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Abstract

Carrier Transport and Related Effects in Detectors of the Cryogenic Dark Matter

Search

by

Kyle Michael Sundqvist

Doctor of Philosophy in Physics

and the Designated Emphasis in Nanoscale Science and Engineering

University of California, Berkeley

Professor Bernard Sadoulet, Chair

The Cryogenic Dark Matter Search (CDMS) is searching for weakly-interacting mas-
sive particles (WIMPS), which could explain the dark matter problem in cosmology
and particle physics.

By simultaneously measuring signals from deposited charge and the energy in non-
equilibrium phonons created by particle interactions in intrinsic germanium crystals
at a temperature of 40 mK, a signature response for each event is produced. This
response, combined with phonon pulse-shape information, allows CDMS to actively
discriminate candidate WIMP interactions with nuclei from electromagnetic radioac-
tive background which interacts with electrons.

The challenges associated with these techniques are unique. Carrier scattering
is dominated by the spontaneous emission of Luke-Neganov phonons due to zero-
point fluctuations of the lattice ions. Drift fields are maintained at only a few V/cm,
else these emitted phonons would dominate the phonons of the original interaction.
The dominant systematic issues with CDMS detectors are due to the effects of space
charge accumulation. It has been an open question how space charge accrues, and by
which of several potential recombination and ionization processes.

In this work, we have simulated the transport of electrons and holes in germa-
nium under CDMS conditions. We have implemented both a traditional Monte Carlo
technique based on carrier energy, followed later by a novel Monte Carlo algorithm
with scattering rates defined and sampled by vector momentum. This vector-based
method provides for a full anisotropic simulation of carrier transport including free-
flight acceleration with an anisotropic mass, and anisotropic scattering rates.

With knowledge of steady state carrier dynamics as a function of applied field, the
results of our Monte Carlo simulations allow us to make a wide variety of predictions
for energy dependent processes for both electrons and holes. Such processes include
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carrier capture by charged impurities, neutral impurities, static dipoles, and capture
forming “anion” (D−/A+) states. We also generate predictions for impact ioniza-
tion of shallow impurities and of impact “neutralization” of D−/A+ states. We use
measurements of carrier capture performed on CDMS detectors to validate a plausi-
ble model for electron and hole capture due to neutral shallow impurities and their
charged D−/A+ states. This model, along with carrier drift and diffusion parameters
from Monte Carlo simulation, can be used as the foundation for simulations of space
charge evolution in CDMS detectors, simultaneously solving continuity equations with
Poisson’s equation.
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from a 252Cf neutron calibration source. b. Density plot of electron
recoil events from a 133Ba gamma calibration source. The nuclear recoil
band is clear of any events, once the neutron source is removed. This
illustrates the ionization yield electron recoil rejection power of > 106

for bulk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7 This shows the calibrated ionization collection of 60keV events from
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later seem to recover to some extent. From C. Bailey [3]. . . . . . . 22

1.9 Lateral position dependence of charge collection. a. Charge collection,
in arbitrary units, showing the detector response along the “y” lateral
direction. The position was determined by triangulation of phonon
parameters. b. The same data with a position correction used for
subsequent analysis. This data is zoomed in, and calibrated in units
of initial photon energy. . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Here, we note three distinct categories of potential energy which appear
in Schrödinger’s equation. a. the externally applied potential. b. the
periodic and stationary lattice potential. c. the random scattering
potential. Reproduced from Datta [4]. . . . . . . . . . . . . . . . . . 29

2.2 The multiple valley band structure of germanium. a. the L valleys,
the lowest and dominant conduction band b. the Γ valley c. the X
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2.3 The (idealized) dispersion relation for holes. There are three bands:
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2.4 General categories of scattering processes for both electrons and holes.
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2.5 The phonon dispersion relation for germanium, idealized for a longi-
tudinal branch and a single transverse branch for both acoustic and
optical phonons. a. longitudinal acoustic branch (LA) b. transverse
acoustic branch (TA) c. longitudinal optical branch (LO) d. trans-
verse optical branch (TO) 3. a superimposed dispersion relation for
parabolic electrons (plotting the corresponding k vector for electrons
– not to scale) f. the Brillouin Zone boundary g. slope for the longi-
tudinal speed of sound h. slope for the transverse speed of sound i.
the optical phonon energy, ~ω0 j. the intervalley phonon energy, ~ωi
k. the transverse acoustic intervalley phonon energy, ~ωit. . . . . . . 47

2.6 There are many labeling systems for deformation potentials throughout
the literature. This figure is a pictorial guide to the indices created for
this work to delineate specific constants. Intervalley phonons, although
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2.7 The directional dependence of the electron acoustic deformation po-
tentials. Here, polar plots represent the square of the deformation
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e,A)2 = (Ξd + Ξu cos2 (θqp))2 b. The combined (TA1 + TA2) squared

transverse deformation potential, (ΞL,t
e,A)2 = (Ξu sin (θqp) cos (θqp))2 . . 54

2.8 Dispersion relations depicting energy conservation for processes involv-
ing acoustic and optical phonons. a. Emission of an acoustic phonon
with energy ~vsq, or emission of an optical phonon with energy ~ω0 b.
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an optical phonon with energy ~ω0 . . . . . . . . . . . . . . . . . . . 59
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xii

2.11 A dispersion relation for holes, assuming isotropy for the light (bottom)
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phonon absorption. a. For mf < mi, which in particular happens to
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which in particular happens to be mf = 1.1mi. We also find a lower
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2.13 Plotting the transcendental function for cosθ for the case of optical
and intervalley phonon absorption. To dramatize the possible range of
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2.14 Plotting the transcendental function for cosθ for the case of optical
and intervalley phonon emission. To dramatize the possible range of
cos θ, kinematic values were chosen that Ek exceeds ~ω0 by a factor of
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b. For mf = mi, c. For mf > mi, which in particular happens to be
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2.15 Total scattering rates used for ELECTRONS at T = 40mK, calculated
under isotropic approximations. a. Conwell-Weisskopf ionized impu-
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3.1 A flow chart representing the traditional Monte Carlo algorithm. Af-
ter initializing a carrier’s position and momentum, a continuous loop of
small time steps chooses a time step based on a random number, incre-
ments momentum according to acceleration, decides whether to scatter
or to free flight, and decides the outcome of any possible scatter. Ev-
ery scatter event requires at least 4 random numbers, as marked. The
system is ergodic, but many such particles may be run independently. 77

3.2 The total sampling rate Γ0 remains constant, but the proportion be-
tween the net physical scattering rate Γ(E) versus self-scatters Γself(E)
may change. For physically meaningful results, Γ(E) must always re-
main less than Γ0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 The selection of the scattering type based on the relative rates. A
random number, r, selects the j-th process. . . . . . . . . . . . . . . . 82

3.4 This figure represents the rejection technique. Random pairs of an
appropriate range are generated. If these trial coordinates are found
to belong to the desired distribution, they are utilized. If not, these
points are rejected and new trial coordinates are generated. . . . . . 84

3.5 Simulating electrons with our new method. a. We have nine vec-
tor components in a three-body interaction. Three are known from
the initial k-vector. Four are constrained by energy and momentum
conservation. For electrons, we choose to sample the remaining two
variables as phonon angles. b. A flow-chart comparison with the tra-
ditional Monte Carlo. On the left, the important steps of a carrier
propagation sequence are revisited. In comparison, at the right are the
steps of our “Anisotropic Technique.” In the Anisotropic Technique,
vector coordinate pairs {θ, φ} are chosen by random number genera-
tion. Once the orientation is chosen, the resulting possible final state
is calculated for all types of scattering. Rates for this particular ori-
entation are tested to determine the scatter type. Therefore, when a
physical scattering event is chosen, we also already have full knowledge
of the final state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6 In the anisotropic case, the vector -based probability creates a manifold
over angular coordinates θq and φq. While sampling from a “sampling
manifold” (the encompassing ellipse), both the scattering process and
final state are determined in the same step. . . . . . . . . . . . . . . . 93

3.7 Transformations carried out when sampling electrons for scatter events.
a. initial valley and k-vector, b. rotation to valley frame, c. conserve
energy and momentum for a potential scattering event, d. if a scatter
is carried out, rotate into the final-state valley (it will be a different
valley, if an inter -valley process), e. if an intervalley process, resolve
for phonon wavevector between k and k′ states . . . . . . . . . . . . 94
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4.1 Results from our traditional Monte Carlo, from [6], using energy-based
scattering rates and a separate subroutine for final-state selection. a.
Predicted drift velocities for electrons and holes, for T=8 K and for
T=40 mK. fine trace: T=8 K theory from [7], and round dots : data
from [8, 7]. Note that we already improved momentum conservation in
simulation for low-energy holes (needed for low-temperature, low-bias
conditions). Markers, “*,” denote T = 20 mK data points from [9].
Also shown is typical energy emitted by phonons as a ratio of acoustic
phonons to the total. This shows that power dissipated by holes to
optical phonons is equal to power dissipated to acoustic phonons above
approximately 3 V/cm. b. Same T=40 mK predictions, overlain with
subsequent drift velocity data taken at T = 31 mK, from [10]. Note
that there is little indication of the optical phonon “knee” for holes
near 3 V/cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 An example of electron distributions in the 〈111〉 L-valley for F =
−1 V/cm along z. All units are MKS, in this instance. a. the iso-
energy surface, and the momentum projection of the inverse mass ten-
sor, both re-scaled. b. the ensemble of steady-state wavevectors. c.
the ensemble of final real-space positions after ≈ 2× 10−7 seconds. d.
the ensemble of steady-state velocities. e. a single electron starting
from rest in this valley, and propagating over time. . . . . . . . . . . 103

4.3 Electrons in germanium 〈100〉 starting from rest in a strong, z-oriented
electric field. Intervalley transitions in k-space result in different in-
verse mass tensors with different favored directions relative to the field. 104

4.4 An example of holes distributions for F = 1 V/cm along z. All units
are MKS, in this instance. a. the momentum projection of the inverse
mass tensor for the heavy band, defined by k b. the ensemble of steady-
state wavevectors. c. the ensemble of final real-space positions after
≈ 5 × 10−7 seconds. Note the propensity for z-axis diffusion. d. the
ensemble of steady-state velocities, which are dominated by occupation
of the heavy hole band. . . . . . . . . . . . . . . . . . . . . . . . . . 106
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4.5 Drift velocities from the new anisotropic (vector-based) Monte Carlo
technique, along with the latest data at T=50mK from [11]. a. For
electrons, the increase in drift velocity from T=8K to a simulated
T=40mK is just as predicted. The lowest data point near 40 mV/cm
is most likely a systematic of inherent built-in fields, which are identi-
fiable when grounded. b. For the full anisotropic simulation of holes,
the values used are from literature and predominantly from [12]. Drift
velocities are ≈ 9% lower than data for F ≤ 1 V/cm, but there is subtle
coupling to other bands not present in the previous simulation at these
low fields. The threshold for optical phonon dissipation to dominate
over acoustic emission occurs at the same field (F = 2.48 V/cm) consis-
tent with our traditional Monte Carlo simulation. The corresponding
effect on simulated hole velocities also remains, and is consistent with
the T=8K data. Thin black lines match simulation at F = 0.01 V/cm
and follow a F 1/5 power law as per appendix B. . . . . . . . . . . . . 111

4.6 The total velocity and mean-free path. a. the total velocity for elec-
trons and holes, which we distinguish as a separate quantity from the
drift or thermal velocities. b. the mean free path for electrons and
holes, itemized into both total acoustic and total optical mean free paths.112

4.7 The effective (scalar) carrier temperature for electrons and holes, de-
fined by the trace of the statistical temperature tensor. . . . . . . . . 114

4.8 Diffusion for electrons and holes a. The z-axis diffusion element, Dzz,
for both the position (solid) and velocity (dashed) definitions used for
the diffusion tensor. b. The x-axis (y-axis) diffusion elements, Dxx

(Dyy), with both position (solid) and velocity (dashed) definitions.
Note that we consider the position-based definition of diffusion to be
correct; our velocity-based definition is for illustrative purposes. . . . 117

4.9 The relaxation times for electrons and holes. a. Energy and momen-
tum relaxation times for electrons b. Energy and momentum relax-
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4.10 Carrier energies for electrons and holes, validating the empirical use of
the Wannier relation. Clearly, the thermal (“diffusive”) energy dom-
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4.11 Log-log representations of the energy probability distribution function
for electrons, across a log-sweep of applied fields. . . . . . . . . . . . 123
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4.12 For a given field of 1 V/cm, we juxtapose the energy probability dis-
tribution for electrons with that for holes. This is to emphasize that
holes carry substantially more carrier energy in the steady state. The
traces overlain are displaced Maxwellian distributions using isotropic
effective masses, in addition to statistically deduced drift velocities and
effective carrier temperatures. . . . . . . . . . . . . . . . . . . . . . . 124
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iv. Slow TA intervalley, v. intervalley, vi. optical phonons. For plot
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L-to-H optical, vii. H-to-H optical, viii. H-to-L optical, ix. L-to-L
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emission rate, iii. optical emission rate. For electrons, the cross-over
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4.15 Emitted phonon power a. For electrons, i.total, ii. LA, iii. TA, iv.
Slow TA intervalley, v. intervalley, vi. optical phonons. For plot b.,
holes, we have i.total, ii. all H-to-H acoustic phonons, iii. all H-to-L
acoustic phonons, iv. L-to-H acoustic, v. L-to-L acoustic, vi. L-to-H
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trons, i. total emitted power, ii. acoustic emitted power, iii. optical
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electrons, the cross-over field where the net acoustic power equals the
net optical power is F = 20.6 V/cm. It is F = 2.48 V/cm for holes. . 130
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4.19 Electrons propagating with field applied in the 〈111〉 direction. a.
The L-valley ellipsoids, with the heavy-mass ellipsoid oriented along
〈111〉. A vector represents a random intervalley transfer into the heavy
ellipsoid. b. The percentage distribution of the electrons occupying
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maximum occupation near 10 V/cm. c. The mean value of effective
mass, normalized to the baseline case with 〈001〉 field applied. Black is
net average, blue is the heavy ellipsoid. The “light” valleys (magenta)
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average energy transfers between light-favored to heavy-favored energy
during population inversion. Blue, dashed is the case with field aligned
〈001〉. e. Drift velocities, net and separate valleys. Blue-dashed: 〈001〉
case. Black dots: T = 8K data, N = 3 × 1013/cc. Red dots: T = 8K
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5.1 A “seagull” plot, showing the collected ionization of 60 keV 241Am
photons, incident from different collimated sources corresponding to
“blobs” A-D. These sources were incident on the “charge side” of a
1-inch CDMS detector “G3D.” Such measurements of ionization col-
lection as a function of applied voltage affords a mapping between net
carrier capture length and applied electric field. From C. Bailey [3]. . 140

5.2 Carrier capture data in CDMS detectors, from the “Shutt 1993” data
set. a. The inverse capture length for electrons with field. b. for holes. 142

5.3 Carrier capture data in CDMS detectors, from the “Phipps 2011” data
set. Note the 20 points at highest field in both the electron and hole
data sets were fitted for a power law. These high-field power-laws are
consistent with a field dependence proportional to the inverse drift
velocity. a. The inverse capture length for electrons with field. b.
for holes. Note also the clearly pronounced transition in power-law
response for the holes in this data. . . . . . . . . . . . . . . . . . . . 143

5.4 A free carrier occupying a continuum state, with initial energy E, is
depicted along with its differential acoustic emission rate. This il-
lustrates the probability to de-excite the carrier into a highly-excited
bound state upon emission of an acoustic phonon. Even a maximum
amplitude phonon, which would completely backscatter the carrier,
still dissipates little energy. This is one reason why cascade capture
processes must be considered carefully. . . . . . . . . . . . . . . . . . 150

5.5 A depiction of a carrier capture process by way of phonon emission
into an attractive potential is presented. The meanings of the various
energies are illustrated. In particular, the binding energy U ′ and stick-
ing probability P (U ′) are depicted, as well as total energy (E), kinetic
energy (Ek), and potential energy (U) of the initial state. . . . . . . . 153
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5.6 This compares successive approaches to carrier capture. Thomson, in
considering capture in gases, uses an argument of thermal/kinetic en-
ergy balancing capture by an attractive potential, as in equation 5.15.
Lax considers consecutive collisions as a cascade capture process, re-
quiring a “sticking probability” to depict the probability of re-emitting
a carrier before final capture (as also detailed in figure 5.5). Abakumov
treats the capture problem in separate limits. In the limit kT � mv2

s ,
Abakumov uses a “Boltzmann Transport” approach, solving for cas-
cade capture by way of a “collision integral” and a self-consistent carrier
distribution function. For Abakumov’s limit kT � mv2

s , the appro-
priate integral represents capture limited by only one phonon emission
event while in proximity to a capture site. Abakumov’s capture rates
are integrations performed over possible initial and final-state energies,
as well as real-space volume. This figure is reproduced and extended
from reference [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.7 This figure demonstrates a (Coulomb) potential subject to an applied
field. Here, the total potential Utot(r) = U(r) − eFz is plotted as a
function of radial coordinate, taken here along the field’s z-axis. This
figure shows the truncation of the potential at the ground state, which
is assumed to be flat with or without an applied field. Note how the
applied field lowers the local barrier. This is described by the barrier
lowering parameter δU0, occurring at barrier radius, rb. . . . . . . . 160

5.8 A passing electron induces an axially aligned dipole moment at a neu-
tral acceptor. The polarizability of the atom is due to the displacement
between the acceptor’s nucleus and its (assumed) uniform hole density.
The resulting polarization potential experienced by the passing elec-
tron can be mapped as a one-body potential, going as 1/r4. . . . . . . 164

5.9 This depicts the energetic placement of impurity potentials relative to
the band gap, although not to scale. The following benchmark cases
to be considered are: a. charged shallow donor, b. neutral anion
donor state, c. charged shallow acceptor, d. neutral anion acceptor
state, e. neutral deep center, f. neutral shallow acceptor, g. neutral
shallow donor. Not shown are the cases of charged deep centers, anion
“over-charged” (D−/A+) states, or static dipoles. . . . . . . . . . . . 166

5.10 Comparison with carrier recombination data in CDMS detectors, from
the “Shutt 1993” data set. Theory is for 2-species recombination
between Coulomb trapping and neutral capture into anion (D−/A+)
states. a. The inverse capture length for electrons with field. b. for
holes – no neutral capture was resolvable in this case. . . . . . . . . 171
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5.11 Comparison with carrier recombination data in CDMS detectors, from
the “Phipps 2011” data set. Theory is for 2-species recombination
between Coulomb trapping and neutral capture into anion (D−/A+)
states. a. The inverse capture length for electrons with field. b. for
holes. Note how there is a clear transition in the data for holes in this
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.12 With our extracted Monte Carlo output for mean temperatures and
velocities, two formulae from [15] give decent fits to data as in figures
5.10 and 5.11. This is consistent with a 2-carrier, 2-impurity model
involving D−/A+ states. . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.1 ELECTRONS: Predicted impact ionization cross sections for standard
hydrogenic states and anions, along with the two capture processes
depicting the capture data presented in the last chapter. . . . . . . . 179

6.2 HOLES: Predicted impact ionization cross sections for standard hydro-
genic states and anions, along with the two capture processes depicting
the capture data presented in the last chapter. Note that hole drift ve-
locities used in this plot, unlike in chapter 5, are now taken directly
from Monte Carlo output and include theoretical optical phonon effects
not observed in the drift velocity data of chapter 4. . . . . . . . . . . 180

6.3 A neutral impurity in an external field, able to autoionize the bound
carrier in its ground state. The radial coordinates of the classical turn-
ing points are at r1 and r2, representing respectively the “inner” and
“outer” turning points. Process a. represents classical, “thermionic”
emission, which is negligible. Process b. represents escape by tunnel-
ing through the potential barrier. . . . . . . . . . . . . . . . . . . . . 182

6.4 The autoionization rate is plotted for hydrogenic donors (D0) in blue.
Hydrogenic acceptors (A0) are plotted in red. “Approximation 1” mod-
els, where bound carrier density was related to the wavefunction, are
in solid lines. “Approximation 2” models, where bound carrier density
was determined by the semiclassical volume, are in dashed lines. . . 188

6.5 The autoionization rate is plotted for anion donors (D−) in blue. Hy-
drogenic acceptors (A+) are plotted in red. “Approximation 1” mod-
els, where bound carrier density was related to the wavefunction, are
in solid lines. “Approximation 2” models, where bound carrier density
was determined by the semiclassical volume, are in dashed lines. . . 189

7.1 A depiction of a space charge model, self-consistently solving Poisson’s
equation and continuity equations for electrons, holes, and charged
impurities. Note how space charge accrues and affects the internal
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A.1 A schematic of a hydrogenic potential for capture, including barrier
lowering and the range of final-state carrier energies contributing to
carrier capture. The differential scattering rate is also depicted as a
function of energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A.2 As the magnitude of the potential lowering (δU) increases (red arrow
moving left), the energy span and peak amplitude of carrier trapping
decreases (red arrow moving down). We find that the trapping rate is
naturally (at least) “2nd-order,” and often has resonant peaking at an
energy in between maximum and minimum allowed values. . . . . . 214

A.3 Optical phonon emission leading to trapping provides a span in initial
carrier energy from E = ~ω0 + U(r) up to E = ~ω0 − δU . . . . . . . . 215

A.4 a.) So far, the carrier energy has been referenced from the center of the
local potential. Due to the external potential, this underestimates the
kinetic energy at negative z coordinates, and overestimates the kinetic
energy at positive z coordinates. b.) A correction to the total energy
accounts for the assumed energy loss by phonons in a constant external
field. Carrier energy distributions adopt this correction as a function
of position. c.) A limiting case is a fully non-ballistic treatment, where
the distribution function is assumed aligned with the density of states
starting from zero kinetic energy. . . . . . . . . . . . . . . . . . . . . 217

A.5 a.) A hydrogenic capture potential in an applied field is plotted in
cylindrical coordinates. The red plane represents the lowest energy
allowed by acoustic phonon emission for a carrier of a particular ini-
tial energy. b.) For the same carrier energy, the position dependent
property λ−1 = 1

vτ
is plotted. . . . . . . . . . . . . . . . . . . . . . . 218

A.6 Energy-dependent cross sections. Top: Cross sections for represen-
tative processes involving shallow hydrogenic impurities with incident
electrons at F = 1 V/cm. The equivalent processes for holes are either
similar or identical. Note the threshold effects and resonant peaking
determined by energy and momentum conservation. Bottom: En-
ergy distributions for electrons at holes at F = 1 V/cm, set to the
same energy scale. Kernel smoothing of the statistical distributions
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Chapter 1

Introduction to Dark Matter, the
Cryogenic Dark Matter Search,
and Non-Ideal Effects Relating to
Charge

1.1 Introduction to dark matter and the Cryogenic

Dark Matter Search

The existence of dark matter represents a central issue in modern cosmology.
Several lines of evidence indicate dark matter comprises the majority of mass in the
Universe, yet its nature remains unknown. Dark matter by definition does not emit
or absorb electromagnetic radiation. As yet, its discovery and subsequent study have
been permitted only through the observation of indirect gravitational effects.

Theories of particle physics, however, readily suggest the existence of yet undis-
covered particles. Many such particles have properties known to be characteristic
of dark matter. Provided they occur in adequate abundance, such particles could
account for the mysterious dark matter in the Universe. Particular classes of dark
matter candidates have been proposed, often generated within the framework of Su-
persymmetry (SUSY), to have interaction with the weak nuclear force. Particles of
this category are known as Weakly Interacting Massive Particles (WIMPs). With an
adequate coupling to ordinary matter via weak interaction, a direct and measurable
response to dark matter may be possible. As the identification of dark matter is one
of the highest priority goals in both cosmology and particle physics, a direct detection
measurement may be the best option for substantial experimental progress.

This chapter will briefly review the arguments for the existence of dark matter, as
well as general requirements for a direct detection experiment. We will introduce our
experiment, the Cryogenic Dark Matter Search (CDMS). We will explain the design
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and theory of operation of our detectors. We will then make the intent of this thesis
work clear, as we then introduce some detector phenomenology demonstrating the
need to understand charge transport processes in our detectors.

1.2 The weight of the Universe

In this section we discuss the mass budget of the Universe, pointing out the
significance of the dark matter contribution.

1.2.1 The Friedmann equation and Ω

Cosmology is the study of the origin and development of the Universe. A good
place to start is the Friedmann equation, which describes the expansion of the Uni-
verse. Under the assumption that the Universe is isotropic and homogenous, the
Friedmann equation depicts the evolution of a scale factor within the context of
general relativity.

H2 + k
c2

a2
=

(
ȧ

a

)2

+ k
c2

a2
=

8πG

3
ρ+

Λ

3
(1.1)

Here, H is the Hubble constant, a is the scale factor, G the gravitational constant, k is
the curvature term, ρ is the density of the Universe, and Λ is Einstein’s cosmological
constant. By inspection, we see that the Hubble constant represents a normalized
expansion rate of the Universe.

We define a parameter Ω representing the right hand side of equation 1.1.

Ω =
8πG

3H2
ρ+

Λ

3H2
(1.2)

The Friedmann equation is then simply the following.

1 + k
c2

H2a2
= Ω (1.3)

We find that this form of the Friedmann equation provides useful insights for inter-
preting the evolution of the Universe. This representation shows us that if Ω departs
from 1, we must consider either an open (k < 0) or closed (k > 0) Universe. In
these cases, the Universe would respectively either expand forever with acceleration,
or eventually collapse in on itself.

It happens to be the remarkable case that observational evidence has found the
present Universe to be currently of an Ω0 = Ω(t0) extremely close to one (k = 0).
This represents a “flat” Universe. Only Ω = 1 is an equilibrium point (though an
unstable one). If today’s value Ω0 were not exactly one today, then when the Universe
was a second old, Ω at that time could differ from one by only about 10−16. Avoiding
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a fine-tuning problem to account for Ω at early times in the Universe is possible only
if identically Ω = 1. Fortunately, theories of inflation immediately following the Big
Bang mandate subsequent values of Ω to be extremely close to one.

1.2.2 Contributions to Ω and the current cosmological pic-
ture

It brings insight to itemize Ω as independent contributions to the Universe’s den-
sity. These terms evolve differently as the Universe develops. For instance, we know
that contributions by photons contributed to the density budget of the early Universe,
but this density diluted faster than non-relativistic matter due to relativistic effects
on the radiation’s momentum.

We introduce the normalized density contributions important to today’s Universe.
There are contributions by matter, and by the vacuum energy due to the cosmological
constant.

Ωm =
8πGρ0

3H2
0

(1.4)

ΩΛ =
Λ

3H2
0

(1.5)

Since we say Ω0 = 1, we know that Ωm + ΩΛ = 1.
Developed from the convergence of many independent investigations, the current

cosmological picture is called ΛCDM [21, 22] which is an acronym for “Λ-Cold Dark
Matter.” According to this model the Universe expands, but with a spatially flat
geometry (k = 0). The mass component Ωm is comprised of both normal baryonic
matter and cold dark matter.

Ωm = Ωb + Ωcdm (1.6)

Normal baryonic matter comprises only Ωb = 0.0456 ± 0.0015 [23], leaving dark
matter and vaccum energy (“dark energy”) to dominate the remaining density as
Ωcdm + ΩΛ = (1 − Ωb). Dark energy has been determined to constitute a ΩΛ =
0.726±0.015 while dark matter is found to be Ωcdm = 0.228±0.013. While the nature
of dark matter remains unknown, it has been studied by way of its gravitational effects
on baryonic matter. While cosmological model is the prevailing paradigm, there are
alternative hypotheses (MOND [24] and extensions to it, such as TeVeS [25]) which
try to explain astronomical observations by modifying gravity at large distance scales.
For our consideration, we focus on particle dark matter and assume Newtonian gravity
holds across all scales.
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1.3 Evidence for dark matter

We now discuss evidence for dark matter, motivating the ΛCDM model. Many
lines of observational evidence are consistent with the ΛCDM model with Ω values
described in the last section. Here, we give a brief outline of evidence specific to dark
matter.

1.3.1 Dark matter as “missing mass”

Dark matter is inferred from the gravitational dynamics of luminous matter, indi-
cating the presence of “missing” mass. Evidence for dark matter exists across many
magnitudes of length scale.

Spiral galaxies and rotation curves

The most popular and traditional evidence of dark matter comes from measure-
ments of angular velocities of spiral galaxies as a function of radius. Profiles of velocity
as a function of galactic radius, or “rotation curves,” provide the radial distribution of
the galactic mass by equating gravitational and centripetal acceleration. Beyond the
bulk mass of the galaxy which is optically visible, velocities should fall off in a char-
acteristically r−1/2 manner. Observations have consistently shown [1] that velocities
of visible objects instead remain constant at large radius, as in figure 1.1. A constant
velocity infers that mass as a function of radius continues to increase linearly, beyond
the visible measurable galactic components. Measurements indicated that at least ten
times the mass of the visible stars was present in spherical halos of unseen matter.

Elliptical galaxies and virial velocities

Elliptical galaxies also evidence dark matter. In elliptical galaxies, velocities have
become virialized. This provides a relation between the gravitational potential energy
and the kinetic energy. The kinetic energy provides the velocity dispersion. As
〈Ek〉 = −1/2 〈V 〉, we can relate the velocity fluctuations as 〈v2〉 = GM/ 〈r〉. As with
spiral galaxies, velocities in elliptical galaxies are also found to be too fast for the
mass of visible contributions only [26]. Dark matter is again required to account for
the long-term stability of elliptical galaxies.



5

Figure 1.1: Best parameters for a two-species fit of mass distributions to galactic
rotation curves, for a range of several magnitudes 〈MI〉, from [1]. Dotted lines show
luminous material, and dashed lines show implied dark halo.
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Galaxy clusters

At the scale of galaxy clusters, Zwicky already in 1933 [27] pointed out that ve-
locities in the Coma cluster also are too fast to be stable without the existence of
additional mass. Futhermore, X-ray emission within galactic clusters shows [28] that
equivalent temperatures of baryons are much higher, again using the virial theorem,
than temperatures expected by the gravitational potentials of only the observed lu-
minous matter.

A particularly striking line of evidence for dark matter comes from relatively re-
cent observations of the “Bullet Cluster.” The Bullet Cluster is actually two clusters
that have collided. Using optical observations, the total mass distribution was recon-
structed by accounting for gravitational lensing effects. With independent observa-
tions of X-ray emissions, the baryonic matter contribution was mapped. Comparing
the total matter and baryonic matter profiles shows a stark difference between the
baryonic and cold dark matter species [2]. This observation is consistent with the
model that dark matter is collisionless, such that the dark matter halos of the origi-
nal two clusters passed through each other unchanged. Meanwhile, hot baryonic gas
distributions between the two structures interacted heavily during collision, impeding
their motion.

Figure 1.2: Evidence for dark matter in the Bullet Cluster. The baryonic mass distri-
bution is distinctly different from the total mass distribution, inferring the presence
of dark matter. a. Optical image from the Hubble Space Telescope. This shows
mass contours reconstructed by gravitational lensing. b. Image from Chandra X-Ray
Observatory, showing X-ray emission from baryonic matter. From Clowe, et. al. [2]
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1.3.2 Evidence specific to dark matter as non-baryonic and
cold

Other lines of evidence show that dark matter is both non-baryonic and non-
relativistic.

Big Bang Nucleosynthesis

Minutes following the Big Bang, the Universe cooled to a temperature below the
binding energy of typical nuclei, and light elements began to form. This continued
for approximately 17 minutes, until the Universe cooled below the energy required
for nuclear fusion [29].

With knowledge of nuclear cross sections, the conditions of the Universe at this
time can be reconstructed. Predictions for Big Bang nucleosynthesis (BBN) account
for the abundances of light elements seen today, and provide an accurate measurement
of the baryon density of the Universe. Measurements of primordial deuterium happen
to pin down the baryon density with great precision to only a few percent [30] of the
critical density required for Ω = 1. This requires the majority of dark matter to be
non-baryonic.

Cosmic Microwave Background

The Cosmic Microwave Background (CMB) represents the oldest light that reaches
Earth. In the hot environment of the early Universe, baryons coupled well to photons
to such an extent that the Universe was opaque. This coupling provided a feedback
mechanism between gravity and radiation pressure, leading to “acoustic oscillations”
around the small potential wells formed by tiny density perturbations. These oscil-
lations continued until the Universe expanded and cooled such that photons were no
longer well coupled to baryons. However, information of these oscillations remain
embedded in the anisotropies of cosmic microwave background today. The spectral
power information of these anisotropies provide a wealth of precise information re-
garding the concentrations of baryonic matter, cold dark matter, and dark energy.
So the CMB also supplies an excellent validation of the ΛCDM cosmological model.

Large Scale Structure Formation

Dark matter may also be studied through observational surveys of large scale
structure in the Universe. Accurate studies of structure, particularly through com-
paring numerical simulations of structure growth with observation, provide a means
of parameter estimation for components of cosmological models [31]. These com-
parisons show that relativistic (hot) dark matter produces more structure than is
observed. However, non-relativistic (cold) dark matter creates approximately the
structure seen today, when using a value consistent with the aforementioned ΛCDM
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model [22]. Note that relativistic particles such as neutrinos are also outruled as dark
matter candidates.

MACHO Searches

Massive Astrophysical Compact Halo Objects (MACHOs) are a general term for
astronomical bodies, suggested to explain the presence of dark matter. Such bodies
may include varieties of “failed stars,” such as brown dwarfs or unassociated planets.
They would be composed of normal baryonic matter, and would be hard to detect as
they would emit little or no radiation.

Baryonic matter is ruled out by other lines of evidence as described above. How-
ever, it is worthwhile to point out that MACHOs searches using surveys for transient
gravitational lensing events have also turned up far too few MACHO objects to ac-
count for dark matter [32]. This is another line of evidence to suggest a particle form
of dark matter.

1.4 Cold dark matter candidates, and requirements

for direct detection

Through the varieties of observational evidence we have pointed out, constraints
have been placed on possible dark matter candidates. Dark matter is not comprised
of baryons, nor neutrinos.

1.4.1 Requirements of a particle dark matter candidate

The situation dictates that dark matter must be a form of new particle, arising
from particle physics models beyond the Standard Model. In fact, this connection
to particle physics is an exciting prospect. A plethora of candidates suggested by
particle theory are presently being searched for in a number of accelerator, indirect,
and direct dark matter searches.

A viable dark matter candidate must have the following properties [33, 34].

Non-baryonic Can it account for dark matter and preserve the BBN baryon den-
sity?

Numerous Does it match the appropriate relic density?

Cold Is it non-relativistic during structure formation?

Non-interacting Is it neutral, and does not interact electromagnetically?

Stable Is it stable over time periods compatible with the age of the Universe?
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One viable candidate are axions. Axions are proposed to solve the “strong CP
problem” in QCD, which would explain the lack of observation of a neutron electric
dipole moment [34]. Searches for axions are ongoing [35, 30].

Another viable candidate are Weakly Interacting Massive Particles (WIMPs). The
WIMP is a hypothetical particle with mass and coupling strengths characteristic of
weak interactions. The calculation of a dark matter relic particle density based on
freeze-out following the Big Bang implies that such particles should have an anni-
hilation cross section which happens to be on the order of the weak scale. This is
appealing because this is a natural characteristic of WIMPs predicted under super-
symmetric (SUSY) theories, which are popular extensions to the Standard Model.
WIMPs are the candidate dark matter particle considered for this thesis.

1.4.2 Direct detection of dark matter

Three general categories of experiment may serve to evidence a particle dark mat-
ter candidate. Accelerator experiments seek to discover new particles and potentially
dark matter candidates, in situ. Even after a new particle discovery, an identification
as a dark matter candidate may not be straight forward. In this case, confirmation
of such a particle as ambient dark matter would still be necessary. Indirect searches
attempt to evidence dark matter by finding secondary products such as neutrinos,
photons, or antimatter. Here, we are concerned with direct detection experiments,
which seek to evidence interactions made by ambient dark matter particles.

Direct detection experiments share some common themes. Here, we focus on
searches for WIMPs. The goal of direct detection experiments is to detect some
number of WIMPs of an ambient flux which flow through the Earth. Although the
WIMP interaction cross section may be small, the ambient flux is abundant enough
to make measurement plausible. The putative WIMP flux through the Earth is of
order [34]

F = 105(100 GeV/mχ) cm−2s−1 (1.7)

where mχ is the WIMP mass. Such WIMPs would scatter elastically from nuclei in
some absorbing material, and provide a measurable signal from nuclear recoils. The
goal is to measure the event rate R, as a function of the nuclear recoil energy, ER.

The differential WIMP event rate, commonly expressed in units kg−1 day−1 keV−1,
is given as [36]

dR

dER
=

2√
π

σ0ρ0v0

mNmχ

1

rE0

exp

(
−ER
rE0

)
(F (ER))2 (1.8)

where mN is the mass of the target nuclei, ρ0 is the WIMP density, v0 is the WIMP
velocity, E0 the WIMP energy, σ0 the cross section, F (ER) the nuclear form factor,
and r the ratio 4mχmN/ (mχ +mN)2.
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Generally, there are scattering probabilities relevant for both spin-dependent and
spin-independent cross sections. Generally, the spin-independent cross sections dom-
inate. The spin-independent cross section may be given as [37]

σSI0 =
4m2

χm
4
N

π (mχ +mN)2

(
fn
mn

)2

(1.9)

where fn is the WIMP-nucleon coupling.
Consider a generic, toy model as an illustration. We could adopt some com-

mon assumptions for galactic halo velocities (namely v0 ≈ 220 km/s) and a cross
section (σ0 ≈ 10−42 cm2). One may then naively expect an integrated rate to be
≈ 1 kg−1day−1. So the overall design goal is to resolve nuclear recoils at this rate and
lower.

Low cross sections amount to low event rates. The primary issue with direct de-
tection experiments is the presence of background rates. Direct detection experiments
require the ability to reject nuclear-scale background events from natural radioactive
sources. Such sources may be γ-rays, X-rays, alpha particles, beta particles, cosmic
rays, or neutrons induced by cosmic rays. Precautions to create a low-background en-
vironment should of course be taken, including such things as underground operation,
passive and active shielding, and choice of radio-pure materials. However, it stands
that the level of background events will determine the sensitivity of the experiment.

It becomes apparent that dark matter detectors require the ability to distinguish
common electromagnetic background induced by natural sources of radioactivity,
apart from putative dark matter interactions which are nuclear recoils. To that end,
it is possible to discriminate between these two classes of interaction by simulta-
neous, independent measurements of quantities that reflect the difference in energy
deposition density. That is to say for the same total deposited energy, two measured
parameters can constrain both the energy deposited and difference between a nuclear
recoil and an electron recoil.

When an elastic WIMP-nucleus collision generates a recoiling ion in a detector,
this ion will dissipate its energy in a Markov chain of subsequent interactions. Sec-
ondary excitations are created, such as scintillation, phonons, or ionization, depending
on the material. Some of these signals may be different if the initial interaction were
electromagnetic in origin. So measurement of multiple kinds of signals can provide
information about the type of initial interaction. Argon detectors produce ioniza-
tion and scintillation, for example, as do liquid Xe detectors. Among experiments
using cryogenic detectors, such as our Cryogenic Dark Matter Search, ionization and
phonons supply constraining signals.
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1.5 The Cryogenic Dark Matter Search and ZIP

detectors

The Cryogenic Dark Matter Search utilizes simultaneous measurements of ioniza-
tion and non-equilibrium phonons to distinguish nuclear recoils from background on
an event-by-event basis. For the phase of the experiment known as “CDMS-II,” ZIP
(Z-sensitive Ionization and Phonon) detectors of high-purity germanium (and some
silicon) were cooled to a temperature ≈ 40 mK. Typical germanium impurity densi-
ties were ≈ 1010 cm−3 with less than 5000 dislocations/cm2. Substrate orientations
were 〈100〉. Each detector is a disk ≈ 1 cm thick and 7.6 cm in diameter. A ZIP
detector is photolithographed with four phonon channels on one face. The opposite
face (i.e., the “charge side”) is divided concentrically into an inner circular region
and an annular “guard” electrode. The phonon side also serves as a low impedance
ground reference for the ionization electrodes, which are biased to supply electric
fields of ≈ 3 V/cm to serve as a drift field for the charge carriers created by a particle
interaction. See figure 1.3.

The detectors for CDMS-II were arranged in five towers. They were shielded by
passive lead and polyethylene, as well as an active plastic scintillator veto. Under-
ground operation for the CDMS-II experiment took place at the Soudan Underground
Laboratory (2090 meters water equivalent) in Soudan, Minnesota.
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Figure 1.3: a. A CDMS-II ZIP detector, 1-cm thick, showing the “phonon side”
b. A diagrammatic view of a ZIP detector. There are 4 phonon quadrants on the
“phonon side.” On the reverse, “charge side,” there is an inner signal electrode with
a concentric outer guard electrode c. The CDMS-II Tower assemblies (quantity 5).
The yellow detectors represent silicon detectors, while the green are germanium. d.
The minehead at the Soudan Underground Facility in Soudan, Minnesota
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1.5.1 Ionization measurement

When an incident particle interacts within a CDMS detector, electrons and holes
are generated in equal number from the germanium bulk. For a brief time, these hot
carriers form a net neutral plasma which may screen an external field. While they
may still diffuse locally, if left unperturbed they will eventually recombine to each
other or to local imperfections of the crystal.

Under milliKelvin operation, there is no ionization by thermal fluctuations. As
such, our substrates are automatically depleted. Producing a “depletion region” in
our detectors is not a consideration as it would be for radiation detectors at warmer
temperatures. So in order to measure ionized carriers, only a small external field is
applied to drift these oppositely charged carriers away from each other to adequately
avoid recombination. As we will soon discuss, the field should also not be too large
as to limit the number of phonons produced by the carriers. So the necessary field
is only of the order ∼ V/cm (−3V bias for the 1-cm standard detectors). The field
dependence of ionization collection has been studied in the past by both our Berkeley
group and in the larger CDMS collaboration [38, 3].

As electrons and holes drift inside the detector, they induce image charge on the
voltage-sourced charge electrodes. By Ramo’s theorem, the image charge produced
on an electrode of an ideal parallel plate detector is proportionate to the distance sub-
tended between the electrodes. Provided an electron and hole pair both completely
traverse their course to their respective electrodes, the integrated charge on one of
the electrodes will be one electron charge. A transimpedance amplifier connected to
the detector electrode nulls any change in charge through the use of feedback. When
charge from a particle event is suddenly deposited on the detector electrode, the am-
plifier negates this charge by injecting the opposite amount of charge back onto the
electrode, through its feedback network. On fast time scales, the amplifier produces
an output voltage signal across its feedback capacitor. This signal is eventually dis-
sipated through a parallel feedback resistor, with an RfCf time chosen to maximize
integration time and lower noise, though accommodating an expected event rate.

In figure 1.4, we see a diagram of our transimpedance amplifier. The first-stage
transducer is a JFET. To reduce parasitic gate capacitance, the JFET is implemented
within the dilution refrigerator, as close as possible to the detector electrode. The
JFET is maintained at an operational temperature of T ≈ 150 K, such that its
silicon substrate remains conductive above freeze-out. The JFET is read out in a
cascode configuration by external warm electronics, which also supply feedback from
the amplifier outputs.
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Figure 1.4: The CDMS charge amplifier, for the ionization measurement. Each ion-
ization collection electrode has a similar amplifier. The “open-loop” portion of the
amplifier has a JFET at T ≈ 150 K as its first-stage input, which is followed by warm
electronics.
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1.5.2 Phonon measurement

Particle interactions in CDMS detectors also excite lattice vibrations, which are
quantized as phonons. These phonons are measured out of equilibrium, meaning that
they are measured long before equalizing across the detector bulk. Therefore, this
measurement is not simply monitoring the bulk temperature change of the detector.
The extra information held in non-equilibrium phonons provides a wealth of informa-
tion regarding the lateral and depth locations of the event, the timing of the event,
and contains sensitivity to the phonon spectral information. This additional event
information allows CDMS to introduce a number of additional quality cuts, enabling
further background rejection.

Figure 1.5: A representation of CDMS quasiparticle trap-assisted transition-edge
sensors. At top, we see a plot of the superconducting gap as a function of position.
At the bottom, we see a cartoon depiction the corresponding TES collection structure
cross section. At the left, aluminum fins collect incident phonons. Phonons of energy
E > 2∆Al will break Cooper pairs, generating quasiparticles. These quasiparticles
will diffuse within the superconductor, but de-excite to the lower gap state of the
“trap” interface region, and from there diffuse into the TES at the right.

The phonon signal is comprised of the following contributions.

primary phonons Phonons (primarily optical phonons, by energy) produced during
the initial particle interaction
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recombination phonons Phonons produced when carriers recombine, primarily to
the contacts

Luke-Neganov phonons Phonons, assumed to be primarily acoustic phonons, emit-
ted by carriers under drift

The presence of recombination phonons were evidenced by Shutt, et al [38]. The
contribution of Luke-Neganov phonons [39, 40] will be discussed later. Here, while
the evolution and collection of phonons is general, we focus on primary phonons.

Phonons simultaneously scatter and decay within the crystal. An elastic scattering
mechanism is Rayleigh scattering, which is isotropic and has a phonon frequency
dependence ∝ ω4. The primary decay mechanism is anharmonic decay which allows
a phonon to spontaneously decay into two lower-energy phonons. Anharmonic decay
has a frequency dependence of ω5. So we note that both processes are highly energy
dependent.

A consequence of these highly energy-dependent rates is that high-energy phonons
undergo many scatters before they are able to traverse significant distances. These
high-energy phonons remain localized until their mean-free paths are approximately
the length of the detector geometry. At this point, phonons are considered ballistic
and will travel unimpeded until they reach a surface. Phonons incident on a bare
surface have a high likelihood to reflect back into the crystal. However, phonons
incident on superconducting aluminum collection fins of the CDMS phonon sensors
will be absorbed and break Cooper pairs, provided their energy is adequate (~ω >
2∆Al).

Tungsten transition-edge sensors (TESs) are used as the CDMS phonon transduc-
ers. These are superconducting sensors biased within their superconducting transi-
tion, and held in stable operation by virtue of being locally voltage biased (i.e., held
in electro-thermal feedback). In order to maintain high sensitivity, the heat capacity
of these TESs must kept small. Therefore, TESs cannot cover large areas of the de-
tector surface. CDMS ZIP detectors utilize a two-stage phonon collection technique
known as quasiparticle trapping, first proposed by Booth [41]. Tungsten TESs are
lithographed onto large-area aluminum fins. Aluminum has a larger superconducting
gap than tungsten. Phonons first enter the aluminum fins from the detector bulk.
These phonons break Cooper pairs in the aluminum fins, generating quasiparticles.
These diffusing quasiparticles then eventually end up in tungsten, but de-excite to the
lower gap energy. This trapping of quasiparticles into the tungsten will preferentially
force dissipation to occur there, driving the tungsten sensors into further into their
normal state and providing signal. So in this scheme, phonons are collected over a
large area, yet dissipation primarily occurs in the TES where such heating contributes
to signal.

To cover the large detector area, each ZIP detector quadrant is actually comprised
of 1036 individual TESs lithographed in parallel. This creates a low impedance, and
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a low differential change in impedance. To read out this array, an input coil to a
SQUID amplifier is included in series. This amplifier is discussed in appendix I.

1.5.3 Signal formation of an event

CDMS ZIP detectors measure ionization and phonons, but the processes initi-
ated by incident radiation are the same as in traditional semiconductor detectors.
Incident raditaition quanta, if they are of sufficent energy much greater than the
semiconducting bandgap (Eg = 0.76 eV for milliKelvin germanium) may impart en-
ergy to individual atomic electrons in the substrate to form electron-hole pairs. These
primary electrons and holes go on to produce further ionized carriers and phonons
in a dissipative cascade of collisions. In fact, it is a good approximation that the
deposited energy of an incident quanta produces a total number of electron-hole pairs
related by an average ionization energy, as suggested by Klein [42] and others.

NQ = W/ε (1.10)

Here, W is the energy deposited by the ionizing particle or photon, NQ is the number
of pairs generated (the “yield”), and ε is an average ionization energy. The average
ionization energy, ε, accounts for energy and momentum threshold effects in creating
an electron-hole pair, plus dissipation which goes into producing phonons. In ger-
manium, ε is quite close to 3 eV/pair, for events originating from electromagnetic
interations. As an example, a 60 keV photon would generate 60, 000/3 = 20, 000
electron-hole pairs.

Klein [42] suggests that the average ionization energy follows an empirical form

ε =

(
14

5

)
Eg + r (~ω0) (1.11)

Here, the Eg is the bandgap energy, ~ω0 is the optical phonon energy, and r is an
adjustable parameter representing the number of phonons per generated pair. For
the aforementioned bandgap, a phonon energy ~ω0 = 37 meV , and an ε of 3 eV/pair,
this would indicate ∼ 24 optical phonons are generated for every electron-hole pair.
For an incident photon or charged particle, this would mean 71% of the deposited
energy is imparted to electron-hole pairs with the rest dissipated as optical phonons.
A more sophisticated treatment of the cascade mechanisms between pair production
versus phonon dissipation can be performed under Lindhard theory [43].

Recall that a WIMP-nucleus interaction produces a “nuclear recoil.” In this case,
a recoiling nucleus is considerably heavier than the primary electrons of the elec-
tromagnetic case. A recoiling nucleus transfers much more of its energy into the
production of phonons. As a result, the required energy to produce a pair is notably
higher for nuclear recoils than for electromagnetic events (“electron recoils”). Terms
such as “quenching” are sometimes used to describe the fact that nuclear recoils have
an average ionization energy larger than electron recoils.
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1.5.4 Discrimination by ionization yield

The partition of deposited energy between electron-hole pairs and phonons gives
CDMS the ability of event discrimination. With simultaneous measurements of ioniza-
tion and phonons, every event can classified as either an electron recoil (background)
or a nuclear recoil (possible signal) by a measurement of its yield.

A complication is that electron and holes while under drift will produce Luke-
Neganov phonons. The energy emitted to these phonons will be the work done by
the number of carriers, NQ = W/ε, across the potential drop ∆V of the crystal.

ELuke = W

(
e∆V

ε

)
(1.12)

The measured phonon energy EP is then the contribution of the primary phonons
generated during the original particle recoil event Er, plus the Luke phonon contri-
bution.

EP = Er + ELuke (1.13)

In other words, we can deduce the original recoil phonon energy by the measured
phonon energy minus a Luke correction based on measured ionization.

Er = EP −W
(
e∆V

ε

)
(1.14)

CDMS defines its primary discrimation parameter as “ionization yield,” taken
to be the energy measured in ionization, divided by the energy measured in recoil
phonons.

Y ≡ EQ
Er

=
EQ

EP − EQ
(
e∆V
ε

) (1.15)

Here, EQ is the amplitude of the ionization signal calibrated to a known source, such
that Y = 1 for electron recoils. Electron recoils therefore have an ionization yield
∼ 1, whereas nuclear recoils have ionization yield ∼ 0.3 due to their proportionately
larger production of optical phonons. Figure 1.6 shows ionization yield as a function
of phonon recoil energy for CDMS calibration data. This shows the discrimination
power attained by this parameter, rejecting electron recoils by > 104.
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Figure 1.6: Density plots mapping ionization yield of CDMS data as a function of
phonon recoil energy. The plotted curves represent the ±2σ electron recoil (Y ∼ 1)
and nuclear recoil (Y ∼ 0.3) bands determined by calibration data. a. Density plot of
electron and nuclear recoil events from a 252Cf neutron calibration source. b. Density
plot of electron recoil events from a 133Ba gamma calibration source. The nuclear
recoil band is clear of any events, once the neutron source is removed. This illustrates
the ionization yield electron recoil rejection power of > 106 for bulk.
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1.6 Non-ideal effects, and the need to understand

charge transport

We have introduced the CDMS experiment and its goal to evidence dark matter
interactions in high-purity germanium detectors at milliKelvin temperatures. We now
point out detector phenomenology that has added complications to CDMS operation,
and motivates our desire to understand charge transport processes.

The CDMS approach requires discrimination between electron and nuclear recoils.
Measuring a different amount of ionization other than what was actually created
during an event will degrade our yield parameter of equation 1.15. An electron recoil
with poor ionization collection begins to look like a nuclear recoil, and this degrades
our background rejection. Furthermore, if internal electric fields accrue due to space
charge, this represents a change in the work performed by carriers, disrupting our
calibration of Luke phonons. Internal fields also lead to non-uniform operation in
our detectors. This may lead to problems associated with avalanche break-down, or
regions of poor ionization collection.

In short, we would like to understand processes that affect either: 1) the number
of charges collected from a particle event, or 2) somehow affect the internal electric
field of the crystal.

1.6.1 The neutralization process and space charge

When a detector is first cooled to milliKelvin base temperature, it is not op-
erational. There is clearly space charge present that prevents ionization collection
from a biased detector. No ionization signal is seen until a “neutralization” process
is performed. Here, the detectors are grounded so that no external bias is applied.
Detectors are equipped with infrared LEDs, which optically generate carriers in the
crystal using shorts bursts of light over an extended time of perhaps 10 hours. Alter-
natively, nuclear sources have been used in the past which also generate carriers for
this process. Aside from our empirical knowledge, the neutralization process itself is
not well understood.

After some period of operation, the detector performance degrades and a detec-
tor must undergo a supplementary neutralization sequence. How and where exactly
this space charge accrues and how exactly it affects our signals has not been well
understood. Performance may be different from detector to detector, with polarity
of bias, and even with the environment where it operates (at a surface facility versus
underground). A notorious problem is that the charge state follows the history of
detector operation, and hysteretic effects can make this difficult to study.

In figure 1.7, we see how the ionization signal from a calibration source degrades
over time and needs to be refreshed with a period of grounding to neutralize the
crystal.
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Figure 1.7: This shows the calibrated ionization collection of 60keV events from
241Am, for a CDMS detector at a test facility. The collection response decays with
time. Blank periods represent grounded periods of neutralization, after which full
collection is rejuvenated. From C. Bailey [3].

Other specific examples are represented in figure 1.8. Here, collimated 241Am
check sources are incident on the CDMS detector faces. Using phonon parameters,
the events from specific sources can be distinguished and are plotted in different
colors. As a function of time and applied bias, a variety of behavior can ensue. In
figure 1.8a., a negative potential is applied on the ionization electrodes. Events that
represent holes drifting across the bulk of the detector (in green and blue traces) will
bifurcate their response after a time. Some events are very poorly collected, some
are unperturbed, and some gain an excess of charge. This infers that both capture
and ionization rates are at work, in different regions of the detector, likely induced
by fields due to the accumulation of space charge with time. In figure 1.8b., we see
a “bounce” phenomenon in the blobs representing electrons (black, magenta, cyan
traces). Here, electron collection is suppressed after a time, but mostly recovers later
on. This is sort of “2nd-order” response is an indicator that multiple processes are at
work in our detectors. These processes may be interactions between bulk and surface,
and/or between generation and recombination rates. In general, we find we require
more predictive power regarding possible processes for electron and holes under these
conditions.
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Figure 1.8: Charge collection of 60keV events from 241Am, itemized by different
collimated sources. In a., after some time, events where holes traverse the bulk of
the detector (green, blue) show bifurcation into poorly collected, well-collected, and
excess charge collected regions. In b., electrons (cyan, magenta) show poor collection
after some time, but later seem to recover to some extent. From C. Bailey [3].
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1.6.2 The dead layer

The dead layer problem is created by effects of surface trapping, which amount
to near-surface events which will have incomplete charge collection. This surface
trapping is caused by recombination to bound states at the contact, but is problematic
due to effects of diffusion. As carriers from a particle event undergo random velocity
fluctuations, an appreciable number of them may “back-diffuse” in the relatively
small field we are using. This means that carriers that should traverse the crystal
and terminate on the electrode on the opposite side simply recombine to the “wrong
electrode.” They do not induce the image charge that they should, and ionization
collection is degraded.

The timing information of CDMS TES sensors provides some help in this respect.
Near-surface events allow phonons to quickly decay near metalized surfaces. This
means that near-surface events may show phonon timing which is faster than bulk
events. Therefore, a quality cut can be made to discriminate against a number of
near-surface events.

