−π+)

= ε(B
0
s→K+π−)

ε(B0
s→K−π+)

' 1.0112, to extract the direct CP asymmetries:

ACP (B0 → K+π−) =
B(B

0 → K−π+)− B(B0 → K+π−)

B(B
0 → K−π+) + B(B0 → K+π−)

= −0.083± 0.013

(10.18)

ACP (B0
s → K−π+) =

B(B
0
s → K+π−)− B(B0

s → K−π+)

B(B
0
s → K+π−) + B(B0

s → K−π+)
= +0.216± 0.073,

(10.19)

where the uncertainties are statistical only.

Following eq. (10.17) we corrected the fit results for the charge-asymmetry factor,
ε(Λ0

b→pπ
−)

ε(Λ
0
b→pπ+)

= 1.033, and
ε(Λ0

b→pK
−)

ε(Λ
0
b→pK+)

= 1.028, to extract the direct CP asymmetries:

B(Λ0
b → pK−)− B(Λ

0
b → pK+)

B(Λ0
b → pK−) + B(Λ

0
b → pK+)

= −0.10± 0.08 (stat .) (10.20)

B(Λ0
b → pπ−)− B(Λ

0
b → pπ+)

B(Λ0
b → pπ−) + B(Λ

0
b → pπ+)

= +0.06± 0.07 (stat .). (10.21)
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Systematic uncertainties

11.1 General strategy

The measurements object of this thesis are ratios of branching fractions of kinemat-

ically similar decay modes and CP -violating asymmetries. Most systematic effects

related to the individual modes, e. g., the uncertainty on the integrated luminosity of

the sample, cancel out in the ratio, thus resulting in a smaller systematic uncertainty

on the measured ratios. Only systematic effects with a different impact on different

modes need therefore to be considered. Furthermore, we ignored the systematic

effects inducing uncertainties significantly smaller than their largest counterparts,

because their contribution to the total systematic uncertainty is negligible. Most of

the systematic uncertainties are evaluated by modifying the fit functions to include

systematic variations and repeat the fits on data. The differences between results

of modified fits and the central one are used as systematic uncertainties.

Some of the systematic uncertainties are relevant only for the annihilation modes,

and they are not quoted for the CP -asymmetries measurements. For example the

systematics associated to the charge asymmetry correction applied to the raw yields

to extract the physical ACP asymmetries are not quoted for the B(B0
s → π+π−)

and B(B0 → K+K−) measurements. Other systematic uncertainties are common

between the annihilation measurements and the CP -violating measurements, like

the PID-related asymmetries. In some of these cases, the CP -related systematics

were determined with more sophisticated methods, because the CP measurements

are based on a larger sample, and are affected by smaller statistical uncertainties.

When necessary, we will describe the difference between the strategies used for the

two different analyses.

Sections 11.2–11.6 contain the discussion on the dominant systematic uncertain-

ties, while sec. 11.7 summarizes the effect of each measurement.

185
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11.2 Systematics effects related to kinematics

11.2.1 Nominal b-hadron masses

The B0, B0
s and Λ0

b square masses are external inputs to the analytic expression of

eq. (5.5). In our main fit they are fixed to the world’s averages [51]. To evaluate the

systematic uncertainty associated to our limited experimental knowledge of nominal

input masses we repeated the fit in which we independently varied the B0, B0
s and

Λ0
b input masses within ±1σ uncertainty. We fitted the eight possible combinations

of B0, B0
s and Λ0

b masses by independently increasing (decreasing) by one statisti-

cal standard deviation the masses measured in Ref. [51]. The largest discrepancy

between the results of the analysis with alternative masses configurations and the

results of the sample with the nominal configuration was taken as the systematic

uncertainty.

11.2.2 Charge asymmetries of momentum p.d.f

The momentum probability density functions ℘pj (β, ptot) were extracted from sim-

ulated samples for all signal modes. Since the charged-momentum asymmetry (β)

and the scalar sum of the momenta (ptot) are not independent observables, we used a

joint p.d.f. to model their distributions. Chapter 6 describes all the details of the pa-

rameterization. The b coefficients of eq. (6.18) characterize the factorized β ptot

ptot−4(5)

terms. In the parameterization we assumed that ℘p(β, ptot) = ℘p(−β, ptot) for de-

cays into π+π− and K+K− final states, where the β distributions are symmetric

because the two outgoing particles have the same mass. Technically this was done by

setting the odd b coefficients to zero in the parameterization of the central analysis.

In order to take into account possible hidden asymmetries in the distributions due

to any possible detector asymmetries reproduced by the simulation, we repeated

the analysis re-parameterizing the momentum probability density functions with

asymmetric fit functions for all signal modes (i. e., leaving free to vary also the odd

b coefficients). The systematic uncertainty associated is the difference between the

results with the asymmetric configuration for ℘pj (β, ptot) and the results with the

symmetric nominal configuration.

11.2.3 Combinatorial background momentum p.d.f

The momentum probability density function of combinatorial background ℘pE(β, ptot)

was extracted from the data using the opposite-χ2 sample (see sec. 6.3.1). This

higher statistics sample allows us to perform an accurate parameterization of the

joint probability density function keeping into account all correlations between β

and ptot.

In order to assess a systematic uncertainty due to our limited knowledge of the

real distribution of the combinatorial background momentum term, we parameter-
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Figure 11.1: Projection of alternative template ℘pE(β, ptot) of data at higher mass

sideband. (a,b) for med, (c,d) for high.

ized ℘pE(β, ptot) in an alternative way. We used the low statistics sample selected at

higher mass values. This is a real combinatorial sample and we can safely assume

that the joint (β,ptot) distribution is the same in all the mass fit range. Since the

statistics is very low, we are not sensitive to all correlations. Then we keep into ac-

count kinematics only correlation due to trigger requirements, that are well known
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(see sec. 3.1), neglecting the other ones. In other words we used the same func-

tional form of eq. (6.25), where the coefficient bEm are not anymore function of ptot

but numerical constants to be determined in the parameterization. The template

overlaid to data is reported in fig. 11.1.

The associated systematic uncertainty is the difference between the results of

the analysis performed using this alternative template for ℘pE(β, ptot) and the results

obtained with the nominal configuration.

11.2.4 Physics background momentum p.d.f

The template ℘pA(β, ptot) for the momentum term of the physics background has

been parameterized using a mixture of partially reconstructed simulated b-hadrons

decays. In order to assess a systematic uncertainty due to our limited knowledge

of the real distribution we parameterized ℘pA(β, ptot) in an alternative way. We

used the low statistics sample selected at lower mass values, in which we subtracted

the small contribution from the combinatorial background. This is a real physics

background sample.

The associated systematic uncertainty is the difference between the results of

the analysis performed using this alternative template for ℘pA(β, ptot) and the results

obtained with the nominal configuration.

11.2.5 Combinatorial background mass p.d.f.

In our main fit we extracted the squared invariant ππ-mass model of the combina-

torial background (E) from the opposite-χ2 sample which contains events that pass

the final selections of tab. 3.3 except for the requirement on the 3-D vertex quality.

As demonstrated in sec. 6.3.2 the model accurately reproduces the combinatorial

background mass shape. An exponential function has been used to parameterize its

distribution.

To evaluate the systematic uncertainty associated to our limited experimen-

tal knowledge of real distribution we repeated the analysis in which we indepen-

dently varied the angular coefficient cE, for the scenarios med and high, within

±1σ uncertainty. The four possible combinations were fitted by independently

increasing (decreasing) by one statistical standard deviation the angular coeffi-

cients: cE = −0.064 ± 0.003 (stat .) (GeV2/c4)−1 for the scenario med and cE =

−0.060± 0.004 (stat .) (GeV2/c4)−1 for the scenario high. The largest discrepancy

between the results of the analysis of the samples with alternative configurations

and the results of the sample with the nominal configuration was taken as the

systematic uncertainty.
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11.2.6 Physics background mass p.d.f

For the annihilation decay modes, in the central fit the cut-off of the ARGUS func-

tion, respectively for the scenarios med and high, was fixed to the values returned

from the one-dimensional fit on simulated partially reconstructed decays. The val-

ues are respectively: m2
A = 26.49 ± 0.01 GeV2/c4 for med and m2

A = 26.48 ± 0.01

GeV2/c4 for high scenario. The simulation takes into account about 50% of known

modes, with an appropriate mixture of B0, B0
s and B+ multibody decays. We as-

sumed that the inclusive cutoff of the missing modes is the same of simulated ones,

since the shape of the misreconstructed multibody decays is dominated by thresh-

old effects plus resolution sculpting. However, a generous systematic uncertainty

on the limited knowledge of this parameter has been assessed to cover all the pos-

sible shifts caused by the addition of one single background mode with an unlikely

relative fraction of 50%, m2
A = 26.49 ± 0.10 GeV2/c4. The largest discrepancy be-

tween the results of the analysis with alternative configurations and the results of

the sample with the nominal configuration was taken as the systematic uncertainty.

