
Abstract

During the last two decades, cosmology has become a precision observational science thanks (in part) to the

incredible number of experiments performed to better understand the composition of the universe. The large

amount of data accumulated strongly indicates that the bulk of the universe’s matter is in the form of non-

baryonic matter that does not interact electromagnetically. Combined evidence from the dynamics of galaxies

and galaxy clusters confirms that most of the mass in the universe is not composed of any known form of mat-

ter. Measurements of the cosmic microwave background, big bang nucleosynthesis and many other experiments

indicate that ∼ 80% of the matter in the universe is dark, non-relativistic and cold. The dark matter resides in

the halos surrounding galaxies, galaxy clusters and other large-scale structures.

Weakly Interacting Massive Particles (WIMPs) are well motivated class of dark matter candidates that arise

naturally in supersymmetric extensions to the Standard Model of particles physics, and can be produced as

non-relativistic thermal relics in the early universe with about the right density to account for the missing mass.

The Cryogenic Dark Matter Search (CDMS) experiment seeks to directly detect the keV-scale energy de-

posited by WIMPs in the galactic halo when they scatter from nuclei in the crystalline detectors made of

germanium and silicon. These detectors, called Z-sensitive Ionization and Phonon detectors (ZIPs) are operated

at ∼ 45 mK and simultaneously measure the ionization and the (athermal) phonons produced by particle interac-

tions. The ratio of ionization and phonon energies allows discrimination of a low rate of nuclear recoils (expected

for WIMPs) from an overwhelming rate of electron recoils (expected for most backgrounds). Phonon-pulse shape

and timing enables further suppression of lower-rate interactions at the detector surfaces.

This dissertation describes the results of a WIMP search using CDMS II data sets accumulated at the Soudan

Underground Laboratory in Minnesota. Results from the original analysis of these data were published in 2009;

two events were observed in the signal region with an expected leakage of 0.9 events. Further investigation revealed

an issue with the ionization-pulse reconstruction algorithm leading to a software upgrade and a subsequent

reanalysis of the data. As part of the reanalysis, I performed an advanced discrimination technique to better

distinguish (potential) signal events from backgrounds using a 5-dimensional chi-square method. This data-

analysis technique combines the event information recorded for each WIMP-search event to derive a background-

discrimination parameter capable of reducing the expected background to less than one event, while maintaining

high efficiency for signal events. Furthermore, optimizing the cut positions of this 5-dimensional chi-square

parameter for the 14 viable germanium detectors yields an improved expected sensitivity to WIMP interactions

relative to previous CDMS results. This dissertation describes my improved (and optimized) discrimination

technique and the results obtained from a blind application to the reanalyzed CDMS II WIMP-search data.

This analysis achieved the best expected sensitivity of the three techniques developed for the reanalysis and

so was chosen as the primary timing analysis whose limit will be quoted in a on-going publication paper which is

currently in preparation. For this analysis, a total raw exposure of 612.17 kg-days are analyzed for this work. No

candidate events was observed, and a corresponding upper limit on the WIMP-nucleon scattering cross section



as a function of WIMP mass is defined. These data set a 90% upper limit on spin-independent WIMP-nucleon

elastic-scattering cross section of 3.19× 10−44 cm2 for a WIMP mass of 60 GeV/c2. Combining this result with

all previous CDMS II data gives an upper limit of 1.96× 10−44 cm2 for a WIMP of mass 60 GeV/c2 (a factor of

2 better than the original analysis).

At the moment this analysis is being written, the WIMP-search results obtained with the reanalyzed CDMS

II data occupies the second most stringent limits on WIMP-nucleon scattering, after XENON100, excluding

previously unexplored parameter space. Interesting parameter space is excluded for WIMP-nucleon cross section

as function of WIMP masse under standard assumptions, the parameter space favored by interpretations of other

experiments’s data as low-mass WIMP signals due to an excess of low energy events and annual modulation is

partially excluded for DAMA/LIBRA and CoGeNT.
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generate proportional scintillation light S2, which is registered time-delayed by the drift time.
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Chapter 1

Introduction to Modern Cosmology

1.1 Introduction

This dissertation will describe a search for the constituents of one of the most mystifying particle for which the

evidence of its existence came to knowledge mostly through the observation [1, 2, 3, 4]. This particle has thus

far been brought to existence by some theories such as the theory of elementary particles, the physics beyond the

standard model of particle physics and with the existence of extra dimensions. This mystified particle , coined

dark matter, is referred to a particular type of matter which does not clump under the influence of gravitational

force and whose existence is inferred solely from the effects of its gravity. Dark matter may be baryonic (i.e.

built from the protons, neutrons, and electrons of ordinary atomic matter) or non-baryonic in nature, but the

vast majority of it appears to be the latter. The details of this search will be described in chapters 4 to 8.

In this chapter, however, I give a very brief introduction of the foundation of modern cosmology theory which

gives a very simple justification to the existence of dark matter. The attempt to answer the question ”why has

something invisible has become an accepted part of modern astrophysics?” will become clearer as we move along

this dissertation.

A complete discussion of the foundation of cosmology would take us far afield from the main topic of this

dissertation. So, I will recall only some of the common terminologies. For more details, I invite the readers to

look at modern textbooks on the cosmological theory [6, 7, 8, 9, 10, 11, 12, 24, 13, 14].

Cosmology is a subset of astronomy which is trying to answer some of the grandest questions of the universe:

how the universe was born, what is the age of the universe, how and when the universe is going to end. In

addition to these questions, cosmology is also trying to answer the question of ”what the universe is made of”.

The development of cosmology has no doubt contributed some of the most important scientific triumphs

of the twentieth century. Going from mere theoretical predictions (the big bang theory, inflationary model of

the universe, dark matter and dark energy) to the experimental discovery of the accelerated expansion of the
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universe in 1998 by measurement of the luminosity of very distant supernovae [15, 16, 17]. Cosmology is currently

a highly active and a growing field, spurred by the influx of a variety of precision measurements and a number of

new and proposed experiments that are trying to answer some fundamental questions regarding the truth about

the universe in which we are living. This dissertation is going to focus, as I mentioned before, on one of the

mysterious components of the universe, the dark matter. However at the time of the writing of this dissertation

there is a separate experimental group whose aim is to understand the dark energy which amounts to 73% of

the energy-budget of the universe. The Dark Energy Survey (DES) aims to probe the dynamics of the expansion

of the universe and the growth of large scale structure using a 4-meter Victor M. Blanco Telescope located at

Cerro Tololo Inter-American Observatory (CTIO) in Chile, and the main innovation of that project consists in

the development of a new and hyper sensitive camera, called DECam [18].

In the beginning, cosmology hardly existed as a scientific discipline, but now the Hot Big Bang cosmology

stands as the accepted description of the Universe as a whole. Telescopes such as the Hubble Space Telescope

are capable of seeing light from galaxies so distant that it has been travelling towards us for most of the lifetime

of the universe. The cosmic microwave background, a fossil relic of a time when the Universe was both denser

and hotter, is routinely detected and its properties examined. The expansion of our universe is presently an

established fact with the discovery of Supernova type Ia. Supernovae are extremely luminous and cause a burst

of radiation that briefly outshines an entire galaxy (such as our galaxy, the Milky way). Because their higher

intensity of luminosity is constant, they are called standard candle [19, 20, 21, 22, 23].

The standard model of cosmology has emerged over the last several years in which some cosmological parame-

ters like Ωm, ΩΛ and H0 have been measured to within an accuracy of 10%. The precision of these measurements

comes from testing the consistency of the various methods by which the physical universe is described with the

emergence of a well constrained Dark Matter hypothesis. Dark Matter is one example and Dark Energy, the

driving force behind the accelerated expansion of the universe, is another.

In this chapter, I will discuss the theoretical and the experimental basis of the standard model of cosmology

and introduce the dark matter problem that is going to be the central topic of the subsequent chapters.

1.2 Cosmology’s Biggest Ideas

The ancient Greeks, in a model further developed by Ptolemy (the Alexandrian), believed that the Earth was

at the center of the cosmos (geocentric). According to this model, the earth would be circled by the Moon, the

Sun and the planets, and then the stars would be further away. A complex combination of circular motions,

Ptolemy’s Epicycles, was devised in order to explain the motions of the planets, especially the phenomenon of

retrograde motion where planets appear to temporarily reverse their direction of motion. It was not until the

early 1500 that Copernicus stated forcefully the view, initiated nearly two thousand years before by Aristarchus,

that one should regard the Earth, and the other planets, as going around the Sun (heliocentric). By ensuring

that the planets moved at different speeds, retrograde motion could easily be explained by this theory.
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The cornerstone of modem cosmology is the belief that the place in which we occupy in the universe is in no

way special and that the universe looks the same everywhere. This is known as the cosmological principle.

With this principle in mind, our very own galaxy (the Milky Way), located in a disk shaped assembly, must not

considered to be at center of the universe. Observations of the disk shaped assembly by Hubble space telescope

show however that the Milky Way is at 2/3 off from the center of the disk.

The cosmological principle is the basis of Big Bang Cosmology. The Big Bang is the best description we have

of our universe and is a picture of our universe as an evolving entity, which was very different in the past as

compared to the present. Originally, the Big Bang theory was forced to compete with a rival theory, the steady

state universe, which stipulates that the universe does not evolve but rather has looked the same forever with

new material being created to fill the gaps as the universe is expanding. However, the experimental observations

we have nowadays are so strongly in support of the Big Bang theory that the steady state theory is almost never

considered as an alternative theory that is able to explain the reality of the universe around us.

1.3 Observational facts

Astronomers have very often had to rely on the visible part of the spectrum in order to study or observe distant

objects in the universe. One of the great astronomical achievements of the twentieth century was the exploitation

of the full electromagnetic spectrum for astronomical measurements. We now have been able to design instruments

capable of making observations in all bands of spectrum including radio waves, microwaves, infrared, visible,

ultraviolet, X-rays and gamma rays, which all correspond to light waves of different (increasing) frequency. We

have even entered a phase where we can go beyond our galaxy and receive information of light originated from

sources extremely distant from the earth. A remarkable feature of observations of a nearby supernova in 1987

was that it was also seen through detection of neutrinos, which are extraordinarily weakly interacting type of

elementary particle normally associated with radioactive decay (also known as beta decay). Very high energy

cosmic rays, consisting of highly-relativistic elementary particles, are now routinely detected, though there is

no clear understanding of their astronomical origin. Currently the Laser Interferometer Gravitational Wave

Observatory (LIGO) collaboration is seeking for detection of gravitational waves and ultimately to using them

to observe astronomical events such as colliding stars. Gravitational waves are ripples in space-time itself, these

are waves produced when giant astronomical objects (such as stars) collides in the universe. Such collisions will

create a huge perturbation in space-time, thus creating ripples or waves propagating at the speed of light in

the fabric of space time. The next advanced generation of gravitational waves detection will be pursued by the

Laser Interferometry Space Antenna (LISA), a joint project between the United States apace agency NASA and

European Space Agency (ESA).

To probe distant parts of the universe astronomers have used to ground base telescopes and air-born (or

space base) telescopes relying on visible light of the electromagnetic spectrum. In most case, light observed by

astronomers come from:
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Figure 1.1: Propagation of gravitational waves shown as ripples of space-time. Gravitational waves
are minute distortions of spacetime that are predicted by Einstein’s theory of general relativity. The
existence of gravitational radiation is also a prediction of general relativity. Gravitational waves are
perturbations in the curvature of spacetime caused by accelerated masses (NASA illustration of LISA,
figure source: www.lisa.jpl.nasa.gov/index.html).

Figure 1.2: Electromagnetic spectrum (left) with different space-base satellites probing different parts of
the electromagnetic spectrum; shown in the right a picture of star forming cloud. To see the universe in
full, astronomers have to get creative; they combine multiple photos taken by different cameras to make
one colorful picture. For example, in this beautiful new picture of a star-forming cloud (right), the space
telescope called Chandra only captured the purple regions. Meanwhile, another space telescope called
Spitzer saw things a bit differently when it observed the same cloud - everything shown here other than
the purple bits. But why don’t these two telescopes see the star-forming cloud in the same way? The
answer lies in the type of light that the telescopes are designed to observe. Our eyes can only see visible
light. But there are many other types of light that can be detected by special telescopes, such as infrared,
ultraviolet and X-ray. The Spitzer telescope detects infrared light. Spitzer is perfect for observing dusty
star-forming regions, as infrared light can travel through the dust. The Chandra telescope, however,
can’t see infrared light. Instead, Chandra can detect the X-ray light that is given off by gas when it is
heated to incredibly high temperatures by hot, young stars. Although the two telescopes give a different
tale about what they see, they are both revealing the truth.

Stars: The main source of visible light in the universe. This light comes from one nuclear fusion within stars.

The sun is a typical star, with a mass of about 2×1030 kilograms also referred to as solar mass, indicated by M⊙

and used as a convenient unit for measuring masses. The sun is the closest star located 1 light year away from

the earth.

Galaxies: The solar system lies some way off-center in a giant disk structure called the Milky Way galaxy. It

contains approximately one hundred thousand million (1011) stars, with masses ranging from about a tenth of

the solar mass M⊙ to tens of times larger. It consists of a central bulge plus a disk of radius 12.5 kiloparsccs (1
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pc = 3.261 light years) and a thickness of only about 0.3 kpc. We are located in the disk about 8 kpc from the

center.

Local group: The Milky Way galaxy resides within a small concentrated group of galaxies known as the local

group. The nearest galaxy is a small irregular galaxy known as the Large Magellanic Cloud (LMC), which is 50

kpc away from the sun. The nearest galaxy of similar size to our own is the Andromeda Galaxy, at a distance

of 770 kpc. The Milky Way is one of the largest galaxies in the local group. A typical galaxy group occupies a

volume of a ∼ 1 Mpc3 (Mpc or megaparsec is often used in astronomy as a unit for measuring distances; it is

roughly the separation between neighboring galaxies. 1 Mpc = 3.086×1022 meters).

Figure 1.3: Milky way galaxy as imaged by the Hubble Space Telescope. The milky way is home to at
least 200 billion stars and their planets with mass between 750×109M⊙ and 1×1012M⊙ (M⊙ is one solar
mass), and a diameter of 105 light years (light would take 105 years to travel from one side to another).
Investigations of the hydrogen clouds contained within the Milky Way show that this galaxy is a spiral
galaxy. There are many types of galaxy and they are usually categorized by their shape as elliptical,
irregular or spiral. Our galaxy has a disk form when viewed from the side, which is 105 light years across
and 1-2 light years thick, in the center of the disk lies a thin layer of gas and dust. The galaxy has a
spiral shape when viewed from above. It also contains a central bulge or nucleus where a large black
hole may be contained. The sun lies in the spiral arm named orion (figure source: www.nasa.gov).

Clusters of galaxies (and superclusters): Surveying larger regions of the universe on a very large scale of

100 Mpc leads to the observation of a variety of large-scale structures. Galaxies can also be grouped in galaxy

clusters and one obvious example is the coma cluster, 100 Mpc from our very own galaxy. Galaxy clusters are the

largest gravitationally-bound objects in the universe. They can group into a large number of cluster occupying

a very large portion of the universe and they are called superclusters. Superclusters are believed to be joined by

filaments and walls of galaxies and between them there is what is called ”foamlike” structure lying in a very large

voids as large as 50 Mpc across. Figure (1.3) illustrates the optical telescope image of the coma cluster. Each

point like light in this image represent a distinct galaxy; the coma cluster contains approximately 103 galaxies.

Large-scale smoothness: At very large distance scales, hundreds of megaparsecs or more, the universe starts

to appear smooth. Recent, extremely large, galaxy surveys, the 2dF galaxy redshift survey and the Sloan Digital

Sky Survey (SDSS) [99, 100, 101, 102] have surveyed large volumes around ∼100 times the size of the the Center

for Astronomy (CfA) survey [103], each containing hundreds of thousands of galaxies. Such surveys do not find

any huge structures on scales greater than those seen in CfA survey.

Large scale structures such as galaxy superclusters and voids are believed to likely be the biggest structures given



6 Chapter 1: Introduction to Modern Cosmology

Figure 1.4: The Sloan Digital Sky Survey/Spitzer Space Telescope image of the Coma Cluster in ultra-
violet and visible light (figure source: NASA/JPL-Caltech/GSFC/SDSS).

the current stage of observation of stuff in the present universe. At these large scales, the universe indeed becomes

smooth. Although smoothness of matter distribution was the bedrock assumption in modern cosmology, it is

only recently that it has been possible to provide convincing observational evidence. Astronomical observations

for most cases of the scientific history rely on visible light and have provided to us a good picture of what is

around us (present and past-day universe). However, many other wavebands make vital contributions to our

understanding of the universe, Figure(1.2), and below, let’s review some of them very briefly:

Microwave band: Accidentally discovered in 1965 by Penzias and Wilson [104] when working with the horn

antenna at Bell Laboratory, this waveband is by far the most important band. Their discovery lead to the un-

derstanding that the Earth is filled with microwave radiations, with a black-body spectrum. This discovery was

one of the most powerful pieces of information in support of the Big Bang theory, around which cosmology is

now based. Other results from experimental observations by the FIRAS (Far Infra Red Absolute Spectrometer)

experiment on board the COBE (Cosmic Background Explorer) [105, 106] satellite have confirmed that the ra-

diation is extremely close to the black-body form at a temperature (2.730 ± 0.001)K.

Radio wave band: This has been powerfully used in astronomy as a way of gaining high-resolution maps of

very distant galaxies by mapping in the radio part of the spectrum. Many of the farthest galaxies known today

were detected by exploiting this band of the electromagnetic spectrum [107, 108, 109].

Infrared band: This region of the spectrum is best for studying the regions of the universe close to our galactic

plane where obscuration by dust is strongest. Infra red is an excellent way of seeing young galaxies in which

star formation is at an early stage. Using only optical light means the brightest galaxies could be observed, so

IRAS (Infra Red Astronomical Satellite) was successful in observing dimmer galaxies by exploiting the infrared

spectrum [110, 111].

X-rays: In between galaxies lies gas so hot that it emits X-rays that can only be seen in the X-ray part of the
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electromagnetic spectrum. These hot gases, corresponding to a temperature of tens of millions of Kelvin were

thought to be the remnants of the formation of the galaxies, which failed to collapse to form stars. X-rays are

considered as vital as galaxies themselves and are tremendously useful in astronomy to see things that cannot be

seen otherwise.

In the subsequent sections of this chapter, I am now going to lay down the foundation of the standard model

of modern cosmology, also referred to as ΛCDM cosmology which justifies the need of the two most mysterious

energy-matter components of the universe: dark energy and dark matter. As a recall, ΛCDM stands for dark

energy (Λ) cold dark matter. I will discuss about dark matter in its entirety all along in this dissertation. As for

dark energy, I will briefly describe it since its scope is beyond the limits of this dissertation.

1.4 The foundation of modern cosmology

There are many textbooks on cosmology that students can be referred to in order build a solid understanding

of standard cosmology [112, 113, 114, 115, 116]. There are also many advanced textbooks on cosmology with

advanced topics such string theory and so on [6, 7, 8, 118, 119, 120, 121, 122, 123, 124, 125, 126]. To avoid

confusion, this dissertation will be based on the currently accepted cosmological model that can be found in

many standard cosmology textbooks, in particular in [5, 6, 7, 8]. To begin, we will invoke the assumptions which

the whole standard model of cosmology is based upon:

Homogeneity and isotropy: Homogeneity is the statement that the universe looks the same at each point,

while isotropy states that the universe looks the same in all directions. This is supported by the previously

mentioned cosmological principle and a result of this is that the universe appears smooth at very large scale.

The Equivalence Principle: it is assumed that the laws of physics as expressed within special relativity

hold in all local inertial frames.

General relativity gives an excellent description of gravitational physics and is considered as the correct setting

for discussing cosmological models. An important idea introduced in physics with the advent of general relativity

is the concept of the metric of space-time, which describes the physical distance between two different points.

This metric is also important both for correctly interpreting the geometry of the universe and to fully understand

ideas of luminosities and distances in cosmology.

In general relativity we are interested in the distance between points in 4D space-time, and we must also

allow for the possibility that space-time might be warped (curved). The general expression of a metric is then

written as:

ds2 =
∑
µν

gµνdx
µdxν , (1.1)

where gµν is the space-time metric (tensor), µ and ν are indices taking the values 0,...,3. In the compact notation
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of the equation (1.1), x0 represents the time coordinate and x1, x2 and x3 are the three spatial coordinates. In

general, the metric can be a function of the coordinates (indeed, to describe a curved space-time there must be

some such dependence), and the distances are written in infinitesimal notation because once space-time is curved

it only makes sense to give the distance to nearby points.

Einstein′s formulation of general relativity marked the beginning of modern cosmology by establishing an

irrefutable framework which led to a deep understanding of the dynamic evolution of spacetime, matter, and

radiation [27]. With the advent of the theory of general relativity, the fundamental ingredients of the cosmological

model have been postulated in the following terms: A) Einsteins equation relates the geometry of the universe

with its matter and energy content; B) the metric is the measure of distances in curved spacetime and is needed

to describe the symmetries of the model; and C) The equation of state specifies the physical properties of the

models matter and energy content.

A large number of cosmological models have been constructed according to this recipe though many of them

did not withstand the test of time and they have been systematically eliminated as consistent theories given the

observational facts we have accumulated.

In cosmology, the metric describing the universe must obey the cosmological principle, i.e the universe must

look the same everywhere. This requires that the spatial part of the metric has a constant curvature and this

metric is called the Friedman Robertson Walker (FRW) metric, given by

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ · dϕ2)] , (1.2)

where a(t) is the scale factor characterizing the size of the universe. This is the quantity which expands (dilates)

as time goes on. Just to mention, the expansion of the universe is based on observational evidence that everything

in the universe seems to be moving away from everything else. The farther the object is the faster the object

is receding. Edwin Hubble measured the velocities of some celestial objects by looking at their redshift, which

is basically the Doppler effect applied to light waves. Galaxies as with any other atomic material, have a set of

absorption and emission lines identifiable in their spectra, whose characteristic frequencies are well known. If a

galaxy is moving towards us, the light waves get crowded together, raising the frequency, and this phenomenon

is called blueshift because blue light is at the high-frequency end of the visible spectrum. But if the galaxy

is receding i.e moving away from us, its characteristic lines move towards the red end of the spectrum and

the effect is known as a redshift. I must call to the reader’s attention that the metric described in equation

(1.2) describes a universe with no expansion since the cosmological constant Λ is set to be zero. I will, later

in this chapter, discuss the general case, which takes into account the cosmological constant that explains the

observations experimentalist physicists have made during the last two decades.

Observing whether a galaxy is blueshifting or redshifting was a technique used to measure the galaxy’s velocity

by Vesto Slipher (1912). Edwin Hubble used the same technique which led to this extraordinary discovery that

almost all galaxies are receding from us. Given the emitted and observed wavelengths λobs and λem, the redshift
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Figure 1.5: velocity vs estimated distance for a set of 1355 galaxies. A straight line relationship between
the velocity and the distance is the best fit and implies the Hubble’s law. The considerable scatter of
data point is due to the uncertainties and the random motions of the galaxies, however the best fit line
accurately describes the Hubble’s law (v = H0 · d) and gives an accurate estimate of the hubble constant
H0. Figure from [25].

z, can be determined as

z =
λobs − λem

λem
. (1.3)

If a nearby object is receding at a speed v << c[1], then its redshift can be calculated using the following

formula

z =
v

c
. (1.4)

From the observation of the data collected by Hubble and based on Figure(1.5), Hubble concluded that the

recessional velocity is proportional to the distance, and that the constant of proportionality is in cosmology

referred to as the Hubble Constant.

v⃗ = H0 · d⃗. (1.5)

The equation (1.5) is know as the Hubble’s Law. The Hubble′s constant H0 is commonly expressed in the

units of 100 km·s−1 Mpc−1, ie

H0 = 100 · h km · s−1 ·Mpc−1, (1.6)

1For velocities closer to the speed of light, the redshift formula mentioned in equation (1.4) takes the following form as

shown in special theory of relativity: z =
√

1+v/c
1−v/c

− 1
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where h is the hubble parameter characterizing the uncertainty on the present the value of H0 (h=0.72±0.08).

1.4.1 Einstein’s Equation

To consider the evolution in time of the scale factor, a(t) in equation (1.2), we exploit the theory of gravitation

in which the Einstein′s field equations into play. The field equations of Einstein are described by the formula:

Rµν − 1

2
gµνR =

8πG
c4

Tµν . (1.7)

The tensor Tµν is the energy-momentum tensor of the matter which is present, Rµν and R are the Ricci tensor

and the Ricci scalar, respectively, both representing the curvature of space-time. The Ricci scalar R (1.9), is

obtained through contraction of the Riemann curvature tensor Rµν [30]. The tensor gµν is the metric tensor

in which the properties of space-time are imprinted. The left-hand side of the Einstein equation describes the

evolution of the metric gµν and therefore space-time itself; G is the Newton′s constant. There is, for the sake

of generality, an additional term in the right hand side of the equation (1.7) which is generally noted as Λgµν

which I have purposely omitted here, but will be discussed in a later section. Λ is a constant term known as

the cosmological constant. As it will be discussed in more detail later, the cosmological constant is an accepted

ingredient of Standard Cosmology although it was added by Einstein himself into the equation (1.7) in order

to define a static universe. Historically, this term is also known as Einstein’s biggest blunder. The fabric of

space-time evolves according to the energy content on the righthand side (1.7), therefore the right-hand side of

Equation (1.7) can be thought of as a collection of source terms. The Ricci tensor Rµν and Ricci scalar are

defined by the following formula [30, 31]:

Rβα = ∂ρΓ
ρ
βα − ∂βΓ

ρ
ρα + Γρ

ρλΓ
λ
βα − Γρ

βλΓ
λ
ρα, (1.8)

R = gµνRµν , (1.9)

with Γλ
µν , the christoffel symbol. To solve the equation (1.7), one needs to know the contribution to the energy-

momentum from every constituent of the universe. It is therefore assumed that if there is no viscosity or heat

flow, and assuming that the universe behaves as a perfect fluid, then the energy-momentum tensor is given by:

Tµν = diag(−ρc2, p, p, p); (1.10)

with ρ and p are the mass density and the pressure respectively. These two quantities are, in cosmology, related

by the equation of state ω = p
ρc2

. Thus, for different stages of the universe (radiation dominated era, matter

dominated era and present), ω will have different values. We will make use of this equation later when we solve

the Einstein’s equation (1.7).

Using the Friedman Robertson Walker metric (1.2) [32, 33, 34] and the mathematical formulas (1.7) to (1.10),
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one can show that the temporal and spatial components of the equations (1.7) are:

(
ȧ

a

)2

=
8πG
3

ρ− kc2

a2
, (1.11)

and

2
ä

a
+

(
ȧ

a

)2

= −8πG · p
c2

− kc2

a2
. (1.12)

Subtracting (1.11) from (1.12), one obtains the acceleration equation

ä

a
= −4πG

3

(
ρ− 3p

c2

)
. (1.13)

The equation (1.11) is generally referred to as the Friedmann equation despite in a different form from what

Friedmann originally published [33, 34].

From the equation (1.13), it can be noticed that if the material has any pressure, this increases the gravi-

tational force, and so further decelerates the expansion although there are no forces associated with pressure in

an isotropic universe, as there are no pressure gradients. A decelerated expansion of the universe was something

that physicists have well expected to happen due to the attraction of the gravitational forces, but observational

evidence from the supernova in 1998 [15, 16] has unravelled a mystery that the expansion of the universe, rather

than slowing down (decelerate) is exponentially speeding up. I will revisit this discovery later when I will have

fully described the modern cosmological model with non vanishing cosmological constant (also referred to as dark

energy). Λ as supported by the Lambda- Cold Dark Matter model of the Big Bang cosmology and known as

standard model of cosmology due to its agreement with the observation [28, 29]. The acceleration equation does

not feature the constant k which appears in the Friedmann equation − it cancelled out in the derivation, but

keep in mind that this constant k describes the space-time curvature as it will be made clearer later.

Up to this point, we are still not in a position to solve the equations [(1.11) to (1.13)], unless we know

what the pressure p and the density ρ are. By specifying the pressure, we are therefore speculating as to what

kind of material our cosmological model of the universe is (what kind of matter the universe is filled with). In

cosmology, it is usually assumed that there is a unique pressure associated with each density, so that p = p(ρ)

(this relationship is known as the equation of state).

1.4.2 Fluid Equation

Fluid equation in the theory general relativity describes the energy-momentum conservation which is generally

written as

∇µT µ
ν ≡ T µ

ν;µ = 0, (1.14)

with∇µT µ
ν (also written in a compact as T µ

ν;µ) is a covariant derivative defined as : V a
b;c ≡ ∂cV

a
b +Γa

dc ·V d
b −Γd

bc ·V a
d .

The Einstein summation convention is assumed to apply in equation (1.14) for repeated indices. Writing out the
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covariant derivative using the Christoffel symbols, equation (1.14) becomes:

∂µT µ
ν + Γα

αµT α
ν − Γα

νµT µ
α = 0. (1.15)

Using the FRW metric defined by the equation (1.2), one can compute all the Christoffel symbols and plugging

them into the equation (1.15), one obtains the fluid equation:

ρ̇+
3ȧ

a

(
ρ+

p

c2

)
= 0. (1.16)

Note: The fluid equation (1.16) conserve the energy of the universe’s fluid as it expands.

1.5 Expansion and Redshift in the Modern Cosmological

1.5.1 Expansion

The expansion of the universe is related to the scale factor a(t). In fact, modern cosmology explains the Hubble’s

discovery of recession velocity to be proportional to the distance using the Friedman equation (1.11). If one were

to scale the distance x⃗ by a time dependent constant factor a(t) and obtain a new variable r⃗ = a · x⃗, the velocity

v⃗ mathematically defined as the first derivative of the distance with respect to time which is ⃗̇r, can as well be

written in the following form

v⃗ =
˙⃗r

r⃗
· ˙⃗r =

ȧ

a
· r⃗, (1.17)

leading to Hubble’s law [recall Fig(1.5)]: v⃗ = H · r⃗, where the hubble constant H is then defined as

H =
ȧ

a
. (1.18)

The Hubble constant is not constant in cosmology. Given the evolution or expansion of the universe, there

is no obvious reason why the Hubble′s should be constant. To see the variation , it is convenient to combine

equation (1.11) with (1.18) to obtain:

H2 =
8πG
3

ρ− kc2

a2
. (1.19)

With an evolving density ρ which takes different values at different times during the evolution of the universe.

It is therefore clear that the Hubble constant thus evolves with time as well. The equation (1.19) is also another

form of the equation (1.11), the FRW′s equation.
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1.5.2 Redshift

This concept of redshift was quite clearly elucidated already in the previous section (1.4). Below, I am going to

once again invoke the Doppler-Effect and derive the redshift in terms of the scale factor. According to Hubble’s

law dv⃗ = ȧ
a
r⃗. For two nearby points, the change of wavelength dλ = λr − λe; according to Doppler law, is given

by dλ
λ

= dv
c
. Using the time difference between the emission and reception dt= dr⃗

c
, we obtain that

dλ

λ
=

ȧ

a
· dr
c

=
ȧ

a
· dt = da

a
. (1.20)

Integrating (1.20), we obtain that

λ ∝ a. (1.21)

The wavelength λ in equation (1.21) is instantaneous and therefore has different values at different times. If we

are given the wavelength at the beginning of the universe and the wavelength at the present time, the beauty

of the equation (1.21) is that it will tell us whether the universe has expanded or contracted and by how much

exactly. To derive the redshift, we use the formula (1.3) which finally leads to:

1 + z =
λr

λe
=

a(tr)

a(te)
(1.22)

1.6 Solution of The Einstein’s equations

The best theory for a full and complete description (as accepted today) of the universe is given to us by the Big

Bang theory. In this theory it is believed that the universe originated from an enormous exploding fire extremely

hot which ejected debris in every direction of space-time. At this stage the universe existed in the form of plasma

and only radiation was the dominant component. A complete description of the universe’s evolution is given by

the Big Bang Nucleo-synthesis (B.B.N.) and structure formation theories [127, 128].

The cosmology theory states that radiation dominated the universe at very early time. Then matter started

to dominate as the universe expanded down and light chemical elements started to form and fuse together to

form the basic constituents of matters that surround us today. We now believe that there is another component

which is the most dominant compared to matter and it is called dark energy. So far we have two known forms

of matters:

Matter: any type of material which exerts negligible pressure, p = 0.

Radiation: radiation in physical cosmology is referred to as particles moving at the speed of light. Their kinetic

energy leads to a pressure force, the radiation pressure, which using the standard theory of radiation, can be

shown to be



14 Chapter 1: Introduction to Modern Cosmology

p =
ρ · c2

3
. (1.23)

1.6.1 Solution of the Einstein’s equations: case k = 0

To solve the equations (1.11) and (1.16), I will constrain my derivation to a particular case for illustration by

setting the curvature k to 0. In fact k = 0 is referred to as the curvature for a flat universe. Also, I want to make

a full use of the equation of state

ω =
p

ρc2
(1.24)

So ω = 0 will correspond to matter and ω = 1
3
will correspond to radiation dominated era according to radiation

equation of state, Equation(1.23). We shall see later that ω = −1 will correspond to dark energy. Using the

equation of state (1.24) and the particular case of zero curvature, the equations (1.11) and (1.16) becomes:


(
ȧ
a

)2
= 8πG

3
ρ;

ρ̇+ 3ρ (1 + ω) ȧ
a
= 0.

(1.25)

Solving (1.25b), we obtain:

ρ ≃ a−3(1+ω). (1.26)

The above relation relates the density of the universe ρ with the equations of state w which is typically ex-

pressed as the dimensionless ratio of pressure (p) to energy density (ρ): w ≃ p
ρ
. The equation (1.26) demonstrates

that the energy density evolves as a function of the scale factor and w, from which we can deduce that


ρ = ρ0

a3 (matter);

ρ = ρ0
a4 (radiation).

(1.27)

where the following conditions: a = 1, t = 0 and ρ = ρ0 at the present time were applied as boundary conditions.

For nonrelativistic matter such as baryons in stars and gas, (w = 0) and ρ ∼ a−3, leading to the z3 dependence

(matter contribution ΛM ); the density of matter dilutes during the expansion of the universe. If the amount of

matter is considered to be constant, its density should scale according to the volume. The equation of state for

ultra-relativistic matter, photons (radiation) and neutrinos is w = 1/3 leading to ρ ∼ a−4, thus ΩR evolves with

an extra factor of z as radiation contribution. Radiation not only dilutes proportional to the volume expansion,

but its wavelength redshifts as well. The two terms ΩM and ΩR, with other terms namely ΩΛ and Ωk (representing

contribution from the dark energy and the curvature of the space-time) are combined together in the Friedman

Robertson Walker equation. According to [35]:



Chapter 1: Introduction to Modern Cosmology 15

Figure 1.6: Mass density as function of the age of the universe. The dark energy component, assumed
constant, existed during the early universe, however its magnitude was small compared to the density
due to matter and radiation. Dark energy started to dominate much later, its magnitude is ∼ 104 times
larger than that of normal matter. The dark-energy density is assumed to be constant, with an equation
of state defined by w = −1 [47]. Figure from [26].

H2(z) = H2
0

[
ΩΛ +Ωk(1 + z)2 +ΩM (1 + z)3 +ΩR(1 + z)4

]
; (1.28)

where H0 is the hubble constant at the present time. To obtain the time dependence relation of the scale factor

a(t), one need to combine the density ρ = ρ(a) and Friedman equation. Therefore substituting (1.26) in the

equation (1.25a) and integrating, it follows that

a(t) =

(
t

t0

) 2
3(1+ω)

; (1.29)

with the constant t0 given by

t0 =
2

3(1 + ω)

(
3

8πG

)1/2

. (1.30)

Given the scale factor a(t) as I derived it in the equation (1.29), we can the calculate the Hubble’s constant H as

a function of time.

H =
2

3(1 + ω)t
. (1.31)

The equation (1.27) shows that the universe’s density dilutes more quickly as the expansion is going on during

the radiation dominated era than during the matter dominated era. Contrary to Hubble’s expansion, Table (1.1)

shows that the expansion rate is slower now than it was during the very early moments after the big bang. This

assessment is what physicists have believed until the discovery of the accelerated expansion of the universe from

the supernova type Ia.

The evolution of the universe is determined by an imbalanced of forces between the momentum of expansion

and the pull of gravity. The current rate of expansion is measured by the Hubble Constant, while the strength of

gravity depends on the density and pressure of the matter in the universe. If the pressure of the matter is low,
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Table 1.1: summary table of density, scale factor and the hubble’s constant for radiation and matter
dominated universe.

radiation dominated era (ω = 1
3 ) matter dominated era (ω = 0)

ρ(t) ρ0 (t0/t)
2

ρ0 (t0/t)
2

a(t) (t0/t)
1/2

(t0/t)
2/3

H(t) 1/2t 2/3t

Figure 1.7: Evolutions for the Universe, corresponding to three different curvatures. For k = 0 (flat
geometry) the expansion rate will approach zero in the infinite future. The case k < 0 (hyperbolic
geometry) the universe is doomed to expand forever; this case is consider as a runaway universe. In the
spherical geometry (k > 0) however the universe will collapse back to its initial singularity and re-birth
again instantaneously leading to a series of big bangs - big crunches. This is an oscillating universe
which is (maybe) far from what we are seeing now with observation. We must note that during the early
phases of the expansion, it is observationally difficult to say with accuracy the geometry or the actual
path the universe will follow. The above conclusions are true only in a universe without the cosmological
constant Λ. If there was no cosmological constant, open and flat Universes would expand forever, while
closed Universe will end in big crunch. In a such situation, the geometry would have determined the
future fate. However, once Universe become cosmological constant dominated it will exponential expand
forever with a positive acceleration unless dark energy decay somehow in another form of matter.

as is the case with most forms of matter we know of, then the fate of the universe is governed by the density. If

the density of the universe is less than the critical density, then the universe will expand forever, like the green

or blue curves in the graph shown in Figure (1.7). Gravity might slow the expansion rate down over time, but

for densities below the critical density, there is not enough gravitational pull from the material to ever stop or

reverse the outward expansion. This is also known as the Big Chill or Big Freeze because the universe will slowly

cool as it expands until eventually it is unable to sustain any life. If, however, the density of the universe is

greater than the critical density, then gravity will eventually win and the universe will collapse back on itself,
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this is the so called Big Crunch, like the graph’s orange curve, Figure(1.7). In such case, there is sufficient mass

in the universe to slow the expansion and to bring it completely to a stop, then eventually reverse it.