Regarding the contacts themselves, Shutt [44] made substantial progress in intro-
ducing a blockade layer of α-Si between the germanium bulk and electrode contact.
The idea is that carriers are less probable to recombine to the contact if there is a
wide-gap material in series. Should the wrong-sign carrier “back-diffuse” towards the
wrong contact, there is less probability it will recombine. It will reflect from the sur-
face and more likely continue onwards across the crystal. A problem with this tactic
is that overall recombination rates are suppressed. This means that carriers are less
able to leave the detector and space charge can accrue immediately at the contact.
A remedy was to introduce boron into the α-Si, introducing an extra conduction
path such that carriers will clear on long times scales. It is doubtful this situation is
optimized, however.

1.6.3 Position dependence

Another problem is that there are examples of detectors with a lateral (xy) position
dependence in the amount of charge collected. This phenomenon is not understood.
The amplitude of the measured ionization signal to a calibrated source may be dif-
ferent by ∼ 10% across the face of the crystal. This could be a consequence of the
contacts or of the bulk. If this is a property of the contacts, then it could be a result
of something geometric with the structure of the contact, a material property of work
functions of the contacts, and/or somehow a difference in surface recombination rates.

So far, we correct for these effects with an empirical position correction. See
figure 1.9. It is not clear how these corrections impact the phonon performance, or
how these corrections should evolve in time.
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Figure 1.9: Lateral position dependence of charge collection. a. Charge collection, in
arbitrary units, showing the detector response along the “y” lateral direction. The
position was determined by triangulation of phonon parameters. b. The same data
with a position correction used for subsequent analysis. This data is zoomed in, and
calibrated in units of initial photon energy.
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1.6.4 Concluding non-ideal effects

So we see that have a variety of detector phenomena in our CDMS detectors for
which we must account. Most often, we have found ourselves with only speculation
to guide us. Although germanium is a well understood semiconductor, milliKelvin
operation with applied fields represents a difficult, non-equilibrium regime to make
predictions based on textbook formulae. A more through understanding is required,
which we now introduce.
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Chapter 2

Band structure and Carrier
Transport Processes in
Milli-Kelvin Germanium

2.1 The need for simulating carrier transport

To further our understanding of CDMS detector phenomenology, we wish to un-
derstand the possible processes that electrons and holes may undergo while under
transport in our extreme bias conditions.

To recap, CDMS measures both the ionized charge and the energy in “athermal”
(non-equilibrium) phonons created by particle interactions in ultra-pure germanium
crystals at a temperature of 40 mK. Ionization and phonon signals are measured simul-
taneously, allowing us to distinguish between electron and nucleon recoils. This mea-
surement technique provides discrimination between the expected signal of WIMPs
and electromagnetic background.

In accomplishing this, charge collection potentials must remain at only a few volts,
else emitted phonons from drifted carriers will dominate the phonons of the original
interaction. At these drift fields, there are practically no thermal phonons and carrier
transport is determined by phonon emission.

In absence of radiation there are no ambient carriers. When excited by an external
mechanism such as a radioactive source, the excited carriers are not in equilibrium
with the lattice while they are free. So, these carriers are extremely “hot.” Fur-
thermore, the concentration of impurities at 1010 cm−3 is quite low, such that it is a
poor approximation to take a typical assumption that low-temperature scattering is
dominated by impurity sites.

So CDMS detectors operate in an exceptional limit. Electrons and holes, over the
range of typical bias values, are in a mobility quantum limit. This limit is also known
as the zero-point limit [5]. It describes the case where scattering is predominantly
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determined by quantum zero-point fluctuations of the lattice ions. This results in the
only dissipation mechanism being the spontaneous emission of phonons. The lattice
temperature, which induces stimulated phonon emission, has no significant impact.
This zero-point limit is contrary to the equipartition limit [5], where phonons are
emitted and absorbed in roughly equal number, stimulated by thermal excitations of
the lattice.

As there are no ambient carriers, we must also reconsider other device assumptions.
Under standard conditions, we might typically state Ohm’s law as [20]

J = σ · F (2.1)

where conductivity is a tensor defined as

σ = ne2
[
m∗−1

]
〈τm〉 (2.2)

with n, the ambient carrier density, e the electric charge,
[
m∗−1

]
the effective inverse

mass tensor, and τm the momentum relaxation time. Without a substantial n in our
freeze-out conditions, we have no “conductivity” of which to speak. Additionally,
the momentum relaxation time itself has a substantial field dependence under our
conditions, which would further complicate this linear form of Ohm’s law. In fact,
several scattering processes make up this rate, with each their own field dependence.
To be formal, we can even say that rates with varying energy dependencies invalidates
the use of the often-used Mathieson’s Rule [45],

1

τ
= Σi

1

τi
, (2.3)

as it becomes possible in this case that rates are correlated. Therefore, these simple
relations may not be useful ones for our considerations. We need to rethink precisely
what quantities we are allowed to use, and base these on a microscopic understanding
of charge transport processes.

It is worthwhile to note that a priori estimations of carrier distribution functions
can be inaccurate. We know typical carriers energies under bias are large enough
such that they emit acoustic phonons while under drift. This again is the Luke-
Neganov effect [40, 39], which generates what we call “Luke phonons.” For this to
occur, the kinetic energy, Ek, of a carrier must be large enough to emit a phonon
by momentum and energy conservation. This amounts to Ek >

1
2
mcv

2
s , where mc is

carrier’s conductivity mass, and vs is the speed of sound. It also happens to be true
that the average carrier energy is not only above the threshold for acoustic phonon
emission, but also typically below the threshold for emission of optical phonons of
energy ~ω0. In other words,

1

2
mcv

2
s < 〈Ek〉 < ~ω0 (2.4)
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In this scenario, the high-energy portion of the carrier energy distribution may sub-
stantially exceed the threshold for optical phonon emission. The emission of an optical
phonon is an extremely inelastic process. If a carrier emits an optical phonon, its en-
ergy is “reset” to a quite low value. So, transport between these thresholds can be
nonlinear. The resulting carrier distributions may be difficult to predict with simple
analytical approximations based on perturbative, near-elastic scattering.

In this chapter, we will review some basics about semiconductor physics with an
emphasis on germanium. We review the origin and implications of band structure, due
to the lattice nature of semiconductors. We introduce carrier dynamical equations, as
well as scattering mechanisms and rates. As will become useful in later chapters, we
introduce the importance of energy and momentum conservation for implementing
scattering rates.

2.2 A review of semiconductor physics

First, we briefly review the necessary semiconductor fundamentals relevant to
the treatment of quasiparticles in germanium. We introduce the various kinds of
potentials that carriers experience while within a crystal. We treat many-body effects
and the periodicity of the lattice by introducing band structure. We then introduce
the simplifying concept of effective mass and quasi-momentum, as well as density of
states.

2.2.1 The independent-particle Schrödinger equation, and
various potentials

Solids are comprised of a large number of interacting particles, of which the re-
sulting dynamics would naively seem to pose an intimidating problem. Fortunately,
a simplifying approximation is made where the motion of individual particles can be
treated in a mean-field approach, approximating the effect of all the other particles
as an average force. One may call this the independent-particle approximation, and
it is used to justify the use of the Schrödinger equation for a single carrier.

i~
∂

∂t
ψ0(r, t) = − ~2

2m0

∇2ψ0(r, t) + U(r, t)ψ0(r, t) (2.5)

Above, the subscript “0” is used to denote the properties of an electron wavefunction
with no approximation applied to the potential, U(r, t).

An insightful way to approach this problem is to appreciate that there are many
contributions to the potential energy, U(r, t). In this light, we follow an argument
presented by Supriyo Datta [4]. We itemize the contributions to the potential energy,
and then describe how we account for them independently.

U(r, t) = UE(r, t) + UL(r) + US(r, t) (2.6)
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Figure 2.1: Here, we note three distinct categories of potential energy which appear
in Schrödinger’s equation. a. the externally applied potential. b. the periodic and
stationary lattice potential. c. the random scattering potential. Reproduced from
Datta [4].

The term UE(r, t) is an external, macroscopic potential that may arise due to the
presence of an externally applied potential or from space charge due to charged im-
purities. The external potential appears in the equations of motion which describes
carrier acceleration. Next, we include the microscopic, periodic potential of lattice
ions in the crystal by introducing the potential term, UL(r), to account for the lat-
tice. Most concepts we use in depicting band structure and effective mass come from
idealizing the effect of this term. Finally, we account for the microscopic fluctuations
of the periodic crystal by US(r, t), which is a random and fluctuating term due to
phonons, impurities, or crystal defects. We treat this term as the scattering term,
and include it by way of perturbation theory and Fermi’s golden rule.

In what follows, we treat band structure effects due to the lattice potential, and
then include them into the equations of motion which include the external potential.
We then describe scattering mechanisms where various scattering potentials play a
role.
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2.2.2 Dealing with the lattice potential, UL: band structure,
quasi-momentum, and effective mass

In the crystal lattice, the presence of all electrons is by and large accounted for
in a mean-field, single-carrier approach by UL(r), the lattice potential. The lattice is
responsible for the material’s underlying electronic band structure arising from the
many-body Schrödinger equation. A vast number of condensed matter basic refer-
ences cover this material in depth. We point out only the most basic understanding
required for the discussions that follow.

This periodic lattice potential provides solutions to Schrödinger’s equation in the
form of Bloch functions. The electron wavefunction for a given band ν and wavevector
k is written as

ψ0(r, t) = uν,k(r) exp(ik · r) exp(iEν(k)/~) (2.7)

The function uν,k(r) shares the periodicity of the lattice potential. Incorporating
these Bloch wavefunctions into to Schrödinger’s equation, we find eigenvalue energy
solutions. A thorough treatment, again common in a number of textbooks, shows
that E(k) is a function of k. We call this relation of E(k) to k the band structure or
the dispersion relation. We recover the energy band gap, the location of conduction
and valence band-edges, and in fact knowledge of the whole dispersion relation in
k-space known as Brillouin Zones.

The dispersion relation

Considering that dispersion relations are generally parabolic near the band mini-
mum (maximum) where free electrons (holes) are typically found, we can approximate

E(k) =
~2

2
kT
[
m∗−1

]
k (2.8)

where
[
m∗−1

]
is the inverse effective mass tensor.

At times, a non-parabolic band structure is defined, adding a higher-order correc-
tion to the dispersion relation as carriers depart from the local band extremum. In
this case, to first order, the dispersion relation will be defined as

E(k) (1+αE(k)) =
~2

2
kT
[
m∗−1

]
k (2.9)

The term α has been coined as the nonparabolicity factor. To note, this is a simple
constant that attempts to account for the first non-parabolic term in an expansion.
A full dispersion relation might require several terms to adequately account for a
non-parabolic E(k), furthermore the directionality of these higher terms might need
to be included as well. Analytical corrections above and beyond the α constant do
not typically appear in the literature, however.
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Quasi-momentum versus momentum: group velocity

The wavevector, k, provides the quasi-momentum or crystal momentum of the
carrier state. However, as pointed out in several standard textbooks such as [46],
it is critical to understand that quasi-momentum is not identical to the momentum
originating from the group velocity. The group velocity of a carrier is related to the
dispersion relation [46] as

vg =
1

~
∇kE(k) (2.10)

Considering that this expression represents the gradient across surfaces of equal en-
ergy in k space, then carrier velocities must be perpendicular to this surface. Gener-
ally, the same is not true for any particular quasi-momentum wavevector, k. There-
fore, quasi-momentum is in general not co-linear with the actual group velocity. In-
stead, the following relation applies for the case of a parabolic band.

vg = ~
[
m∗−1

]
· k (2.11)

Above, off-diagonal elements in the inverse mass tensor may allow the quasi-
momentum and group velocity to be not parallel. In summary, the effective mass
accounts for the structure of the dispersion relation, E(k), which was deduced by
accounting for the UL term in Schrödinger’s equation.

Next, we continue to develop an understanding of the effective mass by considering
electron kinematics due to the externally applied potential, UE.

2.2.3 Dealing with the external potential, UE: carrier dy-
namics and specifics of the effective mass

Under the influence of an external force, F, the wavevector of a Bloch-state elec-
tron can be shown by equation 2.5 to change as

F = −∇UE = ~k̇ (2.12)

As the wavevector changes, the corresponding acceleration changes the group velocity
by way of equation 2.11.

In considering the valence band which is generally filled by electrons, an unfilled
state acts also according to this acceleration equation. This leads to the concept of
holes. They undergo similar dynamics to electrons but with motion in the opposite
direction. They therefore act as particles in their own right, but with a positive
charge.
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The standard definition of effective mass

We now use classic arguments [46, 45, 47, 48] to define the effective mass, so that
we may afterward introduce an important but lesser-known definition.

We start by energy conservation arguments, closely following those found in ref-
erence [49]. While under the influence of an external force, a Bloch electron’s energy
will increase infinitesimally as

dE = F vg dt (2.13)

One can therefore relate the change in energy to the acceleration equation as

|F | = 1

vg
Ė = ~k̇ (2.14)

This, in turn, gives

v̇g =
1

~
d

dt

(
dE

dk

)
=

1

~
d2E

dk2

dk

dt
=

1

~2

d2E

dk2
F (2.15)

We may relate the external force to the change of group velocity as

F = m∗ (v̇g) (2.16)

then we would find the effective mass as depicted in standard solid-state textbooks
such as [46].

m∗ =

(
1

~2

d2E

dk2

)−1

(2.17)

In more general form, we can write the inverse tensor

[
m∗−1

]
ij

=
1

~2

∂2E

∂ki∂kj
(2.18)

This definition is standard in the literature, and we label equation 2.18 as the standard
effective mass, or band effective mass.

2.2.4 Ferry’s effective mass

An important, straightforward, but widely unknown observation is made by David
K. Ferry, in reference [50]. We briefly revisit his argument in order to define his
expression for effective mass, which differs from the standard result.

Quite simply, we know that force is the time-derivative of momentum.

F = ṗ = m∗ (v̇g) + (ṁ∗)vg (2.19)
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Yet, in equation 2.16 above, we did not include the time-derivative of the mass itself.
This is Ferry’s critical point. It may often be the case that the effective mass has
a dependence on energy or momentum, causing it to change over the course of a
trajectory. If we see this through, the force

F =

(
m∗ +

dm∗

dvg
vg

)
(v̇g) =

(
m∗ +

dm∗

dv
vg

)(
1

~
d2E

dk2

dk

dt

)
= ~

dk

dt
(2.20)

can be combined with the simple relation that

~k = m∗vg (2.21)

Solving this, Ferry determined that the effective mass for this equation must be related
by

m∗Ferry =

(
1

~2

1

k

dE

dk

)−1

(2.22)

In full tensor notation, this is generalized to[
m∗−1
Ferry

]
ij

=
1

~2

1

ki

∂E

∂kj
(2.23)

We define equation 2.23 as the Ferry effective mass. We generally use the tradi-
tional defintion of effective mass in this work, but Ferry’s treatment does suggest an
interesting correction to consider.

2.2.5 The effective mass of electrons in an ellipsoidal valley

In general the effective mass dependence on a constant energy surface is anisotropic
and can often be approximated as ellipsoidal, as is the case for the L-valleys in ger-
manium [51].

Consider the energy-momentum relation to be parabolic. We have a longitudinal
axis parallel to the principal axis, z, and two transverse directions along x and y. We
have constants C1 and C2.

E(kx, ky, kz) = C1(k2
x + k2

y) + C2k
2
z (2.24)

Along the z axis, we can define a longitudinal mass from either the standard
definition of effective mass or the Ferry effective mass.

1/ml
= 1/mzz

=
2C2

~2
(2.25)

Likewise, we can define a transverse mass from either effective mass expression.

1/mt
= 1/mxx

= 1/myy
=

2C1

~2
(2.26)
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Figure 2.2: The multiple valley band structure of germanium. a. the L valleys, the
lowest and dominant conduction band b. the Γ valley c. the X valleys
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As a full tensor, the standard inverse mass tensor is therefore the following.

[
m∗−1

]
=

 1/mt
0 0

0 1/mt
0

0 0 1/ml

 (2.27)

In contrast, Ferry’s effective mass expression provides non-trivial, off-diagonal
components. These terms contain ratios of quasi-momentum components.

[
m∗−1

Ferry

]
=


1/mt

(
1
mt

ky
kx

) (
1
ml

kz
kx

)(
1
mt

kx
ky

)
1/mt

(
1
ml

kz
ky

)(
1
mt

kx
kz

) (
1
mt

ky
kz

)
1/ml

 (2.28)

Rotation of a mass tensor

Now that we have introduced the concept of an inverse mass tensor along an
ellipsoid principal axis, it is also worthwhile to point out the necessary rotational
transformations. In germanium, the L-valleys are oriented along the directions 〈111〉.
To rotate these valleys into the “crystal” or “lab frame,” rotation matrices, R, are
required. To note, an inverse mass tensor is a 2nd-rank tensor [51, 20], so it must
rotate as such. [

m∗−1
]

lab
= R

[
m∗−1

]
principle

R−1 (2.29)

These rotations align a mass tensor from the reference frame of the principle axis
(associated with the longitudinal mass), to the lab frame. Note that distinct rotation
matrices are required for each electron valley.

Isotropic approximations to the electron effective mass

In order to simplify our work, we often make use of isotropic assumptions. It is
important to specify how exactly we can take averages of the inverse mass tensor of
equation 2.27.

Conductivity mass The conductivity effective mass for electrons is the typical
value of the mass tensor found during acceleration. Here, we use the harmonic mean
of the effective mass elements. For kinematic considerations of an individual electron,
we use this mass.

1

mc

=
1

3

(
1

ml

+
1

mt

+
1

mt

)
(2.30)
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Density-of-states mass Considering the occupation of electrons in a density of
available states, we often encounter approximations which require a density-of-states
mass. This mass is used for calculations which consider the number of states available
to an electron [20].

mDOS =
(
mlm

2
t

)1/3
(2.31)

2.2.6 The effective mass for holes in different bands

We have three bands to consider with holes; heavy, light, and split-off, as in figure
2.3. The heavy and light bands share a degeneracy level at k = 0. The proximity
of these levels to each other leads to interactions which make the dispersion relation
complicated [52, 5]. In the absence of strain, the dispersion relations can be written
as the following.

Eh(k) = − ~2

2me

{
Ak2 −

√
B2k4 + C2

(
k2
xk

2
y + k2

yk
2
z + k2

zk
2
x

)}
El(k) = − ~2

2me

{
Ak2 +

√
B2k4 + C2

(
k2
xk

2
y + k2

yk
2
z + k2

zk
2
x

)} (2.32)

Here, h stands for the heavy band, and l for the light band.
The split-off level is separated from the heavy and light bands [53]. It is often

neglected. We treat later it in our full anisotropic simulation, but only with a simple
scalar mass and parabolic dispersion relation.

Figure 2.3: The (idealized) dispersion relation for holes. There are three bands: heavy,
light, and split-off. As holes occupy the heavy band most of the time, it dominates
the transport properties.
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The effective mass for holes is complicated by the warped nature of these valence
bands. We come across three definitions of mass for holes, in different contexts.

Isotropic effective mass

There are isotropic average masses defined for each hole band [53] (i.e., mh, ml,
or ms), which also serve as a density-of-states mass for the different hole bands [54].

Dispersion effective mass

Although the dispersion relations are complicated, we can also consider defining
mass without derivatives, but simply to make a parabolic dispersion work out in a
given direction. In other words, we can define a directional “dispersion mass” by the
following.

~2k2

2mh(θk,ϕk)
= Eh(k)

~2k2

2ml(θk,ϕk)
= El(k)

(2.33)

In some references, mass defined in this way has been used for all kinematic
concerns [54], regardless of equation 2.18.

Standard, or kinematic effective mass

Consider the full dispersion-curve derivative for the inverse mass tensor from equa-
tion 2.18. This, we will call the standard mass definition. It is appropriate for how
the wavevector k is evolving as a group velocity. Therefore, this definition of mass
is appropriate for how holes accelerate, evolving kinematically in a differential sense.
Since the dispersion relation is more complicated, the standard mass definition does
not lend itself well to a matrix formalism as well as for electrons. In the inverse
mass tensor using equation 2.18, each element depends on all k-vector components.
Although there is an analytical form for every element, it remains cumbersome to
depict for this reason.

2.3 Scattering mechanisms: dealing with the ran-

dom scattering potential, Us

We now discuss carrier scattering mechanisms. As carriers propagate through the
germanium medium, they encounter quantum mechanical processes which cause them
to scatter from some initial momentum state k to a new momentum state k′. Several
different kinds of processes may cause these scattering events, namely the emission or
absorption of a phonon, a collision with a defect or impurity, or collisions with other
carriers.
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Under the scattering conditions of the CDMS experiment, the temperature is low
and the purity of the detector crystals is high. Well below carrier freeze-out tempera-
tures, we do not consider carrier-carrier interactions. Any carrier-carrier interactions
during the initial deposition of a nuclear-physics scale particle or photon are far from
the field steady-state conditions we attempt to depict. Although we go into the details
for carrier scattering on crystal impurities, we consider this rate as generally a small
term for our high-purity detectors. We largely neglect it in our final treatments, but
we do elaborate on this topic later on. We will describe phonon absorption and emis-
sion. By far, the scattering rates for electrons and holes is dominated by only phonon
emission processes. As a reminder, this is indicative of the “zero-point” regime where
phonons are emitted far more than they are absorbed.

In what follows, we describe the general categories of scattering processes. We
then introduce Fermi’s golden rule, and how it is used to depict scattering rates. This
is similar to classic introductions as found in the popular references [7, 12, 45, 5, 48].
We will then analyze in depth the case of impurity scattering, followed by phonon
scattering at substantial length.

2.3.1 General categories of scattering processes

There are a number of general interaction mechanisms that introduce scattering
potentials, causing electrons and holes to stochastically scatter between momentum
states. Here, we outline these physical processes particular to germanium. Broadly,
scattering mechanisms are introduced by either

• some sort of defect or impurity site in the germanium crystal, or

• the probability to emit or absorb a phonon, or

• the probability for carriers to scatter off one another.

The general types of scattering processes are summarized by figure 2.4. We briefly
summarize these categories, and the relevance of different kinds of scattering to the
operating conditions in CDMS germanium detectors at T = 40 mK.

Impurity scattering

Both electrons and holes may scatter while in the proximity to impurities or crystal
defects. These potentials are localized and time-independent. Carrier scattering is
assumed to be elastic in this case, as there is no momentum assumed to be imparted
to the impurity or crystal as a whole. As a consequence, the primary outcome of
impurity scattering is only to randomize the electron or hole distributions, as energy
is not lost. These scattering processes are assumed to be due to either charged
(ionized) impurities, or to neutral impurities. Of the ionized impurity processes, the
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Figure 2.4: General categories of scattering processes for both electrons and holes.
Solid dots: represent processes that need not be considered for sub-Kelvin operation.
Also to note, phonon emission rates greatly outnumber absorption rates at sub-Kelvin
temperatures.

scattering rate is treated with a different formalism depending on whether or not the
ionized impurity potential includes screening effects.

It is worthwhile to consider the difference between screened and unscreened ionized
impurity scattering. In room-temperature semiconductors, there are enough ambient
free carriers throughout the bulk such that their presence can screen the Coulomb
potential of ionized impurities. This is referred to as Debye screening [55, 7, 45]. In
considering carrier scattering by screened impurities, rates are based on the Brooks-
Herring [56] model of impurity scattering. At sub-Kelvin temperatures, the ambient
carrier concentration is practically non-existant. Screening is not a concern. In this
case, the Conwell-Weisskopf [57] treatment for unscreened ionized impurities is the
appropriate formulation. The Conwell-Weisskopf approach basically reduces to a
form of Rutherford scattering on the impurity’s Coulomb potential. As an aside,
formulations by Ridley [58] successfully bridge the screened and unscreened limits in
a continuous formulation of ionized impurity scattering.

Neutral impurities also present a source of scattering potentials for incident elec-
trons and holes. Although there is no Coulomb repulsion or attraction, there is
a short-range interaction that can be modeled basically as a spherical square well
potential. The earliest notable treatment of neutral impurity scattering is that of
Erginsoy [59]. A slightly more sophisticated treatment is that of Sclar [60], which
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includes a dependence based on the incident carrier’s energy. For neutral impurity
scattering, we use Sclar’s formulation. However, a simple inspection under Erginsoy’s
formulation shows that neutral impurity scattering is a rare process for neutral im-
purity levels of 1010 cm−3. A carrier is expected to traverse nearly a meter before
scattering on a neutral impurity at that concentration. So, although we can include
neutral impurity scattering, it is not a significant contribution to the overall energy
and momentum distributions of drifting electrons and holes.

Scattering by both ionized and neutral impurities has a strong energy dependence.
Intuitively, as carriers have lower incident energy, they remain in proximity to the
scattering potential for a longer period of time. This can be seen as why the scattering
probability is higher when the carrier incident energy is lower. As it turns out, under
the low-temperature operation of CDMS detectors, carriers can reach high energies
with relatively low applied electric fields. For typical bias conditions with fields
of ∼ V/cm, carrier scattering by either ionized or neutral scattering is negligible for
concentrations of 1010 − 1011 cm−3. This is fortunate because, a priori, we don’t know
what fractions of the impurity concentrations are ionized versus neutralized. We must
calculate energy distributions first before we can make predictions for ionization and
neutralization rates. Therefore, our overall approach is to neglect carrier scattering
in our transport calculations. One could imagine that if impurity scattering effects
(say for fields at the ∼ 10 mV/cm scale) should be considered, an iterative approach
between transport calculations and ionization calculations could be computed.

Phonon scattering

Phonons are quantized vibrations of the crystal lattice. These vibrations represent
time-dependent displacements of the lattice ions. These local displacements serve to
locally alter the relative band energies. As seen by free carriers, phonons present a
time-dependent source of scattering potentials.

Phonon scattering is inelastic. Phonon absorption (emission) represents the ab-
sorption (emission) of phonon energy quanta by carriers, therefore increasing (low-
ering) carrier energy. Of the many different phonon processes, some processes are
“intravalley” meaning they transfer electrons to new momentum states in the same
valley. The term happens to be “intraband” for phonons processes that scatter holes
within the same band. Phonon processes that scatter electrons (holes) to different
valleys (bands) are referred to as “intervalley” (“interband”) processes.

Phonons represent the vast majority of scattering processes needed to depict
transport in high-purity crystalline germanium at sub-Kelvin temperatures. There
are numerous individual phonon processes. There are acoustic phonons, and optical
phonons. In a three-dimensional germanium crystal, there are separate branches of
phonons (one longitudinal and two transverse) for both acoustic and optical phonons.

There are probabilities for carriers to both emit and absorb phonons, although
there are essentially no ambient phonons around for carriers to absorb at sub-Kelvin
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temperatures. In fact, it is this absence of ambient phonons (for the drift fields of
interest) that determines the unique transport limit in which CDMS detectors operate.
As a reminder, carrier scattering is dominated by spontaneous phonon emission (or
collision with zero-point fluctuations of the lattice).

Calculating the transport conditions limited by phonon emission represents the
majority of the work we must perform.

Carrier-carrier scattering

We do not treat carrier-carrier scattering in our treatment of electron and hole
transport. Carrier-carrier scattering is the interaction of carriers with each other.
This rate is dependent on the concentration of carriers generally occupying the same
volume. Carrier-carrier scattering is more difficult to treat than scattering processes
involving only one carrier, typically because the joint energy distribution between
carriers needs to be established. Fortunately, as sub-Kelvin temperatures are well
below the freeze-out temperature of carriers in germanium, we are safe in neglecting
carrier-carrier scattering.

2.3.2 An introduction to Fermi’s golden rule and scattering
processes

In this section, we determine ideal scattering rates by perturbation theory, largely
following Datta [4]. We point out the required understanding of the scattering po-
tential and the conservation of energy and momentum in order to arrive at a total,
integrated scattering rate.

The random scattering potential gives us Fermi’s golden rule

The principle is that the random scattering potential, demonstrated in figure 2.1,
is responsible for a first-order quantum mechanical perturbation coupling a carrier
of state k to a state k′. Therefore, we define the matrix element which couples an
electron of wavevector k to a wavevector k′ by this random scattering potential Us.

〈Us〉k,k′ ≡
∫
dr

Ω
ψk′Usψk (2.34)

Fermi’s golden rule is the first-order transition rate associated with this matrix
element. This is formula is standard.

Γ(k,k′) =
2π

~
| 〈Us〉k,k′ |δ(Ek′ − Ek) (2.35)

For Bloch waves, the matrix element can be broken into a relative scattering
potential, Us(k− k′), and an overlap integral, I(k,k′) [45].
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〈Us〉k,k′ = Us(k− k′)I(k,k′) (2.36)

Separating the overlap factor from the potential term allows us to use plane waves
instead of Bloch waves. In addition, for parabolic bands the overlap factor is typically
near unity.

A total rate, integrated over final states

Equation 2.35 gives us the probability that a carrier in the original state k is
scattered by the perturbation potential 〈Us〉k,k′ to the particular final momentum
state k′. While this formulation is correct, it doesn’t afford much of a physical
understanding because there are typically a huge number of possible k′ states in
realistic situations. What is required for a physically useful rate is the total rate over
all possible k′ final states.

The total scattering rate is the sum over all possible k′ final states.

Γ(k) =
2π

~
∑
k′

|Us(k− k′)|2I(k,k′)2δ(Ek′ − Ek)) (2.37)

There are in fact many possible final states to “choose from” in realistic situations
concerning a macroscopic, bulk semiconductor. We can make use of the density of
states Ω per unit volume in k-space to replace the discrete sum of equation 2.37 by a
corresponding continuous integral. We make the following replacement.∑

k′

→ Ω

(2π)3

∫
d3k′ (2.38)

By expressing the integral in terms of spherical coordinates in k′-space, we find
the following form.

Γ(k) =
Ω

(2π)3

2π∫
0

π∫
0

∞∫
0

Γ(k,k′) k′2 dk′ sin θ dθ dφ (2.39)

The difficulties: we must investigate Us(k− k′) and δ(Ek′ −Ek), to arrive at
a total scattering rate

By replacing Γ(k,k′) in equation 2.39, we can reconsider its constituent terms.

Γ(k) =
Ω

(2π)3

2π

~

2π∫
0

π∫
0

∞∫
0

|Us(k− k′)|2I(k,k′)2δ(Ek′ − Ek)k′2 sin θdk′dθdφ (2.40)
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The above equation contains the delta function in energy, δ(Ek′ − Ek), which
generally serves to simplify the k′-space integral. Only the final states that conserve
energy are allowed.

A basic understanding of a particular scattering process may be gained by in-
terpreting it within the framework of equation 2.40. What changes from process to
process is primarily the scattering potential matrix element, Us(k − k′), as well as
the particular form of the delta function δ(Ek′ − Ek). So we point out here that the
details of solving these integrated rates often can be reduced to understanding the
behavior of these two quantities. We will point examples of this in sections to come.

A caveat to Fermi’s golden rule

It is worthwhile to a caveat to Fermi’s golden rule. Our picture is semiclassical.
We assume electrons or holes propagate freely in an electric field, but are interrupted
by discrete, instantaneous scattering events. The delta function in Fermi’s golden
rule is a strict interpretation of energy conservation.

In some physical circumstances, it may be that scattering events happen with such
great rapidity, that energy conservation is not strictly determined as per Uncertainty
Principle limits. When the uncertainty in the final-state energy after a scattering
event is not well depicted by Fermi’s golden rule, we say that this transport scenario
is affected by collisional broadening.

Under the conditions of CDMS detectors, carrier scattering is essentially limited
by spontaneous phonon emission. In this case, we have no need to consider collisional
broadening. Fermi’s golden rule is always acceptable in the work that follows.

We now consider the application of Fermi’s golden rule to specific scattering pro-
cesses.

2.3.3 The impurity scattering rates

Here, we describe the integrated scattering rates appropriate to describe carrier
scattering by both ionized and neutral impurities.

Ionized impurities

Ionized impurity scattering is considered as elastic. Under CDMS conditions which
includes a temperature well below carrier freeze-out, we need only be concerned with
unscreened Coulombic impurity potentials. Again, the appropriate treatment for this
is the Conwell-Weisskopf [57] formulation.

The unscreened Coulomb interaction gives a scattering potential of

〈Us〉k,k′ =

∫
dr

Ω
ψk′(

Ze2

4πκε0r
)ψk (2.41)



44

Expressing in real-space spherical coordinates, and using Bloch plane waves for the
incident and outgoing wavefunctions, we find the following.

〈Us〉k,k′ =
1

Ω

2π∫
0

π∫
0

∞∫
0

(e−ik
′·r)(

Ze2

4πκε0

)(eik·r)rdr sin θdθdφ (2.42)

Combining this with Fermi’s golden rule, as well as multiplying byNIΩ for the number
of impurities in the plane-wave volume, one arrives at [45]

Γ(k,k′) =
πNIe

4δ(Ek′ − Ek)

8~ (κε0)2 Ωk4 sin4 (θkk′/2)
(2.43)

where θkk′ is the angle between k and k′.
What Conwell and Weisskopf first performed [57] was the integrated rate based on

this particular formulation of Fermi’s golden rule. Their insight comes from the fact
that the rate becomes infinite when the angular deflection θkk′ is zero. To avoid this
divergence, they introduced a threshold minimum angle into the integration limits.
They declared the relevant scattering angle θkk′ to be no smaller than the angle
representing an impact parameter greater than the mean distance in between two
impurities. In other words, the maximum impact parameter would be [45]

bmax =
1

2
N

1/3
I (2.44)

where impact parameter and scattering angle are related kinematically by [45]

b =
e2

8πκε0

(~2k2

2m∗

) cot(θkk′/2) (2.45)

Notice that an assumption of isotropy was used in expressing m∗, a scalar carrier
effective mass.

As a result of introducing the maximum impact parameter and therefore a min-
imum deflection angle for integration, Fermi’s golden rule can be performed. This
results in [61]

Γ(k) =
πNI√
2m∗E3

k

(
Ze2

4πκε0

)2

log

1 +

(
4πκε0

Ze2

Ek

N
1/3
I

)2
 (2.46)

We conclude this discussion of ionized impurity scattering by pointing out that
there is a better way to describe this scattering rate, freeing up the assumption of
isotropy. We will revisit this later.
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Neutral impurities

The scattering rates due to neutral impurity scattering are arguably quite negli-
gible for our high-purity detectors. We include neutral impurity scattering for both
completeness and to glean some insight. The idea is that, even without a Coulomb
potential, there still exists a short-range hydrogenic scattering potential due to core
effects. This potential is traditionally modeled as a spherical box potential, with a
hydrogenic Rydberg energy serving as the square-well depth. For reasonable energies
of incident free electrons or holes, this potential represents a large perturbation. A
simple Born approximation is not adequate [5], and the scattering formalism actually
reverts to solving the time-dependent Schrödinger equation for incident plane-wave
scattering. Thus, Fermi’s golden rule is not utilized in this case, but rather the
phase-shift method [62] for quantum mechanical scattering.

The earliest notable formulation for neutral impurity scattering in semiconductors
is that of Erginsoy [59]. He proposed a scattering rate [5] for the limit that incident
carrier wavevector kaB < 0.5 where aB is the effective hydrogenic Bohr radius. The
idea is that the phase-shift method in this low-energy limit results in scattering with
a predominant spherical (l = 0) outgoing wave. Erginsoy’s results for this situation
gave a scattering cross-section as

σErginsoy = 20aB/k (2.47)

Considering this cross-section needs a random carrier velocity and target impurity
concentration, the corresponding isotropic scattering rate can be given as

ΓErginsoy(k) = NIvσErginsoy

= NI

(√
2Ek/m∗

) (
20aB
k

) (2.48)

A more sophisticated use of the phase-shift method for quantum mechanical scat-
tering was developed by Sclar [60]. Sclar found [5]

σSclar =
4π(~2/2m∗)√

(Ek + ET )
(2.49)

where ET is a particularly important threshold energy, unique to the square-well
formulation. For shallow hydrogenic centers in germanium, the threshold energy is
expected to be some small fraction of the Rydberg energy, perhaps ET ∼ 0.5 meV
[5].

This gives a corresponding scattering rate as

ΓSclar(k) = NIvσSclar

= NI

(√
2Ek/m∗

)(
4π(~2/2m∗)√

(Ek+ET )

)
(2.50)
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Sclar’s formulation gives results that are generally the same order of magnitude as
Erginsoy’s result, but has a substantially different energy dependence. For our work,
we choose to adopt Sclar’s result as the slightly more sophisticated treatment.

Sclar’s threshold energy, ET , represents the energy of a singular, singlet bound
state, which is precisely the same state we will revisit later in this thesis when we
discuss the processes involving “anion,” “H-,” or “overcharged” states. It is interac-
tion with this potential bound state which is the root cause of the neutral impurity
scattering, which is now apparent in Sclar’s cross-section.

This examination of neutral impurity scattering was useful on two counts. First,
by equation 2.50, we appreciate the presence of a bound state, ET , resulting merely
from the quantum nature of a square-well potential. This will be important later
on in this thesis, regarding capture to bound states. Second, by inspecting Sclar’s
cross-section of equation 2.49, we note that the threshold energy, ET , promotes scat-
tering only if it is small. This implies that the effect of shallow states are dominant
because their threshold energies are small. It is interesting to note that, by this same
formulation, deep neutral states could exist at extremely high concentrations while
still contributing negligible impact on carrier transport properties.

2.3.4 The phonon scattering rates

We now introduce the scattering rates associated with phonon emission and ab-
sorption. Fermi’s golden rule is applied to all cases. We will point out the possible
phonons that may be emitted or absorbed by electrons and holes. We will then cover
the origin of the electron-phonon scattering potential, Us, for both acoustic and opti-
cal phonon absorption and emission. Scattering potentials are primarily determined
by quantities called deformation potentials, which determine the amount of scatter-
ing potential created by lattice ion displacement. After describing these necessary
ingredients, we finally assemble an integrated rate based on Fermi’s golden rule. We
will need to consider energy and momentum conservation to correctly manage the
required phase-space integrals.

The phonon dispersion relation, and the varieties of possible phonons

There are a variety of phonons that exist due to the lattice structure of crystalline
semiconductors. Here, we will briefly outline the phonon dispersion relations pertinent
for germanium, and point out the common approximations used for them. We will
point out the general classes of phonons that may be absorbed or emitted by electrons
and holes.

We will not describe the origin of phonons as harmonic oscillations of the lattice
ions. There are numerous, elementary solid-state references for that [63, 61, 4, 45, 5].
It will suffice to say that:

• there are two major classes of phonons; acoustic and optical,



47

• both acoustic and optical phonons each have three branches based on polariza-
tion; one longitudinal branch and two transverse.

Figure 2.5: The phonon dispersion relation for germanium, idealized for a longitudinal
branch and a single transverse branch for both acoustic and optical phonons. a.
longitudinal acoustic branch (LA) b. transverse acoustic branch (TA) c. longitudinal
optical branch (LO) d. transverse optical branch (TO) 3. a superimposed dispersion
relation for parabolic electrons (plotting the corresponding k vector for electrons –
not to scale) f. the Brillouin Zone boundary g. slope for the longitudinal speed of
sound h. slope for the transverse speed of sound i. the optical phonon energy, ~ω0

j. the intervalley phonon energy, ~ωi k. the transverse acoustic intervalley phonon
energy, ~ωit.

Figure 2.5 shows the dispersion relationship for phonons. For clarity, only one
transverse branch is depicted for both acoustic and optical phonons. Note that we
use variable q for the wavevector for phonons, analogous to k for electrons.

We see that acoustic phonons have zero energy (~ω = 0) at zero wavevector,
q. Near the origin, acoustic phonons have a near-linear relationship between ω and
phonon wavevector q. The slope is the speed of sound, vs, for acoustic phonons.

vs = ω/q (2.51)

The speed of sound is different for the three different branches of acoustic phonons.
The longitudinal branch is fastest. The two transverse branches near the origin are
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quite similar, so they are taken to have the same speed of sound. The speeds of sound
even have a slight anisotropies, but we do not consider them in this treatment.

For optical phonons, although there are technically three branches, it is standard
that all three branches are approximated as having the same energy near q = 0. Since
the dispersion relation is rather constant near q = 0, we consider the optical phonon
frequency to be a constant. We call this frequency ω0.

We can justify the linear relationships for acoustic phonons, and the constant
frequency for optical phonons. If we superimpose an electron (or hole) dispersion
relation on top of the phonon dispersion relation at q = k = 0, we would find that the
electrons assume extremely small wavevectors relative to phonons for the same energy.
In other words, phonons as seen by electrons or holes are typically very “horizontal”
or “carry a lot of momentum per unit energy” on the carrier dispersion curve. This
makes sense as phonons represent the displacement of heavy lattice ions. Therefore,
while conserving both energy and momentum, carriers typically only interact with
small wavevector phonons (near q ≈ 0). In figure 2.5, a carrier dispersion relation is
superimposed at q = k = 0, and yet is still scaled larger along the wavevector axis in
order to give it some visible width.

The picture we have established so far is further complicated when we consider
that phonons can also transfer electrons (holes) in between valleys (bands). So far,
we have only considered the intravalley (intraband) processes. It is also possible to
conserve energy and momentum in transferring electrons between different valleys
(intervalley scattering), and holes between other bands (interband scattering). This
can be accomplished by any branch of phonon, acoustic or optical.

A particular asymmetry between electrons and holes has to do with the many-
valley nature of the L− valley conduction band in germanium, as depicted in figure
2.2. There are 8 half-valleys (or equivalently 4 full valleys) for the L points, all at the
same conduction-band energy minimum. it is readily possible for electrons to transfer
from one valley to another provided they can emit a phonon to adequately conserve
momentum and energy. This particular case is interesting because the electron L-
valleys (and even the X-valleys) are indirect minima, meaning they are offset from
k = 0. So the emitted (or absorbed) phonons in the intervalley case have very large
wavevectors. In fact, the k-space distance subtended between L-valleys represents the
same q-momentum of an X-direction (〈100〉) phonon across the Brillouin Zone. This
process is quite similar to Umklapp processes, with the slight difference here being
that these intervalley phonons represent large wavevector phonons oriented across the
same unit cell, rather than an Umklapp phonon which is offset by the components of
a single reciprocal lattice vector that would extend beyond the First Brillouin Zone.

Figure 2.5 also shows that the large-wavevector phonons responsible for intervalley
processes are located at the Brillouin Zone boundary. The dispersion curves have
changed across the Brillouin Zone. Furthermore, it is not clear if intervalley phonons
are dominated by acoustic or optical processes at these large wavevectors. Generally,
intervalley phonons are treated as optical phonons, with a modified frequency which
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we call ωi. The slowest transverse acoustic branch is substantially smaller than the
other branches at the Brillouin Zone boundary, so it is specified separately in some
references. We label the transverse acoustic branch for intervalley scattering as ωit.

With this general picture in mind, we will now begin to specify the electron-phonon
coupling.

The electron-phonon scattering potential

This section borrows heavily from the explanation of Lundstrom [45].
By analogy, phonons represent “a moving diffraction grating” as seen by electrons

and holes. The lattice displacement generated by a phonon creates a stress or strain
in the lattice, in turn disrupting the equilibrium bandgap energy by producing a
scattering potential. As this lattice displacement is periodic, it may be represented
(one-dimensionally) by the following form [45].

Us(z, t) = Cqe
±i(qz−ωt) (2.52)

In contrast to impurity scattering, this scattering potential is time-dependent. It is
also oscillatory over position.

A condition mentioned previously was that Fermi’s golden rule had to be imple-
mented in cases where scattering was infrequent, in order to avoid the complications
of collisional broadening. So in the case of a time-dependent scattering potential, it
suffices to take a limit as t→∞ to calculate the matrix element. In taking this limit,
it is well known [45] that the factor of e±i(ωt) leads to a modified delta function in
Fermi’s golden rule, appearing as δ(Ek′ − Ek ∓ ~ω).

The oscillatory factor over position e±i(qz), leads to a matrix element which is
suppressed unless k′ = k ± q. This is a statement of momentum conservation, and is
implemented by multiplying the matrix element by delta function also in momentum,
δ(k′ − k ∓ q).

So to summarize the consequences of a potential of the form of equation 2.52, it
is important to note that

• the oscillatory time-dependence mandates that the carrier must either emit or
absorb an energy quantum to conserve energy before and after a scatter

• the oscillatory position-dependence additionally forces momentum conservation.

To note, the one-dimensional nature of equation 2.52 also extrapolates directly to
three dimensions.

We now will inspect the constituent ingredients of the prefactor term Cq in equa-
tion 2.52.
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The phonon displacement and deformation potentials

Consider a phonon as an elastic wave with a quantum field,

uν,q(r, t) =
_
eν,q

√
~

2ρΩωq

(
aν,qe

i(q·r−ωt) + a∗ν,qe
−i(q·r−ωt)) (2.53)

where
_
eν,q is the phonon polarization vector, and a∗ν,q and aν,q are creation and anni-

hilation operators, respectively. The mass density of germanium is ρ, and ωq is the
phonon frequency.

The phonon displacement of equation 2.53 drives the electron-phonon scattering
potential. To show this, we need a relation between the displacement provided by
a phonon and the change in potential it creates. The energy shift per displacement
is given by deformation potentials. The perturbed energy due to a displacement in
lattice constant can be expressed

Us = Ξ
δa

a
(2.54)

where Ξ is a deformation potential, in units eV .
The idea is that a strain ∇·uν,q represents the displacement on the lattice exerted

by acoustic phonons, so that the acoustic phonon scattering potential goes as [45]

UA(r, t) = ΞA ∇ · uν,q(r, t) (2.55)

where uν,q(r, t) is from equation 2.53 and ΞA is the deformation potential explicitly
for acoustic phonons.

Optical phonons represent oscillations where the motion of neighboring ions is
opposite. Therefore, the optical phonon scattering potential goes as the displacement
vector itself, not the gradient [45]

U0(r, t) = Ξ0 uν,q(r, t) (2.56)

and the deformation potential for optical phonons is in units eV/cm.
In an anisotropic crystal, an acoustic or optical deformation potential is a ten-

sor, and relates the energy shift in the lattice to a particular phonon of wavevector
q and polarization vector

_
eν,q. In anisotropic valleys or bands, both shear and di-

latational strains can lead to scattering potentials, coupling differently to longitudinal
and transverse phonons. So, taking acoustic phonons as an example, a more thorough
depiction of a deformation potential is the relation

Us = Ξij
∂ui
∂xj

(2.57)
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To relate back to the general form of equation 2.52, we can posit the following
relation

|Cq|2 = |κq|2|Aν,q|2 (2.58)

where the term κq represents the energy shift produced per unit lattice displacement,
and Aν,q is the displacement amplitude.

We make use of equation 2.53 to find the displacement amplitude. Note that we
are taking scattering expectation values. The annihilation operator contributes to the
absorption displacement amplitude, while the creation operator refers to the displace-
ment amplitude appropriate for emission. Therefore, we should use the displacement
amplitude

|Aν,q|2 =
~

2ρΩωq
(Nq) (2.59)

for absorption processes, and

|Aν,q|2 =
~

2ρΩωq
(Nq + 1) (2.60)

when considering emission processes. Nq represents the ambient phonon occupation
number, following Bose-Einstein statistics.

Meanwhile, the coupling term κq is useful because it helps us use a consistent
formalism while referring to either acoustic or optical phonons. For acoustic phonons,
we should use the relation

|κq|2 = q2Ξ2
A (2.61)

For optical phonons,
|κq|2 = Ξ2

0 (2.62)

Combining into a matrix element, the oscillatory dependence of equation 2.52
includes momentum conservation.

(Us)k,k′ = |κq|2|Aν,q|2I(k,k′)2δ(k′ − k∓ q) (2.63)

We then find the rate

Γ(k,k′) =
2π

~
|κq|2|Aν,q|2I(k,k′)2δ(k′ − k∓ q)δ(Ek′ − Ek ∓ ~ω) (2.64)

This is the most basic formulation of the k to k′ transition rate for phonon scat-
tering. After a detour into some of the specifics of electron and hole deformation
potentials, we will investigate the integration of equation 2.64 into a total scattering
rate.

The vast majority of scattering rates depicted in our work use simple scalar defor-
mation potentials. We are bound by what is known in the literature from transport
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measurements and ab initio calculations. Although there are some constraints from
non-transport experiments, deformation constants appropriate for every valley/band
transition and for every phonon branch are not always known. Furthermore, many
authors only use a scalar form.

Even at room temperature, transport properties are determined almost entirely
by electron-phonon properties of the L-valleys, and by hole-phonon properties of the
heavy and light bands. So for these most common phonon processes, the formalism
has been improved.

In order to have a thorough naming convention, we have adopted a unique system
of indices for specific deformation potentials. This is identified in figure 2.6. It is an
attempt to give a consistent format to the numerous couplings which arise between
carriers and phonons.

Figure 2.6: There are many labeling systems for deformation potentials throughout
the literature. This figure is a pictorial guide to the indices created for this work to
delineate specific constants. Intervalley phonons, although treated as optical phonons,
are classified as a distinct phonon type because they may contain contributions from
both high-wavevector acoustic and optical phonons. Furthermore, for intravalley and
intraband processes or for the X-valley g and f processes, only one index is given for
both {i, j}.

We will now visit the more sophisticated approximations used in these cases.



53

The deformation potentials for electrons

For electrons, scalar constants are typically used for acoustic and optical phonon
branches as depicted in figure 2.5. For L-valleys, a common assumption is to consider
all three phonon branches as a single, average, isotropic phonon branch, with effective
speed of sound [7]

〈vs〉 =
2vst + vsl

3
(2.65)

The deformation potential for this branch is just assumed to be a scalar, call it ΞA.
Highly anisotropic semiconductors can produce electron-phonon scattering poten-

tials due to both shear and dilational strains. Lacking any symmetry arguments,
there could be as many as six independent matrix elements [50] for the required de-
formation potential tensor. For the case of L-valleys in germanium (and for X-valleys
in silicon), fortunately there is a formulation [64] reducing the number of free con-
stants to only two. These constants are the dilational potential, Ξd, and the uniaxial
shear potential, Ξu. The coupling of these deformation potentials to the longitudinal
acoustic and transverse acoustic phonons is a function of the direction of wavevector
q, relative to the principle axis (the 〈111〉 orientations) of the ellipsoid valleys. For
longitudinal acoustic phonons, the deformation potential as a function of q-vector
polar angle is

ΞL,l
e,A = Ξd + Ξu cos2 (θqp) . (2.66)

If the two transverse acoustic branches are treated as one, the combined deformation
potential (for a combined TA1 and TA2 rate) is given by

ΞL,t
e,A = Ξu sin (θqp) cos (θqp) . (2.67)

For clarity, the polar angle θqp is labeled “qp” to denote the angle subtended between
the phonon q-vector and the “principle axis” of the specific 〈111〉 (or “L-”) valley.

We can see in figure 2.7 the angular dependency gives the longitudinal branch
substantially stronger coupling than that of the transverse branches.

Although we do not isolate all three acoustic branches coupled to electrons, this
approximation is the most sophisticated formulation readily available in the literature
[5, 50]. In fact most of the literature, since the introduction [65] of an average defor-
mation potential ΞL

e,A, representing electron coupling to all three acoustic branches
in the L-valleys, uses this single constant rather than individual transverse and lon-
gitudinal rates, as in [7].
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Figure 2.7: The directional dependence of the electron acoustic deformation poten-
tials. Here, polar plots represent the square of the deformation potential matrix ele-
ments for electron-phonon acoustic scattering in the L-valleys. a. the squared longitu-
dinal deformation potential, (ΞL,l

e,A)2 = (Ξd + Ξu cos2 (θqp))2 b. The combined (TA1 +

TA2) squared transverse deformation potential, (ΞL,t
e,A)2 = (Ξu sin (θqp) cos (θqp))2
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The deformation potential for holes

The near degeneracy between the heavy and light bands causes them to be sub-
stantially warped. This generates considerable difficulty in expressing analytical for-
mulations for the electron-phonon interaction. The most common treatment, intro-
duced by Lawaetz [66], is to group all three phonon branches together [7] with a
single, isotropic constant as a deformation potential, Ξh,A, along with a single, aver-
aged speed of sound as per equation 2.65. This simplified single-branch model is used
in calculations for both heavy and light bands.

Of course, the interband processes that can occur for holes are only those near
k = 0. Therefore, phonon wavevectors are typically small unless one were to consider
Umklapp processes. So the phonon deformation constants appropriate for holes are
those for acoustic and optical branches, all near q = 0.

A more rigorous consideration of the acoustic hole-phonon interaction must follow
the interacting phonon’s wavevector q, polarization vector, êν,q, and speed of sound
for that branch. The deformation potential tensor must be depicted by still three
independent constants in this case [5, 12]. Following Bir and Pikus [52, 67], the
acoustic deformation constants for holes are usually called a, b, and d. The defor-
mation constant a is associated with the acoustic dilational strain in heavy and light
bands, while b and d are associated with acoustic shear strain terms [5]. Associated
with these deformation potentials are the scattering rates as discussed above, with
original implementations by Bir and Pikus [52] in addition to Tiersten [68]. Refine-
ments by Madarasz and Szmulowicz [69, 70], with subsequent adaptions by Hinckley
and Singh [71] and a thorough review by Fischetti and Laux [12], have made the rep-
resentation of hole-phonon scattering rates accessible for use in modern Monte Carlo
implementations.

Using the formalism presented by Hinckley and Singh [71], we can define a product
of squared deformation potential and overlap factor, as

|qΞ{n,n
′},ν

h,A |2I(k′, k)2 =

∣∣∣∣∣
3∑

α,β=1

qα

(
3∑

j,j′=1

〈ψn′(k′)| j′〉Dj′j
αβ 〈j |ψn(k)〉

)
êv,β(q)

∣∣∣∣∣
2

(2.68)

where êv,β is the β-th component of the phonon polarization vector of the ν-th acoustic
branch, with a wavevector of q. The element qα is the α-th component of q. The
matrix element Dj′j

αβ is the deformation potential component of one of the following
Dαβ matrices[71] in x, y, and z coordinates. Symmetries [71] impose Dxy = Dyx,
Dyz = Dzy, and Dzx = Dxz. These expressions in terms of a, b, and d are
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Dxx =

 a+ 2b 0 0
0 a− b 0
0 0 a− b

 Dyy =

 a− b 0 0
0 a+ 2b 0
0 0 a− b


Dzz =

 a− b 0 0
0 a− b 0
0 0 a+ 2b

 Dzx =

 0 0
√

3
2
d

0 0 0√
3

2
d 0 0


Dxy =

 0
√

3
2
d 0√

3
2
d 0 0

0 0 0

 Dyz =

 0 0
√

3
2
d

0 0 0√
3

2
d 0 0


(2.69)

Notice in equation 2.68 that we also require phonon polarization vectors, appro-
priate for each branch. From first principles, the three acoustic phonon branches
may be depicted as a system of linear equations representing the lattice displacement
equations of motion. The phonon polarization vectors for each branch are the system
eigenvectors. The rigorous phonon polarization vectors do not have a manageable
closed form [72]. As is common to the relevant literature [69, 70, 71], we choose to
adopt the approximated form of phonon polarization vectors developed by Ehrenreich
and Overhauser [73].

êL = 1
|q|

 qx
qy
qz


êT1 = 1√

q2
x+q2

y

 qy
qx
0


êT2 = 1

|q|
√
q2
x+q2

y

 qxqz
qyqz

−
(
q2
x + q2

y

)


(2.70)

With this information, we can implement equation 2.68 when we wish to use the full
form of the acoustic deformation potential for holes. However, we see that the full
matrix element formalism is quite complicated. To consider any possible scattering
event in this case, we need full knowledge of the phonon wavevector and its branch, its
polarization, as well as the final and initial hole k-vectors. This is somewhat intense
for for standard transport treatments, although we do utilize it in our full, anisotropic
Monte Carlo algorithm to be explained later in this work.

Considering now the optical phonon deformation potential tensor for holes, we
again use the formalism of Hinckley and Singh [71]. In this case, we have the following
coupling.

|Ξ{n,n
′},ν

h,0 |2I(k′, k)2 =

(
3d2

0

2a2
0

) ∣∣∣∣∣
3∑

j,j′=1

〈ψn′(k′)| j′〉Aj
′j
ν 〈j |ψn(k)〉

∣∣∣∣∣
2

(2.71)
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Here, d0 is the optical deformation potential for holes from the formalism of Bir
and Pikus [52], a0 is the germanium lattice constant, and matrices Aν represent
the permutation operator corresponding to the ν-th optical phonon branch. The
operators Aν are determined by lattice symmetry and are provided once again in
reference [71].