For the CP measurements, in the central fit the cut-off of the square invariant

mass template of the physics background (A), for both med and high scenarios, is

fixed to m2
A = 26.64 GeV2/c4. This value is obtained performing 400 fits where

the cut-off is fixed to different numbers in the interval [26.4, 26.8] GeV2/c4, as we

described in sec. 6.2.2. To evaluate the systematic uncertainty associated to our

limited experimental knowledge of this parameter we estimated a 95% confidence

interval, corresponding to likelihood variation of −2 log(L ) = 4, using the likeli-

hood profile reported in fig. 11.2. The profile is approximately distributed as a

parabolic function. The interval is [26.588, 26.685] GeV2/c4 @95%CL.

]4c/2cutoff [GeV
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­2
lo

g
(L

) 
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­1 = 9.30 fbL dt∫CDF Run II Preliminary 

Figure 11.2: −2 log(L ) as a function of the cut-off value m2
A.
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The associated systematic uncertainty is the difference between the results of the

analysis performed with the cut-off values fixed to 26.588 GeV2/c4 and

26.685 GeV2/c4, with respect to the central fit. The largest discrepancy was taken

as the systematic uncertainty.

11.2.7 Signal momentum p.d.f

The template ℘pi (β, ptot) for the momentum term of the ith-signal mode has been

parameterized using simulation. In order to assess a systematic uncertainty due

to our limited knowledge of the real distribution we parameterized ℘pi (β, ptot) in

an alternative way. We used the sample selected at mπ+π− ∈ [5.27, 5.33] GeV/c2,

corresponding to the signal region, in which we subtracted the contribution from

the combinatorial background. Because of the sideband subtraction procedure, we

did not take into account the β dependence on ptot. Furthermore, we made the

rough assumption that the joint (β,ptot) distribution is similar for all signal modes:

this is not the case, for instance we expect the B0 → K+π− and B
0 → K−π+ to be

antisymmetric. For these reasons, the systematic uncertainty assessed will be very

conservative.

The associated systematic uncertainty is the difference between the results of

the analysis performed using this alternative template for ℘pi (β, ptot) and the results

obtained with the nominal configuration.

11.2.8 Signal mass p.d.f.

The mass shape was extracted from simulation. Additional studies on independent

samples of D0 → h+h
′− show that the Monte Carlo is able to accurately reproduce

the mass shape of data, except for the mass resolution, that is tighter of about 8%.

In the fit performed for the annihilation measurements we let free to vary a

parameter called sm, which is a global scale factor of the mass template. The

fit returns a value ŝm = 1.094 ± 0.015, in agreement with our estimations (see

sec. 4.2.3). The discrepancy between the results of the fit with this free parameter

and the results of fit with the nominal configuration was taken as the systematic

uncertainty.

For the CP measurements we improved the mass template description. We per-

formed a detailed study using huge samples of D0 → h+h
′− to evaluate accurately

the mass resolution of the B → h+h
′− signal modes (see sec. 4.2.3). Thus the signal

templates have been adjusted consequently, and the improved fit does not contain

the sm parameter. The accuracy of the procedure was checked by comparing the

observed mass line-shape of 9 × 105 Υ(1S) → µ+µ− decays to that predicted by

the tuned simulation, obtaining discrepancies below the 2% level as described in

sec. 4.2.3. These discrepancies are due to the fact that the Υ(1S) has higher mass

with respect to the B0 mass and there is larger background in the sample. Thus
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Figure 11.3: Projection of alternative template ℘pi (β, ptot) extracted from data side-

band subtracted in the signal region. (a,b) for med, (c,d) for high.

a conservative systematic uncertainty is assessed repeating the fit using the sig-

nal templates adjusted for the resolution extracted from the Υ(1S) sample. The

discrepancy between the results of the analysis of the samples with this alterna-

tive configuration and the results of the sample with the nominal configuration was

taken as the systematic uncertainty.
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11.2.9 Λ0
b pT-spectrum

The kinematic templates for the Λ0
b decay modes has been extracted following ex-

actly the same procedure adopted for B0 and B0
s decays. However, while we know

that the differences in momentum between B0 and B0
s are tiny, this is not true

for the Λ0
b . Since B0

s → π+π− decay is located over lower mass tail of Λ0
b → ph−

decays it turns out that it is important to evaluate a systematic uncertainty on

our limited knowledge of pT-spectrum of the Λ0
b baryon. For instance, to extract

(β,ptot) templates we reweighted pT-spectrum of Λ0
b simulated modes in the same

way of B0
(s) → h+h

′− decays, however we also know that the isolation requirement

sculpts in different way the pT-spectrum of the candidates if that is a B meson or

a Λ0
b baryon. We reconstructed samples of B0 → J/ψKs and Λ0

b → J/ψΛ. We

apply a very simple and similar selection to both data samples to avoid to intro-

duce any artificial kinematic differences and we extracted the transverse momentum

distribution of the candidates, as shown in fig. 11.4(a). From the ratio of the two

distributions, respectively from Λ0
b and B0 candidates, we extracted the function to

reweight our Λ0
b simulated decays, as shown in fig. 11.4(b). We re-parameterized

(β,ptot) joint probability density for Λ0
b → pπ− and Λ0

b → pK− decay modes. The

difference between the results of the analysis performed using these templates for

the Λ0
b → ph− decays and the results of the sample with the nominal configuration

was taken as the systematic uncertainty.
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Figure 11.4: Transverse momentum distribution for Λ0
b and B0 hadrons (a), from

B0 → J/ψKs and Λ0
b → J/ψΛ. Ratio between the two distributions (b), the fit is

superimposed.
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11.3 Particle Identification-related systematic effects

Chapter 7 summarizes how the fit of composition exploits the PID information in

separating the different signal modes and background. The model used to intro-

duce this information in the Likelihood is sophisticated, needing a large number

of parameters. For example, the probability density function which describes the

B0 → K+π− signal mode results from a convolution integral that combines the

intrinsic dE/dx residuals of both particles (δK+ and δπ−) through the p.d.f. of cor-

relation, ℘c(c), yielding the following p.d.f. (see chap. 7):

℘B0→K+π−(δobs
K+ , δ

obs
π− ) = [℘K+(δK+)× ℘π−(δπ−)] ∗ ℘c(c).

Just this term of the Likelihood needs eight parameters for the three Gaussians

of ℘K+ , eight parameters for the three Gaussians of ℘π− and five parameters for

the two Gaussians of correlation ℘c(c), for a total of 21 parameters. If we consider

all kind of particles adding the parameters to model the distribution of intrinsic

residual of K−, K−, π+, π−, p and p̄ we obtain a total number of 53 parameters. All

these parameters have a statistical uncertainty which contributes to the systematic

uncertainty on our final measurements. In reality the parameters which model the

correlation do not have any statistical uncertainty since they, along with residual

parameters, are extracted through an iterative procedure where in the final step the

correlation shape is fixed. Therefore the total number is 53− 5 = 48.

For the annihilation decay modes analysis, the systematic uncertainty related

to the statistical uncertainty on the determination of PID probability density func-

tions was assessed by repeating the fit of composition in which all PID parameters,

described above, are randomly varied in a 1σ-radius multidimensional sphere. We

varied the parameters of the PID templates in all the possible directions generating

randomly shifts in the parameters multi-dimensional space. In order to statistically

sample a sufficient number of directions in this large dimensions space, we repeated

the analysis for various seed values. For each seed value the PID functions change

in a different way and we can obtain a measurement of the effect of systematic

uncertainties on the analysis results. Figure 11.5 shows the distribution of the

observed residuals for the negatively charged kaons and the positively charged pi-

ons (we obtain similar distributions for the other particles). The blue solid line is

the template used in the central analysis while the red band, centered around data

distribution, is the overlap of 200 templates generating with 200 different x0 seeds.

We repeated the fit of composition using this 200 different PID probability density

functions. The systematic uncertainty on the physics observables associated to the

statistical uncertainty of the templates parameterization is given by the r.m.s. of

the distribution of the observables returned from the fits of composition performed

with different seeds. In this procedure we neglected the correlations between the

PID parameters: adding the correlations would imply a reduction of the final sys-

tematic uncertainty since the correlations tend to compensate the uncertainty of
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Figure 11.5: Distribution of observed dE/dx residual (℘(δobs) = ℘(δ + c) = ℘(δ) ∗
℘(c)), for negatively charged kaons (with kaon mass hypothesis) (a), for positively

charged pions (with pion mass hypothesis) (b). The results of the fit to the functions

are overlaid (blue, solid line). The red band results from the overlapping of different

curves generating with 200 different seed values x0 from the template used in the

standard analysis using the technique described in sec. 11.3.

one parameter with respect to another one. The dE/dx related systematic uncer-

tainty is one of the dominant in our measurements (see tabs. 11.2–11.3) but it is still

smaller than the statistical uncertainty, therefore we decide to do not include the

correlations in the procedure and to quote a conservative value. As demonstrated

in previous analyses the dE/dx systematics evaluated using this procedure is very

conservative.

For the CP measurement analysis, where the needed precision is higher, we

added the covariance matrix information in the procedure: we repeated the fit of

composition in which all PID parameters are varied as gaussian variables correlated

with their correlation matrix obtained from data. We used a numerical algorithm

generating multivariate variables (see Cap. 33 of [51]). Figure 11.6 shows the

distribution of the observed residuals for the negatively charged kaons and the

positively charged pions (we obtain similar distributions for the other particles).