Table (1.1) only summarizes few of the cosmological parameters for two different stages of the universe: the

radiation dominated era and matter dominated era. However, there is another phase whose significance and

importance prevail over the two precedent phases at much later times (at present universe’s time for example);

this is dark energy whose equation of state is characterized by w = −1. Although I have reserved a section

in this chapter discussing the mathematics governing the existence of dark energy, I am taking the liberty to

include it the discussion relative to the evolution of density of the universe throughout time. After the Big

bang, the universe started to expand. As it expanded, the density of matter also started to change. At this

early time, the expansion of the universe is dominated by ΩR term (universe is radiation dominated), which

specifies what component has the largest contribution to the total density. At the present time, according to

the accepted cosmological model, the universe is dark energy dominated, designated by ΩΛ. Ordinary matter

dominance ΩM existed significantly in between these two aforementioned phases and its contribution is now less

important compared to the ΩΛ term. To summarize, the density of different types of matter changes differently

as the universe expands.

Ordinary matter: Its density changes because the volume of the universe changes, while no new matter is

created. ρm ∼ 1/V ∼ 1/a3; where a = a(t) is the distance scale between galaxies. Exploiting (1.22) and (1.27),

in terms of the redshift, the matter density is therefore given by:

ρ(t)M = ρ(t0)M

(
a(t0)

a(t)

)3

= (1 + z)3. (1.32)

Radiation: made of particles such as photons, its number density changes ∼ 1/V and that the photon wavelength

is redshifted, so energy of individual photon also changes as E ∼ (1 + z) ∼ 1/a. Therefore the energy density

(expressed as mass density) of radiation evolves as

ρ(t)R = ρ(t0)R

(
a(t0)

a(t)

)3

× a(t0)

a(t)
= (1 + z)4. (1.33)

Dark energy: whose density does not change at all, that’s why it is called the cosmological constant.

ρ(t)Λ = K, (1.34)

with K, a constant. So, combining the equations (1.32), (1.33) and (1.34) into the Friedman equation, one can

derive without difficulty the Hubble constant redshift dependence relationship mentioned in (1.28).

To end this section, let me discuss the significance of the concept of redshift in cosmology and astronomy.

Redshift is is way to look back in time. In cosmology the light signals that were produced and emitted far
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back in the past can be observed today by astronomers. The earlier the light signal was emitted, the more it is

redshifted by the time it reaches us. Thus, the redshift z of the source is the measure how far in the past the light

was emitted. Therefore higher z means further away in the past the source is, and z = 0 represent the present

moment (the light is emitted right here, and took no time to travel (wavelength did not change at all). z = ∞ at

the start of Big Bang, when we consider t = 0, however the relation between redshift and time depends on how

exactly the expansion of the Universe proceeded.

1.6.2 Solution of the Einstein’s equations: case k̸=0

The solution of the equation (1.11) for the general case of k ̸= 0 is mathematically a bit more involving that the

simple case I have discussed above. However with a bit of trickery and ansatz, one can work out the solution for

the most general case that many textbooks in cosmology and general relativity usually leave aside. Below, I am

going to illustrate only the case for which k >0. With this derivation done, the case k <0 will no longer be a

mystery any more (the case k = 0 has already been discussed in the previous section).

Before delving into the details, I am going to make one additional simplification. I will assume than the

universe is matter dominate (though recent evidence clearly indicates a dark energy dominated era), which

implies that ω = 0 and therefore the matter density will dilute as the universe expands according to ρ ∼ 1/a3

[see the general formula, Equation(1.26)]. With these simplifications, the equation governing the evolution of the

scale factor a(t) becomes:

ȧ =
da

dt
=

√
8πG

3a
− k. (1.35)

The solution of the above equation can be found by using a brute force method, i.e by integrating after doing the

variable separation, but the result is a very long and nasty expression that you will certainly never find in any

textbook. There is however an elegant way to get around this, it is by invoking the chain rule. Since da
dt

= da
dθ

· dθ
dt
,

we can make a change of variable such that the right hand side of the equation (1.35) becomes a function of the

new variable θ introduced in the chain rule. Such functions may be some trigonometric functions (sin(θ), cos(θ),

etc). Let me make such a change of variable now by defining

8πG

3a
=

k

sin2(θ/2)
. (1.36)

The choice of the angle θ/2 will be made clear in the subsequent derivation. We can always chose any angle, say

ϕ, but we will have to define ϕ/2 = θ to get the result (1.37). The equation(1.36) which solves to

a(θ) =
4πG

3k
(1− cos(θ)) . (1.37)

Recalling that

da

dt
=

da

dθ
· dθ
dt

=
√
k · tan(θ/2). (1.38)
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It is now simple matter to show that

t(θ) =
4πG

3k3/2
(θ − sin(θ)) . (1.39)

So, for a universe with the curvature k > 0, the equations (1.37) and (1.39) define the parametric solutions of

such universe. The geometry associated with this universe is spherical while k = 0 is associate a flat geometry

also called a flat universe (Euclidian geometry).

Following the same footsteps as in the above, we can show that for a universe with negative curvature, its

parametric solutions are given by:


a(θ) = 4πG

3k
(cosh(θ)− 1);

t(θ) = 8πG

3k3/2 (sinh(θ)− θ).

(1.40)

Table 1.2: summary table of possible geometries in the universe.

curvature geometry type of the universe
k > 0 spherical Closed
k = 0 flat Flat
k < 0 hyperbolic Open

1.7 The density parameter Ω0 and the critical density ρc

For a given value of H in the equation (1.19), there is a special value of the density ρ which would be required

in order to make the geometry of the universe flat, i.e. k = 0. The critical density ρc is defined as the density for

which the curvature of space-time is null. From (1.19), it implies that

ρc =
3H2

8πG . (1.41)

Consequently, the density of the universe, a very useful quantity in cosmology, is defined relative to the critical

density. This dimensionless quantity is known as the density parameter Ω (or abundance), and it is defined by

Ω(t) =
ρ

ρc
. (1.42)

The present value of the density parameter is denoted Ω0. With this new notation, the Friedmann equation

(1.19) becomes (in units where ~ = c = 1):

H2 =
8πG
3

ρcΩ− k

a2
= H2Ω− k

a2
, (1.43)

which can finally be written as

Ω + Ωk = 1, (1.44)
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with

Ωk = − k

a2H2
. (1.45)

From the equation (1.44) for a special case of a flat universe (for which the curvature k = 0), the density Ω = 1

for all time. This is true regardless of any type of matter in the universe and it is often referred to in cosmology

as the critical-density universe.

The equation (1.45) is in a very instructive form since it allows us to draw the following conclusions regarding

the relationship between the Universes energy content and its spatial curvature: i)if the energy density exceeds

the critical density (Ω > 1), the spatial curvature is closed because k is strictly positive k > 0; ii)if the energy

density equals the critical density (Ω = 0), the Universe is flat because k = 0; and 3)if the energy density is less

than the critical density (Ω < 1), the spatial curvature is open because k is strictly negative k < 0.

1.8 The deceleration

We know that the universe is expanding and that the Hubble’s parameter which characterizes the expansion rate,

is changing with time. A way to quantify the change in the rate of the expansion is known as the deceleration

parameter. The deceleration parameter is defined as the Taylor expansion of the scale factor a(t). Considering

only terms up to second order, the Taylor expansion of a(t) will be:

a(t) = a(t0) + a(t0) · (t− t0) + ä(t0) · (t− t0)
2 + · · · . (1.46)

Dividing (1.46) by a(t0):

a(t)

a(t0)
= 1 +

ȧ(t0)

a(t0)
· (t− t0) +

ä(t0)

a(t0)
· (t− t0)

2 + · · · . (1.47)

This expression is commonly written as:

a(t)

a(t0)
= 1 +

ȧ(t0)

a(t0)
· (t− t0)−

q0
2
H2 · (t− t0)

2 + · · · . (1.48)

Where the deceleration parameter q0 can be inferred to be defined as:

q0 = − ä(t0)

a(t0) ·H2
0

. (1.49)

For illustration, consider a matter dominated universe (i.e. the pressure p = 0), the acceleration equation (1.13)

can be combined with (1.42) to give a deceleration parameter of

q0 =
4πG
3

ρ
3

8πGρc
=

1

2
Ω0. (1.50)

So in the case illustrated above, an accurate measurement of q0 would immediately tell us about Ω0 . Conversely,

if we know the properties of the matter in the universe, then the deceleration parameter q0 can immediately
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be inferred. The two parameters, H0 and Ω0, are sufficient to describe all the possibilities. However, we don’t

know everything about the material in the universe, so q0 can provide a way of looking at the universe. It can in

principle be measured directly by making observations of objects at very large distances, such as distant galaxies,

because the deceleration governs how large the universe would be at very early times.

1.9 Cosmological Framework of Modern Cosmology in the pres-

ence of dark energy (Λ ̸= 0)

1.9.1 Introducing dark energy, Λ

The cosmological constant Λ has been introduced by Albert Einstein himself in order to have a full description of a

static universe. Because gravitational attraction pulls matter together, Einstein introduced another term, a fudge

factor, in his general relativity field equations (1.7) to act against the force of gravity so that the overall exerted

forces destroy each other. This new force, which has the nature of opposing the attractive gravitational force,

is repulsive. The fudge factor Λ, called the cosmological constant, is mathematically allowed and permitted by

the theory of general relativity. However it was later found not be physically well motivated because none of the

solutions birthed from this modification of the equation (1.7) correspond to a static universe, with a constant

scale factor, have ever been found or observed today. Introduction of Λ in the equations (1.7) led to a more

general form of Einstein’s field equations given by:

Rµν − 1

2
gµνR = 8πGTµν + Λgµν , (1.51)

which leads the modified Friedman Equations:

H2 =
8πG
3

ρ− k

a2
+

Λ

3
, (1.52)

and

ä

a
= −4πG

3

(
ρ− 3p

c2

)
+

Λ

3
. (1.53)

If, at some stage in the history of the universe, the cosmological constant is positive and large enough to

dominate over the energy density and curvature terms in (1.52), then the Friedmann equation has the solution

a(t) = e
√

Λ
3
·t. (1.54)

implying an exponential expansion of the universe. This kind of expansion is believed to happen at extremely

late times in the expansion history of the universe. In fact, this prediction has been experimentally explored

since 1998 with the discovery of the accelerated expansion of the universe.

For a positive cosmological constant there will a positive contribution to the acceleration ä as one can see
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from the equation (1.53), therefore acting effectively as a repulsive force. However, if the cosmological constant

is sufficiently large, it can overcome the gravitational attraction represented by the first term and lead to an

accelerating universe. Restricting the equation (1.52) for a flat geometry, one can define the density ΩΛ, associated

with the cosmological constant, as

ΩΛ =
Λ

3H2
, (1.55)

therefore, generalizing (1.44) to

Ω + Ωk +ΩΛ = 1. (1.56)

So, for k = 0,

Ω + ΩΛ = 1. (1.57)

The equation (1.56), or in particular the equation (1.57), is of extreme importance in cosmology. Tremendous

experimental effort is currently undergoing trying to measure with accuracy the contribution of each individual

term of this equation. The geometry of the universe can be told with exactitude once one knows the total sum

contribution from Ω and ΩΛ.

Table 1.3: geometries of the universe inferred from the contribution of the densities of the matter and
the cosmological constant.

geometry geometry curvature (k)
open universe Ω + ΩΛ < 1 k < 0
flat universe Ω + ΩΛ = 1 k = 0

closed universe Ω + ΩΛ > 1 k > 0

1.9.2 Fluid dynamics of Λ

The cosmological Λ is often described in cosmology as a fluid with a pressure pΛ and a density ρΛ.

ρΛ = ρc · ΩΛ =
3H2

8πG · Λ

3H2
=

Λ

8πG
. (1.58)

Modifying the Friedman equation (1.52) to

H2 =
8πG
3

(ρ+ ρΛ)−
k

a2
. (1.59)

The pressure pΛ can be obtained by introducing the following change ρ → ρ + ρΛ and p → p + pΛ into the

acceleration equation. Keeping in mind that ρ and ρΛ are independent variables, so by separation of variables,

one finds that

ρ̇Λ +
3ȧ

a

(
ρΛ +

pΛ
c2

)
= 0. (1.60)
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Since ρΛ is constant, the pressure pΛ must be

pΛ = −ρΛc
2. (1.61)

This last result clearly show that the cosmological constant has a negative effective pressure which means that,

work done on the cosmological constant fluid, allows its energy density to remain constant even though the

volume of the universe is increasing.

The cosmological constant Λ has many implications to the way we should view the universe. For example, it

is no longer necessarily true that a closed universe (k > 0) will collapse back to its initial point, nor that an open

universe will expand forever. In fact, if the cosmological constant is large enough, there need not even be a Big

Bang, with the universe instead beginning in a collapsing phase, followed by a bounce at finite size under the

influence of the cosmological constant (though such models are ruled out by observations). It is also possible to

have a prolonged phase where the universe remains almost static, known as loitering by arranging parameters so

that the universe closely approaches the unstable Einstein static model of a universe [39, 40, 41], see Figure(1.8).

Figure 1.8: Dark Energy density ΩΛ as function of matter density ΩM for different situations including
hypothetical ones such as the bounce universe, also referred to as loitering. By adjusting the cosmological
parameters, we can get different universe’s generic behavior: (i) the Big Crunch, (ii) the Big Fade
(exponentially expanding ), (iii) the Big Fade (critical matter universe), (iv) the Big Bounce (contracting
phase, followed by exponentially expanding phase; there is no Big Bang in this situation as universe’s
starting point), and (v) the loitering (realized by adjusting ΩM so that universe almost crunches and
then the dark energy starts to dominate and win over the matter density. Figure from [39].

Bounce cosmology is ruled out by the existence of high-redshift phenomena such as high-redshift quasars

known with z = 4.89 imposing a restriction on ΩM < 0.01. This is quite unlikely favored on direct observational

grounds, and is also incompatible with the successful predictions of the theory of big bang nucleosynthesis.

Thermalization of the microwave background at z > 103 implies ΩM < 2× 10−9, which is impossible [38].

The deceleration parameter q0 for a universe with all the types of matter (radiation, normal matter and
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cosmological constant Λ or dark energy) can be generalized to the following form:

q0 =
1

2

∑
j

(1 + 3ωj), (1.62)

with ωj · ρj = pj , the equation of state. So, for a universe with only normal matter (ω = 0) and cosmological

constant (ω = −1), we get the following important relation

q0 =
1

2
Ω0 − ΩΛ. (1.63)

Measuring the terms of the equation (1.63) has been at the center of two major experimental group during the

last decade: The Supernova Cosmology Project (SCP) and High−z Supernova Search Team. The universe will

be accelerated if q0 > 0, implying that ΩΛ > Ω0
2
. If, in addition, we assume a flat and pressureless universe, as

is the case for the universe at this present time, the above equation can set a strong bound on the cosmological

parameter Λ for a decelerated and accelerated universe. Since ΩΛ = 1 − Ω0, there will be acceleration if the

deceleration parameter q0 = 3
2
Ω0 − 1 > 0. So the universe will be accelerated if ΩΛ > 1

3
. This value is far less

than the observed value of ΩΛ ≃ 0.70, meaning that the universe is in an accelerated phase.

Figure 1.9: Combined measurement of the cosmological constants equation of state w and the present
day value of the Hubble parameter H0. WMAP 7-year analysis of the cosmic microwave background
data provides a degenerate constraint (outermost contours) that is improved by the measurement of
H0 (nearly vertical solid lines), 73.82.4 kms−1Mpc−1, by the SH0ES II program, resulting in the two
innermost contours and corresponding to w = −1.08 ± 0.10 [43, 44]. Also shown are similar contours
derived from the previous SH0ES result [45] and the Hubble Key Project (HKP) [46]. The 68.3%
and 95.4% confidence-level regions are given for each combination as similarly colored inner and outer
contours, respectively. Figure from [43].

The deceleration parameter q0 is a measurable parameter which determines the linear combination of the

density components Ω0 and Ωm. By measuring the luminosity for very distant supernova type Ia as a function of

the redshift (up to the redshift of z ∼ 1), one obtains Ωm ≈ 0.25. There exist, however, other techniques based

on large structure formation or the weak gravitational lensing effect that are directly sensitive to Ωm. The 2dF
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galaxy redshift survey has estimated a value of Ωm · h = 0.20± 0.01 [59].

Figure 1.10: Models of the universe as identified by their location in the plane showing the densities of
matter ΩM = ρM/ρc and ΩΛ = ρΛ/ρc with ρM and ρΛ, are matter density and dark energy density
respectively, ρc is the critical density.This figure indicates the main results from different experimental
groups. The colored light blue contours represents 1σ, 1.7σ, 2σ and 3σ confident regions from measure-
ments of type Ia Supernova (SNe). Figure from [16].

Dark energy will affect the overall evolution of the universe only if it represents a significant fraction of the

universe′s content. In fact, supernovae data as well as many other observations indicate that the current amount

of dark energy in the universe is 2.7 times the amount of matter (ΩΛ = 2.7×ΩM ). This means that the universe

is made of ΩM = 0.27 of matter and ΩΛ = 0.73 of dark energy. From the conclusions drawn by this observation,

it is not a hard exercise to figure out the fraction of dark matter in the universe. From the rotation curves of

galaxies, 85% of matter must consist of dark matter, implying that ordinary matter amounts to Ωm = 0.04 and

the dark matter has a fraction of Ωχ = 0.23.

1.10 Age of the Universe

One of the important questions of our time that cosmology has answered with great accuracy is the answer to

the question how old is our universe?. As studied so far, one would define the age of the universe as the

time since the big bang to the very present moment, so given the Hubble’s law, this time is naively nothing but

the inverse of the Hubble’s constant H0 at the present moment. Since H0 = 100hkms−1Mpc−1, this implies a

universe age of about t0 = H−1
0 = 9.77h−1 × 109 years. What happens if we try to do better with our theoretical

estimates? Although the precise cosmological model describing our universe is uncertain, we are pretty sure that

it has been matter dominated, i.e. dominated by some form of pressureless material for some considerable time,

and so we can use the matter-dominated evolution to calculate the age. For such a universe, Table (1.1) gives a
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Hubble’s constant H(t) = 2
3t
, thus implying the age of the universe of about

t0 =
2

3
H−1

0 = 6.51h−1 × 109yrs (1.64)

Deriving the formula for the universe’s age is tricky. For a spatially-flat cosmology with a cosmological

constant there are two equivalent (and equally unpleasant) forms. By writing the Friedman equation in the form

ȧ2 = H2
0 [Ω0a

−1 + (1− Ω0)a
2], given t0 =

∫ t0
0

dt, one obtains:

t0 =
2

3

1√
1− Ω0

ln

[
1 +

√
1− Ω0√
Ω0

]
=

2

3

1√
1− Ω0

sinh−1

[√
1− Ω0

Ω0

]
(1.65)

The ”break-even” point where t0 = H−1
0 is at Ω0 = 0.26, close to the value preferred by observation. With the

values of Ω0 ≃ 0.3 and h ≃ 0.72 we get an age of about fourteen billion years which sits comfortably with the

estimated age of the universe.

Figure 1.11: Universe’s predicted ages as fractions of the Hubble time H−1
0 as function of abundance Ω0,

for open universes and for universes with a flat geometry plus a cosmological constant. The prediction
H0t0 = 2/3 for critical density models is at the right-hand edge. Figure from [24].

1.11 Distances in Cosmology

1.11.1 Luminosity and Luminosity Distances

A very common tool used to measure distances in cosmology is known as the distance modulus noted as µ. In

astronomy, distances are very often quoted in terms of the distance modulus rather than in term of the units of

distance that we are all familiar with. The distance modulus is defined as the difference between the absolute and

the apparent magnitudes of a given celestial object. It is important to recall that the absolute magnitude (M)
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is the is the measure of a celestial object’s intrinsic brightness; this magnitude is absolute and does not change.

The apparent magnitude (m) is the magnitude that the object appears at a given distance from the observer.

The absolute magnitude is equal to the apparent magnitude of the object if it were 32.6 light years (10 parsecs)

away from Earth. The absolute magnitude M is defined by

M = −2.5 · log10(L) + C1 (1.66)

with C1 a constant and L is the luminosity. The flux luminosity (F) is related to the luminosity distance (dL)by

the relation

F =
L

4πd2L
(1.67)

Given the flux F, one can determine the apparent luminosity m by exploiting the following relation

m = −2.5 · log10(F ) + C2 = M + 5 · log10(dL) + C (1.68)

Therefore, the distance modulus µ

µ = m−M = 5 · log10(dL) + C (1.69)

The constant C is determined by the requiring that at a typical distance (dL) of 10 parsecs that both the absolute

and apparent magnitudes to be equal, which leads to C=-5, so

µ = m−M = 5 · (log10(dL)− 1) (1.70)

1.11.2 The Tully-Fisher Relation

Another method to measure the distance is through the observation of the width of galactic absorption lines.

These lines are red-shifted or blue shifted depending on whether the galaxy is receding from us or moving towards

us. A superior method for estimating galactic luminosities from rotational velocities is to use the Tully-Fisher

Relation (TFR) [51].

The Tully-Fisher relation is used for spiral galaxies and makes use of a relation between the speed v at which

the galaxy spins and the luminosity L (observed flux) of a galaxy. Specifically the relation of L is proportional to

v4. The speed vc at which the galaxy spins can be determined spectroscopically [for example, narrow emission

lines will be broadened due to the Doppler effect emission from the approaching side of the galaxy and blue-

shifted (relative to the line centroid), emission from the receding side of the galaxy are red-shifted (relative to the

line centroid)], but the observed flux or luminosity L of a galaxy can be determined photometrically by simply

integrating the surface brightness to determine the total flux or luminosity from the galaxy. The Tully-Fisher

relation is a great method for estimating galactic luminosities from rotational velocities. Literature about this
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Figure 1.12: Hubble diagram of the effective distance modulus µ vs the logarithm of the redshift. Filled
circles represents supernova observed by Hubble Space Telescope (HST). The large error bar include the
0.17 magnitude intrinsic dispersion in addition to the measured uncertainties. Figure from [167].

Figure 1.13: Determination of m with Type Ia supernovae data. Measuring the luminosity of standard
candles (Type Ia supernovae) as a function of redshift (a) results in a constraint on 1

2Ωm−ΩΛ. Applying
the constraint of Ωm−ΩΛ = 1, based on CMB data, yields a value for m of Ωm of ∼ 0.28. Figures taken
from [8].

relation was refers to the tight correlation between the value of a disc galaxy’s rotational velocity (where its

rotation curve is flat) and global parameters such as its total baryonic mass, stellar mass or luminosity. Tully

and Fisher originally observed a relationship between luminosity (in terms of absolute magnitude) and rotational
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velocity vc.

To grasp an understanding on how vc relates to a galaxy’s dark halo, let’s consider the simplest possible dark

halo model, a spherically symmetric isothermal sphere of ideal gas (see [18] for a detailed discussion). For the

purposes of this discussion, whether the gas particles are dark baryons or nonbaryonic dark matter is irrelevant.

An isothermal velocity distribution is isotropic. It has a velocity dispersion σ that is independent of radius and

relates the gas pressure to its density

p = ρ(r)σ2. (1.71)

The hydrostatic equilibrium requires the pressure force to balance the gravitational force (per unit volume), such

that

−dp

dr
= −σ2 dρ

dr
=

GNM(r)

r2
· ρ(r) (1.72)

where M(r) is obtained by integrating ρ(r) over a sphere with radius r. The solution to Equation 1.72 is nontrivial

and generally requires a numerical rather than analytic approach. However, at large radii the density approaches

ρ(r) ∼ r−2. Substituting this form into Equation 1.72, an expression for the total mass as a function of radius

can be found

M(r) =
2σ2r

GN
(1.73)

Comparing this to the galactic rotation curve, the flatness (as we’ll see in chapter 2) can be related to an

isothermal dark halos velocity dispersion

vc =
√
2σ (1.74)

The Tully-Fisher relation between luminosity and vc directly relates a galaxy’s luminosity to a fundamental

property of its dark halo. The dark halos velocity dispersion is larger for more luminous galaxies reflecting the

gravitational influence of a larger dark halo. Disc galaxies with larger dark halos have deeper gravitational wells

that are (apparently) more effective at causing visible matter to collapse into luminosity-producing star forming

regions.

The I-band luminosity Tully-Fisher Relation (TFR) for a sample of ∼ 100 disc-dominated galaxies selected

from the SDSS 2002 main galaxy catalog [132] is shown in Figure(1.14). The best-fit TFR relation is [187]

LI = 1.8
( v2.2
149.6Kms−1

)2.6

× 1010L⊙ (1.75)

with v2.2 is the rotational velocity at 2.2 times the disc-scale length and can be considered equivalent to vc.

Substituting v2.2 = v⊙ = 220±20 kms−1 into Equation (1.75) yields a prediction for the Milky Ways total

luminosity

LMilkyWay = 5× 1010L⊙ (1.76)
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Figure 1.14: The Tully-Fisher Relation plotted in absolute magnitudes in the I band centered at 820 nm
vs. the logarithm of the Doppler width of the 21 cm radio line (in km/s) corrected for inclination. The
amplitude of the linewidth is approximately twice the maximum rotation velocity since the linewidth in-
cludes components of the motion toward and away from the viewer. The small symbols of various shapes
and colors represent galaxies drawn from 5 separate clusters of galaxies and the large open symbols repre-
sent nearby galaxies with accurate, independently-known distances. The straight line is a regression to the
data with errors in linewidth. The 5 cluster sample defines the slope and the galaxies with independently-
known distances define the zero point. Figure from www.scholarpedia.org/article/Tully−Fisher relation.
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Chapter 2

Dark Matter Problem

2.1 Dark matter existence

The previous chapter of this dissertation has thus far shed light about the big bang theory which is considered

to be the best theory we have so far that can explain the evolution of the universe. During the last couple

decades or so, the concordance cosmology ΛCDM has emerged as the standard model of the big bang cosmology

and attempted to explain the existence of large scale structures of galaxies and galaxy clusters, the accelerated

expansion of the universe by observing light emitted from very distant supernovae (also referred to as standard

candles), the temperature anisotropy in the cosmic microwave background (CMB) and the nucleosynthesis which

led to the formation of very light elements during the early universe.

The modern concordance model of cosmology, known as ΛCDM cosmology or Λ cold dark matter, describes

a universe (with a total matter Ω ≃ 1) strongly dominated today by contributions Ωm and ΩΛ. The term cold

indicates that the bulk of the universe’s matter was non-relativistic during the formation of large-scale structure.

It is worth noting that in this ΛCDM model, Λ represents the cosmological constant (the simplest form of vacuum

energy also know as dark energy).

This standard model of cosmology draws a clear picture of the evolution of the universe. The universe started

and expanded from a singularity called the big bang, an explosion which took place 13.7 billions years ago.

During its expansion, the universe underwent phases of radiation dominance (during the early moment after the

big bang), matter dominance (some times after the universe has cooled enough) and it is now believed to be

dominated by dark energy which is some sort of anti-gravity; dark energy is the force associated with negative

pressure, it repels matters away from each other rather than pulling them together as gravity does.

The left pane of Figure (2.1) shows a pie chart of the universe’s content budget as it stands today and at

z≃1100, deduced from a variety of cosmological observations. The two largest energy and matter components

are labelled ‘dark’. This is because they seem invisible; they have eluded detection via conventional observation.
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We infer their abundances from various cosmological observations as shown in the right pane of Figure (2.1), but

we have absolutely no understanding of the nature of these components.

Figure 2.1: The Universe’s matter budget (also referred to as the pie chart) as portioned by the concor-
dance cosmology ΛCDM. On the left it is shown the universe’s content budget show at a redshift of about
z ≈0.4 (top left plot) and at the redshift z ≈ 1200 (bottom left plot). The universe today is dominated by
dark energy (Λ) whereas it was dominated by matter when the universe was at a redshift of z ≈ 1200 with
contributions from neutrinos, photons and baryons. In the right plot, it is shown the abundance of dark
energy (ΩΛ) as function of the abundance of the matter (ΩM ) as obtained from the Baryon Acoustic Os-
cillation (BAO), Cosmic Microwave Background (CMB) and from Type Ia Supernovae (SNe). Contours
regions show 1σ, 2σ and 3σ confidence regions. Figures from [129, 130].

Three different and separate observations all converging toward the same findings that the geometry associated

to the universe is flat. These observations clearly indicate that most of the matter contents of the universe is

completely alien to us, they are invisible and so far undetected as shown in the left panel plots in Figure (2.1).

The dark matter abundance is believed to be approximately Ωm = 0.24 and that of dark matter ΩΛ = 0.72,

leaving only a small fraction of the baryonic matter corresponding to an abundance of Ωb = 0.04. Recall that the

abundance is defined as the density of a given state normalized by the critical energy density, required to make

the universe flat.

Before the concordance cosmology emerged, we knew about dark matter only through the observations. Dark
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matter existence came to our knowledge for the first time through observations made in the Coma galaxy cluster

in 1933 by Fritz Zwicky followed by the rotation speeds of galaxies carried out by Vera Rubin (1970).

Since then, more pieces of evidence which support the existence of dark matter and dark energy come from

observations such as studying the gravitational effects of dark matter at various scales: galaxies, clusters etc.

More accurate measurements was also made using the CMB anisotropy and complete surveys of galaxies and

clusters. With the success of the Big Bang nucleosynthesis and the observations made using the supernovae Ia

studies, we were able to narrow down with great accuracy the estimates of the various parameters of the Standard

Model of Cosmology, including ΩΛ, Ωm and Ωb.

In the subsequent paragraphs of this chapter I will discuss briefly the evidences for dark matter from the

rotational galaxies. I will explore dark matter interplay during the early moments of the universe following the

big bang and then talk about some candidates for dark matter. Finally, I will introduce the Weakly Interacting

Massive Particles and give reasons why this particular class of particles is considered to be favorable candidates

for dark matter.

2.1.1 Rotation curves of galaxies

The first and the most compelling argument for the existence of dark matter on galactic scales is provided by

the rotation curves of spiral galaxies. The visible structure of spiral galaxies is dominated by a luminous disk of

stars that rotates about its axis.

The first hint of dark matter came in 1933 when Fritz Zwicky and Walter Baade measured the velocities

of galaxies in the Coma Cluster. From the observed dynamics, they calculated the cluster mass. The velocity

distributions yielded an astonishing result that the galaxies were moving in the gravitational potential of a total

mass about 160 times greater than expected based on the luminous matter in the cluster. From these observations,

Zwicky postulated the existence of an unseen component of the cluster that contributed most of the mass, and

called it dark matter. An independent observation was carried out in 1970, when Vera Rubin and Kent Ford

published their results on the rotation curve for the Andromeda Galaxy M31. As seen by Fritz Zwicky, the orbital

velocities of objects in the galaxy were much faster than expected, revealing a much larger mass than indicated

by the luminosity of the galaxy. In addition, the rotation curves were found to rise in the inner region, but to

flatten near the edge of the disk and remain nearly constant out to high radius, Figure (2.2).

The dynamics of spiral galaxies is an important avenue for understanding the nature of dark matter. Vera

Rubin and Ford used Hα and other spectral lines to study individual ionized atomic hydrogen (H II) clouds in

the Andromeda galaxy [131, 132]. By measuring the Doppler shift of spectral features such as the electronic

and hyperfine spectral lines of neutral and ionized atomic hydrogen it is possible to determine the distribution

of mass at the center of the bulge, through the disk, and in the outer halo [133]. Other techniques used in these

observations are various optical lines, 21 cm radio, CO rotational transitions, maser lines and the proper motion

(for stars near the center of the Milky Way galaxy).



34 Chapter 2: Dark Matter Problem

Figure 2.2: Rotational speed of the galaxy NGC 6503 as function of the galactic radius shown in black
data points overlaid with a solid black line representing the fit to the data. The solid line is the theoretical
rotation curve and the dots with error bars the measured object speed. Also shown are the contributions
made to the curve by gas (dotted curve), luminous matter (dashed curve) and dark matter (dashed
dotted curve). Figure from www.astro-photography.net/Dark-Matter.html.

Figure 2.3: Rotational curves of several spiral galaxies. Figure from [133].

One remarkable feature of these curves which can be observed from Figures (2.2 and 2.3) is that they are flat

or nearly flat between 1 and 2 optical radii and show little sign of falling off, but it is straightforward to calculate

the mass profile needed to produce a flat rotation curve. Requiring that the gravitational and centripetal forces

for a particle in a circular orbit of radius r to equal, one gets:

m
v2

r
= G · m ·M(r)

r2
, (2.1)

where v(r) is the observed rotation curve and M(r) is the mass enclosed in a sphere of radius r. If the matter

distribution in these galaxies is dominated by visible matter, then the rotational speed of objects beyond the

visible disc of spiral galaxies should fall off as ∼ 1/
√
r. However, observed results show that rotation curves are
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flat at large radii, implying M(r) ∝ r [133]. To explain this observation, it requires to postulate an addition

of an invisible halo of matter to the mass profiles of galaxies. This invisible halo of matter extends beyond the

visible component; this invisible halo, is generally attributed to dark matter. Assuming a spherically symmetric

halo component, then M(r) ∝ r can be produced if the volume mass density of the spherical component obeys a

density profile of the form ρ ∝ 1/r2 at large r. The density profile is provided by an isothermal halo by assuming

a system of particles interacting gravitationally and in thermal equilibrium at some temperature temperature.

In the phase-space, its distribution function is

f(r⃗, v⃗) =
ρ0(

2πkBT
m

)3/2
· e−

1
2
mv2+mΦ(r⃗)

kBT , (2.2)

where ρ0 is the density at the center of the disk and Φ(r⃗) is the gravitational potential. As one can notice, the

equation (2.2) is nothing else but a thermal Boltzmann distribution with the total energy E = 1
2
mv2 + mΦ(r⃗)

and the velocity dispersion σ2 = kBT
m

. Given the nonlinear dependence of the phase-space distribution through

the potential Φ(r⃗), it becomes extremely difficult to solve for the density distribution. The authors in [134] used

the assumption that the density distribution is softened so that it flattens at small radii where ρ0 becomes finite

and that the density distribution can be approximated to the following the form

ρ(r) ∝ 1

1 + ( r
a
)2
. (2.3)

The total mass in this profile (2.3) grows arbitrarily large out to unlimited radius. For this reasons, we need an

alternative profile. So the commonly used form, designed to match simulations of structure formation in dark

matter-dominated galaxies, is the Navarro-Frenk-White profile [135]

ρ(r) =
ρ0

r
a

(
1 + r

a

)2 . (2.4)

The above profile approximates 1/r2 at intermediate radius and has a somewhat cuspy central behavior. At large

radius, it falls of as 1/r3 and gives a total mass that is logarithmically divergent; this is an example of a cored

inner profile with constant density at the center. This distinction between the two asymptotic behaviors of the

above profiles has serious implications for dark matter detection since both models have divergent total mass,

therefore some sort of truncation is needed to keep the total halo mass finite.

2.1.2 Galaxy clusters and galactic dynamics

Galaxy clusters are the largest bound structures in the universe, containing not only visible galaxies, but also a

much larger mass of hot gas called intracluster medium (ICM) and the dark matter. The fact that the cluster are

bound for a very long time, their dynamics can be described by the virial theorem which can be used to relate

the kinetic and potential energies by the following formula:
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1

2
⟨m⟩⟨v2⟩ = G

M

2⟨r⟩ ⟨m⟩, (2.5)

where ⟨v2⟩ >= σ2 is the velocity dispersion of the galaxies, ⟨m⟩ is the velocity-squared-weighted mean galaxy

mass, and ⟨r⟩ is the virial radius, defined circularly as the radius inside of which the assumption of virialization

holds. M is the cluster virial mass, the mass inside the virial radius.

From the virial theorem, F. Zwixky found a startling result that the gravitational mass was higher than

expected based on the luminosity of the galaxies (by a factor of 400). This discrepancy is usually expressed as a

mass-to-light ratio (M
L
) normalized to 1 for the mass and luminosity of the sun, with M the total mass inferred

from gravitational dynamics using the virial theorem, and L the luminosity from the visible light emitted by the

cluster galaxies. A study of 29 clusters from the ESO Nearby Abell Cluster Survey (ENACS) found an average

value of M
L

= 454h
M⊙
L⊙

[136, 137] (where h is the Hubble parameter in units of 100 km/s/Mpc). The results

obtained are compatible with cuspy profiles like Navaro Frank White (NFW) as well as cored profiles like the

isothermal spherical halo. Figure (2.4) shows the velocity dispersions from the data (averaged over clusters),

compared with selected halo profiles.

Figure 2.4: Cluster velocity dispersions from the ESO Nearby Abell Cluster Survey [139]. Circles with
error bars are from early-type galaxies (last data point not used). The curves represent several halo
models: isothermal (dotted), NFW (long dashes), M99 (short dashes), and Burkert (dot-dash). The
cluster radius is normalized to r200, the radius at which the cluster density is 200 times greater than the
cosmological critical density and the velocity dispersion is normalized to the global value for each cluster
considered as a whole. Figure from [318].

2.1.3 Optical light and gravitational lensing

Gravitational lensing has been used as a way to probe cluster masses by observing the light deflection field

of background galaxies and other objects, generated by a cluster in the foreground [138]. Strong gravitational
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lensing produces arcs called Einstein rings and multiple images from background objects, but weak lensing gives

a slight distortion to the shapes of distant galaxies. Since most galaxies are not intrinsically spherical, the lensing

effect can only be detected statistically, using a large number of galaxies.

In the weak-field and low-velocity limit of general relativity, the refractive index of a gravitational lens is

directly proportional to its gravitational field

n(x) = 1 +
2

c2
Φ(x) (2.6)

Therefore, the lensed images enable the determination of the true mass density including that of dark matter.

Lensed images (rings and arcs) have been used to estimate a mass-to-light ratio of the order of 80 to 180 in solar

units, depending upon the portion of the cluster considered in these analysis although lensing distortions can

sometimes be difficult to identify in a strong gravitational regime [140, 141]. In the weak field limit (weak lensing),

the authors in [142], performed an analysis of 130,000 galaxy clusters and groups identified in the Sloan Digital

Sky Survey and they find general agreement with virial cluster masses and with the overall ΛCDM cosmology,

suggesting a total matter density (with respect to the critical density) of Ωm ≈ 0.2− 0.3.