Ax =

 0 0 0
0 0 1
0 1 0

 Ay =

 0 0 1
0 0 0
1 0 0

 Az =

 0 1 0
1 0 0
0 0 0

 (2.72)

In equation 2.71, note the prefactor containing d0, the valence-band optical defor-
mation potential. This quantity is adapted to units of energy per unit displacement

by a quadrature factor, 3
2

d2
0

a2
0
. In spite of the apparent complexity of equation 2.71,

when optical strains are averaged over all directions the sum of the coupling to all
three optical modes is found to be isotropic [5, 53]. Therefore, we can use a single
deformation potential appropriate to depict the net optical phonon coupling to holes,
for a particular band.

|Ξ{n,n
′}

h,0 |2 =
3∑

ν=1

(
|Ξ{n,n

′},ν
h,0 |2I(k′, k)2

)
= 3

2

(
d0

a0

)2

(isotropic) (2.73)

Summarizing this discussion of the deformation potentials specific to holes, we see
that the formalism is sometimes complicated. For the optical phonons, the lattice
symmetries simplify the problem if we consider all the optical phonon branches com-
bined. However, transport properties at a small electric field are determined largely
by the acoustic phonon coupling, and its depiction remains difficult. To determine the
possible interaction between a hole and an acoustic phonon, the phonon’s wavevector
and polarization must be completely known. We must also simultaneously know the
initial and prospective final wavevector components of the hole as well. This high-
lights the fact that complete energy and momentum conservation in our simulations
is key if we wish to retain the sophisticated details of carrier-phonon coupling.

2.3.5 Towards a total rate, Γ(k), for carrier-phonon scatter-
ing processes

We have been discussing the nature of the scattering potential between carriers
and phonons. We established a scattering rate Γ(k,k′) by Fermi’s golden rule in
equation 2.64. We then discussed particular forms of the deformation potentials
for electrons and holes. Now, we wish to integrate the state-to-state rate Γ(k,k′)
across all possible final states to reach the physically meaningful total rate, Γ(k). To
accomplish this integration, what we will find is that we must understand energy and
momentum conservation for various cases.
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We could integrate the rate, Γ(k,k′), of equation 2.64 over k′-space as in equation
2.40. However, if we take note of the simple functional form for deformation potential
coupling, we notice that the phonon wavevector q readily appears. To proceed, it is
straightforward if we perform an integration over the phonon (q-space) density of
states, rather than carrier states k′. This change of representation is permissible
because the correspondence between phonon and carrier states is one-to-one and
unique [45]. So we wish to integrate the following.

Γ(k) =
2π

~
Ω

(2π)3

∫
d3q|κq|2|Aν,q|2I(k,k′)2δ(k′ − k∓ q)δ(Ek′ − Ek ∓ ~ω) (2.74)

To note, the delta function representing energy conservation in the above expres-
sion does not assume parabolicity.

What we observe in equation 2.74 is that performing the integration relies on
satisfying the delta functions in momentum and in energy. In other words, the limits
of integration are determined when the range of q conserving energy and momentum
is determined. We must proceed by considering energy and momentum conservation
for specific processes. Specifically, we need to consider energy and momentum con-
servation for acoustic phonon absorption and emission, as well as for optical phonon
absorption and emission. These processes are represented in figure 2.8.

Unlike the standard treatments [5, 7, 45], we take care throughout these cases to
consider energy and momentum conservation where the initial- and final-state carrier
mass values (mi and mf ) are not necessarily equal.

2.3.6 Conservation of energy and momentum for acoustic
phonon emission

Our first condition is to consider a carrier that emits an acoustic phonon. We will
investigate energy and momentum conservation.

To be completely general, we could first consider the non-parabolic case for energy
conservation. Including nonparabolicity, to first order, the conservation of energy
implies

~2k2

2m
= γ(Ek) ≈ Ek(1 + αEk) (2.75)

Equating a truncated Taylor expansion for acoustic phonon emission, we have

γ(k′) ≈ γ(k)− dγ

dEk
× (~vsq) (2.76)

which amounts to the following.

~2k′2

2mf

=
~2k2

2mi

− ~vsq
(

1 + 2α
~2k2

2mi

)
(2.77)
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Figure 2.8: Dispersion relations depicting energy conservation for processes involving
acoustic and optical phonons. a. Emission of an acoustic phonon with energy ~vsq, or
emission of an optical phonon with energy ~ω0 b. Absorption of an acoustic phonon
with energy ~vsq, or absorption of an optical phonon with energy ~ω0

We can solve this for k′.

k′ =

√
mf

mi

(
k2(1− 2α~qvs)− 2

miqvs
~

)1/2

(2.78)

Next, to consider momentum conservation, it helps to refer to the wavevector
composition of figure 2.9. As we are considering phonon emission, we find

k′2 = k2 + q2 − 2 k q cosθ (2.79)

where θ is the angle subtended between the initial k-vector and phonon q-vector.
Our immediate goal is to solve for cosθ. Combining equations 2.79 and 2.78, we

find

cos θ = − k

2q
+
kmf

2miq
+
mfvs
~k

+ α
mfvs
mi

~k − q

2k
(2.80)

Although our equation 2.80 is more cumbersome than one might typically find in an
introductory reference, we still follow the standard line of reasoning for this problem
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Figure 2.9: Wavevector diagrams depicting momentum conservation between a
phonon of wavevector q and a carrier with initial wavevector k and final state k′

[5]. a. Emission of a phonon b. Absorption of a phonon

as presented in [5, 45]. We solve for the limiting cases of q, where the right-hand side
of equation 2.80 meets the physical extent of cosθ at limiting conditions{

cos θ = 1
= −1

(2.81)

The problem is constrained. We can solve for limiting cases of q if the variables
are known. For clarity, we now assume parabolic bands by setting α → 0. We will
now consider different scenarios relating the final and initial mass values.

For m∗ = mf = mi:

Consider the carrier to be in an isotropic valley/band, so that the effective mass is
the same in initial and final states. For the case cosθ = 1, the momenta are oriented
such that the emitted phonon is in the direction of the initial state and momentum
transfer is optimum. We recover the standard result that, if v = ~k

m
≥ vs, then

q = qmax = 2k
(
1− vs

v

)
. This is a maximum q value. If v = ~k

m
< vs, then qmax is

negative and unphysical, and phonon emission cannot take place. Physical values of
q never allow cosθ less than zero, so phonon emission is always forward. Figure 2.10
illustrates the allowed values of wavevector q.

For mf < mi:

We find parabolic roots. Phonon emission is still always in the forward direction,
but the kinematics has also now introduced a minimum q value.

qmin = k − mfvs
~
−

√
~2k2mfmi − 2~kvsmfm2

i + v2
sm

2
fm

2
i

~mi

(2.82)



61

Figure 2.10: Plotting cosθ as a function of phonon wavevector q, using some typical
values for germanium. a. For mf < mi, e.g., mf = 0.9mi. We see the appearance of
a lower root, qmin, b. For mf = mi, c. For mf > mi, e.g., mf = 1.1mi. Here, we also
find a lower allowed limit for q, but here qmin represents backward phonon emission.

Taking a series expansion in mf about mi, we find this to be a presumably small term
of approximately

qmin ≈
~k2 (mi −mf )

2mf (~ki −mfvs)
(2.83)

For mf > mi:

We again find parabolic roots, but this time the minimum q value corresponds to
a phonon emitted backwards at cosθ = −1. This is a unique situation. The backward
emitted phonon results in an increased carrier wavevector amplitude.

We find the minimum allowed q value to be

qmin = −k − mfvs
~

+

√
mf

mi

k2 + 2
kmfvs

~
+
m2
fv

2
s

~2
(2.84)

which, from another series expansion in mf about mi, is given by the approximate
relation

qmin ≈
~k2(mf −mi)

2mi(~k −mivs)
(2.85)
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Figure 2.11: A dispersion relation for holes, assuming isotropy for the light (bottom)
and heavy (top) bands. If the hole is initially in the light band, mf > mi. In this
situation, the hole can always emit a phonon and relax to the heavy band. In addition
to the typical forward phonon emission process represented by q1, it is also possible
for the hole to emit a phonon backwards, represented by q2. The backward emission
of a phonon results in a final hole state with larger k-vector.

Also note that, since the value of cosθ always ranges from −1 to 1, there must
always be an allowed range of possible final states when mf > mi. So a light
band carrier may always emit to a heavy band, provided all emission orientations are
allowed. This is representative of the case of a hole occupying the light band. In
figure 2.11, it is evident that a hole can emit a phonon both forward and backward.

Revisiting the delta functions:

What we have found in equation 2.80 is an expression that combines both en-
ergy and momentum conservation. We can use this to reconsider the energy and
momentum conservation imposed by the delta functions in equation 2.74.

Using the identity
δ(ax) = δ(x)/|a| (2.86)

and keeping the first non-parabolic term, we can write the product of the momentum
and energy delta functions as a combined delta function with a prefactor.

δk′,k−~vsqδ
(
γ(k′)− γ(k) + dγ

dEk
(~vsq)

)
=

mf
~2kq

δ
(
− cos θ + k

2q
− kmf

2miq
+ q

2k
+

mfvs
~k + α

mf
mi

~kvs
) (2.87)

The prefactor
mf
~2kq

appears in front of this delta function due to the identity
of equation 2.86. This prefactor enters our expression for the integrated scattering
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rate, and serves to preserve the correct factor for the density of states. While most
treatments [5, 45] assume an isotropic mass (m∗ = mf = mi), here we have shown
that it is the final mass state mf that appears in this expression. So all else equal,
final states k′ with heavier masses mf contribute more to scattering than lighter final
states. We will revisit this later.

Integration of the total rate:

Here, we assert parabolic assumptions. Rates incorporating nonparabolicity (though
with isotropic assumptions) can be found in the literature [53].

We wish to integrate

Γ(k) =
2π

~
Ω

(2π)3

∫
d3q
(
|κq|2

) (
|Aν,q|2

)
I(k,k′)2δ(k′−k + q)δ(Ek′−Ek +~ω) (2.88)

with the substitutions that

|κq|2 = (qΞA)2

|Aν,q|2 = ~
2ρΩvsq

(Nq + 1)
(2.89)

δ(k′ − k + q)δ(Ek′ − Ek + ~ω) =

(
mf

~2kq

)
δ

(
− cos θ +

k

2q
− kmf

2miq
+

q

2k
+
mfvs
~k

)
This last identity uses a joint expression for momentum and energy conservation,
with an implicit assumption of integration over one of the delta functions.

We also consider the d3q integral in spherical q-coordinates, with principle axis
aligned along the k-vector.

Upon integration, the delta function acts as a unity multiplier for values of q that
conserve energy and momentum. Effectively, this changes the limits of integration
over amplitude q.

For now, if we consider I(k,k′)2 → 1, then we have symmetry over the polar and
azimuthal angles. Our total rate simplifies to

Γ(k) = 2π
~

Ω
(2π)3 (Ξ2

A)
(

~
2ρΩvs

) (mf
~2k

) qmax∫
qmin

q2 (Nq + 1) dq

=
mfΞ2

A

8π2ρvs~2k

qmax∫
qmin

q2 (Nq + 1) dq
(2.90)

The Bose-Einstein distribution for phonon occupation can be approximated in
high and low temperature limits. At room temperature, or whenever kBT � ~vsq,
the lattice is considered to be in the equipartition limit. This is becauseNq+1 ≈ Nq, so
emission processes approximately equal absorption processes. In the zero-point limit,
kBT � ~vsq, phonon modes are barely occupied. Here, emission processes dominate,
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but only by the spontaneous emission probability to emit phonons due to zero-point
fluctuations of the lattice ions.

Nq ≈ Nq + 1 ≈ kBT
~vsq (equipartition : kBT � ~vsq)

Nq ≈ 0 (zero− point : kBT � ~vsq)
(2.91)

The zero-point limit is generally appropriate for a CDMS base temperature of
T = 40 mK. Therefore, equation 2.90 simplifies. If we further assume m∗ = mf = mi,
we recover the simple zero-point limit for acoustic phonon emission [5].

Γ(k) =
m∗Ξ2

A

8π2ρvs~2k

(q3
max−q3

min)
3

(zero− point : kBT � ~vsq)

=
m∗Ξ2

A

3π2ρvs~5k
(~k −mvs)3

(2.92)

2.3.7 Conservation of energy and momentum for phonon pro-
cesses: acoustic phonon absorption

Although rare at a temperature of T = 40 mK, the next condition we consider is
for a carrier to absorb an ambient acoustic phonon. We will first investigate energy
and momentum conservation, as per the previous section.

Conserving energy for acoustic phonon absorption, we find similar relations as for
the case of acoustic emission. From

~2kf
2

2mf

=
~2ki

2

2mi

+ ~qvs
(

1 + 2α
~2ki

2

2mi

)
(2.93)

we find

k′ =

√
mf

mi

(
k2(1 + 2α~qvs) + 2

miqvs
~

)1/2

(2.94)

Next, momentum conservation as depicted by figure 2.9 is

k′2 = k2 + q2 + 2 k q cosθ (2.95)

From equations 2.94 and 2.95, we find

cos θ =
k

2q
− kmf

2miq
+
mfvs
~k

+ α
mfvs
mi

~k +
q

2k
(2.96)

Now, we plot equation 2.96 for the three scenarios of mf versus mi. As before,
when considering the following subsections, we assume parabolicity so that α→ 0.
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Figure 2.12: Plotting the transcendental function for cosθ for the case of acoustic
phonon absorption. a. For mf < mi, which in particular happens to be mf = 0.9mi.
We see the appearance of a lower root, qmin, that now takes on its value at cosθ = −1,
b. For mf = mi, c. For mf > mi, which in particular happens to be mf = 1.1mi.
We also find a lower allowed limit for q in this case.

For m∗ = mf = mi:

Assume the final and initial states to have the same value for effective mass. What
is different in this case versus acoustic phonon emission is that momenta combine
rather than subtract, so that there is a q maximum, q = qmax = 2k

(
1 + vs

v

)
, now

at cosθ = −1. The minimum q is now typically at 0, although the situation does
arise that, if the carrier is traveling slower than the speed of sound, the minimum q
becomes non-zero. So we recover the result, as also found in [5],

qmin =

{
0 v ≥ vs

2k(vs
v
− 1) v < vs

(2.97)

For mf < mi:

If the final-state mass is less than the initial state mass for the case of acoustic
phonon absorption, then we see the appearance of a minimum q arise at cosθ = −1



66

as in figure 2.12. This lower q-value is

qmin = k +
mfvs
~
−

√
mf

mi

k2 + 2
kmfvs

~
+
m2
fv

2
s

~2
(2.98)

and in a series expansion of mf about mi, reduces to

qmin ≈
~k2(mi −mf )

2mi(~k +mivs)
(2.99)

It should be noted that when ~k
mi

= v � vs, there occur a total of four roots for
q; two at cosθ = 1 and two at cosθ = −1. Therefore, there are two regions where
phonon absorption can occur, and these regions are bounded by these two sets of
parabolic roots.

For mf > mi:

We also consider this mf > mi case, where the minimum q value occurs at cosθ =
+1. This gives a lower q-value at

qmin = −k +
mfvs
~

+

√
mf

mi

k2 − 2
kmfvs

~
+
m2
fv

2
s

~2
(2.100)

which, approximated in our typical way, is

qmin ≈
~k2(mf −mi)

2mi(~k −mivs)
(2.101)

which we see holds as long as ~k/mi > vs. When ~k/mi < vs, the range of allowed q
values becomes extremely narrow, centered at the value of q =

2mfvs
~ .

The delta function and integrated rate for acoustic phonon absorption

Analogous to equation 2.87, we find the following for a combined delta function
representing both energy and momentum conservation for acoustic phonon absorp-
tion.

δk′,k+~vsqδ (Ek′ − Ek − ~vsq) =
mf
~2kq

δ
(

cos θ + k
2q
− kmf

2miq
+ q

2k
− mfvs

~k

)
(2.102)

Using the same assumptions as for equation 2.90, we can state the following total
rate for an acoustic absorption process. Recall that the phonon occupation term
appropriate for absorption is Nq rather than Nq + 1.

Γ(k) = 2π
~

Ω
(2π)3 (Ξ2

A)
(

~
2ρΩvs

) (mf
~2k

) qmax∫
qmin

q2 (Nq) dq

=
mfΞ2

A

8π2ρvs~2k

qmax∫
qmin

q2 (Nq) dq
(2.103)



67

Of course we can solve this in the various limits we have depicted above. In the
“zero-point limit” which is described in equation 2.91 and is the limit appropriate for
our operating conditions, the phonon occupation is assumed to be zero. There are no
ambient phonons to absorb, and the absorption rate is also zero.

In our numerical treatment to be described, we do include absorption terms. This
allows us to simulate transport conditions at higher temperatures, for comparison to
other experimental findings.

2.3.8 Conservation of energy and momentum for phonon pro-
cesses: optical and intervalley phonons

We must also consider energy and momentum conservation for optical and in-
tervalley processes. We treat these processes considering only parabolic bands. A
prescription for treating these processes with a nonparabolicity factor does exist [5],
but we opt not to use it. For most our range of interest, optical phonons do not
dominate transport processes. Furthermore, even near the optical phonon threshold,
the change in the electron dispersion relation due to nonparabolicity is quite small.
We do not consider non-parabolic bands for holes, in any case.

To note, the L-valleys in germanium are located at the edge of the Brillouin
Zone. Consequently, intervalley phonons are identical to Umklapp processes, in that
a phonon wavevector is emitted which spans the Brillouin Zone (an inverse lattice
vector). Here, we conserve energy and momentum for optical processes and interval-
ley processes equivalently, neglecting the inverse lattice wavevector of the Brillouin
Zone. In practice, the inverse lattice wavevector is added to the q wavevectors for the
intervalley processes solved for here.

Where ± terms represent absorption and emission processes, Energy conservation
is given by

~2k′2

2mf

=
~2k2

2mi

± ~ω0 (2.104)

where ~ω0 represents the energy of the optical or intervalley phonon.
Momentum conservation, as always, is given by

k′2 = k2 + q2 ± 2kq cos θ (2.105)

Even though we treat this case entirely in terms of parabolic bands, our deriva-
tion still differs from standard treatments such as [5, 45] because we have chosen to
maintain the distinction between mf and mi in equation 2.104.

By combining equations 2.104 and 2.105, we find the relationship

cos θ = ± k

2q

mf −mi

mi

∓ q

2k
+
mfω0

~kq
(2.106)



68

We go on to solve for the extrema of allowed q wavevectors as we have established
in the previous cases for acoustic phonon processes. These roots are somewhat cum-
bersome. It is worthwhile to mention that solving equation 2.106 for cos θ = 1 and
cos θ = −1 results once again in parabolic roots.

For the case of emission processes, most conditions promote forward emission of
optical phonons near threshold. When m∗ = mf = mi, we recover the standard case
[5] that

qmin = k
(

1−
√

1− ~ω0

Ek

)
(cos θ = 1)

qmax = k
(

1 +
√

1− ~ω0

Ek

)
(cos θ = 1)

(2.107)

For the case of the absorption processes, minimum and maximum q-values are
generally non-trivial at forward (cos θ = 1) and backward (cos θ = −1) emission
angles. When m∗ = mf = mi, we find the standard case [5] that

qmin = k
(√

1 + ~ω0

Ek
− 1
)

(cos θ = 1)

qmax = k
(√

1 + ~ω0

Ek
+ 1
)

(cos θ = −1)
(2.108)

Figure 2.13: Plotting the transcendental function for cosθ for the case of optical and
intervalley phonon absorption. To dramatize the possible range of cos θ, kinematic
values were chosen that Ek exceeds ~ω0 by a factor of 90. a. For mf < mi, which in
particular happens to be mf = 0.9mi, b. For mf = mi, c. For mf > mi, which in
particular happens to be mf = 1.1mi.
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Figure 2.14: Plotting the transcendental function for cosθ for the case of optical
and intervalley phonon emission. To dramatize the possible range of cos θ, kinematic
values were chosen that Ek exceeds ~ω0 by a factor of 90. a. For mf < mi, which in
particular happens to be mf = 0.9mi, b. For mf = mi, c. For mf > mi, which in
particular happens to be mf = 1.1mi.

For both emission and absorption processes, the consideration that mf 6= mi

allows some freedom for the range of q-values and of phonon angles. Figure 2.14
demonstrates the transcendental representation of equation 2.106 for optical emission
processes, and figure 2.13 represents the equivalent expression for optical absorption
processes.

We now move on to establish the delta function and total rate for optical and
intervalley phonon processes.

The delta function and total rate for optical and intervalley processes

From equation 2.106, we arrive at the following delta function which combines
both energy and momentum conservation.

δk′,k±~ω0δ (Ek′ − Ek ∓ ~ω0) =
mf
~2kq

δ
(
± cos θ + k

2q
− kmf

2miq
+ q

2k
∓ mfω0

~kq

)
(2.109)
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For a full solution of the optical phonon total rate,

Γ(k) = 2π
~

Ω
(2π)3

∫
d3q
{

(|Ξ0|2)
[

~
2ρΩω0

(
N0 + 1

2
∓ 1

2

)]
× I(k,k′)2

(
mf
~2kq

)
δ
(
± cos θ + k

2q
− kmf

2miq
+ q

2k
∓ mfω0

~kq

)} (2.110)

we require the identity for the included delta function. After switching to spherical
coordinates in q-space, the delta function selects the range of q-values which conserve
energy and momentum. Note that, since the optical phonon dispersion relation is
independent of q, the phonon occupation term N0 is also independent of q.

Γ(k) = 2π
~

Ω
(2π)3 2π

qmax∫
qmin

qdq
{

(|Ξ0|2)
[

~
2ρΩω0

(
N0 + 1

2
∓ 1

2

)] (mf
~2k

)
I(k,k′)2

}
= 2π

~
Ω

(2π)3 2π (|Ξ0|2) ~
2ρΩω0

(
N0 + 1

2
∓ 1

2

) (mf
~2k

) qmax∫
qmin

qdq (I(k,k′)2)

=
mfΞ2

0

4πρω0~2k

(
N0 + 1

2
∓ 1

2

) qmax∫
qmin

qdq (I(k,k′)2)

(2.111)

So assuming I(k,k′)2 → 1, assuming m∗ = mf = mi, and using the appropriate
limits of either equation 2.107 or 2.108, we recover the accepted[5, 45], isotropic
optical rate for optical or intervalley phonon absorption or emission.

Γ(k) =
πΞ2

0

ρω0
(N0 + 1)

(
2m∗(Ek−~ω0)1/2

4π2~3

)
(emission)

=
πΞ2

0

ρω0
(N0)

(
2m∗(Ek+~ω0)1/2

4π2~3

)
(absorption)

(2.112)

The last terms in parentheses can be identified with an energy density of states [5],
as

g(Ek) =

(
2m∗ (Ek)

1/2

4π2~3

)
(2.113)

So we can rewrite equations 2.112 as

Γ(k) =
πΞ2

0

ρω0
(N0 + 1) g(Ek − ~ω0) (emission)

=
πΞ2

0

ρω0
(N0) g(Ek + ~ω0) (absorption)

(2.114)

So we have recovered the traditional rates for optical and intervalley phonon ab-
sorption and emission. However, the main exercise of this subsection was to present
the fact that the limits of integration are sometimes complicated when mf 6= mi. To
account for the full case correctly is most easily done in the numerical work, where an
algorithm can select the proper physical root for qmin and qmax, depending on which
term is physical for the kinematics at hand.
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In concluding this subsection, note equation 2.113. It is important to point out
that the m∗ associated with this density of states is the density of states mass, so
m∗ = md. This m∗ = md identity holds true for the acoustic rates, as well. Recall
that this mass first appeared due to the identity of the delta function. As we took
care to keep track of the particular masses used in our derivation as in equation 2.87,
we were able to identify this mass as mf . So something else we have learned is that
the information regarding any particular mass of a given final state is isotropically
integrated away in the integrated rates. By identifying the many possible mf states
in some average fashion as md, we make the integrals tractable. This is an argument
used later on as to why we care to preserve directional information from scatter to
scatter.

2.4 Concluding arguments regarding scattering mech-

anisms

In this chapter, we have described germanium band structure, the effective mass
approximation, and Fermi’s golden rule for scattering rates. We went into detail
regarding the variety scattering mechanisms, and the particular approximations em-
ployed. When considering phonon scattering rates, an integration of Fermi’s golden
rule over all possible final states required a thorough examination of energy and mo-
mentum conservation.

We summarize this chapter by displaying two simple figures. Figure 2.15 repre-
sents several total scattering rates, evaluated in isotropic approximation, for electrons
as a function of carrier energy at a temperature of T = 40 mK. Figure 2.16 is a similar
plot, for representative scattering processes appropriate for holes.
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Figure 2.15: Total scattering rates used for ELECTRONS at T = 40 mK, calculated
under isotropic approximations. a. Conwell-Weisskopf ionized impurity scattering
rate at NI = 1010 cm−3 b. acoustic phonon emission c. slow-transverse intervalley
phonon emission d. intervalley phonon emission e. optical phonon emission

Figure 2.16: Some select total scattering rates used for HOLES at T = 40 mK,
calculated under isotropic approximations. a. Conwell-Weisskopf ionized impurity
scattering rate at NI = 1010 cm−3 b. acoustic phonon emission for heavy-to-heavy
band transitions c. acoustic phonon emission for heavy-to-light band transitions d.
optical phonon emission for heavy-to-heavy band transitions
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Now, we consider whether or not to include the scattering rate for ionized impuri-
ties. We do not know, a priori, the percentage of impurities which are ionized under
our low-temperature conditions. Also recall that impurity scattering is considered
to be a completely elastic process, serving only to randomize rather than to “cool”
hot carriers. Also note that this randomizing effect is largely suppressed because
the ionized-impurity scattering rate promotes predominantly small-angle deflections,
owing to its strong angular dependence (∼ sin−4(θkk′/2)). Furthermore, for CDMS
operating conditions where fields are of a few V/cm, simulations yet to be described
show that electrons reach an average of a few meV while holes reach an average of
∼ 10 meV . FIgures 2.15 and 2.16 show that the Conwell-Weisskopf scattering rate
for 1010 cm−3 ionized impurities is inconsequential for such energies. So for this mul-
titude of reasons, we choose to neglect scattering rates due to impurities for the work
that follows. We will find that the effect of impurities is extremely important when
considering recombination and ionization processes, but generally not for transport
processes under modest applied fields.

In the next chapter, we describe how the knowledge of the scattering rates we have
established in this chapter is incorporated into a Monte Carlo algorithm to predict
transport properties.
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Chapter 3

Monte Carlo Simulation: the
Traditional Technique and
Anisotropic Approaches

3.1 Introduction

Now that we have established carrier scattering processes in the previous chapter,
it is possible to assemble these rates in a transport simulation. To bypass the analyti-
cal assumptions and difficulties in solving the Boltzmann Transport Equation [45], we
implement the Monte Carlo method. Variations of an established Monte Carlo method
for carrier transport has been developed and utilized for decades [7, 74, 75, 76]. It
is a straightforward way to model the transport effects of non-equilibrium carriers
in semiconductor devices. In this work, we refer to the relatively standard Monte
Carlo implementation as the traditional Monte Carlo method. Later in this chapter,
we will show how we have adapted and built upon the general Monte Carlo frame-
work to more precisely preserve momentum information and crystal anisotropy within
the scattering rates. This new Monte Carlo framework requires both a restructured
computational algorithm, as well as a revisitation of Fermi’s golden rule.

Our implementations of the Monte Carlo method allow us to examine how carri-
ers are “hot,” relative to the crystal lattice taking into account the anisotropy of the
crystal to a much greater extent than standard treatments while rigorously imposing
energy and momentum conservation at each scatter, contrary to the existing treat-
ments. The typical carrier energies reached in steady state are far greater than the
thermal energy (3

2
kBTL) expected if they were in thermal equilibrium with the crystal

lattice. The Monte Carlo method is a stochastic simulation technique to reproduce
these physics at the microscopic scattering level, so that we may then examine overall
distribution characteristics.

To outline this chapter, we will cover the following topics.
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Traditional Monte Carlo: We introduce and summarize the techniques tradition-
ally used in the Monte Carlo method applied to carrier transport in semicon-
ductors.

Time steps: We explain how time steps are chosen for free-flight acceleration in the
traditional Monte Carlo. We also introduce Rees’ “self-scattering” term.

Selection of a scattering process: We explain how a scattering process is chosen
to occur in simulation, using rates based on energy.

Selection of a final state: Once a physical scattering event has occurred, a sepa-
rate routine must choose the specific final state after the scatter.

Vector-based Monte Carlo: We explain how we adopt a momentum(vector)-based
representation of Fermi’s golden rule, and implement a Monte Carlo based on
sampling momenta. Scattering selection and final-state selection are now one
and the same.

Electrons and holes: We explain how we implement our vector-based Monte Carlo,
with some specifics regarding electrons and holes.

3.1.1 Regarding constants used

Regarding the constants used in this work, by default we use those of the Monte
Carlo review by Jacoboni and Reggiani [7]. For other constants not mentioned there,
we use Fischetti’s work [76]. For anisotropic deformation potentials for both electrons
and holes, we use values from Fischetti and Laux [12]. We also use the anisotropic
constants for the valence band (A, B, C) from Ridley [5]. We account for T ∼ 0
conditions by adjusting the germanium minimum band gap to 0.76 eV and the higher,
direct gap to 0.89 eV where needed.

3.2 The traditional, isotropic implementation of

the Monte Carlo algorithm

First, we introduce the traditional Monte Carlo algorithm. Under the simplest
assumptions, namely those of an isotropic model, an accepted application of the
Monte Carlo method to semiconductor transport has been established over many
years, across a range of literature [7, 53, 74, 75, 76, 45, 48, 77].

In a semiconductor, the random scattering of carriers redistributes their energy
and momenta over time. Meanwhile, external forces continuously accelerate the car-
riers. Transport properties at the macroscopic scale are dominated by the overall
stochastic nature of carrier scattering processes occurring at the individual, micro-
scopic level. Therefore, simulating transport processes can be accomplished by an
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algorithm which models the random motion of carriers subject both to an applied
homogeneous field as well as the known, stochastic scattering processes. The Monte
Carlo algorithm accomplishes this by the use of both semiclassical kinematics in con-
junction with quantum-mechanically determined, random scattering events.

Our purpose is to design a Monte Carlo routine to replicate the carrier transport
dynamics of a TL = 40 mK germanium lattice, in a homogeneous applied electric
field. Our implementation of the traditional Monte Carlo algorithm is executed by
simulating individual carrier trajectories over position and momentum as they travel
in the crystal medium. The algorithm begins with a single electron (or hole) starting
at given initial conditions for position and momentum. A resulting trajectory is gen-
erated by tracking a carrier governed by semiclassical equations of motion, including
the acceleration produced by an externally-applied electric field. The carrier prop-
agates only over brief periods of time, however. The length of these time steps, or
“free flights,” is randomly determined by the combined scattering probability from
the total of many scattering processes described by Fermi’s golden rule. So the peri-
ods of semiclassical free-flights are terminated by instantaneous scattering events. A
separate subroutine within the Monte Carlo randomly determines which particular
type of scattering will occur following a free flight. A further subroutine then utilizes
random number generation to determine the final momentum state, k′, of the carrier
immediately deflected after a scatter. In this way, the carrier is subject to continuous
periods of semiclassical acceleration balanced by randomizing scatters. The resulting
random walk can be tracked for some sufficiently long period of time. Moreover,
several identical carriers can be regenerated from the same initial conditions and
tracked again to develop another sufficiently long dynamical history. The final states
of these carriers are recorded, resulting in distributions of parameters such as energy
and momenta. These distributions are then a good approximation to the expected
distributions of actual carriers in a steady state with the given electric field. From
these final ensembles, statistics can be performed to determine transport properties.

In figure 3.1, we provide a flow chart which outlines the Monte Carlo method as
traditionally applied to semiconductor transport. This reproduces the random walk
particle trajectories in the crystal which provide data about the final ensemble of
carriers. We now describe the methodology needed to complete each of the steps
depicted in this algorithm.
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Figure 3.1: A flow chart representing the traditional Monte Carlo algorithm. After
initializing a carrier’s position and momentum, a continuous loop of small time steps
chooses a time step based on a random number, increments momentum according
to acceleration, decides whether to scatter or to free flight, and decides the outcome
of any possible scatter. Every scatter event requires at least 4 random numbers, as
marked. The system is ergodic, but many such particles may be run independently.
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3.2.1 Establishing initial conditions for carrier propagation

We typically choose to simulate carriers originating from a “cold start.” That is
to say, we set initial conditions as zero for momenta and position coordinates. While
there may be more efficient initial conditions, these conditions are at least consistent
with all possible external conditions to be simulated.

We wish to find carrier ensembles that are well equilibrated to the applied electric
field. It is important to ensure that we do not mistakenly include transient behavior
as a relic of the initial conditions. Therefore, we run each carrier in the electric field
long enough such that transient behavior has subsided. We choose a criterion such
that on average each carrier runs a total time, T , that is several energy relaxation
lengths. For this purpose, the energy relaxation length is calculated from the final
carrier ensemble. We define it for this simulation as

1

τE
=

1

τa

(
〈~vsq〉
〈E〉

)
+

1

τ0

(
~ω0

〈E〉

)
(3.1)

where 〈E〉 is the average carrier energy from the final ensemble, 〈~vsq〉 is the average
energy emitted to an acoustic phonon, τa is the acoustic phonon emission scattering
time, ~ω0 is the optical phonon energy (or intervalley phonon energy when considering
electrons) and τ0 is the optical (intervalley for electrons) phonon emission scattering
time. Under our zero-point scattering conditions, scattering processes are dominated
by these two emission rates. Therefore it is appropriate that the combined rate for
these two major processes, as in equation 3.1, is an indicative measure of the typical
energy relaxation time.

3.2.2 Generation of carrier free-flight: Rees scattering

While tracking the dynamics of an electron or hole within the Monte Carlo simula-
tion, much of the time the carrier is simply accelerating in the external field. Carriers
accelerate in the field by a change in momentum

~k̇ = F = ∓eE (3.2)

for an electron or hole, respectively. If some initial wavevector is k0, then after
accelerating for a small time step tc, the adjusted wavevector k is taken simply as

k = k0 ∓
eE

~
tc (3.3)

the resultant velocity and change in position are also incremented for this small time
step tc, as per the band structure dynamics explained in the previous chapter. The
question is: what time increment do we take for tc?
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Determination of the incremental time step

We know that scattering events are stochastic in nature. If we knew the rate of
their occurrence, we should be able to adjust time steps large enough to represent
simply the time between randomly chosen scatters. In other words, if the combined
rate of all scattering mechanisms were Γ0, the the probability P (t) to scatter in an
incremental time dt is

P (t)dt =

Γ0 exp

− t∫
0

Γ0 dt
′

 dt (3.4)

So we should be able to sample this distribution with a uniformly generated random
number, r, thereby finding a random time step tc. Using the following,

r =

tc∫
0

P (t)dt =

tc∫
0

Γ0 exp

− t∫
0

Γ0dt
′

 dt = 1− e−Γ0tc (3.5)

we must invert the expression to find tc.

tc = − ln[1− r]
Γ0

(3.6)

Since r is a uniform random number spanning (0, 1), choosing a particular random
number r is equivalent to choosing one from the distribution 1− r. Therefore we can
slightly simplify the expression for tc, so it becomes

tc = − ln[r]

Γ0

. (3.7)

This determination of the random time step as in expression 3.7 is a commonly
derived quantity. The above argument mirrors similar arguments posed in [45].

Inclusion of the time-dependent scattering rate, by Rees’ self-scattering

We claimed that Γ0 is the scattering rate appropriate for a carrier undergoing
stochastic processes. However, we did not consider that this rate changes dynamically
with the energy of the carrier. As the carrier energy increases or decreases, the number
of possible final states with which to scatter also changes.

So as the carrier energy changes with time, so does the scattering rate. Rather
than the constant Γ0, we should call the combination of all scattering rates a time-
dependent quantity, Γ(t). We must revisit equation 3.4.

P (t)dt =

[
Γ(t) exp

(
−

t∫
0

Γ(t′)dt′
)]

dt ( using Γ(t) ) (3.8)
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Figure 3.2: The total sampling rate Γ0 remains constant, but the proportion between
the net physical scattering rate Γ(E) versus self-scatters Γself(E) may change. For
physically meaningful results, Γ(E) must always remain less than Γ0.

Unless we knew the precise dynamics and could recover a functional form for Γ(t),
we might otherwise be stuck at this point.

A way out, which is commonly utilized but rarely attributed to Rees [78] who first
proposed it [75], is to intentionally redefine the sampling rate as a constant. While the
time-dependent rate Γ(t) is the cumulative rate of all physical scattering processes,

Γ(t) =
N∑
i=1

Γi(t) (3.9)

we introduce an extra, fictitious rate to recover a composite, but constant, sampling
rate Γ0.

Γ0 = Γ(t) + Γself(t) (3.10)

Here, Γself(t) is commonly referred to as self-scattering. Self-scattering represents no
physical process. It is simply a placeholder. By equation 3.11, we simply choose
an adequately large Γ0 and define Γself(t) by the difference with Γ(t). Although the
introduction of the self-scattering term seems to only add extra, seemingly useless
samples to the Monte Carlo, it is a small price to pay to recover a constant Γ0. This
allows us to regain the simple relation of equation 3.7, allowing us to directly generate
efficient time intervals, tc.



81

Physical limits on Γ0, and the Iterative-Γ method

To represent physically meaningful results, the cumulative rate Γ(t) must always
be less than the chosen Γ0. As we can see in the representative figure 3.2, a sharp
energy threshold in scattering rate makes this difficult. Such a threshold, which is due
to the onset of optical (or intervalley) phonon emission, often determines where Γ0

must be set. Even if carriers spend most of the simulation time in lower-energy regions
where the scattering rate may be magnitudes smaller, even brief carrier excursions
into a region where Γ0 < Γ(t) may produce unphysical results. On the other hand,
if Γ0 is chosen to be too large, then computational power is lost on unnecessary
sampling.

One may ask, “is there a way to change Γ0 during the simulation, adaptively?” A
priori, this is worrisome because we know that the sampling rate should remain con-
stant with time, otherwise equation 3.7 would be void. However, a method depicted
in the textbook of Moglestue [75], suggests a methodology to adaptively alter Γ0 in
a permissible way. The consequence is that the probability for a scattering event to

be correctly sampled depends on the integral, exp

(
−

t∫
0

Γ0dt
′
)

. It is permissible to

alter Γ0 before entering the bounds of this integral. In other words, t′ = 0 occurs
immediately at the instant of the last physical scatter. It is possible to make fine-
tuned adjustments for a more efficient Γ0 by making adaptive changes immediately
after a physical scattering event has occurred, but before subtending further time
steps. In simplest terms, we are allowed to change Γ0 at each physical scatter, but
not during the acceleration phase. This is called the Iterative-Γ Method. We do not
use this method within the framework of the traditional Monte Carlo, but we do take
advantage of it in our later methods.

3.2.3 Selection of scattering process

We have determined when scattering events should happen. Yet we also must
choose which type of process occurs. Here, we show how a scattering type is selected
within the Monte Carlo, following a free-flight segment.

Since the sampling rate is the sum of the self-scattering term plus all N number
of physical processes,

Γ0 =
N∑
i=1

Γi(E) + Γself (E) (3.11)

we can use a random number and subroutine to select among these weighted probabil-
ities. For a uniform random number on (0, 1), we select the j-th process by comparing
successive sums such that
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Figure 3.3: The selection of the scattering type based on the relative rates. A random
number, r, selects the j-th process.

j−1∑
i=1

Γi(t)

Γ0

≤ r <

j∑
i=1

Γi(t)

Γ0

(3.12)

This is depicted in figure 3.3.
If

r ≥
N∑
i=1

Γi(E)/Γ0 (3.13)

then the scattering event at hand is a self-scatter, so no action is taken regarding the
final state of the carrier.

If the chosen process is a physical process, further random number generation
must then occur to select a proper final state.

3.2.4 Selection of final state

Having chosen a physical process for a scattering event, another subroutine must
now stochastically determine the final momentum k′-state. Generally, this is the most
elaborate subroutine of the simulation. The new momentum state must be generated
according to the differential rate of the specific process.

The random selection methods: To randomly select some dependent parameter
a from the distribution determined by the total scattering rate Γ(k), we need to
express the probability density in terms of a differential rate.
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P (a) da =
1

Γ (k)

∂Γ (k)

∂a
da (3.14)

Now, over the (uniform) space of possible random numbers r, a possible outcome
might be value r1. We need to map this particular random number r1 to a represen-
tative choice of parameter a, which we call a1.

r1 =

r1∫
0

dr =

a1∫
amin

P (a) da (3.15)

So, in best cases, we can find a tractable form for a1 by inverting equation 3.15.
In these cases, a value for a1 can be chosen directly from a randomly generated value
r1 by some function. This method is therefore called the direct method.

a1 = f (r1) (direct method) (3.16)

Unfortunately, it is often the case that a needed form of equation 3.15 cannot
be inverted for a direction solution of a1. This happens when the implementation
of equation 3.15 is not integrable. In this case, we must use the probability density
of equation 3.14 and produce joint random trials of parameter a and the differential
probability P (a) from equation 3.14. A random pair {a1, P (a1)} is generated, and
then rejected unless a1 is found to belong to the distribution P (a1). If rejected, as in
figure 3.4, new random pairs will be produced until an acceptable value a is found.
This is the rejection technique, described in detail in the popular references [53] on
the topic. Tailored adaptions based on approximate forms for P (a) can improve the
efficiency of the rejection technique, and these are called combined techniques [53].

When we consider the complexity of the band structure and scattering rates for
most processes, it turns out that we usually turn to some form of the combined
technique to select final states in our Monte Carlo implementations. Even then, as
we will show, energy and momentum conservation in an anisotropic medium make it
difficult to do this correctly within the traditional Monte Carlo framework.

For a completely isotropic and elastic scattering process, the selection of a final
k′ state would be straightforward. The k-to-k′ scattering rate, Γ(k,k′), does not
depend on angle. Therefore, evaluation of 3.14 is straightforward and a direct selection
method is possible for both polar and azimuthal angles. The final state can be
determined by just two random numbers, one for each angle. This is the best possible
scenario. Generally, the use of the rejection or combined technique requires several
more random numbers per state selection for each scattering event.

We do not always choose angles to specify the final state. Sometimes a wavevec-
tor amplitude leads to a better formulation. Within the constraints of the traditional
Monte Carlo, we tailor our approach to final-state selection based on the best sym-
metries of the effective mass and the scattering rate at hand. This leads us to treat
equivalent processes for electrons and holes in rather separate ways.
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Figure 3.4: This figure represents the rejection technique. Random pairs of an ap-
propriate range are generated. If these trial coordinates are found to belong to the
desired distribution, they are utilized. If not, these points are rejected and new trial
coordinates are generated.

Next, we describe specific aspects of how we implemented the Monte Carlo in this
traditional framework which have been describing up to this point.

3.2.5 Implementation of the traditional Monte Carlo for elec-
trons and holes

Here, we summarize the methods and approximations employed to simulate elec-
tron and hole transport within the traditional Monte Carlo framework.

The traditional Monte Carlo implementation for transport of electrons:

When using the traditional Monte Carlo framework, we included electron non-
parabolicity in the calculation of scattering rates and in incrementing position and
momentum. However, we used only scalar deformation potentials. Furthermore, we
did not treat the mass anisotropy for electrons. As we use 〈100〉 geramanium crystals,
the L-valley orientations are symmetric relative to the applied field. This symmetry
decreases the influence of anisotropy compared to other orientations. So, in this case,
we treated electrons with the spherical-band conductivity mass for acceleration and
a density of states mass for rates.

The final-state selection for electrons was determined by the generation of the
polar and azimuthal angles for the k′ vector relative to k.

The emission of intervalley and optical phonons were handled isotropically.
While it may be straightforward to include mass anisotropy for electron acceler-

ation during free-flight, the anisotropy requires absolute coordinates relative to the
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crystal orientation. This severely complicates the scattering probability needed for
final-state selection. The Herring-Vogt transformation [64, 5], was designed as rough
method to account for this fact. However, within the Herring-Vogt transformation,
energy and momentum conservation are only approximate. Moreover, this approxi-
mation offers no simplification for the use of directional matrix couplings.

The traditional Monte Carlo implementation for transport of holes:

Holes spend only a few percent of the time occupying the light band before decay-
ing to the lower-energy heavy band. Consequently, it is a common practice to neglect
all but the heavy band. However, in this particular simulation, both heavy and light
bands are considered in a parabolic way. In a manner similar to [8, 7, 53], this requires
four independent scattering rates (intraband and interband) for each phonon scatter-
ing process. Warped bands have been accounted for. A direction-dependent effective
mass is used to increment position and velocity. Similar to [8, 7, 53], wavefunction
overlap integrals are included in calculating scattering rates, and in selection of a
final k-state. This makes final state selection somewhat more complicated than the
electron case. A random number search using a rejection technique is employed to
select a suitable magnitude of phonon wavevector, q. Final values for hole wavevector
and scattering angle are then constrained by energy and momentum conservation.
Some common assumptions and approximations have been re-examined in order to
accommodate our extreme low-temperature, low-bias case. Unlike assumptions in
previous work [8, 7, 53], there is no approximation of near-elastic energy conserva-
tion for phonon magnitudes. Available scattering angles are dened explicitly and
series-expansions are not used to satisfy energy conservation.

Within the traditional Monte Carlo framework, we did not implement the split-off
band.

The warped nature of the heavy and light bands makes the treatment of holes
complicated. This warping makes the heavy and light effective masses directional
relative to the crystal frame, and creates a substantial overlap factor as a function of
angle θkk′

As with the electrons, the use of a directional deformation potential coupling
relative to the crystal frame is again too complicated for use in the traditional Monte
Carlo algorithm.

3.2.6 Problems with the traditional Monte Carlo

The approximations and idealizations we were forced to make under the tradi-
tional Monte Carlo, both for electrons and holes, stem from the reliance on integrated
scattering rates and the difficulties encountered during final-state selection. Within
scattering rates which are integrated over all relative orientations, it is extremely
difficult to include scattering quantities which depend on the carrier’s absolute ori-
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entation within the crystal. It also difficult to include complicated integration limits
which include properties about the final state, such as mf , because we don’t know
prior to final-state selection what state mf might represent. If we are serious about
energy and momentum conservation, we are faced with the fact that the integrated
scattering rate over all possible final states may change as the absolute orientation of
the carrier changes, even with the same initial energy.

3.3 Monte Carlo simulation: a new vector-based

approach

Isotropic assumptions are fundamental to the techniques of the traditional Monte
Carlo, and the choice of scattering type is distinctly separate from the choice of
final-state momentum. In this section, we explain how we have implemented a new
algorithm that completely preserves anisotropy, despite any complicated formulation
of a directional mass or matrix element. This algorithm also combines the selection
of scattering type with the selection of final-state momentum.

The traditional Monte Carlo method, when determining properties of a scattering
event, requires separate subroutines using separate random numbers for the deter-
mination of the type of scattering process versus the determination of the final-state
momentum. Moreover, it is generally difficult to completely express scattering prob-
abilities in terms of coordinates of the absolute reference frame of the crystal. The
selection of the scattering process traditionally requires a comparison of integrated
rates based on carrier energy. Since there may not be any analytical closed form pre-
serving all of the anisotropic effects for the integrated rate, simplifying assumptions
of isotropy are used. Even full-band Monte Carlo routines, which take care to numeri-
cally discretize the full electron band structure, will still rely on isotropic assumptions
for the choice of scattering type. If we intended to take advantage of the directional
information within the full matrix formulation of the deformation potentials, or if we
wish to re-examine the scattering rate independent from a simple density-of-states
mass, we are at a disadvantage.

We took care to rethink the traditional Monte Carlo algorithm and developed a
modified Monte Carlo algorithm that preserves the precise k-to-k′ scattering rate,
Γ(k,k′), at every step. This is accomplished by selecting first the direction of a
possible final momentum vector, reframing Fermi’s golden rule in terms of the chosen
momentum variables, and then selecting between possible scattering rates. A self-
scattering process is also included, as in the traditional Monte Carlo. When a physical
scatter is chosen to occur, the momentum orientation, i.e., the final state, has also
been determined as a consequence.

We can understand the selection process by realizing that emission or absorption
processes are three-body collisions. In a thee-body interaction, there are nine vector
components to constrain, as illustrated in figure 3.6a. The initial-state of the electron
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is already known. This leaves us to determine possible values for all the final-state
electron and phonon momentum vector components (six in all). Energy conservation
as well as momentum conservation across three dimensions, gives us the ability to
constrain four of the six needed components. The basis of this method is therefore
to use a random number selection process to sample bivariate pairs of the remaining
two momentum components. With all the momenta for a specific interaction, we can
compute the rate. Our algorithm constantly samples specific final states to make
the decision whether a physical scatter takes place. If a physical scatter does take
place, the final state has already been determined, and a separate subroutine is not
needed. So average quantities such as the total rate for the given initial state and
the “density-of-states mass,” mdos, are not required in this method. We will need of
course to sample the two momentum components according to their probability. We
use a combined rejection method as explained in section 3.3.1.
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Figure 3.5: Simulating electrons with our new method. a. We have nine vector com-
ponents in a three-body interaction. Three are known from the initial k-vector. Four
are constrained by energy and momentum conservation. For electrons, we choose
to sample the remaining two variables as phonon angles. b. A flow-chart compari-
son with the traditional Monte Carlo. On the left, the important steps of a carrier
propagation sequence are revisited. In comparison, at the right are the steps of our
“Anisotropic Technique.” In the Anisotropic Technique, vector coordinate pairs {θ,
φ} are chosen by random number generation. Once the orientation is chosen, the
resulting possible final state is calculated for all types of scattering. Rates for this
particular orientation are tested to determine the scatter type. Therefore, when a
physical scattering event is chosen, we also already have full knowledge of the final
state.
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In figure 3.5, we outline the general steps of the carrier propagation sequence in
comparison to the traditional algorithm. First, a random time step based on net
scattering probability is taken. This rate is based on the total scattering rate over
all directions, which happens to be an analytical expression and easy to compute
with our method. We then increment momentum and position, as in the traditional
technique. We then sample a random direction, determined by a pair of random
numbers chosen as we will soon describe. We then determine to see if a scattering
event occurs. If a physical scatter does take place, the sampled direction has already
determined the energy/momentum final state. The final state is simply implemented,
and the transport propagation repeated.

3.3.1 Anisotropic electrons

Here, we discuss how our anisotropic Monte Carlo technique is applied to the
treatment of electrons in germanium. We start with an explanation of our vector-
based incarnation of Fermi’s golden rule. This requires solving for possible solutions
to phonon amplitude, q, using energy and momentum conservation. After describing
the rate as a function of prospective angles θq and φq, we go on to describe our random
sampling technique during free flight.

The vector formulation of Fermi’s golden rule

In order to simplify the formalism we reformulate Fermi’s golden rule for this
method. In equation 2.74, we expressed the phase-space integral required for a total
scattering rate, Γ(k). We repeat it here.

Γ(k) =
2π

~
Ω

(2π)3

∫
d3q|κq|2|Aν,q|2I(k,k′)2δ(k′ − k∓ q)δ(Ek′ − Ek ∓ ~ω) (3.17)

Furthermore, equations 2.66 and 2.66 informed us that acoustic deformation cou-
plings for electrons were also found to be a function of phonon direction relative to the
principle axis. We choose the local reference frame to be the electron valley, oriented
with the principle axis along the z-axis. In this frame, the polar and azimuthal angles
of equations 2.66 and 2.66 apply directly.

Next, we choose to perform the integral for Fermi’s golden rule only over the
range of allowed modulus for the momentum of emitted/absorbed phonon, q. In
other words, we integrate the rate only over the radial component in the d3q phase
space. This gives the partial rate,

∂2Γ(k, θq, φq)

∂θq∂φq
=

2π

~
Ω

(2π)3

∫
q2dq (sin θq) |κq (θq, φq)|2 |Av,q|2 I (k, k′)

2
δ (f(q)) (3.18)
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where δ (f(q)) is our shorthand for the combined delta functions over momentum and
energy, expressed as a function of the phonon amplitude q. To evaluate the integral
over q, we need to express the delta function in a useable way. We use the identity,

δ (f(q)) =
∑
i

δ (q − qi)
|f ′(qi)|

(3.19)

where the qi are the roots for q which conserve both energy and momentum. The
f ′(qi) is the derivative of f(q) with respect to q, evaluated at qi.

Momentum and energy conservation, to find solutions of q

Considering parabolic bands, energy and momentum conservation give parabolic
solutions to the amplitude of the phonon wavevector, q. f(q) is the form

f(q) = a q2 + b q + c (3.20)

By definition, coefficients are determined by joint energy and momentum conservation
to constrain

f(q) = 0 (3.21)

The roots of q are

qi =
−b±

√
b2 − 4ac

2a
(3.22)

For acoustic phonon processes, there is only one physical root when considering
absorption and emission processes separately. Both roots are physical for optical
phonons.

For acoustic phonon processes, we find solutions for q following

~
2

k′ ·m∗−1 · k′ = ~
2

k ·m∗−1 · k± ~vs|q| (3.23)

where ± is for absorption or emission respectively. Optical processes follow

~
2

k′ ·m∗−1 · k′ = ~
2

k ·m∗−1 · k± ~ω0 (3.24)

These equations provide the roots for equation 3.20 by supplying the constants a,
b, and c. These constants depend on the components of k as well as angles θq and φq.
For optical phonons, it is necessary to first find q by k ± k′. While these constants
are cumbersome and occupy several lines to write down, they do represent analytical,
closed-form solutions.
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Assembling the vector-based rate

With solutions of q as a function of initial electron k-vector and phonon angles
θq and φq, we can determine the overall partial rate of equation 3.18. Here, we show
how the partial rate is assembled, piece by piece.

We illustrate using the example of acoustic phonon processes. Considering only
one physical root qi, the delta function depicting energy and momentum conservation
can be expressed as the following.

δ (f(q)) =
δ (q − qi)
|2aqi + b|

(3.25)

The partial rate of equation 3.18, for acoustic phonon processes, then becomes the
following.

∂2Γ(k,θq ,φq)

∂θq∂φq
=

2π
~

Ω
(2π)3

∫
q2dq (sin θq)

(∣∣qΞ{i,j},νe,a (θq)
∣∣2)︸ ︷︷ ︸

|κq(θq ,φq)|2

(
~
(
Nq + 1

2
∓ 1

2

)
2ρΩvsq

)
︸ ︷︷ ︸

|Av,q |2

(1)︸︷︷︸
I(k,k′)2

(
δ (q − qi)
|2aqi + b|

)
︸ ︷︷ ︸

δ(f(q))

(3.26)
After applying the delta function, we find

∂2Γ(k, θq, φq)

∂θq∂φq
=

sin θq
8π2ρvs

∣∣Ξ{i,j},νe,a (θq)
∣∣2(Nqi +

1

2
∓ 1

2

)
q3
i

|2aqi + b|
(3.27)

which is actually a simple expression.

Solid-angle sampling manifold and global time step

In the previous section, we described how we have determined the exact rates
for phonon processes considering an electron in state k that may emit or absorb a
phonon in a specific direction. Now, we describe how we may stochastically sample
physical processes from these rates in a numerical way, while incrementing time steps
correctly.

The partial rates depicted by equation 3.18 represent interaction rates per solid
angle. To be useful in our Monte Carlo, we need a method by which to sample this
solid angle, and stochastically determine which processes occur. Furthermore, we
need to be able to increment a global time step according to an integrated rate.

In order to implement a two-dimensional combined rejection method, we devise a
sampling manifold, (an ellipse in the scattering angle space) which is a simple function
with similar units of rate per solid angle. The principle is simply a multi-dimensional
analogy to the scalar sample rate, Γ0 (equation 3.11), from the traditional Monte
Carlo. In the traditional Monte Carlo, it is important to pick a constant Γ0 with a
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rate which is greater in any direction than the sum of the physical rates than the net
physical scattering rate, for all times. We depict this sampling manifold in figure 3.6,
and define it Γ0(θq, φq) such that

∂2Γ0(θq, φq)

∂θq∂φq
=

N∑
i=1

∂2Γi(k, θq, φq)

∂θq∂φq︸ ︷︷ ︸
net physical scattering

+
∂2ΓSelf (k, θq, φq)

∂θq∂φq︸ ︷︷ ︸
self−scattering

(3.28)

Simultaneously, we choose a global increment time in analogy with the Γ0 of the
traditional Monte Carlo.