The red solid line is the template used in the central analysis while the blue band,

centered around data distribution, is the overlap of 500 templates generating with

500 different seeds with the technique described above, in which all PID parameters

are varied according to a gaussian distribution correlated with their correlation

matrix from data. We repeated the fit of composition using this 500 different

PID probability density functions. From the comparison between fig. 11.5 and

fig. 11.6 it is possible to appreciate the reduction of the blue band extension due

to the additional information contained in the correlation matrix. The systematic

uncertainty on the physics observables associated to the statistical uncertainty of
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the templates parameterization is given by three times the r.m.s. of the distribution

of the observables returned from the fits of composition performed with different

seeds. We also add in quadrature to this uncertainty the difference we obtain when
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Figure 11.6: Distribution of observed dE/dx residual, for positively charged kaons

(a) and pions (b). The results of the fit to the functions are overlaid (red, solid line).

The blue band in the results from the overlapping of different curves generating with

500 different seed values x0 from the template used in the standard analysis.
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we repeat the central fit with the correlation shape free to vary. In this case we used

a simplified gaussian model, instead of a double gaussian. This has been done to

keep into account the fact that in the procedure described above the five parameters

of correlation do not contribute.

11.4 Efficiency-related systematic effects

11.4.1 Triggers relative efficiency

In the central fit the relative fractions of signals are common parameters between A

and C subsamples (see sec. 5.6). This has been done to avoid to increase too much

the number of fit parameters. In such a way we assumed that the relative efficiency

in reconstructing signals is the same for subsamples A and C. In principle one may

fit them separately for A and C subsamples and combine the final results. To assess

a systematic uncertainty we extracted the relative efficiency ratio between C and A

subsamples from simulation for all signal modes: B0 → h+h
′−, B0

s → h+h
′− and

Λ0
b → ph−. For each jth signal modes we define the factor cj :

fCj = cj · fAj (11.1)

where fAj and fCj are the relative signal fractions respectively for A and C subsamples.

These factors are extracted from simulation as:

cj =
nCj
nAj
· n

A
tot

nCtot

(11.2)

where n
A(C)
j is the number of events reconstructed by the simulation for the jth

signal mode for A(C) sample, while n
A(C)
tot is the sum of the number of events of all

signal modes reconstructed by the simulation for the A(C) sample weighted using

the measured branching ratios Bj for the observed modes and the theoretical ex-

pectations for the not yet observed ones. Table 11.1 reports the coefficients cj for

all signal modes. We repeated the central fit weighting the signal fractions of C

subsample using the coefficients in tab. 11.1. The resulting systematic uncertainty

is the difference between the results obtained in such a way and the central results.

11.4.2 Efficiency corrections

The relative kinematic efficiency ratios (see sec. 9.1.2) used to convert the ratios

of event yields in ratios of branching fractions, were determined within O(1.5%)

statistical uncertainties. However these results are not perfectly in agreement with

the ones obtained in previous works Refs. [122, 88]. While this is crucial for an

high precision branching ratio measurement, for the search of the rare modes B0
s →

π+π− and B0 → K+K− these effects are swamped by the statistical uncertainties.

Therefore we assign a relative uncertainty on our relative efficiency corrections of
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mode cj

B0 → π+π− 1.001

B0 → K+π− 0.999

B
0 → K−π+ 1.001

B0 → K+K− 1.008

B0
s → π+π− 0.997

B0
s → K−π+ 1.003

B
0
s → K+π− 1.000

B0
s → K+K− 1.008

Λ0
b → pπ− 0.977

Λ
0
b → pπ+ 0.982

Λ0
b → pK− 0.960

Λ
0
b → pK+ 0.967

Table 11.1: Relative factors cj from simulation. See text.

4.2% which is the difference of the new corrections estimated in sec. 9.1.2 and the

old ones as reported in Refs. [122, 88]. We re-evaluated each ratio of branching

fractions by using acceptance corrections fluctuated by one standard deviation in

either direction. The difference between the resulting branching fraction and the

central result was taken as systematic uncertainty. See tabs. 11.2–11.3.

11.4.3 B-isolation efficiency (B-isol.)

The efficiency of the isolation requirement was measured from data (see sec. 9.1.3)

with an uncertainty ≈ 2.8% and it contributes to a systematic uncertainty on the

measurements of ratios of branching fractions between B0
s and B0 decays. We re-

evaluated the ratios of branching fractions after fluctuating the relative isolation

efficiency by one standard deviation in either directions. The difference between

the resulting branching fraction and the central result was used as systematic un-

certainty. See tabs. 11.2–11.3.

11.5 Lifetime-related systematic effects

11.5.1 Nominal b-hadrons lifetimes (B0
(s) lifetime)

The selection of the samples used in this analysis relies on cuts on the impact

parameter (d0) of both tracks and on the transverse decay length of the B candidate

(LT). Therefore we assessed a systematic uncertainty due to the experimental

uncertainty of the B0 and B0
s lifetime. This affects also the estimate of cτ(B0

s →
K+K−) and cτ(B0

s → π+π−) since they were extracted from Γd and ∆Γs/Γs in the

central analysis (see sec. 4.1). The additional systematics due to the uncertainty on



198 Chapter 11. Systematic uncertainties

∆Γs/Γs was evaluated separately in sec. 11.5.2.

To evaluate the systematic uncertainty we generated two simulated samples,

one where the B0 lifetime is increased by a factor 1σ [51] (cτ(B0) = 457.2 + 2.7 =

459.9 µm) and the B0
s lifetime is decreased by a factor 1σ [51] (cτ(B0

s ) = 441− 8 =

433 µm) and another one where the B0 lifetime is decreased by a factor 1σ [51]

(cτ(B0) = 457.2− 2.7 = 454.5 µm) and the B0
s lifetime is increased by a factor 1σ

[51] (cτ(B0) = 441 + 8 = 449 µm). We re-evaluated the efficiency correction factors

by using these modified simulated samples. The largest difference between the

resulting branching fraction obtained and the central result was used as systematic

uncertainty. See tabs. 11.2–11.3.

11.5.2 ∆Γs/Γs

The measurements involving the B0
s → K+K− and B0

s → π+π− decays suffer from

the additional systematic uncertainty due to the limited experimental and theoret-

ical knowledge of ∆Γs/Γs. To quote the results in the central analysis we used the

value ∆Γs/Γs = 0.092+0.051
−0.054 [51]. Such uncertainty introduces an uncertainty of

±11 µm in cτ(B0
s → K+K−) and cτ(B0

s → π+π−). We re-evaluated the efficiency

correction factors by using additional simulated samples in which we fluctuated

the lifetime of the B0
s → K+K− and B0

s → π+π− modes by one standard devi-

ation in either direction (cτ(B0
s → K+K−) = cτ(B0

s → π+π−) = 448 µm and

cτ(B0
s → K+K−) = cτ(B0

s → π+π−) = 426 µm). The difference between the re-

sulting branching fraction obtained and the central result was used as systematic

uncertainty. See tabs. 11.2–11.3.

11.6 Other systematic uncertainties

11.6.1 Fit Bias

From tab. 8.7 we observed that the relative fraction and the raw yield of B0 →
K+K− decay mode is biased toward positive values. We accounted for this bias

assessing an additional systematic uncertainty, which is equal to the size of the bias.

11.6.2 Charge asymmetry correction (charge asymmetry)

The efficiency ratios ε(B0→K+π−)

ε(B
0→K−π+)

= ε(B
0
s→K+π−)

ε(B0
s→K−π+)

,
ε(Λ0

b→pπ
−)

ε(Λ
0
b→pπ+)

and
ε(Λ0

b→pK
−)

ε(Λ
0
b→pK+)

were

measured with real data (see sec. 10.1) with a total uncertainty ≈ 0.3% for B0 and

B0
s and ≈ 2% for Λ0

b . They contribute to a systematic uncertainty on the related

CP-asymmetry measurements.

We re-evaluated the CP related measurements after fluctuating this efficiency

ratio by one standard deviation in either direction. The difference between the re-

sulting branching fraction and the central result was used as systematic uncertainty.
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See tabs. 11.4–11.2.

11.6.3 Λb polarization

In the central fit we assumed no polarization for the Λ0
b . In case that hadroproduced

Λ0
b have non–zero polarization, the kinematics of the decay modes would change.

This would induce some change in the fit results in consequence of the inaccuracy

of parameterizations of the kinematics templates. In the non relativistic worst–case

the angular distribution of a final state particle from decays of fully polarized Λ0
b is:

dN

d cos (θ∗)
∝ 1± cos (θ∗)

where θ∗ is the polar angle in the center–of–mass reference frame. The ± choice

depends on whether the baryons are positively or negatively polarized. In such

case, the global efficiency of reconstructing Λ0
b → pπ− and Λ0

b → pK− decay modes

will be affected of about 1%. However the effect on fit results might be larger

since the kinematic variable β is a direct function of θ∗ and its distribution strongly

depends on θ∗ as shown in fig. 11.7. In order to assess a systematic uncertainty

due to the possible effects of polarization, we refit the data, allowing for fractions of

positively and negatively polarized Λ0
b → pπ− and Λ0

b → pK−. In this fit we used

the kinematic distributions obtained reweighting the Monte Carlo distributions for

a factor 1 + cos (θ∗) to parameterize the momentum probability density function of

Λ0
b ℘

p
P+

(β, ptot). The same procedure was used for the negative polarization case

to obtain ℘pP−(β, ptot). We introduced in the fit an additional floating parameter

P taking into account the polarization model. The kinematic probability density

function ℘ of the Λ0
b decay modes changes accordingly:

℘p(β, ptot)→ ℘p(β, ptot)
′ = P × ℘pP+

(β, ptot) + (1− P)× ℘pP−(β, ptot)

The fit results show no evidence for polarized Λ0
b decay modes, with the current sen-

sitivity: P = 0.60± 0.07 to be compared to P = 0.5 in case of unpolarized baryons,

and P = 0.55 ± 0.18 [37] given by a subsample of the current data corresponding

to 1 fb−1. The measured relative branching ratios vary very little with respect to

the central fit. The differences between the central fit results and the fit with the

polarization parameter were quoted as systematic uncertainties.