Figure 2.5: Hubble Space Telescope image of the cluster Abell 2218, showing a presence of the prominent
arcs from strong gravitational lensing. Image from the Space Telescope Science Institute.

2.1.4 Bullet clusters

The Bullet cluster is actually two separate and distinctive galaxy clusters which have recently collided. As they

passed through each other, the gas in each cluster interacted, producing a drag force similar to air resistance,

and slowed down. This is how normal matter should and does behave. However, the bulk’s matter or cold dark

matter interacts with gravity only, and so the dark matter in the clusters is able to move ahead of the gas,

producing the shape of the Bullet seen today. D. Clowe and al. in [143] have reconstructed the distribution of
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hot gas and of total mass in this system. Figure (2.6) show the lensing mass contours overlaid on the optical and

X-ray images of the structure. The stark segregation between total matter (traced by lensing) and the smaller

proportion of baryonic matter, traced by the X-ray gas as shown in the left panel of Figure (2.6), is completely

consistent with the dark matter model: the collisionless dark matter halos (as well as the galaxies themselves)

have passed through one another essentially unchanged, while the two populations of hot gas have been shocked

by interactions during the collision and remain between the two colliding structures.

Figure 2.6: Optical image of the bullet cluster with the weak lensing overlaid indicating the contours
of mass densities from Hubble Space Telescope (left) and the X-ray image of the bullet cluster from
Chandra X-ray observatory. Figures from [143].

2.1.5 Elliptical Galaxies

The existence of dark matter can also be inferred using elliptical galaxies. An elliptical galaxy is viewed as a

gas of stars in thermal equilibrium. They are anisotropic, exhibiting triaxial ellipsoidal shapes. The elliptical

galaxies appear to be in gravitational-thermal equilibrium (they are neither collapsing nor expanding).

Elliptical galaxies are placed in the categories E0 to E7 1 depending on their degree of ellipticity. They have

a uniform luminosity and are similar to the bulge in a spiral galaxy, but with no disk. The stars are old and

there is no gas present. Ellipticals are usually found in the high density field, at the center of clusters and possess

halos of ionized, X-ray-emitting gas arising scattering and thermal bremsstrahlung.

The gravitational-thermal equilibrium is linked by a relation between the gas density distribution ρg(r), the

total mass M(r) enclosed up to a distance r, and the observed X-ray temperature T which can be derived under

1Elliptical galaxies are denoted by the letter E. They are also given a number from 0 to 7. An E0 galaxy looks like
a circle. An E7 galaxy is very long and thin. Astronomers have specific mathematical definitions for each number, but
these definitions are beyond the scope of this dissertation. Elliptical galaxies have a large range of sizes. The largest
elliptical galaxies can be over a million light-years in diameter. The smallest ”dwarf elliptical” galaxies are less than
one-tenth the size of the Milky Way. Elliptical galaxies have very little gas and dust. Since stars form from gas, little
star formation occurs in elliptical galaxies. Most of their stars are old and red. With some practice, one can learn to
visually tell what type of elliptical galaxy one is observing. For details, I refer the reader to the following web site:
http://cas.sdss.org/dr5/en/proj/basic/galaxies/ellipticals.asp
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the assumption of hydrostatic equilibrium:

dpg(r)

dr
= −G

M(r) · ρg(r)
r2

. (2.7)

The ideal gas law provides the relationship between the pressure and temperature of the gas: pg = ρgkBT/µmp,

where mp is the proton mass and µ is the average atomic mass of the ions in the gas, transforming the equation

(2.7) to the following form:

d

dr

(
ρg(r)kBT

µmp

)
= −G

M(r) · ρg(r)
r2

. (2.8)

The whole system made of stars and the gas (no dark matter taken into account) can be virialized and so

would move in the same gravitational well, and would, therefore, have the same velocity dispersion given by

σ2 = kBT/µmp, (2.9)

and the goal was to check if the stellar velocity dispersion σ and the gas temperature follow Equation(2.9). Davis

and White [144] have performed such study on a sample of 30 elliptical galaxies and have observed T ∝ σ1.45

rather than T ∝ σ2. More detailed study [145] in terms of

βspec =
kBT

µmpσ2
. (2.10)

revealed for different stellar and dark halo models that, without the presence of dark halo, βspec is never less that

0.75. The typical observed value is βspec ≈ 1/2, this implies that the stars have ∼ 1/2 the velocity dispersion

they should have, concluding that dark matter is very common in elliptical galaxies.

Figure 2.7: The logarithm of the X-ray temperature vs. the logarithm stellar velocity dispersion σ. for
a set of X-ray-emitting elliptical galaxies. The solid line indicates the best fit exponent, 1.45, and the
dashed line indicates the expectation for T ∝ σ2. Figure from [144].
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2.1.6 Intracluster medium and X-ray emission

The hot intracluster gas can also be used as a probe of dark matter, gas falling into a cluster’s gravitational well

is pressure heated to temperatures of 106 − 108 K as it falls into the center of the cluster’s gravitational well, and

emits X-rays by thermal bremsstrahlung; the emission spectrum depends on the depth of that well. Therefore,

observations of the X-rays from the intracluster medium (ICM)2 can reveal not only the mass of the ICM, but

also the dark matter mass and its distribution. Like elliptical galaxies, clusters are permeated by x-ray emitting

ionized gas that can be used to trace their gravitational potentials. The methodology for estimating cluster

mass from x-ray temperature is essentially the same as was described in the previous section (2.1.5). Assuming

the gas is in hydrostatic equilibrium, the mass profile can be derived from equation (2.8) by modelling the gas

density according the β-model given in Equation (2.10). However, due to the relative size of clusters compared

to galaxies, the angular resolution available with current x-ray observatories makes it possible to characterize

the radial dependence of the temperature in far greater detail than is possible for elliptical galaxies and such

a dependence can be precisely measured. For details, I will refer the reader to the followings publications:

[52, 53, 54, 55, 56, 57, 58, 59].

2.2 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is the universe’s primordial relic blackbody radiation, last emitted

(scattered) from the surface of last scattering when the universe became transparent approximately 400,000 years

after the Big Bang. Superimposed on its blackbody spectrum at 2.73 K, the CMB has anisotropy in temperature

[146] and polarization [147] at the ∼ 10µK and ∼ 0.1µK levels, respectively. The predicted anisotropies are

very sensitive to a wide range of cosmological parameters and accurate measurements of the CMB anisotropies

provide excellent constraints on cosmological parameters.

The Cosmic Microwave Background (CMB) radiation is the oldest light in the universe that can be observed

today even on Earth. The early universe was so hot that it was opaque due to the strong coupling between

photons and baryons. Tiny density perturbations, on the order of 10−5, created potential wells. Since baryons

and photons were strongly coupled, there was a competition between gravity and radiation pressure around these

wells which caused oscillations that are generally referred to as acoustic oscillations. These oscillations continued

until the universe expanded and cooled sufficiently so that the photons were no longer coupled to baryons. This

point is known as surface of last scattering. The acoustic oscillations created temperature fluctuations in the

CMB, Figure (2.8), which were frozen at last scattering. Measuring the resulting CMB temperature power

spectrum, Figure (2.9), gives information about the dark energy, dark matter, and baryonic matter densities in

the universe. The relative amounts of dark and baryonic matter affect the amplitudes and positions of the power

2In astronomy, the intracluster medium (ICM) is the superheated plasma present at the center of a galaxy cluster. This
is gas heated to temperatures of between roughly 10 and 100 megakelvins and consisting mainly of ionised hydrogen and
helium, containing most of the baryonic material in the cluster. The ICM strongly emits X-ray radiation
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spectrum peaks because they have strong effects on the acoustic oscillations; baryons increase the oscillations

while dark matter reduces them. This occurs because dark matter interacts gravitationally but would not have

been coupled to the photons.

The fundamental measurement in microwave background is the temperature of the microwave background

seen in a given direction on the sky, T (θ, ϕ)[3] usually expressed in terms of the dimensionless temperature

anisotropy and the mean temperature T .

∆T

T
=

T (θ, ϕ)− T

T
(2.11)

The expression (2.11) is usually written as an expansion of spherical harmonics similar to Fourier series for

surfaces or sphere.

∆T

T
=

∞∑
l=1

l∑
m=−l

almY m
l (θ, ϕ) (2.12)

The coefficients alm tell us the size of the irregularities (anisotropies) on different scales. As with the galaxy

distribution, to compare with theory we are interested only in the statistical properties of these coefficients,

quantified by the radiation angular power spectrum, now known universally by the notation Cl. The angular

power spectrum (Cl), for a given multipole moment, is given by an average over the moments and is defined by

Cl = ⟨|alm|2⟩ = 1

2l + 1

m=l∑
m=−l

|alm|2 (2.13)

with the angled brackets being the statistical average, as known in statistical mechanics. Care needs to be taken

when making comparisons with theory and observation due to the cosmic variance which limits the observer’s

ability to see the region up to the horizon, so there is a difference between our region of the Universe as compared

to the average region of the universe. Moreover, the power spectrum is usually plotted as a function of the

multipole l in terms of the squared temperature anisotropy, i.e.

(∆Tl)
2 =

l(l + 1)

2π
Cl (2.14)

The spectrum can be understood as the amount of power stored in small and large scale fluctuations in the

microwave background temperature, where low multipole moments represent large angular scales (for example

l < 100 will correspond to θ ≥ 2◦) and high multipole moments represent relatively small angular scales (l > 1000

corresponds to θ ≤ 2◦). Since these temperature differences represent fluctuations in the temperature of the

surface of last scattering, they correspond to the matter-density fluctuations in the early Universe that eventually

evolved into the structures we see today. The first two thousand multipole moments in the shape of the curve of

the power spectrun, Figure (2.9), is primarily due to three effects: the Sachs-Wolfe effect [77], acoustic oscillations,

and Silk damping [78, 79].

The flat power spectrum for the first hundred multipole moments corresponds to gravitational fluctuations

3The radiation is also predicted to have a small level of polarization and this was first detected in 2002 by the DASI
experiment. Polarization can be described similarly to temperature and is likely to become an increasingly important
observational measurement.
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on scales larger than the cosmic horizon and reflect the nature of the earliest gravitational perturbations. These

perturbations cause slight gravitational redshifts and blueshifts to the CMB photons at the surface of last scat-

tering due to matter overdensities and underdensities, resulting in a weak CMB anisotropy for l < 100 generally

referred to as the Sachs-Wolfe (SW) effect [77] , i.e. photons from the CMB are gravitationally redshifted, caus-

ing the CMB spectrum to appear uneven. This effect is the predominant source of fluctuations in the CMB for

angular scales above about ten degrees. The power spectrum’s shape for l < 100 has sensitivity to a cosmological

parameter; the spectral index of density perturbations, ns. In general, if ns ∼ 1, the initial perturbations will

result in a CMB power spectrum that is amost constant for large angular scales (scale-invariant). This generally

happens for 10 < l < 100 and is referred to as the Sachs-Wolfe plateau. For multipoles corresponding to l ≤ 10,

there is a substantial contribution to the power spectrum caused by the integrated Sachs-Wolfe (ISW) effect.

At the largest scales there is a bit of extra power in the CMB anisotropy due to gravitational redshifting and

blueshifting of the CMB photons as they travel from the surface of last scattering to the Earth. The ISW effect

is caused by gravitational redshift; it occurs between the surface of last scattering and the Earth, and it is not

considered to be part of the primordial CMB. The ISW effect occurs when the universe is dominated in its energy

density by something that is different than matter. For example if the universe is dominated by radiation, or

by dark energy, their energy potentials will change the energy of photons passing through this (potential) well.

In other words, the photon may have more or less energy when exiting the well than the energy it had when it

was falling into these kinds of potentials. There are two contributions to the ISW effect. The early-time ISW

effect occurs immediately after the (non-integrated) SachsWolfe effect produces the primordial CMB, as photons

course through density fluctuations while there is still enough radiation around to affect the expansion of the

universe. The second contributions to ISW effect is called the late-time ISW effect, Although it is physically

the same, is usually lumped in with the primordial CMB, since the matter fluctuations that cause it and are in

practice undetectable.

Figure 2.8: The Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data all-sky map of the cos-
mic microwave background primary anisotropy. The red and blue spots indicates regions of space with
extremely hot and cold temperature (relative to this scale), other colors are regions of space with tem-
peratures in between, with a precision of 10−5. A Mollweide equal-area projection is used to display the
entire sky in galactic coordinates, with temperature differences given in units of thermodynamic tem-
perature. The most recent primary anisotropy maps from the 7-year data release tend to be published
in the form of differences relative to this map. The differences are consistent with pixel noise, slight
calibration errors and an expected change in the Earth′s dipole signature. Figure from [49].
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The most prominent feature in the cosmic microwave background is the l = 1 perturbation, known as the

dipole. It corresponds to a pattern which is hot in one direction and cold in the opposite direction, with a smooth

transition between them. Although the dipole l = 1 is interesting, it does not however tell us about the properties

intrinsic to the microwave background, and so the dipole is studied separately and l = 2 is the smallest value

considered.

The microwave background’s temperature fluctuations record inhomogeneities in the photon-baryon fluid at

the era of last-scattering. These inhomogeneities can be seen as an acoustic waves in the photon-baryon fluid of

the last-scattering surface, and the densities of baryonic and non-baryonic matter have strong effects upon these

oscillations: baryons tended to gravitationally collapse and form overdensities, whereas the photon pressure

countered these overdensities, causing oscillations (dark matter reduces the driving effect of those oscillations

upon the gravitational potential).

The angular power spectrum of the anisotropies is thus a sensitive probe of cosmological parameters, encoded

in the positions and heights of the various spectral peaks. When combined with other cosmological measurements,

current CMB data provides precise confirmation of the modern cosmological model, Figure (2.1.b).

Figure 2.9: Temperature power spectrum of primary CMB anisotropies, as estimated from the WMAP
5-year data and an assortment of observations at small angular scales. The red curve indicates the
prediction of the best-fit ΛCDM cosmological model. Figure from [148].

The structure of the peaks in the power spectrum, Figure (2.9), at l ∼ 100 is due to acoustic oscillations in

the baryon-photon fluid prior to recombination. Acoustic oscillations are normally thought of as a competition

between the tendency for baryonic matter to clump as it falls into the gravitation well caused by the initial

gravitational potential (perturbations) and the tendency for the radiation pressure of the tightly coupled photon

background to oppose the clumping. After recombination, the photon background decoupled and the phases of

the acoustic oscillations froze out, resulting in the pattern of harmonic peaks we see in the CMB power spectrum

until today.
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The acoustic peaks in the power spectrum are in general sensitive to certain parameters of the modern

cosmology: for example, the position of the peaks of the angular spectrum is sensitive to Ωk, so sensitive to the

curvature of spacetime k. The peaks amplitudes relative to the Sachs-Wolfe plateau provide a way to determine

the re-ionization optical depth τ . The CMB anisotropy for angular scales θ ≼ 1◦ cause a diminution of the

acoustic peak′s amplitudes by a factor of e−2τ relative to the Sachs-Wolfe plateau after the reionization (at a

redshif of z < zreion). Finally, the acoustic peaks at higher and higher multipol has a damped behavior, especially

at l ∼ 2000. This is a direct consequence of the nonzero time scale over which recombination occurs and is called

Silk damping [76].

During the last two decades or so, many experiments (ground and space based) set goals to measure the CMB

anisotropy and polarization modes. Among these experiments, we can name ground-based telescopes such as

VIPER [61] and TOCO [62], interferometers such as CBI [63] and DASI [64], as well as balloonborn instruments

(MAXIMA [65] and BOOMERANG [66]). All these different experimental groups have started running almost

at the same, however, only the satellite-born Wilkinson Microwave Anisotropy Probe (WMAP) [67] has provided

a detailed all-sky map of the anisotropy with which the Standard Cosmology can be comprehensively tested.

papers by the WMAP collaboration that explore the collection, processing and implications of their 7-year CMB

data in far greater detail [68, 69, 70, 71, 72, 73].

The best fit curve in Figure (2.9) takes into account many effects in order to give to get the shape which

follow the tredn of the data. In fact, the model used in WMAP is called the minimal ΛCDM model. The

minimal ΛCDM model is a six-parameter model for which the geometry of the Universe is assumed to be flat

(i.e. k = 0), the dark-energy ΩΛ ̸= 0 (who equation of state is w = −1) and ΩM , the nonbaryonic and cold

dark-matter (CDM) component ΩCDM or Ωχ in addition to a baryonic component Ωb.

Figure 2.10: E-mode polarization (EE) power spectrum of primary CMB anisotropies, as estimated from
the WMAP 5-year data and an assortment of other observations. The curve indicates the prediction of
the best-fit ΛCDM cosmology. Figure from [148].
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Remark: The WMAP data are measured in the frequency band and converted to an all-sky map using a

technique called Mollweide equal-area projection 4 in the galactic coordinates, with the temperature differences

given in units of CMB thermodynamic temperature [74, 75, 76]. At this stage, the maps not only include the

primordial-temperature differences from the surface of last scattering (primary anisotropy), but also include

features due to diffuse galactic emission, point sources such as planets and nearby galaxies, and a large dipole

signature caused by the motion of the Earth relative to the cosmic rest frame. The reason the maps are recorded

at five different frequencies is to remove these foreground features. The technique for extracting the primary

anisotropy is described in [76] and results in a single map like the one shown in Figure (2.8).

2.3 Big Bang Nucleosynthesis

The previous paragraphs, as demonstrated by the concordance cosmology ΛCDM and many other observations,

have sufficiently shed light on the nature of the universe’s contents. It is proven that most of the matter in the

universe is dark in some sort of substances called dark matter and dark energy. These two components are weird

and are subjects of active physics research. The normal matter, matter that we can see and touch, matter which

can be detected by means of electromagnetic interaction, amounts to a small fraction, about ∼ 4% only that is

characterized as baryonic matter.

During the early universe, the whole universe was in radiation dominance phase. Everything that existed was

completely ionized. To understand how matter came to form, one needs to turn to the study of the abundances

of light elements, the theory behind the big bang nucleosynthesis and the structures formation of the universe.

Below, I am going to briefly discuss these important topics in order to grasp an understanding of how the big

bang nucleosynthesis (BBN) provides strong evidence for existence of the non-baryonic dark matter.

To study nature on its largest scales, we turn to observations related to the early universe. The Big Bang

Nucleosynthesis (BBN) model predicts the abundances of the light elements produced in the early stages of the

Universe, moments after the bing bang occurred (with a time scale of 1 − 180 seconds). This model sets strong

constraints on the density of the baryonic matter in the universe noted as Ωb. During the very early times when

the Universe was less than 1 second old and the temperatures > 1 MeV, the weak interactions such as

n+ νe ↔ p+ e, (2.15)

were in equilibrium (of neutrons and protons). The neutron to proton ratio is thus maintained at the equilibrium

value set by the two particle′s mass difference [8]:

n

p
= e−∆m/T , (2.16)

4The Mollweide projection is a type of coordinate transformation commonly used for maps of the globe or the sky. It
accurately represents area while tending to distort angles and shapes. For CMB anisotropy maps, the galactic plane runs
horizontally through the middle of the map.
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where ∆m = mn −mp is the neutron and proton mass difference. As the Universe expands and cools at T ∼ 3

MeV neutrinos decouple, halting the above reaction. The weak interactions interconverting neutrons and protons

freeze out, and the n/p ratio is given the equilibrium value (which took place before freeze-out) by ∼ 1/6. At

this time, the reactions producing light nuclei are still in equilibrium with the reactions of photo-dissociation of

the same nuclei. For example, for deuterium: n + p → D + γ as the Universe cools and expands further, the

temperature of photons becomes low enough that the dissociation reactions halt. The protons and neutrons then

proceed to form deuterium and the light nuclei, until all neutrons are used up. About 20% of the neutrons decay

prior to being incorporated in the nuclei. Roughly 100 seconds after the Big Bang (at the temperature of about

0.03 MeV), the abundances of the light nuclei D, 3H; 3He; 4He; 7Li and 7Be are set. The heavier nuclei are

not formed because of the large Coulomb barrier to the necessary reactions. Deuterium is the most powerful of

these baryometers. Deuterium is a delicate nucleus, easily destroyed within stars and therefore no longer created

in the modern universe. Since the deuterium abundance is sensitive to η = nb/nγ , the baryon-to-photon ratio,

and decreases with time, any measurement of deuterium yields a direct upper limit on η. Current deuterium

measurements from quasar absorption lines [30] indicate η ≈ 5.5 [29], implying a modern baryon density of Ωb ≈

0.04, implying that ordinary, baryonic matter thus cannot constitute more than a small fraction of the universe’s

total matter density, so dark matter must therefore be non-baryonic in nature.

Two cosmological parameters are of critical importance in determining the natural abundances of the light

elements: the expansion rate (relative to the rate of the weak interaction which sets the abundance remained

at the freeze-out when neutron-proton equilibrium is established at the freeze-out temperature Tf : the ratio

n/p and the final number of neutrons available to form elements of A > 1). The other important parameter is

the baryon density ρb which affects the relative abundances of the elements: if ρb is larger, the nucleosynthesis

starts earlier and more nucleons end up in the stable element. Generally, the baryon-to-photon ratio η is often

used instead of ρb, and the photon density ηγ is obtained from the CMB measurement. Figure (2.11) shows the

evolution of the light-element abundances as the Universe cooled, as predicted by the BBN model.

In general, one sets the task to measure the abundances of light nuclei in the universe, and from them infer

the density of baryons ρb (or, equivalently, Ωb). The ratio of abundances of two elements is measured (one of

which is usually hydrogen, whose density is usually the easiest to measure). The major difficulty, however, lies in

estimating the departures from the primordial abundances. The most reliable primordial abundance measurement

is believed to be the that of deuterium D, Figure (2.12). The measurement is made using low metalicity absorption

line systems in the spectra of high-redshift quasars. The gas in these systems is in the outer regions of galaxies

or in the intergalactic medium, and it is not related to the quasars. The low metalicity of the absorption system

is required as it implies that no significant amount of D was destroyed in stars. A high redshift is required as the

Universe was then too young for the low-mass stars to eject large amounts of gas. However, complications arise

if the absorption by D is contaminated by the absorption by H, so careful selection of the absorption system is

required and D/H ratio ([150, 151, 152, 153]), has been estimated to be Ωbh
2 = 0 : 019± 0 : 0012 (at 68% C.L.).
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Figure 2.11: Evolution of light-element abundances as function of characteristic temperature (bottom x-
axis) and as function of time (top). The blue bands indicate significant stages in Big Bang nucleosynthesis:
neutrino decoupling, freeze-out of the neutron-to-proton ratio, the deuteron bottleneck, and freeze-out
of the light-element abundances. The proton (H) and neutron (N) abundances are given relative to the
total number of baryons, and Yp denotes the 4He mass fraction. Figure taken from [149].

The abundance of 4He is measured using the emission spectra of the ionized gas surrounding hot young stars,

such as in blue compact galaxies. These stars are chosen as they provide the least stellar contamination. The

observed 4He mass fraction is plotted against the abundance of O (or N) in the gas, and then extrapolated to

zero O (or N), yielding the mass fraction of baryons which is in 4He, Yp ≈ 0.24 [154, 155]. The dependence of the

4He abundance on ρb is weaker than the dependence of D. Therefore, the deuterium abundance measurement is

more constraining on ρb and Ωb.

The measurement of the abundance of 7Li is more difficult, but it is made in the old halo stars, formed

from gas with low iron abundance. There is a plateau called the Spite-plateau where stars show approximately

constant 7Li/H ≈ 1.6 ×10−10, which is close to primordial. Finally, the abundance of 3He is the most difficult

to estimate, because stars are expected to both make and destroy it. The abundance of 3He in the Galactic H

II regions was measured, 3He/H ≈ (1.6± 0.5)× 10−5, but it is not clear how this value relates to the primordial

one [156].
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Figure 2.12: Expected abundances (calculated in the standard BBN) for the light elements are shown as
gray bands. The rectangles show the 95% confidence intervals for the measurements cited in the text.
The deuterium measurement is the most constraining on the only free parameter of the model, ρb. Figure
taken from [149].

2.4 Supernovae Type Ia

Supernova Type Ia is considered as a sub-category of supernovae which results from the violent explosion of a

white dwarf star (the remnant of a star that has completed its normal life cycle and has ceased nuclear fusion) of

binary systems in which a white dwarf accretes mass from a nearby star until it crosses the Chandrasekhar limit

of ∼ 1.44M⊙ [157].

The Chandrasekhar limit is defined as the maximum mass of a stable white dwarf star. White dwarfs,

unlike main sequence stars, resist gravitational collapse primarily through electron degeneracy pressure, rather

than thermal pressure. The Chandrasekhar limit is the mass above which electron degeneracy pressure in the

star’s core is insufficient to balance the star’s own gravitational self-attraction. Therefore, white dwarfs with

masses greater than the Chandrasekhar limit will eventually undergo further gravitational collapse, evolving into

a different type of stellar remnants, such as a neutron stars or black holes. However, stellar object with masses

under the Chandrasekhar limit will remain stable as white dwarfs. If the star′s mass approaches the limit 1.44M⊙

(the Chandrasekhar limit), the electron degeneracy pressure that prevents a white dwarf from collapsing further

can no longer balance the star’s inward gravitational self-attraction, the white dwarf will eventually collapse,

initiating a brief but extremely intense period of burst during which its core material undergo a runaway fusion
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reaction that generates enough energy to completely unbind the star. Since the accretion mechanism causes the

build up of a consistent amount of stellar material before the 1.44M⊙ limit is reached, the peak light output

or luminosity of the subsequent explosion is highly uniform from one SNe Ia to the next. This is what makes

this class of supernovae (SNe Ia) an excellent standard candles which can be used to test the Universes distance

versus redshift relation [158]. Therefore, measurement of the redshift of a SNe Ia, along with the observed flux,

can be used to constrain the cosmological parameters. The argument is as follows: for an object of luminosity L

and redshift z, the flux observed by a detector is given by

F =
L

4πd2H(1 + z)2
, (2.17)

with dH , the proper distance between the object and the detector at the present time. If there is no expansion,

z = 0 and the equation reduces to the familiar, intuitive, form that we are used to in Euclidian geometry. One

factor of (1 + z)−1 in the above equation comes from the decrease in energy due to the red-shifting of each

individual photon that travels the distance dH , and the other comes from the fact that the photons are more

spread out in time when they arrive at the detector than they were when they were emitted by the object (this

spreading is also due to the expansion). The luminosity distance can also be written as dL = dH(1 + z), in order

to express the flux in a simpler form F = L
4πd2

L
, with dL the luminosity distance which depends on the redshift

and is defined by:

dL(z) =

√
L

4πF
= (1 + z)r(z), (2.18)

with r(z), the comoving distance to an object at redshift z and is function of the curvature parameter kc defined

as:

r(z) =

∫ z

0

dx

H(x)
. (2.19)

if k = 0, and

r(z) =
1√
|k|

G

(√
|k|

∫ z

0

dx

H(x)

)
. (2.20)

if k ̸= 0 with G(x) = sin(x) if k = 1 and G(x) = sinh(x) if k = −1 [159].

Focussing ourselves now for the case of a universe with a flat geometry, i.e the curvature of the spacetime k

is null, one can use the equation (1.28), from the chapter I, to re-write (2.18) in the following form

dL(z) =
(1 + z)

H0

∫ z

0

dz′√
ΩΛ +Ωm(1 + z′)3 +ΩR(1 + z′)4

. (2.21)

in which Ωk = k2

a2H2 has no contribution in the denominator of the equation (2.21) for the simple fact that k = 0.

The equation (2.21) is of extreme importance in cosmology because it tells us that the relationship between flux

and redshift for a collection of standard candles with known intrinsic luminosities (such as Type Ia Supernovae)

is sensitive to a number of cosmological parameters. Hence, measuring the flux of these given standard candles
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and their redshifts directly probes the allowed values of H0, Ωm and ΩΛ (although these parameters cannot

be estimated independently, for example Ωm and ΩΛ are related to each through the constrained equation

Ωm + ΩΛ = 1). Moreover, if one considers the ratios of dL for different objects, the dependence on H0 can be

removed, and therefore Ωm and ΩΛ can then be deduced.

The equation (2.21) encodes the Hubble’s law of the expansion of the universe. As the author in [50] has

shown, for low z objects (z ≪ 1 and ΩR ≪ 1), the integral performed on the leading terms in Z, yield the

following result:

dL(z) ≈
z(1 + z)

H0
(2.22)

which can be recognized as Hubble’s law in which the comoving distance is directly proportional to redshift:

r(z) = z
H0

[160], and therefore for low z nearby Type Ia Supernovae (z ≪ 0.1) the relationship between distance

and redshift is thus sensitive to the Hubble constant H0 [44, 45]. The measurement of the Hubble constant

H0 using low-z standard candles was the Hubble Space Telescopes key project. The SH0ES program used

several hundred Cepheid variable stars[5] to calibrate nearby SNe Ia luminosities and estimate H0 = 73.8 ± 2.4

kms−1Mpc−1 [46].

Two experimental groups have searched for and observed the SNe Ia at various redshifts: the Supernova

Cosmology Project (SCP) [161] and the High-z Supernova Search Team (HZT) [162]. The Supernova Cosmology

Project has observed 42 supernovae at redshifts between 0.18 and 0.83. The two groups corrected the observed

light curves for the stretch factor (relativistic time dilation) by fitting the template light curves from a low-redshift

calibration set. This procedure further improved the uniformity of the supernovae. Finally, they fitted Ωm and

ΩΛ to the flux redshift relation (using the apparent magnitudes, rather than flux, to avoid the H0 dependence)

and obtained the following values Ωm = 0.28+0.10
−0.09 (stat) +0.05

−0.04 (syst) (for a flat Universe) [161].

The High-z Supernova Search Team observed 16 high-redshift Type Ia Supernovae. They performed similar

analysis, but they applied a multi-wavelength correction method to remove the time-dilation effect. Their result

is consistent with the one from the Supernova Cosmology Project: Ωm = 0.28± 0.10 (stat) (for a flat universe)

[160]. In a separate run, the High-z Supernova Search Team observed has observed 8 more SNe Ia with an

extended redshift from 0.3 to 1.2. They combine these observations with the previously observed SNe Ia from

both SCP and HZT (and others). The data was fitted to the various cosmological models and they obtain

ΩΛ − Ωm = 0.35 ± 0.14 [163]. Under the assuming of a flat Universe and the equation of state w = −1, their

analysis yields Ωm = 0.28 ± 0.05. There are however systematics issue which arise when combining data sets

from different team’s observations to form a high statistics sample over a broad range of redshifts. There have

been several efforts to compile SNe Ia data into self-consistent and systematic-free catalogs suitable for measuring

5Cepheid variables are very bright, pulsating stars whose luminosity varies periodically with time; they are categorized
into several subclasses according to their masses, metallicities, and evolutionary histories. Classical (Type II) Cepheids are
massive stars (low mass stars) that pulsate with a periodicity ranging between days and months. Their intrinsic luminosities
can be reliably measured based on their pulsation periods, making them excellent standard candles for measuring cosmic
distances out to a few tens of megaparsecs. Hubble’s discovery in 1929 that the universe is expanding was based on
Cepheids.
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cosmological parameters (for details, I refer the readers to the following papers: [164, 165, 166, 167, 168, 169]).

The most recent and comprehensive review is the Union2.1 compilation [170].

The distance modulus, µ0 is defined as the difference between the apparent mmag and absolute magnitudes

M of a given object defined by 1.70. In terms of the redshift, the distance modulus can be written as:

µ0(z) = mmag −M = 5 [log10(r(z)(1 + z))− 1] , (2.23)

which is referred to as the Hubble diagram. Figure (2.13) shows the distance modulus as function of the redshift

for several experimental results for Type Ia Supernovae based on Hubble diagram. The best-fit minimal ΛCDM

cosmological model for a flat geometry and constant dark energy (with the equation of state w = −1) yields the

best-fit values for the total amount of matter and dark energy in the universe given by: ΩM ≈ 0.29+0.043
−0.040 and

ΩΛ ≈ 0.71+0.040
−0.043 at 1σ confidence intervals and includes both statistical and systematic uncertainties [170].

Figure 2.13: Distance modulus versus redshift for the Union2.1 Type Ia supernovae compilation. The
curve represents the best-fit minimal ΛCDM cosmological model and is consistent with the ΛCDM fit to
the CMB power spectrum. Figure from [170].

The observation of Type Ia Supernovae also suggests an eternally expanding universe that is accelerated

by energy in the vacuum ΩΛ. Although these data do not provide independent constraints on Ωm and ΩΛ to

high precision without ancillary assumptions or inclusion of a supernova with uncertain classification, specific

cosmological scenarios can still be tested without these requirements. In terms of the redshift, the decceleration

parameter can be written as

q0(z) = − ä/a

H2(z)
= −

(
1− d−1H(z)

dt

)
. (2.24)
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In terms of the Hubble parameter H = ȧ/a, the deceleration q(t) = −(ä/a)(ȧ/a)−2 and jerk parameters q(t) =

( ˙̈a/a)(ȧ/a)−3 (all dimensionless), the Taylor expansion of for the luminosity distance (in Euclidean space) is given

by

dL(z) =
z

H0

[
1 +

1

2
(1− q0)z −

1

6
(1− q0 − 3q20 + j0)z

2 + ...

]
. (2.25)

Although related, the jerk j0 parameter as defined here is not precisely equivalent to dq/dz parameter,

providing an alternative parametrization. The SNe Ia data constrain the j0 parameter to the positive domain at

the 92% to 95% confidence level. That is, the expansion history over the range of the SNe Ia data is equally well

described by recent acceleration and a constant jerk. Models with discrete values of j0 are shown in Figure (2.15)

[17]. In summary, they find a strong evidence for a change in the sign of cosmic acceleration at the present time,

i.e the expansion of the universe is not all slowing down as intuitively one would expect, but rather speeding

up (exponentially speeding up). This finding will have a profound impact for the future of the universe; gravity

and the matter density (Ωm) will continue to weaken more and more while the dark energy (ΩΛ) is expected to

continue to dominate rest of matter-density contributions. In the very far future of the universe, gravitationally

bound systems such as our very planet own, will be completely separated from any other celestial objects; and

even the sun will be far away from earth. As a result of this, the fate of the universe will be cold, meaning the

existence of will be impossible.

Figure 2.14: Joint confidence intervals for a two-parameter model of the universe’s expansion history
with q(z) = q0 + dq/dz from SNe Ia. The left shows the constraints derived from the gold sample; the
right includes both gold and silver samples. For either set, the data favor the quadrant with recent
acceleration (q0 < 0) and past deceleration (dq/dz > 0) with high confidence. Lines of fixed transition
redshift [q(zt) = 0] are shown. Figure from [17].
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Figure 2.15: Kinematic SNe Ia residual Hubble diagram. Top is the SNe Ia from ground-based discoveries
in the gold sample are shown as diamonds and HST-discovered SNe Ia are shown as filled symbols.
Bottom, the weighted averages in fixed redshift bins are given for illustrative purposes only. Data and
kinematic models of the expansion history are shown relative to an eternally coasting model, q(z) = 0.
Models representing specific kinematic scenarios such as constant acceleration are illustrated. Figure
from [17].

2.5 Baryon Acoustic Oscillations (BAO)

Baryon acoustic oscillations (BAO) relate to the clustering of nearby galaxies caused by gravitational perturba-

tions in the early Universe. These perturbations (baryon over-densities and under-densities causing baryon−photon

oscillations) are observed in the CMB power spectrum as peaks and are referred to as the the acoustic peaks.

To get a real sense of these acoustics, imagine an overdense region of the primordial plasma, overdensity gravi-

tationally attracts matter towards it, the heat of photon-matter interactions creates a large amount of outward

pressure. These counteracting forces of gravity and pressure create oscillations, analogous to sound waves cre-

ated in air by pressure differences. Consider a single wave originating from this overdense region in the center of

the plasma. This region contains dark matter, baryons and photons. The pressure results in a spherical sound

wave of both baryons and photons moving with a speed slightly over half the speed of light outwards from the

overdensity. The dark matter only interacts gravitationally and so it stays at the center of the sound wave, the

origin of the overdensity. Before decoupling, the photons and baryons move outwards together. After decoupling

the photons are no longer interacting with the baryonic matter so they diffuse away. This relieves the pressure

on the system, leaving a shell of baryonic matter at a fixed radius. This radius is often referred to as the sound

horizon (characterized by a speed cs). Without the photo-baryon pressure driving the system outwards, the only

remaining force on the baryons is gravitational. Therefore, the baryons and dark matter (still at the center of

the perturbation) form a configuration which includes overdensities of matter both at the original site of the

anisotropy and in a shell at the sound horizon. The ripples in the density of space continue to attract matter
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and eventually galaxies in a similar pattern, therefore one would expect to see a greater number of galaxies

separated by the sound horizon than by nearby length scales. This particular configuration of matter occurred at

each anisotropy in the early universe, and therefore the universe is not composed of one sound ripple, but many

overlapping ripples. As an analogy, imagine dropping many stones into a pond and watching the resulting wave

patterns in the water. It is not possible to observe this preferred separation of galaxies on the sound horizon scale

by eye, but one can measure this signal statistically by looking at the separations of large numbers of galaxies.

The baryon acoustic oscillation (BAO) scale is set by the size of the sound horizon at recombination defined

by

SBAO =

∫ ∞

zrec

cs
H(z)

dz (2.26)

with cs, the speed of sound at the horizon (sound horizon). Assuming that dark energy is negligible during the

early universe (Λ ≪ 0), one can write the Hublle’s parameter H(z) as

H(z) = H0(1 + z)
√

ΩM (1 + z)

√
1 +

1 + z

1 + zeq
(2.27)

with zeq = ΩM/ΩR is the redshift at time the matter and radiation contributions becomes equal. Combining the

equations (2.26) and (2.27), one finds that the BAO scale is then given by:

SBAO ≈ 2

H0

√
3ΩMzeqReq

ln

[√
1 +Rrec +

√
Req +Rrec

1 +
√

Req

]
(2.28)

with Rrec and Req are the baryon-to-photon density ratios at recombination and matter-radiation equality,

respectively [171]. Plugging in the known and accepted values into the equation (2.28), one finds that SBAO ≈ 146

Mpc, however the true value is believed to be around 153 Mpc because immediately after recombination the

momentum of the baryons causes the acoustic waves to continue to expand for a short time up to the redshift

zd ≃ 1052 (from CMB) at which the acoustic waves attend their maximum size (baryon-drag epoch).