Γ0 =

2π∫
0

π∫
0

∂2Γ0(θq, φq)

∂θq∂φq
sin θqdθqdφq (3.29)

We can still use

τc = − 1

Γ0

log(r) (3.30)

Since electrons spend most of their time in the L-valleys, an empirically efficient
sampling manifold represents an ellipse of a major/minor-axis ratio of ≈ 5. This is
close, though somewhat larger, than the mass ratio

√
ml/mt.

Scatter determination for electrons

Just as in the traditional Monte Carlo, this algorithm increments momentum
and position for electrons during free flights of time duration tc. These free flights
terminate in probability trials to determine if a scattering event takes place. Now,
we describe the process that occurs at the termination of a free-flight, to determine
the outcome of a scatter trial.

An ordinate pair of possible phonon angles {θq, φq } is generated, chosen accord-

ingly by the functional form of ∂2Γ0(θq ,φq)

∂θq∂φq
to ensure physically uniform sampling.

For scatter determination, the electron momentum vector is rotated into the ref-
erence frame where the valley’s principal axis is oriented along the z-axis. Note figure
3.7. The electron momentum vector is then transformed into polar coordinates, still
relative to the valley orientation. Next, our calculation of energy/momentum conser-
vation determines the value of possible phonon amplitudes, q, for all processes. If a
process is not allowed by energy or momentum for a particular instance and {θq, φq
}, it will return a non-physical root of q and is disregarded.

A uniform random number (0, 1) is generated. It is used to determine the out-

come of this scattering trial, based on the sampled value of ∂2Γ0(θq ,φq)

∂θq∂φq
and the partial

scattering rates. This is a multi-dimensional analogy to the selection method with
self-scattering used in the traditional Monte Carlo, as expressed in equations 3.12 and
3.13.
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If a scatter takes place, the determined root of q and angles are recorded as they
are now considered the physical outcome. The final k′-vector is chosen by momentum
conservation, and the electron is put into its new state. The electron’s new k′-state
is transformed into its final-state valley (depending whether the interaction was an
intra- or inter-valley process), and put into cartesian, lab-frame coordinates. Another
free-flight may now ensue, and the process repeats. Properties of the scattering events,
phonons, and the electron’s position, momentum, velocity are accordingly recorded
to output.

Figure 3.6: In the anisotropic case, the vector -based probability creates a manifold
over angular coordinates θq and φq. While sampling from a “sampling manifold” (the
encompassing ellipse), both the scattering process and final state are determined in
the same step.
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Figure 3.7: Transformations carried out when sampling electrons for scatter events.
a. initial valley and k-vector, b. rotation to valley frame, c. conserve energy and
momentum for a potential scattering event, d. if a scatter is carried out, rotate into
the final-state valley (it will be a different valley, if an inter -valley process), e. if an
intervalley process, resolve for phonon wavevector between k and k′ states
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3.3.2 Anisotropic holes

We have just explained the anisotropic simulation for electrons. There is less to
explain for holes, as it is largely analogous. The primary difference is that holes are
more complicated in their overlap factor and effective mass. So for simulating holes,
it is easier to sample angles of the final-hole state, k′. In brief, the same mechanics
holds true for holes as for electrons, except that energy and momentum are solved for
roots of the final state vector, k′.

The mass relation for holes is complicated, due to the dispersion relation. There-
fore roots of k′ are chosen by the following, along with momentum conservation.

~2

2

k′2

m (θf , φf )
=

~2

2

k2

m (θi, φi)
± ~ω (3.31)

Above, ~ω is general for either acoustic or optical phonons, and “±” as always stands
for absorption or emission, respectively. The mass used is the dispersion mass, which
directly relates the dispersion relation appropriate for energy conservation. Since
m (θf , φf ) is a function of the final-state angles, it makes sense to generate these
angles in our sampling of the phase space. Otherwise, to express these angles as
representations of the other parameters is lengthy and taxing.

As explained in the previous chapter, we use matrix-based formalism for holes.
This formalism requires all cartesian vector components of k, k′, and q. Therefore,
after solving for a root of k′, a vector addition/subtraction with k takes place to also
recover q. This must be performed for every prospective value of k′, for every {θf ,
φf} sampled, to evaluate the partial rates.

As a reminder, when we accelerate holes during free flight we use the kinematic
effective mass. This was defined by

m∗−1
ij =

1

~2

∂2E

∂ki∂kj
. (3.32)

The warped nature of the holes is complicated in the {θf , φf} parameter space.

So for the sampling manifold ∂2Γ0(θq ,φq)

∂θq∂φq
for holes, a perfectly spherical manifold was

used.

3.4 Some end remarks regarding Monte Carlo tech-

niques

In this chapter, we have reviewed the Monte Carlo techniques developed for this
work. Originally, we used an algorithm based on traditional techniques. Where
energy and momentum conservation is only approximate and only true on average.
Furthermore, although final-state selection routines in the traditional method attempt
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to “put back” anisotropy into simulation, there is still a reliance on integrated rates
based on Fermi’s golden rule.

Ultimately, we developed a vector-based version of Fermi’s golden rule. A simula-
tion routine based on a phase-space sampling of such rates takes place over samples
of simultaneous angles. This enabled us to incorporate full knowledge of the defor-
mation potentials and matrix formalism than has been developed for germanium over
the past decades, without need for approximation.

Approximations which remain in this implementation include parabolic bands.
The nonparabolicity factor used to adjust the bands in traditional methods is itself
isotropic. One could imagine a nonparabolic correction to the vector-based method,
and now even contemplate the directional dependence of such a term. Other cor-
rections could include the anisotropy of the phonon “slowness surface” (i.e., the
anisotropy of the speed of sound), but this would make determination of the re-
quired roots quite difficult. In any case, the anisotropy in the germanium speed of
sound is much less than that of the carrier dispersion relation, at least in considering
electrons. We also included only one effectively “lumped” transverse phonon branch
for electrons. The size of this effect is small though, as the “fast” and “slow” TA
branches are quite similar in magnitude for germanium near q ≈ 0.

In the next chapter, we report on the results of these efforts.
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Chapter 4

The Presentation and
Interpretation of Monte Carlo
Simulation Results

In previous chapters, we explored the band structure and scattering mechanisms
for electrons and holes in germanium. We also reviewed the traditional Monte Carlo
technique, and introduced our own novel, vector-based algorithm.

In this chapter, we explore the results of simulation based on this foundation. We
will see how electrons and holes behave as a function of electric field. We compare
results to experiment, and show how these results form the basis for yet more theo-
retical predictions. In a nutshell, validating carrier kinematics through a comparison
between simulated and measured drift velocities allows us to predict the probabilities
for other physical mechanisms in our detectors. These results continue to be a valuable
tool in understanding the behavior of our detectors. In particular, our understanding
of the mechanisms behind the evolution of space charge and the rate and spectral
emission of Luke-Neganov (“Luke”) phonons benefit from these developments.

We begin this chapter by reviewing some results from our original, isotropic Monte
Carlo simulations based on the traditional algorithm. Next, we introduce the effects
of anisotropy as explained in the previous chapter. The resulting distributions of
wavevector, velocity, and position show that anisotropy has a pronounced effect on
carrier transport. We then report on macroscopic transport properties based on our
simulation results. These macroscopic quantities, based on ensemble averages, further
our understanding of the underlying phenomena as a function of applied field.

We treat electrons and holes on a more or less even footing. In this way, we
juxtapose the dynamical behavior of the two species for deeper insight. Among other
properties, we report on results for energy distributions as a function of applied
external field. Knowledge of the carrier energies enable us to make further predictions,
necessary in the remainder of this thesis. We will also discuss the phonon emission
distributions that take place.
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We conclude this chapter by reporting on the particular case of electrons drifted
in the 〈111〉 direction, discussing the new predictions this simulation has produced
for drift physics at T = 40 mK.

4.1 Results from the isotropic Monte Carlo

Our original implementation of a traditional, isotropic Monte Carlo simulation
served well in advancing our understanding of general transport properties under our
non-equilibrium conditions. As shown in our reference [6], we reproduced the theory
and experimental results for both holes and electrons at T = 8 K [8, 13, 7, 74], and
made a viable prediction for both species for our T = 40 mK base temperature.

For electrons, the results from this simulation predicted a further increase in drift
velocity between T = 8K and T = 40mK by a factor of over 3 for electrons, at low
fields. As we utilize 〈100〉 germanium, the influence of the Brillouin zone L-valleys
is symmetrical relative to the electric field. The elliptical nature of the L-valleys was
assumed to be averaged out, and a spherical approximation was used. So for this
first model, we simply used a single valley approximation. However, non-parabolicity
was included in calculation of the scattering rates and the acceleration kinematics.
Emission and absorption rates were included for the acoustic, intervalley, and optical
phonon processes.

Previous work by other authors [8, 74, 53] on hole simulation did not match
well to data in the low-temperature and low-field range. We attempted an isotropic
Monte Carlo simulation, taking great care in conserving energy and momentum in
our scattering rates and final-state selection. A split-off band was not yet included
for this model. Scattering rates were based on scalar density-of-states masses. When
incrementing holes in the field, we included a directional mass based on inverting the
dispersion relation for the heavy and light bands (i.e., the dispersion mass). We later
found this definition of mass was also utilized in reference [54]. These improvements
allowed us to reproduce the data of [8, 7] at their lowest published temperature of
8K, even where previous simulation did previous simulation did not perform well in
this low-temperature regime. Extending our simulation to T=40 mK allowed us to
predict that drift velocities were expected to change below 3 V/cm. This would be
later confirmed to excellent precision by our subsequent experimental drift velocity
measurements [10] at T 40mK as in figure 4.1.

Although holes in the heavy band are considerably heavier than L-valley electrons,
they have considerably lower scattering rates. The deformation potentials for holes
smaller than for electrons, and the warped nature of the valence bands contributes
to a reduced wavefunction overlap integral. This signifies a reduced phase-space
overlap with the density of possible hole final states. Therefore, holes “brake” to
the lattice less than electrons, and are allowed to accelerate and carry much more
energy for a given field than electrons. This was apparent in this simulation. For
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fields above 3 V/cm, hole velocities should be determined predominantly by optical
phonon emission, for both T=8 K or 40mK. That is, optical phonons should begin to
dominate the dissipation of power for holes above about 3V/cm. Substantial emission
of optical phonons at such low fields was not previously anticipated. The results of
later anisotropic simulation, to be described below, also reveal this same behavior.

It is a curious fact that subsequent drift velocity measurements at T=40 mK do
not appear to evidence the onset of optical phonon emission from holes as predicted,
although this phenomena gave excellent consistency with the T=8 K data. This
remains an issue to be resolved, no doubt aided by ongoing drift measurements at
T ∼ 40 mK now underway.
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Figure 4.1: Results from our traditional Monte Carlo, from [6], using energy-based
scattering rates and a separate subroutine for final-state selection. a. Predicted
drift velocities for electrons and holes, for T=8 K and for T=40 mK. fine trace:
T=8 K theory from [7], and round dots : data from [8, 7]. Note that we already
improved momentum conservation in simulation for low-energy holes (needed for low-
temperature, low-bias conditions). Markers, “*,” denote T = 20mK data points from
[9]. Also shown is typical energy emitted by phonons as a ratio of acoustic phonons
to the total. This shows that power dissipated by holes to optical phonons is equal to
power dissipated to acoustic phonons above approximately 3 V/cm. b. Same T=40
mK predictions, overlain with subsequent drift velocity data taken at T = 31 mK,
from [10]. Note that there is little indication of the optical phonon “knee” for holes
near 3 V/cm.
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4.2 Simulation with full anisotropy (“vector-based

Monte Carlo”)

This initial simulation was followed by a full anisotropic, vector-based simulation
which allowed us to couple carriers to all phonon branches with no approximation
in the scattering rates or final-state selection. We simulated transport knowing that
expressions for band structure effective mass and Fermi’s golden rule were fully pre-
served for every scatter and every final-state selection. We review below the resulting
statistical distributions pointing out the physics involved.

4.2.1 Anisotropic electrons: k-vectors, velocities, and dis-
placement

In this first section, we report on the statistical distributions for electrons using
our vector-based anisotropic simulation.

The majority of literature regarding semiconductors is based on silicon. In silicon,
the conduction band minima are the X-valleys. The electron anisotropy factor, or the
ratio of longitudinal to transverse effective masses K = ml/mt, of these silicon X-
valleys is K = 5.2 [20]. This is far less than the anisotropy of the L-Valley minima in
germanium, K = 20 [20]. As a consequence, isotropic assumptions are less applicable
for treating electron transport in germanium. Furthermore, anisotropy effects are
heightened at low temperature and low bias. In this case, electrons are more prone
to remain isolated in their particular L-valleys without becoming randomized. Their
overall movements will stay correlated with their specific L-valley for longer periods of
time. So, there is particular need to treat electron anisotropy correctly for germanium
in the low-temperature limit. Our Monte Carlo development is therefore particularly
useful in this situation. Not only do electrons accelerate with an appropriate mass
to an applied field vector, but any directionality in the scattering response is also
preserved without a reliance on integrated rates.

As a demonstration, consider figure 4.2. In figure 4.2a., we see a representation of
the iso-energy surface, in k-space, defined by the dispersion relation of the electron
L-valley in the 〈111〉 direction. This iso-surface represents a particular kinetic energy
above the L-valley minimum. As we have seen by equation 2.11, the wavevectors k
must be perpendicular to this iso-surface when energy is the same in all directions.
We see by plot 4.2b. that the final, steady-state distribution of simulated wavevectors
follows a profile similar to the iso-surface. This shows that kinetic energy is rather
equally partitioned in all directions. We also know, also by equation 2.11, that a
physical velocity is the projection of a momentum wavevector upon the inverse mass
tensor. In figure 4.2d., we see a final distribution of velocities in this valley. These ve-
locities, indicative of the ongoing velocity fluctuations in the steady state, follow the
form of a k-vector projected onto the inverse mass tensor (also depicted in sub-plot
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a.). There is a non-trivial average velocity for these distributions, however. Electrons
following the randomized velocity fluctuations of figure 4.2d. are also moving with
the average velocity, which is harder to notice. In plot 4.2c., we see a distribution of
electrons in this valley after drifting for ≈ 2×10−7 seconds. Their dispersion is some-
what saucer-shaped somewhat like the velocity distribution of plot 4.2d. However,
we also notice the tensor-nature of the inverse mass, in that the mean displacement
is not parallel to the field. This oblique propagation is characteristic of the low field
transport at very low temperature. Our work confirms the result of previous analyt-
ical work. To some approximation this effect can be treated as a “mobility tensor”
phenomenon with the analytical infrastructure presented in classic textbooks such as
[20, 51]. It has been been simulated with traditional Monte Carlo techniques with
inverse mass tensors in the zero-point limit as in Aubry-Fortuna, et al. [79], and
Cabrera, et al. [80]. This behavior is compatible with our experimental results.
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Figure 4.2: An example of electron distributions in the 〈111〉 L-valley for F =
−1 V/cm along z. All units are MKS, in this instance. a. the iso-energy surface,
and the momentum projection of the inverse mass tensor, both re-scaled. b. the
ensemble of steady-state wavevectors. c. the ensemble of final real-space positions
after ≈ 2 × 10−7 seconds. d. the ensemble of steady-state velocities. e. a single
electron starting from rest in this valley, and propagating over time.
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Figure 4.3: Electrons in germanium 〈100〉 starting from rest in a strong, z-oriented
electric field. Intervalley transitions in k-space result in different inverse mass tensors
with different favored directions relative to the field.
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4.2.2 Anisotropic holes: k-vectors, velocities, and displace-
ment

Considering now holes, the fully anisotropic simulation that we performed along
the method described in the previous chapter displays strong anisotropic effects, al-
though the propagation is on average no longer oblique.

From the dispersion relations, we find the warped valence bands are also far from
isotropic. In our original, “isotropic” Monte Carlo, we used a directional dispersion
mass. Contrary to other references which also use this definition for hole mass [54],
in our full anisotropic simulation we use the rigorous definition of kinematic mass as

m∗−1
ij = ~−2 ∂2E/∂ki∂kj. The resulting expressions are complicated by the fact that

the warped valence bands for the heavy and light holes depend on all three wavevector
components in a complex way. The resulting inverse mass tensor for the heavy whole
band is given in figure 4.4 part a.

We present distributions for holes analogous to the previous section for electrons.
The electric field (now F = +1V/cm) is parallel to the (001) direction. As holes
energetically favor the occupation of the heavy(top) band, the heavy-hole inverse
mass tensor dominates the kinematic response for holes at low fields. We present
statistical ensembles from our Monte Carlo simulation. In figure 4.4b., wavevectors
are distributed in a somewhat boxy relation due to the energy iso-surface of the heavy
band. The steady-state velocities of figure 4.4d. map well to the inverse mass tensor,
again dominated by occupation of the heavy band. The resulting distribution of holes
in real space (figure 4.4c.) tends to be very spread out along the vertical axis where
the heavy mass tends to be lightest.



106

Figure 4.4: An example of holes distributions for F = 1 V/cm along z. All units are
MKS, in this instance. a. the momentum projection of the inverse mass tensor for
the heavy band, defined by k b. the ensemble of steady-state wavevectors. c. the
ensemble of final real-space positions after ≈ 5× 10−7 seconds. Note the propensity
for z-axis diffusion. d. the ensemble of steady-state velocities, which are dominated
by occupation of the heavy hole band.
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4.3 Introduction to macroscopic properties

In the previous sections, we introduced some of the general characteristics of
steady-state carrier ensembles.

Here, we introduce important average properties of electrons and holes as a func-
tion of applied field. We generally consider the case of an electric field applied in the
z-direction, although later we investigate electrons in the 〈111〉 orientation.

The idea is to define macroscopic parameters that will be useful to our under-
standing and future simulation work. The idea is that, if we can assume that carriers
are in a steady-state with the electric field, then particular macroscopic parameters
will be useful for higher-level work.

We take advantage of the fact that this system is assumed to be ergodic, as per
Boltzmann’s hypothesis for gaseous particles. In this case, the general properties of a
single particle in the steady state is characteristic of an ensemble of similar particles.
This means that we could take correlation functions at different points in time with
the same carrier, or equivalently we could take statistical moments of an ensemble of
many such carriers. As we have taken the approach of simulating several particles until
they have reached a steady state with the field, we take moments of that ensemble
and associate them with probabilistic behavior of any such particle. Our motivation
here is to depict our simulation output as usable, macroscopic expectation values of
processes occurring in the germanium bulk. The purpose is that this will help us
make predictions for processes occurring within our high-purity, milliKelvin CDMS
detectors.

In forming appropriate definitions for useful quantities, a constant theme is that
the expectation value of multiplied quantities is in general not the same as the mul-
tiplication of expected quantities. In other words,

〈AB〉 6= 〈A〉 〈B〉 (4.1)

As we proceed in this chapter, we point out our assumptions in this regard.
As most properties are applicable to both electrons and holes, we present results

for both carriers side by side.

4.4 Velocities

We need to be careful about defining quantities related to velocity. We make three
distinctions for velocity.

Drift velocity Drift velocity is equivalent to the average velocity.

Thermal velocity Velocity fluctuations are generally much higher in speed than
the small average velocity represented by drift. The average “deviation” of
velocities gives the thermal velocity.
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Total velocity Typically, the thermal velocity is quite nearly all of the velocity
since it represents dwarfs the average velocity. However, to be general, we are
particular enough in this work to make a distinction in definitions. We define
the “total velocity” the mean modulus of velocity.

For the next three subsections, we take some effort to define these three velocity
quantities more specifically.

4.4.1 Drift velocity

Carriers accelerate in an applied electric field, but dissipate power by inelastic
scattering processes. In the steady state, charge carriers have reached some terminal,
average velocity which we call the drift velocity. The drift velocity is extracted from
simulation simply by finding the average velocity vector.

vd =< v > (4.2)

A note on drift velocity for electrons: There are the four, full L-valleys repre-
senting the conduction band minimum. Electrons may be initially excited into any
one of these L-valleys. While the L-valleys represent the same energy minimum in
the Brillouin zone, they may manifest different dynamics depending on orientation
of the applied field. To accurately describe electron behavior in the general case, we
would need to specify electrons occupying specific valleys.

The case of a 〈100〉 (specifically (001) ) electric field orientation affects all four
L-valleys symmetrically. Therefore, we can present results for the z-axis drift velocity
and know that it is the same for all L-valleys.

4.4.2 Thermal (or “random”) velocity

As carriers propagate, their motions are largely stochastic. They are undergoing
random motion in just about any arbitrary direction. The average velocity is typically
only a small offset compared to the velocity fluctuations ongoing at any instant. So the
thermal velocity generally describes the randomized velocity of carriers from point to
point, between instantaneous scattering events. Whereas the drift velocity represents
the mean velocity, the thermal velocity represents the velocity distribution’s standard
deviation. Assuming that the carrier distributions are depicted well by displaced
Maxwellian, a mean and a standard deviation in velocity (or momentum) would
completely quantify the form. In general this is not the case and higher moments
would be necessary. The thermal velocity is equivalent to the standard deviation of
velocity.

vth = σv (4.3)
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The term “thermal” could reasonably imply thermal equilibrium, which need not
be the case. “Random” may be a better term. In the case of hot carriers, this
thermal/random velocity is the best metric for something resembling temperature,
provided the distribution profile resembles a Maxwellian distribution.

In 3 dimensions, this velocity distribution width can be described by a covariance
matrix.

Σ2
v,ij = cov(δvi, δvj) =< δvi, δvj > (4.4)

where
δvi = vi− < vi > (4.5)

To recover a velocity quantity with statistical relevance in 3D, we can take a matrix
decomposition of the covariance tensor. Several methods of matrix decomposition are
possible.

vth = Σv = U (4.6)

where vth and U are still matrices.

Σ2
v = UTU (4.7)

Now, for the sake of defining a single expected thermal velocity, taking into con-
sideration all directions, we can define a quantity based on the matrix trace. The
matrix trace is invariant under rotation.

〈vth〉 =
√

Trace(Σ2
v) (4.8)

4.4.3 Total velocity

We were quite specific in defining the thermal velocity in terms of the velocity vari-
ance, which also defines temperature in a displaced Maxwellian distribution. Often,
we may want to connect this to the total velocity.

If a carrier velocity (or momentum) distribution is well-depicted by a displaced
Maxwellian profile, then a randomly sampled total velocity should be related as

v = vd + vth r (4.9)

where r is random number array, sampled from a gaussian σ = 1 distribution.
Again, the thermal/random velocity fluctuations are typically much higher in

amplitude compared to the drift velocity contribution. In most cases, the average
total velocity should quite nearly equal to the thermal/random velocity. So comparing
average total velocity to thermal velocity is a useful check.

vtot =<
√

v · v > (4.10)
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As we are sampling an ensemble of particles, we use this simple and straightforward
definition to define total velocity.

We note that we took care in defining a statistical “thermal velocity” separate
from a “total velocity.” The thermal velocity is taken from the velocity variance,
and has its roots based in the width of the velocity distribution. Since the velocity
deviation so often is much greater than the norm of the average velocity, the “total
velocity” and “thermal velocity” are almost always quite nearly the same and are
often associated with each other.

4.5 Mean-free path

Since we know the total velocity as a function of applied field, we can combine
this with typical scattering times (to be described more, shortly). This simple scalar
definition is a useful characteristic scattering length.

lmfp = 〈v〉 〈τ〉 (4.11)

Here, 〈τ〉 is the mean scatter time between physical scatters.
This scattering length as a function of field is shown in figure 4.6b. We itemize

specific lengths for both electrons and holes, using the sum rate of all acoustic phonon
processes (leading to lac) and also the sum rate of all optical and intervalley rates
(leading to lop). So we can see from figure 4.6 it is a good approximation that acoustic
and optical scattering processes combine, as per Mathieson’s rule.

1/lmfp = 1/lac + 1/lop (4.12)
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Figure 4.5: Drift velocities from the new anisotropic (vector-based) Monte Carlo
technique, along with the latest data at T=50mK from [11]. a. For electrons, the
increase in drift velocity from T=8K to a simulated T=40mK is just as predicted.
The lowest data point near 40 mV/cm is most likely a systematic of inherent built-in
fields, which are identifiable when grounded. b. For the full anisotropic simulation
of holes, the values used are from literature and predominantly from [12]. Drift
velocities are ≈ 9% lower than data for F ≤ 1 V/cm, but there is subtle coupling to
other bands not present in the previous simulation at these low fields. The threshold
for optical phonon dissipation to dominate over acoustic emission occurs at the same
field (F = 2.48 V/cm) consistent with our traditional Monte Carlo simulation. The
corresponding effect on simulated hole velocities also remains, and is consistent with
the T=8K data. Thin black lines match simulation at F = 0.01 V/cm and follow a
F 1/5 power law as per appendix B.
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Figure 4.6: The total velocity and mean-free path. a. the total velocity for electrons
and holes, which we distinguish as a separate quantity from the drift or thermal
velocities. b. the mean free path for electrons and holes, itemized into both total
acoustic and total optical mean free paths.
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4.6 Carrier temperature

Another quantity tied to the definition of velocities is the effective carrier tem-
perature. Once again, because our velocity distributions need not necessarily be
Maxwellian, a temperature may not be defined in the strictest sense. Nonetheless, we
can take the statistical variance of the velocities of our simulated particle ensembles
and empirically associate it with a temperature quantity. Since we have been pre-
serving the anisotropy, we may want to specify a tensor notation for this temperature
quantity as per [45]. We can specify a temperature for every degree of freedom of our
system, and in general relate the velocity distribution “width” to components which
essentially depict the temperature in different directions.

When we introduce a mass tensor into our work, we need to be careful about our
definitions. A simple path is to recognize that energy can also be defined the dot
product of momentum and velocity. In this case, we can be sure that we can pick a
correct form of the “thermal tensor” with a correctly preserved and invariant trace.

1

2
kBTij =

~
2

cov (δki, δvj) (4.13)

We are free to rotate this energy tensor into any reference frame we wish. As
the trace of this matrix is invariant, it makes a sound definition to define a scalar
temperature as the contribution of all three degrees of freedom from our 3×3 temper-
ature matrix. In general, random fluctuations evenly distribute energy quite rapidly
among the three degrees of freedom. Taking the trace and defining a scalar diagnostic
temperature is not a terrible assumption for a diagnostic parameter. We therefore
define the (scalar) carrier temperature as the following.

3

2
kBTC = Trace

(
1

2
kBTij

)
(4.14)

We plot the scalar carrier temperature for both electrons and holes in figure 4.7.
To note, some [74] would refer to our definition of temperature as the “noise tem-

perature.” This is because we used the velocity fluctuations as our definition. If
we had subscribed to this definition, then the “carrier temperature” is a separate
temperature quantity proportionate to the mean total velocity squared. We prefer
to retain our definition of temperature by fluctuations because it relates to the Wan-
nier relation, which we will define shortly. To emphasize, these two definitions of
temperature are in practice typically about the same, anyway.

4.7 Diffusion

We have introduced the concept of average, random, and total velocities. The
random, or “thermal,” velocity can be naively associated with an empirically de-
fined temperature, although the underlying velocity distribution need not be truly
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Figure 4.7: The effective (scalar) carrier temperature for electrons and holes, defined
by the trace of the statistical temperature tensor.

Maxwellian. The random velocity was associated with elements of an energy tensor
that allowed us to define corresponding components of a temperature tensor. These
tensors represent energy held in stochastic fluctuations of the distribution under drift.
It is informative to continue to explore this concept of energy held in directional de-
grees of freedom. To this end, in this section we will associate the property diffusion
with this concept.

Diffusion is the stochastic motion of carriers undergoing random motions. From
numerous statistical mechanics references, such as Reif [81], we can define a diffusion
constant according to the mean square displacement of radomizing particles under-
giong velocity fluctatations. Defining the mean square displacement as

R(t) =
〈
|x(t)− x(t0)|2

〉
(4.15)

we can define a diffusion constant by

R(t) = 2Dt (4.16)

In our simulation, we once again used the ergocity of our system to sample a large
number of carriers in the steady state. After a particle was equilibriated to the field
but still ∼ 10% before the end of a simulation, we would record a time and position
as a new origin. At the end of the trial, we would find the mean square displacement
and time subtended from this new origin. Using ensemble averages, we establish a
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3× 3 diffusion matrix as the following.

Σ2
x,ij = 2Dij 〈∆t〉 (4.17)

or

Dij =
Σ2
x,ij

2 〈∆t〉
(4.18)

Here, Σ2
x,ij is the real-space displacement covariance taken from the sample origin,

and 〈∆t〉 is the average time subtended since the sample origin. This is our primary
definition of diffusion.

Now, we make an exercise out of equation 4.1. We can also consider diffusion
elements along specific directional degrees of freedom as a random walk problem and
recover the standard three-dimensional result [81],

R(t) =

(
2

3

〈
v2
〉
τ

)
t (4.19)

which leads to the isotropic three-dimensional result,

D =
1

3

〈
v2
〉
τ. (4.20)

To make this appropriate for tensorial notation with individual directional degrees
of freedom, we define the following making use once again of our velocity fluctuation
covariance and average scatter time.

velocity based: Dij = Σ2
v,ij 〈τ〉 (incorrect) (4.21)

We notice the comparison of diffusion definitions of 4.18 and 4.21 are plotted in
figure 4.8. These two definitions of diffusion do NOT depict the same result. The
difference is that equation 4.21 would serve as a better representation of position
displacements if it were instead the expectation quantity,

velocity-rate based: Dij =
〈
Σ2
v,ijτ

〉
= cov (δvi , τjδvj) . (4.22)

So we consider that the velocity-based equation 4.21 is not a good definition of
diffusion. The position-based formulation of equation 4.18 is correct. The problem
is that our velocity-based definition suffers from a lack of correlations needed in the
true definition of Di,j = cov(δvi, δxj), (or equivalently, equation 4.22).

Something we can glean from these subtleties in diffusion and diffusion-like quan-
tities is an understanding of the value and directionality of the diffusion-based relax-
ation time. The 〈τ〉 we used in 4.21 was simply the mean net scattering rate from our
statistical enembles. We may be curious how long velocity fluctuations characteris-
tically last before again being randomized. By comparing the variance in real-space
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displacement and in velocity, we can define a τ tensor. We could then inspect this
as a function of direction. We equate the position-based and velocity-based diffusion
elements, and solve for a 〈τ〉-like relaxation tensor.

[τ ] =
[
Σ2
v

]−1 · [D] (4.23)

The diffusion tensor above, [D], is the position-defined tensor of equation 4.18, and
[σ2
v ]
−1

is the inverse matrix of the velocity covariance.
Let us add a few further words about diffusion as defined by simulation data. In

figure 4.8, we have plotted the “axial” diffusion elements along the main diagonal.
The fact that electrons typically occupy one of the independent and rather different
L-valleys complicates their diffusive motion as well as their drift velocities. In an
isotropic case, the diffusion component along the electric field (along the z-axis) we
could easily identify as the “longitudinal” diffusion coefficient. Here, “longitudinal”
might be a more appropriate term when aligned along the resulting average drift
velocity vector rather than the field orientation. So we depict the “Dzz” component.
We also plot the Dxx = Dyy components, which are identical as they are symmetric
to the field and inverse mass tensors, but which we likewise refrain from calling the
“transverse” components. All the diffusion constants are smaller at higher fields, as
the carrier gases are becoming “hotter,” so the relaxation time is becoming shortened.
Velocity fluctuations are not as long lived at higher fields. So our position-defined
diffusion has resonant peaks at threshold fields where the onset of large (optical or
intervalley) phonon emission starts to occur.
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Figure 4.8: Diffusion for electrons and holes a. The z-axis diffusion element, Dzz,
for both the position (solid) and velocity (dashed) definitions used for the diffusion
tensor. b. The x-axis (y-axis) diffusion elements, Dxx (Dyy), with both position
(solid) and velocity (dashed) definitions. Note that we consider the position-based
definition of diffusion to be correct; our velocity-based definition is for illustrative
purposes.
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4.8 Relaxation times

When we explored diffusion, we noticed that we could define an expectation value
for a “time” quantity related to distance and velocity fluctuations. It turns out there
are several definitions for time, related to averaged ensemble quantities. Two impor-
tant definitions are momentum relaxation time and energy relaxation time. We may
find excellent textbook discussions of these quantities based on analytical underpin-
nings, such as in Lundstrom [45] and Ridley [5].

Empirically, formulations for relaxation times have also been proposed by Shur
[82]. These expressions have had success in characterizing a number of semiconducting
materials [83]. We can extract these relaxation times from our transport simulation.

We can define an empirical momentum relaxation time as the following.

〈τm〉 =
〈m∗〉 〈vd〉

eF
(4.24)

Here, 〈m∗〉 is the steady-state average mass, 〈vd〉 is the steady-state drift velocity, e
the electric charge, and F the field.

An empirical energy relaxation time is defined as the following.

〈τE〉 =
〈E〉 − E0

eF 〈vd〉
(4.25)

In this case, 〈E〉 is the mean carrier energy, and E0 is the average energy if no field
were applied. Typically, one would just assume that E0 = 3/2 kBTL, the lattice
equilibrium temperature. In our case we completely neglect E0, as it is insignificant
for the range considered.

These relaxation times are related to the power added by the electric field to the
carriers under drift. The average power added to drifting carriers is P = e |F| |vd| cos θ,
where θ is the angle between field and drift velocity. Considering that we have
obliquely propagating electrons, we project the inverse mass tensor along z and take
only the z-component of the drift velocity for these computations. We compute re-
laxation times this way for both electrons and holes.

We show results for relaxation times in figure 4.9. Note that the energy relaxation
time is longer than the momentum relaxation time. This is because it typically
takes several inelastic scatters for the energy to decay, whereas momentum relaxation
only requires the randomization of the momentum’s initial direction. As a ratio of
the momentum relaxation time, the energy relaxation time is comparatively shorter
when scattering is highly inelastic. This occurs, for instance, around the onset for
optical phonon emission.
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Figure 4.9: The relaxation times for electrons and holes. a. Energy and momen-
tum relaxation times for electrons b. Energy and momentum relaxation times for
electrons.
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4.9 Carrier energy, and the Wannier relation

The most important steady-state quantity in describing carriers under our “hot”
conditions is energy. We have defined a thermal energy tensor already. We know that
there is an average drift velocity vector that may carry kinetic energy, as well. We
define a drift energy tensor, as in Lundstrom [45]. We define this energy as one-half
of the Kronecker product between the average (“drift”) momentum and drift velocity.

W drift
ij =

~
2
kdi vdj =

~2

2
kdi m

∗−1
ij kdj (4.26)

Our purpose here to compare this drift energy to the thermal (or “diffusive”)
energy. In 1951, Wannier [84] used Boltzmann transport formalism to show that the
expected energy of drifted, charged ions in gases follows a particular relation, later
coined the “Wannier relation” as by Robson [85]. In appendix C, we verify that the
Wannier relation returns the expected energy in the case where the functional form
of the energy distribution is a displaced Maxwellian.

The Wannier relation states that the average energy is the combination of both
the drift and diffusive/thermal terms.

< E >=
3

2
kBTC︸ ︷︷ ︸

εdiffusive

+
1

2
m∗v2

d︸ ︷︷ ︸
εdrift

(4.27)

For our case with full anisotropy, this is

< E >= Trace

(
1

2
kBTij

)
+ Trace

(
~
2
kdi vdj

)
(4.28)

In figure 4.10, we plot the average energy for electrons and holes as a function of
field. We also plot the contributions from the diffusive and drift energies. Even if
our distributions may depart from the form of a displaced Maxwellian because they
cross the inelastic threshold for optical (or intervalley) phonon emission, the Wannier
relation remains a good approximation. Perhaps more importantly, we verify that
the energy held in random velocity fluctuations greatly exceeds the energy held in
the average drift velocity. This justifies arguments that the random velocity is quite
close to the total velocity, or that the quantity defined as the carrier temperature
is a good estimator for the mean energy. Yet another way to put this, is that the
“noise temperature” is about equal to the “carrier temperature,” as per Reggiani’s
terminology [74].

In figure 4.11, we also show the energy probability distribution functions for our
simulated ensembles of electrons for a log sweep in 〈001〉-aligned electric fields. Note
the scale spans many orders of magnitude, and that for a wide range of field amplitude
the distribution centroid often occupies the 10− 100 meV scale where large phonons
are emitted. In figure 4.12 we plot the energy probability distribution for electrons
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and for holes at an applied field of 1 V/cm. We also superimpose the respective
displaced Maxwellian distribution functions for the empirically determined drift and
diffusion energy.
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Figure 4.10: Carrier energies for electrons and holes, validating the empirical use
of the Wannier relation. Clearly, the thermal (“diffusive”) energy dominates the
mean energy. The thin black traces are trend lines that intersect the mean energy at
F = 0.01 V/cm and follow a power law of F 4/5 as per appendix B. The anisotropy
of the electrons likely accounts for their larger discrepancy from this trend.
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Figure 4.11: Log-log representations of the energy probability distribution function
for electrons, across a log-sweep of applied fields.
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Figure 4.12: For a given field of 1 V/cm, we juxtapose the energy probability distri-
bution for electrons with that for holes. This is to emphasize that holes carry sub-
stantially more carrier energy in the steady state. The traces overlain are displaced
Maxwellian distributions using isotropic effective masses, in addition to statistically
deduced drift velocities and effective carrier temperatures.
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4.10 Luke-Neganov phonons

So far, we have reported on properties of electrons and holes under drift, with an
emphasis on the energy distribution functions as a function of electric field. Here we
examine the reciprocating distributions of emitted phonons, which are responsible for
of the field-dependent structure of the quantities we have covered.

Knowledge of emitted phonons is important for understanding the phonon signal
response in our CDMS dark matter detectors. Phonons created during the initial
nuclear impact and electron/hole production represent the primary calorimetry sig-
nal. The energy of these phonons is dominated by optical phonon production. The
collection and measurement of these phonons by our CDMS transition-edge sensors
creates a unique measurement of the particle event. As charged particles or pho-
tons interact electromagnetically, their interactions in germanium at nuclear energy
scales are strongly coupled to the electronic structure. Per unit deposited energy,
the interactions initiated by charged particles (and photons) interact electromagnet-
ically and ionize more electrons and holes than do the the nuclear recoils initiated
by neutral particle interactions. Neutral particles include potential dark matter can-
didates. Therefore, the measured ratio between charge and phonon signals provides
an excellent handle for background event discrimination. CDMS detectors further
have added discrimination capability inherent in measuring arrival time physics of
the phonon signals.

We attempt to understand and take advantage of phonon phenomena inherent
in our cold, intrinsic germanium detectors. Aside from the primary phonons of the
initial particle interaction, it is also important to understand the phonon spectra and
production rates elsewhere in the crystal. Relaxation of carriers to the Fermi level
at the interface has been evidenced in our detectors to produce relaxation phonons
[38]. The dominant contribution to the phonon signal, however, are the phonons pro-
duced under drift. These phonons are the aforementioned Luke-Neganov (“Luke”)
phonons. At our low bias fields, Luke phonons have always been assumed to be
acoustic phonons. These simulations suggest this may not always be the case. In
particular, the Luke phonon spectra from holes are substantially higher in energy
than from electrons, owing to the low hole-lattice interaction and high carrier energy
of holes. Optical Luke phonons would mimic the optical phonons of the primary
signal, and likely affect our timing measurement of the non-equilibrium phonon ar-
rival physics at the contacts. The phonon effects suggested in these simulations will
continue to be studied.

We have simulated acoustic phonon production to LA and a sum TA mode for
anisotropic electrons. Electrons also experience intervalley coupling to high-q phonons
at the Brillouin zone boundary. The slow TA branch is low enough to be treated sepa-
rately at the Brillouin zone boundary. Otherwise, intervalley phonons are treated as a
single degenerate branch, lumping the contributions of acoustic and optical branches.
Electrons can also couple to intravalley optical phonons with q ≈ 0. Holes have cou-
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pling to three acoustic and three phonon braches, including both intra- and inter-band
transitions between all three bands.

In the following plots, we present results for steady-state phonon: emission rates,
mean power dissipation, average acoustic wavevectors, and some LA and TA PDFs.
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Figure 4.13: Rates of phonon emission a. For electrons, i.total rate, ii. LA, iii. TA,
iv. Slow TA intervalley, v. intervalley, vi. optical phonons. For plot b., holes, we
have i.total rate, ii. all H-to-H acoustic phonons, iii. all H-to-L acoustic phonons,
iv. L-to-H acoustic, v. L-to-L acoustic, vi. L-to-H optical, vii. H-to-H optical, viii.
H-to-L optical, ix. L-to-L optical.
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Figure 4.14: Phonon emission rates for electrons and holes, grouped into acoustic
and into optical (and intervalley) phonons. a. For electrons, i. total emission rate,
ii. acoustic emission rate, iii. optical and intervalley emission rate. Plot b., for
holes; i. total emission rate, ii. acoustic emission rate, iii. optical emission rate. For
electrons, the cross-over field where the net acoustic rate equals the net optical rate
is F = 147 V/cm. The rates cross-over field for holes is at F = 27.9 V/cm.
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Figure 4.15: Emitted phonon power a. For electrons, i.total, ii. LA, iii. TA, iv.
Slow TA intervalley, v. intervalley, vi. optical phonons. For plot b., holes, we have
i.total, ii. all H-to-H acoustic phonons, iii. all H-to-L acoustic phonons, iv. L-to-H
acoustic, v. L-to-L acoustic, vi. L-to-H optical, vii. H-to-H optical, viii. H-to-L
optical, ix. L-to-L optical.
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Figure 4.16: The mean power emitted to phonons for electrons and holes, grouped
into acoustic and into optical (and intervalley) phonons. a. For electrons, i. total
emitted power, ii. acoustic emitted power, iii. optical and intervalley emitted power.
Plot b., for holes; i. total emitted power, ii. acoustic emitted power, iii. optical
emitted power. For electrons, the cross-over field where the net acoustic power equals
the net optical power is F = 20.6 V/cm. It is F = 2.48 V/cm for holes.
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Figure 4.17: The mean frequency emitted to acoustic phonons. a. For electrons, LA
and grouped TA modes. b. For holes. LA and TA modes.
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Figure 4.18: Log-log representations of the frequency probability distribution function
for acoustic phonons emitted by electrons, across a log-sweep of applied fields. Blue
are LA phonons, Magenta are TA phonons.
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4.11 Electrons with field applied in the 〈111〉 direc-

tion

The general phenomenon behind the anisotropy of electrons in germanium has
been known for some time. Without the randomizing influence of high lattice temper-
atures or high fields, anisotropy effects become most apparent under low-temperature
and low-bias conditions such as ours.

The most striking evidence for germanium anisotropy may be the phenomenon
of a negative differential mobility relation in for samples in the 〈111〉 orientation.
This effect only appears at low temperatures, perhaps at T = 20 K and below [13].
Bias under the 〈111〉 orientation is such that it introduce a large assymetry between
L-valleys in the angle subtended between the applied field direction and the principle
axes of the valleys. In the case of 〈111〉, there will be one L-valley that is aligned with
its principle axis parallel to the electric field, where the tensor mass is completely
longitudinal and quite heavy. The other three L-valley ellipsoids intersect the field
vector closer to their semi-minor axes, which is the transverse, or “light,” orientation.

We can link drift velocity to the inverse mass tensor as the following.

vd(F ) = [µ(F )] · F
= e[τm(F )m∗−1

eff (F )] · F (4.29)

Consider that the average drift velocity is weighted by all populations of electrons
occupying any of the possible conduction minima. We limit the scope in these argu-
ments to only the four full L-valleys. In equation 4.29, the thought is that we need
to average the inverse mass tensors by weighted occupation. The main assumption
here is that the momentum relaxation time is a simple isotropic scalar, and also not
particularly different between valleys. If these assumptions were true, then

vd ∝
[
m∗−1
eff (F )

]
(4.30)

and this effective mass tensor would be weighted by the relative occupation, 0 to 1,
between all four L-valleys. In other words,

[
m∗−1
eff (F )

]
=

4∑
i=1

Ni(F )
[
m∗−1

]
i

(4.31)

where the occupation distributed between only L-valleys,

4∑
i=1

Ni = 1. (4.32)

It is a worthwhile aside to examine the inverse mass tensors. The valleys are
numbered counterclockwise, looking down in the −z direction, starting with valley
(+1,+1,+1).
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(4.33)

Under the assumption of an equal population between the L-valleys, equation 4.31
results in an isotropic effective mass – the conductivity mass! – due to symmetry.

[
m∗−1
eff

]
= 1/mc

 1 0 0
0 1 0
0 0 1

 iff
(
N1 = N2 = N3 = N4 = 1/4

)
(4.34)

The averaged effective mass is isotropic if we have an equal distribution between
valleys. If the other assumptions are correct, then drift velocity would be the same on
average, regardless of the field orientation. Anisotropy effects enter when we disrupt
this uniform distribution.

When the field is aligned along the 〈111〉 direction, as function of increasing field
amplitude, electrons in the three “light” valleys can reach higher energies. They
will reach the threshold for intervalley phonon emission where the heavy valley will
be energetically disfavored. When electrons randomize between valleys, the “heavy”
valley acts like a cold trap. Eventually, the light electrons randomly transferring
between valleys will eventually become trapped in the heavy valley. The heavy valley’s
population will grow to near unity. This effect is called repopulation. It is well
evidenced in literature on germanium [86, 87, 88, 89, 13].
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What we find in simulation is surprising. Recall in the 〈001〉 case, pre-existing
literature values supplied an excellent match to recent T = 50 mK velocity mea-
surements. Also, according to equation 4.30, the mass tensor should determine the
drift velocity. If occupation is uniform, the net averaged mass should be symmetric.
Therefore, these assumptions would say that at lowest fields, drift velocities in any
orientation should match those measured and simulated for the 〈001〉 case. However,
simulation for 〈111〉 at the lowest fields actually shows a drift velocity substantially
lower (factor ≈ 4) than in the 〈001〉 case. Yet, the population distributions are uni-
form. It seems the “light” mass valleys do not appear to be occupying particularly
light wavevectors on average. By taking the ensemble mass for each valley as

〈m〉 =

〈(
1

k2

)
kT ·

[
m∗−1

]
· k
〉−1

(4.35)

we find that the “light” valley electrons are demonstrating quite nearly the same ex-
pected mass as do electrons in the symmetric valleys in the 〈001〉 case. The “light”
valley drift velocity comes out even less than that of the 〈001〉 case. Meanwhile, the
heavy valley acts to pull down even this lowered average. Something unforeseen is
occurring in momentum relaxation rate. Within the simulation code, each valley is
rotated into the frame of the principle axis while random sampling the possibility
for a vector-based scattering event. The crystal orientation only matters when im-
plementing propagation in the electric field. The rotations in the code have been
checked, so it remains that this could be a physical phenomenon. It does stand to
reason that wavevectors representing “heavy” mass states are preferred as final states
during a scatter due to the higher density of states in those directions. A carrier
already oriented along a light direction has all the more heavy final states with which
to scatter.

Furthermore, the drift velocities simulated at high fields after the negative differ-
ential velocity region are also low compared to T = 8 K data. However, there is an
experimental dependence on charged impurities with this region of the velocity curve
as described in the original reference [13]. We do not account for impurity scattering
in this simulation, so it may explain low velocity in this region.

Concluding our results for 〈111〉 electrons, we predict a lower velocity than has yet
been observed in the 〈111〉 orientation for fields both below the onset of repopulation,
and at the maximum repopulated field point (“the dip”). Perhaps this difference
is due to the absence of impurity scattering, and/or a scattering-based anisotropy
resultant from our anisotropic (vector-based) Monte Carlo implementation.
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Figure 4.19: Electrons propagating with field applied in the 〈111〉 direction. a. The
L-valley ellipsoids, with the heavy-mass ellipsoid oriented along 〈111〉. A vector
represents a random intervalley transfer into the heavy ellipsoid. b. The percentage
distribution of the electrons occupying the L-valleys as a function of electric field.
The heavy valley (blue) has maximum occupation near 10 V/cm. c. The mean value
of effective mass, normalized to the baseline case with 〈001〉 field applied. Black is net
average, blue is the heavy ellipsoid. The “light” valleys (magenta) do not appear to
favor a particularly light mass.d. Mean energy, net average energy transfers between
light-favored to heavy-favored energy during population inversion. Blue, dashed is
the case with field aligned 〈001〉. e. Drift velocities, net and separate valleys. Blue-
dashed: 〈001〉 case. Black dots: T = 8K data, N = 3 × 1013/cc. Red dots: T = 8K
data, N = 2× 1012/cc, from[13].
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4.12 Concluding remarks regarding our simulation

work

In this chapter, we have presented and interpreted the results of our Monte Carlo
simulation studies. The implementation of many details regarding scattering and the
correct conservation of energy and momentum have resulted in a working simulation
code, and simulated particle ensembles which have produced measurable predictions.
In concert with our lab’s efforts to produce milliKelvin drift velocity measurements,
we have been able to validate the underlying kinematics of electrons and holes in
our detectors. This automatically affords us some predictions for phonon emission
properties.

In the rest of this thesis, we will apply the understanding presented in this chapter
to make further predictions about detector phenomenology. Specifically, we will focus
on the energy distributions introduced in this chapter to predict energy-dependent
processes possible to electrons and holes. In the next chapter, we introduce possibil-
ities for generation and recombination mechanisms.
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Chapter 5

Capture Processes in CDMS
Detectors

We now turn our focus to understanding carrier capture processes in our detec-
tors. Capture (and possibly generation) processes represent the dominant cause of
systematic effects in our detectors and in the CDMS experiment. This is because
such processes represent a rate of change of the space charge density of the bulk, re-
sulting in a change in internal field. Here, we make quantitative predictions for some
capture processes we believe dominate under CDMS conditions. This includes their
energy and field dependence. Whereas our previous understanding of these effects
and their role in space-charge evolution has been completely empirical, we can now
utilize the results presented here within higher-level computational simulations for a
more substantive understanding of space charge.

In previous chapters, we have determined and validated charge carrier dynamics
and distribution functions. An understanding of drift and diffusion dynamics is in it-
self important and useful. Yet with knowledge of energy distributions of electrons and
holes in an electric field, we can make predictions for experiment-limiting processes
which we know are extremely energy dependent. By taking expectation values with
our numerical distributions, are able to integrate away the energy dependence in the
capture and ionization quantities at hand. This lets us make predictions for capture
rates expressed solely as a function of electric field, which are extremely useful in any
macro-level simulation of space charge evolution and detector performance.

As an overview, in this chapter we cover the following topics.

Introduce CDMS capture data: We note that both electrons and hole data show
two, competing capture processes. These capture processes follow distinctly dif-
ferent power laws.

Bound-state neutral capture, forming D−/A+ states: We see that the higher-
field capture rate is consistent with the over-charging of neutral hydrogenic
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states into D−/A+ states, which are stable at the CDMS operational tempera-
ture of TL = 40 mK.

Review the concept of capture by phonon cascade: The remaining capture
process in our data is likely due to the emission of low-energy acoustic phonons
which de-excite a carrier into an impurity site. We review the established knowl-
edge of this cascade capture process from Lax based on Thomson’s model of
capture in gases. We then point out the extensive work done by Abakumov.

Review possible attractive potentials: We review the attractive potentials which
may allow a cascade capture mechanism for carriers on impurities/defects.

Review possible impurities/defects: We review the possible impurities/defects
that might be considered, for possible capture of carriers.

Consider Coulomb capture, near the low-T limit: We revisit Abakumov’s work
for equilibrium carrier capture on charged sites for the low temperature limit
(kTL � mv2

s). We then find the appropriate value for the equilibrium capture
cross section at the CDMS value of TL = 40 mK.

Consider Coulomb capture out of equilibrium: With the equilibrium cross sec-
tion in hand, we can then utilize Abakumov’s hot-carrier correction. This now
depicts Coulomb capture in the high carrier temperature, non-equilibrium limit
(kTC � mv2

s).

Conclude CDMS capture data: Finally, with our non-equilibrium Coulomb cap-
ture cross section in hand, we can compare to data. We explain both capture
processes, for both carriers. We suggest an interpretation for space charge evo-
lution using a 2-carrier, 2-impurity balance of rates.

5.1 Comparing to data from CDMS detectors: in-

verse capture length

For many years, our group has been able to profile charge collection efficiency for
electrons and holes as a function of applied bias [38, 3]. On one face of a detector, a
collimated radioactive source is incident. After grounding for a long period of time to
ensure a well-neutralized state, a voltage bias is applied and pulse data is acquired.
After adequately high statistics are acquired, the detector is once again grounded.
A neutralization cycle ensues before repeating the procedure again at another bias
value. Plotting the resulting amplitudes as a function of applied voltage maps the
collection efficiency. These plots have earned the nickname “seagull” plots for their
appearance on a linear plot, as in figure 5.1. It is clear that electrons and holes
recombine over a drift length in germanium which becomes asymptotically larger
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with applied field. This provides a measurement of the field dependence of the net
electron or hole capture length (or possibly avalanche length, to be general).

Figure 5.1: A “seagull” plot, showing the collected ionization of 60 keV 241Am pho-
tons, incident from different collimated sources corresponding to “blobs” A-D. These
sources were incident on the “charge side” of a 1-inch CDMS detector “G3D.” Such
measurements of ionization collection as a function of applied voltage affords a map-
ping between net carrier capture length and applied electric field. From C. Bailey
[3].
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Measurements in Tom Shutt’s thesis [38], supply a good data set of measured
capture lengths. He used the ionization response of 60 keV photons from a 241Am
source incident on a 0.95 cm p-type germanium 〈100〉 crystal. The temperature was
T = 20 mK. The substrate had a p-type shallow impurity concentration, measured
to be in the range 0.6× 1011cm−3 < |NA −ND| < 2.2× 1010cm−3. This data set we
will call “Shutt 1993.”

More recently, Arran Phipps in our Berkeley group was able to utilize fiber optic
pulses incident on a detector at T = 50 mK [11]. Using a custom, fast amplifier
with a synchronized trigger, he was able to find capture lengths by measuring well-
averaged time-domain dynamics of a laser-pulsed carrier response. A data set which
we will call “Phipps 2011” was taken on a 1-inch 〈100〉 n-type germanium detector
with a shallow impurity concentration of |NA −ND| = 1.3× 1010cm−3.

To map the macroscopic behavior of capture (and generation) processes, it is
necessary to supply a few definitions.
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Figure 5.2: Carrier capture data in CDMS detectors, from the “Shutt 1993” data set.
a. The inverse capture length for electrons with field. b. for holes.
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Figure 5.3: Carrier capture data in CDMS detectors, from the “Phipps 2011” data set.
Note the 20 points at highest field in both the electron and hole data sets were fitted
for a power law. These high-field power-laws are consistent with a field dependence
proportional to the inverse drift velocity. a. The inverse capture length for electrons
with field. b. for holes. Note also the clearly pronounced transition in power-law
response for the holes in this data.
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5.1.1 Capture rates, cross sections, and inverse lengths

Capture rates, cross sections, and inverse lengths are related quantities. These
quantities are based on ensemble means, and their utility is to represent predictable
and measurable quantities in experiment. The mean deficit (or possible increase)
of an initial charge carrier population reveals information about recombination (and
ionization) processes occurring as a function of field.

Considering an energy distribution and random velocity distributions, g(E) and
vtot(E), we may define a total rate per density for a capture process. The function
g(E) includes the energy density of states.

C =
1

N 〈τ〉
= 〈vtot(E)σ(E)〉 =

∫
vtot(E)σ(E)g(E)dE∫

g(E)dE
(5.1)

This is the total cross section of this quantity over the typical carrier distribution
functions. The “target” density is depicted by concentration, N . These rates per
density, defined by several variants of “C,” will be useful in solving drift-diffusion
equations when recombination terms are included.

To preserve the standard definition of a total capture cross section,

C = 〈vtot〉 〈σ〉 , (5.2)

we define the total cross section as

〈σ〉 =
〈vtotσ(E)〉
〈vtot〉

(5.3)

To compare to experimental CDMS data in particular, the macro-scale quantities
useful here are the inverse capture lengths, which may be defined as the following.

1

λz
=

C

〈vz〉
N =

1

〈vz〉 τc
(5.4)

Above, 〈vz〉 = vdz is the mean velocity in the direction of drift assumed to be along
z. The pertinent capture time is denoted by τc.

5.1.2 Multiple contributions to the capture length

The inverse capture length is given by the sum of all capture (and generation)
processes. This can also be expressed by capture rates or cross sections.