11.7 Total systematic uncertainties

A synopsis of all the systematic uncertainties is reported in tabs. 11.2–11.3. The to-

tal systematic uncertainty on each measurement has been determined as the sum in

quadrature of the single systematic uncertainties. When the systematic uncertainty

is asymmetric, the largest value has been used in the squared sum.
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Figure 11.7: β distributions of simulated Λ0
b → pπ− (a), Λ

0
b → pπ+ (b), Λ0

b → pK−

(c) and Λ
0
b → pK+ (d) reweighted for 1 + cos θ∗ (red line) and 1− cos θ∗ (blue line).
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source B(B0→K+K−)
B(B0→K+π−)

fs
fd
× B(B0

s→π+π−)
B(B0→K+π−)

Charge asymm. of momentum p.d.f 0.0001 0.0001

Combinatorial back. momentum p.d.f 0.0013 0.0002

Physics back. momentum p.d.f 0.0006 0.

Combinatorial back. mass p.d.f. 0.0001 0.0001

Physics back. mass p.d.f 0.0022 0.0003

Particle Identification model 0.0039 0.0008

pT(Λ0
b) spectrum 0.0006 0.0001

Efficiency corrections 0.0005 0.0004

Triggers relative efficiency 0.0005 0.0001

B-isol. − 0.0002

∆Γs/Γs − 0.

Nominal b-hadrons lifetimes − 0.0001

Nominal b-hadrons masses 0.0005 0.0002

fit bias 0.0014 −

TOTAL 0.005 0.001

Table 11.2: Summary of the systematic uncertainties.
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source N (B0 → K+K−) N (B0
s → π+π−)

Charge asymm. of momentum p.d.f 1 1

Combinatorial back. momentum p.d.f 13 2

Physics back. momentum p.d.f 7 1

Combinatorial back. mass p.d.f. 1 1

Physics back. mass p.d.f 23 3

Particle Identification model 29 10

pT(Λ0
b) spectrum 6 1

Triggers relative efficiency 5 1

Nominal b-hadrons masses 5 3

Fit bias 11 −

TOTAL 42 11

Table 11.3: Summary of the systematic uncertainties for the yield measurements of

rare modes.
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source ACP (B0 → K+π−) ACP (B0
s → K−π+)

Charge asymm. of momentum p.d.f 0.0011 0.0025

Signal momentum p.d.f. 0.0013 0.0043

Combinatorial back. momentum p.d.f 0.0004 0.0072

Physics back. momentum p.d.f 0.0008 0.0002

Signal mass p.d.f. 0.0002 0.0066

Combinatorial back. mass p.d.f. <0.0001 0.0001

Physics back. mass p.d.f 0.0001 0.0006

Particle Identification model 0.0023 0.0066

Charge asymmetry 0.0018 0.0018

Triggers relative efficiency 0.0003 0.0083

Nominal b-hadrons masses 0.0001 0.0049

pT(Λ0
b) spectrum 0.0001 0.0010

Λ0
b polarization <0.0001 0.0027

TOTAL 0.004 0.016

STAT 0.013 0.073

Table 11.4: Summary of the systematic uncertainties of B–mesons ACPs.
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source ACP (Λ0
b → pπ−) ACP (Λ0

b → pK−)

Charge asymm. of momentum p.d.f 0.0009 0.0022

Signal momentum p.d.f. 0.0054 0.0103

Combinatorial back. momentum p.d.f 0.0257 0.0065

Physics back. momentum p.d.f 0.0003 0.0004

Signal mass p.d.f. 0.0018 0.0006

Combinatorial back. mass p.d.f. <0.0001 <0.0001

Physics back. mass p.d.f 0.0005 0.0001

Particle Identification model 0.0040 0.0046

Charge asymmetry 0.0073 0.0097

Triggers relative efficiency 0.0004 0.0034

Nominal b-hadrons masses 0.0007 0.0008

pT(Λ0
b) spectrum 0.0052 0.0021

Λ0
b polarization 0.0089 0.0364

TOTAL 0.030 0.040

STAT 0.074 0.080

Table 11.5: Summary of the systematic uncertainties for ACP (Λ0
b → pπ−) and

ACP (Λ0
b → pK−).
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11.8 Significance of rare modes signals

In the present work of thesis we searched for the annihilation decay modes B0 →
K+K− and B0

s → π+π−still unobserved at the time of the analysis. A correct eval-

uation of the significance of our results is crucial, because the statistical resolution

and the systematics uncertainties is at a level of precision never before achieved

for these measurements. We will quote the significance combining statistical and

systematic uncertainties.

11.8.1 Test of significance

A test of the current best theory H0 in favor of an alternative theory Hm, where m

indicates the free parameters of the new theory (for example, branching fractions),

is specified by defining the set of values of the experimental observables X that

will make us decide that H0 must be rejected (“critical region”); the significance

level of the test, indicated by α, is the probability of rejecting H0 when it is indeed

true. α is the probability for X to fall within the critical region, calculated under

the assumption that H0 is true. In the present thesis the significance level α is

measured in Gaussian equivalent units (nσ where n = 1, 2, 3, ...). The notation

α = nσ correspond to nσ single tail of a Gaussian distribution:

α =
1√
2πσ

∫ +∞

nσ
e−

1
2
t2

σ2 dt. (11.3)

The common practice for claiming new physics discoveries is to require α larger than

5σ, while only a significance of 3σ must be achieved for claiming a signal evidence.

11.8.2 Evaluation of significance

A first estimation of the significance of the B0 → K+K− and B0
s → π+π− results

is done by performing additional fits of composition on real data. For each rare

mode (B0 → K+K−, B0
s → π+π−) we repeated the fit by fixing its relative fraction

to zero. Table 11.6 reports the values of −2 ln(L ) of each fit and its difference

−2∆ ln(L ), referred as Likelihood Ratio, with the central fit performed with all

relative fractions of rare modes free to vary. Since the distribution of statistical un-

fit −2 ln(L ) −2∆ ln(L ) α

central fit -69430.6 0 −
fB0→K+K− = 0 -69423.8 6.8 2.6σ

fB0
s→π+π− = 0 -69413.3 17.3 4.2σ

Table 11.6: Significance of rare modes computed by performing additional fits of

composition on real data. For B0 → K+K− and B0
s → π+π− decay mode we

repeated the fit by fixing its relative fraction to zero.
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certainty for each fit parameter is distributed very closely as a Gaussian distribution

(see sec. 8.6) the distribution of −2∆ ln(L ) is distributed with good approximation

as a χ2 distribution with 1 degree of freedom. In fact, for sufficiently regular Likeli-

hoods and in the asymptotic limit, the quantity −2∆ ln(L ) between two Maximum

Likelihood estimators with a difference n in dimensionality, is distributed as a χ2

with n degrees of freedom. Table 11.6 reports the significance values found for each

rare mode and the relative values for−2 ln(L ) and the Likelihood Ratio−2∆ ln(L ).

Significance value for B0
s → π+π− is found equal to 4.2σ, larger than 3σ commonly

required to claim an evidence of a new signal, while for B0 → K+K− is equal to

2.6σ. We verified that the distribution of the Likelihood Ratio −2∆ ln(L ) for each

rare mode is regular for values comparable with those reported in the third column

of tab. 11.6. We generated about 500 pseudo-experiments for each fit of composition

reported in tab. 11.6 and fig. 11.8 shows the distribution of −2∆ ln(L ). The limited

number of pseudo-experiments allows to explore only regions close approximately to

significances of 3σ. Higher significance values are hard to explore, since they require

a large computing time considering such a sophisticated maximum Likelihood fit.
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Figure 11.8: Likelihood Ratio distribution for B0 → K+K− (a) and B0
s → π+π−

(b) mode obtained from an ensemble of 500 pseudo-experiments. The red arrow

in the B0 → K+K− (a) plot shows the value of the Likelihood Ratio −2∆ ln(L )

determined with data (see third column of tab. 11.6).

In fig. 11.9 we report the PR distribution obtained by the two fits where the

B0
s → π+π− and B0 → K+K− contributions were fixed to zero. The result-

ing histogram is very similar, but not identical, to the PR histograms of all the

other contributions except the B0
s → π+π−(B0 → K+K−) signal already shown in

fig. 8.10. For the B0
s → π+π− plot on the top, it is evident how the large value of

−2∆ ln(L ) is actually driven by the excess in the two last bins, exactly where the

B0
s → π+π− signal is expected to show up.
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Figure 11.9: Distribution of the probability ratio (PR) of the fits where the B0
s →

π+π− (right) and the B0 → K+K− (left) have been fixed to 0, to give a rough

visualization of the significance of the results. The points with the error bars show

the distribution obtained on the fitted data sample while the histogram shows the

distributions obtained by generating signals and background events directly from

the total p.d.f.s of the fit of composition.