Quite recently, the authors in [172] derived improved BAO-based constraints by combining a number of

galaxies from the 2dFGRS catalog and an updated SDSS catalog. They presented the data in terms of the

residual power spectrum of galaxy density fluctuations in overlapping redshift slices which showed clear signs of

the ∼153Mpc BAO scale in the clustering of nearby galaxies and are consistent with a significant nonbaryonic

contribution to ΩM . Their results compares favorably to the ΛCDM cosmological model for which h = 0.72,

Ωb = 0.043 and ΩM = 0.25.

2.6 Structure formation

Another important argument for the existence of non-baryonic dark matter comes from modern observations of

more recent large inhomogeneity (anisotropies).Observations such as the cosmic microwave background indicates
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Figure 2.16: Residual power spectrum of density fluctuations in the spatial redshift distribution of nearby
galaxies compared to the power spectrum as function of the wavenumber for a ΛCDM cosmological model
with h = 0.72, Ωb = 0.043 and ΩM = 0.25. The smooth component of the ΛCDM model has been divided
out to make the modulation due to the characteristic scale of baryon acoustic oscillations more apparent.
The upper panel shows the residuals for ∼900,000 galaxies with redshifts between 0 and 0.5 selected
from the Sloan Digital Sky Survey and Two-degree Field Galaxy Redshift Survey [131] catalogs, while
the lower panel shows the residuals for an ∼70,000 galaxy subsets with redshifts between 0.3 and 0.5,
[173]. Figure from [172].

the presence of anisotropies of the order of 10−5 level. At the early universe, photons and baryons were tightly

coupled leading to baryon inhomogeneity when the universe was only a few hundred thousand years old (with a

redshift z ≈ 1000). As the universe expanded by a factor of ≈ 1000 since then, a wealth of galaxies and galaxy

clusters then began to form (this took place at a redshifts of at least z ≈ 7.6.

Our best guess at how the galaxies and large scale structure formation is envisioned from slight density

enhancements that were present in the very early universe. During the first few millions years after the big bang,

the universe expanded and gradually the stronger gravity of enhanced density pulled matter together which, after

a long period of time, became the construction sites for many large structures that we see today in the universe.

So, while density fluctuations at shorter scales remain frozen until matter-radiation equality (z ≈ 3000), they are

free to grow afterwards. This is not true however for baryonic matter which continues to oscillate in a photon-

baryon fluid until decoupling. Baryonic over-densities can grow only after z ≈ 1100. Thus, the over-densities

from baryonic matter alone are insufficient to seed large-scale structure formation in the time span that we start

observing galaxies unless a component of dark matter is allowed to grow in over-density between the matter and

radiation. After decoupling, baryonic matter is attracted by these pre-existing over-densities, leading to a start

of structure formation on the correct time scale. Furthermore, this imposes the requirement that dark matter

must be cold i.e. be non-relativistic at the time of matter-radiation equality in order not to skew the structure

formation process. This problem is quantitatively handled by defining the fluctuation in the matter density as
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follow:

δ(x⃗) =
ρ(x⃗)− ρ

ρ
, (2.29)

where ρ is the average matter density and ρ(x⃗) is the matter density at position x⃗. Given the density fluctuation

as put in evidence by the equation (2.29), one can then calculate the auto-correlation function ξ(δ(x⃗)) given by

ξ(δ(x⃗)) = ⟨δ (x⃗) · δ (x⃗+ δ (x⃗))⟩ (2.30)

where the average is taken over all x⃗ and ρ(t) is the universe’s mean energy density at time t. In practice, it is

convenient to consider the statistical distribution of the density contrast at different length scales, given by the

power spectrum P (k⃗) which is defined as the Fourier transform of the auto-correlation function and is given by:

P (k⃗) = |δ(k⃗)|2 =
4π

k

∫
ξ(x) sin(kx)d3x (2.31)

The growth of fluctuations can be calculated by solving the equations for the evolution of a fluid in an

expanding universe which is classically modelled as perfect fluid and solved using the Euler equations which

are described in more detail in PhD dissertations of Sunil Golwala and Vuk Mandic [175, 176]. The solution

of the density fluctuation includes the effects of gravity and of pressure of any electromagnetically interacting,

relativistic component. The relativistic component provides the photon’s pressure. The case of relativistic,

weakly interacting matter is also considered. At high redshift, perturbations are small and the equations can be

linearized. It is necessary to work in comoving coordinates so that it is possible to track a given mode as the

universe expands. Linearity allows independent treatment of different Fourier modes. One finds a second-order

differential equation, modified by the expansion of the universe. In the absence of expansion and of fluid pressure,

the solutions are exponential growth and decay: overdensities grow exponentially.

The introduction of pressure provides a restoring force against collapse. Energy can stream out of overdensities

if the wavelength of the mode is smaller than the timescale of collapse and the sound speed (cs), of order the

speed of light for relativistic matter. In an expanding universe, the exponential forms are modified to power laws.

In addition, calculation of the growth for super-horizon-scale perturbations requires a full general-relativistic

formulation which we do not intend to tackle in this dissertation given the limited scope of this work. Below we

briefly discuss the main findings of the Euler equation for the density fluctuation of the universe: for small density

contrasts δ ≪ 1 we can solve for the evolution of δ(k⃗) using linear perturbation theory leading to a decouples

from one epoch to another until δ ≈ 1; however propagation to later epochs requires numerical computation and

simulations. The main epoch obtained from the Euler equations in various regimes are:

(i). Radiation: considered as a regime during which the photon pressure prevented the perturbations in the

photon-baryon fluid from growing significantly. Characterized by p = ρ/3, the photon-baryon fluid underwent

acoustic oscillations during this period, which lasted until the baryons decouple from the photon field at the

epoch of last scattering also referred to as non transparent and non opaque surface of last scattering (z ≈ 1000).
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(ii). Matter: in this era the universe was pressureless.

(iii). Dark Matter: this era began to grow as soon as the universe became matter-dominated. The photon-baryon

fluid continued to oscillate until the baryons decoupled. After decoupling, the baryons falls into the existing

potential wells of the dark matter perturbations. In the standard model of the growth of density fluctuations,

it is assumed that all relativistic matter is strongly interacting. If this does not hold, then relativistic matter

can stream away from overdensities, carrying away energy, without being stopped by interactions with other

particles. This phenomenon is called free streaming. Free streaming does not fit the observations, however

pure cold dark matter is more compatible with observations and is therefore considered as a good alternative

explaining the growth of structure formation in the universe, thus cold dark matter has acted as the seed leading

the large scale structures that we see today around us.

Figure 2.17: Computer simulation of structure forming process. In this simulation, small fluctuations in
density in the far left box collapse into large structures on the right in this computer simulation of the
universe. Large structures formed as small density fluctuations in the early universe collapsed under the
influence of gravity. Here, we see three different stages of structure formation in a computer simulation
starting on the left with 109 particles almost uniformly distributed in space. The center box shows an
intermediate stage in the evolution of the universe, and the rightmost box shows the universe at the
present time, with filaments and clusters of galaxies strung out in space; the law of gravity is the only
physics applied in this simulation.

One interesting and convincing way to learn about dark matter through large scale structures is to compare

the density perturbations seen today (at redshift much less than 1) with those seen in the CMB and estimate if

there was sufficient time for gravitational collapse to produce the observed universe’s structure that we see today.

Perturbations seen in the CMB, at redshift of z ≈ 1000, are of the order of ∼ 10−5 as predicted by the CMB. For

a matter dominated universe, where Ωb = 1, perturbations would grow with time (or with redshift z) as 1/1+ z.

Based on this reasoning, the density perturbations today would be ∼ 10−2. However this value is smaller than

the observed fluctuations in the universe today. Therefore this model does not allow enough time to produce the

present universe. This argument can also be used to estimate the amplitude of the CMB density perturbations

based on the structure seen today. Assuming that galaxies and quasars form when the perturbations are larger

δ > 1, the fact that there are quasars at a redshift of z = 6 predict CMB temperature fluctuations of ∼ 10−3.

However this is larger than the observed CMB temperature fluctuations. Non-baryonic dark matter, on the other

hand, allows the observed large scale structure to form from the initial perturbations measured in the CMB.
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Comparing numerical simulations of structure growth with the observed large scale structure gives additional

information about the dark matter properties. In particular these comparisons show that relativistic or hot dark

matter produces less structure than seen today while non-relativistic or cold dark matter with an energy density

≈ 23% creates approximately the structure seen today.

Figure 2.18: Map of the galaxy distribution as a function of redshift, as projected from the 2dF Galaxy
Redshift Survey, showing the universe’s current large scale structure. Figure taken from [59].

2.7 Cosmic Concordance and Quintessence.

The most widely studied cosmological models at the present time are variants of the Cold Dark Matter (CDM)

paradigm within which adiabatic perturbations in a dominant CDM species grow due to gravitational instability

from quantum fluctuations imprinted during an inflationary era. The bulk of the evidence today strongly favors

models within which Ωm < 1 and any hot component is significantly disfavored.

None of the experimental observations that we know today is able to constrain all the physical parameters

of the standard model of cosmology (ΛCDM). The SNe Ia data is most sensitive to the properties of the dark

energy, CMB anisotropy power spectrum constrains some cosmological parameters under the assumption of a

flat universe with a non zero component of dark energy. To constrain additional cosmological parameters, several

data from several experiments were combined and produced constraints which are not only more precise, but also

serve as consistency checks of the individual results from the separate experiments.

Several ΛCDM-sensitive experiments were considered and combined to get additional constrain on the astro-

physical cosmological parameters. Among these experiments, there are: (i) The CMB anisotropy power spectrum

derived from the WMAP 7-year data, (ii) The compilation of Type Ia supernovae, (iii) The Baryon-Acoustic Os-

cillation (from 2dFGRS and SDSS ) and (iv) The SH0ES II program estimate of the present-day value of the

Hubble parameter derived from Cepheid-calibrated nearby SNe Ia. The results obtained by combining the data

from all these observations yields two to three times precise results than individual experiments. This analysis
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yields Ωm = 0.271 ± 0.014 and ΩΛ = 0.729 ± 0.014, and combining the CMB, BAO and H0 results also yielded

improved estimates of the baryon and cold dark-matter densities: Ωb = 0.0458± 0.0016 and Ωχ = 0.229± 0.015.

Furthermore, the hypothesis that the geometry of the universe is not flat and that the equation of state incon-

sistent with w = −1 were examined. The results found are entirely consistent with the minimal ΛCDM model

and yield Ωk = 0.002± 0.005 and w = −1.013+0.068
−0.073, respectively

Figure 2.19: The equation of state w as function of the total matter densisty ΩM for the combined
cosmological constraints based on cosmic microwave background (CMB, orange) [76], Type Ia supernovae
(SNe, blue) [110], and baryon acoustic oscillations (BAO, green) [118] data. In the right is shown wa

versus w0 for the combined constraints based on cosmic microwave background, Type Ia supernovae,
baryon acoustic oscillations, and H0 [25] data, with (solid black contours) and without (shaded contours)
SNe Ia systematic errors. The region above the dotted line (w0+wa > 0) violates early matter dominated.
The contours represent, from big to small, the 99.7%, 95.4% and 68.3% confidence regions. Figure taken
[60].

2.8 Dark matter Candidates: Baryonic and Non-Baryonic

The standard model of cosmology also known as the concordance cosmology or ΛCDM, together with many other

observations (such as CMB, BAO, SNe, WMAP, etc.) have convincingly painted, with high accuracy, a clear

picture of what the energy-mass budget of the universe is and concluding that visible matter (i.e. matter made

of stars, gas, galaxies, galaxy clusters, etc.) amount to only 4.6% of the visible matter (baryonic matter) in the

universe as shown in Fig (2.1) in the top left panel. In the pie chart shown in Fig (2.1) however, there is a large

amount of matter which cannot be accounted as baryonic; they are termed as “dark”. Dark matter is believed

to be a particle which makes up a 23% of matter in the universe and it is believed to be non-baryonic due to the

fact that it interact weakly or event not with normal or baryonic matter.

In the literature, there is a whole zoo of elementary particles proposed in order to accommodate the dark

matter. To be a candidate for dark matter, any proposed particle must satisfy the following criteria:

1. The nature of Dark matter must predominantly be non-baryonic as supported by evidence from BBN (big
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bang nucleosynthesis) and CMB (cosmic microwave background).

2. Dark matter must be weakly interacting as evidenced by the limits on self-interaction from astrophysical

observations (e.g. the Bullet cluster) and direct terrestrial searches.

3. Dark matter must be cold and non-relativistic throughout the formation of large scale structures. Rela-

tivistic dark matter particles (light neutrinos) and streaming would disrupt the hierarchical formation of

large-scale structure. In this circumstance, the universe would have been less clumpy than it is today.

4. Finally Dark matter must be stable (compared to the present age of the universe).

Numerous candidates have been proposed classified as hot and cold dark matter (also referred to as thermal relics

produced in thermal equilibrium and non thermal relics). Among these candidate, there are: neutrinos, heavy

neutrinos, axions, MACHOs, neutralinos (or WIMPs), wimpzillas and some exotic particles such as Q-balls, etc.

Below I give a brief description of some of the more prominent candidates.

2.8.1 Light and Heavy Neutrinos

Neutrino oscillation phenomenon showed that neutrinos do have mass and. If lepton number violation occurs in

the leptonic sector, neutrinos can oscillation from one species to another. The oscillation term is thus function of

the mixing angle θ and the mass difference squared ∆m2. The standard model of particle physics accommodate

the existence of three leptons: electron (e), muon (µ) and tau (τ), each associated with its own neutrino ν.

Similar the quark sector, the leptonic sector has three lepton generations: (eνe),
(
µ
νµ

)
and (τντ ).

Figure 2.20: Neutrinos as dark matter. Relic density of a thermal Dirac neutrino with standard-model
interactions, together with current constraints from cosmology, accelerators (LEP), and dark matter
searches (left); the green belt indicates the region where possible neutrino dark matter can be observed.
The right plot is the Standard model of particle physics families showing the three generations for quarks
and leptons. Figure taken from Dennis Just talk on non baryonic dark matter at Arizona University.

Motivated by LSND results [80] and by many phenomenology of neutrinos cosmology [82] (and references

therein), a fourth generation (sterile neutrino), much heavy than any other neutrino in the three first generation,

has been proposed and emerged as a dark matter candidate [83]. Light neutrinos, with masses of a few eV to tens
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of eV, are disfavored as the dominant weakly interacting dark matter because they damp density fluctuations

on scales smaller than the horizon size at radiation-matter equality. However, a small admixture of neutrinos

may reduce the power on small scales to the level required by observation. Neutrinos belong to the class of hot

relics, i.e. particles that are relativistic when they fall out of thermal equilibrium with the rest of the universe.

This process is called freeze-out. The general criterion for freeze-out to occur is that the annihilation rate (per

particle) of the particle species, which maintains equilibrium with other particle species, falls below the universe

expansion rate characterized by the hubble constant: ΓA < H, with the annihilation rate given by

ΓA = n⟨σAv⟩ (2.32)

where n is the particle density, σA is the annihilation cross section, and v is the relative velocity of two particles.

The neutrinos, the interaction cross section is given by the weak interaction:

σA = G2
FE

2
ν . (2.33)

The number density of neutrinos in equilibrium (at freeze-out) is calculated by evoking Fermi-Dirac statistics. It

is given by:

n =
3ζ(3)

2π2

(
kBTν

~c

)3

. (2.34)

The hot relics abundance at the freeze-out, however, is function of the their number density and it is given by

Ω =
8πG

3H2
0

nνmν . (2.35)

Combining the equations (2.32) through (2.35), and assuming an equilibrium temperature of Tν = 1.95 K (i.e.

gives nν = 113 cm−3) [81], one obtains:

Ω = 0.011
( mν

1eV

)
h−2; (2.36)

which leads to a bound of neutrino mass given by

mν = 91Ω · h2 eV2. (2.37)

Setting Ω = 1, the above equation yields a neutrino mass much larger than a 1 eV which is ruled out by

structure-formation arguments.

Light neutrinos are ruled out as prominent dark matter candidates due to the fact they are not cold and their

mass is so small to account for the total mass needed for dark matter, however heavy Dirac neutrinos are viable

dark matter candidates in the mass range from 40 GeV to a few TeV. Some special mechanisms however such as

resonance annihilation or coannihilation are required if the neutrino mass is below 700 GeV. Such kind of signal

might be expected in direct detection experiments in the near future especially in the mass range relevant for
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searches at the International Large Collider (I.L.C.) [177]. Although their discovery could just be in the corner

and they could be a tiny part of dark matter halo, however they cannot solve the dark matter problem.

2.8.2 Axions

As mentioned in the previous section, the standard model of particle physics does not contain a particle that

qualifies as dark matter. However, extensions to the standard model do provide viable particle candidates for

dark matter. The axion, also known as the pseudo-Nambu-Goldstone boson, was proposed by Peccei- Quinn as

a solution to the strong CP violation in the QCD sector [179, 180, 181, 182]. In the early universe, cold axion

populations arise from vacuum realignment [183] and string and wall decay [184]. Which mechanisms contribute

depends on whether the Peccei-Quinn symmetry breaks before or after inflation. These cold axions were never

in thermal equilibrium with the rest of the universe and could provide the missing dark matter.

The strong CP problem arises from the non-Abelian nature of the QCD gauge symmetry (or color symmetry).

Non-Abelian gauge potentials have disjoint sectors that cannot be transformed continuously into one another.

Each of these vacuum configurations can be labelled by an integer, the topological winding number. Quantum

tunnelling occurs between vacua. Consequently, the gauge invariant QCD vacuum state is a superposition of

these states, i.e.,

|θ⟩ =
∑
n

e−inθ|n⟩. (2.38)

The angle, θ, is a parameter which describes the QCD vacuum state, |θ⟩. In the massless quark limit, QCD

possesses a classical chiral symmetry. However, this symmetry is not present in the full quantum theory due to

the Adler-Bell-Jackiw anomaly [185]. In the full quantum theory, including quark masses, the physics of QCD

remains unchanged under the following transformations of the quark fields, qi, quark masses, mi, and vacuum

parameter, θ: qi → eiαiγ5/2qi, mi → e−iαimi and θ → θ−
∑

i αi, with αi the phases and γ5 is the usual product

of gamma matrices. This is not a symmetry of QCD due to the change in θ. These transformations can be

used to move phases between the quark masses and θ. The quantity θ → θ − arg(detM) is invariant and thus

observable, unlike θ, M is the quark mass mixing matrix.

The presence of θ in QCD violates the discrete symmetries P and CP. However, CP violation has not been

observed in QCD. However, an electric dipole moment for the neutron is the most easily observed consequence

of QCD, or strong, CP violation. The presence of θ results in a neutron electric dipole moment of [186].

|dn| ≈ 10−16θ e(cm), (2.39)

with e, the electric charge. The current experimental limit is

|dn| < 6.3× 10−26 e(cm). (2.40)
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Figure 2.21: Constraints on the PQ-scale fa and corresponding ma from astrophysics, cosmology and
laboratory experiments. The light grey regions are most model-dependent. Figure from [187].

Figure 2.22: Current exclusion limits on the axion-photon-photon coupling from leading experiments in
the region of axion dark matter candidates. The blue band indicates the approximate range of model-
dependence for this coupling. The dashed and dotted lines indicate two common axion benchmark
models. Figure from [188].

with |θ| ≼ 10−9. There is no natural reason to expect θ to be this small. CP violation occurs in the standard

model by allowing the quark masses to be complex and thus the natural value of θ is expected to be of order one.

This is the strong CP problem, i.e. the question of why the angle θ should be nearly zero, despite the presence

of CP violation in the standard model. The Peccei-Quinn (PQ) solution [179, 180] to this problem results in an
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axion [181, 182]. While other solutions to the strong CP problem have been proposed, the presence of the axion

in the PQ solution has finally emerged and was proposed as a dark matter candidate. Axions satisfy the two

criteria necessary for cold dark matter:

(i) a non-relativistic population of axions could be present in our universe in sufficient quantities to provide the

required dark matter energy density and,

(ii) they are effectively collisionless, i.e., the only significant long-range interactions are gravitational.

Axions particles are characterized by a coupling constant fa with units of energy, and its mass, by allowing

the spontaneous symmetry breakdown to occur in the QCD lagrangian, is given by

ma ≃ 6× 10−6

(
1012GeV

fa

)
, (2.41)

and their abundance given by:

Ωah
2 ≃

(
fa

1012GeV

)7/6

(2.42)

implies an axion mass of the order of 10µeV can constitute the universe’s dark matter. These lighter axions are

cosmologically excluded. Furthermore axions are produced non-thermally and are non-relativistic cold dark mat-

ter despite their very low masses. It is believed that axions are created by two mechanisms: vacuum realignment

and cosmic string emissions.

(1) Vacuum realignment: in this mechanism a potential is generated and the axion field rolls towards the mini-

mum and oscillates around it. The oscillation is what we see as axion emission.

(2) Cosmic string emissions: cosmic strings are topological defects in the space time created during phase changes

(transitions). Above the phase transition the axion is massless and the zero momentum mode contributes nothing

to the energy density, so the value of the field can be any constant from 0 to fa without affecting the physics.

Causality arguments imply that it is ϑ(fa). At the phase transition instanton phenomena give mass to the axion

field and it begins to undergo spatially homogeneous coherent oscillations about zero, with frequency ma. These

oscillations are what we consider as axions [193], see Fig (2.25).

The most relevant searches for axion dark matter are based on the Primakoff process (Laγγ = gaγγaẼ · B̃),

with gaγγ the Primakoff coupling [189]. In these processes, the axions are converted to photons within a strong

magnetic field. Such experiments attempt to detect the excess of photons in resonant microwave cavities within

strong magnetic fields [190]. The leading experiment at µeV masses is ADMX [191], which has already started

probing cosmologically-interesting axion masses.

2.8.3 Massive Compact Halo Objects (MACHOs)

The Massive Compact Halo Objects (MACHOs) were one of the most popular candidates proposed to solve the

dark matter problem. MACHO is a generic name for dark, compact and massive objects populating the halo of

our galaxy. Such objects could, for example, be brown dwarfs - gravitationally collapsed objects of sub-stellar
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Figure 2.23: Comparison of the 95% C.L. upper limit on gaγγ as function of mass obtained by CDMS
collaboration (red/solid) with other crystal search experiments (SOLAX/COSME in black/solid) and
DAMA (upper black/dashed) and helioscopes (Tokyo heslioscope (magenta/solid) and CAST (blue/-
solid). Figure from [192].

Figure 2.24: The allowed region (green/filled) from a Galactic axion interpretation of the annual mod-
ulation signature observed by the DAMA experiment. The 90% C.L. upper limits on the gaee coupling
constant from the CDMS collaboration (red/solid) and the CoGeNT experiment (blue/solid) completely
rule out the DAMA allowed region. Figure from [192].

mass that could not reach high enough pressure in the core to start fusing hydrogen. Hence the mass of such

objects is bounded from above (< 0.08M⊙) by this requirement. Another possibility is Jupiter-like objects, with

mass ∼ 10−3M⊙ and black holes, which may have been formed by the collapsing of baryonic matter.

Given that these objects are dark, one way to search for them is gravitational lensing. In particular, one can

observe temporary brightening of a star due to a MACHO passing near the line-of-sight between the observer

and the star. Since the probability of such events is very small, millions of stars have to be monitored on a daily

basis, in order to make the search plausible. The duration of such microlensing event is determined by the lens

mass m, distance x, transverse velocity v, and by the distance L to the source star [60].

Two experiments, MACHO [61] and EROS [62] searched for these objects by making nightly observations

towards the Large and the Small Magellanic Clouds. Over a 5.7-year period, MACHO observed 13-17 events

(depending on the classification) toward the large magellanic cloud (LMC) of typical duration ∼ 100 days, and

one towards the small magellanic cloud (SMC) (also observed by EROS). The rate was larger than the expected
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Figure 2.25: Experimental constraints on the density of axions in the galactic halo near the Sun as a
function of the axion mass (upper scale) and cavity frequency (lower scale). The regions above the curves
marked ‘DFSZ’ and ‘KSVZ’ are excluded from the respective axion models. The currently accepted value
for the local dark halo density is 0.45 GeV/cm3, which is approximately the extension of the excluded
region for the KSVZ axion. Figure from [84].

background of 2-4 events due to known stellar populations, but not enough to account for a significant fraction

of the halo. The absence of short-duration events (∼ 20 days) implies that less than 20% of the halo can be in

the form of MACHOs of mass between 10−4M⊙ and 10−2M⊙. Furthermore, from the observed rate of events,

the MACHO team determined that an all-MACHO halo is ruled out at 95% confidence, in the same mass range

[61]. Based on the 4 observed events towards the small magellanic cloud (SMC), the EROS team placed similar

constraint: < 25% of the halo is in the form of MACHOs in the mass range 2 × 10−7M⊙ to 1 × M⊙, at 95%

confidence [85].

2.8.4 Black holes

A generic class of black holes produced in the very early universe, before nucleosynthesis, known as primordial

black holes have been also considered as plausible candidates for dark matter. When primordial black holes are

created, they accrete essentially all of the mass within their horizons. This relates their mass and their time of

production [196]:

M(t) ≈ 1015
(

t

10−23s

)
g. (2.43)

Baryon segregation occurs at approximately 1 minute before nucleosynthesis. With this time scale, the

primordial black holes may have masses no larger than 106M⊙. Detection of very low mass primordial black

holes is possible by their Hawking radiation. The mechanism for generation of Hawking radiation can be described



Chapter 2: Dark Matter Problem 67

Figure 2.26: 95% confidence upper limits on the MACHOs halo mass fraction as a function of
log10MMACHO/M⊙ from the EROS-1 and EROS-2 experiments. The closed contour represents the
2000 signal claim of the MACHO collaboration. Figure from [86].

as follows. Virtual particle-antiparticle pairs pop in and out of existence all the time. If such an event occurs

near the horizon of the black hole and one of the particles crosses through the black hole horizon, the pair cannot

annihilate. Thus, the remaining particle becomes real. To conserve energy, the black hole must lose the energy

required to create the particle. Effectively, the black hole emits elementary particles. The emission spectrum is

a blackbody spectrum. The temperature of the blackbody and the mass loss rate are related to the mass of the

black hole by [196]:

M(t)

dt
= −5× 10−27 f(M)

M2
gs−1, (2.44)

where the function f(M) is related to the number of particle species light enough to be emitted by the black

hole. The MACHO exclusion results disallow a significant component of black holes in the mass range 10−4 to

0.03M⊙ in the galactic halo.

2.8.5 Supersymmetric dark matter candidates

Supersymmetry (SUSY) is a well-motivated and presently the most-favored extension to the Standard Model

of particle physics. It’s a theory that relates fermions and bosons. SUSY is motivated by the desire to find

a unifying theory. This theory is renormalizable as shown by Gerad Tooft and that the fundamental forces

(electromagnetic, weak and strong) unifies around 1018 GeV. Supersymmetry predicts the existence of, yet to

discovered, superpartners for every known particles called sparicles. Sparticles and particles do not have the same

mass; their spins differs by 1/2. In order for SUSY to work and in order for the particles introduced in SUSY to

have mass, the internal symmetry of the system must be spontaneously broken. This is exacttly what happens
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in the standard model where the spontaneous symmetry is broken in order for the gauge bosons (W±s and Z)

to acquire mass via the higgs mechanism.

SUSY is believed to describe nature and provide elegant solution to the quadratic divergences (hierarchy

problem) and coupling unification that the standard model of particle alone is not able to explain without

evoking an arbitrary cut-off or an excessive fine tuning. However SUSY has lots of free parameters. The minimal

supersymmetric standard model (MSSM) has 106 parameters that need to be fixed. The MSSM, which have

less number of parameter as opposed to SUSY, was originally proposed to stabilize the weak scale, solving the

hierarchy problem, i.e. the Higgs boson mass of the Standard Model is unstable up to some quantum corrections

and the theory predicts that weak scale should be much weaker than what is observed to be. In the MSSM, the

Higgs boson has a fermionic superpartner, the Higgsino, that has the same mass as the Higgs if supersymmetry

were an exact symmetry. Because fermion masses are radiatively stable, the Higgs mass inherits this stability.

However, in MSSM one needs to indroduce a Higgs doublet for the theory to work.

To reduce the number of parameters in SUSY, the constrained Minimal Supersymmetric Standard Model

(cMSSM) was introduced. The cMSSM is the most widely discussed extension of the Standard Model of particle

physics. Despite its relative simplicity, this model has the advantage of capturing some key phenomenological

features of Supersymmetry (SUSY), while making definite predictions for the properties of the the lightest

neutralino χ0
1 (or χ) as a linear superposition of the superpartners of the neutral Gauge bosons and the neutral

Higgses, which is by far the most popular Dark Matter (DM) candidate [194, 195].

Particle Spin Superparticle Spin
Electron 1/2 Selectron 0
Muon 1/2 Smuon 0
Tau 1/2 Stau 0

Neutrino 1/2 Sneutrino 0
Quarks 1/2 Squarks 0

Fermions Bosons

Particle Spin Superparticle Spin
Graviton 2 Gravitino 3/2
Photon 1 Photino 1/2
Gluon 1 Gluino 1/2

W-bosons (+/-) 1 Wino 1/2
Z-boson 1 Zino 1/2
Higgs 0 Higgsino 1/2

Bosons Fermions

Table 2.1: Standrad particles with their superpartner. Every fermion has a boson superpartner and vice
versa. Their spin is obtained by subtraction 1/2 to the fermionic of bosonic spin and taking its absolute
value to get the superpartner spin.

In the context of this dissertation, one important connection to SUSY is its implication for weakly interacting

massive particles (WIMPs). The lightest new particle predicted by SUSY is an ideal candidate for dark matter.

This new particle is called neutralino or a WIMP. WIMPs produced in thermal equilibrium in the early universe

(thermal WIMPs) are particularly interesting. Their cosmological density is naturally of the right order of

magnitude when their interaction cross section is of the order of the weak cross section, and so can be detected

in the laboratory.

In the early Universe, annihilation reactions that convert WIMPs into standard model particles were initially

in equilibrium with their opposite reactions. As the universe expanded, and the temperature became smaller than
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Figure 2.27: Supersymmetric partners of the standard model of particle physics illustrated as mirror
particles. Figure courtesy of Dan Hooper (http://home.fnal.gov/ dhooper/supersymmetry.gif).

the WIMP mass, the gas of WIMPs, still in equilibrium, diluted faster than the gas of standard model particles.

This occurred because the equilibrium number density of non-relativistic particles is suppressed by a Boltzmann

factor e−Mχc2/kBT with respect to the number density of relativistic particles. After a while, WIMPs became

so rare that the WIMP annihilation reactions could no longer occur (freeze-out), and from then on the number

density of WIMPs decreased inversely with volume (or in other words, the number of WIMPs per comoving

volume remained constant). Decoupling occur approximately when the WIMP annihilation rate Γχχ = ⟨σχχv⟩n

becomes smaller than the universe expansion rate H (σχχ is the WIMP annihilation cross section, v is the relative

velocity of the annihilating WIMPs, n is the WIMP number density, and the angle brackets denote an average

over the WIMP velocity distribution). The number density, at the freeze-out, is given by:

n(eq)
χ (T ) ≈ g

(
MχkBT

2π~2

)
. (2.45)

More accurate calculations require numerical solutions of the Boltzmann equation in an expanding universe

dnχ

dt
+ 3Hnχ = −⟨σχχv⟩

[
n2
χ − nχ(eq)

2] . (2.46)

To find WIMPs relic density, it must be reminded that the decoupling of non-relativistic particles occur when

m > T . If T > m, WIMPs annihilation occur and if T < m, there will be creation, which is however suppressed

by the Boltzman factor em/t. During the expansion, the WIMP density changes as

n ∼ 1

a3
, (2.47)

which implies

dn

dt
= −3

ȧ

a
n = −3Hn. (2.48)

At the freeze-out temperature, dn
dt

= 0, and using Friedmann’s equation to find the expansion rate H, the relevant
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relic density can be approximated to [117]6

Ωχh
2 ≃ 3× 10−27

⟨σχχv⟩
cm3s−1, (2.49)

with ⟨σv⟩ the thermally averaged annihilation cross section times the relative velocity; 3Hn is the dilution term

due to expansion. An important property of this equation is that smaller annihilation cross sections correspond

to larger relic densities. This can be understood from the fact that WIMPs with stronger interactions remain in

chemical equilibrium for a longer time, and hence decouple when the universe is colder, therefore their density is

further suppressed by a smaller Boltzmann factor.

Figure 2.28: Evolution of a typical WIMP number density in the early universe. The number of WIMPs in
a volume expanding with the universe (comoving density) first decreases exponentially due the Boltzmann
factor e−Mχ/T and then freezes out to a constant value when the WIMP annihilation reactions cannot
maintain chemical equilibrium between WIMPs and standard model particles. As shown in the figure,
WIMPs with larger annihilation cross section end up with smaller densities. Figure from Jodi Cooley’s
talk at TAUP.

2.8.6 Exotic Dark Matter Candidates

In addition to the candidates described above, a number of other possibilities have been proposed to explain the

apparent need for dark matter. Each of them represents physics beyond the Standard Model of particle physics.

Let’ review some of these below.

6The numerical solution of the Boltzman equation was first attempted by Lee-Weinberg (1977) and by Stephen Wolfram
(1979).
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SuperWIMPs

The basic idea is as follows, consider models with high-scale supersymmetry-breaking (supergravity models) and

R-parity7. If the lightest supersymmetric particle (LSP) is the neutralino, with mass and interaction cross section

set by the weak scale Mweak ∼100 GeV − 1 TeV, such models are well-known to provide an excellent dark matter

candidate, which naturally freezes out with the desired relic density [198, 199]. This scenario relies on the (often

implicit) assumption that the gravitino is heavier than the lightest standard model superpartner. However, even

in simple and constrained supergravity models, such as minimal supergravity [200, 201, 202, 203], the gravitino

mass is known only to be of the order of Mweak and is otherwise unspecified. Given this uncertainty, assume

that the LSP is not a standard model superpartner, but the gravitino. The lightest standard model superpartner

is then the next-lightest supersymmetric particle (NLSP). If the universe is reheated to a temperature below

∼ 1010 GeV after inflation [204], the number of gravitinos is negligible after reheating. Then, because the

gravitino couples only gravitationally with all interactions suppressed by the Planck scale MPl ≃ 1.2 × 1019

GeV, it plays no role in the thermodynamics of the early universe. The NLSP therefore freezes out as usual;

if it is weakly-interacting, its relic density will again be near the desired value. The WIMP decays to the LSP,

converting much of its energy density to gravitinos. Gravitino LSPs therefore form a significant relic component

of our universe, with a relic abundance naturally in the desired range near ΩM ≃ 0.23 [205].

Models with weak-scale extra dimensions also provide a similar dark matter particle in the form of Kaluza-

Klein gravitons [197], with Kaluza-Klein gauge bosons or leptons playing the role of WIMP [206]. As such dark

matter candidates naturally preserve the WIMP relic abundance, but have interactions that are weaker than

weak, we refer to the whole class of such particles as superWIMPs.

WIMPZillas and Q-Balls

This class of particles, also called super heavy relics (or super heavy dark matter) were proposed as a generic

class for dark matter candidates. WIMPZillas are extremely massive WIMPs (M ∼ 1013 GeV/c2), but very low

in density. WIMPZillas are produced gravitationally at the end of the inflation as result of the expansion of the

7R-parity is a concept in particle physics, which arise mainly in theory such as the supersymmetric extension of the
Standard Model. In this theory, baryon number and lepton number are no longer conserved by all of the renormalizable
couplings in the theory. Since baryon number and lepton number conservation have been tested very precisely, these
couplings need to be very small in order not to be in conflict with experimental data. R-parity is a symmetry acting on
the Minimal Supersymmetric Standard Model (MSSM) fields that forbids these couplings and can be defined as:

R = (−1)3(B−L)+2s,

where s is the particle’s spin,B is the baryon number, and L is the lepton number [87, 88, 89]. All Standard Model particles
have R-parity of 1 while supersymmetric particles have R-parity -1. As possible origins of R-parity, a very attractive way
to motivate R-parity is with a B-L continuous gauge symmetry which is spontaneously broken at a scale inaccessible to
current experiments. A continuous forbids renormalizable terms which violate B and L [90, 91, 92, 93]. If is only broken by
scalar vacuum expectation values (or other order parameters) that carry even integer values of 3(B−L), then there exist an
exactly conserved discrete remnant subgroup at our scale which has the desired properties [94, 95]. This phenomenon can
arise as an automatic symmetry in SO(10) grand unified theories. This natural occurrence of R-parity is possible because,
in SO(10), the Standard Model fermions arise from the 16-dimensional spinor representation, while the Higgs arises from
a 10 dimensional vector representation. In order to make the coupling of the group SO(10) invariant, one must have an
even number of spinor fields (i.e. there is a spinor parity). After GUT symmetry breaking, this spinor parity descends into
R-parity so long as no spinor fields were used to break the GUT symmetry [96, 97].
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universe. These particles can carry electric charge and color and are as well proposed as source of ultra high

energy cosmic rays.

Q-Balls instead, are solitons that come from SUSY and a wide range of particles physics models. They can

satisfy dark matter constraint over a wide range of mass and possibly decay into neutrralinos. It is believed that

Q-Balls interact with ordinary matter, so experiments such as ANTARES, IceCube and Super-K, may be able

to detect them in the future.

Q-Balls might have been produced in the early universe by three mechanisms: phase transitions, solitosynthe-

sis (which is analogous to nucleosynthesis), i.e. once the universe drops below some critical temperature, Q-Balls

can minimize the energy and the free energy of the system and rapid coalescence can occur. The third mechanism

that produce Q-Balls is the fragmentation of the scalar condensate at the end of inflation. At the end of inflation,

scalar fields rolling down a potential can encounter instabilities or oscillations which can produce particles that

we call Q-Ball. Although Q-Balls interaction with matter solves the cold dark matter problem, however there

are few serious issues that this class of particles faces; the central cusp problem is the well known one.

It is also worth mention that other and more exotic dark matter candidates were proposed: D-particles,

Axinos (supersymmetric partner of the axions) and Mirror Matter [207]. These particles are less interesting than

the ones I have briefly discussed and given the scope of this work, I do not intend discuss them in detail.

2.8.7 Modified Gravity (MOND)

Modified Newtonian Dynamics (MOND) is a theory that modifies Newton’s force law to explain observations

that most astronomers interpret as evidence for dark matter (flat rotation curves). However the observations

of Bullet Cluster has offered the best evidence against MOND and MOND-like theories and some of the best

evidence for dark matter [208].