1
λz

=
∑
i

1
λz,i

=
∑
j

1
λz,j
−
∑
k

1
λz,k

=
∑
j

NjCj
vdz
−
∑
k

NkEk
vdz

=
∑
j

Njσj
〈vtot〉
vdz
−
∑
k

Nkσk
〈vtot〉
vdz

(5.5)
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Here, we provided for “negative” capture lengths in the summation over “k-th” terms.
These negative capture lengths correspond to possible carrier generation processes
which will presented in the next chapter.

5.1.3 CDMS conditions: a 2-impurity, 2-carrier capture model

Our experimental results appear to be dominated by capture. Of course other
processes may also occur, but we limit ourselves to what we believe are dominant
terms. To limit the scope of this discussion, we consider only a 2-species capture
model. We suggest the following form, representing capture due to charged/Coulomb
capture (index “q”) and to capture forming D−/A+ states (index “0”).

1

λz
≈
(
Nqσq

〈vtot〉
vdz

+N0σ0
〈vtot〉
vdz

)
(5.6)

Here, Nq is the density of charged capture centers, N0 the density of neutral
centers, σ terms are cross sections, and vdz represents the z-axis drift velocity.

5.2 Neutral capture, forming D−/A+ states

As we see most pronounced in the “Phipps 2011” data set of figure 5.3, the inverse
capture length varies with a small but well-defined field dependence at higher drift
fields. Specifically, we can perform a numerical fit of the 20 points of the inverse
capture length at highest measured fields. For both electrons and holes of the “Phipps
2011” dataset, this fit to a power law ∝ F a gives an exponent range −0.3 < a < −0.2
for both electrons and holes at highest fields. Now consider that this inverse capture
length is dominated by a single capture process, as 1

λz
= N0C0

vdz
. If this capture rate,

N0C0, were energy-independent, there should no dependence on carrier temperature
in the presence of an electric field. Most likely, this capture rate should then be field
independent as well. Therefore, the field dependence of the measured inverse capture
length would be due to only the drift velocity. The drift velocity ideally goes as F 1/5

(as in Appendix B), assuming that acoustic phonon emission dominates transport
and the effective mass is constant. For this interpretation, we consider electrons to
follow the drift velocities predicted by our anisotropic transport simulation of the last
chapter. Since we believe, from measured data, that holes are not emitting optical
phonons in this measured range of fields, we interpret holes to follow closely the F 1/5

dependence depicted in figure 4.5.
Our observed capture data in CDMS detectors seems to be consistent with an

ideally (or nearly) energy-independent rate at the highest measured fields. The only
nearly energy-independent capture process reported readily in the literature [15] is
one which represents a direct, quantum-mechanical transition from continuum to a
bound, ground state.
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In fact, a possible capture state is to form D− and A+ states from neutral D0 or A0

states. These “over-charged” states are analogous to the negative hydrogen “anion”
(H−) bound state, which can carry two bound electrons. The negative hydrogen ion
was first predicted by Bethe [90], and the semiconductor impurity analogs have been
evidenced in germanium [91, 92, 15]. In this case, the polarizability of the neutral
impurity allows for a bound, “anion” state to exist. As the bound state energy
is extremely small, we can expect a particularly different capture (and ionization)
behavior from these states versus the “standard” hydrogenic charge states (D+/A−).
Neutral capture occurs near the band edge in this case, rather than across the gap to
form D+/A− states. The “same-side” neutral capture state is so shallow, capture is
dominated by the direct/“resonant” capture of section 5.2, and not by the “cascade
capture” mechanism which we will later describe.

The extreme low-temperature CDMS conditions of the crystal which would allow
such weakly-bound D− and A+ states to remain stable. This does not out rule the
possibility for other kinds of states to be the cause of this capture mechanism in
our data, such as some variety of deep state. D− and A+ states are natural candi-
dates to consider, however, since they are associated with known shallow impurity
concentrations and would be stable for our milliKelvin operation.

We now follow the treatment for neutral capture into these “anion” states.

5.2.1 The D−/A+ / “anion” wavefunction

We use the wavefunction of the “zero-radius-potential model” of Demkov [93], as
reported by Abakumov [15].

ψ =

√
κ

2π

B

r
e−κr (5.7)

where B is a normalization, and

κ =

√
2mcεanion

~2
(5.8)

Note that the effective mass of the bound carrier enters, so this is an aspect how
D− and A+ states differ.

The normalization factor B used is equal to 1.1, as from [15], which accounts for
the normalization with core correction in this approximation.

5.2.2 Capture rate to an anion

Abakumov treats neutral capture to anion states with a quantum-mechanical cou-
pling integral [15]. His equation 4.34 of [15], depicts the direct anion-state coupling
as a capture rate per unit density.
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C =
π3B2

16l0

√
2εanion
m

(
~
mvs

)3

Ψ(Ek) (5.9)

The prefactor B again is the normalization for the anion wavefunction of equation
5.7. The kinetic energy of the incident carrier is Ek.

The scalar l0 is adopted from Abakumov’s formalism [15], and represents a scat-
tering length constant derived from Fermi’s golden rule for acoustic phonon emission.
It groups scattering parameters such as the deformation potential into one term. We
express it as the following.

l0 =
π~4ρ

2m3
dΞ

2I2
(5.10)

Above, ρ is the crystal mass density, Ξ is the acoustic deformation potential, I2 is
the wavefunction overlap factor, and md is the density of states effective mass.

The anion bound state energy is εanion, and the coupling factor Ψ(Ek) ranges
between zero and unity. The coupling factor Ψ(Ek), not to be confused with the
wavefunction ψ, is given by the following.

Ψ(Ek) =
4

π2

(
arctan

1

x
− x

x2 + 1

)2

(5.11)

Here, the variable x is the ratio of bound-state anion wavevector to the putative
acoustic phonon emitted in the capture process.

x =
κ

q
=

√
2mv2

sεanion
εanion + Ek

(5.12)

Equation 5.11 is strictly appropriate for
√
Ek2mv2

s � (εanion + Ek), else the
coupling factor tends to unity if Ek � εanion for higher kinetic energies. A high kinetic
energy is often the case in our system of hot carriers, particularly at higher fields where
neutral trapping processes can actually be noticed over Coulomb capture. At zero
kinetic energy, this factor is still simply ≈ 1/2. Therefore, for simplicity, we evaluate
equation 5.9 under the coupling factor of equation 5.11 set to unity. We treat neutral
anion capture to both donors and acceptors with a very shallow (εanion = 0.7 meV
[92]) binding energy.

5.2.3 Concluding neutral capture to form “anion” (or at least
“resonant”) states

Concluding this section, we can say that because anion states may be thermally
stable at T = 40 mK, their production by carrier capture presents a large capture
cross section depicted by equation 5.9.
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As a caveat, the model proposed here does not out rule the possibility that other,
similar states may exist which would act in the same way but with slightly different
binding energies. For instance, the term “deep level” traditionally refers to a non-
perturbative state located deep in the band gap. However, many varieties of localized
defects in germanium may produce strong interactions with the Bloch electrons of the
host crystal, yet their “binding energy” is still on the order of meV [47]. Generally,
when a deep center energy level overlaps with continuum band states, resonant states
are formed [47].

For the purposes of this work, we proceed to consider neutral capture using only
with the benchmark model presented above. We continue to refer to neutral capture
as forming the traditional, hydrogenic “anion” states.

5.2.4 Capture rates and the steady-state, charged impurity
ratio

So far, we have established a plausible, energy-independent capture process to
explain our high-field capture data for electrons and holes. We must also understand
the other capture process in figure 5.3, which dominates at low fields.

At this point, it is worthwhile to introduce another concept; the steady-state,
charged impurity ratio. Given net impurity concentrations, this ratio determines how
many of these impurities should be ionized, assuming a balance of capture rates and
net bulk neutrality. This ratio is determined completely by theoretical considerations
of balancing rates in a 2-carrier, 2-impurity capture model. For details, refer to
appendix D, regarding arguments of defining a non-equilibrium chemical potential
through a balance of capture rates.

We can use the identity from appendix D that we can use the following approxi-
mate relation.

N−D = N+
A ≈

√(
CnA0 CpD0

CnA+ CpD−

)
NAND (5.13)

Here, the C terms are the appropriate recombination rates per density for the four
capture processes in this 2-species, 2-center model. Although this defines the steady
state ratio of charged impurities, these rates may be field-dependent.

Therefore, this ratio is an important consideration when considering possibilities
for steady-state built-in fields and capture mechanisms.
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5.3 Cascade capture: from Thomson, to Lax, to

Abakumov

Since germanium is an indirect semiconductor, capture mediated by photon emis-
sion (e.g., “radiative capture”) is a rare and negligible effect [94]. The other known,
non-radiative capture mechanisms fall under the category of cascade capture pro-
cesses. This is where carrier capture is assisted by the emission of a phonon while
in proximity to a capture site. This is a “cascade” process because de-exciting a free
carrier from the continuum all the way to the bound, ground state of an impurity
typically requires the emission of many phonons. There are many varieties of cascade
capture, involving different forms of electromagnetic interaction. The kinematics of
phonon-assisted capture by various interaction potentials introduces different forms
of carrier energy (field) dependence. In this section, we describe the principle of cas-
cade capture processes, and outline the typical attractive potentials which may be
involved.

5.3.1 A consideration of phonon emission kinematics

Generally, cascade capture is an emission process requiring multiple phonons (de-
pending on the temperature scale). To see why this is necessary, we briefly explore
the kinematics of the situation.

We primarily consider acoustic phonons. These phonons are much more read-
ily emitted by free carriers than are optical phonons. While compared to photons
traveling at the speed of light, phonons propagate at comparatively slow speeds of
sound. So while these quanta propagate with large wavevectors (e.g., large momenta),
acoustic phonons represent small quanta in energy.

Consider a free carrier to have kinetic energy Ek � 1/2mcv
2
s . If this carrier has a

positive total energy E and emits an acoustic phonon while in proximity to a capture
site of potential U , we know the maximum phonon wavevector that can be emitted
represents a complete backscatter of the electron.

qmax ≈ 2k = 2

√
2mc (E − U)

~
(5.14)

The change in carrier energy due to the emission of this phonon is small; typically
on order of a few factors times 1/2mcv

2
s . So it is actually a relatively rare process for

a carrier to emit an adequately large phonon to become bound to an impurity site.
Figure 5.4 shows this situation.

For a more thorough investigation of these capture kinematics, please see appendix
section A.4.
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Figure 5.4: A free carrier occupying a continuum state, with initial energy E, is
depicted along with its differential acoustic emission rate. This illustrates the prob-
ability to de-excite the carrier into a highly-excited bound state upon emission of
an acoustic phonon. Even a maximum amplitude phonon, which would completely
backscatter the carrier, still dissipates little energy. This is one reason why cascade
capture processes must be considered carefully.

5.3.2 Lax’s modification of the Thomson capture cross sec-
tion

Germanium was actually the material studied in low-temperature (T < 10 K)
experiments [95] that demonstrated how large capture cross sections may actually be
in semiconductors. These large cross sections, of order 10−12 cm2, were a mystery since
the cross sections predicted by carrier emission of a single photon or phonon directly
to the ground state are many magnitudes smaller. Melvin Lax [96] first proposed
the theoretical underpinning to explain these large cross sections as the result of a
multi -phonon, or a phonon cascade, mechanism. The principle is that an incident
charge carrier may recombine to some impurity or defect site by the emission of a
single, relatively small energy phonon. However, for this carrier to become ultimately
bound, the carrier subsequently emits a successive chain of phonons transitioning
from a nearly-ionized state to the ground state. Lax used primarily semi-classical
concepts to construct his model, but his predicted cross sections were the first to
match those from experimental measurements.

Lax points out [96] that his work “bears a close resemblance” to J.J. Thomson’s
theory of recombination in gases [97]. Thomson’s theory depicts a thermal equilibrium
case where an ionic capture cross section is depicted by a critical radius, rc, and is
determined by an energy equality.

Ze2

(4πεε0)rc
=

3

2
kT. (5.15)
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Thomson’s insight was that ions with kinetic energy greater than the thermal equi-
librium average of 3/2 kT typically lose energy upon subsequent scattering, whereas
ions with energies much lower than this will gain energy on average. So the vol-
ume determined by this critical radius represents a sphere of influence where ionic
collisions are effective in producing recombination. The average distance across this
spherical volume is 4rc/3. Given a mean free scattering path, λ, the probability of
collisions within the sphere is 4/3rc/λ. An incident cross section for this volume can
be described in 2-D as πr2. Combining these terms, Lax points out that Thomson’s
proposed cross section is

σ =
4π

3

r3
c

λ
(5.16)

What Lax accomplished was to produce a derivation of carrier capture in semicon-
ductors in a framework similar to Thomson’s cross section. In doing so, Lax points
out that one of the of the limits in Thomson’s derivation is to assume the limit that
rc/λ� 1. That is to say that scattering events are infrequent during the carrier tran-
sit of the trapping volume, so that capture must be dominated by single scattering
events. To examine this, we can take an example. Typical mean free paths in the
milliKelvin limit are at the 10 µm scale, as per chapter 4. On the other hand, empir-
ical capture cross sections at fields under ∼ 1 V/cm are at the 10−11 cm2 level. If we
compare the scattering length to the cross section radius, we see many magnitudes
of difference. It is unlikely that more than one scatter will contribute to a capture
event in these conditions.

Lax points out that other limiting cases exist. A diffusion-limited regime could
exist, where rc/λ � 1. This is a case Lax attributes to Langevin. Here, several
stochastic scatters occur along the trajectory in and out of the capture volume. Trap-
ping would be limited by drift into the central 1/r potential, balanced by diffusion
out of the trapping volume. The cross sections proposed by this mechanism are far
larger than measured, and it can be concluded that the Langevin condition does not
apply to typical semiconductor conditions.

Lax also notes that Wannier had proposals of carrier relaxation to recombination
centers. In Wannier’s model, capture would not be limited by the concentration of
trap sites, but rather on the incident distribution of free carriers able to impart their
energy to traps by acoustic phonon emission. By energy and momentum consider-
ations, these carriers would have typical velocities at about 2vs, or twice the speed
of sound. Although observed trapping probabilities do have a dependence on trap
concentration contrary to this theory, the insight that the kinematics of the inci-
dent carriers is an important one. We will visit similar kinematic arguments in the
derivations to come, later in this chapter.
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5.3.3 Lax’s “Sticking Probability”

Lax’s theory of phonon cascade capture determines that highly excited impurity
states provide an important trapping mechanism. To understand this requires a
consideration of the transitions a free carrier must undergo between occupying a
continuum state and occupying the impurity ground state. A carrier “cascades” down
the ladder of impurity states, emitting phonons all the while. It is possible, though,
that a carrier may subsequently escape from a nearly-ionized state by absorbing a
phonon. So we find that there are a number of possible combinations to either emit
or absorb phonons as a carrier climbs up and down the ladder of transitions, ultimately
to be bound or re-ionized.

Definitions of energy

Precise definitions of rates and energies play an important role in defining our
problem. What does energy relaxation rate mean while the carrier is within the
potential well? This relaxation time is based on the phonon emission rate due to
kinetic energy. To keep our definitions clear, recall from classical mechanics the
definitions of total, kinetic, and potential energy.

E = Ek + U(r) (5.17)

Note that U(r) is defined as a negative quantity. Although a simple fact, this can
often be a source of confusion. The bracketed energies illustrated in figure 5.5 may
be helpful.

So as the carrier moves into the trap region, a non-zero value for U(r) causes
the values of total energy, E, and kinetic energy, Ek, to diverge. Consider an initial
carrier distribution based on total energy, where the potential energy is zero. As a
carrier enters an area of non-zero U(r), the kinetic energy increases and this should
be accounted for within our capture integral.

Accounting for the random velocity as a function of position

If our calculation were performed in bulk, we would already have velocity distri-
butions numerically calculated by Monte Carlo. For the purpose of cascade capture
to a local potential well, however, we wish to account for the relaxation kinematics as
a function of position. In this completely semiclassical treatment, we always assume
the bulk effective mass is valid. Given an incident energy has total energy Ek = E
while deep in the bulk, we assume that its random velocity as a function of position
will become

v(E, r)=

√
2Ek
m

=

√
2 [E − U(r)]

m
(5.18)
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Figure 5.5: A depiction of a carrier capture process by way of phonon emission into an
attractive potential is presented. The meanings of the various energies are illustrated.
In particular, the binding energy U ′ and sticking probability P (U ′) are depicted, as
well as total energy (E), kinetic energy (Ek), and potential energy (U) of the initial
state.

Introducing the sticking probability

To evaluate the probability for a carrier in an excited state to remain permanently
captured may seem to be a daunting exercise in Markov processes. However, Lax was
able to show that the balance of subsequent transition rates could be modeled as
a state function. Lax defines a “sticking probability,” ranging from zero to unity,
which can be thought of as the probability for a carrier to ultimately remain bound
to the impurity. The virtue of the sticking probability is that it is a memoryless state
function of energy, bypassing laborious path integrals of emission and absorption
probabilities. The sticking probability is a function, P (U ′), where U ′ is the “binding
energy.” As in figure 5.5, the binding energy is simply the potential energy measured
into the potential well, as measured from the continuum band edge.

Ambient phonons typically carry an energy ∼ kT . Since this is the typical energy
an absorption event may impart to a carrier, it sets the scale of binding energy for a
carrier to re-ionize. Therefore, the sticking probability will vary from zero to unity
as a function of the “binding” energy as measured from the conduction band in the
pure crystal (near the band edge). The transition width is of order ∼ kT . Figure 5.5
depicts the sticking probability for a thermal equilibrium case.

Several comprehensive reviews of capture cross sections [94, 98, 15] have appeared
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in the literature. They propose functional forms appropriate for sticking probabil-
ities in various limits. Some treatments even forgo the use of sticking probabilities
altogether [99], but must retain complicated integrands or numerical treatments to
retain the dynamics of emission and absorption probabilities.

The energy scale for the sticking probability is determined by the lattice thermal
energy, kT . This leads to a common, naive assumption of a step function to approx-
imate P (U ′). That is, the sticking probability is assumed to be zero while U ′ < kT ,
and unity for U ′ ≥ kT [15].

If we had a continuous form for the sticking probability P (U ′) to consider, we
would further need to consider that an energy-dependent cross section also depends
on binding energy U ′ (the energy below the conduction band in the free crystal). We
would require a weighted integral over binding energy [96].

σ(E) =

∫
σ(E,U ′)P (U ′) dU ′ (5.19)

Where σ(E,U ′) is dependent on both the incident carrier energy and binding
energy.

5.3.4 Cascade capture, revisited by Abakumov and others

Analytical formulae for characteristic processes have been developed, commonly
with ties back to Lax’s innovative work on cascade capture [96]. In this regard, notable
achievements are attributable to Abakumov, Reggiani, Ridley, Landsberg, and their
collaborators [15, 100, 5, 94]. Such formulae are typically expressed as a function of
lattice temperature. Since equilibrium is assumed, incident carriers are treated under
Maxwell-Boltzmann statistics using the lattice temperature. While there exist some
corrections for the presence of an applied field [100, 15, 94], carrier equilibrium with
the lattice is often –but not always– still assumed.

Abakumov formulation, for kT � mv2
s

The seminal work in capture cross sections performed by Abakumov and collabo-
rators [14, 15] is particularly useful for our purposes. He revisits the formulations of
Lax, but notes that at large temperatures (kT � mv2

s), cascade capture need not be
dominated by single phonons of energy ≈ kT . Abakumov uses similar underpinnings
as Lax, but reformulates a cross section for high temperatures without a sticking
probability. He adopts a method based on what he calls “the method of Pitaevskii
[101],” which amounts to a kinematic “Fokker-Planck,” or what we call a “Boltzmann
Transport,” based formulation.

Here, we give a brief overview of Abakumov’s method for this limit kT � mv2
s .

This is method is developed in references [14, 15]. In summary, Abakumov solves
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Figure 5.6: This compares successive approaches to carrier capture. Thomson, in
considering capture in gases, uses an argument of thermal/kinetic energy balancing
capture by an attractive potential, as in equation 5.15. Lax considers consecutive
collisions as a cascade capture process, requiring a “sticking probability” to depict the
probability of re-emitting a carrier before final capture (as also detailed in figure 5.5).
Abakumov treats the capture problem in separate limits. In the limit kT � mv2

s ,
Abakumov uses a “Boltzmann Transport” approach, solving for cascade capture by
way of a “collision integral” and a self-consistent carrier distribution function. For
Abakumov’s limit kT � mv2

s , the appropriate integral represents capture limited by
only one phonon emission event while in proximity to a capture site. Abakumov’s
capture rates are integrations performed over possible initial and final-state energies,
as well as real-space volume. This figure is reproduced and extended from reference
[14].

the Boltzmann Transport equation for the particular case of a free carrier within the
potential of a local impurity. This is depicted in figure 5.6.

∂f

∂t
+ v · ∇rf − e

∂U

∂r
· ∇pf =

(
∂f

∂t

)
coll

(5.20)

Above, U is the local impurity potential, f is the carrier distribution function,
(
∂f
∂t

)
coll

is the “collision integral,” and the partial derivatives of the left-hand side represent
the time-derivative of the distribution function, as well as the “flow” of the dis-
tribution function through real and momentum phase spaces [14, 15, 45, 102]. To
conserve energy, he multiplies applies a delta function to both sides of the equation,
δ (E − Ek − U(r)), where E is the total carrier energy and Ek its kinetic energy.
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He then integrates over all real-space (d3r) and momentum-space (d3p) to find the
relation

R (E)
∂f

∂t
= −∂C

∂t
(5.21)

where R(E) is the “density of states in total energy space,”

R (E) =

∫
ρ (Ek) δ (E − Ek − U(r))dEkd

3r (5.22)

and ρ(Ek) is the density of states in (kinetic) energy space. C is “the flux of parti-
cles reaching a single isolated center under steady-state conditions,” amounting to a
capture rate per density. This capture rate per density is further found to be

C = B (E)

[
f (E) + kT

df (E)

dE

]
(5.23)

where B(E) is a quantity known as “the coefficient of dynamic friction,” and is an
integral over energy and real-space of the energy loss rate of the carrier.

B (E) =

∫
Ek
τEk

ρ (Ek) δ (E − Ek − U(r))dEkd
3r (5.24)

The τEk is an energy relaxation time based on scattering rate.
The boundary condition for the distribution function f(E) is given as

f (−E1) = 0, −E1 � kT (5.25)

where E1 is the ground state of the potential. Abakumov further assumes that the
distribution function is in equilibrium for energies free of the potential, E > 0.

f (E) = Ae−E/kT , A =
1

2

(
2π~2

mkT

)
, E > 0 (5.26)

This is enough information to express a solution for the non-equilibrium distribu-
tion function within the potential.

f (E) =
C

kT
exp

(
− E

kT

) 0∫
−E1

exp (E ′/kT )

B (E ′)
dE ′ (5.27)

We also know the capture rate per density is related to random velocity and the
cross section.

C = σ 〈vtot〉 (5.28)

Abakumov also assumes a Boltzmann Transport derivation of the random velocity to
be the following.

〈vtot〉 =

√
8kT

πm
(5.29)
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The velocity of equation 5.29 is about 8% less than the equipartition assumption of√
3kT/m.
Finally, the capture cross section in this kT � mv2

s limit can be equated as

σHi-T =
π2~3

2kTm

 0∫
−E1

exp (E ′/kT )

B (E ′)
dE ′

−1

(5.30)

This expression is general for any type of impurity potential, which appears in the
expression for B(E ′) in equation 5.24.

Abakumov formulation, for kT � mv2
s

At extremely low temperatures, Abakumov reformulates capture based on the
rate of a single emitted phonon to de-excite the passing carrier into a bound state
[14, 15]. In this low-temperature limit, both the need for a “sticking probability”
as by Lax and the self-consistency needed for the Boltzmann Transport formulation
of the previous section are bypassed. There are no ambient phonons for absorption,
and so the rate per density integral becomes an evaluation of positive initial energy
carriers de-exciting into a final energy state which is negative. This integral again
requires an integral over initial and final carrier energies, as well as over the real-space
volume of the impurity.

Abakumov uses the following terminology. We can identify his equation 4.1 of [15]
with the numerator of equation 5.28.

σLo-T =
C

〈vtot〉
=

1

〈vtot〉

∫
d3r

∫
dEk

∫
dE ′k F(Ek, r) ρ(Ek) w (Ek, E

′
k) (5.31)

Here, we have maintained our own conventions for energy quantities as per chapter
A. However, F(Ek, r) is an energy and position-dependent distribution function for
incident carriers. Also, ρ(Ek) is the density of states, referenced from the bottom of
the capture potential, U(r). Since the density of states weighs the low-energy side
of the total carrier distribution, we can think of this treatment with similarities to
the non-ballisitic limit depicted in figure A.4. Shortly, we will examine the particular
coupling rate used here, w(Ek, E

′
k).

The idea behind equation 5.31 is what Abakumov thinks of as a carrier flux
per center. It represents the flux of incident carriers of initial kinetic energy Ek,
representing positive total energy, which couple within the real-space integral to final
kinetic energies E ′k which are bound (representing negative total energy). The rate
w(Ek, E

′
k) determines the coupling of carriers of initial kinetic energy Ek to possible

final states of E ′k.
We will now introduce the relevant quantities and integral limits for this formu-

lation.
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Carrier distribution, density of states, and coupling rate for Abakumov’s
kT � mv2

s limit Here, we point out the relevant forms for the quantities in the
integrand of equation 5.31. We can group the density of states and distribution
function into the “displaced Maxwellian” joint distribution we discuss elsewhere, as
in Appendix C. Ignoring the “drift energy” term, we recover the standard Maxwell-
Boltzmann distribution follows.

F (Ek, r) ρ(Ek) =
2

√
π (kT )3/2

√
Ek exp

[
−(Ek + U(r))

kT

]
(5.32)

Take note that we have introduced the exponential term as referred to the total energy,
E = Ek + U(r).

The coupling rate, w(Ek, E
′
k), while seemingly straightforward can actually be a

source of frustration. This is not the integrated rate, but a partial rate based on an
integrated energy relaxation time.

Define a power loss by phonon emission, as

P =
dE

dt
=

∫
(~vsq)

(
∂Γ(q)

∂q

)
dq (5.33)

where ∂Γ(q)
∂q

is the acoustic emission probability before integrating with q, as can be

found in our previous chapter or as in Lundstrom equation 2.81 [45].
Abakumov’s equation D.12 [15] is

−dE
dt

=

∫
w (Ek, E

′
k)(Ek − E ′k)dEk (5.34)

By identifying the integrands of 5.34 and 5.33, we find the necessary connection al-
lowing us to coincide Abakumov’s rate with our scattering rate formalism of equation
2.90.

w (Ek, E
′
k) =

(Ek − E ′k)
2

8
√

2l0
√
Ekm5/2v4

s

(5.35)

Here, l0 is defined in equation 5.10. We now have the constituent parts to repeat
Abakumov’s calculation of equation 5.31.

5.3.5 Concluding cascade capture

In this section, we have introduced the concept of phonon cascade as a capture
mechanism to relax free carriers. We reviewed the insights made by Thomson, Lax,
and others. Of most importance, we have investigated the generally applicable ex-
pressions for Abakumov’s cross sections in two important temperature limits.
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5.4 Possible attractive potentials related to cas-

cade capture

In the last section, we developed a formalism for capture cross sections which
requires knowledge of the attractive interaction between impurity and carrier. In this
section, we introduce the possible impurity potentials which may contribute to the
cascade capture process.

Mapped as a one-body attractive potential, the general form goes as

U(r) =

{
−Ar−n for r ≥ rmin
−A0 for r < rmin

(5.36)

Here, rmin is a minimum radius, for which the potential has “bottomed out” to the
assumed ground state energy, −A0. This is a common, semiclassical approximation
for attractive potentials, which accounts for core effects [102].

As an example, a shallow, Coulomb center would have A = Ze2/(4πεε0), n = 1,

rmin = aB = ~2(4πεε0)
Ze2m

≈ 7 nm (the effective Bohr radius ), and A0 = Ze2

(4πεε0)aB
.

We consider that these local trap potentials are present in an applied electric field.
At low temperatures, the effect of barrier lowering due to an applied electric field is
an important concern. To approximate the impact of the electric field, we “lower”
the barrier by a constant factor. We find the correction as follows.

We know that the externally applied electric field contributes to the potential
energy in the following way,

Utot(r) = U(r)− eFz (5.37)

where z is the z-coordinate, symmetric about the trap potential. The electric field is
F along the z-axis, and the carrier charge e. We find where the derivative is lowest
along r, hence along z, and find where the derivative is zero. This gives the maximum
barrier height where the potential has been lowered, as in figure 5.7.

∂rUtot(r) = 0 = Anr−n−1 − eF (5.38)

We find the “barrier” radius, rb, for which this occurs,

rb =

(
eF

An

) −1
1+n

(5.39)

and subsequently find the value of the local potential at this distance.

U(rb) = −A(n+ 1)

[(
eF

An

) −1
1+n

]−n
(5.40)
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Figure 5.7: This figure demonstrates a (Coulomb) potential subject to an applied
field. Here, the total potential Utot(r) = U(r)− eFz is plotted as a function of radial
coordinate, taken here along the field’s z-axis. This figure shows the truncation of the
potential at the ground state, which is assumed to be flat with or without an applied
field. Note how the applied field lowers the local barrier. This is described by the
barrier lowering parameter δU0, occurring at barrier radius, rb.

So what this leads to is a correction to the local potential. We account for the
effects of the external electric field by a correction factor to the local potential. Note,
that we define this correction to the potential as a positive term.

δU0 = −U(rb) = A(n+ 1)

[(
eF

An

) −1
1+n

]−n
(5.41)

We see that we can now express the classically bound states within the potential
as contained up to an energy of ≈ |U(r)| − δU0. As an external field is increasingly
applied, the radius at which these potentials “tip over” in the external field depends
upon the spatial dependence of the potential.

5.4.1 Charged capture: Coulomb potential

Charged impurities exhibit a standard Coulomb potential. This is well understood
as a standard 1/r potential,
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U(r) = − Ze2

(4πεε0)r
(5.42)

We follow our prescription for truncating the potential at the ground state, which
will correspond to some minimum rmin, depending on the type of impurity.

Our definition of the barrier lowering becomes the following.

δU0 = 2

√
Ze3F

4πεε0

(5.43)

5.4.2 Neutral capture: the polarization potential

Now we describe the potential appropriate for neutral capture into “standard”
(D+/A−) hydrogenic charge states. This process occurs “across the band gap,” as
opposed to the neutral capture process which forms anion (D−/A+) states.

The polarization potential may be less familiar to the reader, so we take more
care to explain its origin.

Neutral centers may polarize

To be glib, neutral centers are pith balls. Consider a neutral, hydrogenic impurity
in T = 0 germanium. For example, consider an acceptor. At the central core, an
electron is localized by a strong chemical valence bond. A positive charged hole
orbits this central core at a Bohr radius scaled for the hole’s effective mass and for
the germanium dielectric constant.

Now consider an applied electric field. The effect on the energy states due the
electric field is known as the Stark effect, and the perturbation Hamiltonian is

H ′ = −eF · r (5.44)

The occupied atomic eigenstates have definite parity, and the first order pertur-
bation term vanishes due to inversion symmetry. The next, second-order term is the
quadratic Stark effect. It represents the induced dipole moment produced by an ex-
ternal field. Being quadratic, an electric field force eF produces an energy shift of
eF 2. While this resultant energy shift can be determined quantum mechanically, we
choose follow Lax [96] by adopting the simple, classical treatment which also happens
to match the accepted result.

The induced polarization potential

Consider our neutral impurity acceptor as a simple, classical atom. This treatment
follows [103]. The “orbiting” hole is represented by a uniform charge density, which
integrated totals one electron charge (+e). This charge density occupies a spherical



162

volume of Bohr radius aH . At some far distance, r, a passing electron introduces an
electric field (F ) into the atomic region. In this external electric field, the nucleus
and hole are respectively repelled and attracted to the far off electron. Consequently,
a displacement distance, d, is induced between the nucleus and the centroid of the
spherical hole density.

Knowing that the total charge for one hole is, of course, +e, a simple treatment
of Gauss’ Law within a spherical and uniform charge density goes as

F (4πd2) =
qenc
εε0

=
(+e)

εε0

d3

a3
B

(5.45)

We find an equilibrium between the externally applied field to this self-induced
displacement field.

Fext = F =
(+e)

4πεε0

d

a3
B

(5.46)

As seen by the electron, an axially aligned dipole is induced.

℘ = ed = (4πεε0) a3
BF (5.47)

The relationship between the dipole moment and the electric field is linear, so it lends
itself to depiction by an atomic polarizability, α.

℘ = αF (5.48)

α = (4πεε0) a3
B (5.49)

The electric field of a dipole is

Fdip =
1

4πεε0

(
3(℘℘℘ · r̂̂r̂r)r̂̂r̂r − ℘

r3

)
(5.50)

The dynamical, induced dipole described here is always aligned to be r̂̂r̂r = ℘̂̂℘̂℘. After
substituting a point-charge electric field for the induced dipole expression, we find
the attractive potential for this interaction to be

U(r) = − e2α

2 (4πεε0)2 r4
(5.51)

So for our model potentials of equation 5.36, we can say for the case of neutral
centers that

A = e2α
2(4πεε0)2

n = 4
(5.52)
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In our simple expressions, the difference in effective masses between electrons and
holes, orbiting in their neutral atomic states, are assumed to be the only difference
in atomic polarizability between donors and acceptors. Polarizabilities are scaled by
the Bohr radius dependence, a3

B, appropriate for orbiting electrons or for holes. By
this argument, the polarizability between acceptors (capturing electrons) and donors
(capturing holes) has the following relation.

αA
αD

=
m3
e

m3
h

≈ 0.187 (5.53)

Barrier radius and barrier lowering for neutral traps

Following our prescription for a barrier radius of equation 5.39, we find the polar-
ization potential gives

rb = 21/5

(
F (4πεε0)2

eα

)−1/5

(5.54)

Note this field dependence of F−1/5 is considerably weaker than for a dipole. So
this barrier radius, which is responsible for defining the cross section, changes very
weakly as a function of electric field compared to the F−1/2 dependence found in the
Coulomb trapping critical radius. We should therefore expect the field dependence for
neutral capture to be much weaker than for charged capture, because the polarization
potential is harder than the Coulomb potential to “tip over” by application of external
field.

For the corresponding barrier lowering, equation 5.40 gives the polarization po-
tential barrier lowering as

δU0 =
5

29/5

(e2α)
1/5

(eF )4/5

(4πεε0)2/5
(5.55)

The polarization potential depicts the self -polarization of a neutral site due to the
induction of a dipole moment. We may also consider the case where a dipole moment
remains static.
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Figure 5.8: A passing electron induces an axially aligned dipole moment at a neutral
acceptor. The polarizability of the atom is due to the displacement between the
acceptor’s nucleus and its (assumed) uniform hole density. The resulting polarization
potential experienced by the passing electron can be mapped as a one-body potential,
going as 1/r4.
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5.4.3 The static dipole potential

The case may arise where charged sites occur in some proximity to each other. We
operate our CDMS detectors well below freeze-out. If carrier capture is correlated
during freeze-out, it may lead to the production of charged sites acting as static
dipoles [15, 104], or even complexes of higher moments.

We can write the dipole potential as

U(r) = −e
2d cos θd
4πεε0r2

(5.56)

where d is the dipole moment, and θd is the angle relative to the dipole vector. So we
have an angular dependence in this potential.

As the dipole angle is constant, we follow our prescription for the barrier radius
and barrier lowering.

rb = 21/3

(
ed

F

cos θd
4πεε0

)1/3

(5.57)

δU0 =
3

22/3

(
e2d cos θd

4πεε0

)1/3

(eF )2/3 (5.58)

The dipole moment’s angular dependence adds a complication with which to work.
Within our volumetric integral method, we established a framework using cylindrical
coordinates to calculate a spherically symmetric potential under the influence of a
z-aligned electric field. While the complication of finding the allowed boundary by
energy/momentum conservation already made this a numerical calculation, we didn’t
provide for a non-spherical local potential. We make a naive attempt at the dipole
cross section by simply taking an expectation value over dipole angle.

When the cosθd term is negative, the potential is positive and repelling. We do
not consider that a carrier may recombine to a repulsive potential, so we limit our
scope to the range

(
0 ≤ θd ≤ π

2

)
.

5.5 An introduction of the impurities/defects con-

sidered

In this section, we list the variety of impurities or defects that we will consider. The
general character of the situation is characterized by the impurity potential profiles
of figure 5.9.

We will first introduce the class of impurity, then itemize and label the possible
processes under consideration.
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Figure 5.9: This depicts the energetic placement of impurity potentials relative to the
band gap, although not to scale. The following benchmark cases to be considered are:
a. charged shallow donor, b. neutral anion donor state, c. charged shallow acceptor,
d. neutral anion acceptor state, e. neutral deep center, f. neutral shallow acceptor,
g. neutral shallow donor. Not shown are the cases of charged deep centers, anion
“over-charged” (D−/A+) states, or static dipoles.

5.5.1 Shallow / hydrogenic states

Standard shallow, hydrogenic impurities have usually been our first candidates
considered regarding issues with impurities. We have come to adopt the term “trap”
for these states, although at milli-Kelvin working temperatures these states serve as
recombination centers and not temporary traps.

Donors behave well to a simple Bohr model. Due to the warped nature of the
valence band, acceptors are more complicated [61]. Density functional theory was
used to explain the ground state energy for shallow acceptors, and this matches well
to experimental data [61]. We use an experimental value for gallium as our effective
Rydberg level for shallow acceptors, as per [61]. As the acceptor’s radius determined
by this effective Rydberg does not correspond so well to a simple Bohr radius, we
furthermore adopt an experimental radius determined for gallium in germanium [105].

5.5.2 Deep centers

Deep levels may occur deep in the band gap. Deep levels are not hydrogenic in
nature. They may be caused by severe defects at the level of the lattice spacing, and
represent strong departures from a near-continuum, semiclassical understanding. For
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our best estimate, we specify a benchmark case.
We will consider that a deep level is associated a disturbance the size of a lattice

spacing, rather than a hydrogenic Bohr radius. This means that our benchmark
model will have considerably smaller polarizability (∝ a3

0) and therefore a smaller
neutral capture cross sections. We place the deep level bound state directly mid-
gap (although this may vary). We do not calculate impact ionization cross sections
for deep centers. We assume a polarizability, based on the lattice spacing radius.
However, deep traps are known to be narrow in their spatial extent. They may also
be approximated by a delta function [47].

5.5.3 Anions / “H−” / “over-charged” states

As already mentioned at the beginning of this chapter, it is possible for an already
neutral shallow donor to bind an additional electron forming a D− state. A hole can
bind to a neutral acceptor, it can produce a A+ state.

We have now reviewed the major impurity types, for completeness.

5.6 Extending Abakumov’s equilibrium, low-T limit

( kT � mv2
s ) for the Coulomb cross section

The charged/Coulomb cross section tends to be large. Furthermore, the 1/r
Coulomb potential also has a large field dependence in the capture rate versus the
r−4 dependence of the polarization potential. We also expect shallow impurity con-
centrations to be low (certainly < 1012 cm−3). If we consider static dipoles between
opposite-sign impurities, we can assume their dipole moment distance goes as (N)−1/3.
This is a long dipole moment, so dipoles for these low concentrations act essentially
as well-isolated single-point charges.

The the large cross section and field dependence of the Coulomb cross section is
consistent with the observed power law behavior at lowest fields in figures 5.2 and
5.3.

Therefore, we treat the low-field capture in CDMS as dominated by charged /
Coulomb capture. We proceed by finding an appropriate equilibrium expression for
charged capture based on Abakumov’s formalism. In section that follows, we will use
this result within Abakumov’s hot-carrier correction, extending this treatment to the
non-equilibrium Coulomb capture of carriers under drift.

5.6.1 Abakumov’s thermal equilibrium capture rate for TL ≈
40 mK

We reconstruct Abakumov’s cross section appropriate for low temperatures. We
do this in order to make a better evaluation of the Coulomb cross section appropriate
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for T = 40 mK, which is not particularly in the limit kT � mv2
s .

Using the Coulomb potential with no applied field, we evaluate the capture integral
of equation 5.31. We recover the following.

σ = 8
45

π
l0

(
Ze2

(4πεε0)kTC

)(
Ze2

(4πεε0)mv2
s

)2

+

4π
15l0

(
Ze2

(4πεε0)mv2
s

)3

+ 8π
15l0

(
kTC
mv2

s

)(
Ze2

(4πεε0)mv2
s

)3 (5.59)

Note that we set T = TC to specifically indicate a carrier temperature. So we have
three terms. These are proportionate to:

1. 1/TC ,

2. constant

3. TC

To note, Abakumov finds a Coulomb capture expression appropriate for kT �
mv2

s .

σ =
8

45

π

l0

(
Ze2

(4πεε0) kT

)(
Ze2

(4πεε0)mv2
s

)2

(Low-T limit) (5.60)

It is important to point out that T in this case is only the carrier temperature.
The lattice temperature is effectively zero here, since a sticking probability was not
used. Treating lattice temperature as zero here is permissible as most of the capture
turns out to occur near the center of the trap. Near the center of the trap, the
sticking probability has less impact relative to the additional capture states. Should
we reintroduce lattice temperature, it helps to define it as T = TL to avoid confusion
with an effective carrier temperature.

In the limit of TC approaching zero, eventually only the 1/TC term will domi-
nate. In this case, our three-term expression of equation 5.59, recovers Abakumov’s
expression of equation 5.60. However, at a carrier temperature kTC ≈ mv2

s , all three
terms in equation 5.59 are approximately equal to each other, as Abakumov must
have realized. With our benchmark TL = 40 mK, we see that the lattice temperature
is not all that far below mv2

s/k. Therefore, we keep our formula of equation 5.59 for
use in the non-equilibrium expressions we will now show.

5.6.2 Exploring Abakumov’s Coulomb capture cross section:
non-equilibrium for an applied field

For the case of cascade capture under spontaneous emission, we recovered Abaku-
mov’s approximation for temperatures below mv2

s . The quantity kT = mv2
s , using the
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density-of-states mass in germanium, gives a temperature equivalent to T = 221 mK
for electrons, and T = 353 mK for holes. At an applied field of just 10 mV/cm,
Monte Carlo simulation shows electrons are already hot relative to the lattice at
TC = 908 mK, and holes TC = 2.76 K. So, we are not in Abakumov’s low-
temperature limit.

Fortunately, Abakumov suggests a form for a carrier capture rate under applied
field [14]. For capture by acoustic phonon emission, Abakumov finds the following
for a rate per density.

C1 = Ceq

(
TL
TC

)3/2(
1 + 0.98

δU0

kTL

)−1

(5.61)

Here, TL is the lattice temperature, TC the effective carrier temperature, δU0 is the
Coulomb barrier lowering equivalent to equation A.4, and Ceq is the carrier capture
rate per trap density when in thermal equilibrium with the lattice. We will use

Ceq =

(√
8kTL
πm

)−1

σeq (5.62)

where we adopt cross section σeq to be the equilibrium cross section of equation 5.59.
We interpret Abakumov’s summary of equation 5.61. An evaluation of of the

Maxwell-Boltzmann distribution near zero results in a temperature dependence that
goes as ∝ (kTC)−3/2. Since capture is dominated by low-energy carriers within a few
factors of mv2

s , we therefore should expect the capture rate to also fall off by the same
factor of (kTC)−3/2. The factor containing δU0 accounts for the bound states near the
continuum which can now leak off newly “captured” carriers due to the presence of
the lowered barrier.

We define Abakumov’s field-dependent cross section in the typical way; by dividing
rate per density by total velocity. Considering equations 5.29, 5.59, 5.61, and 5.62,
we find

σ1 =

(√
8kTC
πm

)−1

C1 (“Abakumov field-dependent”) (5.63)

We have finally arrived at the needed, non-equilibrium cross section, which we can
use for a lattice temperature kTL < mv2

s with carrier temperatures kTC > mv2
s .
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5.7 Returning to CDMS capture data: interpret-

ing the results

We see, particularly in the Phipps 2011 data set, that we have distinctly different
modes of capture. Coulomb capture at these lower fields is determined primarily
by the carrier temperature dependence of T

−3/2
C . From our appendix B, we can

determine in a simple analytical model that carrier temperature (which is related to
mean energy) should have a roughly ∝ F 4/5 dependence on field while transport is
dominated by spontaneous emission of acoustic phonons. Note the total and drift
velocity dependence of the capture length in equation 5.6. So by including also a
F 1/5 dependence for drift velocity, also from appendix B, Coulomb capture should
have a field dependence of

1/λ ∝ F−7/5

σ ∝ F−8/5 (for Coulomb capture)
C ∝ F−6/5

(5.64)

The neutral capture rate to form anion states is energy independent. Therefore,
the rate is also energy and field independent. The cross section then only depends
on a denominator proportionate to the total velocity ∝ T

1/2
C . Therefore, we have the

following field dependence.

1/λ ∝ F−1/5

σ ∝ F−2/5 (neutral capture into D−/A+ states)
C ∝ F 0

(5.65)

So we can see from the field dependence why Coulomb capture dominates at low
fields. This happens to be how detectors neutralize when they are grounded. When
the Coulomb capture cross section is much larger than the neutral capture cross
section, it is proportionately easier for carriers “to find” the charged centers and
neutralize them. Therefore, there will be less charged centers in the grounded steady
state.
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Figure 5.10: Comparison with carrier recombination data in CDMS detectors, from
the “Shutt 1993” data set. Theory is for 2-species recombination between Coulomb
trapping and neutral capture into anion (D−/A+) states. a. The inverse capture
length for electrons with field. b. for holes – no neutral capture was resolvable in this
case.
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Figure 5.11: Comparison with carrier recombination data in CDMS detectors, from
the “Phipps 2011” data set. Theory is for 2-species recombination between Coulomb
trapping and neutral capture into anion (D−/A+) states. a. The inverse capture
length for electrons with field. b. for holes. Note how there is a clear transition in
the data for holes in this case.
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From inspecting these data sets, we can learn a great deal. Note how there are
“cross-over” points, where Coulomb-dominated capture at low fields gives way to
neutral capture at higher fields. For the Shutt 1993 data, electrons have a cross-
over point at 0.56 V/cm. Electrons in the Phipps data have a cross-over point at
0.38 V/cm. Holes in the Phipps data cross over at 0.064 V/cm. The fact that holes
are much hotter than electrons for a given field is consistent with the substantially
lower cross-over field for holes. This means that a field bias in between the cross-over
point for electrons and for holes will be dominated by capture to acceptors for both
species. Our typical CDMS bias of F = 1 V/cm lies above cross-over fields for both
electrons and holes. This means that the detector must accrue more charged centers
with time as recombination is dominated by neutral capture for both carrier species.

What is also reassuring is that the density of charged centers in the “Phipps
2011” data set is just about the same for both species. This coincides with the fact
that charged centers must be net neutral to a high degree, as an imbalance of only
≈ 108 cm−3 electron charges is enough to form serious internal fields that would affect
∼ V/cm biasing.

Consider the charged impurity ratio of equation 5.13. In the Phipps 2011 data
set, we can find an average of N−D and N+

A as 2.04 × 1010 cm−3. Comparing this to

the quantity
√
NAND =

√
(N0

A +N+
A )(N0

D +N−D ), we find that

N−D√
NAND

≈ N+
A√

NAND

= 0.09 (5.66)

This expression represents the approximate steady-state ratios of charged impu-
rities. Provided that a uniform “neutralization” process is adequately used when
grounded, the actual neutralization mechanism should not affect this steady-state
value, at least to first order. Interesting future experiments regarding neutralization
may be had in applying a small nulling field when neutralizing crystals.

As per simple field dependence models, the prefactor

√(
CnA0CpD0

CnA+CpD−

)
of equation

5.13 scales as F 6/5 – nearly linearly. To find the fraction of charged centers found
in 5.66, our simulated rates would require a field of 104 mV/cm. While this may
be a slightly high value for an assumed built-in field, we should note it is true that
we readily find built-in fields in our grounded detectors of several 10’s of mV/cm.
The built-in field when grounded is an indicator of the number of charged, balanced
centers in the bulk in the steady state. Yet for equation 5.66 to be valid, net neutrality
must approximately hold true. This assumes the built-in steady state field which has
developed in a detector is not too big, such that it is due to only a slight imbalance in
charged densities. For greater precision, one can revisit the more complicated cases
of rate balance as presented in appendix D.

So we have found a simple, 2-term model that describes the recombination we
have measured in our detectors. When detectors are biased, it is now understandable
why they must ionize, by a simple imbalance of capture rates. A complication under
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bias is that free carriers drift apart from each other, and equation 5.13 is too ideal.
What is required is a self-consistent solution to Poisson’s equation and the continuity
equations for electrons, holes, and all species of dominant recombination centers.
Examples of the continuity equations (or “drift-diffusion” equations) can be found in
the appendices.

Figure 5.12: With our extracted Monte Carlo output for mean temperatures and
velocities, two formulae from [15] give decent fits to data as in figures 5.10 and 5.11.
This is consistent with a 2-carrier, 2-impurity model involving D−/A+ states.

We also note that impact ionization processes, introduced in the next chapter,
should still have consideration. The probability to impact “neutralize” an anion
state is an unusual circumstance and should be recognized. While we do not see
evidence of these rates implicit in our capture length measurements, they may play
a role in other phenomenology.
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5.8 Concluding remarks

In this chapter, we have introduced CDMS detector data regarding the capture
of carriers as a function of applied field. Viewed as processes following power laws,
it appears that this capture data contains (at least) two capture processes. Based on
the foundations of transport mechanisms described in previous chapters, we are now
in a position to make some quantitative predictions about these capture processes.

The process which dominates electron and hole capture at higher measured fields
appears to have an energy independent capture rate. We claim this as only the drift
velocity appears to be contributing significantly to the field dependence of the inverse
capture length. A strong candidate for this capture mechanism would be the presence
of D− and A+ states. Capture into these states represents a large capture rate,
considering that the resulting charged states are stable at our operating temperature.
Variations of similar states may also be candidates (such as resonant states), but the
mechanism of capture directly to the ground state makes a likely capture process.

All other known, nonradiative capture processes are grouped as cascade capture
processes. In considering the capture mechanism which appears in our data at low
fields, the pronounced field dependence and large cross section suggests the Coulomb
capture as a candidate. So in this chapter, we visited the foundations of cascade
capture theory, focusing primarily on contributions by Lax and Abakumov. We de-
termined an equilibrium Coulomb capture cross section based on Abakumov’s capture
integral for single-quantum capture. We then applied his correction for hot-carrier
effects in an applied field. These predicted capture rates are then consistent with
both our capture data and the impurity concentrations of the crystals.

We propose an interpretation for our measured capture phenomena, using a sim-
plified 2-carrier, 2-impurity model. From this model, it makes sense how detectors
neutralize. When applied fields are low enough to substantially favor Coulomb cap-
ture, the population of charged sites will be suppressed. Balancing competing capture
rates, as explained in appendix D, gives us an idea what charged densities should be
in the steady state.

One outstanding question is a consideration of impact ionization. The impact
ionization of neutral states – and moreover the somewhat unique situation of “impact
neutralization” of anion states – is a big question. For typical D− and A+ states,
the energy (field) threshold to impact ”neutralize” should be quite low. Yet, we did
not need to include this mechanism to interpret capture data. This suggests future
capture measurements should be performed at higher drift fields.

In the next chapter, we will examine generation (e.g., ionization) processes. Gen-
eration processes include the impaction ionization of localized states (or even “impact
neutralization” for anions). We will compare those predicted cross sections with the
capture cross sections substantiated in this chapter.
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Chapter 6

Generation Processes: Impact
Ionization and Autoionization of
Localized States

This chapter is concerned with possible generation (or “ionization”) mechanisms in
our CDMS detectors. Generation processes are those which generate carriers within
the crystal. This may be due to either processes of existing populations of free
carriers and localized sites (impact ionization), or processes involving only localized
sites (auto-ionization / field emission).

Considering that the measured data presented in the last chapter seems to favor
capture processes, it is an outstanding question to what extent we (should) measure
generation processes. If neutral capture is dominated by anion states as we suggest,
then the small binding energy of the “over-charged” bound carriers should be subject
to future collisions and ionization of this state. Furthermore, we also find that the
standard hydrogenic impurity (Rydberg) level should also be subject to a substantial
level of impact ionization at only several V/cm.

In this chapter, we do not consider photo generation processes, contact/surface
injection processes, or other radiation-based generation processes. We also do not
consider impact ionization of carriers across the band gap.

6.1 Impact ionization of a localized state

The impact ionization of localized states is the process where a free carrier may
collide with a neutral impurity state, imparting enough energy such that it may ionize
a bound electron or hole. This is a generation process that could lead to avalanche.
Note that this is different from the impact ionization of carriers across the band gap
usually considered for fully depleted devices e.g., in detectors operating at T = 77K.
We depict in this chapter its energy dependence.
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Considering bound carriers in localized ground states, it should be noted that
wavevector k is not a valid quantum number in bound-state Hamiltonians. While
there is angular momentum, translational momentum does not enter. Therefore, when
solving for the kinematics of this process, we do not consider momentum conservation
[94]. As an aside, if we were instead to consider impact ionization of carriers across
the band gap, those carriers lie in the continuum states and we would need to impose
momentum conservation [94].

The ionization kinematics of this process are discussed at length in Landsberg [94].
However, a piece-wise simplification to these kinematics was proposed by Palmier
[106], as reported in reference [107]. Palmier’s result produces a fine approximation
to Landsberg’s work [94].

The expression of Palmier [106] is as follows.

σ(E) =


0 for E < εi

σ0

(
E−εi
εi

)
for εi ≤ E < 2εi

2σ0

(
εi
E

)
for E ≥ 2εi

(6.1)

Here, the threshold energy εi is the ground state energy of the localized state. Further-
more, σ0 is the area of the localized ground state. The Bohr area is used for standard
hydrogenic impurities. For anions, an effective area was determined by a wavefunc-
tion expectation integral. We use the wavefunction of Demkov, as in equation 5.7.
We therefore adopt the area to be the following, noting it is simply proportional to
1/κ2.

σ0 =
π

2

(
~2

2mcεanion

)
(6.2)

We now give a physical interpretation for this formula. We understand that an
incident carrier must have an energy of at least the threshold energy to be able to
ionize the carrier bound to the localized state. At threshold, the incident carrier can
only barely ionize the bound carrier, and this probability is essentially still zero. As
a function of increasing incident energy, more and more final states for this process
are available, so impact ionization can occur more readily. At maximum ionization
probability, which is at twice the threshold energy, the cross section for this interaction
is the full area subtended by the ground state of the bound carrier (the Bohr area, for
instance). As incident energy continues to increase much above twice the threshold
energy, the incoming particle is becoming faster and spends less time in proximity
with the bound state to ionize it with the same probability. So for the highest energy
range, the cross section falls off by 1/E. This behavior is the same as in the Bethe-
Bloch formula for particle stopping powers in nuclear physics [108].

We should be careful to consider the effect of barrier lowering by the external field.
We make adjustments to the impact ionization potential by adjusting the required
ionization energy, as the following.
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εi(F ) = εi(0)− δU(F ) (6.3)

The δU is the barrier lowering, appropriate for the attractive potential that is local-
izing the bound carrier. For standard hydrogenic impurities, the Coulomb potential
binds the localized carrier. For D−/A+ states which we will soon discuss, we con-
sider the polarization potential keeps the extra charge bound (we exclude many-body
effects).

The impact ionization cross sections of “standard” hydrogenic impurities is con-
sidered, as is the somewhat unusual condition of impact ionizing a stable, bound
anion (D−/A+) state. The effective radius of the anion state is assumed to be the
inverse wavevector associated with the binding energy.

6.1.1 Comparing results between capture and impact ioniza-
tion

Now, we present the capture cross sections introduced in the last chapter, along
with the impact ionization cross sections predicted by the theory in this section.
Note that the hole drift velocities used in plot 6.2, unlike in chapter 5, are now
taken directly from transport Monte Carlo output. Recall that the Monte Carlo
simulation for transport had included the theoretical optical phonon effects which
were not observed in the drift velocity data of chapter 4.