The method described above to quote the significance is a standard technique,

however it does not keep into account the systematic uncertainty in quoting the

significance value. For this reason we used also an other approach, which combines

statistical and systematic uncertainty of each measurement, to evaluate the signif-

icance. From the statistical point of view this approach is equivalent to the one

described above.

The statistical uncertainty to evaluate the significance in this new approach was

estimated using an ensemble of 500 pseudo-experiments in which no contribution

from the rare signals B0 → K+K− and B0
s → π+π− was generated, while the rela-

tive fraction of all rare modes was left free to vary in each fit of composition. Figure

11.10 shows the distributions of yield determined by the fits of pseudo-experiments.

The distributions were fitted with a Gaussian distribution. The mean is centered

at zero within the fit resolution while the width is the statistical uncertainty on

the yield measurement (σstat .0 ) with the hypothesis of no rare signal modes in our

sample. If N is the yield measured on real data with the complete analysis, σstat .N

is its statistical uncertainty and σsyst .N is its systematic uncertainty (we assume the

systematic uncertainty is distributed as a Gaussian) we evaluated the significance,

in Gaussian equivalent σ, in the following way:

α =
N√

(σstat .0 )2 + (σsyst .N )2
σ. (11.4)



208 Chapter 11. Systematic uncertainties

Table 11.7 reports (last column) the significance values obtained using this approach

that combines statistical and systematic uncertainty. Table 11.7 also reports the

values of σstat .0 extracted from the pseudo-experiments with no contributions due

to the rare signals and the measurement of yield N ± σstat .N ± σsyst .N for each rare

signal modes performed in the present analysis. We obtained a significance for

B0 → K+K− and B0
s → π+π− of 2.0σ and 3.7σ respectively.
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Figure 11.10: Distribution of the number of events for B0 → K+K− (a) and B0
s →

π+π− (b) mode. We used an ensemble of 500 pseudo-experiments in which no

contribution from rare signal modes was generated while the relative fraction of all

the rare modes was left free to vary in each fit of composition.

mode N ± σstat .N ± σsyst .N σstat .0 α

B0 → K+K− 120± 49± 42 44 2.0σ

B0
s → π+π− 94± 28± 11 23 3.7σ

Table 11.7: Significance of the rare modes. The significance was estimated by

combining the statistical uncertainty on the measurement of each rare mode using

an ensemble of pseudo-experiments with no contributions from rare signal modes

σstat .0 and the systematic uncertainty σsyst .N . See text for details.

After evaluating the significance, we have now all the ingredients to report the

measurements and to comment the results in next chap. 12.



Chapter 12

Results and conclusions

This chapter reports the results of this work and contains a brief discussion on their

impact on the theoretical framework. It also summarizes the current experimental

status.

12.1 Final results

In the present analysis we searched for the pure annihilation decay modes B0 →
K+K− and B0

s → π+π−, and we measured the direct CP violation in the B0 →
K+π−, B0

s → K−π+, Λ0
b → pπ−, and Λ0

b → pK− decay modes.

Using a sample corresponding to 6.11 fb−1 of integrated luminosity, the efficiency-

corrected fit results from chap. 9 and the systematics uncertainties from chap. 11 we

obtain measurements of the two annihilation decays with a level of precision never

achieved before. They correspond to the first evidence for the B0
s → π+π− decay

modes, and the most precise measurement of the B(B0 → K+K−) at the time of

the analysis. The results are summarized in tab. 12.1.

Mode N Quantity Measurement B(10−6)

B0 → K+K− 120 ± 49 ± 42
B(B0→K+K−)

B(B0→K+π−)
0.012 ± 0.005 ± 0.005 0.23 ± 0.10 ± 0.10

B0
s → π+π− 94 ± 28 ± 11 fs

fd
× B(B0

s→π
+π−)

B(B0→K+π−)
0.008 ± 0.002 ± 0.001 0.57 ± 0.15 ± 0.10

Table 12.1: Branching fractions. Absolute branching fractions are normalized to the

world–average values B(B0 → K+π−) = (19.4± 0.6)× 10−6 and fs = (11.3± 1.3)%

and fd = (40.1± 1.3)% [51]. N is the CP–averaged number of fitted events for each

mode.

Using a sample corresponding to 9.3 fb−1, the charge-asymmetries corrected fit

results from chap. 10 and the systematics uncertainties from chap. 11, we obtain

measurements of the CP violations in B → h+h
′− decays summarized in tab. 12.2.

In the next sections we discuss in detail each measurement, and we compare it

with the theoretical expectations.

209
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Mode N Quantity Measurement

B0 → K+π− 6348 ± 117
B(B

0→K−π+)−B(B0→K+π−)

B(B
0→K−π+)+B(B0→K+π−)

−0.083 ± 0.013 ± 0.004

B
0 → K−π+ 5313 ± 109

B0
s → K−π+ 354 ± 46

B(B
0
s→K

+π−)−B(B0
s→K

−π+)

B(B
0
s→K+π−)+B(B0

s→K−π+)
+0.22 ± 0.07 ± 0.02

B
0
s → K+π− 560 ± 51

Λ0
b → pπ− 242 ± 24

B(Λ0
b→pπ

−)−B(Λ
0
b→pπ

+)

B(Λ0
b
→pπ−)+B(Λ

0
b→pπ+)

+0.06 ± 0.07 ± 0.03

Λ
0
b → pπ+ 206 ± 23

Λ0
b → pK− 271 ± 30

B(Λ0
b→pK

−)−B(Λ
0
b→pK

+)

B(Λ0
b
→pK−)+B(Λ

0
b→pK+)

−0.10 ± 0.08 ± 0.04

Λ
0
b → pK+ 324 ± 31

Table 12.2: Direct CP asymmetries. The first quoted uncertainty is statistical, the

second is systematic. N is the number of fitted events for each mode.

12.2 Annihilation modes results

The B0
s → π+π− and the B0 → K+K− proceed only via annihilation diagrams.

Thus a branching ratio at the level of 10−7 or less is generally expected. Actually,

our B0
s → π+π− result favors a larger annihilation scenario, which is somewhat

unexpected, in particular in QCDF calculations. Thus our measurements prompted

an intense work of revisiting the calculations. In addition, after our results have been

made public in May 2011, LHCb showed the first observation of the B0
s → π+π−

decay modes with a value of B(B0
s → π+π−) = (0.98+0.23

−0.19 (stat .) ± 0.11 (syst .)) ×
10−6, with a significance of more than 5σ[65], favoring an even larger annihilation

scenario. In the following we will discuss our results and we compare them with

theoretical predictions.

12.2.1 B0
s → π+π−

We report the first evidence of the pure-annihilation B0
s → π+π− decay mode, using

a data sample corresponding to 6 fb−1, with a yield of

N (B0
s → π+π−) = 94± 28 (stat .) ± 11 (syst .)

events, corresponding to a significance of 3.7σ. Using the ratio fs/fd of the pro-

duction fractions between B0
s and B0 from the hadronization of a b-quark in pp̄

collision we obtain the measurement of relative branching fraction:

fs
fd
× B(B0

s → π+π−)

B(B0 → K+π−)
= 0.008± 0.002 (stat .) ± 0.001 (syst .). (12.1)

By normalizing the above result to the B0 → K+π− branching fraction by using the

world-average value B(B0 → K+π−) = (19.4 ± 0.6) × 10−6 [51], and by assuming

for fs/fd the world-average value from pp̄ and e+e− collisions, fs = (11.3 ± 1.3)%,

fd = (40.1 ± 1.3)% [51], we obtain the following results for the absolute branching
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fraction:

B(B0
s → π+π−) = (0.57± 0.15 (stat.)± 0.10 (syst.))× 10−6. (12.2)

This result corresponds to an improvement in the uncertainty by a factor 2 with re-

spect to of the previous best measurement, coming from the previous version of this

analysis B(B0
s → π+π−) = (0.52 ± 0.29 (stat .)± 0.38 (syst .))×10−6[42]. The im-

proved resolution is due to about ×3 statistical increment and to the improvements

described during this work of thesis.

Our result favors a large annihilation scenario, which is somewhat unexpected in

some QCDF calculations, while our central value is in agreement with the expecta-

tions from several calculations available from pQCD or different QCDF approaches.

Within the pQCD approach, Ali et al. predict B(B0
s → π+π−) = (0.57+0.18

−0.16) ×
10−6 [57]; in the same approach Li, Lu, Xiao, and Yu calculate B(B0

s → π+π−) =

(0.42 ± 0.06) × 10−6, but with Sudakov resummation, and including contributions

from electroweak and QCD penguin amplitudes [58]. After our results have been

published, the pQCD calculations were revisited. Xiao et al. predict B(B0
s → π+π−)

= (0.51+0.20+0.03+0.10+0.03
−0.17−0.02−0.08−0.02)×10−6 [127]. In the same paper it has also been shown

that the differences in the predictions from different pQCD approaches are due

to slightly different input parameters on the calculations, but all the predictions

are consistent with the experimental results. It is also possible to calculate the

B0
s → π+π− and the B0 → K+K− decay modes simultaneously, both in accord

with the experimental results. Lastly, Xiao shows also how it is possible to calculate

simultaneously the ACP (B0
s → π+π−) and ACP (B0 → K+K−). While ACP (B0

s →
π+π−) is predicted to be too small (about 2%) to be detected at LHCb or CDF,

the ACP (B0 → K+K−) should be relatively large (order 19%).