Milgrom, in 1983, proposed a modification of Newtonian dynamics (MOND) in order to explain observations

that the scientific community believed was an indication of the presence of a weakly interacting massive particles

or dark matter. Milgrom formulated MOND and described how it would explain various observational laws [208].

One way to modify Newtonian dynamics would be to modify Newton’s gravitational force law such that it

matches these rotation curves. To lessen the dependence on distance of the gravitational force for large radii

is what Milgrom suggested that may be the strength of the gravitational force change as the distance increase.

Above a certain distance r0, gravity may have a different dependence than what we normally know and proposed

the following modification:

Fg =
GMm

r2
f(r/r0), (2.50)

with f(r/r0) = 1 if r ≪ r0 and f(r/r0) = r/r0 if r ≫ r0 (r0 is the minimal distance where the Newtonian

gravitation field starts to behave unusually). According to this theory, Newton’s second law of dynamics will be

equally modified and can be written as

F⃗ = ma⃗µ(a/a0), (2.51)
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where with µ(a/a0) = 1 if a ≪ a0 and µ(a/a0) = a/a0 if a ≫ a0. The true gravitational acceleration g⃗ relates to

the Newtonian gravitation acceleration g⃗n by

g⃗n = g⃗µ(g/a0). (2.52)

The above aforementioned equations (2.50) through (2.52) were used by MOND to explain the Tully-Fisher Law

- that a galaxy’s mass M and its its rotational velocity V are related by M ∝ V α in K-band luminosity. From

Equation (2.52), one can see that in the low acceleration regime g =
√
gna0. Setting g = V 2/r yields

V 4 = GMa0 (2.53)

which reproduced the Tully-Fisher law. By taking the logarithm of the equation (2.53), one can derive the

following relation

log(L) = 4 log(V )− log(Ga0)− log(M/L) (2.54)

Taking the last term of the above equation to be log(< M/L >), with < M/L > the average mass-to-light ratio

of the galaxy. So, given the mass-to-light ratio curve as function of the B-V color, one can use the equation

(2.54), to determine the acceleration scale a0 that differentiates MONDian dynamics from Newtonian dynamics.

With an acceleration scale, estimate to be a0 ∼ 10−8 cms−2. Realizing that a0 ∼ cH0 within a factor of 5-6,

Milgrom speculated that MOND may have applications in cosmology.

Although MOND was succesful in fitting the flat rotation curves, MONDian force (Equation (2.51)) does

not obey linear momentum conservation, which is a big theoretical obstacle. Recently, Bekenstein, in 2004 [98],

formulated the Tensor-Vector-Scalar (TeVeS) theory of gravity, in which he effectively invented a theory of general

relativity that obeys MOND’s requirements which can be useful when comparing MOND cosmology to that of the

Cold Dark Matter (CDM) models, but MOND has still lots of caveats in order to be accepted as an alternative

explanation of flat rotation curves. MOND does not reproduce the whole spectrum of observation that GR is

able to do. The observation of the bullet cluster is one solid ground that sufficient to rule out MONDian theory.
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Figure 2.29: With only the M/L ratio as a free parameter, MOND fitted well a variety of galactic
rotation curves, such as those of these Ursa Major spiral galaxies at 15.5 Mpc. Figure from ([208]).
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Chapter 3

WIMP Signatures and Detections

3.1 Introduction

Weakly interacting massive particles (WIMPs) are a well motivated class of non-baryonic dark matter in the

universe and within our very own galaxy, the milky way. Astrophysical evidence provides strong constraints on

dark matter, but they do not provide answers to some questions such as the exact mass of dark matter is, its spin

and cross section on a known target nucleus, etc. Observations of dark matter interactions can provide answers

to some of these questions.

WIMPs can be detected either directly by scattering off nuclei whose recoil can be measured, or indirectly by

observing the annihilation products of WIMPS in the cosmos. In indirect detection, the idea is that if WIMPs

are abundant in space, they may scatter and annihilate each other producing secondary products such as gamma

rays, cosmic rays and particles such as neutrinos. One can therefore devise an experiment to observe these

annihilation products. I have reserved an entire section in this chapter to discuss in some detail the techniques

and status of indirect dark matter searches.

In a direct dark matter search, WIMPs interact with nuclei by weak interactions and produce nuclear recoils.

In this approach, experimentalists measure the amount of energy deposited in the crystal by a dark matter

interaction. The information on the WIMP kinetic energy distribution can then be obtained from the distribution

of the energy deposited.

The cryogenic dark matter search (CDMS), and many other experiments searching for dark matter by a direct

detection, measures the energy deposited for nuclear recoils induced by WIMP interactions. The experiments

also measure recoils produced by the backgrounds (such as gamma rays) which are far more dominant than the

rate expected for dark matter interactions.

In this chapter, I cover some of the basics of direct and indirect detection of weakly interacting massive

particles (WIMPs). Section (3.2) will describe the physics of the direct search: the expected WIMP flux,
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WIMP elastic scattering, spin-independent and dependent scattering cross-section and the expected WIMP rate.

Section (3.4), however, introduces the grounds for an indirect dark matter search which measure a wide range

of annihilation signatures. Indirect detection experimental signatures are discussed in section (3.5) while direct

search of dark matter discussion is done under the section (3.6). Some useful techniques and strategies for

suppressing the backgrounds which dominate the weak expected signal from nuclear recoils are discussed as well

in this last section.

3.2 WIMP Detection

The effort for detecting dark matter which is believed to pervade the universe is currently on-going around the

world. This broad experimental program tasked specifically for searching for and characterizing the dark matter

is of an utmost importance. In this section, I am going to review some of the techniques employed in the effort

to detect WIMP dark matter.

Direct detection experiments attempt to observe the recoil from the elastic scattering of dark matter particles

interacting with nuclei in a detector. Indirect detection experiments are designed to observe and identify the

annihilation products of WIMPs, such as gamma-rays, neutrinos, cosmic rays, and emission at radio/microwave

wavelengths. Alternatively, one could potentially produce and observe dark matter particles in collider experi-

ments, such as at the Large Hadron Collider (LHC). These detection techniques are therefore generally grouped

into one of three categories: direct production at a particle collider; indirect detection of WIMP-

annihilation products and direct detection of WIMPs interacting with terrestrial matter. The direct

detection schemes are based on WIMP scattering off the nuclei on terrestrial detectors and give off a nuclear

recoil which can be measured by means of various techniques discussed in section (3.6.2). However, as for indirect

detection methods, the WIMP annihilation rate scales as the square of the WIMP density. Therefore, the most

luminous sources are expected to be near the Galactic center of dark matter sub-halos, where the dark matter

density peaks [212, 213, 214, 215, 216, 217]. In addition, the Sun and Earth capture WIMPs and may be seen as

sources of WIMP annihilation [218, 219, 220, 221, 222]. In all cases, the annihilation rate is sensitive to the dark

matter’s phase space structure. Finally, WIMPs can also be be produced in collider experiments (such as Large

Hadron Collider at CERN) with sufficient energy reach.

It is quite remarkable to note that each of these approaches has their advantages and disadvantages. Moreover,

it is interesting to note that all these strategies for detecting dark matter particles have reached, or are about to

reach the level of sensitivity that has long been anticipated to be required to observe most postulated varieties

of WIMPs.
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3.3 Direct Detection

3.3.1 WIMP Flux

The halo profile for the milky way predicts a dark matter density of ρ0 ≈ 0.3 GeV/cm3. Assuming a WIMP

mass of Mχ = 100 GeV/c2, one expects a flux of

Φ =
ρ0v0
Mχ

≈ 7× 104 cm−2s−1. (3.1)

For CDMS detectors which have an area of ∼ 45 cm2, there will be ∼ 3.2× 106 WIMPs per second crossing the

detector. There is an abundance of particles to be detected, if the cross-sections are high enough. The possibility

of directly detecting certain dark matter candidates was suggested by Goodman and Witten, who pointed out

the importance of coherent interactions between dark matter particles and nuclei [209].

3.3.2 WIMP elastic scattering

Relic WIMPs have weak-scale cross-sections for annihilating to standard model particles. They may also be

expected to have weak-scale cross-sections for elastic scattering on standard model particles (cross section of the

order of 10−27 cm2). The form and magnitude of these interactions depends on the precise model considered.

Even within the constrained minimally supersymmetric standard model or cMSSM, there are many adjustable pa-

rameters that affect the cross-sections. However, we can write a general framework for WIMP-nucleon scattering,

with two classes of interactions:

1. spin-independent interactions which couple to the entire nucleus; and

2. spin-dependent interactions which couple to unpaired spins.

WIMPs are bound within the galactic halo and they travel at typical galactic velocities in the solar neigh-

borhood, velocities of about ∼ 250 km/s ∼ 10−3c. A WIMP with mass M = 100 GeV/c2 will possess a kinetic

energy of Eχ = 1
2
Mχv

2 ≈ 50 keV. In an elastic collision with a stationary target of mass MT , the recoil energy

ER is given by:

ER =
2MTMχ

(MT +Mχ)2
Eχ · (1− cos(θ)) =

1

2
r · Eχ · (1− cos(θ)) (3.2)

with r =
4MTMχ

(MT+Mχ)
2 the kinematical factor. The mean kinetic energy of the recoiling target is obtain by averaging

over every possible recoil scattering angle θ:

ER =
2MTMχ

(MT +Mχ)2
Eχ (3.3)

and the maximum recoil energy will be twice the energy given in the equation 3.3. For a germanium target (Ge)

of atomic mass 72.61 a.m.u. (where a.m.u. stands for atomic mass unit, 1 a.m.u = 0.93146 GeV/c2), MT c
2 ≈ 67
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Figure 3.1: Illustration of WIMP scattering in the center of mass frame. Incoming WIMPs, with an
initial momentum p⃗χi , scatter off a target nucleus at rest. In the center of mass frame, the target’s
momentum is p⃗Ni = −p⃗χi . After scattering, each of these particles recoils in different direction deflected
by an angle θ∗, the scattering angle. p⃗χf and p⃗Nf the WIMP and target final momenta. Figure from
[339].

GeV. Furthermore, assuming an elastic collision between a 100 GeV/c2 galactic WIMP and a Ge nucleus, one

will expect the nucleus to recoil with typical kinetic energy of ∼ 25 keV. This energy deposition is detectable in

a variety of low-threshold particle detectors.

Let us now consider a WIMP-electron collision. Following the same reasoning as above, one expects the

electron to recoil with an energy less than 1 eV of kinetic energy. This energy is not enough to ionize a single

charge carrier. So, direct detection efforts therefore focus upon WIMP-induced nuclear recoils.

A 100 GeV/c2 galactic WIMP has a de Broglie wavelength of λ = h
Mχv

which is about ≈ 12 fm corresponding

to the diameter of a large atomic nucleus. Therefore, an incident WIMP will interact coherently with an entire

atomic nucleus rather than scattering off of single nucleons. Such a large wavelength means that WIMPs will see

the nucleus at this scale of resolution and cannot resolve individual nucleons). The cross section calculations must

account for constructive or destructive interference among the individual WIMP-nucleon scattering amplitudes.

WIMP-nucleon scattering amplitude takes different forms depending on the WIMP’s spin and the symmetries

of its couplings. The possible interaction symmetries described by the standard model of particle physics are

scalar, pseudoscalar, vector, axial-vector, tensor, or pseudotensor. It is, however, demonstrated by Kurylov and

Kamionkowski [210], that only scalar and axial-vector terms survive in the extreme non-relativistic limit; the

remaining terms are either suppressed by large factors or can be absorbed into these two. In this limit, the

general interaction Lagrangian becomes

LχN = 4χ†χ
(
fpη

†
pηp + fnη

†
nηn

)
+ 16

√
2GFχ

† σ⃗

2
χ

(
apη

†
p
σ⃗

2
ηp + anη

†
n
σ⃗

2
ηn

)
(3.4)

where χ is the WIMP wavefunction, ap and an are the proton and neutron Weyl spinors, σ⃗ is the spin operator

(Pauli spin matrices), and GF is the Fermi constant (GF = g2

4
√
2M2

W

(~c)3) , g is the electro-weak (weak interaction)

coupling constant and MW is the W-boson mass). The WIMP-nucleon interaction is characterized by five

parameters: the WIMP mass Mχ, the spin-independent (SI) couplings fp and fn, and the spin-dependent (SD)

couplings ap and an.
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In the subsequent sections I will describe these two particular classes of interactions (spin-dependent and

spin-independent WIMP-nucleon interaction cross sections). I will as well discuss the WIMP event rates for

nuclei of interest used as target materials in direct dark matter detection experiments.

3.3.3 Spin-Independent Scattering

To calculate the WIMP-nucleus elastic-scattering cross section, we follow the standard review on the subject by

Lewin and Smith [211]. In the case of spin-independent interactions, the procedure is fairly straightforward. The

spin-independent interaction is very simple, with an effective WIMP-nucleon interaction

Lχ−n(x⃗) = fnχ(x⃗)χ(x⃗)n(x⃗)n(x⃗) (3.5)

where χ(x⃗) is the neutralino (or simply a WIMP, weakly interacting massive particle) and n(x⃗) is the nucleon

wavefunctions. In minimal supersymmetry, the couplings of WIMPs to neutrons and protons are the same and

take a common value fn [174, 175, 176]. The nucleus can be approximated as a collection of nucleons with

overlapping wavefunctions, so an effective WIMP-nucleus interaction may be written in the following form

Lχ−n(x⃗) = fnχ(x⃗)χ(x⃗)

A∑
k=1

nk(x⃗)nk(x⃗) (3.6)

The differential cross section is easily calculated using Fermi’s Golden rules:

dσ

dq2
=

1

πv2
|M(q⃗)|2 (3.7)

The factor 1/(πv2) arises from the final-state density of states and the standard Golden Rule 2π/h factor. M(q⃗)

is the scattering matrix element characterizing the transition from the final to the initial states. In the context

of this computation, the matrix elements M(q⃗) characterize the transition from a nucleus at rest to a nucleus

with momentum q⃗. The scattering matrix element M(q⃗) is obtained by integrating the interaction-Lagrangian

density (3.7) over the whole space

M(q⃗) = fn

A∑
k=1

∫
d3x|nk(x⃗)|2eiq⃗·x⃗ (3.8)

The quantity |nk(x⃗)|2 is the probability of the kth nucleon being at x⃗. The probability of any nucleon being at

x⃗ is the sum over all nucleons given above. The A- dependence is factored out, leaving the probability ρ(x⃗) of a

given nucleon being at x⃗ averaged over all nucleons. Therefore, the scattering matrix becomes:

M(q⃗) = fnA

∫
d3xρ(x⃗)eiq⃗·x⃗ = fnAF (q⃗) (3.9)

where F (q⃗) is the Fourier transform of ρ(x⃗), called the form factor which is a measure of the scattering amplitude

of a wave by an isolated atom. The form factor expresses the dependence of the interaction on the shape of the

nucleus, given by the density ρ(x⃗).
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If we assume for now that the WIMP-proton and WIMP-nucleon couplings, fp and fn, may be different, a

complete calculation from [239] and references therein show that

M(q⃗) = [fpZ + (A− Z)fn] · F (q⃗) (3.10)

As the transfer momentum q⃗ rises, the nuclear structure becomes important, with the exact dependence encoded

in F (q⃗). There are several commonly used models of F (q⃗). We adopt the form factor of Lewin and Smith [211];

this is the Helm form factor defined by

F (qrn) =
3j1(qrn)

qrn
e−(qs)2/2 (3.11)

where j1(q) =
sin(qrn)−qrn cos(qrn)

(qrn)2
is a spherical Bessel function and q⃗ is the momentum transfer. Given a nuclear

recoil energy ER and a given target mass A, the momentum transfer is given by: q =
√
2MTER as

q =
√

2 · 0.932(GeV/c2) ·A · ER(keV ) (3.12)

The parameter rn is defined as

rn =

√
c2 − 5s2 +

7

3
π2a2 (3.13)

with s = 0.9 fm, a = 0.53 fm and c = (1.23A1/3 − 0.60) fm. The effective nuclear radius rn can be approximately

found by fitting muon scattering data to a Fermi distribution. The form factor (3.11) is taken as a good fit to

the lepton-nucleus scattering data down to A ≈ 10. The value of rn (3.13) and other aforementioned quantities

have been chosen to make the equation (3.11) approximately equal to the Fourier transform of the Woods-Saxon

formula, which is a two-parameter Fermi distribution giving the spatial distribution of charges in the nucleus.

Therefore the form factor F (q) amounts to a fit of a fit. More sophisticated approaches are based on electron

elastic scattering data rather than model-dependent parameterizations. Lewin & Smith formula has been found to

be an acceptably close match and has been adopted as a working standard by most direct-detection experiments.

Combining the equation (3.7) and (3.10), we obtain the differential spin-independent scattering cross-section:

dσ

d|q| =
1

πv2
[fpZ + (A− Z)fn]

2 · |F (q⃗)|2 (3.14)

where A and Z are the atomic mass and atomic number of the target material, v is the WIMP velocity, q is

the transferred momentum. F (q) is the form factor that accounts for the momentum distribution of nucleons in

the target. The couplings fp and fn to protons and neutrons are typically similar, and depend on the scattering

processes available to a given type of WIMP. The cross-section does not scale linearly with the size of the nucleus,

but quadratically. This arises because the neutralino can interact coherently with the entire nucleus rather than

with a single nucleon, as long as the momentum transferred is not too large. The coherence in scattering happens

when the momentum transfer q corresponds to a wavelength much larger than the nucleus size, so the scattering
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Figure 3.2: Helm nuclear form factor as function of nuclear recoil energy for four different target ma-
terials: germanium (Ge), silicon (Si), xenon (Xe) and argon (Ar). Germanium and Silicon are the two
target used in CDMS experiment; Xenon and Argon are used in other dark search experiments such as
Xenon10 (Xe100) and MiniClean. The minima in Ge and Xe curves are resonances caused by destructive
interference of scattering amplitudes when the WIMP wavelength becomes comparable to the size to the
size of the nucleus.

is fully coherent.

The energy dependence of the differential WIMP-nucleon cross section can be written in terms of σ0WN which

is independent of the momentum transfer and the form factor F 2(q), i.e.

dσ

d|q| =
σ0WN

4µ2
Av

2
F 2(q) (3.15)

with

σ0WN =
4µ2

A

π
[fpZ + (A− Z)fn]

2 (3.16)

where v, in equation (3.15), is the velocity of the WIMP in the lab frame, and µA =
MχMT

Mχ+MT
is the WIMP-

nucleus reduced mass in terms of the WIMP mass Mχ and the mass MT of a target nucleus of atomic mass A.

Supersymmetric models predict that the coupling constants fp and fn are identical, reducing the cross section

(3.16) to

σ0WN =
4µ2

A

π
f2
nA

2 (3.17)

This effect is called coherent enhancement and it can be enormous for scalar interactions compared to axial

vector interactions (or spin-dependent) as we will see shortly. Assuming a germanium target, A2
Ge ≈ 5000,

so a WIMP target built of heavy nuclei is vastly more sensitive to WIMP interactions than one composed

of lighter nuclei. For real collisions with non-zero momentum transfer, the various WIMP-nucleon scattering
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amplitudes will not interfere perfectly constructively and the actual cross section will be somewhat less than

that in equation (3.15). This reduction is embedded in as a multiplicative effect coming from the nuclear form

factor F 2(q), the normalized Fourier transform of the nuclear density distribution with the following bound:

0 < F 2(q) < 1.

The dependence of this cross section on the target material in (3.17) may be factored out by rewriting this

result as

σ0WN = σSI
µ2
A

µ2
n

A2 (3.18)

where µn is the reduced mass of the WIMP-nucleon system. The spin-independent cross section of a WIMP on

a single nucleon thus becomes:

σSI =
4µ2

nf
2
n

π
(3.19)

Figure (3.2) shows the form factor as a function of the transfer momentum for several target nuclide. Note the

periodic deep troughs in F 2(q), which corresponds to the momentum transfers yielding completely destructive

interference across the nucleus. These dips in sensitivity occur at lower momentum transfers for heavier target

nuclei, somehow counteracting their A2 sensitivity enhancement over light nuclide. A target made of a heavy

nuclide, such as Xe, must run at a low detector threshold to see the same event rate as a comparable mass of Ge.

The event rate of a light nuclide (Si or Ar) experiment varies comparatively little with threshold.

3.3.4 Spin-Dependent Scattering

The spin-dependent cross section is the most complicated to derive. Following the recipes given by G. Jungman,

M. Kamionkowski and K. Griest [237] , the spin-dependent differential cross section can be be written as

dσSD

dq2
=

8

πv2
G2

FΛ
2J(J + 1)F 2

S(q) (3.20)

with Λ a coefficient that depends both on particle physics on the particular assumption for the distribution of the

nuclear spin J among the nucleons (if the interaction is through Z exchange, the particle-physics piece of Λ is 1

while the nuclear-spin piece is nontrivial; if the interaction is via exchange of a different particle, such as a squark,

Λ may also contain correction factors due to different couplings and propagators). F 2
S(q) is the spin-dependent

form factor which depends on the transfer momentum q.

The parameter Λ is calculated using the single-particle shell model. All nucleons are assumed to be paired

into spin singlets except for possibly one unpaired proton and one unpaired neutron. It is assumed that the

total spin J of the nucleus is given by the spin and orbital angular momenta of these unpaired nucleons, and the

interaction is assumed to be mediated by virtue of a Z-boson exchange so Λ contains only spin factors.

If we consider the case of a single unpaired nucleon, so that only one nucleon’s spin S⃗ and angular momentum

L⃗ which determine the nucleon’s total angular momentum J⃗ = L⃗ + S⃗. The nuclear Hamiltonian depends
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on the square of the total angular momentum J2 = (L⃗2 + S⃗2)2. The projection of S⃗ along J⃗ is given by

S⃗ · J⃗ = 1
2
(J⃗2 − L⃗2 + S⃗2) and commutes with the Hamiltonian. The expectation value ⟨S⃗ · J⃗⟩ is nonzero, whereas

the expectation values of the other projections of S⃗ vanish. It is therefore this projection to which the WIMP

spin may couple. Thus, the WIMP-nucleus spin-dependent coupling satisfies the following relation

Λ =

[
J⃗ .S⃗

J2

]2

(3.21)

which can be expanded to

Λ =

[
J(J + 1)− L(L+ 1) + 3

4

2J(J + 1)

]2

(3.22)

According to [237], the above formula can be generalized to the following form

Λ =
1

J
[ap⟨SP ⟩+ an⟨Sn⟩] (3.23)

with ap and an the proton and neutron spin-dependent coupling constants to WIMPs. Authors in the reference

[237] combined the equations (3.20) and (3.23) to obtain a more generally known expression given by:

dσSD

dq2
=

8(J + 1)

πv2
G2

Fµ
2
A [ap < SP > +an < Sn >]2 (3.24)

with µA =
MχMA

Mχ+MA
is the WIMP-nucleus reduced mass.

In the non-relativistic limit, axial-vector couplings (characterized by coefficients ap and an) give amplitudes

proportional to the inner product of the WIMP and nucleon spins. Since the interaction amplitude switches

signs when the nucleon spin is flipped, a WIMP’s spin-dependent interaction amplitudes with two nucleons of

opposite spin will interfere destructively in the zero-momentum-transfer limit. Nucleons align into spin singlet

pairings within nuclei, so spin-dependent cross sections are dominated by unpaired nucleons and vanish entirely

for spinless nuclides. This leads to very different constraints on experimental design: experiments targeting

spin-dependent interactions generally use light odd-proton or odd-neutron nuclides to maximize the nuclear spin

per unit mass, rather than the heavy nuclides preferred for spin-independent sensitive detectors. At vanishing

momentum transfer, the WIMP-nucleon spin-dependent interaction cross section is [237]:

σ0
SD =

32(J + 1)

πJ
G2

Fµ
2
A [ap⟨SP ⟩+ an⟨Sn⟩]2 (3.25)

The spin expectation values ⟨Sp(Sn)⟩ = ⟨N |Sp(Sn)|N⟩ (N is the nucleon wavefunction) is obtained from

detailed nuclear structure calculations [240, 241]. These calculations also show that an odd-neutron nucleus may

have a small but non-zero ⟨Sp⟩ (or vice versa) due to polarization effects within the nucleus. For free nucleons

⟨Sp⟩ = ⟨Sn⟩ = 1
2
. Table 1 from [238, 239] lists values of ⟨Sp⟩ and ⟨Sn⟩ for materials commonly used for dark

matter searches.

For the extreme case of a spin-dependent WIMP that interacts solely with protons (neutrons), the form

factor should depend on the distribution of proton (neutron) spin in the nucleus. The distributions of proton
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Table 3.1: Values of the atomic number Z, the total nuclear spin J and the expectation values of the
proton and neutron spins within the nucleus Sp and Sn for various nuclei with odd numbers of protons
or neutrons, leading to the relative sensitivities to spin-dependent interactions [238, 239].

Nucleus Z odd Nuclide J ⟨Sp⟩ ⟨Sn⟩ 4⟨Sp⟩2J(J+1)
3J

4⟨Sn⟩2J(J+1)
3J

19F 9 p 1/2 0.477 -0.004 9.1×10−1 6.4×10−5

23Na 11 p 3/2 0.248 0.020 1.3×10−1 8.9×10−4

27Al 13 p 5/2 -0.343 0.030 2.2×10−1 1.7×10−3

29Si 14 n 1/2 -0.002 0.130 1.6×10−5 6.8×10−2

35Cl 17 p 3/2 -0.083 0.004 1.5×10−2 3.6×10−5

39K 19 p 3/2 -0.180 0.050 7.2×10−2 5.6×10−3

73Ge 32 n 9/2 -0.030 0.378 1.5×10−3 2.3×10−1

93Nb 41 p 9/2 -0.460 0.080 3.4×10−1 1.0×10−2

125Te 52 n 1/2 0.001 0.287 4.0×10−6 3.3×10−1

127I 53 p 5/2 0.309 0.075 1.8×10−1 1.0×10−2

129Xe 54 n 1/2 0.028 0.359 3.1×10−3 5.2×10−1

131Xe 54 n 3/2 -0.009 -0.004 1.8×10−4 1.2×10−1

and neutron spin may be very different in a given nucleus, and so finite momentum effects may be very model-

dependent. The preferred way to write the spin-dependent WIMP-nucleus differential cross section is in the

following form [242]

σ0
SD =

8G2
F

(2J + 1)v2
S(q) (3.26)

where S(q) is the spin dependent structure function which encompasses the effects of finite momentum transfer,

as well as values for the neutron and proton spin expectations. There is no universal form for S(q); it is usually

calculated separately for each nuclide using nuclear structure models [240, 241].

S(q) = a2
0S00(q) + a0a1S01(q) + a2

1S11(q) (3.27)

with a0 = ap + an and a0 = ap − an. The functions Sij(q) describe the distribution of spins within the target

nucleus, analogously to F (q) in the spin-independent case. There is however no general rules regarding spin-

dependent WIMP-nucleus cross sections except that one should use odd-p, odd-n, or odd-p/odd-n nuclei in order

to maximize the unpaired nucleon spins.

In many models, spin-dependent WIMP-nucleon interaction cross section is extremely small (due to no

coherence) than its analogous spin-independent cross section. As shown in Table 3.1, nuclei with even numbers

of protons have nearly no net proton spin and essentially no sensitivity to spin-dependent interactions on protons,

and nuclei with even numbers of neutrons similarly have almost no sensitivity to spin-dependent interactions on

neutrons. Experiments thus quote limits of the spin-dependent WIMP- proton cross section (σSDp) separately

to spin-dependent WIMP- neutron cross section (σSDn).

The current direct detection techniques are orders of magnitude away from being sensitive to MSSM WIMPs
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via spin-dependent interactions.

Note: Natural-germanium detectors used in CDMS are composed primarily of spin-0 isotopes, with only a 7%

contribution from 73Ge.

3.3.5 WIMP Rates and Spectra

To get a quantitative intuition of the event rate one expects to observe in dark matter searches, let us begin

by assuming for the moment that the WIMP-nucleon scattering cross section is indeed σ ≈ 1 pb (10−36 cm2).

Then a 100 GeV/c2 WIMP would produce a few scatters per day in a kilogram of hydrogen target mass. This

is a sufficiently rare rate which requires a carefully built low-background experiment. In this section, I provide a

quantitative argument for the expected WIMP-scatter rate and details of the nature of WIMP-nucleon couplings.

For a given WIMP model, it is possible to make some specific assumptions and construct general arguments

for rates of interaction of WIMPs in terrestrial detectors and the recoil energy spectra one would expect in such

detectors as described by Lewin and Smith [211]. Assuming that the WIMP velocity distribution is Maxwellian,

in phase-space such a velocity distribution is given by:

f(v⃗, v⃗E) = e−(v+vE)2/v2
0 (3.28)

where v⃗ is the velocity with respect to the target, v⃗E is the Earth’s velocity with respect to the dark matter

halo, and v0 is a characteristic velocity, usually set to the galactic rotation velocity; it is also the most probable

WIMP velocity with respect to the Earth. The most probable WIMP velocity is set to v0 ≃ 220 km/s in the

vicinity of the Sun while the Earth’s velocity, normally defined by vE ≃ 244 + 15 cos(2πt) km/s, where t is the

time measured in years since the maximum velocity near June 2nd and the minimum near December 2nd [211].

This sinusoidal functional form approximately captures the motion of the earth relative to the Sun as the solar

system orbits the Milky Way.

Now, let us consider a target nucleus with atomic mass MT measured in atomic mass units (amu). The event

rate per unit mass is then given by

dR =
NA

MT
σ · v · dn (3.29)

whit NA denotes Avogardo’s number, σ the WIMP-nucleus cross section, v the velocity of the WIMP impacting

on the nucleus and dn is the differential particle density given by

dn =
n0

k
f(v⃗, v⃗E)d

3v (3.30)

k is the normalization constant and n0 is the dark matter particle mean density given by n0 =
ρχ
Mχ

for a WIMP

with mass Mχ and local density ρχ. The normalization constant, denoted by k, in equation (3.30) is defined such

that
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∫ vesc

0

dn = n0 (3.31)

where vesc is the escape velocity which is numerically defined by the Rave survey to be vesc = 545 km s−1

[243]. Inserting equation (3.30) into the integral (3.31) over the velocity distribution f(v⃗, v⃗E), the normalization

constant k takes the following form:

k =

∫ 2π

0

dϕ

∫ 1

−1

d(cos θ)

∫ vesc

0

f(v⃗, v⃗E)d
3v (3.32)

For a distribution truncated at |v + vE | = vesc, the constant k would be given by

k = k0 ·
[
erf(

vesc
v0

)− 2√
π
· vesc

v0
· ev

2
esc/v

2
0

]
(3.33)

where erf is the error function defined by:

erf(x) =
2√
π

∫ x

0

e−t2dt (3.34)

satisfying the limit erf(x)−→ 1 when x−→ ∞. k0 is the value of the same normalization constant in the simplest

case when vesc = ∞:

k0 = (πv20)
3/2. (3.35)

It is appropriate to define R0 as the event rate per unit mass for vE = 0, vesc = ∞ and with the zero

momentum transfer cross section σ0,

R0 =
2√
π
· NA

MT
· ρχ
Mχ

· σ0 · v0 (3.36)

so that the equation (3.29) can be written as

dR = R0 ·
k0
k

· 1

2πv40
· vf(v, vE)d3v (3.37)

If one plugs in known numerical values into the equation (3.36), the total WIMP rate thus becomes

R0 =
375

Mχ(GeV.c−2)
· σ0WN

1(pb)
· ρχ

0.3(GeV.c−3)
events.(kg.days)−1 (3.38)

Equation (3.38) is extremely useful because it predicts the number of events expected in 1 kg.days of exposure.

To make this a bit clear, let’s illustrate this using the following example. Assuming a 25 GeV/c2 - WIMP with

a WIMP-nucleon cross section σ0WN1 pb, and considering the WIMP density ρχ = 0.3 GeVcm−3, the equation

(3.38) yield an event rate of R0 = 12 events/kg.days; thus for 1 kg.days of exposure, one expects to observe 12

WIMP events.
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The recoil energy of a nucleus struck by a dark matter particle with a kinetic energy E = 1
2
Mχv

2 scattered

at an angle θ in the center of mass frame is given by the equation (3.2). Assuming isotropic scattering, so that

the recoils are uniformly distributed in ER, over the range 0 ≤ ER ≤ E · r, the differential energy-recoil spectrum

can be derived by averaging over the incident energy spectrum. According to Figure (3.3)

dR(ER)

dER
=

∫ Emax

Emin

dR(Ei)

Eir
. (3.39)

The maximum initial WIMP energy may be taken as infinity as an initial approximation, however for the sake of

generality, I will not do it here. The maximum energy may be computed based upon the Galactic escape velocity,

vesc, i.e. Emax = 1
2
Mχv

2
esc. To cause a recoil of energy ER, the minimum initial WIMP energy Emin = ER

r
(for

head-on scattering, with θ = π), and the minimum WIMP velocity vmin =
√

2Emin
Mχ

=
√

2ER
rMχ

. Therefore the

differential rate becomes:

dR(ER)

dER
=

1

E0r

∫ vmax

vmin

v20
v2

dR(v) =
R0

E0r
· k0
k

· 1

2πv20

∫ vmax

vmin

1

v
f(v, vE)d

3v (3.40)

Before quoting the expression for the fully general differential spectrum, it is instructive to consider the case

for which vE = 0 and vesc = ∞. But before I do, I wanted to draw the reader’s attention to the fact that in case

of non a zero momentum transfer, the form factor F (q) must be taken into account as it comes from the total

integrated cross section momentum-independent σ0. In such a case, expression (3.40) takes the following form:

dR(ER)

dER
=

R0

E0r
· k0
k

· 1

2πv20
F 2(q)

∫ vmax

vmin

1

v
f(v, vE)d

3v (3.41)

where F (q) is the same form factor discussed in length in the previous paragraphs (q =
√
2MTER). In the limits

where vE = 0 and vesc = ∞, the integral in (3.41) is isotropic in v can be evaluated without any difficulty.

Therefore, on obtains the following result:

dR(ER)

dER
=

R0

E0r
e−ER/E0rF 2(q) (3.42)

This limiting case provides some useful insight into the expected WIMP signal without having to resort to

numerical calculations. As expected, the differential spectrum as a function of nuclear-recoil energy is essentially a

falling exponential. The ability to detect small energy depositions is therefore critical to the sensitivity of a direct-

detection experiment; scattering events with the lowest recoil energies are expected to be the most numerous.

While a realistic form factor, WIMP-Earth velocity and Galactic escape velocity are important considerations,

they (generally) cause only minor modifications to this exponential behavior.

Considering now the limits where vE ̸= 0 and vesc ̸= ∞, the integral (3.41) can be evaluated over the velocity

distribution. Under the assumption that F 2(q) = 1, the differential recoil rate can be written as [211]:



88 Chapter 3: WIMP Signatures and Detections

dR

dER
=



0 if vesc + vE < vmin

R0·k0
E0·r·k

{√
πv0

4vE

[
erf( vmin+vE

v0
)− erf( vmin−vE

v0
)
]
− e−v2

esc/v
2
0

}
if 0 < vmin < vesc − vE

R0·k0
E0·r·k

{√
πv0

4vE

[
erf( vesc

v0
)− erf( vmin−vE

v0
)
]
− vesc+vE−vmin

2vE
e−v2

esc/v
2
0

}
if vesc − vE < vmin < vesc + vE ,

(3.43)

3.4 Indirect Detection

WIMPs can also be detected indirectly, by observation of their annihilation products in the atmosphere. These

WIMP-annihilation signatures can be observed in regions of high dark matter density. WIMP-annihilation rates

scale as the square of the WIMP number density, i.e

Γχχ→X ∼ ρ2χ (3.44)

so the most luminous sources are expected to be near the Galactic center or the center of dark matter sub-halos,

where the dark matter density peaks, characterized by a radius Rc, called the halo galactocentric radius. In

addition, the Sun and Earth capture WIMPs and may be seen as sources of WIMP annihilation [218, 219, 220,

Figure 3.3: Plot showing schematically how contributions to the differential rate dR/dER for different
values of the initial WIMP energy Ei add. The total differential rate dR/dER of WIMPs with initial
energy Ei is defined to be dR(Ei). For a WIMP initial energy Ei, the recoil energy ER is uniformly
distributed between 0 to Eir, so dR(Ei) contributes equally to the rates of all recoils between 0 to
Ei · r, as depicted by the shaded area in the figure. The contribution to the differential rate at a given
recoil energy (the height of the shaded area in the figure) is simply the area divided by the length, or
dR(Ei)/(Eir). The total differential rate can then be found by summing all the boxes. Figure from
[239].
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Figure 3.4: WIMP differential rate as function of recoil energy (in keV) plotted for different target
material and different WIMP masses (Mχ) from 10 GeV/c2 to 500 TeV/c2. The most probable WIMP
velocity used in these plots is v0=220 km/s and the galactic escape velocity is the most recent value of
vesc = 545 km/s (as recommended by RAVE survey). The spectra of low-mass WIMPs are softer and
they have a cut off at lower energy due to the finite Galactic escape velocity. The spectra of WIMPs
heavier than the target nucleus are nearly identical; their rate is 10 times larger for a 100 GeV/c2 WIMP
than for a 1 TeV/c2 WIMP. High-mass spectra deviate from straight lines due to non-unity form factor
F2. Due to the soft spectra for lower mass WIMPs, these WIMPs produce recoils that are difficult to
observe. High-mass WIMPs produces recoils that are easier to detect and have cutoff energies so high
as to usually be negligible. The cutoff energy, however, is significant for low-mass WIMPs as it can be
noticed in this plot. Experiments will have no sensitivity at all to WIMPs of low enough masses due to
the cutoff. Caution should be exerted when drawing conclusions that may be sensitive to the the number
of WIMPs with velocities at or near the assumed cutoff energy.

221, 222]. In most cases, the annihilation rate is sensitive to the dark matter’s phase space structure. The pair

annihilation of weakly interacting massive particles (WIMPs) in the halo is predicted to be an important source

of non-thermal particles, including a significant fraction as photons covering a broad multiwavelength spectrum

of emission (Bergstrom 2000; Colafrancesco et al. 2006). Despite the fact that galaxy clusters are located at much

further distances than the dwarf spheroidal galaxies around the Milky Way, the higher annihilation luminosity

of clusters make them comparably good targets for indirect detection of dark matter.