Nonetheless, one can still consider these predictions for holes at lowest fields (below
the theoretical optical emission threshold for holes at ≈ 2.5 V/cm). This still does
not explain why we should not observe more impact ionization in our hole data if the
theory of this section is correct. It is possible that the 2-carrier, 2-impurity model
of chapter 5 may simply be too simple to describe all the physics at hand, but these
impact ionization processes require further study in any case.

These predictions suggest future measurements should be performed at higher
electric fields. It is possible that deeper states are at work, which do not allow for
impact ionization at lower carrier energies (fields). Another parsimonious hypothesis
could be that simply that the Bohr area and/or the anion area mentioned above may
not represent the best area estimates for impact ionization processes.



179

Figure 6.1: ELECTRONS: Predicted impact ionization cross sections for standard
hydrogenic states and anions, along with the two capture processes depicting the
capture data presented in the last chapter.
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Figure 6.2: HOLES: Predicted impact ionization cross sections for standard hydro-
genic states and anions, along with the two capture processes depicting the capture
data presented in the last chapter. Note that hole drift velocities used in this plot,
unlike in chapter 5, are now taken directly from Monte Carlo output and include
theoretical optical phonon effects not observed in the drift velocity data of chapter 4.
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6.2 Autoionization

We calculate escape rates for autoionization processes. This is where impurities
may ionize due to only the presence of an external electric field. We calculate these
rates for both hydrogenic donors and acceptors, as well as for assumed values of
“anion” or “overcharged” donors (D−) and acceptors (A+) (assuming they exist).
We construct the needed tunneling integral using the WKB approximation in 3D.
We then show numerical results. Due to their small binding energy, anion states
predictably ionize at modest fields of perhaps 15− 30 V/cm.

The term “autoionization” is common in terminology regarding the physics of
ionized gasses. In the terminology of solid-state physics, the term “field emission” is
also used. The principle behind autoionization is that a neutral impurity can become
ionized in an external electric field [61, 94]. The orbiting carrier is freed from the
impurity due to the reduction of the local potential energy barrier. The charged
impurity core is left behind, which contributes to space charge.

6.3 Overview of autoionization processes

While a charge carrier could escape an impurity classically, by overcoming the
top of the potential barrier, this process must be assisted by thermal fluctuations.
Consequently, this “thermionic” escape mechanism [109] is exceedingly small at low
temperatures. Instead, the predominant autoionization mechanism is quantum me-
chanical tunneling [94]. The possibility for tunneling arises due to the tilted energy
bands representing the external electric field. The escaping electron or hole is able to
tunnel through the potential energy barrier formed between the localizing, attractive
potential and the region of the external continuum states. This is depicted in figure
6.3.

We will describe autoionization as a tunneling process, using the WKB approxi-
mation. This is not unlike Gamow’s model of alpha decay [110], in which an alpha
particle tunnels out of the potential well of an atomic nucleus. For this case of
semiconductor impurities, the applied electric field has a considerable effect on the
height and width of the potential barrier. We wish to make this field dependence
quantitative.

To this end, it is important that tunneling calculations are performed in all three
spatial dimensions. In textbook examples, it is a common occurrence to find tunneling
calculations performed in only one dimension. The exponential sensitivity of the
tunneling process, however, creates a tremendous difference between the scenario of
a three-dimensional spherical potential with an emission hot spot,” versus a simple
planar approximation representing a carrier escaping from one side of a box.

To describe our calculation more specifically, we use a one-dimensional WKB
transmission coefficient to depict the radial transmission of a bound carrier. Next,
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Figure 6.3: A neutral impurity in an external field, able to autoionize the bound
carrier in its ground state. The radial coordinates of the classical turning points
are at r1 and r2, representing respectively the “inner” and “outer” turning points.
Process a. represents classical, “thermionic” emission, which is negligible. Process
b. represents escape by tunneling through the potential barrier.

we use the virial theorem. The virial theorem allows us to use to compute an appro-
priate velocity, thereby a flux density, of the bound particle incident on the internal
boundary of the potential barrier. Multiplying the internal flux density by the WKB
transmission coefficient gives the escape probability for a particular radial direction.
This radial escape probability is then integrated as a function of polar and azimuthal
angles, over the internal area of the impurity. This results in an overall escape rate,
or equivalently an expected lifetime, for the impurity to remain neutral in the electric
field. This lifetime may be much longer than the age of the universe at very low fields.
At fields where the barrier reduction nears the scale of the ground state energy, the
transmission coefficient tends to unity. In this case, the impurity will quickly ionize
at a timescale of roughly the impurity diameter divided by the bound carrier’s virial
velocity. The goal of this section is to make predictions for autoionization escape
rates as a function of applied electric field.
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6.4 The WKB approximation

The WKB (Wentzel-Kramers-Brillouin) approximation – or sometimes the WKBJ
(Wentzel-Kramers-Brillouin-Jeffreys) approximation – is the workhorse calculation
most often employed for semiclassical tunneling rates. Basically, the Schrodinger
wavefunction, along with its matching conditions between barrier regions, is incorpo-
rated into an integral expression for the phase difference across a barrier. This is then
incorporated into an approximation for the wavefunction’s transmission coefficient.
As the WKB approximation is derived in numerous textbooks such as [77, 111, 112],
we summarize only the needed conclusions.

The wavefunction phase difference, g, is given by

g =

r2∫
r1

√
2mc

~2
[U(r)− E]dr (6.4)

The WKB transmission coefficient is given by

T =
e−2g(

1 + 1
4
e−2g

)2 (6.5)

It should be noted that these WKB conclusions are expressed in one dimension.
As pointed out in the example of p. 279 of reference [113], the WKB transmission
properties can be carried over directly into three dimensions. We neglect any angular
contribution to the tunneling probability.

To apply the transmission coefficient, we need to know the escaping carrier’s
energy and the expression for the total potential energy. We also need to know the
lower and upper limits of the phase integral, which represent the coordinates of the
classical turning points of the potential. We will apply these quantities for specific
cases, shortly.

Note that we also assume the bound carrier occupies only one possible state. We
are considering low temperature operation, and we assume the level spacing to be
large near the ground state of any type of impurity. Therefore, in this work we
assume full occupation of the ground state.

6.5 The bound carrier flux density

We also need to know the incident flux density of the bound carrier while inside
the neutral impurity. In some semiclassical sense, this represents the rate of the
carrier “knocking on the door” in an attempt to escape the impurity. We define this
flux, F , from the definition for number current density.

F = n0vr (6.6)
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To define the bound carrier flux density, we see that we need to define both an incident
velocity, vr, as well as a probability density, n0.

For the incident velocity, we make an approximation using the virial theorem. The
virial theorem states that the expected kinetic energy of a particle in a central-force,
power-law potential is related to its potential energy by a simple relation.

〈Ek〉 =
mc

2
v2
v = −n

2
〈U(r)〉 (6.7)

where vv is the virial velocity. The parameter n is the power-law exponent of the
potential, which takes the typical form

U(r) = −A
rn

(6.8)

We assume the velocity distribution is isotropic. We require only the outward,
radial component of this velocity, which we are calling vr. We therefore divide the
virial velocity, vv, by six, to account for three spatial degrees of freedom with both
forwards and backwards motion.

vr =
1

6
vv (6.9)

So we have established a useable incident velocity for the bound carrier inside the
impurity potential well.

For the probability density of the bound carrier, we try two different approxima-
tions.

6.5.1 Probability density, approximation 1

We can define the probability density as a quantum mechanical quantity by in-
troducing the bound carrier’s wavefunction, ψ.

n0(r1) = ψ∗(r1)ψ(r1) (6.10)

Here, some of our limitations start to become apparent. We intend to only use ideal
and unperturbed wavefunctions, evaluated at the inner classical turning point.

6.5.2 Probability density, approximation 2

As a double-check, we introduce a second approximation for the probability den-
sity. Adopting a more semiclassical perspective, we fix the bound carrier density to
be the inverse of the volume defined by the inner classical turning point.

n0(r1) =
(

4
3
πr3

1

)−1
(6.11)
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For simplicity, we evaluate this volume at zero applied field. We can understand this
approximation as an assertion that the bound carrier is somewhere strictly inside the
classically allowed volume, defined by the ground state energy.

6.6 The autoionization rate, assembled

To summarize the framework we have established, here is the full integral expres-
sion for the autoionization escape rate.

1/τ =
∫
F T dA

= 2π
π∫
0

F (r1, θ) T (r1, θ) r2
1 sinθ dθ

(6.12)

For generality, we have added the functional dependence of the radial and polar
coordinates to both the flux density and transmission coefficient. We assume az-
imuthal symmetry until further notice. The “inner” classical turning point, r1, is
itself a function of angle, but this dependence was omitted for clarity.

Now we move on to set up this integral for specific cases, before evaluating it
numerically.

6.6.1 Autoionization of shallow hydrogenic impurities

Here we examine the characteristics of shallow hydrogenic impurities for the pur-
pose of calculating the autoionization escape rate.

The bound carriers for neutral hydrogenic states experience the binding form of
the Coulomb potential. Therefore, the appropriate attractive potential at zero field
is of course

U(r) =
e2

4πεε0r
(6.13)

Considering that we have ground state energy ε representing either εD for donors
or εA for acceptors, it’s straightforward to evaluate the WKB phase difference integral.
Recall that E = −ε.

g =

r2∫
r1

√
2mc

~2

[
−eFr cos θ − e2

4πεε0r
+ ε

]
dr (6.14)

We need to evaluate the radial coordinates of the inner and outer classical turning
points. They are the following.

r1 =
ε4πεε0 −

√
4πεε0

√
ε24πεε0 − 4e3F cos θ

2eF cos θ(4πεε0)
(6.15)
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and

r2 =
ε4πεε0 +

√
4πεε0

√
ε24πεε0 − 4e3F cos θ

2eF cos θ(4πεε0)
(6.16)

With this, the WKB transmission coefficient can be directly evaluated.
To consider the hydrogenic flux density, let us first consider the appropriate veloc-

ity. Application of the virial theorem gives us the outward radial velocity component.

vr =
1

6

√
ε/mc (6.17)

For the bound state probability density in these hydrogenic states, we can use
our quantum mechanical “approximation 1” by way of the following ground state
wavefunction.

ψ =
1

√
πa

3/2
B

e−r/aB (6.18)

From this, we recover the following probability density.

n0 =
1

πa3
B

e−2r/aB (6.19)

For our alternative semiclassical “approximation 2,” we can find the following prob-
ability density from the Bohr radius. We apply this to hydrogenic acceptors as well,
although they are not perfect representations of a Bohr atom.

n0 =

(
4

3
πa3

B

)−1

(6.20)

Now that we have assembled the constituent parts, we can construct the full
autoionization rate. We present results after constructing the same rate for the anion
states.

6.6.2 Autoionization of anion states

For the case of anion states, a donor may overcharged with an extra electron to
become a D− minus state. Conversely, and acceptor may become and A+ state with
the addition of an extra hole. We assume that D− minus and A+ states are equally
probable, with relatively equal energies. This may not be necessarily so, however. In
any case, we proceed in a way similar to the previous section.

Bound carriers in the anionic potential experienced the polarization of the oth-
erwise neutral atomic state. This again is the quadratic Stark effect, which as a
reminder goes as

U(r) = − e2α

2 (4πεε0)2 r4
(6.21)
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Therefore the WKB phase integral goes as

g =

r2∫
r1

√
2mc

~2

[
−eFr cos θ − e2α

2 (4πεε0)2 r4
+ ε

]
dr (6.22)

Due to the n = 4 dependence of this potential, there are five roots when solving the
barrier height expression for the classical turning points. It is best to solve numerically
for the turning point coordinates, as needed.

We can evaluate the virial velocity assuming that the average potential energy is
the ground state energy. Taking into account the n = 4 dependence of the potential,
we recover an outward radial velocity of

vr =
1

3

√
ε/mc (6.23)

For the bound carrier probability density, we again use the anion wavefunction of
[93], as in section 5.2.1

In the framework of our “approximation 1,” this gives the following probably
density.

n0 =
κB2

2πr2
e−2κr (6.24)

On the other hand, our semiclassical “approximation 2” gives a radius

ra =
1√

4πεε0

(
e2α

2ε

)1/4

(6.25)

resulting in an expression for probability density as

n0 =

(
4

3
πr3

a

)−1

(6.26)

]
This is enough information that we can evaluate the full escape rates, as before.

6.7 Autoionization results

We present numerical results for the integrated autoionization rates we have con-
structed. These include the rates for hydrogenic donors(D0) and acceptors(A0). These
also include the rates for anion donors(D−) and acceptors(A+). These four rates were
calculated both under our “approximation 1” and “approximation 2” methods. This
makes for eight distinct rates in total. We plot these rates as a function of applied
electric field in figures 6.4 and 6.5.
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Figure 6.4: The autoionization rate is plotted for hydrogenic donors (D0) in blue. Hy-
drogenic acceptors (A0) are plotted in red. “Approximation 1” models, where bound
carrier density was related to the wavefunction, are in solid lines. “Approximation
2” models, where bound carrier density was determined by the semiclassical volume,
are in dashed lines.
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Figure 6.5: The autoionization rate is plotted for anion donors (D−) in blue. Hy-
drogenic acceptors (A+) are plotted in red. “Approximation 1” models, where bound
carrier density was related to the wavefunction, are in solid lines. “Approximation
2” models, where bound carrier density was determined by the semiclassical volume,
are in dashed lines.
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Model F (V/cm)@10−6 Hz F (V/cm)@10−3 Hz F (V/cm)@1Hz
D0, approx. 1 695.415 815.329 985.461
D0, approx. 2 669.836 779.731 933.35
A0, approx. 1 845.053 975.886 1,156.11
A0, approx. 2 773.036 879.963 1,021.95
D−, approx. 1 11.584 14.115 18.035
D−, approx. 2 11.026 13.298 16.725
A+, approx. 1 19.832 24.164 30.877
A+, approx. 2 18.884 22.776 28.638

Table 6.1: This is a selection of electric field strengths for all models, solved for at the
indicated escape rates. For instance, hydrogenic donors (D0) under “approximation
1” would autoionize with a lifetime of 106 seconds (∼ 11.6 days) at 695.415 V/cm,
103 seconds (∼ 17 minutes) at 815.329 V/cm, and 1 second at 985.461 V/cm.

Across a modest range of electric field, the autoionization rate spans a huge num-
ber of magnitudes. Even on log-log plots, it is difficult to determine some useful
values. Therefore, we summarize some practical values of applied electric field in
table 6.1.

6.8 Conclusions for autoionization

We have calculated plausible autoionization rates for hydrogenic and anion donors
and acceptors. The exponential dependence of the tunneling transmission probabil-
ity makes this problem extremely sensitive to the exact form of the local impurity
potential. Non-ideal effects may have substantial impact on the actual rate. One
source of nonideal effects may be the presence of dipole/multipole contributions due
to neighboring, oppositely charged impurities. It is worthwhile to point out, though,
that nonideal core effects in the potential are unlikely to contribute to transmission
properties because the ground state energies of the impurities we have considered are
so small (and therefore at high radius).

Fortunately, there is less sensitivity to the bound-state carrier density inside the
impurity. The exact form of the bound carrier density within the impurity does
not impact the escape rate nearly as much as the WKB transmission probability.
Therefore, the use of approximations for the bound carrier density are rather forgiving
in the calculation of the overall rate.

We see there is a great difference between the autoionization escape rates of hy-
drogenic impurities versus anion states. This is due to the extreme difference in their
ground state energies. For this reason, the presence of anion states in our detector
crystals should be an important consideration. If anion states exist in large abundance
while the bulk is in a net neutral space-charge condition, then there is the possibility
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of field ionization in a slightly peculiar way. That is, the “extra charge” bound to the
anion state can be ripped away in rather modest electric fields. While the particular
anion state would then itself become neutral after “ionizing,” this would disrupt the
global charge-compensated conditions of the crystal.

To some approximation, the exponential dependence of these escape rates allow
us to consider autoionization as a sharp-threshold effect. We can approximately de-
fine a critical field where impurities will autoionize at some particular timescale, say
over a few minutes. Then, we can approximate that impurities will have immedi-
ately autoionized in fields above this critical field. If impurities exist in adequate
abundance, it may be that they maintain internal fields to be just at the critical field
through ionizing. Where fields would have otherwise been very high, space charge
can suddenly appear by way of autoionization. This may be in analogy to a phase
transition. Rather than of some critical temperature, a critical field strength could
greatly influence how impurities should be charged or uncharged.



192

Chapter 7

Conclusions: Evolving Space
Charge

In seeking to find dark matter in the form of WIMPs, the Cryogenic Dark Matter
Search operates high-purity germanium detectors at a temperature of 40 mK. Charge
and phonons are measured from every particle event, allowing the discrimination
of nuclear recoils (signal) from electron recoils (background). The voltage applied
represents fields of only ∼ V/cm, just enough to fully collect charge but small enough
to keep secondary Luke-Neganov phonons from dominating the phonon signal. At this
temperature, there are no ambient electrons or holes in the lattice, and the Fermi-
level is therefore an ill-defined concept. Any free carriers are out of equilibrium by
definition. Space charge can accrue, and degrade detector performance. A wide
variety of detector phenomena have been measured and attributed to space charge
with little more than an empirical understanding.

In this dissertation, we have established a framework necessary to begin to under-
stand how space charge develops in our detectors. To do this, we revisited electron
and hole transport from first principles. We implemented Monte Carlo techniques,
both traditional and of our own design. We developed the ability to implement full
anisotropy in both mass and scattering probabilities. We extracted useful quantities
from our Monte Carlo simulations, including macroscopic averages as well as energy
distributions we could use for future numerical integrals. We introduced some theory
for cross sections and presented a number of possible recombination and generation
mechanisms. While many models may still be possible, we present one simple model
which was consistent with recombination data measured in CDMS detectors.

The work left to go is to put these concepts together to form an understanding
of evolving space charge. This can be performed in a number of ways. A general ap-
proach is to consider the carriers and recombination centers as variables in continuity
equations. Continuity equations (sometimes specifically “drift-diffusion” equations)
depict volume densities of a species. They include dynamical terms like drift and
diffusion, as well as generation and recombination rates.
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In ending this dissertation, we demonstrate a self-consistent model which can be
used to model some dynamical charge behavior of both free and bound charge in a
macroscopic detector.

7.1 A self-consistent model

We briefly present how to put together a model depicting how space charge devel-
ops. The purpose is to solve continuity equations and Poisson’s equation together, in
a self-consistent manner. We use this method as it is general and free of assumptions
regarding thermal equilibrium. We need to express a continuity equation for every
species present in the model. For a two carrier, two impurity model, we need four
continuity equations. Specifically regarding the model proposed in the last chapter,
we would have the following.

d

dt


n
p
N−D
N+
A

 =


vnd

∂n
∂z

+Dn
∂2n
∂z2 −Rn +Gn

−vpd ∂p∂z +Dp
∂2p
∂z2 −Rp +Gp

−RA +GA

−RD +GD

 (7.1)

where vd is drift velocity, D is diffusion, an R term represents recombination of a
species, G terms represent generation.

The expressions for G and R terms may depend on the concentrations of the
other species. In this way, we introduce a coupling and form of feedback between the
equations. For example, terms within Rn may go as C × n × N , where C is a rate
per density as in the end of chapter A, n is the electron concentration, and N is the
density of one of the other species (N−D , for example).

Within the expression for G for electrons and holes, we can also specify an illu-
mination term for pair production by external radiation. At the surface, cosmic rays
may induce an illumination of g = 104 s−1cm−3.

We also know absolute densities of donors and acceptors. If we ignore the standard
D+/A− charge state, we could simplify the concentrations as

ND = N−D +N0
D

NA = N+
A +N0

A

(7.2)

We also need to solve Poisson’s equation, which determines the electrostatics of the
situation including the charge densities of the concentrations. With V for potential,
we have the following.

∇2V = − ρ

εε0

= − 1

εε0

(
p+N+

A − n−N
−
D

)
(7.3)

Also note that every differential equation requires a boundary condition. For
continuity equations, most generally we can specify a surface recombination velocity,
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as described in appendix F. For Poisson’s equation at an electrode, we specify a
sourced potential.

Using drift, diffusion, and the recombination terms described earlier in this work,
we can self-consistently solve this system using a commercial finite-element solver
(Comsol) for the underlying concentrations and potential as a function of position in
a one-dimensional (1-inch) detector. Some results are in figure 7.1. Note that surface
recombination velocities were set with a transmission of around 0.1 using equation
F.12. Results are displaced in increments of 40k seconds, and total impurity densities
were ND = 1011 cm−3 and NA = 1010 cm−3.
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Figure 7.1: A depiction of a space charge model, self-consistently solving Poisson’s
equation and continuity equations for electrons, holes, and charged impurities. Note
how space charge accrues and affects the internal potential and field.
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7.2 Conclusion

We can see how the accumulation of space charge affects the internal potential and
carrier concentrations. For more intuition, see the number of appendices regarding
these equations. These profiles are a simple glance at how space charge should form
in our detectors.

In concluding this dissertation, we show that we have formed a framework to solve
the macroscopic problem of space charge evolution in CDMS detectors, incorporat-
ing the underpinnings we developed investigating transport processes and capture
processes. One can imagine the number of ways this can be compared to experiment
regarding detector phenomenology. Under this framework, a number of future models
can be explored and validated.
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Appendix A

The ”Semi-Ballistic
Approximation” for Capture
Processes

In this appendix, we present results primarily from what we call our ”semi-ballisitic
approximation.” It was a large attempt to incorporate a simple (step function) sticking
probability within a cascade capture model similar to that of Lax. The intent was that
TL ≈ 40 mK lattice temperature would represent an adequately low range of nearly-
excited states, such that this would match Abakumov’s work in the similar limit.
This model provided the possibility to include any capture or generation mechanism,
for arbitrary fields. It used the bulk steady-state distributions exported from Monte
Carlo transport simulations. This approach was appealing in that it always decoupled
“carrier temperature” from “lattice temperature.”

At the end of this appendix, we show that we had some discrepancy in the field
dependence of the Coulomb cross section derived from this method versus the Abaku-
mov method of chapter 5. We believe our “Lax-like” sticking probability and imple-
mentation of energy distributions produce assumptions which are too strict to allow
capture to occur as it should.

We make three points about the merits of this appendix: 1) The exposition of
the constituent mechanisms is educational for understanding the myriad of capture
kinematics, 2) the impact ionization predictions presented here are still those calcu-
lated by only with the underpinnings described in chapter 6, and 3) some relative
comparisons can be made between capture processes calculated under this method.

To point out a tempting future direction, the Abakumov-based methods described
in sections 5.3.4 and 5.3.4 can be invoked numerically, using transport Monte Carlo
results directly.

The driving topic: extending the Lax treatment to non-equilibrium cases
The critical aspect of our treatment lies in the fact that we are looking at processes
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out of equilibrium. Abakumov [15] points out the subtle fact that a mean-free-path,
λ should be replaced by vτE where v is the (total) velocity and τE is the energy
relaxation time. This is the right idea, since an energy relaxation time need not imply
equilibrium with the lattice. Analytical approximations for these quantities may still
be difficult for extremely hot carriers, especially since the relaxation time appropriate
while in the continuum steady state may be altered while in the proximity to a
local capture potential. So we wish to construct the framework to predict processes
without the reliance of thermal equilibrium between carriers and lattice. As carriers
become increasingly “hot” with applied field, the energy dependence results in a
field-dependence.

A.1 Introducing the general approach and macro-

scopic quantities

Although our treatment resorts to numerical techniques, we present a simple model
to first introduce the general approach.

Recall Thomson’s capture cross section,

σ =
4π

3

r3
c

λ
=

4π

3

r3
c

vτ
(A.1)

In the upcoming sections, we perform integrals that provide an energy-dependent
cross section, taken as an expectation integral over the potential change of an im-
purity center. In order to take into account the possible dependence of velocity and
relaxation time on the radius, while maintaining cylindrical symmetry, we propose to
generalize equation A.1 as

σ(E) =

rc∫
0

4πr2

v(E, r)τ(E, r)
dr (A.2)

Here, E is the total energy of the carrier, representing kinetic energy in the continuum
steady state. We will explore what are the appropriate limits (“rc”) to incorporate for
these integrals, as well as the appropriate 1

vτ
. Note that, in presenting this integral,

one of our implicit approximations is that of a uniform probability for incident carriers
to occupy any part of the trapping volume.

A.2 The real-space volume of a recombination cen-

ter: the critical radius

If we considered the simple equilibrium Thomson cross section for a charged center,
the critical radius which would depict the capture “sphere of influence” is found by
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inverting the Coulomb potential.

rc =
Ze2/(4πεε0)

3/2kT
(A.3)

Considering a temperature of T = 40 mK, this corresponds to a radius of 17 um
and a cross section of 10−9 cm2. Another consideration is to ensure that a carrier
of zero total energy has enough kinetic energy (Ek ≥ 1

2
mv2

s) while over an attractive
(negative) potential to emit an acoustic phonon. Recall figure 5.5 for a reminder of
energy conventions over an attractive center. Setting this threshold energy equal to
the Coulomb potential also results in a critical radius of about 17 um. While this is
not out of the realm of possibility, but it does represent a large cross section. A key
insight is to realize that, for our CDMS case, the thermal contribution to the capture
volume limit is typically matched or exceeded by influences of the external potential
itself. This insight was inspired by the Poole-Frankel effect, where the barrier-lowering
by an external field of a neutral trap enhances thermionic emission of the occupying
carrier.

A.2.1 Using a barrier lowering, corrected by kTL

Recalling chapter 5, the external field modifies the local potential. We account for
the effects of the external electric field by a correction factor to the local potential.
Note, that we define this correction to the potential as a positive term.

δU0 = −U(rb) = A(n+ 1)

[(
eF

An

) −1
1+n

]−n
(A.4)

We see that we can now express the classically bound states within the potential
as contained up to an energy of ≈ |U(r)| − δU0.

We do not consider the specific functional forms of different “sticking probability”
functions proposed through the years. As a reminder, we take the oft-used approx-
imation that a carrier will be assumed “stuck” into the local potential as long as it
has found itself in a bound state lower than the continuum levels by an energy kTL,
where TL is the lattice temperature.

We account for the possibility of re-absorbing a phonon and ionizing out of the
bound state region by adding a term onto the local-potential correction.

δU = δU0 + kTL (A.5)

A.2.2 A volume defined by energy

Now, we are at a point to find the real-space limiting distance to the effective
trapping volume. Once again, our understanding before was that this volume is
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Figure A.1: A schematic of a hydrogenic potential for capture, including barrier
lowering and the range of final-state carrier energies contributing to carrier capture.
The differential scattering rate is also depicted as a function of energy.

determined by a critical radius where the potential is deep enough to permanently
bind a carrier. Assuming a spherical case just for now,

volume =
4

3
πr3

c (A.6)

We now define a critical capture radius by potential energy arguments as follows.

|Utot(rc)| = δU = δU0 + kTL (A.7)

Provided rc > rmin, this finally gives a useful expression for our effective trapping
critical radius as

rc =


[(

eF

An

)− 1
n+1

]−n
+

kTL

A


−1/n

(A.8)

We have determined the “critical radius” for our volume estimate. Although
our integration techniques in the end are numerical, with the limits of integration
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determined automatically by energy conservation, the principle of this critical radius
and its corresponding “sphere of influence” is conceptually an important one.

A.3 Accounting for an appropriate relaxation length

Here, we account for the fact the the relaxation length is dependent on energy
and therefore position.

Within the sphere of influence, we need to know whether the carrier will energeti-
cally relax such that it can become bound. In a naive treatment, we might think that
the typical bulk scattering rate would be appropriate here. This is an approximation
appropriate for an order of magnitude calculation, and it is how the Thomson scat-
tering cross section was found. However, we perform a slightly more sophisticated
treatment in that we will consider the scattering relaxation time including only those
final states which result in a permanently bound carrier.

We need to find the energy relaxation length,

λE = vτE (A.9)

Here, v is the velocity, and τE is the energy relaxation time. Recall, however, that
we are in the “Thomson limit” where a single scatter accounts for the entire energy
relaxation.

A.3.1 Accounting for the relaxation time

Here we account for the relaxation time, taken as an inverse phonon emission
rate. For these energy and position dependent integrals, we maintain an “isotropic
spirit” to reduce the complexity of this problem to manageable levels. To this end,
we group all acoustic emission processes to separate phonon branches into a single
coupling rate, separate for electrons and for holes. This rate is based on the isotropic
deformation potential and average speed of sound available in the literature [7, 12, 5].
Similarly, we also group the optical branches together for a single optical emission
rate [7], separate for electrons and for holes.

Relaxation into bound states by acoustic phonon emission

With these fully isotropic assumptions, the relaxation rate is the phase-space
integral across the range of possible phonon wavevectors [45].

1

τ
=

1

4π2

qmax∫
qmin

I2(Nq + 1)

(
πmdosΞ

2

~ρvsp

)
q2dq (A.10)
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Here, mdos is the density-of-states mass, Nq is the phonon occupation, Ξ is the
deformation potential, ρ is the density of germanium, p the carrier momentum. We
will revisit qmin and qmax momentarily, but in the bulk case they are qmin = 0 and
qmax = 2k(1 − vs

~k/mc ). As we know, phonon occupation is nearly zero in our tem-
perature range, for quite nearly all phonon wavevectors of interest. We keep this
factor around as a correction to acoustic emission processes, as we know such capture
is dominated by carriers energies within a magnitude of the speed of sound energy,
1
2
mcv

2
s . In our condition, kTL ≈ 1

2
mcv

2
s , so it doesn’t hurt to retain an approximation

for Nq. We remove Nq from within the integral, but make an approximation for it by
evaluating it at a expectation value for q.

Nq ≈
{

exp

[
~vs
(

3

4

q3
max

(q2
max + qmaxqmin + q2

min)
+

3

4
qmin

)
1

kT

]
− 1

}−1

(A.11)

At the threshold carrier energy able to trap, the use of this approximation compared to
the actual, numerical integral is good to within 10%, given our working temperature.
Setting Nq = 0 gives an error of over 30%.

We also make the common assumption that the electron wavefunction overlap
factors are I2 = 1 [5]. Considering holes, the incident hole is assumed to occupy the
heavy (top) band, and since the density of states for inter -band transfer is small, the
overlap factor is taken to be I2 =

〈
1
4

[1 + 3 cos2 (θ)]
〉

= 1/2.
We re-express the incident momentum, p, as a kinetic energy term,

√
2mEk. We

find our simplified rate to be the following.

1

τ
= I2(Nq + 1)

Ξ2mdos (q3
max − q3

min)

12
√

2πvsρ~
√
Ekmc

(A.12)

So we have determined a useful expression for capture rate that we can combine
with the velocity of equation 5.18 for an appropriate expression for relaxation length
as a function of initial carrier energy and strength potential.

Next, we will see that there is a lot to learn by inspecting the phonon limits,qmin
and qmax, present in this special capture rate.

A.4 Phonon limits in the case of acoustic phonon

emission

In our consideration of a capture rate, we consider the emission rate relevant only
to permanently bound states. The form of the integral rate does not change, but we
revisit the limiting phonon amplitudes that may contribute to carrier capture.

To enter a permanently bound state, a passing carrier of total energy E must emit
at least a phonon such that δU amount of energy, by equation A.5, is lost. This sets
the minimum phonon wavelength for this rate.
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qmin =
E + δU

~vs
(A.13)

Momentum and energy conservation constrain, as always, the maximum phonon
wavevector. This corresponds to complete backscatter and is given by

qmax = 2k(1− vs
~k/mc

) = 2

√
2mcEk
~

(1− mcvs√
2mcEk

) (A.14)

which is approximately
qmax ≈ 2k (A.15)

as long as the carrier is traveling considerably faster than the speed of sound threshold.
These phonon limits are important as they introduce limits in the incident carrier
energy allowed for capture.

A constraint on the incident carrier energy, using the acoustic phonon
limits

For any phonon emission rate to contribute to carrier capture, we must observe
qmin < qmax. We inspect the limiting case by setting wavevectors equal to each
other. For this purpose, we approximate the maximum allowed acoustic phonon as
qmax ≈ 2k.

Considering the relation for capture-causing emission of an acoustic phonon,

qmin ≤ qmax (A.16)

we make the approximation

E + δU

~vs
≤ 2

~
√

2mcEk =
2

~
√

2mc(E − U) (A.17)

Recall that U is a negative quantity for attractive potentials.
Note figure A.1 as an example. An initial, free carrier has some probability to emit

into a bound state between energy ranges determined by our definitions of phonon
wavevectors qmin and qmax.

We now determine limiting values for the energy of the incident carrier. Consider
the limiting case where qmin = qmax. Solving, we find the following quadratic roots
for total energy of the incident carrier.

Emin = (4mcv
2
s − δU)− 2

√
2
(

2 (mcv
2
s)

2
+mcv

2
s(|U | − δU)

)1/2

Emax = (4mcv
2
s − δU) + 2

√
2
(

2 (mcv
2
s)

2
+mcv

2
s(|U | − δU)

)1/2

(A.18)
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Since we used the approximation of qmax ≈ 2ki, we loose the constraint that carri-
ers must be traveling above the speed of sound energy, 1

2
mcv

2
s . This is satisfactory as

the lower root, Emin is generally unphysical in the majority of physical cases anyhow.
Most often, there is no lower constraint to the allowed incident carrier energy.

When the potential |U | and potential lowering δU are not large, the upper energy
bound becomes

Emax ≈ 8mcv
2
s = 16(

1

2
mcv

2
s) (A.19)

which is about a magnitude above the speed of sound energy.
What we conclude in this subsection is that energy range contributing to carrier

capture by acoustic phonon emission is proportionate to the speed of sound energy.
Carriers within this span of energy dominate the trapping processes. This a range of
extremely low energy, well into the “low energy tail” for carrier distributions under
standard operational biasing conditions. While acoustic phonon emission may be
considered as a near-elastic process for average carrier energies, this energy range
demonstrates that only low-energy carriers are kinematically allowed to emit a phonon
of energy adequate to become bound.

A constraint on the amount of barrier lowering

We can also determine a limiting relation between the barrier lowering and attrac-
tive potential, independent of the carrier energy. If we consider where the maximum
allowed energy is equal to zero, we find the following.

δU

|U |
≤ 4

√(
1
2
mcv2

s

)
|U |

(A.20)

Where this limit is surpassed, the incident carrier cannot loose adequate energy to
become bound. Therefore, the barrier lowering cannot become too large relative to
the depth of the potential. As the barrier lowering grows with the applied field,
this effect increasingly forbids capture. This is because the energy width of available
trapping states near the continuum is being evacuated out of the capture center.

The “resonant” nature of scattering rate solutions

Another notable aspect of capture rates is their general resonant nature. We saw
there are limiting values initial carrier energy, Emin and Emax, which can contribute
to capture. Inspecting these roots reveals the generally parabolic nature of these solu-
tions. In figure A.2, we qualitatively see that the resulting cross sections tend to have
a resonant maximum response between Emin and Emax, with the width determined
by the radical term in their solutions. By examining the trend of the radical term
present in the solution of both roots, we note the dependence on δU . A larger energy
span and larger resonance generally occurs when δU is smaller.
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Understanding that these capture rates have resonant features based on minimum
and maximum phonon limits gives some insight in interpreting the features in plots
of energy-dependent cross sections.

Figure A.2: As the magnitude of the potential lowering (δU) increases (red arrow mov-
ing left), the energy span and peak amplitude of carrier trapping decreases (red arrow
moving down). We find that the trapping rate is naturally (at least) “2nd-order,” and
often has resonant peaking at an energy in between maximum and minimum allowed
values.

A.5 Cascade capture by optical phonon emission

In the previous section, we considered the possibility for a carrier to emit an acous-
tic phonon and subsequently find a permanent, bound state in a localized, attractive
center. We found that threshold effects due to potential lowering of the external field
are important. Here, we consider a different scenario in the form of the large energy
loss by way of optical phonon emission.

Optical phonon emission is an inelastic process. Typical optical phonons (or
intervalley phonons for electrons) are 10’s of milli-electronvolts in energy, while the
ground state of a hydrogenic center in germanium is perhaps 12 meV . So it is
important to recognize that carriers must have adequate energy to emit an optical
phonon while still finding a final state that is within the potential well. The carrier
needs to at least be able to “bottom out” to the ground state of the trap.
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At the other extreme, perhaps during de-excitation from initial particle interac-
tions, it could be that carriers are so very energetic that a single optical phonon does
not represent enough energy loss to force a carrier to de-excite into a bound state.

Luckily, unlike the acoustic phonon case, the optical phonon dispersion relation
can be considered to be perfectly flat, thereby having no q dependence in the energy
relation. This simplifies these sorts of considerations.

An optical phonon has energy

Eoptical = ~ω0 (A.21)

Figure A.3: Optical phonon emission leading to trapping provides a span in initial
carrier energy from E = ~ω0 + U(r) up to E = ~ω0 − δU .

We can say, then, that the initial carrier energy simply has to be within the
following range to be able to trap by optical phonon emission.

~ω0 + U(r) ≤ E ≤ ~ω0 − δU (A.22)

This is illustrated by fig. A.3, where we see how the optical phonon energy “fits
in” to our problem.

A.5.1 Optical phonon emission rate

We need to now make use of the optical emission rate.
For optical phonons, we have a slightly weaker dependence on phonon wavevector.

1

τ
=

D2
0mdos

4π~ρpω0

qmax∫
qmin

(N + 1)qdq (A.23)
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We are certainly in the T = 0 limit for ambient optical phonons, so N ≈ 0. The
minimum and maximum wavevectors are as follows.

qmin = p
mc

(
1−

√
1− ~ω0

E−U(r)

)
qmax = p

mc

(
1 +

√
1− ~ω0

E−U(r)

) (A.24)

We have used the relation for kinetic energy, εk = E −U(r). So through these limits
of integration, the position dependence in U(r) enters our problem. We find,

1

τ
=

D2
0mdos√

2πρ~3ω0

√
mc

(
E +

Ze2

4πεε0r

)√√√√(1− ~ω0

E + Ze2

4πεε0r

)
(A.25)

The factor of

√(
1− ~ω0

E+ Ze2

4πεε0r

)
depicts the lower limit of allowed energies, pro-

vided that we must only use this expression when it is positive definite. We can
enforce the upper energy bound by enforcing a unit step function in energy, Θ[ε].

1

τ
=

D2
0mdos√

2πρ~3ω0

√
mc

(
E +

Ze2

4πεε0r

)√√√√(1− ~ω0

E + Ze2

4πεε0r

)
Θ[(~ω0 − δU)−E] (A.26)

Equation A.26 along with equation 5.18 determine the relaxation quantity λ = vτ for
the case of carrier capture by optical phonon emission.

So we have now established the constraints needed to include into our capture
integral a rate based on either acoustic or optical phonons.

A.5.2 Accounting for the non-ballistic nature of carrier prop-
agation in the capture region

Further extensions to our trapping model account both for the full cylindrical
lowering of the potential, in addition to the fact that our carrier distributions are not
ballistic and continuously adjust their distribution to the band edge as a function of
position along the electric field.



217

Figure A.4: a.) So far, the carrier energy has been referenced from the center of
the local potential. Due to the external potential, this underestimates the kinetic
energy at negative z coordinates, and overestimates the kinetic energy at positive z
coordinates. b.) A correction to the total energy accounts for the assumed energy
loss by phonons in a constant external field. Carrier energy distributions adopt this
correction as a function of position. c.) A limiting case is a fully non-ballistic treat-
ment, where the distribution function is assumed aligned with the density of states
starting from zero kinetic energy.



218

Carriers undergo inelastic scattering while drifting in the external electric field. As
depicted in previous chapters, a detailed accounting of scattering processes enables us
to compute carrier energy distributions. Here, we point out that inelastic scattering
also leads us to account for the external potential drop across the local capture site.
Although our general approach still assumes capture is dominated by a single phonon
scattering event, we introduce a correction to account for the non-ballistic nature of
carrier scattering due to the external potential.

This correction is introduced by adjusting the definition of total carrier energy
as referenced from the center of the capture site. As demonstrated in figure A.4, we
adjust the total energy along the field direction (-z) as

E(ρ, z) = E(ρ, 0)− eFz (A.27)

A note on cylindrical symmetry and numerical limits

Note that, by equation A.27, the symmetry of the problem can no longer be
reduced to a purely central (radial) potential. It is now expressed in cylindrical coor-
dinates. The simple form for energy-dependent cross section as in equation A.2 also
changes. As our calculations are numerical, we do not explicitly integrate to a critical
radius, rc, but instead use numerical limits of integration that maintain the relaxation
rate as positive definite. We show in figure A.5 that the effect of the external field
makes the capture volume anisotropic, which is accounted for numerically.

Figure A.5: a.) A hydrogenic capture potential in an applied field is plotted in cylin-
drical coordinates. The red plane represents the lowest energy allowed by acoustic
phonon emission for a carrier of a particular initial energy. b.) For the same carrier
energy, the position dependent property λ−1 = 1

vτ
is plotted.
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A.6 A mid-appendix summary, and assembly of

the energy-dependent cross section

Let’s summarize and review what we have established in this appendix so far.
We took some effort to depict a framework for solving this problem, as applied

to our low-temperature case. We also know that we will utilize the non-equilibrium,
steady-state energy distributions established from prior simulation work. Therefore,
we do not need to make a priori assumptions regarding an incoming carrier’s energy
distribution.

We incorporated a simplified version of Lax’s “sticking probabilty” in a simple
way in that we neglect capture to bound states within an energy width kT of the
lowest accessible continuum state. The lattice temperature energy is quite small in
our case, anyhow.

We also assume that the trapping volume can be traversed uniformly by any
incoming carriers. While this method neglects angular momentum, it allows us to
solve the problem using a volumetric integral rather than tracking arclengths over
the potential trap states. As an aside, an arclength method was established as in
appendix E, but it still requires work to perform adequately.

What our method establishes is the volume of real space where it is possible for
an incident carrier to emit a phonon (acoustic or optical), thereby de-exciting into a
bound impurity state. It turns out this volume is affected by the external potential
even at reasonably low fields. Having accounted for the applied field, the lattice
temperature, and functional form of the attractive potential, we can calculate radial
bounds (ultimately numerically) to where capture to a bound state can no longer take
place. These bounds depend on the incident carrier’s energy, as well as conserving
energy and momentum to only those phonons which would assist in adequate energy
loss for a carrier to become bound.

To establish a cross section as a function of incident carrier energy, we weight
our volumetric real-space integral by the inverse of an effective trapping length. This
trapping length is simply the velocity of carrier multiplied by the isotropic emission
rate of phonons appropriate to de-excite the carrier into a bound state.

σ(E) =

∫
V

d3r

λ(E(r))
=

∫
V

(
1

v(E(r))

1

τ(E(r))

)
d3r (A.28)

We will then use our statistical energy distributions determined by Monte Carlo
to solve for what is actually the expected rate per trap density.

C(E) = 〈v(E)σ(E)〉 (A.29)

What we cover next in this chapter are the specific kinds of attractive potentials
considered, and we will also introduce probabilities for impact ionization of these
states. Then, we will introduce the different kinds of impurity we consider. We will
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present in the next chapter the results for the many specific kinds of capture and
emission rates we have established.

A.6.1 Other processes to note, not included for CDMS con-
ditions

Other processes which are not treated in this work include the following.

Excitonic recombination

This is the process where free electrons and holes can directly recombine, across
the band gap. Since the carriers are charged oppositely, this is a Coulomb capture
problem. Perhaps this could be solved by a translation to the center of mass frame.
It is a joint energy distribution problem, with probabilities that either the electron
or the hole would emit a phonon to bind the pair to form an exciton which would
eventually decay.

Impact ionization across the gap

As mentioned briefly before, a carrier with energy that exceeds the band gap
energy (actually ≈ 3/2 of the band gap energy) can also impact ionize and generate
carrier pairs out of the continuum. In a localized state translational wavevector k
is no longer a good quantum number, and momentum need not be conserved. In
contrast, ionizing carriers from continuum states across the band gap does require
momentum conservation.

A.7 Results for specific processes

We have introduced the general method for evaluating capture cross sections,
which we call “the semi-ballistic approximation.” We now give results for specific
cases. For each case, we have determined the cross section numerically, as a function
of both carrier energy and applied electric field. Then, in a numerical implementation
of equations 5.1 and 5.3, we use our simulated energy ensembles to find the expectation
of this cross section times velocity. In other words, we use the appropriate carrier
distributions to find the energy-independent rates and cross sections. To illustrate
this idea, in figure A.6 we show some typical cross sections for F = 1 V/cm as a
function of energy.

In what follows, we see a number of plots for capture and impact ionization pro-
cesses, of many specific varieties. We have a few data points for low-field, equilibrium
capture cross sections of electrons and holes in the T ∼ 1− 3 K range. These points
match well, considering such data are not quite representative of the same temper-
ature range. What we present is a strong field dependence, unique to the type of
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process. Charged/Coulomb capture decreases rapidly with the field, owing to its 1/r
type potential and associated barrier lowering. We see a pronounced “resonance”
with the optical phonon contribution to Coulomb capture, associated with the spe-
cific range of carrier energies able to contribute to capture as in figure A.3. Neutral
capture cross sections change less so. Impact ionization processes turn on with an
energy threshold associated with the effective “Rydberg” of the impurity in question.
In figure A.17, we compare processes for electrons and for holes for shallow impurities.
We find the general trend that, since holes are “hotter” for a given field, that similar
processes occur for both species, but are shifted to lower fields for holes.
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Figure A.6: Energy-dependent cross sections. Top: Cross sections for representative
processes involving shallow hydrogenic impurities with incident electrons at F =
1 V/cm. The equivalent processes for holes are either similar or identical. Note
the threshold effects and resonant peaking determined by energy and momentum
conservation. Bottom: Energy distributions for electrons at holes at F = 1 V/cm,
set to the same energy scale. Kernel smoothing of the statistical distributions was
performed here, only for illustrative purposes.
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Figure A.7: Predicted cross sections for processes involving electrons and shallow
impurities. Note that charged capture, neutral capture, and impact ionization have
roughly the same cross section between fields of about 2.1 − 2.5 V/cm, where the
electron mean energy is a sizable fraction (∼ 20%) of the hydrogenic Rydberg. Dashed
black bars indicate published cross section data, presumably at zero field. a. electron
capture (T = 3.1K) on Sb+ in Ge [16, 17], b. electron capture (T = 1.5K) on neutral
acceptors [18].
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Figure A.8: Predicted cross sections for processes involving electrons and our bench-
mark model for deep levels. We also present the capture cross section for electrons
on neutral shallow acceptors, as a reference.
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Figure A.9: Predicted cross sections for processes involving electrons and anion states.
Intervalley (“optical”) phonons are a negligible contribution to neutral capture in this
case.
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Figure A.10: Predicted cross sections (due to acoustic phonon emission) for electrons
on dipoles. The dipole cross section has a dependence on the dipole concentration.
The three dimensional integration used for dipoles supplies some numerical noise to
these results.
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Figure A.11: Predicted cross sections (due to both optical and acoustic phonon emis-
sion) for electrons on dipoles. The three dimensional integration used for dipoles
supplies some numerical noise to these results.



228

Figure A.12: Predicted cross sections for processes involving holes and shallow impuri-
ties. Note that charged capture, neutral capture, and impact ionization have roughly
the same cross section between fields of about 0.3− 0.4 V/cm, where the hole mean
energy is a sizable fraction of the hydrogenic Rydberg. Dashed black bars indicate
published cross section data, presumably at zero field. a. hole capture (T = 1.6K)
on B− in Ge [16], b. hole capture (T = 2.2K) on Al− in Ge [16], c. hole capture
(T = 1.7K) by neutral donors [18].
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Figure A.13: Predicted cross sections for processes involving holes and our benchmark
model for deep levels.
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Figure A.14: Predicted cross sections for processes involving holes and anion states.
Optical phonons are a negligible contribution to neutral capture in this case.



231

Figure A.15: Predicted cross sections (due to acoustic phonon emission only) for
holes on dipoles. The three dimensional integration used for dipoles supplies some
numerical noise to these results.
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Figure A.16: Predicted cross sections (due to both optical and acoustic phonon emis-
sion) for holes on dipoles. The three dimensional integration used for dipoles supplies
some numerical noise to these results.
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Figure A.17: A direct comparison between electrons and holes for processes involving
shallow impurities. Electron (hole) processes are solid (dashed). Displayed capture
rates are the total of optical and acoustic phonon contributions. Note that, as holes
are generally more energetic than electrons for a given field, predicted threshold effects
occur at lower fields.
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A.8 Comparing to Abakumov’s formulation for the

case of Coulomb capture

We can make a comparison of the ”semi-ballistic approximation” of this appendix,
to the formulation of Abakumov. In addition to the cross section as a function of
field for the results of this appendix, we can plot the extended Abakumov formalism
of Chapter 5. In addition, for comparison, we can also plot the equilibrium temper-
ature expressions from Abakumov for the high and low temperature limits, and the
interpolation function [15] frequently used between the two limits.

In figures A.18 and A.19 we plot, for electrons and holes respectively, the pertinent
cross sections we have discussed as a function of applied field. We use Monte Carlo
output to compute an effective carrier temperature – here based on the mean energy –
as a function of applied field. Note our figure 4.10 from our simulation results chapter
for these values.

The high- and low-T limits and their interpolation function do fall off with field
as we might expect from the underlying effective temperature. What is critical in
figures A.18 and A.19 is that we find our “semi-ballistic approximation” falls much
more sharply with field compared to Abakumov’s formula. Our assumed conditions
for capture as treated in Chapter 5 are more strict than Abakumov’s, notably in the
use of a step-function sticking probability.
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Figure A.18: Various temperature- and field-dependent formulae for the Coulomb
capture of electrons by acoustic emission. Our numerical treatment of the semi-
ballistic approximation of chapter 5 is given, as well as the Abakumov’s analytical,
field-dependent treatment of equation 5.63. We plot as a function of field, using
Monte Carlo output to interpolate a steady-state carrier temperature.
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Figure A.19: Various temperature- and field-dependent formulae for the Coulomb
capture of holes by acoustic emission. Our numerical treatment of the semi-ballistic
approximation of chapter 5 is given, as well as the Abakumov’s analytical, field-
dependent treatment of equation 5.63. We plot as a function of field, using Monte
Carlo output to interpolate a steady-state carrier temperature.
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Appendix B

An Analytical, Isotropic Treatment
of “Hot” Carriers

Charge carriers under CDMS conditions are always ”hot.” Here we treat the field
dependence of carriers far from thermal equilibrium using simple assumptions. This
model involves solving a coupled system of equations depicting momentum and energy
balance. These two equations are coupled by way of an idealized carrier scattering
rate. A single, isotropic band is assumed.

This model is a worthwhile exercise in that analytical expressions are useful for
developing insight. Namely, it provides a few simple and ideal relations how some
pertinent quantities should change as a function of applied electric field. It also
highlights the difference between momentum and energy relaxation times, which can
be powerful concepts once understood.

A treatment for balancing kinematic equations was performed by Blas Cabrera
[114, 80], establishing the field dependence pertinent for our low-temperature CDMS
limits. This work repeats a balance of equations in the same vein, while borrowing
readily from a generalized presentation in the latest edition of B.K. Ridley’s textbook
[102].

To note, this is not a treatment of the Boltzmann Transport Equation. We are
manipulating mean values. We are not self-consistently solving for an ensemble dis-
tribution. The result is that, while power-law dependencies on coefficients are typi-
cally correct, there may be discrepancies with prefactors on the order of unity. Such
differences arise due to the difference between ensemble-weighted values versus ma-
nipulation of a representative mean value. For a thorough treatment of hot carriers
via the Boltzmann Transport Equation, see [115]. A virtue of this simple approach
is that it is easy to follow and interpret.
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B.1 The steady-state balance of momentum and

energy

We proceed in this section by establishing Ridley’s relations [102] for momentum
and energy balance, using expressions for generalized relaxation times. We will treat
specific cases in the upcoming sections.

The equations for momentum and energy rates of change are as follows.

ṗ = m∗
dv

dt
= eF − m∗v

τm(E)
(B.1)

Ė = eFv − E − E0

τE(E)
(B.2)

Above, m∗ is the effective mass, v is the velocity, e the electric charge, F the electric
field, E the carrier energy, E0 the energy with no applied field, τm(E) is the energy-
dependent momentum relaxation time, and τE(E) is the energy-dependent energy
relaxation time.

We should be careful. To which ”velocity” quantity does v correspond? Perhaps
you, the reader, are familiar with the drift versus thermal definitions of velocity. In
this present case, those distinctions are not pertinent. Equations B.1 and B.2 are
relating the instantaneous momentum and energy for a carrier at any point in time.
In other words, we are not discussing ensemble properties at this point. Therefore,
the quantity v is simply the total and instantaneous velocity.

The definition of the zero-field energy, E0, is basically the carrier energy when
thermalized. One should know that E0 properly should be equated to the thermal
energy, 3

2
kBTL, of the lattice. However, our simple model assumes carriers are quite

hot relative to the lattice. This is a completely reasonable assumption under almost
any conceivable CDMS scenario. So, we would ultimately set

E0 = 0 (B.3)

although we will retain it in our equations as we proceed.
Finding the steady state, equation B.1 recovers an expression for velocity. We can

therefore also incorporate it into the energy-balance equation.

v = eτm(E)
m∗

F

E = E0 + (eF )2 τm(E)τE(E)
m∗

(B.4)
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Ridley makes the point that, via equation B.4, hot effects should relevant at a
critical field where E ≈ E0

Fc =

√
E0

( e
2

m∗
)τm(E0)τE(E0)

(B.5)

Next, we need to incorporate the energy dependence of the relaxation times. The
scattering rates’ dependence on energy can be parameterized as power laws [45, 102].
The following forms for relaxation times

τm(E) = AEp

τE(E) = BEq

(B.6)

yield

v = eFA
m∗

(
(eF )2AB

m∗

) p
1−p−q

E =
(

(eF )2AB
m∗

) 1
1−p−q

(B.7)

So we see that an energy dependence in the scattering rates (thereby in the relax-
ation rates) results directly in a dependence on the applied field.

B.2 The steady state under acoustic phonon emis-

sion

In this section, we evaluate the steady-state quantities as laid out in the previous
section. We first must determine appropriate relaxation times.

B.2.1 Pertinent rates for acoustic phonon emission

Now we treat the case for acoustic phonon emission. We assume an isotropic
emission rate, as we defined earlier in this thesis regarding capture cross sections. To
maintain simplicity, we assume the typical carrier energy is far above the speed of
sound energy. We therefore approximate the minimum allowed phonon wavevector
to be zero. We also assume zero ambient phonon occupation of the lattice. The
scattering rate is then,

Γac(E) =
4I2mdosmcΞ

2

3π~4ρvs
E (B.8)

where these quantities have been described in our chapter on scattering processes.
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Generally, the momentum relaxation time can be related to the scattering rate by
a weighting factor [45].

1

τm(E)
=

(
1− kf

ki
cos θif

)
Γ(E) (B.9)

So the momentum relaxation rate varies from the scattering rate, as we can see
from the weighting factor. The weighting factor departs from unity when the emission
of phonons is not isotropic. This happens to be the case for acoustic phonon emission,
as larger phonon wavevectors are preferred in the emission rate.

We solve for an expectation value of momentum relaxation time.

1

〈τm(E)〉
=

〈
1− kf

ki
cos θif

〉
Γ(E) (B.10)

For this process of acoustic phonon emission, we consider the interaction as near
elastic for modestly high carrier energies. So we approximate that the final and initial
carrier momenta are about the same (ki ≈ kf ). The law of cosines to determine the
angle between initial and final electrons states is,

q2 = k2
i + k2

f + 2kikf cos θif
≈ 2k2

i (1 + cos θif )
(B.11)

The expectation value regarding the final carrier state angle relative to the original
is

〈
1− kf

ki
cos θif

〉
≈ 〈1− cos θif〉 =

2ki∫
0

(
1− 2k2

i−q2

2k2
i

)
q2dq

2ki∫
0

q2dq

=
6

5
(B.12)

So we say the expected momentum relaxation time for acoustic phonon emission
is

〈τacm (E)〉 =
5

6

1

Γac(E)
(B.13)

〈τacm (E)〉 =
5

8

πvsρ~4

I2mcmdosΞ2

1

E
(B.14)

In general, we define the energy relaxation time by the following [45].