The QCDF approach faces problems in this calculation due to end point sin-

gularities, that are parameterized in different ways. Thus the theoretical expres-

sions are complicated and depend on many input parameters including the SM

parameters (such as CKM matrix elements, quark masses), Wilson coefficients and

the renormalization scales, and some soft and nonperturbative hadronic quantities

(such as meson decay constants, form factors, and meson light cone distribution

amplitudes). This leads in general to large theoretical uncertainties. Beneke and

Neubert, using QCDF, predict values smaller with respect to the pQCD approach,

B(B0
s → π+π−) = (0.024+0.165

−0.024)× 10−6 [7], in agreement with Yang et al., that also

used QCDF but with a different solution to avoid end-point divergences, obtaining

B(B0
s → π+π−) = (0.124± 0.028)× 10−6 [54].

It can be noted as several approaches based on QCDF, with different parameter-

ization inputs, predict different central values (B(B0
s → π+π−) = (0.26+0.01

−0.09)×10−6

[55] or B(B0
s → π+π−) = 0.022× 10−6 [56]). From the comparison with our results

it is possible to observe how in the QCDF approach the predicted branching frac-

tions are systematically below the measurements. Thus our results prompted an

intense work, causing a revisit of the QCD factorization calculations. New calcula-
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tions by Chang et al. [128] show how it is possible to accommodate the predictions

to the experimental results varying the input parameters, but it is then hard to

give a consistent QCDF representation for the B(B0
s → π+π−) and simultaneously

other well measured B0
d and B0

s decays into pseudoscalars (such as B0
s → K+K−

measurements). Figure 12.1 (courtesy from Prof. Chang Qin, based on [128]) gives

a pictorial representations of the constraints given by different measurements on

the theoretical input parameters. In particular, fig. 12.1 shows how large annihi-
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Figure 12.1: The allowed regions for the annihilation parameters φPPs,d and ρPPs,d (from

eq. (1.34)) under the constraints from the observables labeled in figures, respectively.

The value B(B0
s → π+π−) = 0.73± 0.14× 10−6, average between LHCb and CDF

measurements, was used. Courtesy from Prof. Chang Qin, based on [128].

lation scenarios can be obtained allowing a value of ρPPs ≈ 2 for the annihilation

parameter introduced in eq. (1.34), but this value is strongly disfavored by other

well measured B, and it is different from the value ρPPs ≈ 1 adapted in literature.

Same conclusions are obtained by Zhu in [129]. Since the more recent LHCb result

B(B0
s → π+π−) = (0.95+0.21

−0.17 (stat .)±0.13 (syst .))×10−6 is even larger, although in

agreement with our results, the tension is further increased, which may imply that

the parameters (such as ρPPs ) used in the calculations are non-universal in B0
d and

B0
s decays. If so, the predictive power of the QCD factorization method may be

rather limited for many decay channels. Further refined measurements and theo-

retical studies are so needed to understand the cause of this issue. Finally, fig. 12.2

show the comparison between experimental results and theoretical predictions that

have appeared afterwards.

12.2.2 B0 → K+K−

The presence of a large BR(B0
s → π+π−) leads to expect a large BR also for the

related channel B0 → K+K−. Although the significance for this channel is limited

(2σ), it is meaningful to extract an estimate for the central value of its BR. We
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Figure 12.2: Comparison of different experimental results and theoretical calcula-

tions for B(B0
s → π+π−): Xiao calculation B(B0

s → π+π−) = (0.51+0.23
−0.19)×10−6

[127] in yellow, one of the possible calculation from Chang B(B0
s → π+π−) =

(0.50+0.11
−0.10)×10−6 [128] in gray.

report a measurement of the pure-annihilation B0 → K+K− decay mode, using a

sample corresponding to 6 fb−1, with a yield of

N (B0 → K+K−) = 120± 49 (stat .) ± 42 (syst .)

events, corresponding to a significance of 2.0σ. We obtain the measurement of

relative branching fraction:

B(B0 → K+K−)

B(B0 → K+π−)
= 0.012± 0.005 (stat .) ± 0.005 (syst .). (12.3)

By normalizing the above result to the world-average value B(B0 → K+π−) =

(19.4± 0.6)× 10−6 [51], we obtain the following absolute branching fraction:

B(B0 → K+K−) = (0.23± 0.10 (stat.)± 0.10 (syst.))× 10−6. (12.4)

The precision of our result is better than the current measurements.

B(B0 → K+K−) =

{
(0.04± 0.15 (stat .)± 0.08 (syst .))× 10−6 BaBar (227M BB̄) [38]

(0.09+0.18
−0.13 (stat .)± 0.01 (syst .))× 10−6 Belle (449M BB̄) [130]

It supersedes our previous CDF result B(B0 → K+K−) = (0.39 ± 0.16 (stat .) ±
0.12 (syst .))× 10−6 [42] on 1fb−1 of integrated luminosity.

Also, we set a frequentist upper limit (or confidence interval) on the correspond-

ing branching fraction based on Gaussian distributions of the fit pulls (see fig. 8.8)

and the Likelihood-Ratio (LR) ordering, following Ref. [131]. Systematic uncertain-

ties were added in quadrature to the statistical uncertainty for a proper inclusion of

systematic effects in the extraction of the upper limit. The resulting 90% confidence

level (CL) interval on the branching fraction of B0 → K+K− mode is:

[0.05, 0.46] · 10−6 @ 90% CL. (12.5)
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Figure 12.3: Comparison of different experimental results and theoretical calcu-

lations for B(B0 → K+K−): Xiao calculation B(B0 → K+K−) = (0.156)×10−6

[127], black line, and Zhu calculation B(B0 → K+K−) = (0.20)×10−6 [129], red

line.

The upper bound of this result represents an improvement of approximately 35%

with respect to the upper limit, coming from the previous version of this analysis

B(B0 → K+K−) < 0.7×10−6 at 90% CL [42]. It is better than BaBar upper limit,

B(B0 → K+K−) < 0.50 × 10−6 at 90% CL [38], and very close to the Belle one

B(B0 → K+K−) < 0.41× 10−6 at 90%CL [130].

As for the B0
s → π+π− decay mode, the QCDF approach has large theoretical

uncertainties but the central values predicted are generally below our measurement.

Beneke and Neubert, using QCDF, predict B(B0 → K+K−) = (0.013+0.087
−0.013)×10−6

[7], while Cheng et al. with different input parameters obtain B(B0 → K+K−) =

(0.10± 0.04)× 10−6 [55], in agreement with our result.

Following our results, pQCD calculations were revisited, finding B(B0 → K+K−) =

0.156× 10−6 [127]. As for the B0
s → π+π− recent calculations from the QCDF ap-

proach are able to accomodate the discrepancies between previous predictions and

measurements, but using different input parameter from the ones adapted in lit-

erature. However, the allowed regions in fig. 12.1 show that the tension between

ρPPd = 1 from eq. (1.34) adopted in literature and the one given by the constraint

is stronger in the B0
s → π+π− case with respect to the B0 → K+K− case. This

suggests that more precise measurements are needed.

After our results have been made public in May 2011, LHCb reported a measure-

ment of B(B0 → K+K−) = (0.11+0.05
−0.04±0.06)×10−6[65], confirming a non negligible

annihilation scenario. It should therefore be possible to measure this decay with

increased precision with the increased statistics presently available at LHCb.
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12.3 ACP results

The study of the time-integrated CP asymmetries in the B → h+h
′− decay modes

is one of the goal of this thesis. The heavy flavor sector has not yet been fully

covered by experiments so far, thus new measurements can reveal the presence of

sources of CP violation beyond the SM. In fact, during the writing of this thesis, first

LHCb[119] and then CDF[120] reported hints of unexpectedly large violation in the

charm sector, prompting theoretical work to understand the consequence of these

results. So today is the appropriate time for a more intensive and more accurate

study of the less known B0
s and Λ0

b sector, where new surprises can be hidden. Using

the fit results from sec. 8.3, the efficiency corrections from sec. 9.1 and the systematic

uncertainties from sec. 11.7 we obtain the measurements of time-integrated direct

CP asymmetries of two-body b-hadron decays into charmless, charged pseudo-scalar

mesons at CDF with 9.3 fb−1 of data. Since the size is predicted is small in the

ACP measurements we neglected the possible contributions of the double Cabibbo

suppressed (DCS) decays (such as B0 → K−π+ or B̄0 → K+π−), asymmetries

in the flavor mixing (B0 → B̄0 → K−π+ and B̄0 → B0 → K+π−) and possible

combined effects.

12.3.1 ACP (B0 → K+π−)

We report a measurement of

ACP (B0 → K+π−) = −0.083± 0.013± 0.004, (12.6)

with a significance more than 5σ. The uncertainty of the observed asymmetry is

consistent and of comparable accuracy with recent results from asymmetric e+e−

colliders [64], [35], while LHCb recently reported a more precise measurement [9].
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Figure 12.4: Current measurements of ACP (B0 → K+π−) as reported on HFAG

[47]; the recent LHCb measurement is from Ref. [9]. The yellow band is the resulting

average.