The total annihilation cross section required to produce the WIMP relic density is well known, although highly

model-dependent. To calculate the expected rates, the model requires some astrophysical assumptions. These

astrophysical assumptions need to be clearly made for parameters that are not well known experimentally. One

of these assumptions is the shape of galactic dark matter halo profiles and their clumpiness which can lead to vast

differences in WIMP-density assumptions which can as well lead to orders of magnitude in uncertainty on expected

rates of annihilation products. Furthermore, if we assume that there exist a WIMP density sufficient to cause

a detectable annihilation signal, one difficulty which arises more often is the possibility of unknown rates of the
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astrophysical background processes which are not associated with dark matter. Therefore, it is difficult to know

with certainty that an indirect signal is truly due to WIMP annihilations if one is not able to clearly identify and

quantity contributions arising from astrophysical backgrounds. As a result, although an incontrovertible indirect

dark-matter signal has still to be uncovered, data from indirect measurements have caused great excitement and

controversy within the community. The detectable products of WIMP annihilation depend on several factors: if

the WIMP source is too far away, the solid angle subtended by the flux of annihilation products will be too small

to be detectable above backgrounds, so nearby sources for which the WIMP density is expected to be large offer

the best chance.

In general, indirect dark matter searches seek to detect dark matter annihilation products in anti-matter,

gamma rays, neutrinos, etc. The viable place to look for these annihilation products is the galactic center,

the Milky way halo, individual dark matter substructures, satellite galaxies, Earth and the Sun. Below in this

section, I provide a brief review of the theoretical considerations and then I will briefly describe the experimental

signatures of a few of the common indirect search techniques up to date in the field.

3.4.1 Gamma Ray Flux

The flux of gamma rays from WIMP dark matter annihilation in clusters of galaxies is possibly large enough

to be detected by current γ-ray telescopes. Also standard astrophysical scenarios have been proposed for γ-ray

emission, in particular, collisions of intergalactic cosmic rays and target nuclei from the intracluster medium.

Despite these predictions, no significant γ-ray emission has been observed in local clusters by indirect WIMP

search experiments such as High Energy Stereoscopic System (H.E.S.S). The expected energy-differential gamma

ray flux from dark matter annihilations at an observation direction θ with respect to the galactic center is given

by the following equation:

dΦγ(Eγ ,∆Ω)

dEγ
=

⟨σv⟩
8πM2

χ

dNγ

dEγ
× J(∆Ω)dΩ (3.45)

where ⟨σv⟩ is the velocity-weighted annihilation cross-section, Mχ the mass of the dark matter particle and
dNγ

dEγ

the gamma (photon) spectrum per annihilation. The factor J(∆Ω) defined by

J(∆Ω) =
1

∆Ω

∫
(Ω)

dΩ

∫
los

dlρ2(r(l)) (3.46)

reflects the dark matter density distribution inside the observing cone subtended by a solid angle ∆Ω. The

annihilation luminosity scales with the squared dark matter density ρ2, which is conveniently parameterized

as a function of the radial distance r from the center of the astrophysical object under consideration. This

luminosity is integrated along the line of sight and within an angular region ∆Ω, whose optimal value depends

on the dark matter profile of the target and the angular resolution of the instrument. If dark matter particles

produce annihilation to charged final states, internal bremsstrahlung processes can contribute significantly to the

high-energy end of the gamma ray spectrum. This effect of the continuous spectrum of secondary gamma rays
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(from pion decay for example) has to be added to the total spectrum. The magnitude of this effect depends on

the intrinsic properties of the dark matter particle.

Figure 3.5: gamma spectra for 1 TeV dark matter particles self-annihilating in different channels. Spectra
from dark matter annihilating purely into bb (dot-dashed line, quarks), τ+τ−. (black solid line) and
W+W− (long-dashed dotted line) are shown. The latter shows the effect of Internal Bremsstrahlung

(IB) occurring for the W+W− channel. The γ-ray spectrum from the annihilation of B̃(1) hyper gauge
boson pairs arising in Kaluza-Klein (KK) models with universal extra dimensions is also plotted (dotted
line). The long dashed line show the photon spectra from final-state radiation (FSR) and the inverse
Compton (IC) scattering contribution in the case of dark matter particles annihilating into muon pairs.
Figure taken from [252].

3.4.2 Proton - Antiproton Flux

Proton, antiprotons and positrons are a small but not negligible components of the cosmic radiation. They are

(can be) produced in the interactions between cosmic-ray nuclei and interstellar matter. Detailed measurements

of the cosmic-ray antiproton energy spectrum therefore provide important information concerning the origin

and propagation of cosmic-rays. Exotic sources of primary antiprotons such as the annihilation of dark matter

particles [254, 255, 256] and the evaporation of primordial black holes [257, 258] can also be probed. The energy

spectrum of secondary antiprotons has a distinct peak around 2 GeV and rapidly decreases towards lower energies

due to the kinematic constraints on the antiproton production. At higher energies the spectrum is slightly steeper

than that of the parent protons [259], which results in a slight decrease of the antiproton-to-proton flux ratio.

The antiproton flux is given by

Φp(E) =< σv >
∑
f

dNf

dE
Bf

ρ2χ
M2

χ

Cprop(E) (3.47)
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where Cprop(E) is a term taking into account the physics related to the antiproton propagation. Figure (3.6)

shows the antiproton energy spectrum and Figure (3.7) shows the antiproton-to proton flux ratio measured

by PAMELA along with other recent experimental data [254, 256] and theoretical calculations assuming pure

secondary production of antiprotons during the propagation of cosmic rays in the galaxy. The curves were

calculated for solar minimum, which is appropriate for the PAMELA data taking period, using the force field

approximation [267, 268, 269].

Figure 3.6: The antiproton energy spectrum compared with contemporary measurements and theoretical
calculations for a pure secondary production of antiprotons during the propagation of cosmic rays in the
galaxy [261, 262]. The dotted and dashed lines indicate the upper and lower limits calculated by Donato et
al. [263] for different diffusion models, including uncertainties on propagation parameters and antiproton
production cross-sections, respectively. The solid line shows the calculation by Ptuskin et al. [264] for
the case of a Plain Diffusion model. Figure taken from [253].

3.4.3 Neutrinos Capture in the Sun and Muon Neutrino Flux

WIMPs can be gravitationally trapped inside the Sun and Earth, if their final WIMP states have velocities below

the escape velocity. The annihilation rates in the Sun and Earth have been estimated using the Standard Halo

Model (SHM), which is modelled as a smooth, spherically symmetric density component with a gaussian velocity

distribution. However, some recent simulations show deviations from the standard due to density fluctuations on

scales of the order of ∼ 100 pc scales, density fluctuations due to the presence of substructure which comprise

a ∼ 0.5% variation of the mass of the solar circle leading to a small deviation of the velocity distribution from

gaussian [270, 271]. The indirect detection signal from the Earth and Sun rarely deviate significantly from the

SHM prediction because the annihilation rate is sensitive to the phase space density averaged over long timescales.

As a result, indirect detection by annihilation in the Earth and Sun is only sensitive to the local dark matter.

WIMP annihilation produces a wide range of final state products, of which the produced muon neutrinos

can escape and reach terrestrial detectors. On Earth, these muon neutrinos produce muons in charged current
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Figure 3.7: The antiproton-to-proton flux ratio compared with contemporary measurements and theo-
retical calculations for a pure secondary production of antiprotons during the propagation of cosmic rays
in the galaxy [261, 265]. The dashed lines show the upper and lower limits calculated by Simon et al.
[259] for the Leaky Box Model, while the dotted lines show the limits from Donato et al. [266] for a
Diffusion Reacceleration with Convection model. The solid line shows the calculation by Ptuskin et al.
[264] for the case of a Plain Diffusion model. Figure taken from [253].

interactions with nuclei: νµ + N → µ− + X. Muons produced can be detected by their Cerenkov radiation in

large water or ice-based neutrino telescopes. So far, neutrino telescopes have found no evidence for high-energy

neutrinos of astrophysical origin above the detected atmospheric neutrino background. The most sensitive bounds

on high-energy neutrinos from the Sun and Earth come from Super-Kamiokande [272], AMANDA [273] and

IceCube [274].

Figure 3.8: Illustration of neutrino capture in the sun and neutrino production from the sun and propa-
gation in the atmosphere to the earth where it can be detected. During neutrino propagation from the
production point to the detection point, another phenomenon normally occur, called neutrino oscillation
which allows a given flavor of neutrino to transform into another flavor.

Defining the velocity distribution f(u) such that
∫
f(u)d3u = ρ/Mχ, the capture rate dCx

dV
from a nuclear

species x per unit volume shell is usually defined by [275]:
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dCx

dV
=

∫ umax

0

du

∫
dΩζf(u)uζ

2σxnx (3.48)

where σx and nx are the cross section and the density of the species under consideration respectively, and ζ is

the shell velocity which is related to the velocity at infinity u and the escape velocity vesc by the relationship

ζ =
√
u2 + v2esc. Since u, as physical observable, cannot possibly be infinity, the upper limit is usually used; it

is given by: umax = 2

√
Mχ·mx

Mχ−mx
vesc, where mx is the mass of the nuclear species x, [276]. The rate at which

neutrinos annihilate however can be estimated using the Boltzman equation which is given by:

dΓA

dV
=< σAv >0 n2

χ (3.49)

where < σAv >0 is the velocity averaged annihilation cross section in the limit of non-relativistic velocities, and

nχ is the number density of WIMPs in the body. If WIMPs quickly thermalize with nuclei in the body once

captured, the number density of WIMPs in that body can be described by

nχ(t, x) = Nχ(t)ñχ(t, x) (3.50)

with
∫
ñχd

3x = 1, and the number Nχ(t) of WIMPs in the body is given by the solution to Nx(t)
dt

= C − 2ΓA,

where the total capture rate is C =
∑

i Ci [277, 278]. The factor of 2 in equation (3.50) reflects the fact that

two WIMPs destroy each other for self-annihilating particles. Assuming that the total capture rate C is constant

with time, the annihilation rate is given by:

Nx(t) =
C

2
tanh2(t/τ) (3.51)

with τ , the integration constant given by:

τ =

(
2C < σv >0

∫
d3xñ2

χ(x)

)1/2

(3.52)

Physically speaking, the integration constant τ is the time scale required to reach equilibrium between capture

and annihilation, I should then write τ = τeq; saturation is reached when t/τeq ≪ 1. For spin-independent

interactions for example, the capture rate is 9 to 10 times greater for the Sun than for the Earth, while CA is

about three orders of magnitude smaller, implying that the equilibrium timescale is orders of magnitude shorter

in the Sun than in the Earth [277].

Muon neutrinos produced in the sun travel almost at the speed of light and reach the earth with a flux given

by:

Φνmu
⊙ (E) =

Γ

4πd2

∑
f

dNf

dE
e−E/E0 (3.53)

where E0 = 150 GeV, d is the distance between the sun and the earth, f is the decay channel, dNf/dE is the
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corresponding energy spectrum and e−E/E0 is the depletion factor of the spectrum caused by scattering with the

solar medium [276].

3.4.4 WIMPs Production at Particles Colliders

If WIMPs are really part of the physics beyond standard model of particle physics such as supersymmetry or other

proposed extensions of the Standard Model, then they might be within the reach of collider physics, such as the

Large Hadron Collider (LHC) at CERN, in the next few years or within the reach of the proposed International

Linear Collider (ILC) [244].

Although the attempts to produce and detect new particles that lie outside the Standard Model of particle

physics have grown into a colossal, multi-national effort, the technique is generally quite simple. Particles such as

electrons and protons (and their antiparticles) are accelerated to near the speed of light (β = 0.95 or even more)

and smashed together. If the center-of-mass energy of the collision is sufficiently large, the particles will scatter

inelastically, converting a fraction of the initial-state momentum into the rest masses of heavier particles. In the

case of particle colliders, the collision points are surrounded by highly segmented detectors capable of tracking

the electrically charged collision products. Large magnetic fields applied near the collision point cause charged

particles to leave curved tracks, allowing identification of their masses and other properties such as their charge

by examining their curvature in the presence of the magnetic field. Calorimeters are usually interspersed with the

trackers to detect photons and neutral hadrons (e.g., light mesons such as the π0, η and ρ). The heaviest particles

tend to be the most transient, typically decaying (almost immediately) to lighter particles whose tracks must be

reconstructed in order to deduce the properties of the parent. Modern particle detectors are designed specifically

to track heavy particles that might travel only a few millimeters from the collision point before decaying, while

also tracking longer lived decay products that might travel many meters. Minimum ionizing particles such as

muons, in particular, can penetrate many kilometers through dense materials. Muons are the primary reason for

the tremendous size of modern detectors.

Several of the Standard Model’s fundamental particles were detected in the laboratory using the method

described above (for example, the weak boson force carriers Z and W±, and third-generation of quarks (top and

bottom)). With the advancement in particle-acceleration technology over the last several decades, larger center-

of-mass energies have become available for the production of heavier and heavier states, a direct consequence of

Einstein’s famous formula E = mc2. To push collision energies to ever higher levels in the pursuit of new, heavy

states is often referred to as the energy frontier. Although center-of-mass energies at the level of TeV are now

possible, no particles with masses greater than the top quark have yet been discovered (mt = 172 GeV/c2) [246].

In collider experiments, the evidence for WIMPs would come though the observation of missing energy and

momentum in particle collisions, because their scattering cross sections are too small to be directly detected.

This signal is easily reconstructed in linear lepton colliders through various decay channels where the collision

energy and momentum are precisely known. It is much harder in hadron colliders where the collisions are those of
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Figure 3.9: CMS cross-sectional schematic view (right) of the Compact Muon Solenoid (CMS) detector
at the Large Hadron Collider (LHC). The collision point for the Large Hadron Collider’s twin proton
beams is surrounded (from left to right of the same right plot) by a silicon tracker, an electromagnetic
calorimeter (ECAL), a hadronic calorimeter (HCAL), a superconducting solenoid that generates a 4T
magnetic field within the silicon tracker (perpendicular to the plane of the page), and a series of muon
chambers interspersed with iron slabs that act as the return yoke for the magnetic field. A variety of
particle interactions are depicted, demonstrating the intended utility for each detector segment. However,
particles such neutralinos (or WIMPs denoted by χ) would escape the detector without interacting with
any of the detector elements. The left panel show the view of the whole detectors as it is disassembled.
Figures taken and adapted from [245].

composite particles and the exact longitudinal energy and momenta of individual quarks are not known. Thus, at

hadron colliders, the properties of new particles with small interaction cross sections must be inferred statistically

from the missing transverse momentum of a large number of collisions. Many Standard-Model extensions predict

new colored particles with mass similar to what is expected for WIMPs. Such particles would be produced in

abundance at the LHC if their mass is below ∼ 2 TeV/c2 [245]. These would decay to leats stable particles or LSPs

(potentially WIMP dark matter) and partons (i.e. quarks and gluons), producing a characteristic signature of

hard jets and missing transverse momentum. Different model-dependent limits have been set by various colliders

[247].

The most probable neutralino production channels at the LHC are indirect, i.e neutralinos which are created

through the production and subsequent decay of heavier, colored sparticles (such as quarks superparteners, for

instance squark-squark, squark-gluino and gluino-gluino pair production are some of these colored particles). If

R-parity is conserved, each sparticle created will eventually decay into an LSP. Assuming the neutralino is the

LSP, pair produced squarks and gluinos will decay into a pair of neutralinos as well as some number of quarks and

gluons. The colored particles immediately pull other colored particles out of the vacuum so as to create color-

neutral hadrons, a violent process that results in hadronic-particle jets. The event signature is therefore two or

more jets and missing energy. Furthermore, since the jets are decay products of presumably heavy sparticles, the

total jet energy is expected to be (on average) larger than for SM backgrounds [226, 227, 228].

For the CMSSM, the constraint on the neutralino mass is set using model-dependent limits obtained by

various experiments as shown in Figure (3.10). However, without a gaugino mass unification assumption, this

limit does not apply. Searches for charginos and neutralinos with D0 and CDF at the Tevatron have excluded

some parameter space in the CMSSM with ∼ 4.98 fb−1 of integrated luminosity, without the observation of
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Figure 3.10: Mass limit of the SUSY lightest stable particle (LEP or neutralino χ) as function the cMSSM
parameter tanβ, from searches at LEP for charginos, sleptons, and neutral Higgs bosons. It’s worth to
note that tanβ = v1

v2
, with v1 and v2 are the vacuum expectation value (vev) of the the Higgs doublet

field. The green hatched region is excluded by a combination of constraints from different channels
marked by the various colored solid lines. Figure taken from [247].

events above background [248, 249]. Current constraints on CMSSM in the m1/2 vs m0 plane from CMS with ∼

35 fb−1 of integrated luminosity are shown in Figure (3.10), no significant evidence for SUSY or WIMPs is seen

yet.

One of the major difficulties at colliders has to do with production rates. Heavy particles near the energy

frontier are not created as often as collections of lighter particles. Despite TeV-scale collision energies, the majority

of the tracks recorded at colliders are due to well known standard model particles, called SM backgrounds.

Consequently, to increase the likelihood of creating a heavy state, colliders experiments must operate at high

luminosityas many particle collisions per second as can be managedwhich in turn requires advanced hardware

and software capable of handling large data rates. Detection of WIMPs at a collider is complicated by their

long lifetimes and weak-scale interaction rates. As indicated in Figure (3.9), for instance, if a neutralino were

produced in a collision it would escape the detector without depositing energy in any of the detector elements.

Fortunately, since neutrinos behave in the same manner, a method for searching for missing energy has been

developed specifically to search for long-lived and/or or stable particles capable of escaping direct detection. In

the case of neutralino production, if R-parity is conserved, at least two neutralinos will escape and at least 2mc2

of the initial-state energy will be missing in the whole particle energies detected. One must exercise caution

to avoid confusion with missing energy due to neutrinos. Normally events with lepton tracks are commonly

excluded from neutralino searches because they are often the result of weak decays with final-state neutrinos.

Further complication arises when attempting to detect light neutralinos since each detector element has a finite

energy resolution. When the corresponding energy variances are summed over all of an event’s detectable decay
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Figure 3.11: CMS constraints on cMSSM parameter m1/2 as function of m0 for tanβ = 3, A0 = 0 and
sign(µ) > 0. The exclusion region, below the red curve, in the cMSSM corresponds to the observed
upper limits on the number of events from NP. The central observed curve, which includes experimental
uncertainties, is obtained using high pT leptons with HT > 450 GeV and Emiss

T > 120 GeV. The hatched
region corresponds to the theoretical uncertainties on the cross section, whereas the shaded region shows
the experimental errors with ±1σ variation. Figure taken from [236].

products, they can conspire to produce an under-measurement that mimics missing energy. With the energies

available at modern facilities like the LHC, mis-measuring a few hundred GeV is difficult. Despite this fact,

finite-resolution effects can easily lead to a false missing energy of several GeV [229, 230, 231].

Several event selections are applied in these analysis, but one of the most important event selection employs

a variable called αT that has been shown to be an effective discriminator against the SM multi-jet background

in searches for SUSY [224, 225]. The discriminator αT is most easily understood in the context of di-jet events

[232, 233], in which there are exactly two jets:

αT = Ej2
T /MT (3.54)

where Ej2
T is the transverse energy of the least energetic of the two jets, and MT is the transverse mass of the

di-jet event [223]. For perfectly back-to-back di-jet events with perfectly measured jet energies, αT = 0.5. Mis-

measured jet energies will tend to yield αT < 0.5. while events with true missing energy can have αT > 0.5. For

events with more than two jets, two pseudo-jets are formed by clustering the jets into two groups such that the

difference between the pseudo-jets transverse energies is minimized [234, 235, 236].
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Figure 3.12: CMS constraints on cMSSM in the m1/2 vs m0 plane for tanβ = 3, A0 = 0 and sign(µ);
colored regions indicate the parameters space already ruled out by other experiments. CMS’s measured
exclusion contours at 95% CL are plotted in dot-dashed green and solid red for leading-order and next-
to-leading-order cross sections obtained from simulation. The dashed blue curve indicates the expected
limit. Area below the curves is excluded. Also plotted are contours of constant squark and gluino masses.
This analysis was carried out with the data taken with an integrated luminosity of 35 pb−1 and total
center of mass energy of 7 TeV. Figure taken from [50].

3.4.5 Theoretical Considerations for Indirect Detections

WIMPs indirect techniques are based on the measurements of the annihilation products. Two WIMPs colliding

could annihilate to produce gamma rays or particle-antiparticle pairs. This could produce a significant number

of gamma rays, antiprotons or positrons in the galactic halo. The detection of such a signal is not a conclusive

evidence for dark matter, as the production of gamma rays from other sources are not fully understood [250, 251].

However, tremendous efforts have been made and continue to be made in understanding the flux produced by

many products that results from WIMPs-annihilation. Below, I am going to cover the theoretical ground of some

of them, although I do not intend to cover extensively these topics in this dissertation. Readers will be referred

to indicated publications for more technical details which are certainly overlooked in my descriptions below.

3.5 Indirect Detection Experimental Signatures

As introduced in the section (3.4), WIMPs can be searched indirectly by measuring their annihilation products.

The final decay products can be antimatter (such positron e+and anti-proton p̄), gamma radiation, neutrinos, etc.

Experimental groups such as PAMELA and Fermi-LAT searches for cosmic sources of WIMP events (antimatter,

gamma rays radiation, etc.) whereas the experiment such as IceCube seek to detect high energy neutrino mainly

produced in the Sun. Below, I am going to briefly discuss three of these experiment. For details, I refer the

reader to the references given hereafter and references therein.
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3.5.1 PAMELA

The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) experiment is a space-

born experiment launched in 2006 onboard a 6 foot satellite. PAMELA is an indirect dark matter experiment

which seeks to measure anti-protons p̄ (proton anti-particle). PAMELA experiment has detected a larger number

of positrons than expected. These extra positrons could be produced by dark matter annihilation, but may also

come from pulsars. No excess of anti-protons has been observed [279, 280].

Experimental Setup and Description

The principal components of the PAMELA detector comprised a Time of Flight system(TOF), scintillator (3×2),

a Spectrometer, a magnet and a tracking system, the neutron detector and the calorimeter.

1. The Time-of-Flight The time of flight System triggers the measurements based on a defined trigger logic

hard coded and implemented with the data acquisition system, it also detects ionization dE/dx produced

by charged particles flying through the detector and gives a rough estimate of the particle’s direction.

2. Spectrometer The spectrometer measures the rigidity parameter (momentum/charge) and deflection of

incoming particles. Charged particles are deflected by the presence of a magnet

3. The magnet The PAMELA detector contains a 0.43 T permanent magnet and a tracking system of 6

evenly spaced silicon detectors. The permanent magnet is required to distinguish between the tracks of

protons and anti-protons.

4. The tracking system The tracking system, together with the time of flight system, measures ionization

losses and infers the absolute charge (Z). The charge of particles is well determined by the PAMELA

detector at least up to Z = 8 (Oxygen).

5. Neutron detector The neutron detector comprises 36 proportional counters made of 3He arranged in two

layers and surrounded by a polyethylene moderator (of 9 cm thick). The polyethylene moderator is used

as neutron stopper by continuously reducing the neutron speed until it eventually stops.

6. Calorimeter The calorimeter has the role to select the positron e+ and the antiproton p̄ from the proton

and electron background. Designed as 16.3 radiation lengths deep, the calorimeter completely contains the

electromagnetic (EM) shower of an e± whereas the proton will cause a hadronic shower, where hadronisation

products like neutrons may leave the calorimeter and enabling PAMELA to distinguish between e+ and p

or e− and p̄.

PAMELA backgrounds are classified into two types: the spillover and misidentification of like-charged par-

ticles. The spillover such as proton in antiproton sample or positron in electron sample, is due to to incorrect

determination of charge’s sign, however they can be eliminated by imposing strict selection criteria on quality

of the fitted tracks. Misidentification of like-charged particles are backgrounds caused by electrons in antipro-
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Figure 3.13: Schematic overview of the PAMELA apparatus. The detector is approximately 1.3m high,
has a mass of 470 kg and an average power consumption of 355W. A WIMP particle will zip through this
detector in a straight line trajectory without interacting, however charged particles, such as electrons,
protons and their antiparticles will deposit energy in the PAMELA calorimeter due to ionization energy
losses (dE/dx). Further, the 0.43T magnet creates a magnetic field (lines inside the spectrometer cavity
and oriented along the y-direction) sufficient enough to deflect these particles, giving PAMELA the
ability to distinguish a positively charged and negatively charged particle. PAMELA’s ability to identify
the aforementioned particles allowing the experiment to measure antiproton-to-proton faction. Figure
taken from [280].

ton samples or positrons in proton samples. Due to electron-hadron separation performance since leptons cause

electromagnetic showers in the calorimeter, positrons in antiproton samples can be identified with high accuracy

From PAMELA results, it has been noticed that the p̄/p ratio agrees with models, however the e+/(e−+e+)-

ratio does not agree with models, but rather increases with energy. Many possible explanations have been found

to explain PAMELA’s results, among them one often evokes pulsars which produce the e+ excess. The other

explanation is that the increase in the e+/(e− + e+)-ratio is due to WIMP annihilation. If this is true, then the

PAMELA excess of the e+/(e− + e+)-ratio is an uncontroversial hint of the observation (existence) of WIMPs

by an indirect detection [279, 280].

3.5.2 Fermi Large Area Telescope (LAT)

Fermi Large Area Telescope (LAT) is a satellite-borne gamma-ray detector launched on 2008. The Large Area

Telescope (LAT) is the main instrument on board and the satellite also hosts a Gamma-ray Burst Monitor
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Figure 3.14: e+/(e+ + e−) and p̄/p ratio obtained by PAMELA. The plot of the left show the positron
fraction measured by the PAMELA experiment compared with other recent experimental data (references
[35]−[43] of [280]). On right is shown the PAMELA antiproton-to-proton flux ratio compared with
previous measurements (references [27]−[33] of [280]). Figure adapted from [280].

(GBM). The LAT is a modular, consisting of a 4×4 array of identical towers. Each 40×40 cm2 tower is composed

of a tracker, a calorimeter, and a data acquisition module. The tracker array is covered by a segmented anti-

coincidence shield (ACD). The tracking detector consists of 18 2D layers of silicon strip detectors interleaved with

16 layers of tungsten foils. Each calorimeter module has 96 CsI(Tl) crystals, arranged in an 8 layer hodoscopic

configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information

about the energy deposition pattern. The calorimeter’s depth and segmentation enable the high-energy reach

of the LAT and contribute significantly to background rejection. The ACD is the LAT’s first line of defense

against the charged cosmic ray background. It consists of 89 different size plastic scintillator tiles and 9 ribbons

with wave-length shifting fiber readout. The segmentation is necessary to suppress self-veto effects caused by

secondary particles emanating from the calorimeter showers of high energy gamma-rays.

Fermi LAT faces one major difficulty in their experiment. Their goal is to measure high energy gamma rays,

however highly energetic gamma rays cannot be deflected (reflected or refracted) in the presence of the electric

field. To overcome this obstacle, the solution is to turn gammas into an e− − e+ pair by letting the gamma-ray

to pass through the tracker until it hits one of the conversion foils, where it produces an e− − e+ pairs. The

e− − e+ will cause electromagnetic showers inside the calorimeter and deposit energy by ionization energy loss

dE/dx [281, 282, 283, 284].

3.5.3 IceCube

Relic neutralinos in the galactic halo may become gravitationally trapped in the Sun and accumulate in its

center, where they can annihilate each other, producing standard model particles. These particles may decay,

creating neutrinos which can escape and reach the Earth. The IceCube detector records Cherenkov light in the ice
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Figure 3.15: Schematic diagram of the Large Area Telescope. The telescope’s dimensions are 1.8 m ×
1.8 m × 0.72 m. The power required and the mass are 650 W and 2,789 kg, respectively. Figure from
[282].

Figure 3.16: Measurements of the IGRB by Fermi-LAT and EGRET, together with three types of
gamma-ray spectra induced by Dark Matter (DM). The overall normalization of the DM spectra are
given by assuming the MSII-Sub1 ∆2 model, and for this visualization the cross sections < σvi > =
5×10−25 cm3 s−1 (for bb̄ ), 1.2×10−23 cm3s−1 (µµ) and 2.5×10−26 cm3s−1 (γγ). The solid lines are with
the Gilmore et al. absorption model applied, and the dotted lines with the Stecker et al. absorption.
The plot also show the line spectra convoluted with the energy resolution of the Fermi-LAT experiment
(dashed line). The dotted line passing through the Fermi data points is a power law with the spectral
index of -2.41. Figures from [284].

from relativistic charged particles created in neutrino interactions [285]. Once cosmic (or atmospheric) neutrinos

reaches the ice, they interact weakly through deep inelastic scattering with the ice’s nucleons N via charged and

neutral current interactions:
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νL +N → L+X charged current

νL +N → νL +X neutral current

(3.55)

where L refers to leptons (electrons, muons and taus).

The detector consists of an array of 22 vertical strings with 60 Digital Optical Modules (DOMs) each, deployed

in the clear Antarctic ice at the South Pole at depths between 1450 m and 2450 m below the ice surface. The

vertical spacing between DOMs is 17 m and the horizontal distance between strings is 125 m. Each DOM consists

of a pressurized glass sphere containing a 25 cm photomultiplier tube (PMT) and a digitizer board. The PMT

waveforms are stored when nearest or next-to-nearest DOMs fire within 1 µs. The trigger selects time windows

when eight DOMs produce waveforms within 5 µs. The reconstructed first photon arrival times are used to

determine the muon direction. The background in the search for neutrinos from the sun comes from air showers

created by cosmic ray interactions in the atmosphere. The showers cause downward going atmospheric muon

events, triggering at several hundred of Hz, as well as atmospheric muon neutrino events triggered at a few

mHz. When the Sun is below the horizon, the neutrino signal can be distinguished from the atmospheric muon

background by selecting events with upward-going reconstructed muon tracks [285, 286, 287, 288].

Figure 3.17: IceCube Digital Optical Module (DOM) designed to optically detect neutrinos passing
through the IceCube detector. Figure from [285].

Many sources of visible muon traces exist. Secondary particles mostly originate from the interaction of cosmic

rays with the atmosphere such as secondary hadronic decays after interaction with the atmosphere from pions

π± and muons µ±:
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p+ p → π± +X , and

π± → µ± + ν±
µ

(3.56)

IceCube mainly detects three kinds of particles: (1) atmospheric muons which comprise a major part of the

background, (2) atmospheric neutrinos which represent another source of irreducible isotropic background, and

(3) signal neutrinos originating from sun or earth’s center which is exactly what IceCube is looking for.

Figure 3.18: Particles tracks in IceCube detector. µν produce µ, which typically have track-like sig-
natures, µe produce e, which immediately produces electromagnetic (EM) showers (or cascades) and
particles such as ντ produce τ , which typically produce two showers. Based the track linearity, IceCube
can select mainly events with muon neutrinos track-like. Figure from [285].

Figure 3.19: Shown on left is the cosine of the angle between the reconstructed track and the direction of
the Sun, Ψ, for data (squares) with one standard deviation error bars, and the atmospheric background
expectation from atmospheric muons and neutrinos (dashed line). A simulated signal is also shown (mχ10

= 1000 GeV, hard spectrum) scaled to µs = 6.8 events. The Upper limit at the 90% confidence level on
the muon flux from neutralino annihilations in the Sun for the soft (bb̄) and hard (W+W−) annihilation
channels, adjusted for systematic effects, as a function of neutralino mass is shown on the right plot.
The shaded area represents MSSM models not disfavored by direct searches. Figures from [284].
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Figure 3.20: Schematic of the IceCube detector. IceCube is a particle detector at the South Pole that
records the interactions of a nearly massless sub-atomic particle called the neutrino. IceCube searches
for neutrinos from astrophysical sources: events like exploding stars, gamma ray bursts, and other
phenomena (involving black holes and neutron stars). The IceCube telescope is a powerful tool for the
search of dark matter. Figure from [287].

3.6 Direct Search of Dark Matter

In a direct detection experiment, the reach potential of the experiment is mainly determined by the target material

which determines the detection channels of an interaction. In general, direct dark matter experiments measure

the nuclear recoils produced by a dark matter particle (WIMP) when scattering off the nuclei in the detector’s

target material. There exist various techniques that are exploited by different direct dark matter experiment,

however, to date there are three main technologies used in direct detection experiments: solid state detectors,

noble liquid detectors, and threshold (phase transition) detectors.

Direct detection experiments use event-by-event discrimination techniques to identify nuclear recoils from

WIMP interactions (or neutrons) which is buried in a far larger rate of electron recoils from radioactive decays

and cosmogenic processes. The discrimination is accomplished by measuring two or more distinct channels for

each event and taking their ratio as a particle identification parameter. The most common of such channels

are phonons or (heat, temperature change in the detector caused by the energy deposited by the interaction),

ionization (due to energy loss), and scintillation light (due to photo-emission). The choice of detection channels

carries tradeoffs in readout technology and experimental resolution. A sufficiently accurate discrimination can

reduce an experiment’s background rate enough, to maintain operation near the zero-background regime, even

at very large WIMP-search exposures.

Direct detection of WIMP interaction, as many rare event searches, requires an efficient discrimination be-
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Figure 3.21: Schematic of direct detection techniques. As shown, most of direct detection experiments
measure the phonons, ionization and the scintillation produced by the interacting particle with the
detector. The ratio of these quantities, when plotted against the recoil (ionization) energy can be used
as discriminator and so as a particle identification. Figure from Blas Cabrera’s talk at Princeton.

tween background interactions and event candidates. This implies having a rigorous control of the background

for any direct detection experiment, regardless of which detection technology it utilizes.

3.6.1 Backgrounds

A 60 GeV/c2− 100 GeV/c2 WIMP mass will normally produce a recoil energy of ∼ O(10) keV or less. In this low-

energy regime backgrounds from natural radioactivity and cosmic rays are dominant. Direct WIMP detection

experiments are thus low-background experiments, requiring superior protection from background events and

must possess the ability to identify a spectrum of ∼ O(10) keV nuclear recoils occurring at a very low rate.

For direct WIMP search experiment using a detector’s total target mass M (kg) and acquire data for a

livetime T (days), one defines the exposure as the product of the total target mass with the livetime; exposure

= MT (kg-days). For an exposure MT , the experiment will expect to observe B background events which are

indistinguishable from WIMP interactions. There are three general sensitivity classes in which the experiment

can be operated, depending on the observed (estimated) number of the expected background events B:

1. Background-free experiment: If the expected number of backgrounds B ≃ 0, then any observed event

candidates are evidence for WIMPs. However, if zero event candidate is observed, the experiment can set

a 90% confidence level Poisson upper limit on the WIMP interaction rate (or sensitivity) of R = N90(B)
MT

events per kilogram-day, and the experiment’s sensitivity improves as the exposure MT increases. N90(B)

is the 90% confidence level Poisson upper limit, defined by
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N90(B) =


2.3026 if B = 0

(B + 1.07)
[
1 + 1.28√

B+1.07

]
if B ̸= 0.

(3.57)

with the case B = ̸= 0 not being a Poisson definition, nonetheless, it is a good approximation.

2. Background subtraction: If the expected number of background B is non-negligible and if it can be well

characterized using the calibration data, and if the background energy spectrum can be well characterized

with negligible systematic errors, then one can subtract the background rate from the observed count rate.

In such a situation, the experiment is thus searching for an excess of events above the known background.

The accuracy of such a subtraction is limited by Poisson statistics giving an error on the subtraction of

σB =
√
B. As the exposure increases, the background also grows proportionally to the exposure, i.e.

B ≈ MT and thus σB ≈
√
MT . The number of excess candidate events needed to claim a detection scales

as σB , so the experiments sensitivity grows only as
√
MT .

3. Background limited: If the experiment has completely no control, little or no knowledge of its back-

grounds, and its systematic uncertainties on the expected backgrounds, then the experiment’s sensitivity

will ultimately be limited. The systematical errors on the background count generally grow in proportion to

B, while the statistical uncertainty will grow as
√
B. Such an experiment cannot distinguish WIMP event

candidates and the background, and therefore cannot claim detection since the background has a higher

excess of events on top of what cannot also be accounted with certainty as WIMP events. No increased

exposure will enhance the sensitivity of the experiment until improvements are made in background levels

or background rejection. For these reasons, it is most desirable for direct search experiments to operate as

close to the background-free regime as possible.

3.6.2 Direct detection technologies

Most of the direct dark matter searches measure one or two of the three physical quantities namely phonons,

ionizations and scintillation light produced by the interacting particle as pictorially shown in Figure (3.21). At

the time of the writing of this dissertation, there are three main technologies used in direct detection experiments:

solid state detectors, noble liquid detectors and threshold (phase transition) detectors.

1. Solid-state detectors

Solid-state detectors possess by far a superior energy resolution compared to any other detector technolo-

gies. This class of detectors also has a powerful discrimination against electron recoils. The Cryogenic Dark

Matter Search (CDMS) experiment is currently the leading experiment in this category. Below, I briefly

touch upon some of the direct dark matter experiment in this category. CDMS is excluded in this discussion

since the remaining chapters of this dissertation will completely be devoted to CDMS experiment.
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(a) DAMA/LIBRA

The DAMA/LIBRA collaboration employs an array of low-background NaI(Tl) scintillator crystals

at the Gran Sasso Laboratory in Italy. Interactions in the crystals are identified by their scintillation

light alone. The scintillation yield of a nuclear recoil is reduced compared to that of an electron recoil

of similar energy by a quenching factor QNa = 0.3 for Na recoils and QI = 0.009 for I recoils [289].

The approach used by DAMA/LIBRA collaboration is a bit different compared to what other direct

experiments are doing. Rather than achieving background rejection by measuring the nuclear recoils

produced by WIMPs when scattering off the nucleus, DAMA/LIBRA experiment rather searches for

a modulation signature, generally referred to as annual modulation.

The annual modulation is caused by the revolution of the Earth around the Sun as the solar system

tracks its path through the Milky Way. This leads to a modulation in the Earth’s velocity with respect

to the galactic frame and hence a detectable modulation of WIMP flux throughout the year. The

detection of modulation-based evidence of WIMPs typically requires a very large sample of WIMP

recoils, and extremely well characterized and stable backgrounds.

Based on the data collected over a period of 13 annual cycles, the DAMA/LIBRA collaboration

reports evidence of an annual modulation with a statistical significance of 8.9σ. The variation of

their rate is consistent with a sinusoid peaking at May 16± 7 days at energies between 2 and 4 keV,

May 22 ± 7 days between 2 and 5 keV, and May 26 ± 7 days between 2 and 6 keV, consistent with

that predicted for dark matter with a roughly Maxwellian velocity distribution.