1

τE(Ei)
=

(
1− Ef

Ei

)
Γ(Ei) (B.15)

Since we know the final state is initial state missing a phonon quantum, Ef = Ei−~ω,
we have
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1

τE(Ei)
=

(
~ω
Ei

)
Γ(Ei). (B.16)

For acoustic phonon emission, we take an expectation value of ~ω = ~vsq as

〈
~ω
Ei

〉
=

〈
~vsq
Ei

〉
=

~vs
(

3ki/2

)
Ei

=
3

2

vs
√

2m∗Ei
Ei

(B.17)

such that the energy relaxation time in this case is

〈τacE (E)〉 =
2E

3vs
√

2m∗E

1

Γac(E)
(B.18)

〈τacE (E)〉 =
πρ~4

2
√

2mcmcmdosI2Ξ2

1√
E

(B.19)

B.2.2 Field dependence for the case of acoustic phonon emis-
sion

By our power-law prescription of Ridley, we see that the momentum relaxation
time goes as E−1 while the energy relaxation time goes as E−1/2. Employing equations
B.7, we find average values of velocity and energy. We now may think of these as the
drift velocity and the mean carrier energy.

vacd =
53/5π1/5

26/5

v
3/5
s ρ1/5~4/5

(I2)1/5m
3/5
c m

1/5
dosΞ

2/5
(eF )1/5 (B.20)

〈Eac〉 =
52/5π4/5

29/5

v
2/5
s ρ4/5~16/5

(I2)4/5m
14/5
c m

4/5
dosΞ

8/5
(eF )4/5 (B.21)

To note in particular, drift velocity goes as ∝ F 1/5 and mean energy ∝ F 4/5.
We should be cautious of the expression for the ”threshold field” of equation B.5.

At a CDMS working temperature of TL = 40 mK, 3
2
kBTL ≈ (0.3 − 1.0) × 1

2
mcv

2
s ,

depending on the effective mass of the carrier. Elastic approximations are not valid
at this energy, so equation B.5 is not particularly useful. In any case, we know
that carriers cannot be in thermal equilibrium as they cannot emit phonons to reach
equilibrium with a temperature below the speed of sound energy.
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B.3 The steady state under optical phonon emis-

sion

This framework also allows us to consider steady-state conditions when scattering
is dominated by other processes. Here, we consider the non-polar optical phonon
emission in the isotropic, T = 0 limit.

Γop(E) =
I2Ξ2

0mdos
√
mc√

2πρω0~3

√
E − ~ω0 (B.22)

where these quantities have been introduced in our chapter on scattering mechanisms.
Note that the scattering rate must be either zero or positive, so emission with a carrier
energy below the ~ω0 threshold is energetically not allowed.

The process of optical phonon emission is highly inelastic. The final momentum
state is randomized and much smaller in amplitude than the initial momentum. Con-
sidering the momentum relaxation time of equation B.9, we say that the momentum
relaxation time is simply the inverse scattering rate,

〈τ opm (E)〉 =

√
2πρω0~3

I2Ξ2
0mdos

√
mc

1√
E − ~ω0

(B.23)

where we know that the scattering rate remains zero below threshold, so that the
momentum relaxation time must be infinite.

For energy relaxation, the phonon quanta are always set by the optical phonon
frequency, ω0. We have

〈τ opE (E)〉 =

(
E

~ω0

)
1

Γop(E)
(B.24)

〈τ opE (E)〉 =

√
2πρ~2

I2Ξ2
0mdos

√
mc

E√
E − ~ω0

(B.25)

We have to implement our velocity and energy expressions carefully, as we have a
threshold effect in place for this scenario. It still works out under the framework we
have established above, however.

〈Eop〉 = ~ω0 +
2π2ρ2ω0~5

(I2)2m2
cm

2
dosΞ

4
0

(eF )2 (B.26)

The mean energy offset of ~ω0 is just the obvious outcome of a non-trivial energy
threshold. Otherwise, the field dependence goes as ∝ F 2.
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We find that the field dependence of the energy in the momentum relaxation time
return a drift velocity of

vopd =

√
~ω0

mc

(B.27)

The solution achieved via Boltzmann Transport Equation [115] is

vopd =

√
23 ~ω0

3π mc

(B.28)

which represents the same limit, but is 15% smaller.
So the drift velocity, when dominated by optical phonon emission, is saturated

at this value. If there is an adequate ”plateau” in future drift velocity measure-
ments at higher fields, comparing to this value may make for a good double-check of
systematics.

In reality, perfect saturation does not take place. As a function of increasing field,
equation B.23 begins to become a poor approximation. As carrier energy increases
with field, it becomes substantially larger than ~ω0. Emission of a single optical
phonon does not completely randomize the momentum. The momentum relaxation
time starts to become longer than simply the scatter time. As a result, drift velocity
begins to again increase with field. Furthermore, other non-ideal effects such as non-
parabolicity and interaction with the higher conduction (valence) minima also change
the average properties of the system as an ensemble.

B.4 The lack of a steady state under impurity scat-

tering

Impurity scattering is considered elastic. There is no energy lost in a scattering
event, so the energy relaxation time is infinite. There can be no steady state as there
is no dissipation to balance the power gained from the electric field.

A momentum relaxation time can be a valid concept under ionized impurity scat-
tering, however. To note, the momentum relaxation time takes considerably longer
than a scatter time–at least for ionized impurities–because small-angle scattering is
favored [57].
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Appendix C

Displaced Maxwellian Distribution,
as a Function of Energy

Here, we examine the form of the displaced Maxwellian. We find this defined
in terms of momentum and not energy. It is useful to convert this to a function of
energy. Although that may seem trivial at first, we can actually use this to derive
the Wannier relation [84] for expected energy.

C.1 A multivariate normal distribution

Even accounting for mass anisotropy and other effects, carriers undergoing ran-
domizing, near-elastic phonon scattering can be depicted by a multivariate normal
distribution.

A general form for the multivariate normal distribution (tong) is

f(kkk) =
1

(2π)n/2|ΣΣΣ|1/2
e−Q(kkk)/2 (C.1)

where n = 3 is the dimensionality, and

Q(kkk) = (kkk − k0k0k0)TΣΣΣ−1(kkk − k0k0k0) (C.2)

In this case, k0k0k0 is the average momentum wavevector, corresponding to ”drift” mo-
mentum.

To further connect to physical quantities, we define an element of ΣΣΣ as

Σij =
kBTij
~2

(
1

mij

)−1 (C.3)

To formulate an isotropic model, we can consider this covariance matrix as a
diagonal matrix with equal components. So for the sake of a simplified model, we
assert
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Σij =
kBmcT

~2
δii (C.4)

where mc is the conductivity effective mass.

C.1.1 An effectively isotropic average momentum wavevec-
tor

In dealing with crystal anisotropies, we have several different mass terms for which
we must account. We of course have not been assuming the conductivity mass, mc,
as the effective mass in most of our work. The exercise before us is to determine an
adequate isotropic approximation for general use. We can ”normalize” the average
momentum wavevector amplitude such that the drift energy term is preserved and
the ”average” conductivity mass can be used.

In other words, we want to ensure that the energy held in the average wavevector
under the full anisotropy treatment will be equivalent to a similar term in a simple
isotropic approximation.

~2

2
k0k0k0

T (mmm−1)k0k0k0 =
~2k∗20

2mc

(C.5)

where the quantity k∗0 is an isotropically weighted vector,

k∗0 = |k0k0k0|
(
< m−1 >

mc

)1/2

(C.6)

and this mass expectation value is determined by

< m−1 >=
k0k0k0

Tmmm−1k0k0k0

k0k0k0 · k0k0k0

(C.7)

So in this way, we are able to identify an isotropically balanced average wavevec-
tor, k∗0, for use with an isotropic conducitvity mass, mc, for use in an isotropically
approximate distribution.

C.1.2 The displaced Maxwellian distribution

We are therefore able to make a simplification of a displaced Maxwellian distribu-
tion, of the normalized form

f(k, ϑ) =
1

(2πkBmcT/~2)3/2
e
−
(
k2+k∗20 −2kk∗0 cosϑ

2(kBmcT/~2)

)
(C.8)

where ϑ is the angle between momentum vector kkk and k∗0k
∗
0k
∗
0, the drift wavevector.

We further reduce this function by taking an angular expectation value over polar
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coordinates in k-space. We multiply by 2π for the azimuthal angle integration, we
perform the ϑ expectation integral and weight by the k-vector volume element. We
do not yet do the integration over wavevector amplitude.

g(k)dk = 2π

 π∫
0

f(k, ϑ) sinϑdϑ

 k2dk =

(
e
− ~2(k−k∗0)2

2kBmcT − e−
~2(k+k∗0)2

2kBmcT

)
√

2π
√

kBmcT
~2

k

k∗0
dk (C.9)

C.1.3 Normallzation and Wannier relation

To check, we can see that we are properly normalized, and

∞∫
0

g(k)dk = 1 (C.10)

Furthermore, we find an important relation by taking the expectation value for
typical energy.

< ε(k) >=

∞∫
0

ε(k)g(k)dk =

∞∫
0

~2k2

2mc

g(k)dk (C.11)

Evaluating, we find

< ε(k) >=
3

2
kBT︸ ︷︷ ︸

εdiffusion

+
~2k∗20

2mc︸ ︷︷ ︸
εdrift

(C.12)

What we have established is the Wannier relation, which states that carrier energy
is approximated as the energy held in stochastic, thermal, or diffusion energy, 3

2
kBT ,

is summed with the drift energy which is held in the average momentum,
~2k∗20

2mc
.

C.1.4 Expressing the displaced Maxwellian as a function of
energy

Most processes are energy dependent, so energy is the quantity we are most in-
terested in for distribution functions.

We re-evaluate the integrated displaced Maxwellian, substituting in for energy.
We utilize

k =
√

2mcε/~ (C.13)

and therefore

dk =
dk

dε
dε =

mc

~2k
dε (C.14)
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to find

g(k)dk = g(ε)dε =

mc

e− ~2
(√

2
√
εmc
~ −k∗0

)2

2TkBmc − e−
~2

(√
2
√
εmc
~ +k∗0

)2

2TkBmc


~k∗0
√

2π
√
kBTmc

dε (C.15)

Multiplying out the arguments of the exponentials, we find the following

g(ε) = mc
k0~
√

2π
√
kBTmc

[
exp

(
− ε
kBT

+
√

2k0~
√
εmc

kBTmc
− k2

0~2

2mc
1

kBT

)
− exp

(
− ε
kBT
−
√

2k0~
√
εmc

kBTmc
− k2

0~2

2mc
1

kBT

)] (C.16)

To interpret, this distribution is the difference of two exponential factors. At zero
energy, the distribution becomes identically zero. About zero, a lowest-order series
expansion in energy gives a

√
ε dependence. At highest energies, the distribution falls

off like a Boltzmann factor, as exp(−ε/kBT ).
The energy at the distribution maximum is difficult to solve for, analytically. How-

ever, in most situations the drift energy tends to be smaller than the thermal/diffusive
energy,

~2k∗20

2mc

<<
3

2
kBT (C.17)

Therefore, the distribution maximum is within the range,

~2k∗20

2mc

< εmax < (
~2k∗20

2mc

+
3

2
kBT ) (C.18)

To summarize, we have formulated an approximate distribution function, possibly
useful for describing the energy of carriers in an isotropic case.
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Figure C.1: A displaced Maxwellian distribution, which is similar to a Maxwell-
Boltzmann distribution but with a drift component.
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Appendix D

In Search of the Non-Equilibrium
Chemical Potential

The Fermi level in semiconductors is not defined when equilibrium conditions do
not exist. In this appendix, we continue to piece together all that we can make of this
situation by looking at generation and recombination rates in bulk. For purposes of
finding a steady-state condition when dealing with interfaces, we find a representation
of a bulk mean energy when charge-neutral conditions exist. This ”bulk neutrality
level,” ”proxy Fermi level,” or simply ”non-equilibrium chemical potential” may be
an adequate substitution for the Fermi level under some non-equilibrium conditions.

D.1 Balancing non-thermal rates deep in bulk (no

gradients)

We balance generation and recombination rates of electrons, holes, donors, and
acceptors. To start, we first treat the free carriers.

D.1.1 Balancing rates of electrons and holes in deep bulk

From previous work we know that electron and hole concentrations, deep in the
bulk of a semiconductor, should asymptote to a steady state. This state is where the
rates of generation and recombination are balanced.

In this case, the continuity equation for electrons is

ṅ = g − n

τn
(D.1)

Quite simply, we find a static value where the rate change is zero. This is true
also for holes.
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n = gτn

p = gτp
(D.2)

In this treatment, we continue to leave out recombination by excitons (electrons
recombining to holes directly). Ignoring excitonic recombination not only simplifies
the equations, but it also represents an interesting departure from typical assumptions
in device literature. We believe ignoring excitions is representative of our typical
device conditions. However, it may prove beneficial to consider them later.

For this note, we further assume no probability for impact ionization.
The recombination rate in our simple model of shallow impurities will include

terms for both the ionized and neutral capture.
For this note, we commit a common crime in that we pretend capture rates are

uncorrelated and energy-independent. We can then simply add rates for ionized and
neutral capture by way of Mathieson’s rule. For electrons, these rates are given by
products of thermal velocities, capture cross-sections, and trap densities of ionized
donors and neutral acceptors. For convenience, the products of thermal velocities
and capture-cross sections are grouped into ”cn...” capture coefficients. The following
rate is the inverse relaxation time for electrons to recombine both to ionized donors
and to neutral acceptors.

1/τn = 1/τnD+
+ 1/τnA0

1/τn = σnD+vthnN
+
D + σnA0vthnN

0
A

1/τn = cnD+N
+
D + cnA0N

0
A

(D.3)

We also express the corresponding capture rate of holes to ionized acceptors and
neutral donors.

1/τp = 1/τpA− + 1/τpD0

1/τp = σpA−vthpN
−
A + σpD0vthpN

0
D

1/τp = cpA− N−A + cpD0 N0
D

(D.4)

So in deep bulk, carrier concentrations could be said to be the following.

n = g(
1

cnD+N
+
D + cnA0N0

A

)

p = g(
1

cpA−N
−
A + cpD0N0

D

)
(D.5)

D.1.2 Balance of shallow trap rates

Now we consider the case for steady-state populations of donors and acceptors.
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We begin with donors. By capture of carriers, we see that the evolution of donor
concentration is the following.

Ṅ+
D = cpD0N

0
Dp− cnD+N

+
Dn (D.6)

For a steady state, we consider that

cpD0N
0
Dp = cnD+N

+
Dn (D.7)

The corresponding evolution of acceptors is the following.

Ṅ−A = cnA0N
0
An− cpA−N−A p (D.8)

For this acceptor steady state, we consider that

cnA0N
0
An = cpA−N

−
A p (D.9)

In order to express the variables N+
D and N−A , we will make the substitution

relating neutral traps to the total number of traps.

N0
D = ND −N+

D

N0
A = NA −N−A

(D.10)

Note that this excludes the possibility of ”overcharged” states in this model. As
mentioned in previous work, we ignorantly claim the capture cross-section for over-
charged capture to be negligible by argument of extremely small potential well ener-
gies.

D.1.3 Combining steady-state rates for carriers and shallow
traps

Plugging in the steady-state rates of carrier recombination into the equations for
traps, we find the following two equations to solve. For donors,

gcpD0

(
ND −N+

D

)
cpA - N

−
A + cpD0

(
ND −N+

D

) =
gcnD + N

+
D

cnA0

(
NA −N−A

)
+ cnD + N

+
D

(D.11)

and for acceptors,

gcnA0

(
NA −N−A

)
cnA0

(
NA −N−A

)
+ cnD + N

+
D

=
gcpA - N

−
A

cpA - N
−
A + cpD0

(
ND −N+

D

) (D.12)

To keep the entropy in our expressions to a minimum, define now a fraction of
ionized traps, which we will call ζ.
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For the fraction of ionized donors, we will use the following.

N+
D = ζD ND (D.13)

The fraction of ionized acceptors will likewise be defined as

N−A = ζA NA (D.14)

Using ”ζ” terms in our expressions and solving, we find the following expression
for the fraction of ionized acceptors.

ζA =
N−A
NA

=

(
1− ζDcnD + cpA -

(ζD − 1)cnA0cpD0

)−1

(D.15)

We now need to interpret this expression.

D.1.4 Interpreting the ionization fraction of traps.

Let’s examine this expression more thoroughly.

ζA =
N−A
NA

=

(
1− ζDcnD + cpA -

(ζD − 1)cnA0cpD0

)−1

(D.16)

As ζD becomes identically zero, the fraction of ionized donors becomes unity.

lim
ςD→0

ζA = 1 (D.17)

Conversely, as ζD becomes one we have

lim
ςD→1

ζA = 0 (D.18)

So quite obviously we have a pronounced inverse relationship. Now it happens
that extremely small but positive definite values of ζD give ζA values constant near
unity until ζD becomes much larger than a value of

ζD ≤
1

cnD+cpA−
cnA0cpD0

− 1
≈ cnA0cpD0

cnD+cpA−
≈ 10−8 (in order for ζA ≈ 1) (D.19)

We are free to neglect the one in the denominator as it becomes trivial compared
to the ratio of capture rates. The rates for ionized impurity trapping are several
magnitudes higher than those for neutral traps.

As ζD approaches unity, ζA inversely follows until ζA becomes close to
cnA0 cpD0

cnD+ cpA-
.

As ζD becomes identically one, ζA abruptly falls to zero.
So as long as both ζD and ζA are somewhat larger than

cnA0 cpD0

cnD+ cpA-
, we find the

ionization ratios follow a simple inverse relation.
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ζA ≈
1

ζD

cnA0 cpD0

cnD+ cpA-

(D.20)

To summarize our work up to this point, we can posit this as

ζDζA = (
N+
D

ND

)(
N−A
NA

) ≈ cnA0 cpD0

cnD+ cpA-

≈ 10−8 (D.21)

D.2 Using charge neutrality in the bulk

What else can we say? We could assume that in deep bulk that charge neutrality
would hold. In this case, we would say

n+N−A = p+N+
D (D.22)

Inserting our steady-state expressions from the beginning, we find that solving for
N+
D is still difficult. Solving for N+

D is not analytically approachable as it becomes a
5th degree polynomial. Our nice approximation from the previous section does not
help, as the polynomial becomes then degree six.

Perhaps we can take this in approximation. We re-write.

n+N−A − p−N
+
D = 0 (D.23)

This becomes

g

cnA0

(
NA −N−A

)
+ cnD+ N

+
D

+N−A −
g

cpA- N
−
A + cpD0

(
ND −N+

D

) −N+
D = 0 (D.24)

In the above expression, we take advantage of our ionization fraction approxima-
tion.

N−A =
cnA0 cpD0

cnD+ cpA-

NAND

N+
D

(D.25)

So we should solve for N+
D from the following equation.

g

cnA0

(
NA −N−A

)
+ cnD+ N

+
D

+
cnA0 cpD0

cnD+ cpA-

NAND

N+
D

− g

cpA- N
−
A + cpD0

(
ND −N+

D

)−N+
D = 0

(D.26)
Now, if we series expand this expression in N+

D to order one, we find the following.

(
cnA0cpD0NAND

cnD + cpA -

)
1

N+
D

−
(
cpD0NANDc

2
nA0 + gcnD - cnA0 + gcnD + cpA +

c2
nA0cpD0NAND

)
N+
D = 0

(D.27)
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Grouping N+
D , we see that

(
N+
D

)2
=

(
cnA0cpD0NAND
cnD+ cpA-

)
(
cpD0NANDc

2
nA0+gcnD- cnA0+gcnD+ cpA+

c2nA0cpD0NAND

) (D.28)

We regroup this expression.

(
N+
D

)2
=

(
cnD + cpA -

cnA0cpD0NAND

+
gc2

pA - c
2
nD + + gcnA0cpA - c

2
nD +

c3
nA0c

2
pD0N

2
AN

2
D

)−1

(D.29)

For reasonable values, the predominance of neutral trapping probabilities makes
the second term in parentheses several orders of magnitude smaller than the first
term. It is reasonable to say,

(
N+
D

)2
=

 cnD+cpA−

cnA0cpD0NAND

+
gc2

pA−c
2
nD+ + gcnA0cpA−c

2
nD+

c3
nA0c

2
pD0N

2
AN

2
D︸ ︷︷ ︸

≈0


−1

≈
(
cnA0cpD0

cnD+ cpA−

)
NAND

(D.30)
With these approximations, we find the rather balanced result

N+
D = N−A =

√(
cnA0 cpD0

cnD+ cpA−

)
NAND (D.31)

As we are claiming bulk neutrality, it should not be all that surprising that the
population of ionized donors and ionized acceptors is balanced. What is different
about this general scenario, versus true thermal equilibrium, is that both populations
of traps remain highly neutralized. Unlike a thermal equilibrium situation, the popu-
lation of electrons and holes were generated from the intrinsic bulk, yet they recombine
only to impurities.

D.3 So what, then, of this Fermi level substitu-

tion?

The conditions of the previous section indicate that the bulk is rather symmetric in
its charged constituency. What, then, can we say about some singular, characteristic
energy? From other work, we know that such a concept would be quite useful when
considering the interface to an external system.
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Equilibration to some external system would be performed by the mobile carriers.
In other words, free electrons and holes are the agents of interaction. The kinetic
energy distributions of the electrons and holes span small energies in comparison
to the germanium band gap. We therefore take electrons to have an energy of the
conduction band, and holes to have energy of the valance band. Our Fermi-level
proxy, E∗F , is a weighted mean of the carrier energy.

E∗F =
n EC + p EV

n+ p
(D.32)

We know that steady-state values in the bulk are determined by a generation-
recombination balance.

E∗F =
(gτn) EC + (gτp) EV

(gτn) + (gτp)
=
τn EC + τp EV

τn + τp
(D.33)

From the results of the previous section, we use the following.

τn =

{
cnD+

√(
cnA0cpD0

cpA−cnD+

)
NAND + cnA0

(
NA −

√(
cnA0cpD0

cpA−cnD+

)
NAND

)}−1

τp =

{
cpA−

√(
cnA0cpD0

cpA−cnD+

)
NAND + cpD0

(
ND −

√(
cnA0cpD0

cpA−cnD+

)
NAND

)}−1 (D.34)

This is a little difficult to deal with unless we again take some approximations.

D.3.1 Assume symmetry between electrons and holes.

We’ve been doing this all along, more or less. This will be interesting to re-
question later, with expectation values from microscopic transport plugged in. in my
retirement, in other words. For now, we just say neutralization capture probabilities
are similar for electrons and holes. Likewise, ionized trap recombination is similar for
electrons and holes.

c0 = cnA0 = cpD0

cI = cnD+ = cpA−
(D.35)

D.3.2 Recognize that the capture probability by a neutral
impurity concentration is small.

Knowing that c0 is small, it gives us reasonable variable with which to series
expand. Expanding in terms of c0, the first two terms of our expression become
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E∗F ≈
(
ND +

√
NAND

)
EC +

(
NA +

√
NAND

)
EV

ND +NA + 2
√
NAND

+

√
NAND (ND −NA) (EC − EV )(
ND +NA + 2

√
NAND

)2 (
c0

cI
)︸ ︷︷ ︸

≈0

(D.36)
The first term dominates the expression. We find the rewarding result that

E∗F ≈
(
ND +

√
NAND

)
EC +

(
NA +

√
NAND

)
EV

ND +NA + 2
√
NAND

(D.37)

For balanced impurity concentrations, this expression returns a proxy Fermi level
around mid-gap (E∗F ≈ EC+EV

2
). However, unbalanced impurity concentrations may

allow the proxy Fermi level to veer substantially towards one or the other band-edge.
This occurs even though the vast majority of impurities remain neutralized. One
might ask how this energy level can veer to one band edge or the other if there is
overall charge neutrality. What matters is that the populations of electrons and holes
can be substantially unbalanced. This is because there are so many impurities –
even counting just the ionized ones – that the burden of charge neutrality is taken
up predominantly by impurities. This is true even when the electron/hole generation
rate is on the high side of reasonable.

Figure D.1: The proxy Fermi level, plotted normalized.

Considering a straightforward metal-germanium interface, a typical Schottky-
induced surface level is pinned around 0.1 eV above the valence band, EV . At ultra-
low temperature, this represents about 0.14× (EC −EV ), as we have a 0.74 eV gap.
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As per our proxy Fermi level prediction, we would need NA/ND > 40 to find the bulk
of such a sample veer to p-type behavior near this contact.

D.4 Conclusion

We predict a steady-state condition based on a non-equilibrium chemical potential,
which depends primarily on impurity concentrations. Knowledge of surface state
equilibrium energy is also required for full-out ”band-bending” predictions.

Nothing in this short note is intended to be conclusive. It is expected that the
conservation of recombination current at the contact should result in appropriate
band-bending to meet this proxy Fermi level. To be theoretically conclusive, showing
this requires the simultaneous solution of Poisson’s equation, as well as continuity
equations for electrons and holes. This work is underway, but the solution need not
lend itself to a general closed form and will to some degree rely on numerical solutions.

The degree to which the proxy Fermi level holds valid may also depend upon
bias conditions. Some caveats mentioned above would need to be reconsidered under
bias-dependent conditions. The strict charge neutrality condition in the bulk should
be scrutinized. In addition, gradient terms in the continuity equations, due to drift
or diffusion currents, could complicate this derivation.

To conclude, it is a good guess that a considerable amount of detector phenomenol-
ogy likely originates from band-alignment of a given contact’s work function to this
level. A lot of charge collection behavior – dynamic over position and in time – could
possibly be interpreted as due to the regions of accumulated charges required for this
band-alignment.
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Appendix E

Appendix: Simple 1D
Drift-Diffusion Equations, for
Simple Insight

The purpose of this section is to demonstrate a simple understanding from a
simple treatment of drift - diffusion equations. By understanding how electron and
hole concentrations are distributed within a simple one - dimensional slab, we can
infer how bound space charge distributions may accrue.

We examine a few simple relations, adding slightly more sophistication along the
way. What we find is that, for uniform generation throughout the bulk, we tend to
find that there are only a few parameters which describe how carriers are distributed
across the crystal. The nature of a ”drift velocity” may pull carriers to one side, but
the constant bulk generation rate sees to it that carriers are populous throughout the
crystal in the steady state.

Carriers are generated in the bulk with uniform illumination. Carrier-carrier in-
teraction is neglected. The surfaces at z = 0 and z = L are assumed to be strongly
absorbing, so carrier concentrations are assumed to be zero there. Figure E.1 is il-
lustrative of the system. The dynamics of carriers in the bulk are described by drift
and diffusion currents. While carriers transit the detector bulk, they may also trap
and recombine into bound states.

We treat the the drift velocity and diffusion constants with asserted values, ap-
propriate for ∼ V/cm sort of fields. Here, nothing is modeled self-consistantly with
an electric field. However, if we consider that the effect of space charge upon the
total field in the crystal is initially a perturbation, the distributions we solve for here
still bring us insight as to how built-in fields develop while detectors are in operation.
So, solving for the distribution of free carriers tells us where charge bound states are
initially occurring.
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Figure E.1: A depiction of the drift-diffusion equations, including genera-
tion/recombination rates, and boundary conditions
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The 1D drift-diffusion equations for electrons (n) and holes (p) are the following.

ṅ = vdn
∂n
∂z

+Dn
∂2n
∂z2 − n

τn
+ g

ṗ = −vdp ∂p∂z +Dp
∂2p
∂z2 − p

τp
+ g

(E.1)

We also make use of Poisson’s equation throughout, using bound charge densities
of positive (Np) and negative (Nn) states.

∂2V

∂z2
=
−ρ
εε0

=
−|e|
εε0

(Np −Nn) (E.2)

The integration of bound charge is found by the simple recombination rates ( 1
τn

& 1
τp

) and integration time, τint.

Nn =
τint∫
0

dNn
dt
dt = n

τn
τint

Np =
τint∫
0

dNp
dt
dt = p

τp
τint

(E.3)

E.1 Parameters for a toy model

Here, we introduce some parameters for making some rough estimates for carriers
under drift at the scale of ∼ V/cm fields.

Parameter Value Description
g 104 cm−3s−1 uniform generation rate
vdn 2.6× 106 cm s−1 electron drift velocity
Dn 3, 900 cm2 s−1 electron longitudinal diffusion
τn 20 µs electron recombination time
sn 105 cm s−1 electron surface recombination velocity
vdp 1.6× 106 cm s−1 hole drift velocity
Dp 38, 000 cm2 s−1 hole longitudinal diffusion
τp 50 µs hole recombination time
sp 105 cm s−1 hole surface recombination velocity
L 2.54 cm detector length
εε0 1.417× 10−12 A s cm−1 V −1 germanium dielectric factor
τint 600 s an integrated exposure time of 10 minutes

E.2 Considering only diffusion and generation terms

Solving for carrier concentrations in the steady state (ṅ = ṗ = 0), we solve
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Dn
∂2n
∂z2 = −g

Dp
∂2p
∂z2 = −g

(E.4)

with the Dirichlet boundary conditions n(0) = n(L) = p(0) = p(L) = 0.
The solutions are

n(z) = g
2Dn

(Lz − z2)

p(z) = g
2Dp

(Lz − z2)
(E.5)

which are parabolic in nature.
From these distributions, we can use Poisson’s equation as in equation E.2 to

immediately solve for the potential energy due to only the carrier distributions. Recall
that potential energy is defined as U = eV = −|e|V , and retains the negative sign of
the electron charge. We can then solve for the integrated space charge distribution
as per equation set E.3. As this space charge is simply scaled by the integration
time, the distribution of bound charge for this toy model replicates the same spatial
distributions as the free carrier distributions. Figure E.2 depicts the free carrier
distributions, as well as the resultant potential energy distributions.

The integrated potential terms go as

UNn = e2gz(L3−2Lz2+z3)
24Dnεε0

(
τint

τn

)
UNp = − e2gz(L3−2Lz2+z3)

24Dpεε0

(
τint

τp

) (E.6)

As we would expect, these solutions are symmetric as are the carrier distributions.
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Figure E.2: The case for only diffusion and generation terms. a. electron and hole
free carrier distributions in the steady state b. the potential energy terms due to
the free carrier distributions c. the potential energy terms due to the space charge
integrated onto bound bulk states
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E.3 Considering drift, diffusion, and generation terms

Now we introduce the drift term back into our solutions.

ṅ = vdn
∂n
∂z

+Dn
∂2n
∂z2 + g

ṗ = −vdp ∂p∂z +Dp
∂2p
∂z2 + g

(E.7)

For the steady state, we solve the following.

vdn
∂n
∂z

+Dn
∂2n
∂z2 = −g

−vdp ∂p∂z +Dp
∂2p
∂z2 = −g

(E.8)

The general form for the free carrier distributions looks like the following.

n(z) = Cn1
Dn
vdn
e−

vdnz

Dn − gz
vdn

+ Cn2

p(z) = Cp1
Dp
vdp
e

+
vdpz

Dp + gz
vdp

+ Cp2
(E.9)

The constants ”Cx” are determined by boundary conditions. Notice that the included
terms go either proportionately with z, or by exp(∓vdz/D).

Including our n(0) = p(0) = n(L) = p(L) = 0 boundary conditions, we find the
following specific free carrier distributions.

n(z) = − gL
vdn

evdn(L−z)/Dn

(evdn(L)/Dn−1)
+ g

vdn

(
LeLvdn/Dn+z−zeLvdn/Dn

evdn(L)/Dn−1

)
p(z) = − gL

vdp

e
vdp(+z)/Dp

(e
vdp(L)/Dp−1)

+ g
vdp

(
L−z+zeLvdp/Dp

e
vdp(L)/Dp−1

) (E.10)

So overall, we find a ∼ z ”ramp-like” term which traverses the majority of the
detector bulk and signifies that carriers are drifting to one side as they are being
generated. This distribution is combined with the Euler-characteristic exp(∓vdz/D)
response very close to the boundary condition, where drift current into the contact
balances with diffusive currents back into the bulk. Note that the characteristic length
D/vd ≈ 10 µm for electrons, (≈ 100 + µm for holes!) arises completely due to the
balance between diffusion and drift currents. This is a unique length constant; in
literature a ”diffusion length” is typically defined in conjunction with the relaxation
time, τ , as λdiff =

√
Dτ . A translational drift length might be defined by λdrift = vdτ .

Here, where bulk relaxation occurs slowly, enough that it’s contribution is negligible
to the dynamical balance between drift and diffusion.

The resulting potential terms become more cumbersome than the case of diffu-
sion+generation only, but they still retain a surprisingly symmetric – nearly parabolic
– nature. Figure E.3 illustrates this.
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Figure E.3: The case for drift, diffusion, and generation terms. a. electron and hole
free carrier distributions in the steady state b. the potential energy terms due to
the free carrier distributions c. the potential energy terms due to the space charge
integrated onto bound bulk states
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E.4 Considering drift, diffusion, and generation as

well as recombination terms

When we consider the effect of the recombination times τn and τp, we find that
they have little impact on the shape and amplitude of the free carrier distributions
unless these constants approach times about as small as the drift transit times, L/vdn
or L/vdp, respectively. Of course, the relaxation times do impact the space charge
amplitudes only because the integration of free carriers onto bound bulk states is
directly proportional to the relaxation times.

As these functions are becoming cumbersome, we only point out the free carrier
distributions without regard to boundary conditions.

n(z) = gτn + Cn1 exp

− z

(
vdn+

√
4Dn+v2

dn
τn

τn

)
2Dn

+ Cn2 exp

− z

(
vdn−

√
4Dn+v2

dn
τn

τn

)
2Dn


p(z) = gτp + Cp1 exp

− z

(
vdp−

√
4Dp+v2

dp
τp

τp

)
2Dp

+ Cp2 exp

− z

(
vdp+

√
4Dp+v2

dp
τp

τp

)
2Dn


(E.11)

Considering a finite τ , note that the arguments in these exponentials will vary
between characteristic lengths of a traditional diffusion length,

√
Dτ , to a drift length,

vdτ . We are typically in a ”drift-like” versus a ”diffusion-like” scenario as

vdτ �
√
Dτ (E.12)

under most circumstances for large τ .
Once again, for any impact on the shape of free carrier distributions, we must

consider very short relaxation times. In figure E.4, we tune down constants to τn =
2 µs and τp = 4 µs
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Figure E.4: The case for drift, diffusion, generation, as well as recombination terms.
For a pronounced difference in the relative shape of the distributions, we had to
substantially shorten the recombination times τn and τp. a. electron and hole free
carrier distributions in the steady state b. the potential energy terms due to the free
carrier distributions c. the potential energy terms due to the space charge integrated
onto bound bulk states



267

E.5 Reconsideration of the boundary conditions

Rather than Dirichlet boundary conditions, it also important to consider where
absorption of carriers into the boundaries is not infinite. In the case of finite ab-
sorption into the boundaries, we specify Neumann boundary conditions which is a
constraint on the carrier flux. The current into the contact is specified by a surface
recombination velocity. We denote sn for electrons, and sp for holes.

Considering only holes for illustrative purposes, the concentration current balance
at z = L and at z = 0 are the following.

vdpp(L)−Dp
∂p(L)
∂z

= spp(L)

−vdpp(0) +Dp
∂p(0)
∂z

= spp(0)
(E.13)

Figure E.5: Surface recombination boundary conditions, illustrated by considering
hole current into the boundaries a. The current of holes balanced by surface recom-
bination at z = 0. b. The current of holes balanced at z = L.

It is interesting to note when the derivative of the carrier concentration flips
between decreasing at the contact (representing a local depletion to the boundary),
versus an increasing derivative, representing accumulation.
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For instance, at z = L we can simply solve for ∂p(L)
∂z

= 0. In this case, we find that
we have a flat distribution (no gradient) when vdp = sp. So when the drift velocity
is exactly balanced by the surface recombination velocity the contact can accept, the
free carrier distribution has no derivative at the contact.

For illustrative purposes, we show in figure the free carrier distribution in the ex-
treme case where sn = sp = 105 cm/s. This shows that free carriers are accumulating
in a shock front immediately at the contact, subtending a width on order of length
∼ D/vd.
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Figure E.6: The case full drift, diffusion, generation, and recombination, but with
finite surface recombination velocities for both electrons and holes. a. electron and
hole free carrier distributions in the steady state b. the potential energy terms due
to the free carrier distributions c. the potential energy terms due to the space charge
integrated onto bound bulk states
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Appendix F

A Simple One-Dimensional
Continuity Equation for Holes at a
Contact

The purpose of this appendix is to explore analytical solutions to the continuity
(or ”drift-diffusion”) equation at a boundary, for a single species. We wish to explore
the form of the solutions under different assumptions, to build intuition. Arbitrarily,
we chose to work with holes.

We have an interest in contacts to germanium with an assumed negative charge.
To that end, we disregard electrons for now, and consider how a hole density may
accumulate as a function of depth into the substrate. We solve the partial differential
equation for holes, assuming no coupling to Poisson’s equation. The electric field
enters this treatment only as a drift velocity. The purpose is to establish an analytical
solution which may offer some easily interpretable insight. We take insight into solving
the continuity equation in this manner, following Balkanski and Wallis [61].

F.1 The continuity equation, in one dimension

The continuity equation for holes, in one dimension, is written as

dp

dt
= −µdp

dx
E − µpdE

dx
+D

d2p

dx2
+ g − r (F.1)

Let’s solve for equilibrium by setting dp
dt
→ 0. To simplify our work, we also assume

the electric field gradient is small, so dE
dx
→ 0.

D
d2p

dx2
= µ

dp

dx
E − g + r (F.2)
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F.1.1 Recombination

We could go on and on about recombination (capture) rates. There is a wealth
of scattering-level input to be utilized here. For now, a simple recombination rate
is assumed. Naively, we assume holes are trapping to neutral sites. As we disre-
gard self-consitancy with Poisson’s equation and ionized centers, the actual trapping
mechanism is not important for this treatment.

We express the recombination rate in terms of a lifetime.

r =
p

τ
(F.3)

F.1.2 Drift velocity

We assume carriers are always in equilibrium with the electric field. The electric
field will enter our idealized continuity equation only in this way.

We make the replacement,
vd = µE (F.4)

With this, we adjust our continuity equation.

F.2 Solving for the hole distribution

We now solve the following expression.

D
d2p

dx2
= (vd)

dp

dx
+ (

1

τ
)p− g (F.5)

This has solutions of the form

p(x) = gτ + p1e
−x/Leff + p2e

x/Leff (F.6)

where p1 and p2 are constants and

Leff =
1

2
{vτ + (4Dτ + v2τ 2)1/2}. (F.7)

This effective length, Leff , reduces to the diffusion length, LD =
√
Dτ , when the drift

velocity is zero.
To be physical, we throw out solutions of the growing exponential form. Therefore

we set p2 to zero. To finish, we must solve for the constant p1. We can do this by
incorporating a proper boundary condition.
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F.3 Boundary conditions, and surface recombina-

tion velocity

We use the device-level concept of a surface recombination velocity, s, to aid us in
our understanding the boundary conditions of a contact.

F.3.1 Balancing current density at the contact

Consider that the carrier flux, or the current density, out of the substrate is only
partially absorbed on incidence.

The current density of outbound holes – meaning they are leaving the substrate
and are incident at the contact – can be expressed by

jout = (e)
1

4
vth p. (F.8)

Technically, we speak of an electric current, so we keep an electron charge e associated
with this for now. Note it is the thermal velocity, vth, that determines this stochastic
flux. A factor of 1/4 arises through an expectation integral over solid angle (show
this!).

Some fraction of this flux is scattered back into the substrate. We introduce a
reflection coefficient, rr, which is some fraction of unity. We use ”rr” with a subscript
to keep it separate from ”r,” our recombination rate.

We also consider that the amount of carriers injected from the contact is a flux,
S.

The current density of these inbound holes – entering from the contact – is given
as

jin = rr(e
1

4
vth p) + eS (F.9)

We utilize equilibrium, solving for the net flux equal to zero,

jnet = jout − jin = (e){(1

4
(1− rr)vth p} − eS = 0 (F.10)

or

S =
1

4
(1− rr)vth p (F.11)

So to maintain the steady-state across the boundary, we need to observe this net
flux, S.

We simplify this condition by introducing the surface recombination velocity as

s =
1

4
(1− rr)vth. (F.12)
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This quantity, by inspection, is some fraction of the thermal velocity. The steady-state
flux becomes simply

S = sp. (F.13)

F.4 Solving for the boundary condition

In this section, we make use of the current determined by drift and diffusion, and
equate it to the flux equilibrium we deduced above.

The current density by drift and diffusion can be written as

jp = epvd − eD∇p. (F.14)

Define our boundary at x = 0. We consider the amplitude of flux at x = 0 in
one dimension. Note that we express the flux moving into the contact, i.e., in the
negative x direction.

(
−jp
e

)|x=0 = (−vdp+D
dp

dx
)|x=0 = −vdp(0)+D

(−p1)

Leff
= −vd(gτ+p1)− D

Leff
p1 (F.15)

The steady-state incident flux must be equal to the flux which is recombining.
This was determined in the previous section.

S|x=0 = s p(0) = s (gτ + p1) (F.16)

Equating, we find

vd(gτ + p1) +
D

Leff
p1 = −s (gτ + p1) (F.17)

which provides

p1 = −gτ (
1

1 + D
Leff (s+vd)

) (F.18)

So we replace ”p1” in the expression for hole density as a function of depth, and find

p(x) = gτ {1− (
1

1 + D
Leff (s+vd)

)e−x/Leff} (F.19)

The density far off in the bulk asymptotes to

p(∞) = gτ (F.20)

which is where generation balances recombination, and local drift/diffusion has no
impact.
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At x = 0, the density expression becomes

p(0) = gτ(
D

D + Leff (s+ vd)
) (F.21)

which signifies a density deficit compared to the bulk, provided all constants are
positive. This demonstrates that recombination at the contact is a lossy mechanism
and is pulling carriers out of the ambient population at the substrate surface.

We were wondering about an accumulation layer of holes, which would screen the
presence of negative charge at the contact. How does this work, then, if carriers are
being captured, and their density is thinned near the contact? Perhaps the answer
is that the electric field due to negative surface charge enters this expression by way
of the drift velocity? To point out, a drift velocity due to negative charges at x < 0
requires a minus sign in our convention. This is because drift current of holes will
be flowing backwards in this case. Can we reach an enhanced density over bulk at
x = 0? Well, at vd = −s we see we at least break even. Is this really the solution we
were looking for, though?

F.5 Equating the full current for the boundary

condition

In the previous section, we assumed only the drift and diffusion terms mattered
at the contact. In the literature, we often see that even the drift term is ignored.
Can we call this well enough, then? Well, in the case of large CDMS detectors, we
have a centimeter or more of bulk generating holes and electrons. All these carriers,
modulo the ones that recombine, pile up at the contacts. So above, we have forgotten
to integrate the carriers pulled from out of the deep bulk.

Let’s go back to the continuity equation to define our current.

−dp
dt

=
1

e
∇ · jp (F.22)

What does this say about the negative-going, contact-incident current at x = 0?
Perhaps we say

−jp(0)

e
=

∫ 0

Ldet

(
dp

dt
)dx (F.23)

As we have a spatial integral now, we can define Ldet is the length of the detector.
The negative-going flux at x = 0 is then

−jp(0)

e
= {−vdp+D

dp

dx
− g(x− Ldet) +

p

τ
(x− Ldet)}|x=0 (F.24)
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giving

−jp(0)

e
= −vd (gτ + p1) +D

−p1

Leff
+ gLdet −

(gτ + p1)

τ
Ldet (F.25)

We should balance this expression against the steady-state surface recombination to
satisfy our boundary condition.

−vd (gτ + p1) +D
−p1

Leff
+ gLdet −

(gτ + p1)

τ
Ldet = s (gτ + p1) (F.26)

So we find

p1 = −gτ(
1

1 + LdetLeff+Dτ
Leff(sτ+vdτ)

) (F.27)

Using this coefficient back in our expression for p(x),

p(x) = gτ(1− 1

1 + LdetLeff+Dτ
Leff(sτ+vdτ)

e−x/Leff) (F.28)

We see that at x = 0,

p(0) =
gτ (Dτ + LeffLdet)

(Dτ + LeffLdet) + Leffsτ + Leffvdτ
(F.29)

Which tells us that, again, the hole density at the contact is suppressed compared
to the p(∞) = gτ of the bulk, unless the condition that vd < −s.

Is this as it should be? Is it only through the strong field (and position) dependence
on vd that we may get a strong hole distribution near the contact?

Strong recombination to the contact will still make the hole population tend to
zero at x = 0.

This work has been an interesting aside, but not as informative as hoped. To end,
we also point out possibilities for a simple numerical method.

F.6 An Euler-step method to numerically find the

field & density distribution

We know the form of the density distribution, given a drift velocity from the
electric field. If we have a known (negative) surface charge at x = 0, we know the
field and drift velocity (vd = µ−σ

ε
) immediately at the surface. Therefore, we also

have the numerical value for p(0) = gτ+p1. We can integrate in depth for the electric
field using the density distribution.

E(x) = −σ
ε

+ e

∫ x

0

p(E(x′), x′)dx′ (F.30)
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If we take infinitesmal steps, ∆x, we might use a form such as

E(n+ 1) = E(n) + ep(E(n), n)∆x (F.31)

If the desired accuracy is not met by this approximation, using a stock Runge-
Kutta routine is also a possibility.

F.7 End remarks regarding this single-species model

at a boundary

This toy model is very basic. Although we may use non-equilibrium values for
the appropriate drift and diffusion constants, a fundamental flaw is that we assume a
”semi-infinite bulk.” In our very mobile and completely depleted (frozen-out) CDMS
detectors, a depth of several centimeters into a substrate still does not constitute
finding a steady-state bulk condition. The behavior of concentration dynamics on
one side of the detector may still influence behavior all the way across. Nonetheless,
this appendix still represents a healthy exercise for understanding the behavior of free
carriers near an interface.
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Appendix G

Hypothetical Space Charge Layers,
and a Simple Dead Layer Model
Based on Drift and Diffusion

This is an overview of a space charge layer understanding at contacts, assuming
completely charged impurity regions. This approximation is appropriate where im-
purity charge states can be completely saturated by adequately high concentrations
and diffusion profiles can be ignored. A treatment of 1D drift / diffusion dynamics
then gives a response profile of carriers near a contact, leading to a formulation of an
ideal dead layer.

G.1 The appearance of a space charge layer be-

tween a metal and semiconductor

Here is an explanation of space charge layer formation. This is common to many
device physics references.

Consider the interface between two materials: a metal and a semiconductor. We
could have instead considered the interface between two metals or two semiconductors.
Why study the metal/semiconductor interface? The metal/semiconductor system is
a good way to understand the energetic dynamics of one semiconductor to external
conditions. A metal represents a sea of free electrons, with an energy level that is
extremely hard to displace by steady-state processes. As it is complicated enough
to understand one semiconductor’s steady state while imposing external boundary
conditions, a metal/semiconductor interface is a good system to study. In figure
G.1 a., we draw as a function of position the band diagrams of the metal (left) and
semiconductor (right). These materials we first draw as spatially separated. The
potential energy of the metal, relative to the energy of the vacuum, is called the work
function, and is denoted φm. A semiconductor has a forbidden energy gap between
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it’s valence and conduction bands, so referencing these two levels is just slightly more
complicated. It is useful to define a work function also for a semiconductor, φs, which
is the energy difference from vacuum to what is typically the equilibrium Fermi level.
As an aside, the issue of what to do when we have NO Fermi level, (i.e., no thermal
equilibrium) is the subject of another work. We also define the energy difference
between the vacuum level and the conduction band, as a quantity referred to as the
electron affinity, χ.

We bring the metal and semiconductor in proximity to each other. As the charge
carriers in both materials are able to interact, we find generally a net difference in
population density will occur. Either electrons or holes from the semiconductor will
migrate to the metal in order for electrostatic charging to occur, producing an energy
difference that brings both materials into steady-state. In other words, electrostatic
charging aligns the Fermi levels of both materials. In figure G.1 b., we notice that
the semiconductor has a Fermi level, denoted by the dashed line, which is rather
high in the bandgap representing an n-type semiconductor. To lower this fermi level
and match the metal’s work function, electrons from the semiconductor must migrate
into the metal. Once again, the metal represents a sea of free carriers, so this excess
carrier concentration makes no appreciable change in the metal’s band alignment.
What used to be a net neutral semiconductor now has some region of net positive
charge. A space charge region has now been produced inside of the semiconductor.
If we solve Poisson’s equation, we find that this boundary dipole has created the
potential energy difference to align the Fermi level of the metal to that of the net
neutral semiconductor. So we see that this electric displacement is a necessary feature
of the steady-state, and we should expect it to occur at any metal/semiconductor
interface. Our CDMS detectors are no exception. Figure G.1 c. demonstrates that
an n-type semiconductor, with its positive space charge region, bends upward toward
the interface with a metal or other material of a larger work function. The case is
opposite for a p-type semiconductor.

The specific case of a junction between a metal and a semiconductor is called a
Schottky barrier. ”Space charge layer” can refer generally to the charge region in
a semiconductor due to any surface or contact interface. So this is a good term to
use. Actually, the case of a metal on an intrinsic semiconductor can be called a Mott
barrier, but no one is going to know what you are talking about. CDMS germanium
detectors are of course an epitome of intrinsic operation, so it is a shining opportunity
for some sort of paper with ”Mott barrier” in the title.

G.2 The space charge layer

In the last section, we found that a space charge layer produces band bending.
We also found that each material on its own was net neutral, so we must have formed
a balanced, electrostatic dipole. We can relate the energy difference overcome by
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Figure G.1: a. metal and a semiconductor have work functions relative to vacuum
energy, b. in proximity, carriers from the semiconductor will migrate to the metal
and leave behind an imbalanced charge forming the dipole necessary for energy equal-
ization. c. for the case of this n-type semiconductor, band-bending is upward toward
the metal as the metal has a larger work function.
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carrier displacement to find the charge needed.
Other works will describe charge accumulation under different conditions. Dif-

fusion lengths are an important and interesting topic, and are likely important in
describing charge accumulation near detector bare sidewalls. Here, we assume that
some impurity, either donors or acceptors, will become completely charged over some
rectangular spatial width to meet steady state conditions. This is a good assump-
tion when microscopic drift fields are large, localized carriers to the interface before
recombining and charging impurities. Therefore, a population of completely charged
impurities will grow from the interface back into the semiconductor bulk until some
equilibrium is reached.

Assume planar contacts and a constant charged density, N . Using Poisson’s equa-
tion in 1D,

d2φ

dx2
= −ρ

ε
(G.1)

Assume that we have a charge density of completely charged donors, ρ = ND. We
can integrate from the metal boundary into the semiconductor to find

E = −dφ
dx

=
eND

ε
x (G.2)

In turn, if we solve for the full potential drop, we find

(φm − φs) = φms = −eNDW
2

2ε
(G.3)

where W is the width of the charge layer.
So,

W =

√
2εφms
eND

(G.4)

The expression is similar for p-type layers, as the quantity φms becomes negative,
as does the charge density.

We see we have an integrated charge at the interface of

Qm = −Qs = −eNDW (G.5)

Plugging in some numbers, we claim that a typical potential energy across the gap
edge would be φms = 0.1 eV . In our intrinsic detectors, assume ND = 1011 cm−3. We
find an expected charge layer of ≈ 40 µm ! This is huge. We should be prepared for
values of φms of this size, but it goes to show that our very pure crystals may force a
large charge width to form, as it takes some depth to integrate enough charge density
to screen the semiconductor interface.

While we are at it, consider also the strength of the electric field produced. We
can solve for the maximum field, at the interface, and find for our example,
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Emax =
eND

ε
W = 2φms/W (G.6)

which comes about to be ≈ 50 V/cm. This is an order of magnitude larger than
our typical drift fields. So in fact, we would expect a zero-field point and a complete
reversal of the drift field somewhere a distance W into the bulk of our detector, near
one of the two contacts. Near which contact would depend on the polarity of the
applied field and whether the crystal is n or p-type.

G.3 A simple device with both contacts

We illustrate these scenarios in figure G.2. We suggest a symmetric device as a
detector, noting that we apply a voltage bias across it. The resulting conditions for
either an n-type or p-type crystal show how carriers would react in the bulk. It is
tempting to speculate if the reversed field region is responsible, above and beyond
diffusion dynamics, for low-charge events or even reversed charge collection to some
extent (at the percent level). Near-surface events could be affected by the field-reversal
regions that would act as ”collection gutters.” To note, this naturally occurring space
charge is a benefit to charge collection on the side where it enhances the field.

The evolution of space charge layers with time and with bias will definitely be im-
portant. The placement of the germanium non-equilibrium chemical potential (defin-
ing φs) can change with drift field amplitude. Integrated charge from the bulk can
also ”eat” away or contribute to these charge layers. Likely, though, a return to
grounded conditions will re-enable these charge layers to evolve back into this steady
state. Keep in mind that the space charge layer accumulated in the first place for the
sake of energy equilibrium, for material interface reasons.

G.4 Peculiarities of germanium: level pinning, dam-

age, and hydrogen

There are specific propensities of germanium that add to this device understand-
ing.

G.4.1 Level pinning

Fermi level pinning is a property that comes up a lot in regards to Schottky bar-
riers on particular semiconductors. Material properties of the metal/semiconductor
interface can allow a large density of surface states to dominate the apparent work
function of the interface as seen by the semiconductor. So absolute values of the
work function of a metal, as measured for instance by photoemission techniques, may
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Figure G.2: a. this model suggests a simple, symmetric device as a detector with
applied voltage bias, b. examples are in columns for n-type and p-type behavior,
c. the charge density mapping out the space charge regions at both contacts, d.
note how drifting electrons and holes interact with the resulting net field, including
field-assisted and reversed-field regions.
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no longer completely determine the height of the Schottky barrier. A way around
this is to specify for a semiconductor a modifier to introduce an effective metal work
function for the junction.

In the case of germanium, the surface state physics to a metal is so pronounced
that pinning more or less takes over the energy level placement. This is the subject of
a lot of condensed matter theory of interfaces. Surface states responsible for pinning
are not defects or ”dirty” interfaces, but are quantum mechanically allowed states
that arise from the proximity to the metallic states in the adjacent metal. These are
called Metal Induced Gap States (MIGS).

Metals tend to demonstrate an effectively pinned work function that is low along
the germanium gap, close to the valence band edge.

I propose a benchmark model, where any metal (or generally any contact, for now)
is simply given a work function pinned to 0.1 eV above the valence band.

G.4.2 Damage and hydrogen

Germanium is looking for an excuse to be p-type at surfaces, it seems. It is known
from traditional nuclear physics detectors that damage in germanium detectors tends
to act p-type. Some theories suggest that both hydrogen and lattice damage in
germanium may allow states that exist even below the valence band edge. This
is not something that comes up a lot. Since hydrogen and damage both have a
propensity to act p-type, it suggests that trying to passivate in germanium may be
a bad idea as one tends to just add acceptor-like states when hydrogenating. This is
not the understanding gained in silicon, where hydrogen passivation works because it
is ambivalent and will couple with bonds that need repair.

So add to a benchmark model that lattice damage (or atomically diffused hydro-
gen) act as acceptors, with states near or at the valence band edge.

G.4.3 A specific case of implantation damage

Here is a SRIM simulation result of ion implanting 50 keV Fe+ into germanium
with a 400 angstrom a-Si layer, figure G.3. About half of the ions make it into the
germanium. Of those ions, the typical number of damage sites created was 150. So
say a dose of 1012 cm−2 Fe+ generates 1014 cm−2 damage sites into 200 angstroms
of the surface. Now this damage is present only where there is a lack of metalized
electrode coverage, but it still represents a lot of the surface area of the detector face.

Iron is a deep center. It could act ambivalent. Forget it for now. But the damage
may be notable. A concentration of damage acceptor sites at 5×1019 cm−3 is enough
to bend a p-type work function across 0.1 eV in a distance

Wdamage ≈ 2 nm. (G.7)
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Figure G.3: SRIM ion stopping simulation of implantation damage, where there is a
lack of electrode coverage.

This distance happens to be approaching atomic scales. Likely tunneling by field
emission becomes probable, but for p-type germanium devices.

To the point, germanium damage such as this (or from other surface prep) might
act as a p+ region. So for p-type detectors, such regions could account for band-
bending over shorter distances. N-type detectors would see the opposite effect. Ger-
manium n-type devices tend to rectify and require long space-charge regions anyway,
but an added p+ region only adds potential energy to the barrier. The work function
difference to overcome may be closer to 0.74 eV (the T=0 full gap) rather than 0.74
- 0.1 = 0.64 eV. Space charge regions in n-type detectors are probably wider, with
damage and hydrogen effects acting as a detriment.