As explained in sec. 1.6.1, the comparison between ACP (B0 → K+π−) and

ACP (B+ → K+π0) is a test to confirm theoretical predictions: due to the isospin
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asymmetry, several authors [6, 45, 46] predicts equal values for the two measure-

ments in the SM. The new experimental measurements ACP (B0 → K+π−) av-

erage confirms the deviation of 5σ order with respect to the CP asymmetry in

ACP (B+ → K+π0) = 0.040 ± 0.021 [47]. Simple extensions of the standard model

could accommodate the discrepancy [48], but uncertainty on the contribution of

higher-order SM amplitudes has prevented a firm conclusion [49].

Recently, Lipkin suggested a way [50] to accommodate this discrepancy within

the SM, taking into account only constraints imposed by the Pauli principle, but

ultimately the question about a possible NP explanation of this discrepancy is still

open. High accuracy measurements of the violation of CP symmetry in charmless

modes remains a very interesting subject of study and may provide useful infor-

mation to our comprehension of this discrepancy. The measurements of direct CP
violation in B0

s → K−π+ decays have been proposed as a test to understand if the

CP violation in the B0 → K+π− origins from NP effects or can be explained just

using SM predictions. In the following section we report the ACP (B0
s → K−π+)

measurement performed during this work of thesis.

12.3.2 ACP (B0
s → K−π+)

Using full CDF II data sample corresponding to 9fb−1, we report a measurement of

ACP (B0
s → K−π+) = +0.22± 0.07 (stat .)± 0.02 (syst .), (12.7)

with a significance of 3σ. This result confirms the first observation reported re-

cently at LHCb ACP (B0
s → K−π+)= 0.27 ± 0.04 (stat .)± 0.01 (syst .) [9]. The

averaged value between this result and LHCb measurement is equal to ACP (B0
s →

K−π+)mean = +0.26 ± 0.04. It is compatible with the pQCD approach predic-

tion ACP (B0
s → K−π+) = +0.241+0.039+0.033+0.023

−0.036−0.030−0.012 [57] and with recent calculations

within the QCD factorization approach [55] ACP (B0
s → K−π+) = 0.207+0.050+0.039

−0.030−0.088.

In the SCET framework a value of ACP (B0
s → K−π+) = 0.20± 0.17 ± 0.19 ± 0.05

is obtained, with large theoretical uncertainties. The LHCb and CDF measure-

ments are the first ACP measurements in charmless B0
s decays, and represent a

large step forward in our knowledge of these decay modes. The ACP (B0
s → K−π+)

measurement can be used to perform test of the Standard Model, such as the com-

parison between ACP (B0
s → K−π+) and Adir

CP (B0 → π+π−), the direct CP asym-

metry in B0 → π+π− decay. Under the assumption of neglecting W-exchange and

penguins annihilations contributing to B0
(s) → h+h

′− decays the decay rates and

CP -asymmetries in the B0
s → K−π+ and B0 → π+π− are related by the SU(3)

symmetry. In this limit the SM predict:

ACP (B0
s → K−π+) = Adir

CP (B0 → π+π−). (12.8)
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In these assumptions, deviations from this relation are expected to be due to U-spin

symmetry breaking. The current experimental results are:

Adir
CP(B0 → π+π−) =


+0.33± 0.06 (stat .)± 0.03 (syst .) Belle [124]

+0.21± 0.09 (stat .)± 0.02 (syst .) BaBar [125]

+0.11± 0.21 (stat .)± 0.03 (syst .) LHCb [126].

(12.9)

The three measurements are in agreement at about 1σ level, and are also in agree-

ment with the averaged value of ACP (B0
s → K−π+)= 0.24±0.05. Actually, in view

of the results obtained in this thesis for B(B0
s → π+π−) and B(B0 → K+K−),

one may need to reconsider the assumption of neglecting W-exchange and pen-

guins annihilations contributions. Still, more precise measurements are possible,

and welcome, at LHCb, where the statistical resolution is still the dominant source

of uncertainty.

In conclusion, we performed the ACP (B0
s → K−π+) measurement using the full

CDF II data sample of about 9 fb−1. As far as today, the limiting factor in the

ACP (B0
s → K−π+) measurements for CDF and LHCb is the statistical uncertainty.

While this result is the last for CDF, at LHCb the statistical resolution is expected

to further decrease with the increasing in data taking. While the statistical res-

olution decreases, the improvements in the systematic uncertainties will become

fundamental to perform updated measurements.

Lipkin-Gronau test

As explained in sec. 1.6.2, under simple assumptions the standard model predicts a

simple relationship between ACP (B0
s → K−π+) and ACP (B0 → K+π−):

Γ(B0
s → K−π+)− Γ(B

0
s → K+π−) = Γ(B

0 → K−π+)− Γ(B0 → K+π−),

(12.10)

ACP (B0
s → K−π+) = −ACP (B0 → K+π−)× B(B0 → K+π−)

B(B0
s → K−π+)

× τ(B0
s )

τ(B0)
.

(12.11)

Using the ACP (B0 → K+π−) = −0.086 ± 0.007 average from the experimental

measurements [47], B(B0
s → K−π+) = (5.4 ± 0.6) × 10−6 and B(B0 → K+π−) =

(19.55+0.54
−0.53)×10−6 from [47], τ(B0) = (1.519±0.007)×10−12 and τ(B0

s ) = (1.497±
0.015)× 10−12 from [51], eq. (12.11) predicts:

ACP (B0
s → K−π+)|SM = 0.31± 0.04. (12.12)

which is compatible at about 1σ level with our result. Assuming this relationship

valid only within the SM, a different configuration would be due to the presence of

a different source of CP from NP.
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12.3.3 ACP (Λ0
b → ph−)

Using the full CDF II data sample, we measured

ACP (Λ0
b → pπ−) =

B(Λ0
b → pπ−)− B(Λ

0
b → pπ+)

B(Λ0
b → pπ−) + B(Λ

0
b → pπ+)

= +0.06± 0.07± 0.03

ACP (Λ0
b → pK−) =

B(Λ0
b → pK−)− B(Λ

0
b → pK+)

B(Λ0
b → pK−) + B(Λ

0
b → pK+)

= −0.10± 0.08± 0.04

These measurements were performed using the final CDF data sample; being unique

to CDF, they are the world’s best up to date. The observed asymmetry are con-

sistent with zero. The experimental precision achieved allows for the first time

to investigate the ACP values with uncertainties below the 10% level. Still, the

precision does not allow a conclusive discrimination between the standard model

prediction (8%) and much suppressed values (≈ 0.3%) expected in R–parity vio-

lating supersymmetric scenarios [52]. Recent pQCD calculations [53], with large

theoretical uncertainties, predict a central value of ACP (Λ0
b → pK−)≈ +5%, while

the expected central value for the ACP (Λ0
b → pπ−) is larger, about +30%. The ob-

served asymmetries are consistent with the previous results from CDF in Ref. [37]

and supersedes them.

As for the other B → h+h
′− decay modes, only at LHCb it is possible to

perform high precision direct CP violation measurements in these decay modes. As

far as the statistical resolution will increase, the understanding of all the systematic

uncertainties will be playing a fundamental role in performing the analyses.

12.4 Conclusions

In this thesis I report on several results obtained from an accurate analysis of the

B → h+h
′− data sample:

Annihilation decay modes: using 6 fb−1 of data collected by the CDF exper-

iment, I obtained the first evidence of the B0
s → π+π− decay mode, with

a significance of about 3.7σ, and I performed the most precise measurement

of the Branching Ratio of the B0
d → K+K− decay mode at the time, corre-

sponding to an excess of 2σ level. These measurements have important conse-

quences as discussed in the previous sections: the comparison between these

branching fractions and the theoretical predictions provides unique informa-

tion for tuning the phenomenological models. Our results prompted intense

theoretical work both using pQCD and QCDF approaches to accommodate

the discrepancies between predictions and experimental results.

CP violation: using the full CDF 10 fb−1 of data collected by the CDF ex-

periment, I found evidence of the CP violation of B0
s → Kπ decay mode,
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with a significance of 3σ, confirming the result recently obtained at LHCb. I

also measured the CP asymmetries of the B0
d → Kπ decay modes, in agree-

ment and of comparable resolution with the b-factories experiments, while the

most precise measurement up to date is from LHCb. The precision reached

in the ACP (B0
s → K−π+) measurement gives the possibility to perform in-

teresting checks of the Standard Model predictions, explained in the previous

sections. I also obtained the world’s best measurements of the CP asymmetries

in Λ0
b → pπ and Λ0

b → pK decay modes. These measurements are unique and

represent a step forward in the understanding of the CP violation phenomena

in the relatively unexplored Λ0
b sector.

All the results of this thesis have been approved by the CDF collaboration; the BR

measurements have been published in Phys. Rev. Lett. 108, 211803 (2012) [132],

while the ACP measurements are under internal review for publication.



220 Chapter 12. Results and conclusions



Appendices

221





Appendix A

Parameterization of ℘(β,ptot)

This appendix reports the parameterization of ℘(β,ptot) for the simulated B0 →
K+π− and B

0 → K−π+ decay modes, as an example. The other B → h+h
′− decay

modes have similar parameterizations and were not reported here, not to weight

down the text.