Although DAMA/LIBRA’s strategy of looking for an annual modulation in their rate can be success-

fully used to separate a dark matter signal from many possible backgrounds, one might worry about

sources of background which could also exhibit seasonal variation. For example, the underground

muon flux is known to modulate as a result of temperature variations in the stratosphere (although

with a later phase and lower rate than is observed by DAMA/LIBRA [290]). Observed variations

in the radon-induced background rate are also out-of-phase with the signal reported by DAMA/LI-

BRA. To date, no background has been identified with a phase, spectrum and rate compatible with

DAMA/LIBRA’s signal [293, 294, 295].

(b) EDELWEIS

The EDELWEISS collaboration uses semiconductor crystals (germanium crystals) operated at cryo-

genic temperatures in the search for dark matter interactions. The detection channels are ionization

and phonon detection. The phonon detection is based on the measurement of the near-equilibrium

temperature change of the entire crystal substrate.

Currently the EDELWEISS collaboration is using a new detector technology which uses an interleaved

charge electrode design [293, 296, 297]. This new detector design allow the EDELWEISS collaboration

to demonstrate a powerful discrimination of the main background events in semi-conductor crystals.
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Figure 3.22: DAMA/LIBRA events rate in the 2−6 keV energy range. The solid curve over the data is
the best fit sinusoidal curve with a fixed phase and period to match the expected dark matter modulation
signal. Figure from [295].

This new technology is currently adopted by the CDMS collaboration (although they attempted to

develop such kind of detector in past [296], but never pursued it further) and it is certainly going to

become the leading technology in the ionization readout of solid-state detectors in future experiments.

(c) CREST

The CREST (CRESST-II) experiment (Cryogenic Rare Event Search with Superconducting Ther-

mometers) is located at LNGS in Italy. The experiment uses cryogenic detector modules which consist

of scintillating CaWO4 crystals operated as bolometers (sensitive to phonons) and a nearby but sep-

arate cryogenic light detector (a silicon wafer with a tungsten thermometer). Simultaneous detection

in both the phonon channel and the light channel (scintillation) allows for efficient discrimination

between electronic, α-particle and nuclear recoils, because of substantial differences in light yield. In

addition to this, the crystal together with the light detector are completely surrounded by scintillat-

ing and reflecting foil. This is critical for discrimination of 210Po decays, which occur on the inner

surface of the reflective housing or on the crystal surface. When the recoiling 206Pb enters the crystal,

potentially generating a WIMP−like background event, the escaping 5.3MeV α particle reaches the

foil and generates enough light to veto the event.

The CRESST detector is instrumented with two thermometers to detect the thermal phonon signal

and the scintillation light from a particle impact in the cryogenic substrate. The phonon signal is

measured directly as a temperature rise of the crystal, while the scintillation light is detected by

the temperature rise of a light-absorbing silicon wafer. CREST collaboration has set limits on the

spin-independent WIMP-nucleon cross section at the 5×10−43 cm2 level and is proceeding with a

larger experimental installation to improve their sensitivity to WIMP-nucleon interactions [299].

(d) CoGeNT

The CoGeNT Experiment has used a single, 440-gram, high-purity germanium crystal (HPG) cooled

to liquid nitrogen temperatures. The CoGeNT detector has the advantage of a very low energy

threshold (∼0.5 keV), which allows it to search for nuclear recoil events due to dark matter particles

of relatively low mass (>5 GeV/c2). In addition to a low-background configuration, the detector is
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capable of distinguishing and rejecting background events from the surface through measurement of

the risetime of the detector’s signals. The CoGeNT detector senses only ionization charge and places

limits on the mass and interaction cross-section of dark matter particles by excluding any candidate

mass and cross-section pair that would result in a signal above the background of the detector.

Recently the CoGeNT collaboration has developed a p-type point contact (PPC) germanium de-

tectors. PPCs display an unprecedented combination of target mass and reduced electronic noise,

resulting in an enhanced sensitivity to low-energy rare events with every promising applications in

astroparticle and neutrino physics expected from this technology [300].

2. Noble liquid/gas detectors

Liquid noble detectors are large tanks of liquified noble gases observed by photomultiplier tubes. Nobel

liquids are excellent scintillators, with light yields approaching that of NaI(Tl) and long attenuation lengths.

Noble liquid detectors (or noble gases) also have great promise for WIMP detection. They have the

advantage of relatively easy scaling to larger masses which is an important factor in a dark matter search.

However, these experiments must overcome significant challenges of maintaining discrimination to low

energies, which is difficult since there are relatively few light quanta (typically 5−10 phot-electron per

keV) collected. High purity levels (∼10−9 impurities) must be achieved in order to prevent absorption of

the scintillation light or attachment of drifting electrons. Another barrier to overcome is the irreducible

radioactive backgrounds such as 85Kr in Xe or especially 39Ar in liquid Ar (which produces 1 decay per

second per kg of natural Ar).

To date, there exist two types of noble detectors: single-phase (liquid), which detect only the primary

(S1) light signal, and dual-phase time-projection chambers (TPC), which employ a large electric field to

drift ionization electrons upwards out of the liquid and into a region where the noble is in its gas phase,

where electrons produce a large secondary (S2) light signal by electroluminescence that is proportional to

the amount of ionization. The ratio of the secondary light to the primary scintillation (S2/S1) provides

additional discrimination with typical background leakage 10−2 − 10−3 at 50% acceptance (see [239] and

references therein).

The relative high boiling point of liquid noble gases make the cryogenic requirements far simpler than

those needed for the phonon readout in cryogenic solid-state detectors. Nuclear and electron recoils are

distinguished in two distinct ways:

2.1. Nuclear and electron recoils produce a different amount of ionization and scintillation in the liquid.

The primary scintillation can be measured directly with phototubes, while the charge carriers can be drifted

and extracted into a gas volume where they cause secondary proportional scintillation. Such a dual-phase

detector thus observes two scintillation pulses for each interaction. The amplitudes of the two light signals

identify the energy and recoil type of each interaction, while the time delay between them can be used to

measure the event’s position along the drift axis.
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Figure 3.23: Left, is a diagram of the processes leading to primary scintillation (S1) light in a liquid noble
detector (Xe), and (if the detector is dual-phase) to secondary (S2) light proportional to the amount of
ionization. Recoils dissipate energy as atomic motion, excitation, and ionization. Both excitation and
ionization result in excited dimers, Xe∗2, in either a longer-lived triplet state or a shorter-lived singlet.
Particle interactions excite and ionize the target (Xe in this example, but Ar works exactly the same
way). Excited atoms Xe∗ combine with a neutral atom and form an excimer state Xe∗2 which decays
under the emission of scintillation light. If ionization electrons are not removed from the interaction site
(by an electric field in a TPC), they eventually recombine and also produce scintillation light. Therefore,
the light and the charge signal are anti-correlated. The right plot show the expected nuclear recoil
spectra from interactions of a 100 GeV/c2 WIMP with LXe and LAr, assuming a cross-section of σ =
10−43 cm2. The expected rate is higher in LXe at low energies, but the form factor suppressed at higher
energies, which is not the case for LAr. A low detection threshold is therefore necessary if LXe is used.
Experimentally achieved thresholds are indicated by the colored areas. Figure from [291].

Figure 3.24: The two detector concepts currently used for dark matter detectors based on liquid noble
gases. (Left) Single phase detectors are essentially a large volume of a noble liquid which is viewed by
many photosensors, usually PMTs, in order to detect the scintillation light S1. (Right) In a double phase
detector the S1 signal is also detected by photosensors, but the ionization charge signal is measured as
well since the detector is operated as a time projection chamber (TPC). An electric field across the target
volume removes the ionization electrons from the interaction site and drifts them towards the gas phase
on top of the liquid. The electrons are extracted into the gas and generate proportional scintillation light
S2, which is registered time-delayed by the drift time. Figure from [291].
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2.2. The pulse shape of the primary scintillation signal can be used as a basis of discrimination between

electron and nuclear recoils. Each noble liquid has two scintillation time constants (τ1 and τ3), correspond-

ing to the de-excitation of singlet and triplet excimer states. Nuclear recoils populate the singlet state

preferentially. Since τ1 < 3τ3, the tail of the primary scintillation pulse can be used as a discriminator if

the time difference between τ1 and τ3 is large enough to be recognized by the readout channel. In addition

the pulse shape has to be well reconstructed even at low energies, thus requiring a reasonable number

of primary scintillation photons at the experiment recoil energy threshold [291]. Below are some of the

current dark matter experiments using noble liquid/gas technology:

(a) Dark matter experiments using liquid Xe

Liquid xenon is one of the most most promising of the noble liquid targets. It possess the largest

light yield, no long lived radioisotopes and the scintillation light does not require a wavelength-shift

in order to be detected. Due to its large atomic mass, a Xe target give a large cross section for

spin-independent interactions. Dark matter searches with liquid Xe is not well suited for pulse shape

discrimination, due to its extremely short scintillation times (τ1 = 2.2 ns and τ3 = 21 ns).

Nowadays, there are two direct dark matter experiments using a Xe target in a dual-phase detector:

XENON10 [301] and the ZEPLIN [302] collaborations. XENON10 experiment employs a 15-kg de-

tector (they have observed 10 candidate events which were all consistent with backgrounds in a 136

kg-day exposure [301]). The ZEPLIN experiment however uses a 12 kg detector (and had reported 7

candidate events also consistent with backgrounds in a 127.8 kg-day exposure [302]).

To increase their sensitivity to WIMP-nucleon interactions, several other experiments are scaling up

the mass of their target material [304]). LUX experiment, located at the 4850 ft of the Homestake

mine, makes use of an active water shield as part of the new design to help neutron rejection, however

they still use the same detector technology as the XENON100 experiment. The XMASS collaboration

is another dark matter experiment that uses liquid Xe as target material. They have built an 800

kg single-phase detector, focusing on the self-shielding and good position reconstruction to eliminate

backgrounds [305].

The XENON collaboration is already working on the next phase, XENON1T, which aims to explore

cross sections down to 2×10−47 cm2 by 2017, after two years of data taking with a TPC of 1 ton LXe

fiducial mass. XENON1T will be also installed at LNGS, inside a water shield of ∼10 m diameter

which is operated as a Cherenkov muon veto and will suppress ambient gamma radiation and neutrons

similar to the LUX experiment.

(b) Dark matter experiments using liquid Argon

Among these experiments, we have:

DEAP-3600 is a large a single-phase detector using 3.6 tons of LAr, with about 1000 kg being used

as WIMP target. The LAr will be contained inside an acrylic vessel installed in a cryostat which
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itself is inside a water shield. Construction of the experiment is ongoing at SNOLAB (Canada) and

the first filling is expected around the end of 2013. The science goal is to reach the 10−46 cm2 level

after 3 years of operation. The large light collection in the single-phase setup will allow for a very

good rejection of electronic recoil background via pulse-shape discrimination. A small prototype, the

MiniCLEAN, experiment is currently installed right next to DEAP-3600, with 150 kg LAr fiducial

mass (500 kg total). The experiment is designed such that it can also be operated with liquid neon

(LNe). Initially, this has been proposed in order to detect low energy neutrinos from the sun and

from supernovae. MiniCLEAN is expected to run from end of 2012 to early 2013 [306, 307, 308].

ArDM is a double-phase LAr detector which has been installed and commissioned at CERN and is

currently being moved underground to the Canfranc laboratory (Spain). ArDM uses a large target

mass of 850 kg of LAr in a TPC of 120 cm height and 80 cm diameter. The collaboration has developed

novel ways to deal with the technical challenges of multi-ton LAr/LXe detectors. The high voltage

to bias the TPC is generated next to the field cage in a Greinacher circuit and ArDM’s final goal

is to detect the charge signal with sub-mm precision in large micro-machined charge amplification

detectors (large electron multipliers, LEMs) [309].

DarkSide is a double-phase TPC which will use LAr as a WIMP target. The goal for the next

years is to build and operate DarkSide-50 with about 50 kg target mass. It will be located at LNGS

(Italy), inside the the Borexino counting test facility (CTF), a large water tank which is currently

being refurbished for this purpose. Inside the water shield, DarkSide will be surrounded by a spherical

boron-loaded liquid scintillator neutron veto and it will use Ar which is depleted in 39Ar by a factor

∼100. Commissioning is scheduled for end of 2012, and two years of data taking is necessary to reach

the final sensitivity around 10−45 cm2 [310].

3. Threshold detectors

The bubble chamber concept that was extensively used in elementary particles physics in the 1960s to

identify tracks of particles, has created a renewed attention in physics and in particular in the field of

direct detection of dark matter. Detectors invented for direct detection experiments, by using similar idea

to bubble chamber, are called threshold or phase transitions detectors.

The phase transition detectors are based on the principle that an abrupt transition makes an effective

detector. If a liquid is superheated to a metastable state above its boiling point, the energy deposited by

a particle interaction can cause a very localized evaporation of the liquid. This boiling will only occur

if enough energy deposited in a small enough volume, i.e. the particle track must have an energy loss

(dE/dx) greater than a certain threshold. By tuning this threshold, phase transition detectors can be

rendered insensitive to electromagnetic interactions while still remaining sensitive to nuclear recoils.

Threshold detector technology uses a superheated liquid (in the bulk or as droplets within a matrix). By

tuning thermodynamic parameters (e.g. temperature and pressure), the detector may be made insensitive
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to the low energy density deposited by a minimum-ionizing electron recoil. Only a dense energy deposition,

such as from a nuclear recoil, will provide enough energy to cause nucleation (smaller depositions resulting

to sub-critical bubbles that are squashed to nothing by their surface pressure). The attraction of these

detectors is that they could allow inexpensive scaling to very large masses with a broad range of materials

and without need of cryogens or photon shielding.

COUPP and PICASSO experiments uses a CF3I target in a phase transition. These detectors, as most

of the phase transition detectors, measures only the count rate above threshold. To acquire information

about the energy spectrum of the interaction data, a range of different energy thresholds must be acquired,

since it is in general not possible to determine the energy deposited by the creation of a bubble [311].

Figure 3.25: Images of three different types of particle interactions in the COUPP bubble chamber: (A)
cosmic ray event, (B) neutron multiple-scatter event, and (C) neutron single-scatter event. Figure from
[311].
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Chapter 4

CDMS II Detector Technology:

ZIPs.

4.1 Introduction to ZIP and mZIP Detectors

Direct detection of dark matter presents enormous technical challenges. In order to be able to detect the dark

matter signal, an effective search for WIMPs requires sensitivity to an extremely small signal rates at low energies

(of the order of ∼10 keV or lower) while distinguishes the signal from the backgrounds. A competitive WIMP

search experiment must be able to identify a certain number (handful) of WIMP-induced scattering events

amongst a far larger population of background interactions.

The Cryogenic Dark Matter Search (CDMS) experiment employs low temperature germanium (Ge) and

silicon (Si) detectors to detect WIMPs via their elastic scattering off target nuclei. Dark matter particles, such as

WIMPs, can only interact with nuclei. Scattering events inducing nuclear recoils are tagged in most direct dark

matter searches as indication of WIMP interaction. Every single interaction in the semiconductor crystals creates

two distinct signals: the ionization signal from electron-hole pairs and the excitation of the lattice in the crystal.

The motion of the drifted charged particles produces phonons (propagation of particles in a crystal medium).

Ionizations and the athermal phonons are generally produced and recorded by the CDMS ZIP detectors used in

the CDMS-II experiment.

Coherent elastic scattering of dark matter WIMPs with the nucleus is the physical process by which WIMPs

interact with the crystal. However, at the time of the writing of this dissertation, there has been a different

proposal of WIMPs interaction mechanism: the inelastic scattering between dark matter and electrons. This

mechanism is now being promoted due to the fact that there is more energy available in inelastic processes which

by far is more convenient to probe lower mass scales. Few possible inelastic processes considered under this model
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are: electron ionization, electronic excitation and finally molecular dissociation [313, 314].

The CDMS II experiment uses Z-sensitive Ionization and Phonon ZIP detectors, made of germanium (Ge) or

silicon (Si). The experiment is installed at the Soudan mine (northern Minnesota) and operated at 40 millikelvin.

The charge and phonon energy from a particle interaction measured in these detectors, provides an excellent

discrimination between electron recoils and WIMP-like nuclear recoils. Events occurring close to the surfaces

(dead layer) of solid-state detectors usually mimic nuclear recoils, but the phonon timing information obtained

from the shape of phonons pulses in ZIPs allow the experiment to reject these backgrounds as well, thus enabling

CDMS to maintain high sensitivity in WIMP searches.

4.2 ZIP detectors

ZIP detectors are cylindrical crystal of Ge and Si. The collaboration has fabricated 30 of these detectors among

which 19 of them were made of Ge and 11 were made of Si. The substrate, made of p-type1 or n-type2, is 1 cm

thick and 3 inches in diameter. The outer edge of the crystal has five flats, as shown in Figure (4.1), in order to

facilitate alignment and handling: two major flats at the north and south positions, separated by 7.22 cm; two

minor flats at east and west, separated by 7.55 cm; and a small fifth flat at the northwest, with a distance of 3.77

cm to the center). The exact position of the fifth flat indicates the orientation of the crystal axis, Figure (4.2)

[318].

The substrate material used to make the ZIP detectors are prepared with low impurity and dislocation con-

centrations (∼1011 impurities/cm3 and less than 5000 dislocations/cm2 for Ge) to ensure good charge transport.

The cylinder axis of each detector is oriented along a ⟨100⟩ crystal axis (centered at 45◦) and ⟨111⟩ (centered at

30◦) [315].

The 30 ZIP detectors of the CDMS-II experiment consisted of 5 tower shown in Figure (4.3). A tower is a

stack of 6 ZIPs vertically arranged. These ZIP detectors are adjacent to other detectors and separated by 2.2mm

with no intervening material. The collaboration has decided to operate detectors in such close proximity because

it has the advantage that events due to backgrounds will often deposit energy in more than one detector. WIMP

interactions, however, are expected to be so localized and infrequent that multiple-scatter events can be safely

rejected without loss of signal efficiency .

One of the most important features of a ZIP detector is its ability to discriminate electron recoils from

nuclear recoils. When an interaction occurs in a ZIP detector, the energy imparted to the crystal is deposited as

a spectrum of high-frequency athermal phonons (called primary phonons). These are localized lattice vibrations

which quickly downgrade in frequency as they travel toward the surfaces of the detector. Along the path of the

1A p-type semiconductor is obtained by carrying out a process of doping by adding a certain type of atoms (acceptors,
positively charge) to the semiconductor in order to increase the number of free charge carriers (holes). When the doping
material is added, it takes away weakly bound outer electrons from the semiconductor atoms. This type of doping agent
is also known as an acceptor material and the vacancy left behind by the electron is called hole. The purpose of p-type
doping is to create an abundance of holes

2A n-type semiconductor is a type of extrinsic semiconductor where the dopant atoms (donors) are capable of providing
extra conduction electrons to the host and create an excess of negative electron charge carriers.
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recoiling electron or nucleus, electron-hole pairs are created as well. The energy required to produce an electron-

hole pair is 3 eV(3.82 eV) for Ge(Si). To avoid recombination of these particles, an electric field is applied across

the crystal in order to drift the electrons and holes to opposite sides towards the surface electrodes where they

can be measured.

For a given recoil energy from an interaction, the ratio of the ionization and phonon measurement is charac-

teristically smaller for a nuclear recoil than for an electron recoil. This ratio is used as a particle identification

parameter and constitutes the basis of the ZIP discrimination technology.

Figure 4.1: View of the CDMS-II Z-sensitive Ionization Phonons detector. The top view is photolitho-
graphically patterned by Transition-Edge Sensors (TESs) for phonon signal readout while the bottom
side is patterned by Field Effect Transistors (FETs) to readout the charge ionization signal. Figure fron
[317].

Figure 4.2: Geometry of a ZIP detector substrate as seen from the top, showing all flats. The major
flats are at north and south, and the minor flats are at east and west. The small fifth flat is at 45o north
of the west position, indicating a ⟨100⟩ crystal axis. Figure from [318].

The signal readout of CDMS-II ZIP detector is made possible using its two faces (sides). The top side is

used for phonon signal measurement while the bottom side is used for charge signal measurement, Figure (4.4).

Each of the two detector faces is photolithographically patterned with sensor wiring. The bottom face is divided

into two concentric ionization electrodes: an inner electrode (Qinner) covering ∼85% of the detector surface and

an outer ring 3 mm in width (Qouter). The top face of each detector is occupied by four phonon sensors, each



Chapter 4: CDMS II Detector Technology: ZIPs 119

Figure 4.3: CDMS-II Soudan five Tower configuration. The top panel show the Tower/Detectors orien-
tations. The bottom panel show the sideview of the detector stack placement. Table (4.1) gives the type
of the substrate that were used in fabrication for each of the detectors shown above. Figure courtesy by
Kyle Sundqvist [320].

composed of a total of 1036 tungsten transition-edge sensors (TESs) wired in parallel and fed by an array of

aluminum quasiparticle traps.

Figure 4.4: Schematic sensor configuration of a ZIP detector, showing four phonon sensor quadrants on
the top face and two concentric charge electrodes on the bottom.

4.3 Ionization Signal

Free electrons and holes can be generated by the lifting of electrons from the valence band into the conduction

band, thus creating equal numbers of electrons and holes. This can be accomplished by various mechanisms such

as thermal agitation, optical excitation and ionization by penetrating charged particles that have to supply the

necessary energy [322].

At low temperatures all valence electrons remain bound in their respective (tetrahedral) lattice. At higher
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Table 4.1: List of CDMS-II detectors names, material used as substrates, thicknesses and masses. The
difference between boule A, boue B and boule C is not only the doping type, but also the impurities and
concentrations. Boule A has an impurity of 9.5×1010 (and a concentration of 1011 per cc), Boule B has
an impurity of 2.7×1011 (and a concentration of 4.7×1011 per cm3) while Boule C has an impurity of
8.5×1010 (and a concentration of 1.9×1011 per cc). Table from [321].

Detector Name Material Thickness (cm) Mass (g)
T1Z1 Ge (n-type boule A) 9.65±0.05 230.5
T1Z2 Ge (n-type boule A) 9.53±0.23 227.6
T1Z3 Ge (n-type boule A) 9.18±0.05 219.3
T1Z4 Si (n-type boule A) 10.00±0.05 104.6
T1Z5 Ge (n-type boule A) 9.18±0.05 219.3
T1Z6 Si (n-type boule A) 10.00±0.05 104.6
T2Z1 Si (n-type boule A) 9.70±0.05 101.4
T2Z2 Si (n-type boule B) 10.00±0.05 140.6
T2Z3 Ge (n-type boule A) 9.18±0.05 219.3
T2Z4 Si (n-type boule B) 10.00±0.05 104.6
T2Z5 Ge (n-type boule B) 10.00±0.05 238.9
T2Z6 Si (n-type boule B) 10.00±0.05 104.6
T3Z1 Si (n-type boule b) 10.00±0.05 104.6
T3Z2 Ge (n-type boule B) 9.68±0.05 231.2
T3Z3 Si (n-type boule A) 10.00±0.05 104.6
T3Z4 Ge (p-type boule C) 10.00±0.05 238.9
T3Z5 Ge (p-type boule C) 10.00±0.05 238.9
T3Z6 Ge (n-type boule B) 9.70±0.05 231.7
T4Z1 Si (p-type boule A) 9.70±0.05 101.4
T4Z2 Ge (n-type boule A) 10.00±0.05 238.9
T4Z3 Si (n-type boule A) 9.70±0.05 101.4
T4Z4 Ge (p-type boule C) 9.82±0.23 234.6
T4Z5 Ge (p-type boule C) 9.71±0.05 231.9
T4Z6 Ge (p-type boule C) 10.00±0.05 238.9
T5Z1 Ge (n-type boule A) 9.40±0.23 224.5
T5Z2 Ge (p-type boule C) 9.61±0.23 229.5
T5Z3 Si (n-type boule b) 9.70±0.05 101.4
T5Z4 Ge (n-type boule B) 9.40±0.05 224.5
T5Z5 Ge (p-type boule C) 9.83±0.05 234.8
T5Z6 Ge (n-type boule B) 9.36±0.05 223.6

temperatures thermal vibrations may break the covalent bond and a valence electron may become a free electron,

leaving behind a free place called hole. Both the electron and the hole (to be filled by a neighboring electron)

are available for conduction as illustrated in Figure (4.5).

In crystal detectors, particle interactions in a semiconductor crystal can liberate some electrons (in their

bound states) if they have sufficiently enough deposited energy to do so. These liberated electrons called primary

electrons may have sufficiently high momentum to liberate other electrons from their bound states to the con-

duction band, producing a cascade of charge carriers as the energy of the primaries is dissipated into the crystal.

This process leads to the production of lower-momentum electrons and holes in the vicinity of the particle track;

this is the ionization process characterized by a loss of energy (dE/dx) of the particle as it moves.
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Figure 4.5: Left: Schematic bond representation of a single crystal with one broken bond in the center.
Right: Energy levels of silicon atoms arranged in a diamond structure, as a function of lattice spacing.
Figure from [323].

When a particle interaction supplies the energy needed to free electrons to the conduction band, a current

proportional to the number of electron-hole pairs flows across the crystal. For a given recoil energy, the intensity

of the current depends on the amount of energy it takes to produce an electron-hole pair, and whether it was an

electron or nuclear recoil. For a semiconductor, the band gap is temperature dependent, and is well approximated

by the Varshni relation [324]

Eg(T ) = Eg(0)−
α

T + β
T 2 (4.1)

where Eg(0), α and β are constants which depend on the type of semiconductor. For Ge (Si) semiconductors,

these constants are given in the Table (4.2)

Table 4.2: Parameters Eg(0), α and β of the Varshni equation for the temperature dependence band gap
energy. Table from [324].

Semiconductor Eg(0)/eV α (10−4 eV K−1) β (K)
Si 1.170 ± 0.001 4.730 ± 0.25 636 ± 50
Ge 0.7437 ± 0.001 4.774 ± 0.30 235 ± 40

so, for CDMS ZIP-detectors, since they are operated at ∼ 50mK, the band gap energy is approximately equal

to E0 (i.e. Eg(T = 0) ≃ E0).

The partition of energy in Ge (Si) semiconductor crystal is characterized by a quantum noted by ϵ which is

equal to the average incident energy required to create (produce) one electron-hole pair. Though the band gap

Eg of Ge (Si) is 0.734 eV (1.12 eV) at 0K, the average deposited energy required to generate an electron-hole

pair is substantially greater because some of the energy is shed as optical and acoustic phonons. For Ge (Si)

substrates, ϵ = 3.0 (3.8) eV at mK temperatures [327, 328, 329]. The number of electron-hole pairs created (by
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an electron recoil) is simply the ratio of the recoil energy to ϵ:

NQ =
ER

ϵ
(4.2)

For scatters off of nuclei, as experienced by neutrons or WIMPs, ionization is smaller by a factor of ∼3. This

quenching factor for nuclear recoils is energy dependent and different for silicon and germanium targets as

explained in detail in the Lindhard papers [330, 331].

4.3.1 Charge Transport

Charge transport is the physical process during which a charged particle (electron or hole) produced in a given

location A has to be moved (transported) to another location B. In general, such a physical process requires the

intervention of an electric field to drift the electron or hole from one location to another. However, if an electric

field is present, due to the anisotropic nature3 of the crystal material, the charge carriers will be accelerated in

between random collisions in a direction determined by the electric field, and the net average drift velocity is

given by

v⃗ = µ E⃗ (4.3)

where v⃗, is the net (average) drift velocity, µ is the electron (hole) mobility and E⃗ is the applied electric field.

Transport is strongly anisotropic, as discovered by Sasaki and Shibuya [332]. In particular, conduction of

electrons occurs in band minima at the edges of the Brillouin zone, along the ⟨111⟩ direction in Ge and the ⟨100⟩

direction in Si. Surprisingly, this results in larger mobility in ⟨100⟩ in Ge and ⟨111⟩ in Si. In the case of holes,

the band minima are all in the center of the Brillouin zone with larger mobility along ⟨100⟩ in both cases. These

results, however, go to temperatures no lower than 8 K in most cases, and are affected by both phonon emission

and scattering on thermal phonons.

4.3.2 Charge Readout

The CDMS-II ZIP-detector ionization channels are two electrodes (one is annular and the other is circular)

deposited onto the bottom surface of each detector. One circular inner electrode (called Q-inner and noted by

QI) covers most of the physical area (85%). The inner electrode is encircled by a thin annular electrode (Q-outer

or QO). Both electrodes, Q-inner and Q-outer, are used to define the fiducial volume based on the partition of

charge between the two electrodes.

Furthermore, the Q-outer electrode serves as a guard ring to reject events that may suffer from degraded

ionization signals. The outer sections (including the side walls) are more exposed to background radiation.

Background particles resulting from decays of radio-contaminants on the copper surfaces of the tower’s mechanical

3In any material (anisotropic or not, carriers are accelerated in the direction determined by the E⃗-field which is dependent
on the mobility µ too.
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support structure are more likely to be incident upon these outer sections. The Q-outer electrode grants a level

of protection against such events, while the Q-inner electrode is used to identify interactions occurring in the

central part of the crystal, the fiducial volume.

The ionization measurement is accomplished by grounding the phonon side while a biasing the ionization

electrodes at a bias voltage of −3 V, causing liberated holes and electrons to drift to opposite sides. A charge

equal to eNQ accumulates on the feedback capacitor shown in Figure (4.6) through the action of a charge

amplifier. The build-up and subsequent decay (charge builds up over a few µs rise time and decays over ∼100

µs) of charge on the feedback capacitor results in an ionization pulse. As the charges drift across the crystal,

image charges are induced on the metallized top and bottom surfaces. According to Ramo’s theorem, the charge

induced is equal to the charge drifted, so that the integrated current flowing to either surface is a measurement of

the ionization produced by the initial interaction, discussed more fully in Section (5.1) of the Walter R. Ogburn’s

dissertation [318]. The relatively quick response of the ZIP ionization measurement makes the ionization-pulse

start time the most accurate indicator of when a scattering event occurred. Independent Q-inner and Q-outer

signals are digitized for each event. An optimal-filter template fit measures the pulse height (and start time) of

each digitized signal and determine the exact energy deposited for each channel.

The ZIP ionization channels are biased through a large resistance, and capacitively coupled to a Field Effect

Transistor (FET) amplifier to ensure that the electrodes are well coupled to the readout for fast pulses. The

charge bias is coupled to the detector by a large bias resistor Rb = 40 kΩ , which does not dissipate much charge

over the time scale of the pulse. Each electrode is connected to a coupling capacitor Cc = 300 pF, which passes the

fast charge pulse, but keeps the bias and readout circuit relatively floating. Charge collected across the detector

crystal quickly transfers to the feedback capacitor Cfb, producing a voltage spike Vout. This pulse decays as the

capacitor drains through the feedback resistor Rfb, producing an exponential falling edge of the voltage pulse.

The fall-time τf = 40 µs of the pulse is determined by the Rfb = 40 MΩ and Cfb = 1 pF. The feedback capacitor

is in parallel with a feedback resistor of 40 kΩ , which slowly dissipates the charge. The combination of feedback

resistor and capacitor acts as a high-pass filter with time constant ∼40 µs. The ionization pulses therefore have

a very fast rise, with rise time set by the amplifier response and the anti-aliasing filter in the RTF boards, and

a fall time set by Rfb · Cfb (of about ∼40 µs). A fraction of the charge signal is lost in the capacitive coupling

where the charge induced at the feedback capacitor is less than the induced image charge. The stray (parasitic)

capacitance Cs incorporates several different components: relative capacitance of QI and QO, capacitance to

neighboring detectors and the detector housing [318].

The transimpedance (complex impedance) of this system is given by [317]

A(ω) =
Rbf

1 + jωRbfCbf
, (4.4)

where ω = 2πf is the frequency of the fourier analogous of the time dependent input signal.

Although the CDMS read out set up is a low-noise transimpedance, the FET amplifier contributes a to
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Figure 4.6: Ionization readout electronics. The ZIP detector has capacitance Cd ∼ 50 pF, and is coupled
to the amplifier through a coupling capacitor Cc = 300 pF. As an image charge is induced on the detector
surface, the same charge appears at the feedback capacitor Cfb ∼ 1 pF. The FET amplifier adjusts the
output voltage to keep the potential difference between its two inputs to zero. The charge stored fades
away through the feedback resistor Rfb = 40 kΩ. There are also stray capacitances Cstray ∼ 100 pF.
The detector is biased with a voltage Vb, through a bias resistor Rb =40 kΩ. Figure from [318].

substantial amount of noise in the overall charge signals. The voltage noise in this system comes primarily from

the amplifier’s first-stage JFET and from the feedback and bias resistors. Other sources of noise include the

current noise from the JFET, detector leakage current and microphonic effects from the wiring.

In practice, there is also a very large contribution from pickup of ambient noise, which has been reduced by

the use of an radio-frequency shielded experimental enclosure and a careful grounding scheme. An expression for

the total output voltage noise as a function of frequency has been derived [317]:

e20(f) = |A(f)|2
{
i2FET + i2d + i2u +

4kBT (Rfb +Rf )

RfbRf
+ e2FET

[
(2πf)2(Cd + Cfb + Cs)

2 +

(
1

Rfb
+

1

Rb

)2
]}
(4.5)

where eFET represents the FET noise contribution and iFET the current noise contributions from the FET input.

The noise contributions from the detector leakage is denoted in above expression by id and any microphonic noise

on the detector and its wiring is iu.

4.4 Phonon Signal

When an interaction occurs in the ZIP detector, charged particles (electrons and holes) are first produced. Due

to the electric field created by the biasing voltage across the two faces of the detector, these charged particles

drift to opposite sides. Phonons (athermal phonons) are generated as result of drifting charged particles in the

crystal. Phonons are generated through several distinct processes with very different energy spectra and transport

properties. The initially displaced nucleus or electrons shed their kinetic energy in the form of primary phonons

at the interaction site [340].
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Figure 4.7: Measured ionization noise spectrum in the Q-inner charge ionization electrode for T1Z5
overlaid with model predictions (equation 4.5). The noise spectrum is rolled off at high frequencies by
a low pass filter. The total contribution from the Jonhson and FET noise well match the shape of the
measured charge noise at high frequency. Figure from [315].

Phonons are measured before the detector goes back to thermal equilibrium. These out-of-equilibrium

phonons are often called athermal-phonons. The phonon signal does not only possess the information about

the energy deposited by the particle interaction, it also retains a tremendous amount of information about the

interaction type and location. This additional information which is lost in an equilibrium detector is a vital

contribution to the background rejection and event reconstruction of CDMS-II ZIP detectors [341].

The ZIP phonon read out technology used in the CDMS experiment is called Quasiparticle-trap-assisted

Electrothermal-Feedback Transition-edge sensors (or simply QETs). Detailed descriptions of the CDMs-II QETs

can be found in a number of papers and CDMS theses [335, 336, 337, 338, 339, 340, 341].

4.4.1 Phonon Generation

The phonons generated by a particle interaction originate from three distinct mechanisms: primary phonons,

recombination phonons and Luke phonons.

Primary Phonons

When a particle interacts in a ZIP detector, nuclear or electron recoils are produced. This initially displaced

nucleus or electron deposits it kinetic energy as phonons at the interaction site as it relaxes back to equilibrium.

A recoil energy ER deposits a certain amount of energy to the primary phonons:

Eprim = ER −NQEg, (4.6)

where NQ is the number of generated electron-hole pairs and Eg is the energy band gap of the crystal or the

Fermi energy. The primary phonons carry information about the position, timing and the energy characteristics
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of the particle event that are important for particle identification.

Recombination Phonons

Once the charged particles (electrons and holes)are generated and if there is not enough energy (external) to

drift them apart or if the applied external E⃗ field produce an energy EE⃗ ≪ Eg, the produced electrons and holes

will eventually recombine. Recombination is the process where the charge carriers restore energy to the phonon

system by relaxing back to the Fermi level. The recombination phonons have a total energy

Erelax = NQEg. (4.7)

Luke Phonons

Luke phonons (also commonly referred to as Neganov-Trofimov-Luke phonons) are emitted when charge carriers

travel at the speed of sound in the crystal (analogous to Cerenkov radiation). The energy dissipated to the

crystal as phonons radiate is the mechanism proposed by Neganov, Trofimov and by Luke [342, 343]. This

phonon radiation contributes additional energy to the crystal beyond that in the initial interaction. This energy

contribution is equal to the fields work on each charge and is defined by:

ELuke =

2NQ∑
i

qi

∫
path

E⃗ · dx⃗, (4.8)

where the sum is over each charge i (there are NQ electrons and NQ holes, so a total of 2NQ charged particles)

and the integral over the path taken by that charge. If the electric field is uniform and the charge carrier has

elementary charge e the integral can take the following form:

ELuke = eVb

∑
i

di
a
, (4.9)

where Vb is the applied bias voltage, a is the thickness of the crystal and di is the distance travelled by charge

carrier i. If the detector always has complete charge collection, equation (4.9) takes the following form:

ELuke = eVbNQ. (4.10)

Since it takes an energy ϵ, 3 eV (3.83 eV), to produce an electron-hole pair in Ge (Si), the measured ionization

energy in the ZIP detectors is then given by EQ = NQϵ, leading to the Luke contribution to the phonon signal

ELuke =
eVb

ϵ
EQ (4.11)

The above relation remains true for the case of incomplete charge collection although derived form a full (complete)

charge collection. Incomplete charge collection is caused by trapping charges that occur before they reach the

surface due to impurity in the crystal. This formula remains true for both case because the measured charge
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signal is proportional to the number of charges and the Ramo potential that they drift through. When some

charges get trapped in the crystal, the loss in the ionization signal is in the same proportion as the loss to Luke

phonons. The total phonon energy is given by: EP = Eprim + ELuke, we obtain:

EP = ER +
eVb

ϵ
EQ (4.12)

4.4.2 Phonon Propagation

There are four main processes contributing to the phonon propagation across a semiconductor crystal: phonon-

carrier scattering, phonon-phonon scattering, phonon-impurity scattering and anharmonic phonon decay [344,

345]. Phonon-carrier and phonon-phonon scattering are essentially negligible at milikelvin and sub-milikelvin

temperatures, since there are no free carriers or phonons outside of the initial phonon ball. The athermal

phonons however are subject to two types of scattering, both of which become stronger with increasing phonon

frequency: isotopic scattering and anharmonic decay [346].