Moreover, n-type detectors with their wider space charge regions, generally have
a lower electric field due to the space charge. This means the abrupt field model may
need to be revisited. Drift-diffusion dynamics may take place over a wider, low-field
region. Dead layers on the field-reversal side of n-type detectors may likely be the
worst we see, with hydrogenation and damage only contributing to this.

G.5 Summarizing space charge layers

To summarize, both n-type and p-type detectors may have space charge layers near
their surfaces. These regions of space charge would superimpose contributions to the
electric field. These contributions would assist charge collection with higher fields
near one surface, but with a conversely low (and likely even reversed) field direction
at the opposite contact. This would decrease the drift length by some margin for all
events, and be a detriment to events which originate within the reversed-field region.
The spectra of emitted Luke phonons may also be complicated by non-uniform drift
fields.
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The model presented here may be a worst-case limit, in that the trace impurity
concentrations of our detectors make for a very large space-charge widths. It could be
that the physical treatments of the actual surfaces in reality provide higher concen-
trations of states with which to bend the bands. This would result in much shorter
distances.

The evolution of space charge under bias is important. It may be these space
charge layers ”burn off,” with charging events. This would be rate-dependent, how-
ever, and the regions would return when unbiased and left to naturally find their
steady state. Evolution of space charge layers could be predicted, for instance, by
solving drift-diffusion equations along with continuity equations (see other work).

Interesting prospects are that doping procedures should likely be able to fix (or
preferentially enhance) these effects in both n and p-type crystals.

Knowing some of the peculiarities of germanium, we should be suspect of n-type
crystals as having potentially larger space-charge regions.

G.6 Drift-diffusion dynamics for a dead layer model

Now we also introduce a simple dead layer model, appropriate for use with trans-
port quantities for mobility and diffusion. We basically put a literal treatment of
”diffusion” into the term we always use, ”back-diffusion.” We speak of back-diffusion
at the contacts regarding the dead layer, so there is no reason not to posit this in a
simple model with a proper diffusion constant. We will balance the stochastic nature
of diffusion-dominated current, and see where that motion gives way to drift in the
electric field.

G.6.1 The abrupt field approximation

We saw in previous sections that the electric field can be large compared to the
external drift field when entering a space charge region. Consider the appropriate
contact next to the supposed field-reversal region. For an applied field of ∼ V/cm, the
space-charge field rather sharply can invert this field to opposite polarity over a short
distance. Note figure G.4. We call this ”the abrupt field approximation.” Therefore,
under this approximation, we treat the field dependence of transport quantities of
vd and D as constant in the drift-field region, and assume that point of entering the
field-reversal region serves as a point of no return.

So this will be the simple model assumed in this treatment.

G.6.2 Carrier concentration

The diffusion equation is separable, so we start with a drift-diffusion solution for
either electron or hole transport, appropriate in 1D. As a function of time, we call
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Figure G.4: Here is a hypothetical electric field (V/cm) experienced by a carrier, near
the field-reversal contact. We call the ”abrupt field approximation” a constant drift
field that goes to some extreme space-charge field, discretely, beyond some threshold
distance.

the 1D carrier concentration as,

N(z, z0, t) =
N0√
4πDt

e−
(vdt+z−z0)2

2(2Dt) (G.8)

where N0 is the initial carrier concentration per unit depth, z. The initial event
location started at z0. The diffusion constant (implicit that it is field dependent),
is given by D. Likewise, the drift velocity is given by vd. We see that we have a
simple gaussian that spreads by diffusion with time, and has a constant velocity in
the mean due to the drift velocity. The intuition will be that diffusion lengths go as
ldiff =

√
Dt, whereas drift velocity increments by ldrift = vd t. So as a function of

time, there will be transition from a diffusion-dominated step size to a drift-limited
step size.

We can define drift and diffusion currents.
The electric current density due to a diffusing concentration of carriers is

Jdiff = −(q)D
dN

dz
. (G.9)

Using our expression and ignoring any time derivates of the drift velocity, we find

Jdiff = qD
N0(vdt+ z − z0)e−

(vdt+z−z0)2

2(2Dt)

2t
√

4πDt
(G.10)

The current density for a simple drift current is

Jdrift = qvdN (G.11)
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giving

Jdrift = qvd
N0√
4πDt

e−
(vdt+z−z0)2

2(2Dt) . (G.12)

Comparing the two currents, as in the bottom of figure G.5, we find that the drift
current is always traveling forward. Diffusion, on the other hand, is omnidirectional
and gives a bipolar distribution. The negative-going current on this plot represents the
current that actually moves against the applied electric field. It is our back-diffusion.

What if we ask when does the current due to back diffusion equal the current
due to forward drift, for a given point in space? Balancing currents in this way tells
us when the distribution behind the centroid quit moving backward on average, and
began a drift-dominated net motion forward in the electric field. We solve for this
particular time of balance, as a function of position between initial event point z0,
and the ”point of no return,” z′.

tbal =
z0 − z′

3vd
(G.13)

As a function of position variable z′, we take the concentration at this special time
of balance. For an event originating at a point z0, tbal represents the time for which
the gaussian distribution gives a back-diffusion current balanced by a forward drift
current in the field. Assume that everything farther than the point z′ is lost to the
wrong contact, or lost to the space-charge region first.

We can take the cumulative distribution of this concentration, and essentially map
out how much of the gaussian will be swept away toward the proper contact, as a
function of position.

NCDF(z′, z0) =

∫ ∞
z′

N(z, z0, tbal)dz (G.14)

As long as z0 > z′, then plugging in for the concentration returns

NCDF(z′, z0) =
N0

2
(1 + erf

[√
vd
3D

(z0 − z′)
]
). (G.15)

This function, normalized, gives the fraction of charge collected for a given initial
position, z0. Note that a characteristic length depends on the ratio of balancing
mobility against diffusion.

lback−diffusion ≈
D

vd
(G.16)

Note also that the CDF at a given value of (z0 − z′) = D
vd

returns a numerical

value of 0.794 ≈ 0.80. So a collection level of 80% may be an appropriate benchmark
to specify a dead layer in the future.
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We plot the CDF in figure G.6. We use the charge layer width from figure G.4 as
the value of z′. 1D values of D and vd from transport simulations have been used, at
different electric fields. Note that charge collection in this ideal model begins at 50%
rather than at zero. This is because drift and diffusion currents in the forward half
of the gaussian concentration are already forward-going, and diffusion complements
drift.

G.7 Concluding the simple dead layer model

We used a simple approximation for electric field, which we called the abrupt field
approximation. Solving drift and diffusion in a simple 1D model for non-ideal electric
fields is possible, but does not keep this simple analytical form. One could also think
about initial non-steady-state effects or extra diffusive processes like initial plasma
droplet diffusion. A way to account for initial diffusion effects would be to introduce
an initial time t0, adjusted to give diffusion a ”head start” over drift, again originating
at some initial position z0.

The merit of what we have produced here is a benchmark formula, in the form
of a simple error function. It relates in an ideal way the dominant dynamics of the
problem, which is the field-dependent drift velocity balanced against the stochastic
random walk of the diffusion current.

We found that a typical dead layer length should go as the ratio of two fundamental
quantities, D

vd
.

Under the abrupt field approximation, we also suggest the possibility of a ”very

dead” dead layer, on order of the width of the space-charge region,
√

2εφms
eN

. Here,

we would not be sensitive to collection dynamics, unless we can evidence some por-
tion of backward going events at the ≈ percent level. Is it possible we have been
oblivious to this region? The charge collection dynamics we typically consider would
originate from positions outside of this region. Again, this model is not claiming that
these space charge regions must be this large, as long as there would be some high
concentration of appropriate impurities near the surface to ”bend the bands” over a
much smaller space-charge region. Since damage acts slightly more p-type, it would
make sense that p-type detectors, depending on surface treatment, may have less of
these effects. Intentional doping would also serve this purpose, for either n or p-type
crystals.

On one last note, electric fields in very wide space charge regions may not work
well under the abrupt field approximation. If the typical space charge width goes
on for 100’s of um, then the intensity of the charged back-field is generally smaller.
This back-field becomes on order of the applied field. This may be the case for n-
type detectors, for instance. In this case, the abrupt field approximation doesn’t hold
and collection dynamics may depart substantially from this ideal model. Diffusion
currents would be allowed to gradually dominate in a different way. Recombination
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effects may even be present. It would make sense that the field-reversal regions of
n-type detectors would show a response that is substantially different than this ideal
model.
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Figure G.5: top; a carrier concentration we see is a gaussian distribution. bottom;
the contributions to the total current for drift and diffusion are shown at one point
in time.
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Figure G.6: The dead layer response. The fractional charge collected as a function of
initial event location, z0. The ideal response starts at a value 50%. Under the abrupt
field approximation, this occurs at position z′ at the edge of the space-charge region.
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Appendix H

A Note About Our Existing LED
Wavelength for Neutralization

This appendix simply points out a fact about the photon wavelength emitted by
the LEDs we use to neutralize our detectors. It remains to be seen what role it may
play.

After periods of biased use, CDMS detectors are grounded and ”baked” with
LED flashes of light. The principle is for photons to generate free carriers within the
detector bulk while the detectors are grounded. This generates free charges to nullify
possible bound space charge. We call this our ”neutralization” process.

An interesting fact is that the wavelength chosen for our LEDs is actually too
short. The light from our GaAs LEDs (Photonic Detectors, Inc. SMT Type PDI-
E940SM) is peaked at 1.31 eV (940 nm). Values close to this were verified experimen-
tally at cryogenic temperatures despite bandgap changes [116]. From the wavelength
distribution presented in manufacturer’s spec sheet, the light emitted can be well
approximated by a Gaussian distribution with a deviation of 0.04 eV.

In silicon, 1.31 eV photons are of an energy just above the lowest gap minimum,
able to excite an electron-hole pair and an optical phonon. The generated phonon is
necessary, as the lowest gap in silicon is indirect. An indirect gap is such that the
conduction and valence minima are offset in wavevector, or momentum. Note figure
H.1. So for generating electron/hole excitations across the indirect gap, a phonon is
a required constituent of every excitation [117]. This is what we were intending to
occur in germanium, as well.

In germanium, however, this LED wavelength behaves quite differently. Here, 1.31
eV represents an energy well into the germanium’s direct gap (Γ). A photon excitation
of the direct gap occurs without subtending a change in momentum. Photons alone
can excite this gap, without the assistance of a phonon to conserve momentum. This
kind of absorption is a simpler interaction, and can occur much more readily [20].

A consequence of exciting the direct gap is that photons absorb over substantially
smaller depths. Light is absorbed in materials as I = I0 exp(−αx). As per [20],
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Figure H.1: A comparison of band placement, germanium relative to silicon. Our
LED photons excite the indirect gap in silicon as expected. For germanium, they
excite well into the direct gap at Γ (k = 0). Underlying figure taken from Sze [19].

the absorption coefficient for 1.31 eV light is 25 cm−1 in the indirect gap of silicon,
vs. 104 cm−1 in the direct gap of germanium. Note figure H.2. This is true despite
the slight (∼ 10%) increase in the bandgaps near T = 0 K versus 300 K. The
characteristic absorption length in silicon of ∼ 1/2 mm is therefore 400 times longer
than the ∼ µm length in germanium.

Incidentally, a sharp increase in absorption coefficient with increasing energy is
measured at the direct gap. This is referred to as the ”absorption edge [20],” and is
actually how these bands were measured in the first place.

A consequence of this short-distance absorption is that electron/hole pairs are
generated only quite near the surfaces of our detectors. They must diffuse deep into
the crystal to neutralize bulk space charge. Conceivably, the neutralization process
may be less efficient with this photon absorption profile.
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Figure H.2: The absorption coefficient for germanium, as a function of incident photon
energy. The ”absorption edge” occurs at the direct gap, as phonons can readily absorb
by the direct process. Even for T ∼ 0, our LED photons penetrate only at ∼ µm
scales. From [20].
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Appendix I

The CDMS SQUID Amplifier

In this appendix, we introduce the CDMS SQUID amplifier, exploring it using
basic, linearized feedback theory. This way, it should be possible to develop a good
appreciation for the signal transduction of our TES current pulses into readout signals.
This is also a good way to understand the trade-offs we balance when we ”tune” the
SQUID arrays for optimum performance.

It was a pleasure to work with Dennis Seitz in this effort, putting into practice
this knowledge in the lab. We came to appreciate the behavior of the error signal,
which allowed us to develop criteria for the SQUID tuning procedure at the Soudan
Laboratory. Our SQUID arrays are produced by Martin Huber at U. of Colorado,
Denver. He and Bruce Hines contributed a good deal to the later material in this
appendix.

For a more general review on SQUID amplifiers, see reviews such as [118, 119].

I.1 The SQUID array

The cornerstone of the open-loop gain is of course the SQUID itself. The SQUID
acts as a transresistance pre-amplifier, converting current signals in the input coil
into voltage signals for the next-stage amplifier. Although our circuit uses a many-
junction SQUID array, operationally it can be considered similar to a two-junction
DC SQUID. Below, we give the important details of basic SQUID parameterization.
For reference, possibly the most popular explanation of a SQUID [120] was written
before the acronym was adopted. Other handy references are found in [121, 122, 123].

I.1.1 An ideal two-junction SQUID

In brief, SQUIDs utilize the fact that magnetic flux in a superconducting loop
is quantized in increments of the flux quantum, Φo. The SQUID is itself a super-
conducting loop, though spliced by Josephson junctions. As magnetic flux is passed
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through the loop, the superconducting phase across the junctions must change rela-
tive to each other to maintain the flux quantization condition. This high sensitivity
to magnetic flux is how the parallel Josephson junctions collectively modulate their
summed supercurrent, and is the key aspect of SQUID performance.

The relationship between magnetic flux and the superconducting phase difference
between the junctions can be found by solving the Josephson relations, as in Chap-
ter 5 of [122], with a constraint on the superconducting order parameter from the
Ginzburg-Landau equations. For the single best reference on this, reference [122] is
recommended. What is of immediate practical concern is the functional dependance.
Say we have junctions 1 and 2. The phase for 2 is

φ2 = φ1 + 2nπ − 2π
Φ

Φo

(I.1)

If we assume each junction contributes Ic
2
sin(φ) in current, then the sum of current

through the SQUID is

Itot =
Ic
2
sinφ1 +

Ic
2
sinφ2 (I.2)

Itot =
Ic
2

(sinφ1 + sin(φ1 −
2πΦ

Φo

) (I.3)

Maximizing this total current gives us the maximum critical current through the
device.

ItotC = Ic|cos
πΦ

Φo

| (I.4)

The above equation is what is useful to us in characterizing the SQUID response. As
the SQUID self-inductance is low, we ignore self-induced contributions in the flux.

I.1.2 Connection to a single Josephson junction

We seek the I-V curve of the ideal SQUID. To do this, it is useful to first consider
a single Josephson junction.

The Stewart-McCumber treatment [122] models a single Josephson junction as
components (current source, resistor, capacitor) in parallel. Solving with the Joseph-
son relations for current and voltage, we arrive at what is sometimes known as the
pendulum-analogy equation. This equation relates the total current through the junc-
tion to the time-dependent phase. Although the instantaneous voltage is oscillating
at a frequency of order 100 GHz, the Stewart-McCumber treatment allows us to solve
for a non-trivial time-averaged voltage. Ignoring the capacitance term,
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V = 0 for I < Ic (I.5)

V =
Ic
G

√
(I/Ic)2 − 1 for I > Ic (I.6)

Where G is the conductance of the junction. Notice this function extrapolates to
the ohmic regime V = I/G at large currents I � Ic.

Figure I.1: The idealized relation between I(Φ), V (Φ), and Φ. Our SQUID amplifier
maintains a constant current bias, represented by the constant plane. Notice the
V − Φ response this creates. A bias current I > Ic will not allow any V = 0 points.

It can be shown (as on p. 225 of [124]), that the time-averaged voltage across a
SQUID is similar to that across a single junction except with a flux-dependance. The
natural extension of Eqn. I.4 combined with Eqn. I.6 results in the proven result for
the ideal SQUID I-V relation:

V (Φ) =
Ic
G

√
(I/Ic)2 − cos2(π

Φ

Φo

) (I.7)

or equivalently,

I(Φ) =

√
V 2G2 + I2

c cos
2(π

Φ

Φo

) (I.8)

We can see from the above relations that the utility of a SQUID comes from its
flux sensitivity, present in both V or I. In utilization of SQUIDs in circuit, a constant
I (V) must bias the SQUID while a transient response in phi is readout as a change
in V (I). Either choice is valid. Most often, biasing a SQUID with constant current
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and measuring a transient voltage is useful in coupling to high-impedance amplifiers.
This is the situation in our amplifier.

I.1.3 SQUID equivalent circuit and internal impedance

We have established the voltage relation for our current-biased SQUID. To de-
velop this further as a circuit model, let’s now consider what internal impedance the
SQUID line should have. Shunt resistors bridge the Josephson junctions on every
SQUID in the 100-SQUID array. Their purpose is to reduce hysteretic effects in the
I-V curve not discussed here. These additional shunt resistors supply greater conduc-
tance, so less voltage is induced across each SQUID element. Yet in a series array
of 100, an adequately large voltage can be established to amplify an input signal
above the voltage noise inherent in the SQUID line. Each SQUID element receives
approximately the same flux, so the array acts coherently as an ensemble to produce
the output voltage. Although the array flux-dependance may not precisely resemble
cos2(π Φ

Φo
), it is clearly has a flux-period of Φo. This is how we may treat the array

as an equivalent single-SQUID. Two resistors in parallel in each element, with 100
elements in series, gives a conductance in this case G ≈ (50 Ω)−1. The SQUID coils
themselves produce a net self-inductance that is perhaps ∼ 40− 45 pH.

I.1.4 Simplification for the small-signal model: SQUID re-
sponsivity

We think in terms now of a model representing small-signal deviations from qui-
escent levels. Our SQUID will be in a closed-loop circuit, which means transient
SQUID voltages (should) never be far from the equilibrium ”lock point.”

It is intuitive to think of the SQUID as a device which drives a (change in) current
through its own impedance as a function of applied flux. The equivalent voltage model
can be represented as a source with the impedance now in series. We should point out
that the stage following the SQUID (the preamp) in our amplifier has an enormous
input impedance compared to the SQUID itself. For most purposes, the SQUID line
impedance (Gs and Ls) can actually be disregarded.

Furthermore, we simplify characterization by introducing the responsivity, ZSQ.
Responsivity is a transresistance. It is practical to measure, and denotes the voltage
change across the SQUID for a given change in coil current: (

dvSQ
dicoil

). The AC input coil
current, iin, passes through an input coil which couples magnetic flux to the SQUID
via a mutual inductance Min. All we require from the V − Φ curve (the empirical
equivalent of Eqn. I.7) is the differential voltage response, dvSQ/dφ, calculated at the
lock point.

When considering ZSQ values, one must take care to distinguish whether the
quoted value is referred to the input coil or the feedback coil. For the remainder of
this analysis, ZSQ will always be referenced to the input coil .
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ZSQ =
dvSQ
diin

= (
dvSQ
dφ

)(
dφ

diin
) = η Min (I.9)

where

η =
dvSQ
dφ

(I.10)

Min =
dφ

diin
(I.11)

Responsivity is chosen by ”tuning” the equilibrium voltage (lock point) of the
circuit to the appropriate point on the V − Φ curve.
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Figure I.2: The top row demonstrates the reduction of the SQUID into a simple
(controlled) voltage source and series impedance. This impedance is small and can
be neglected most of the time. The middle row shows the actual SQUID voltage
relative to DC input current. The derivative of this relation is shown in the bottom
row, which is used to deduce the value ZSQ for a given current bias. In this small-
signal model, all we need to consider is that the SQUID acts as a voltage source
vSQ = iinZSQ. Be it known that, for ease of measurement, these plots were actually
measured relative to the feedback coil.
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I.2 Transfer function and bandwidth

I.2.1 Closed-loop amplifier with simple feedback

In this treatment, a traditional closed-loop transfer function for a linear feedback
amplifier is used. In this introduction, a quick summary of the method is explained
for review.

Figure I.3: A signal-flow diagram of an amplifier, demonstrating feedback.

Consider Figure I.3. In this example amplifier, we have an input voltage and an
output voltage. Let’s start first at the output voltage. Points 1 and 4 are common to
the output, and must share the same value. Starting at point 1, the output voltage
signal is passed through the feedback network, passing the value βVout to point 2. At
Σ, the summing node, point 2 is subtracted from the input voltage (since we have
stable, negative feedback). As we follow along to point 3, the voltage must therefore
be equal to Vin − βVout. This voltage is now amplified through the α, the open-loop
gain network. Arriving back at the output, point 4 must be

Vout = α(Vin − βVout) (I.12)

We use this to solve for the transfer function, which is the ratio of output to input,

H =
Vout
Vin

=
α

1 + αβ
(general example) (I.13)

The above equation demonstrates the basic relationship between closed- and open-
loop gain. Again, α is the open-loop gain and would be the transfer function of the
amplifier if the feedback loop were disconnected/opened. Eqn. I.13 is the closed-loop
gain transfer function where we see the effect of the feedback network, β. For the
most part, the open-loop gain of an amplifier is made to be far greater than 1. This
effectively cancels α out of Eqn. I.13, which then becomes 1

β
.

The transfer function and its constituent parts will usually have a frequency de-
pendance. Frequency dependancies will be dealt with in Laplace formalism, where we



302

consider the complex angular frequency s = σ+ jω. If you are unaccustomed to this,
be assured that it is not too cumbersome. Angular frequency ω is the same frequency
variable one would see in Fourier formalism. In fact, Laplace formalism is simply the
natural extension of Fourier formalism in that frequency has been generalized to have
both these real and imaginary components. The purpose of this is to account for both
the oscillatory response of the system (solutions ∝ ejωt) as well as growing/dying
transient responses (solutions ∝ e± σt). In a nutshell, using Laplace formalism is ad-
vantageous because it retains both oscillatory and transient information of the system
response.

In the SQUID circuit we are about to investigate, most of the work will stem from
finding the closed-loop gain similar to Eqn. I.13. A cosmetic detail is that we are
concerned with a SQUID’s output voltage relative to its input current. The SQUID
transfer function will therefore describe an overall impedance (a transimpedance)
between input and output.

I.2.2 SQUID transfer function and bandwidth

Figure I.4: A signal-flow schematic of the SQUID amplifier.

The SQUID amplifier can be decomposed into amplifier subsets α and β as per
the above signal-flow model. If we consider the geometrical layout, the SQUID itself
serves as the summing node as it couples the input line and feedback line. However,
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the SQUID voltage response (dvSQ/dφ) is operationally part of the open-loop gain,
so the SQUID itself is best represented as a component within α. See Figure I.4.

As we begin to identify parameters of the amplifier circuit, please note that nu-
merical values of the parameters are also summarized in a table at the end of this
note.

It is helpful to describe the amplifier chain in sequence. The circuit remains
flux-locked, so ZSQ is valid to describe the coupling of input current to the SQUID.
The resulting voltage output of the SQUID is amplified by subsequent amplifiers
within the open-loop subsystem α. The amplifier chain is functionally idealized as
two amplifiers: the variable gain amplifier, and the integrator. The variable gain AV G
is adjustable to values between 20 and 100. The integrator has a DC gain component
Aint. The important role of the integrator is to provide the open-loop frequency roll-
off, set by an RC pole at angular frequency ωint. The total gain contribution of the
integrator is therefore Aint

ωint
ωint+s

. The output signal vout is a voltage built up across

the feedback impedance Rfb + sLfb. The inductance Lfb is around 4.5× 10−9H, and
can be ignored. The current in this feedback line is magnetically coupled back to the
SQUID via a mutual inductance Mfb.

Putting these terms together, we find

α(s) =
dvSQ
dφ

AV GAint
ωint

ωint + s
(I.14)

β(s) = β =
Mfb

Rfb

(I.15)

Representing α in terms of ZSQ,

α(s) =
ZSQ
Min

AV GAint
ωint

ωint + s
(I.16)

Furthermore, ωint is a small frequency in relation to the frequency intercepts we
will generally be concerned with in this circuit. It is an adequate approximation to
adjust the denominator in α(s):

α(s) ≈ ZSQ
Min

AV GAint
ωint
s

(I.17)

or finally, define the DC open-loop gain

αo =
ZSQ
Min

AV GAint (I.18)

so we can use
α(s) = αo

ωint
s

(I.19)
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With α and β settled, we now consider the closed-loop transfer function. The
mutual inductance of the input coil comes before the summing node, so we must
amend the closed loop gain to read

H(s) = Min
α(s)

1 + α(s)β
(I.20)

We now have

H(s) =
ZSQAV GAint

ωint
s

1 + (
ZSQ
Min

AV GAint
ωint
s

)(
Mfb

Rfb+sLfb
)

=
ZSQAV GAint

ωint
s

1 +
Mfb

Min

ZSQAV GAint
ωint
s

Rfb+sLfb

=
ZSQAV GAintωint

s+
Mfb

Min

ZSQAV GAintωint
Rfb+sLfb

(I.21)

From here on out, it also simplifies the situation to set Lfb ≡ 0. This is justified as
Lfb ∼ 25 nH, and the time constant associated with the feedback network, Lfb/Rfb,
is small (∼ 25 ps).

Rearranging to show the single-pole nature of this function,

H(s) = Rfb
Min

Mfb

( 1

1 + s× MinRfb
MfbZSQAV GAintωint

)
(I.22)

Eqn. I.22 is the transfer function, which we will utilize periodically. Already,
consider the following observations:

• the output voltage signal is developed across Rfb, with a factor Min

Mfb
more current

than the input current.

• the term in parentheses is ∼ unity for modest values of s.

• the term in parentheses acts as a single-pole filter, passing frequency components
under a particular cut-off frequency.

I.2.3 Bandwidth

From Eqn. I.22, we can characterize amplifier bandwidth by the -3dB point.
Finding the f3dB frequency is a matter of finding where

|H(j2πf)| = |H(0)|√
2

(I.23)
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The parentheses term from Eqn. I.22 has the only frequency dependance. By
inspection, it has the functional form of a single-pole low-pass filter.( 1

1 + s× MinRfb
MfbZSQAV GAintωint

)
(I.24)

The pole frequency is synonymous with the -3dB point in a single-pole circuit, so we
can expect a -3dB frequency where α(s) meets the overall DC gain, ≈ 1/β. Notice
this is internal to the feedback loop, so we neglect Min.

|αo
ωint
jω3dB

| = 1/β (I.25)

ω3dB = αoβ ωint (I.26)

So then

f3dB =
ω3dB

2π
=
ωint
2π

(

Mfb

Min
ZSQAV GAint

Rfb

) (I.27)

I.2.4 Final form of the transfer function & gain-bandwidth
product

Having defined the -3dB frequency, note that possibly the most elegant way to
express the transfer function, Eqn. I.22, is,

H(s) =
Hoω3dB

ω3dB + s
(I.28)

where

Ho = Min/β = Rfb
Min

Mfb

(I.29)

Notice we have the equality

Hoω3dB =
Min

β
αoβωint = Minαoωint (I.30)

We find that the gain-bandwidth product is a conserved quantity defined solely by
the open-loop gain,

GBP =
αo
Rfb

ωint =
Ho

RfbMin

ω3dB (I.31)

Above, we must divide by a factor of Rfb as the transfer function as defined
considers output voltage relative to input current. This way, we have a current-
current relation. We also drop the prefactor Min because we only consider how the
closed loop behaves and the mutual inductance comes before the summing node.
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I.2.5 Numerical values for transfer function and bandwidth

In this section, we simply put numerical values to the equations in this section.
Numerical for individual parameters are tabulated at the end of this document. Here
is the transfer function, with ZSQ = 500 Ω, plotted for several values of AV G.

Figure I.5: The transfer function, for AV G = 20, 40, 60, 80, 100

I.2.6 Introduction to impulse response

We now examine how the output signal performs, given a known input current.
In this section, we determine the time-domain output from the transfer function.

A small detour: convolutions in the time-domain

This small subsection is to demonstrate that the Laplace/Transfer-Function method
is more convenient than a direct convolution. This topic generally falls under the cat-
egory ”Signals and Systems,” which is the title of many texts and undergraduate
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engineering courses. This may be too elementary for the reader. If so, feel free to
skip ahead.

If we wanted to know the time-domain response of the output given an input
current as a function of time, the direct way would be to perform a convolution of
the current and impulse response of the system...

vout(t) = iin(t)⊗ h(t) =

∫ t

0

iin(t)h(t− τ)dτ (I.32)

In general, this is awkward to perform.
Notice this impulse response, h(t), is an interesting function. It represents the

time-dependent effect of the amplifier. It is sometimes called the instrument response.
We would like our amplifier to preserve as much information of the signal as possible,
so we would like to understand this h(t) function well.

If we take the Inverse Laplace Transform of the transfer function, we automatically
find the impulse response, h(t). The impulse response represents how the system
reacts to a delta-function stimulus.

H(s) = L[h(t)] (I.33)

h(t) = L−1[H(s)] (I.34)

Where the Laplace Transform is defined as in

H(s) =

∫ ∞
0

e−sth(t)dt (I.35)

What is nice about having transfer function already in hand, is that we do not
need to perform the convolution as presented in equation I.32.

Provided we have knowledge of iin(t), we can take its transform

Iin(s) = L[iin(t)] (I.36)

Now a simple product in the s-domain:

Vout(s) = H(s) Iin(s) (I.37)

The output is now represented in time-domain as

vout(t) = L−1[Vout(s)] = L−1[Iin(s) H(s)] (I.38)

These past few steps may seem like a circular way to arrive at vout(t), but in
actuality it is generally less work than performing the direct convolution of Eqn.
I.32.
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I.2.7 SQUID impulse response and step function

So again consider Eqn. I.22:

H(s) =
Ho

1 + s+ωint
s0

(I.39)

Ho = Rfb
Min

Mfb

(I.40)

s0 =
MfbZSQAV GAintωint

MinRfb

(I.41)

Eqn. I.39 gives us a clear-cut function to transform. It resembles the form of a
single-pole filter with a gain factor. From it, we get the impulse response

h(t) = Hos0 e
−(s0+ωint)t (I.42)

= ZSQAV GAintωint e
−2πf3dBt (I.43)

So what we should notice in Eqn. I.43 is that f3dB = s0+ωint
2π

is in the exponential: it
is the characteristic falltime of the feedback signal that the SQUID amplifier supplies.

While we are at it, let’s do the response to an input step with some amplitude.
The Laplace transform of a unit step is 1/s.

L[Io u(t)] =
Io
s

(I.44)

in which case

Vout(s) = H(s)
Io
s

(I.45)

so

vout(t) = HoIoso
(1− e−t(so+ωint))

so + ωint
(I.46)

So, just as with a simple filter, we have a finite risetime due to the lack of response
at higher frequencies. It is worthwhile to point out that a current, voltage, or any
test signal has extra units of Hz−1 while in Laplace space.

I.3 The effect of finite bandwidth on risetime

This section is largely an aside from the particulars of the SQUID amplifier. Here,
we generalize risetime effects for a simple amplifier. The risetime of an input signal is
effected whenever it is passed through a circuit with any sort of frequency response.
Amplifiers most often act as a linear, time-invariant filter of some kind. Here we treat
the effect of a stable, 1st-order low-pass amplifier on an input signal.
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I.3.1 Simple input

Say we have a generic input function with risetime τo. Give it a simple exponential
dependance:

input(t) = 1− e−t/τo (I.47)

This has the Laplace transform

Input(s) =
1

s
− 1

s+ 1
τo

(I.48)

I.3.2 A simple transfer function

The effect of the finite-bandwidth amplifier is represented as a function acting as a
filter with some amount of gain. This ”transfer function” is sometimes also called the
”instrumentation function.” We give this amplifier unity gain, and define it directly
in Laplace formalism:

Amplifier(s) =
1
τB

s+ 1
τB

(I.49)

In this section, τB is the time constant of the amplifier’s bandwidth.

I.3.3 Output

We find the output to be

Output(s) = Input(s)× Amplifier(s) (I.50)

Taking the inverse Laplace transform,

output(t) =
τo(1− e−t/τo)− τB(1− e−t/τB)

τo − τB
(I.51)

We see that the time-domain output is truly a convolution of time-constants.
Assume, though, that the effect of the amplifier is subtle. We make the approximation
that the output has the same functional dependance as the input signal, only with a
new effective time-constant slightly modified by the filtering of the amplifier.

output(t) = 1− e−t/τout (I.52)

We now equate the output expressions to determine the effective time constant τout.

τo(1− e−t/τo)− τB(1− e−t/τB)

τo − τB
= 1− e−t/τout (I.53)
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We want to solve this expression for t at t = τout, but it is cumbersome. We make
a reasonable approximation; the bandwidth time constant is much shorter than τout.
We say

e−τout/τB ≈ 0 (I.54)

So
τo(1− e−τout/τo)− τB

τo − τB
≈ 1− e−1 (I.55)

Therefore,

τout = τo ln[
τo

(τo − τB)(e−1 − 1 + τo
τo−τB

− τB
τo−τB

)
] (I.56)

which reduces to

τout = τ0 log[(
τo

τo − τB
)e] (I.57)

This is a good approximation to the actual output risetime around the 63% mark.

Figure I.6: Here we demonstrate a convolution of a simple risestime with finite band-
width of τB = τ0/5. Blue is the original pulse. Red is the convolved pulse. Green is
the single-time constant approximation from Eqn. I.57.

We have additional filtering in the phonon-signal chain for the purpose of anti-
aliasing. If we approximate the effect of the anti-aliasing filter as another simple pole,
we have now two limiting bandwidths. Call this new bandwidth τB2.
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Making similar assumptions e−t/τB = e−t/τB2 ≈ 0, we get the approximate formula
for two bandwidths,

τout = τ0 log[(
τ 2
o

(τo − τB)(τo − τB2)
)e] (I.58)

I.3.4 Application to SQUID amp: numerical values for tim-
ing

We have found empirically that TES physics occurs with perhaps about a ∼
100 kHz bandwidth. This is primarily dependent on the Lin/RTES timing quiescent
in the input coil.

Anti-aliasing filters are also in the read-out electronics and give a bandwidth of
500 kHz.

Assuming single poles for each, we can plot Eqn. I.58 as a function of SQUID
bandwidth frequency.

Figure I.7: This depicts effective output risetime for an input pulse of bandwidth
100 kHz, and single-pole filtering already in place at 500 kHz. It is normalized to
the τout with infinite SQUID-amp bandwidth.

We see from Fig. I.3.4 that at 1MHz, SQUID Amplifier Bandwidth will contribute
less than 10% additional error in the risetime.

From Eqn. I.27 we find the constraint for bandwidth to be f3dB > 1 MHz,

ZSQ × AV G ≥
(2π(1 MHz)− ωint)RfbMin

MfbAintωint
(I.59)



312

which is to say

ZSQ × AV G ≥ 57.5 kΩ (I.60)

In practice, we find we have a resonance in the SQUID amp around ∼ 700 kHz.
It has been seen at Soudan and in multiple test setups. Tuning the SQUIDs above
this level only makes the poles interact and become more resonant. Empirically, we
have set a lower threshold for required bandwidth. Using a ballpark ∼ 600 kHz, we
set a lesser constraint,

ZSQ × AV G ≥ 35 kΩ (I.61)

I.4 Noise

Noise in the SQUID amplifier is modeled as three uncorrelated sources, as figure
I.8.

I.4.1 Defining noise sources

Figure I.8: Diagraming sources of noise.
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1. The input current noise, i1, represents white noise currents in the input coil.
These terms account for Johnson noise terms from input resistances and excess
QET noise. This also accounts for flux-induced SQUID noise contributions,
which are easiest to model by referring them back to the input coil.

2. The noise at the SQUID, e1, models the dominant flux-independent voltage
noise. SQUID literature elaborates on many possible sources of noise across the
SQUID component itself. However, e1 also takes into account the contribution
from the warm electronics. Referenced to the preamp input, the warm electron-
ics noise acts primarily as a voltage noise at the SQUID as well. Therefore, it is
easy to believe how this combined voltage term dominates at this point in the
circuit, and is all that need be considered.

3. The feedback resistor is rather large, and its Johnson noise is addressed as a
voltage noise source, e2, at the amplifier output.

Uncorrelated noise adds in quadrature. From where noise enters in the amplifier
chain, we can use superposition to construct proper transfer functions for each term.
Consider the combined contributions of noise at the output.

Vn(s)2 = H(s)2 × i21 +
H(s)2

Z2
SQ

× e2
1 +

H(s)2

M2
in α(s)2

× e2
2 (I.62)

or, as a function of frequency, a signal-to-noise ratio

SNR(s)2 =
Vout(s)

2

Vn(s)2
(units of

1

Hz
) (I.63)

=
H(s)2Iin(s)2

Vn(s)2
(I.64)

=
Iin(s)2

i21 +
e21
Z2
SQ

+
e22

M2
inα(s)2

(I.65)

I.4.2 Numerical evaluation of noise

i1 = 4
pA√
Hz

(I.66)

e1 = 1
nV√
Hz

(I.67)

e2 =
√

4k(4.2 K)1 kΩ = 0.5
nV√
Hz

(I.68)
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As it should be, we find that the input current noise dominates under most con-
ditions.

In terms of noise performance, variable gain is not an issue. Variable gain changes
only where the roll-off frequency occurs and effects the signal-to-noise ratio only
outside the signal bandwidth (above the roll-off frequency).

The feedback resistor noise e2 is negligible. It only turns on at high frequencies,
where even then it is magnitudes smaller than the other terms. In terms of operating
the circuit, the main consideration is to make sure that the SQUID has enough
responsivity to amplify the input signal well above the noise voltage e1. Output noise
falls as a function of SQUID transimpedance. We see that for a value of ZSQ = 500 Ω,
the signal-to-noise ratio is less than 10% from its asymptotic maximum.

Figure I.9: Noise plots referenced at 50 kHz and plotted vs. ZSQ. Top: absolute
magnitude of total noise at output. Bottom: signal-to-noise ratio plotted normalized
to I(s).
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I.5 SQUID Jumps, and slew rate

The periodic nature of the SQUID V −Φ curve means there are stable equilibrium
points every flux increment of Φo. When the circuit is first closed, the amplifier chain
ramps from zero until it reaches equilibrium on slope of the first Φo cycle. From
time to time, events may make it unstable such that it finds a new working point
∆Φ = nΦo away.

The extra offset voltage becomes

∆Vfb = ∆IfbRfb = (nΦo/Mfb)Rfb (I.69)

= n 0.23 V olt (I.70)

where n is an integer.
The problem associated with SQUIDs operating at larger feedback offsets is that

the overall closed-loop gain can vary by as much as 10%. Possible reasons for this
may be changes in ZSQ from offset to offset as the SQUID array becomes more or less
coherent, or else Rfb thermally changes resistance with larger offset currents.

We are considered with how amplifier performance may accidentally produce a
SQUID jump to a new voltage offset. To do this, we consider the slew rate.

Slew rate is an important quantity in determining stable operation of an amplifier.
It defines the maximum rate of change of the amplifier’s output. In the case of regular
opamps, defining the slew rate is a matter of distinguishing the operation regime
where signals are large and/or fast such that a power-bandwidth deficit can not let
the amplifier output track the input. In the case of our SQUID amplifier, we are not
as concerned about non-linearity or slew-limited pulses. Instead, we define a slew
rate that will maintain the quasi-stable lock-point at the SQUID and prevent jumps.

We are concerned with the flux input of the SQUID. We do not want it to jump
by exceeding the maximum of the V − Φ curve. We know that the flux error signal
at the SQUID has a dynamic range that is some fraction of Φo. For now we make the
(poor) assumptions that ZSQ is constant over the dynamic range, and furthermore
that the gain of the system does not effect the dynamic range. We could probably
call ballpark the dynamic range as

δΦ =
Φo

4
(I.71)

Referred to the input coil, the above dynamic range represents an amplitude

δΦ

Min

= 5.34× 10−6 (Amp) (I.72)

We define the gain-bandwidth product for the amplifier. This the DC gain multi-
plied by the break frequency, ω3dB. For a single-pole amplifier, this product gives us
the unity gain frequency, ωt.
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GBP = ωt =
H0

Rfb

ω3dB =
ZSQAV GAint

Rfb

ωint (I.73)

Above, we needed to borrow a factor of Rfb to account for the comparison of input
current to output current.

So now we define a slew rate, which is the effective dynamic range multiplied by
unity frequency. We divide by mutual inductance to refer it to the input coil.

SR =
δΦ

Min

× ωt =
ΦoZSQAV GAint

4MinRfb

ωint (I.74)

SR = 4.9× 10−3 ZSQAV G (
Amp Hz

Ω
) (I.75)

For the SQUID to jump, this slew rate needs to be surpassed by di
dt

of the input
coil. Under normal conditions, the input coil is limited by R/L bandwidth. Given
that is the case, the largest current pulse amplitude the input coil should be able to
see is

imax =
SR

(RTES/Lin)
≈ 6× 10−4 Amp (I.76)

for modest values ZSQ and AV G
In the frequency domain, noise referenced to the input coil can also be determined

to meet this criterion if the noise-bandwidth product is comparable with the dynamic
range, as from Eqn. I.72.

For instance, the input current noise dominates as we saw in the last section.
Given R/L bandwidth once again, the noise-bandwidth product for this contribution
is

NBi = |i1
√
RTES/Lin| (I.77)

= 3.2× 10−9 (Amp) (I.78)

≈ 1

1500
× δΦ

Min

(I.79)

I.6 Response to a test input pulse

Considering how the SQUID amplifier responds to actual physics signals is a better
validation than characterizing with approximations or at a single frequency. To that
end, we empirically describe a simple current pulse. We are concerned with large,
rapid pulses, so quantities are approximated on the extreme side to that end.

Let’s briefly touch on the input detector circuit (we otherwise do not touch on TES
physics in this write-up). A TES bias current, Ib, is applied via a DAQ-controlled
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voltage source passing through a 1k Ω biasing resistor. Rshunt = 20mΩ, and is always
a magnitude less in resistance than a typical RTES. Therefore, the majority of Ib
will flow down the Rshunt branch, thereby locally voltage-biasing the TES. We are
concerned with the largest change in current through the TES as it reaches high
resistance.

We will 1) find the largest expected quiessent current in the TES, 2) assume the
resistor reaches a high value during a pulse such that the quiessent current becomes
the largest change in current, and 3) use this value to normalize a time-dependent
pulse.

We use a function of the form:

iinput(t) = κ(−e−t/τrt + e−t/τft) = κ(−e−ωrtt + e−ωftt) (I.80)

In Laplace formalism, we take the transform

iinput(s) = κ(− 1

ωrt + s
+

1

ωft + s
) (I.81)

A biased QET channel gives typical bandwidths ∼ 100kHz. Assume 100kHz.
Considering an Lin/RQET time-constant with Lin = 4.5 × 10−7H, we have RQET =
160mΩ. A typical Ib current might be 150− 200µA. Assume 200µA. A DC current
division between Rshunt and RQET gives a quiessent Is

Is =
Rshunt

Rshunt +RQET

Ibias = 22uA (I.82)

Empirically, we see from phonon raw traces that fast QET risetimes may be 10 µs
in Ge detectors, and as small as 5 µs in Si. Assume the extreme case in this scenario
as 1.6 µs from the L/R time. ETF falltimes are ∼ 100 µs. Assume a relatively fast
pulse has a falltime of 75 µs.

There is a phenomenon of ballistic deficit, where a finite risetime does not allow
the overall pulse to reach the maximum amplitude calibrated for τrt = 0. We make a
correction such that the maximum pulse height is 22 µA.

where κ is normalized to make the maximum 22 µA.

κ =
22 µA

0.90
= 24.4 µA (I.83)

ωrt = 1/τrt = 630 kHz (I.84)

ωft = 1/τft = 13.3 kHz (I.85)
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I.7 Output response to test pulse

Armed with the above test pulse, we can calculate characteristic output parame-
ters,

vout(s) = iinput(s)H(s) (I.86)

taking the inverse Laplace transform,

vout(t) = (I.87)

AintAV GRfbZSQωintκ{ (I.88)

−e−ωrtt

AintAV G
Mfb

Mi
ZSQωint +Rfb(−ωrt + ωint)

(I.89)

+
e−ωftt

AintAV G
Mfb

Mi
ZSQωint +Rfb(−ωft + ωint)

(I.90)

− Rfb(ωft + ωrt)e
−ωint(1+

Mfb
Min

ZSQAVGAint

Rfb
)t

(Rfb(ωft − ωint)− AintAV GMfb

Mi
ZSQωint)(AintAV G

Mfb

Mi
ZSQωint +Rfb(−ωrt + ωint))

}(I.91)

(I.92)

So there we have it, in all its glory. The first term is proportionate to the risetime
factor, while the second term is proportionate to the falltime factor. So far we just
have an amplified pulse. The third term represents the filtering action of the amplifier,
slowing down the pulse at the frequency of the amplifier’s ω3dB bandwidth.

For the rest of this section, we see what effect amplifier parameters have on this
test pulse.

I.7.1 Closed-loop amplitude from test pulse

Using the template time-domain pulse, we can calculate more specifically the
error in the gain. The following plot shows the peak amplitude of the output signal,
normalized to an ideal gain of 10kΩ.

We see that ZSQUID = 500 Ω and AV G = 40 give a reasonable, consistent response.
We would like to have these as minimum settings.

I.8 SQUID error signal and dynamic range

The SQUID’s periodic response makes dynamic range a concern. We spoke of
dynamic range before, by approximating the amount of flux subtended by the SQUID.
We approach it slightly different now. Here, we have a numerical response and ask,
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Figure I.10: Here we show the peak amplitude of the amplified pulse, normalized to
perfect closed-loop gain. Again, the typical values of AV G are traced.

how large does the SQUID voltage error signal become for a maximum input pulse.
We consider the SQUID voltage output directly because we no longer need to ballpark
the error signal by what portion of a Φo cycle it subtends. Even though the amplifier
is closed in a feedback loop, the voltage error signal at the SQUID may be large
enough to make the output pulse non-linear, or even cause the amplifier to loose lock
(i.e., ”jump”).

Figure I.11: Recasting the signal flow diagram, we see where the voltage error signal
occurs along the readout chain. This helps us make sense of equation I.93.

Assuming the SQUID quiescent gain values stay constant during a pulse, the
SQUID voltage error signal was calculated considering the test pulse template as
input. The overall closed-loop gain of the amplifier has already been discussed. The
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frequency response of the warm electronics is known to roll off at ωint = 2.4kHz. The
voltage produced by SQUID within the closed loop must make up the remainder of
the amplifier response via the following equation:

verror(s) =
iinput(s)H(s)

AV GAint
ωint
ωint+s

(I.93)

Figure I.12: Here is the SQUID voltage error in the time domain for AV G = 40 and
for values of ZSQ = 500, 1000Ω. Imposed (in blue) is the input signal, scaled by a
multiplier of 50.

We are concerned with the SQUID error signal becoming too large. Empirically,
we impose a minimum dynamic range for the SQUID voltage. This requires a V −Φ
modulation curve with usable (relatively linear) range 1.5 times the maximum error
signal above the lock point, and 0.5 times that below. This forms a window around
the lockpoint. AV G lowers the maximum error signal amplitude, while ZSQ increases
it.

This requirement is probably the most demanding in SQUID tuning. We now
see how SQUID bias current and choice of voltage lock point become trade-offs. We
can adjust current bias to increase dynamic range, which generally broadens out the
response and decreases ZSQ. In light of this requirement, we have begun tuning with
broad V − Φ curves, as it is possible to have a ZSQ that is too large. As long as the
input coil noise is dominating (ZSQ ≥ 500 Ω), the other requirements are generally
met by the ZSQAV G product. Therefore, it is best to tune for a lower ZSQ, and
compensate with AV G.

To emphasize, this examination of the error signal shows that this node of the
amplifier is very susceptible to high frequencies. Within the amplifier chain, the
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Figure I.13: The pulse maximum for the SQUID voltage error as a function of ZSQ,
for the standard values of AV G = 20, 40, 60, 80, 100. Smaller AV G results in larger
error signal.

integrator is rolling off by 1/f at frequencies above the integrator pole. Yet, the
passband of the amplifier is required by feedback to be flat out to some total amplifier
bandwidth. Therefore, to account for the difference, the amplitude of the voltage of
the error signal must increase by f within the passband. So the error voltage across
the SQUID carries the burden of larger amplitudes for faster signals. This leads to
greater instability in terms of flux jumps when the SQUID amplifier is tuned for
higher overall bandwidth.

I.9 Direct, flux-coupled feedback in the SQUID

amplifier

Experimentally, we discovered the oddity that a change in input inductance is seen
in SQUID operation which is different between closed and open loop configurations.
This bandwidth change is measurable and repeatable. It appears to be due to an
additional source of feedback. It was found that the SQUID array washer focuses
magnetic flux in a way that accounts for this effect, providing a direct flux-coupling
between feedback and input coils.
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I.9.1 Transformer equations

If we consider that there exists a direct transformer coupling between the feedback
and input branches of the SQUID amplifier, in addition to the typically assumed
input-SQUID and feedback-SQUID coupling, then we find an avenue for a parallel
feedback channel to occur. Note figure I.14a. Through this mechanism, feedback
signal is induced directly back into the input coil, then back again into the SQUID
summing node via the the input mutual inductance.

A review of transformer equations is a healthy exercise. There are several good
electronics references on the topic. The idea is to represent Kirchhoff’s laws for both
coil voltages, using a 2x2 matrix formalism of impedances and currents. Solving for
the currents returns expressions with somewhat large determinants in their denomi-
nators.

A simple and yet general outcome of the transformer equations is the current
ratio. We will not derive this here, but it is to say that determinants cancel out and
it is rather elegant there are few terms we need struggle with. For the transformer
circuit in figure I.14b, the current ratio is

is
if

=
−sMif

(Rsh +Rs + sLi)
(I.94)

Here, is is the sensor (input) current, if is the feedback current, Mif is the
feedback-input mutual inductance (assumed symmetric, incidentally), Rsh is the shunt
resistor, Rs the sensor resistance, and Li the input coil inductance.

Let’s interpret this. No matter the polarity chosen for SQUID lock in our amplifier,
when in stable operation the input coil current is always opposing feedback current.
Therefore, the minus sign of this term due to Lenz’s law always assists the input
coil. This tells us that impedance is being lowered. It makes sense that the strength
of this effect is proportionate to the coupling Mif , and the denominator informs us
that more impedance in the sensor line loop will logically diminish the induced sensor
current. Also, as this effect induces more signal current, we can see that it is fighting
stability and is a positive feedback mechanism.

I.9.2 Revisiting the closed-loop SQUID amplifier

The transfer function from the beginning sections of this appendix give us the
form:

H(s) = Mi
α(s)

1 + α(s)β(s)
(I.95)

Here, α(s) is the ”open loop gain,” and β(s) is the ”feedback factor.” The prefactor
of Mi in this case is particular to our SQUID amp situation, and serves to convert
the input current signal into proper units (of flux) at the SQUID summing node. The
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Figure I.14: a. A direct mutual inductance between feedback and input allows for
another feedback channel. b. The ratio of input and feedback current for this mech-
anism is determined from transformer equations. The active nature of the amplifier
output assists input current through the inductor and lowers the impedance.
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open loop gain, α is determined from the transducer (SQUID) chain at the input on
up through the active electronics.

We have

α(s) =
ZSQ
Mi

AV G(
Aintωint
s+ ωint

) (I.96)

Here, ZSQ is the transresistance (”responsivity” sometimes) of the SQUID. This
relates a change in input current to a change in SQUID voltage. The rest of the
terms represent stock amplifier voltage-to-voltage gains. AV G is the variable gain
(including preamp). The last term in parentheses represents the gain and frequency
dependence of the integrator, whose frequency dependence will ultimately allow the
entire amplifier reach a stable, finite bandwidth.

The standard feedback factor is

β(s) = Mf/Rf (I.97)

This relates an output amplifier voltage back to the SQUID as a flux signal. From
now on, we will call this term β0, to distinguish it as the original, intended feedback
term.

Figure I.15: A signal-flow diagram, including the additional feedback factor. Note
that ZSQ = φdvsq

dφ
was used to group the elements in a logical way.

I.9.3 The new feedback factor

Looking at figure I.15, we see a signal-flow diagram that puts our new situation
into perspective.
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For the portion of sensor current determined by voltage output, via the new
feedback factor, we have

is = vo[
1

Rf

(
−sMif

Rsh +Rs + sLi
)] (I.98)

From here, this induces flux signal back into the SQUID as typical, by way of a factor
Mi.

Re-expressed,

βf→i(s) =
Mi

Rf

(
−sMif

Rsh +Rs + sLi
) (I.99)

Some thought will show us that our feedback factors, from the output amplifier
voltage to the input branch current (or flux), are acting as conductances. They are
also in parallel. Therefore, they add accordingly.

β(s) = β0(s) + βf→i(s) (I.100)

This expression is all that is new in this work. We now make sense of its impact.

I.9.4 Combined transfer function

Again, our transfer function is

H(s) = Mi
α(s)

1 + α(s)β(s)
(I.101)

We find one zero and two poles. Taking ωint to be small, calling Mif = k
√
LiLf , with

k as the coupling,

H(s) =
AintAV GZSQωint

s
(

1 + AintAV GZSQωint

(
Mf

sRfMi
− k

√
LfLi

Rf (Rs+Rsh+sLi)

)) (I.102)

I.9.5 The case of ideal gain

It is informative to take the case where the open-loop gain is infinite. Here,

H(s) ≈ Mi

β(s)
=

 Mi

Mf
Rf

1− k
√

Lf
Li

Mi

Mf

 s−
(
−(Rs+Rsh)

Li

)
s−

(
−(Rs+Rsh)

Li−
Mi
Mf

k
√
LfLi

) (I.103)

The expression is put intentionally into zero-pole-gain form. The first term in
parentheses is the ”gain” term, and we can recognize the factor of Mi

Mf
Rf , which is the
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DC gain in the ideal SQUID amp transfer function. Also, we have a zero at −(Rs+Rsh)
Li

and a pole at −(Rs+Rsh)

Li−
Mi
Mf

k
√
LfLi

.

What does this mean? Well, the input coil circuit itself has a natural pole at
−(Rs+Rsh)

Li
. Now, the amplifer nulls that out with a zero precisely at the same fre-

quency. However, the ideal amplifier gain also inserts its pole at a higher frequency.
In effect, this is actively raising the innate bandwidth of the input coil. Perhaps we
could call this an active inductance lowering, where the effective input-coil inductance
becomes

Leff = Li −
Mi

Mf

k
√
LfLi (I.104)

I.9.6 A sensor impedance with frequency structure

What if we also consider that our sensor resistor is not simply a static resistor,
but has internal frequency structure (which is the case).

Rs → ZTES(s) (I.105)

We see that we would have an ideal gain expression of the form,

H(s) =

 Mi

Mf
Rf

1− k
√

Lf
Li

Mi

Mf

 s−
(
−(ZTES(s)+Rsh)

Li

)
s−

(
−(ZTES(s)+Rsh)

Li−
Mi
Mf

k
√
LfLi

) (I.106)

I.9.7 Finding a 2nd-order transfer function due to Mif

Bruce Hines followed this through to write out this model in the form of a 2nd-
order response. His experimental measurements of the open-loop SQUID chain pro-
vided precise values for the coupling quantities based on this model. The interested
reader may want to read our reference [125]. Based on referee reports, we were
informed how similar treatments had accounted for the effect of a direct mutual cou-
pling, Mif , in the past [126, 127].

Below in figure I.16, we show a small-signal SQUID-equivalent circuit that we
simulated using NI MultiSim 10. Through the use of analog behavioral modeling, we
were able to reproduce the effects depicted by these models.
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Figure I.16: A circuit simulation of a linearized TES + SQUID system, using analog
behavioral modeling in NI MultiSim.
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I.10 Conclusion

In this appendix, we have defined a small-signal transfer function for the CDMS
SQUID amplifier. From this, we developed an understanding of some key concepts
of gain and bandwidth tradeoffs. This gave us insight for developing the SQUID-
tuning guidelines used for the ”SQUETTest” tuning program at Soudan. A key
understanding comes from realizing that high-frequency signals affect the SQUID
error signal much more dramatically than lower frequencies. This sets the limits that
need to be established for bandwidth and dynamic range.

Another discovery described here is that there has been a significant flux-coupling
directly between feedback and input coils. This is responsible for an actively boosted
bandwidth (i.e., an actively lowered input inductance) at the input coil.