223
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Figure A.1: Templates of the two-dimensianal joint distribution for the B0 → K+π−

decay mode (med). (a) 2-dimensional projection, (b) β projection, (c) ptot projec-

tion, (d)−(k) projections of β in ptot slices.
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Figure A.2: Templates of the two-dimensianal joint distribution for the B0 → K+π−

decay mode (high). (a) 2-dimensional projection, (b) β projection, (c) ptot projec-

tion, (d)−(k) projections of β in ptot slices.
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Figure A.3: Templates of the two-dimensianal joint distribution for the B
0 → K−π+

decay mode (med). (a) 2-dimensional projection, (b) β projection, (c) ptot projec-

tion, (d)−(k) projections of β in ptot slices.
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Figure A.4: Templates of the two-dimensianal joint distribution for the B
0 → K−π+

decay mode (high). (a) 2-dimensional projection, (b) β projection, (c) ptot projec-

tion, (d)−(k) projections of β in ptot slices.
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Appendix B

Check of the dE/dx calibration

We checked that the official CDF dE/dx calibration [133], performed up to about

3 fb−1, can be extended up to 9 fb−1 without compromising the performances in sep-

arating different classes of particles. Thus we applied the calibration following the

standard prescriptions as described in Ref. [133]. We plotted the corrected dE/dx

for pions, kaons and protons as a function of the following macroscopic observables:

run number, number of dE/dx hits, instantaneous luminosity, pseudorapidity, az-

imuthal angle and secance. The distributions for charged pions and kaons coming

from D0 → K−π+ decays are shown in fig. B.1, while those for protons and pions

coming from Λ→ pπ− decays are shown in fig. B.2.

The distributions for XFT-triggered pions, kaons and protons do not show any

relevant issues and are compatible with the same distributions shown in Ref. [133].

We observed some issues only in the calibration of the dE/dx in function of the run

number, in the first periods of data taking, corresponding to the first 400 pb−1 of

data. In this period of time, the performance of the COT was compromised and

the resultant effects are difficult to calibrate, as shown in fig. B.3 and reported in

[133]. In principle, this problem in the calibration can affect the results of the ACP
analysis. Thus we decided to exclude these events form this work of thesis, losing

400 pb−1 of data but gaining in accuracy. After excluding this data, the calibration

is found to be satisfactory. Just some small issues can be however observed for non-

triggered soft pions. The calibration has been done only for triggered tracks, and

some difficulties can raise when it is applied to very low momentum tracks, below

2 GeV/c. For instance we expect that the correction as a function of the secance

does not accurately work for low momentum tracks since it has been done only for

triggered tracks. However this is not a main stopper for the aim of this work, since

we are interested in modeling the dE/dx response only for triggered tracks. The

low momentum pions are a different chapter and are beyond our current scope. We

just expect to get a larger correlation between protons and pions from Λ → pπ−

with respect to that one between pions and kaons from D0 → K−π+ decays.
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Figure B.1: Corrected dE/dx for pions and kaons from D0 → K−π+ decays up to

9 fb−1.
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Figure B.2: Corrected dE/dx for pions and protons from Λ → pπ− decays up to 9

fb−1.
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Figure B.3: dEdx dependence on run number. The yellow box enlighten the COT

compromised runs, where the calibration is not trivial. Fig. from [133]



Appendix C

Search for annihilation modes

C.1 Introduction

We described in detail the analysis of the measurement of the CP asymmetries on

9 fb−1. In this appendix we focus our attention on the analysis of the annihilation

modes, which provided very important results: the first evidence for charmless

annihilation B0
s → π+π− decays, and the first two-sided limit of B(B0 → K+K−).

Even if these measurements have been performed using 6 fb−1, and therefore can

be considered as an intermediate step of the CP analysis, there are some substantial

differences that are worth describing. The annihilation modes analysis is a search

for rare not yet observed decay modes, thus the significance of the results is the

key point of the analysis. Therefore particular attention has been given to the

evaluation of the systematics uncertainties, to the checks of the fit results, and to

the evaluation of the significance itself. In addition, the knowledge gained during

the annihilation mode analysis has been used to increase the accuracy of the CP
violation analysis. Thus some the technical points, explained in the following, are

different in the two analyses.

C.2 Data sample and selection

The analysis of the annihilation decay modes was performed using data collected

between February 2002 (run 138809) and February 2010 (run 289197) by the trigger

on displaced tracks. After the application of standard CDF data-quality require-

ments (see sec. 2.5), the sample size corresponds to an integrated luminosity of

about 6.11 fb−1. The reconstruction of B → h+h
′− candidates is the same as the

one already introduced in sec. 3.3 exploiting the full CDF data sample, and we used

the same cuts selection (as reported in tab. 3.3). This cuts selection was specifically

made to optimize the probability of discovery of the B0
s → K−π+ mode, and have

been proven to be optimal also for the detection of B0
s → π+π−. After the selection,

a total number of about 24,000 events is found, to be compared with about 28,200
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events of the full CDF data sample. This corresponds to a difference in statistics

of a factor about 0.85. The comparison between the mπ+π− distributions of the

candidates for the two samples is shown in fig. C.1.
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Figure C.1: Invariant ππ-mass distribution of the events passing the final selection.

for 6.11 fb−1 sample (a) and 9.3 fb−1 sample (b). Two Gaussians (signal) plus

exponential (combinatoric background, light grey) plus a smeared Argus (physics

background, dark grey) fit function is overlaid.

C.3 Analysis overview

The analysis strategy and the key points of the serch for the rare modes are es-

sentially the same of the analysis described so far: the problem is to disentangle

the different B → h+h
′− decay modes between themselves and between the back-

grounds; this is possible, at statistical level, combining kinematics and PID infor-

mation in a multidimensional likelihood fit. We used simulations and independent

data to obtain the kinematics and PID templates exploited in the Likelihood func-

tion. For the convenience of the reader, we briefly review the strategy flow, and the

few differences between the two analysis.

C.3.1 Simulation

A sample of simulated B → h+h
′− decays is needed to study the kinematics infor-

mation of the different signal components and of the physics background sample,

as explained in detail in chap. 4. We used the official CDF II simulation to produce

these distributions, and we tuned the Monte Carlo distributions to take into account

the known discrepancies with respect to the data. The tunings and the checks are

the same described in sec. 4.2, with the exception of the treatment of the squared
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mass resolution of simulated samples. We recall, as described in sec. 4.2.3, that the

comparison of the invariant mass peaks of the D0 → π+π− and D0 → K−π+ decays

with their relative simulated peaks shows that the simulated square mass width is

a little bit narrower of that observed in data. For the annihilation measurements

we did not inflate the Monte Carlo mass distributions as we did in the CP analysis:

in the fit of composition we simply added a free parameter sm which is a global

scale factor of mass templates described in sec. 6.1.1. We refined the technique in

the analysis of the CP asymmetries because we needed a higher level of accuracy.

Actually, the main difference is that the free parameter sm takes into account only

the bulk of the m2
ππ signal distributions and not the tails due to the FSR, while the

global enlargement m2
ππ → (m2

ππ −m2)/s is able to modify the whole distribution.

The two techniques are found to be in very good agreement.

To check the correctness of the method using a free parameter in the fit, a

posteriori we verified that the value returned by the fit, ŝm = 1.094± 0.015, was in

agreement with the ratio of the mass widths between the invariant mass peaks of the

D0 → h+h
′− decays for data and for simulation. Table C.1 reports the values of the

widths we estimated performing a simple binned Gaussian fit in a small mass range,

while fig. C.2 shows distributions for data and simulation (the fit is superimposed).

mode Data [MeV2/c4] Simulation [MeV2/c4] ratio

D0 → π+π− 34975± 173 32649± 106 ≈ 1.071

D0 → K−π+ 30878± 26 29016± 81 ≈ 1.064

Table C.1: Square mass widths for data and simulation for the D0 → π+π− and

D0 → K−π+ decays.

C.3.2 Fit of composition

The kinematics and PID information (obtained with the same methods described

for the analysis using 9 fb−1) are then combined in a maximum likelihood fit to

disentangle the different decay modes. The kinematics templates for m2
ππ, β, ptot

were obtained using the simulation for the signal components and the physics back-

ground, and using data for the combinatorial background. The PID templates were

obtained from D0 → h+h
′− and Λ→ pπ− independent data samples, with the same

strategy described in chap. 7 for the analysis using 9 fb−1, but with the statistics

available at the time of the work, that is about 6 fb−1. The likelihood structure is

the same described in sec. 5.6, with only a difference on how we treated the p.d.f.

of the physics background mass term.
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Figure C.2: Comparison of square mass resolution between data and simulation

using D0 → π+π− (a,c) and D0 → K−π+ (b,d) decays.

Probability density function of the physics background mass term

For the analysis of the annihilation decay modes in the p.d.f. of the physics back-

ground mass term we let free to float the parameter cA, while we fixed the cut-off

m2
A to the value returned by the one-dimensional fit of the mass shape from the

simulation. Since this is an important point for the extraction of the B0 → K+K−

decay mode, we assessed a very conservative systematic uncertainty on our limited

knowledge of this parameter (see sec. 11.2.6).
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