The isotropic scattering is a Rayleigh scattering on isotopic impurities, with a ν4 frequency dependence. It

is a form of elastic scattering. For silicon and germanium, isotope scattering is independent of direction and

phonon mode with a scattering time given by [347]:

τ−1 = A0ν
4 (4.13)

with

A0 ≃ ca3

(
∆m

m̄

)2
(2π)4

4πv3
(4.14)

a constant characteristic of the crystal. In the formula (4.14), c is the impurity concentrations, a is the lattice

spacing and ∆m/m̄ is the fractional mass difference; and v is the sound speed in the crystal. Reported values of

A0 are listed in the Table (4.4 [346, 348].

Table 4.3: Reported numerical values of the constant A0 for the phonon isotope scattering for Silicon
and Germanium semiconductors [346, 348].

Semiconductor A0 (s3)
Si 2.43×10−42

Ge 3.67×10−41

The Anharmonic decay occurs when a higher-energy phonon splits into two lower-energy phonons. The

frequency dependence is ν5. This scattering process occurs primarily for longitudinal acoustic phonon modes,

rather than slow or fast transverse modes. The rates for transverse phonons are very anisotropic, and can approach

the rates for longitudinal phonons only in certain directions. The rates for longitudinal acoustic phonons at low
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temperatures (3 K) and 1 THz are 1.23105 s−1 and 1.62106 s−1 in Si and Ge [349, 350].

Since the two processes described above are strongly frequency-dependent, the mean free path of low-frequency

phonons is much longer than that of their higher-frequency brethren. The vast majority of primary phonons are

generated at multi-THz frequencies and therefore have mean free paths of the order of mm.

The anharmonic decay quickly reduces to a bottleneck frequency near 1.6 THz at which isotope scattering

begins to dominate. After a few µs of quasi-diffusive propagation, these phonons decay sufficiently to bring their

mean free path above the crystal dimension. At this point, these phonons becomes ballistic and propagate the

detector surface without significant scattering [317].

Since only phonons that reach the detector surface are detected, the observed phonon signals in ZIP detectors

are dominated by these ballistic phonons. Primary phonon detection is thus delayed by various processes: isotropic

and anharmonic decays, quasi-diffusion followed by ballistic propagation. Recombination phonons are generated

at energies of a few tenths of an electron volt but down-convert rapidly through interaction with the metal films

(aluminum) at the detector surface [315, 318].

4.4.3 Phonon Readout

One of the important features and an extreme success of the ZIP athermal phonon measurement is its spectacular

particle identification ability. This success is made possible through the use of phonon pulse shape information.

The CDMS-II experiment uses the Transition Edge Sensors (TESs) aided by a quasi-particle trap assisted for

phonon measurements. The top face of each ZIP detector is patterned with four phonon channels forming four

quadrants, denoted by A, B, C and D. Each channel contains arrays of transition edge sensors, amounting to

1036 TESs per channel. Each superconducting tungsten (W) transition-edge sensor is 1µm in width, fed by a

set of 350 µm-long aluminum (Al) collector fins. The TES serves as a sensitive thermometer and the fins act as a

reservoir, concentrating phonon energy from a wide area onto the tiny TES. Each TES and its surrounding fins

are together referred to as a QET standing for quasiparticle-trap-assisted electrothermal-feedback transition-edge

sensors. The structure of the ZIP-detector’s QET consists of ten ∼380×60 µm2 Al collector fins attached to a

∼250 µm2 W transition-edge sensor as illustrated in Figure 4.9. For Ge (Si) ZIP detectors, 28 of these QET

structures are arranged in a 7×4 (6×4) array to form a 5×5mm2 QET cell [50].

Each TES is configured to detect phonons as the superconducting tungsten (W) resistance change due to the

increase of the substrate temperature. To make the TES extremely sensitive to extremely small temperatures

increase, every TES is kept at the transition temperature or transition point (Tc), temperature at which the

tungsten becomes superconducting. If these phonons have at least twice the superconducting gap energy in Al

(2∆ = 0.36 meV) they can break a Cooper pair in the Al fins to generate quasiparticles. This minimum energy

is much greater than the typical thermal energy kBT = 3.4µeV of thermal phonons at 40mK (therefore, only

energetic phonons far from equilibrium can create quasiparticles). Once Cooper pairs are broken, electrons are

freed and become quasi-particles. The quasi-particles can diffuse through the Al fins, until they reach the end
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near the TES. The minimum quasiparticle energy in the W TES 2∆ = 25 µeV is much lower than that in the

fins. A quasiparticle that diffuses to the TES edge can thus enter the W, but quickly loses enough energy to

prevent its return to the Al fins; it is trapped. The quasiparticle energy in the Al fins is thus collected in the W

TES. The phonon energy from a wide area is concentrated into a TES of low heat capacity, producing a much

larger temperature change than would be achieved with the TES alone. The transition edge sensor is essentially

a very sensitive thermometer. By maintaining a piece of tungsten at its critical (transition) temperature, Tc, a

small change in the W temperature causes a large change in its resistance, as shown in Figure (4.10).

The measurement of the phonon signal in the ZIP-detectors starts when a ballistic phonon interacts with one

of the many Al collector fins photolithographically coated onto the top side of each detector. The 300 nm-thick

Al films are held well below their superconducting transition (Tc ≈ 1.2 K) where the electrons are coupled into

pairs of electrons called Cooper pairs.

Figure 4.8: Schematic layout of the ZIP detector phonon sensors. Top left: Layout of the phonon side,
illustrating the four sensor quadrants each consisting of 37 5mm×5mm dies. Top right: One of the 37
photolithography dies. Each die consists of 28 individual QETs. Bottom: A single QET, showing the 1
µm-wide W TES connected to Al collector fins. Figure from [316].

As mentioned in the previous paragraph, once cooper pairs are broken and quasi-particles are free, quasi-

particles are the produced and they can quasidiffuse into the W region where the energy gap is smaller than

the Al fin, in this region, the quasi-particles are trapped and cannot diffuse back into Al fins. Therefore the

quasiparticles become trapped by the smaller tungesten (W) energy gap. Unable to return to the Al collector

fin, the quasiparticles continue to a W-only region that is held at its superconducting transition point where,

finally, the quasiparticles transfer their energy to the W films electron system, causing an increase in temperature

that increases the W films resistance. This whole process is helped by quasiparticle trap-assisted electrothermal

feedback. The change in resistance can be measured by biasing the W and monitoring the flow of current with
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a low-noise readout circuit.

Figure 4.9: Quasiparticle trap-assisted transition-edge sensor (QET): ballistic phonons resulting from a
particle interaction in the Ge or Si substrate travel to the surface of the detector where they encounter
an aluminum collector fin. The Al is held below its superconducting transition such that many of its
electrons are coupled into Cooper pairs. Phonons can dissipate their energy by breaking these Cooper
pairs into quasiparticles, which may diffuse toward an Al-W transition region where they become trapped.
The W film is held at its superconducting transition such that the change in temperature due to the
quasiparticles causes a corresponding increase in the tungsten’s resistance. Figure from [50].

The CDMS-II ZIP detector QET design was the result of a quasiparticle-collection optimization, described

in greater detail in Tarek Saab’s Ph.D. thesis [339]. This design of the QETs yields a quasiparticle-collection

efficiency of nearly 25%. Previous ZIP detectors had nearly all the phonon side covered by Al collector fins. Such

a configuration is non-optimal because the average distance a quasiparticle has to diffuse before encountering an

Al-W transition region is a factor of ∼3.5 larger than the quasiparticle diffusion length (∼180 µm ) [50, 362].

Since quasiparticles are likely to travel more than 1−2 diffusion lengths (ldiff ∼
√

Dτqp, with D the diffusivity

and τqp, the quasi-particle lifetime) before recombining back into Cooper pairs, the original design suffered from a

quasiparticle collection inefficiency of ∼ 95%. The signal-to-noise ratio (S/N) in the phonon channel is critically

dependent on the number of collected quasiparticles per keV of deposited energy. Such a design had limited

sensitivity to the small energy depositions expected fromWIMP-nucleus interactions. As the CDMS collaboration

is attempting to increase their detector’s sensitivity by 2 orders of magnitude in a second generation direct search

dark matter experiment, new and improved QET design was proposed and tested. The next generation device,

the interleaved ZIP or iZIP, which has significantly improved fiducialization performance. Unlike in the CDMS II

design, both sides of the iZIPs are instrumented with high impedance charge electrodes and thus both the number

of electrons and holes produced during the event interaction are measured separately which leads to a significant

improvement of the radial fiducial volume. In addition to what is said, the number of phonon channels has been

increased from 4 to 8 from and phonon sensors are now interleaved on both sides of the detector leading to

superior z-fiducial volume definition. The channel geometry was redesigned so that there is now a circular outer

phonon channel on both sides of the detector for significant improvement radial fiducial volume control through

the partitioning of energy and pulse shape in the phonon channels. A complete description of the optimized

generation CDMS detector device can be found in PhD dissertation of Matt Pyle [364].
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Figure 4.10: Transition edge sensor’s resistance R(T ) as function of the temperature. The resistance
is zero in the superconducting state (lower temperature) and higher in the normal state (at higher
temperature). For CDMS purposes, the tungesten TES is kept exactly at the transition temperature Tc

via a negative electrothermal feedback. The value of Tc and the transition width are characteristics of
the W films used for the ZIPs. Figure from [407].

4.4.4 Electro Thermal Feedback

Another very important feature of the ZIP-detector phonon measurement is the use of ElectroThermal Feedback

(ETF). A small change in temperature caused by quasiparticles transfer their energy to the electrons in a W

TES. The transferred energy is measured as a change in resistance as shown in Figure (4.10). The largest change

in resistance (for a given rise in temperature) occurs at the superconducting transition.

The Si or Ge substrates of the ZIP detectors are normally maintained at an operating temperature of about

40 mK, about half of the tungsten transition temperature. The sensor temperature is maintained within its

superconducting to normal transition via the Joule heating associated with the voltage bias. The intrinsic

stability of the voltage bias is due to negative electrothermal feedback (ETF), whereby an increase in sensor

temperature and thus an increase in sensor resistance causes a decrease in Joule heating (P = V 2/R), and

similarly a decrease in sensor temperature causes an increase in Joule heating, thus leading to a stable situation.

A current bias however will result in power dissipated to the substrate proportional to applied current (P = RI2),

thus if the current increases and the resistance increases, the joule heating will increase as well resulting in a

runaway situation where the sensor can never return to the equilibrium. The negative electrothermal feedback

is the only biasing mode which will guarantee the sensor to switch back to the optimal operating point.

Figure (4.11) illustrates schematically the thermal circuit that the TES forms with its surroundings. The

electron-phonon thermal conductivity and the conductivity between the substrate and the crystal are sufficiently

large such that the thermal link between the phonons in the W and the bath (refrigerator) is strong. Consequently,
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Figure 4.11: Right: Thermal schematic of an electrothermal feedback (ETF) TES illustrating the various
thermal sources, sinks, and impedances. The thermal bath between the W phonons and the heat sink
must be sufficiently low for the phonons to be at the refrigerator temperature. Left: show the TES
response signals to light pulses.

the W phonons and the detector substrate are at the refrigerator’s base temperature. If the temperature of the

W electron system is higher than the base temperature then it will experience cooling. For the power flow to the

heat bath, we assume a power-law dependence, which can be written as

Pbath = κ(Tn − Tn
bath), (4.15)

where n = 5 is the thermal conductance exponent, and the pre-factor κ = G/nTn−1, where the differential

thermal conductance G = dPbath
dT

.

The response of the TES is governed by two coupled differential equations describing the electrical and thermal

circuits. Each differential equation governs the evolution of a state variable: the electrical equation determines

the current I, and the thermal equation determines the temperature T. Ignoring noise terms for the present, the

thermal differential equation is

Cv
dT

dt
= −Pbath + PJ + P ; (4.16)

where Cv is the heat capacity (of both the TES and any absorber), T is the temperature of the TES (the state

variable), Pbath is the power owing from the TES to the heat bath, PJ is the Joule power dissipation and P is

the signal power. The other differential equation which govern the evolution the TES response is the electrical

differential equation, given by

L
dI

dt
= V − IRL − IR(T ; I); (4.17)

where L is the inductance, V is the Thevenin-equivalent bias voltage, I is the electrical current through the

TES (the state variable) and R(T ; I) is the electrical resistance of the TES, which is generally a function of both

temperature and current.

In order to keep the TES at its T = Tc as required for optimal operating conditions, the net power flow must

equal zero. This is accomplished by applying a voltage bias across the TES which, through joule heating, allows
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the TES to maintain an equilibrium temperature at Tc. The equilibrium point achieved in this manner is stable,

and underlies the mechanism by which the TESs measure energy; this is the negative electrothermal feedback.

The power balance equation can be expressed as

Petf =
dE

dt
=

dE

dTe
· dTe

dt
= Cv

dTe

dt
=

V 2
b

R(Te)
− κ(Tn

e − Tn
sub) (4.18)

where CV is the heat capacity and Vb is the applied bias voltage. Assuming a δ-function energy deposition

response from the TES, an extremely small temperature excursion (∆Te) from the equilibrium point will yield,

at first order, the following time dependent change in the temperature

Cv
d∆Te

dt
= −V 2

b

R2
0

dR

dTe
∆Te − κ∆Te (4.19)

which solves as

∆Te = ∆T0 · e−t/τETF (4.20)

where ∆T0 = E/Cv and the electrothermal feedback time constant is given by

τETF =
τ0

1 + α
n
(1− Tn

bath
Tn
0

)
(4.21)

where τ0 = CV
κ

is the intrinsic thermal decay time and T0 is the equilibrium temperature of the TES electron

system. Usually, one define a unitless parameter α = d lnR
d lnT

as measure of the slope of the resistance curve at the

superconducting transition. The bigger the value of the α is, the more sensitive the TEs will be. The reduction

of Joule heating on the time scale of τETF , measured to be ∼40 µs, which means that the energy deposited in

the TES is measured before much can escape into crystal.

4.4.5 SQUID Readout and TES biasing circuit

Array of Superconducting Quantum Interference Devices (SQUIDs) inductively coupled to the TES biasing

circuit provides the current-sensing element required for low-noise, high-bandwidth amplification of QET signals.

A SQUID is a very sensitive magnetometer used to measure extremely subtle magnetic fields (5×10−18 T), based

on superconducting loops containing Josephson junctions [50].

Current flowing through the TES induces magnetic flux in the SQUID which results in a voltage change

across its terminals. This change in voltage drives an amplifier which feeds a current back into the feedback coil

in order to cancel the change in magnetic flux through the SQUID. An input to feedback coil ratio of 10:1, and a

feedback resistor Rfeedback = 1 kΩ; convert the TES current into an output voltage given by Vout = 10× ITES×

1kΩ . The CDMS SQUIDs are characterized by a modulation depth of 5 mV, flux quantum of 25 µA, and a

nominal noise performance of 2 pA/
√
Hz (both referenced to the input coil). A more complete description of the

SQUID characteristics and details can be found in [351]. The bias resistor Rbias and bias current Ibias provide
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the TES bias voltage. Rbias = 20 mΩ provides a stiff voltage source for TES resistances above ∼200 mΩ.

SQUID characteristics

The SQUIDs used by the CDMS collaboration possess the following characteristics:

1. Turns ratio

The CDMS SQUIDs are designed with an input coil and a feedback coil characterized by inductances Li

and Lf respectively. The ratio of the number of turns in the input coil to the number of turns in the

feedback coil is referred to as the turns ratio. It is designed to be 10 for an optimal operation [176, 407].

2. Current-per-Φ0

This is the current in the input or feedback coils corresponding to one quantum of flux in the SQUID. It

is 25 µA in the input coil or 250 µA in the feedback coil.

3. V-Φ curve

The V-Φ curve is given by the variation of the voltage across the SQUID caused by changing the flux

through the SQUID. The maximum peak-to-peak amplitude of the V−Φ curve is also referred to as the

modulation depth (typically equal to 5 mV).

4. Responsivity

The responsivity is a very important characteristic of the SQUIDs is. The responsivity r =
dVsq

dI
is defined

as the change in voltage across the SQUID for a given change in current (either in the input or in the

feedback coil). This can also be estimated from the slope of the V−Φ curve. The responsivity is important

for two reasons: (i)the input noise of the amplifier (used to amplify the SQUID voltage) is amplified by

the factor Rf/r, where Rf is the feedback resistance. A very large responsivity reduces the impact of

the amplifier noise and increases the signal-to-noise ratio. (ii) the open-loop gain of the amplifier (which

includes responsivity as one of the gain factors) sets the bandwidth of the amplifier chain in the closed

loop mode. The amplifier is designed to give ∼2 MHz bandwidth for r = 1000 Ω referred to input (for the

NIST SQUIDs, responsivity of 500 - 1000 is normally referred to input and noted as RTI) but this value

varies for different values of responsivity [407].

5. SQUIDs resonances

The resonances appear as distortions of the V−Φ curve and they tend to increase the SQUID noise sig-

nificantly, so it is desirable to avoid them. The SQUID resonances are well known and have been studied,

[356]. There are two types of resonances that appear in the SQUIDs used by the CDMS experiment. First

of all, there is a feedback-type resonance. In this case, the current through the tunnel junctions capacitively

couples to the coils, which then feeds back inductively into the SQUID. On one slope of the V−Φ, the

two effects will cancel each other out. On the other slope, however, the feedback will be positive and a

resonance will be created; this kind of resonance can appear only on one slope of the V−Φ curve. Second,
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there is a junction-type resonance. In this case, the bias of the SQUID introduces a voltage drop across

the SQUID, which is, in turn, related to the frequency of the currents flowing through the SQUID loops,

so changing the SQUID bias changes this frequency. If the frequency matches the natural frequency of the

system, a resonance appears. Hence, this kind of resonance appears only at a particular, usually relatively

large, SQUID bias voltage. Both types of resonances can be avoided by applying relatively low SQUID

bias and by locking the SQUID on the side of the V−Φ which has no feedback-type resonances [176, 356].

Noise

The actual SQUID circuitry used in the CDMS experiment is extremely more complex. It has the ability to

modify the amount of magnetic flux trapped in the SQUID array (see, for example, Sae Woo Nam’s Ph.D. thesis

[352]). The particular dc-SQUIDs used by CDMS are described in detail in [353, 354]. During normal operations,

the combined noise performance of the phonon measurement (including the QET and biasing circuit) tends to

vary from ∼10−20 pA/
√
Hz (depending on detector stability). The phonon-signal noise resolution is comparable

to the ionization resolution at the 1σ level [50, 315].

The noise performance of the phonon channel is set by fluctuations in the system due mainly to the following

dissipative components: the TES’s electrical resistance, the shunt resistor, keep the electron-phonon conductance

ge−ph within the TES and by the noise current of the SQUID array. The Johnson noise of the shunt resistor is

the dominant contribution to the current noise in the input coil: ish =

√
4kBTshRsh

RTES
≈ 15 pA/

√
Hz. It is worth

mentioning that the electrical response of the TES circuit such as its complex impedance can be used to probe

the electrothermal characteristics of the TES itself. A rigorous derivation of the the contributions to the readout

circuit noise, arising from the Johnson electrical noise of the TES, bias, and parasitic resistors are given by [339].

The largest sources of noise in ZIP phonon channels are the Johnson noise of the TES and other resistive elements

in the QET circuit, and the phonon noise in the TES. Johnson noise is caused by the thermal fluctuations of

charge carriers in a resistor at finite temperature. For an ordinary resistor, the Johnson noise can be considered

a voltage noise per unit bandwidth vn =
√
4kBTR in series with the resistor, or equivalently, as a current noise

per unit bandwidth in =
√

4kBT
R

in parallel with the resistor (T is the temperature in Kelvin, R is the resistance

and kB is the Boltzman constant). A modified circuitry of the CDMS phonon amplifier is oftentimes used for

derivation of the full expression of the noise contribution. Using the symbols used in the Figure (4.13), the

expression of the noise at the input coil resulting from the Johnson noise of the parasitic resistance and the bias

and shunt resistors is given by the following expression:

i2R(ω) =
4kBTp

Rp

(
Rp

Rp +Rs +Rsh

)2

+
4kBTsh

Rsh

(
Rsh

Rp +Rs +Rsh

)2

+
4kBTb

Rb

(
Rb

Rp +Rs +Rsh

)2
(4.22)

assuming that Rsh ≪ Rb. This expression can further be simplified using the fact that the bias resistor is very
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Figure 4.12: schematic of the CDMS phonon amplifier for the CDMS-II circuit. The transition edge
resistance (TES) RTES ≃ 200 mΩ is biased voltage since it is placed in parallel with the shunt resistor.
The bias condition creates stable, negative electrothermal feedback. The current source is provided by
a large resistor Rb = 1kΩ at room temperature, There is a small parasitic resistance Rp of few mΩ.
The feedback resistor Rfb = 1kΩ converts the current signal to a voltage. The input coil Li = 250 nH
couples the TES current to the SQUID. The integrated amplifier adjusts its output voltage in order to
cancel the flux through the SQUID, resulting in an amplification given by the turn ratio of the input
and feedback coils, Li/Lfb = 10. Figure adapted from [318].

large compared to the other resistances, i.e. Rb ≫ Rs +Rp +Rsh:

i2R(ω) =
4kB

(Rsh +Rs +Rp)2

(
TpRp + TshRsh + Tb

R2
sh

Rb

)2

. (4.23)

Table (4.4) illustrate the approximate values of the resistances and temperature contributing to the Jonhson

noise. For a voltage-biased TES, the noise expression was derived by Kent Irwin [355] and it is given by

iTES =
4kBT

R0

(n/α)2 + (ωτetf )
2

1 + (ωτetf )2
+

4kBT

R0

n/α

1 + (ωτetf )2
, (4.24)

where the first term is the Johnson noise, and the second term is the phonon noise (i.e. thermal fluctuations in

the thermal link between the tungsten electron system and the substrate). The total current noise at the input

coil is the sum of the noise contributions given by the equations (4.23) and (4.24). The entire expression is rolled

off at high frequencies by the self-inductance of the input coil, with a time constant L/Rs. The action of the R-L

circuit is a single-pole low-pass filter, with a gain given by

G2
L(ω) =

(ωL)2

R2
s + (ωL)2

. (4.25)

The current noise in the input coil of the SQUID is rolled off by the L/R (time constant) filter on the

input side of the SQUID where L = 0.25 µH is the self-inductance of the input coil and R is the combined
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Table 4.4: Contribution of various resistances to the noise in the phonon channel. The total noise
including the SQUID noise contribution is about ∼2 pA/

√
Hz. Table from [339].

R(mΩ) T(mK) Noise pA/
√
Hz

Rsh 4 4000 4.2
Rb 20 600 3.6
Rs ∼200 ∼80 4.2

Figure 4.13: The predicted and observed noise in a ZIP detector phonon channel. The noise was measured
during SQUET testing, or in the case of Rs, as inferred using saturating pulses from muon events. The
discrepancy at around 100 kHz indicates an unexpected resonant behavior of the SQUID amplifier, which
extends the bandwidth beyond the L/R cutoff. The bandwidth of the system is set by the amplifier; the
−3 dB point is at ∼160 kHz. Figure from [318].

resistance on the input side, dominated by Rs in the usual mode of operation. The signal-noise ratio is optimal

for Rs = 100− 200 mΩ, resulting in a frequency-dependent current noise in the input coil. The power spectrum

density PSD has a −3 dB point in the frequency range of 65 − 130 kHz, after which it has ∼ 1/f . There is

another noise component which is frequency independent in the output and it is composed of the amplifier noise

and the digitizer noise. It contributes ∼5 pA
√
Hz or less, depending on the digitizer. The total output noise is

dominated by the amplifier and digitizer noise components at frequencies much above 140 kHz; however, at these

frequencies, the signal-to-noise ratio is typically negligible already for most phonon pulses for which the shape of

the noise spectrum is experimentally confirmed.

The intrinsic rise time and delay of a phonon pulse are modified by the bandwidth of the QET circuit and

the SQUID amplifier. The current through the QET is inductively coupled to the SQUID, giving an intrinsic

L/R. Additionally, the RTF board includes a 8-pole antialiasing filter immediately before the signal is digitized.

This filter acts as a second-order Butterworth filter at 335 kHz. The actual bandwidth of the readout circuit

is immensely affected by resonant behavior in the SQUID amplifier, so that the minimum rise time is typically
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faster than L/R, still slower than the frequency of the antialiasing filter.

Falling Edge

When particles such as gammas or WIMPs (neutrons) interact with the phonons sensors of the ZIP-detectors,

they deposit energy. This deposited energy is quickly absorbed by the transition edge sensors (as results of

change of the substrate resistance from the superconducting state to normal as the temperature increased). The

energy is quickly deposited into a TES, it must cool back to its equilibrium temperature by shedding heat into

the substrate. The power dissipated from the TES is approximately constant. In equilibrium, it exactly balances

Joule heating. When the TES warms up, the Joule heating is greatly reduced, so that the TES cools due to the

effect of negative electrothermal feedback (ETF). The thermal time constant of the TES is set by τ0 = C/g [355]:

τ0 =
τ0

1 + α/n
(4.26)

However, it is observed that the falling edges of pulses created by particle interactions have much longer fall

times which presumably indicates that the arrival of the energy at the TES is not instantaneous. There are long

tails, either because some phonons continue to be absorbed in the aluminum fins at late times, or because some

quasiparticles are trapped in the aluminum for a certain amount of times before they can be released and make

it to the W-TES.

To estimate the ETF time, which however is unaffected by the long tails in energy arrival, we have resorting

to using noise glitch events. By averaging over many of these noise glitch traces and fitting exponentials to the

falling tails, the true ETF time of each sensor is determined.

4.5 Tc Tuning and Ib − Is characteristics

The superconducting to normal resistive transition in a W thin-film provides the best fast response thermal sensor.

These are called superconducting transition-edge sensors (TES). CDMS collaboration developed a SQUID-based

voltage-bias readout scheme which takes advantage of negative electrothermal feedback (ETF). The W films

possess two crystalline phases: α and β phases. The α phase has a Tc ∼ 15mK while the β phase has Tc ∼ 1K (0.2

Ωµm and 1 Ωµm of resistivity respectively). The W films produced by the CDMS collaboration are predominantly

α phase (catalyzed by O2 as found by using gas trace analysis in W- sputtering). The Tc values vary between

different depositions, but tend to lie in the range of 100 to 150 mK. In addition, the W films exhibit a Tc variation,

on the order of 20 to 40 mK, across the surface of an individual detector [318].

The transition temperature Tc of the TESs depends on the thickness and phase mixture of the tungsten films.

Although α-W has a low Tc, the long-range structure of β-W allows it to superconduct at higher temperatures,

up to 4 K. Tungsten TESs operated at ∼100 mK must therefore have a mixture of the two phases which requires

careful control of the metallization process and wafer preparation for which the recipe was developed at Stanford
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[357, 358].

A Tc gradient across the surface of a detector causes, in addition to varying noise contributions, a variation in

pulse shape, as a function of position. This results in a position dependent systematic uncertainty in the energy

measurement as well as a degradation in the ability to perform particle identification based on pulse shape. If

the intrinsic properties of the films often vary across the crystal, there will be a Tc gradient across the phonon

sensors of the ZIP-detectors. In order to reduce the effect of the Tc variations a method of tuning the W Tc

was developed [359]. The mechanism behind the tuning lies in the dependence of the critical temperature on the

concentration of magnetic impurities (dopants) in the film [360, 361].

After each detector is fabricated, it is cooled below 50 mK in one of CDMS test facilities: University of

California at Berkeley, University of Minnesota and Queens University in Canada. The fabrication facilities are

University of Stanford, CA and the University of Texas A&M. Each quadrant is characterized by measuring its

Ib−Is characteristics measured as the variation of sensor current as a function of bias current at a fixed substrate

temperature. This is equivalent to measuring the sensor resistance as a function of bias current.

IV curves

IV measurement is an important tool in characterizing the parameters and performance of a TES. It provides

a diagnostic for understanding the the behavior and parameters of a TES as well as extracting its R vs. T

dependence. I − V and Ib − Is measurements are useful in determining the width of the superconducting

transition as well as the variation of sensor current as a function of bias current at a fixed substrate temperature;

his is equivalent to measuring the sensor resistance as a function of bias current.

To describe the behavior of a TES, there usually are three distinct regimes: normal, biased, and supercon-

ducting. Each regime is determined by the voltage bias applied to the TES [362].

1. Normal

In such s regime, the current through the substrate (Is), is extremely large, the W will revert to its normal

state with a resistance of ∼ 1Ω. The bias current Ib will create a voltage across the branch of the TES

so that the current flowing throug the substrate (the TES) is such that Ib Rb = R(RTES , Li) Is since the

normal state resistance is much larger than Rbias and Rsh, so the whole current applied will pass through

the TES, with Is the TES current and R(RTES , Li) is the impedance on the branch which is approximately

given by R(RTES , Li) ≈ RTES

(
1 + 1

2

(
2πf Li

RTES

)2
)
. Given that the ratio Li/RTES ≪ 1, the current

through the substrate will be governed by the following equation

Is =
Rbias

RTES
Ib (4.27)

2. Biased

In the biased regime, the Joule heating generated in the W TES equals the power lost to the cold substrate

due to negative electrothermal feedback. The temperature dependence of the power dissipated by the TES
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into the substrate is given by 4.15. Given the fact that the superconducting transition is few mK wide, it

is a good approximation that the power dissipation is constant throughout the transition.

P =
V 2
b

R
(4.28)

3. Superconducting

If the bias current becomes extremely small such that RTES becomes comparable to Rbias, the TES will

cease to be voltage biased and will become current biased. In such a case, Joule heating will decrease with

the bias current and the TES will quickly cool (snap) becoming fully superconducting. In this state one

would expect Is to be equal to Ib, however, due to small parasitic resistances, Is will be slightly smaller

but linearly dependent on Ib.

Is =
Rbias

RTES +Rpara +Rbias
Ib (4.29)

The TES will remain superconducting as the sensor current is increased, until Is exceeds the critical current (Ic),

at which point the sensor quickly becomes normal.

TES Phase Separation

One phenomenon which can impact the performance of the TES and affect the shape of the IV curve, is phase

separation. It refers to a superconducting - normal phase separation in which a portion of the TES is normal

(resistive) while the remainder is fully superconducting. This effect is often times swept under the rug when we

talk about TES. We have always assumed that the entire length of the TES is at the same temperature and in

the same phase. A possible mechanism behind phase separation in a TES is the balance of heat flow along the

TES with that of heat flow into the substrate. The general idea is that the equilibrium power balance between

Joule heating (at a given Ib and a Tc) can be satisfied by having a fraction of the TES being normal, with T > Tc.

Detailed necessary criteria for phase stability and consequently the solution of the heat flow equations along the

TES are described in [339, 352]. It is believed phase separation is still present in the currently fabricated CDMS

detector; however its effect is minor and not worrisome. However, with the advent of the interdigitated detectors

(commonly referred to as iZIPs), it was observed that the phonon fall times becomes longer than usual. The

falltimes are longer in the iZIPs designs than in our previous designs (CDMS II ZIP-detectors and SuperCDMS

Mercedes Designs or mZIPs). It therefore becomes imperative to check whether the unusual phonon fall times

are due to an increased of TES local saturation (due to ion implantation) if the phase separation is at play [363].
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Figure 4.14: The current bias through the parallel circuit (proportional to the sensor voltage bias) in
Fig 1a versus (a) the current through the W sensor, (b) the resistance of the W film, and (c) the power
dissipated in the sensor. [362].
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Chapter 5

CDMS−II Experiment at Soudan:

An underground Laboratory

5.1 Introduction

Searches for rare events such as dark matter require the experiment to run in a place where backgrounds can be

reduced or mitigated as much as possible. In a shallow experimental site, hadronic component of cosmic rays

[365], which constitutes background for dark matter search, can be stopped by making use of shields. During the

CDMS-I experiment housed at the shallow site at Stanford University, it was noticed that a high flux of muons (∼6

kHz) passed through the veto shield [315]. Most of the neutrons produced by muons were vetoed, but occasionally,

a muon interacted in the walls (rocks) of the cavern to produce an external neutron that passed through the shield

and interacted with the detectors. These external neutrons constitute an irreducible background for dark matter

experiment because they cannot be distinguished from WIMP scatters on an event-by-event basis. Moreover,

they can be statistically subtracted, since some of them scatter in multiple detectors, and they produce more

frequent above-threshold events in Si than in Ge. Background substraction, however, demands the experimenter

to have a very good understanding and characterization of the experimental backgrounds in order to subtract

them from any signal excess that presumably can become a WIMP signal.

The interaction of energetic cosmic-ray induced muons with the cavern rock and materials of the experimental

setup can generate neutrons at MeV energies which can produce keV nuclear recoils in the detectors. The

neutrons generated through spallation (muon-induced nuclear disintegration) or various secondary processes

within muon-induced hadronic and electromagnetic showers. At Soudan underground facility, at depth of 2090

m.w.e, corresponding to the rock overburden at the experimental site the muon flux is reduced by a factor of

∼ 5× 104 with respect to the surface flux. Nonetheless the remaining muon flux (< 1 muon per minute interacts
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in the experiments veto shield) produces a possible neutron background which must be contained.

Most WIMP searches use a series of active and passive shields. In addition to this shielding, the experiment

is brought deep underground in order to reduce the flux of cosmic ray muons, Figure 5.1.

Figure 5.1: Flux of muons (dashes) and muon-induced neutrons (solid) as functions of depth underground,
measured in terms of the equivalent thickness of water in km below a flat surface that is needed to provide
equal shielding. Effective depths of primary underground facilities for dark matter experiments are listed.
Neutron background resulting from a given fast neutron flux is highly dependent on the experimental
setup and materials, the curve of neutron flux (still solid) referred to the right-hand axis shows the limit
on sensitivity due to neutron backgrounds. Figure from [366].

5.2 Soudan Laboratory

The CDMS-II experiment is located at the Soudan mine in northern Minnesota. The mine was exploited for iron

by U.S. Steel until its closure in 1962 when it was handed over to the state Department of Natural Resources

which partnered with the University of Minnesota to make part of the mine available to physics experiments as

the Soudan Underground Laboratory. The CDMS-II experiment laboratory is in Level 27 (the same level as the

MINOS neutrino oscillation experiment), the deepest level of the mine at 2341 feet (714 m) below the surface,

corresponding to an effective depth of 2090 mwe (meter water equivalent) [317]. Figure (5.2) show the Soudan’s

headframe mine. An elevator runs twice daily (morning around 7:30am and evening at 5:30) am in order to take

people down and up.

The great depth of the Soudan site makes it extremely attractive to many forms of low-background experi-

ments particularly searches for rare events. Its depth reduces the cosmic-ray muon flux by a factor of ∼50,000

from its value at the surface. This reduction in muons is accompanied by a corresponding reduction in muon-

induced particle showers, particularly the neutrons generated in such showers. Since neutron-induced nuclear

recoils cannot be distinguished from their WIMP-induced counterparts, direct detection experiments at great

depth have much lower background rates (and hence greater sensitivities) than similar experiments conducted at

the surface. As an example, the sensitivity of the first CDMS-II run at Soudan in 2003 was an order of magnitude
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Figure 5.2: Entrance to the headframe of the Soudan Underground Laboratory.

greater than that of CDMS-I last run at Stanford Underground Facility (17 m.w.e.) in 2001 [315].

Muons are the most numerous energetic charged particles at sea level. A charged particle cannot avoid losing

energy by ionization. As it passes through matter the charged particle interacts with the electric fields and

typically knocks loose some of the loosely bound outer electrons. A muon interacts very little with matter except

by ionization. Because of this, muons can travel large distances and commonly reach the ground. However, they

lose energy proportional to the amount of matter they traverse. The energy loss is proportional to the density

(g/cm3) times the path length (cm) [370].

Muons lose energy at a fairly constant rate of about 2 MeV/g/cm2. Since the vertical depth of the atmosphere

is about 1000 g/cm2, muons will lose about 2 GeV due to ionization before reaching the ground. The mean

energy of muons at sea level is still 4 GeV. Therefore the mean energy at creation is probably about 6 GeV.

The atmosphere is low dense (tenuous) at higher altitudes that even at 15, 000m it is still only 175 g/cm2 deep.

Typically, it is about here that most muons are generated. Muons arrive at sea level with an average flux of

about 1 muon/cm2/min. This is about half of the typical total natural radiation background [372].

If muons are generated within a cone-shaped shower, with all particles staying within a certain angle θ

(usually about 1 degree) of the primary particle’s path, the flux should be corrected by the cone cross-section by

multiplying it by a factor equal to 1/ cos(θ) [373].

5.3 CDMS-II Facility at Soudan

The Soudan 2 cavern was excavated in order to accomodate the special infrastructures needed to support CDMS

II experiment [317]. The detectors are housed in a cold enclosure called the icebox connected to a dilution

refrigerator by a cold stem (c-stem) and to a front-end electronics system by an electronics stem (e-stem). All of

these sit in a class-10000 clean room with receiver filter shielding to provide a low-electrical-noise environment.

The cryogenic control systems developed by the cryogenics dark matter search (CDMS) collaborator allow
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Figure 5.3: Schematic layout of the 27th level of the Soudan Underground Laboratory. The CDMS-II
experiment is located and installed in the Soudan 2 Cavern [317].

the experiment to run in a stable a stable low-noise, low-background mode within the access constraints of the

underground laboratory at Soudan. However, cryogenic systems demand a wide array of specialized support

equipment which also presents a certain number of challenges. To maintain the experiment at low temperature

(millikelvin), the cryogenic systems require equipment such as pumps, plumbing, thermometry, electronic control

systems, etc. This equipment is housed on a cryopad, as shown in Figure 5.4, which is adjacent to the RF clean

room. However much of this equipment produces electrical noise and microphonics which can be picked up in

the signal measured by our data acquisition system (DAQ) and if care is not taken, one may be fooled by it.

To reduce the noise production, the equipment used needs to be isolated from the detector electronics as much

possible.

In addition to the required isolation of the equipment, a careful choice of low-activity materials has to be

made since most traditional low-temperature and high-vacuum equipment (components) are generally not made

of radioactive free materials. For example, a dilution refrigerator is built primarily of steel, generally with an

unacceptable level of uranium, thorium, and 60Co contamination. Therefore, the CDMS-II experiment must

carefully choose the kind of equipment and materials to use in order for radioactive background level requirement

to be met. Due to the limited access to the underground laboratory at Soudan, physicists have access from

7:30 a.m. to 5:30 p.m. Monday to Friday in order to be able to continue data taking and cryogenic operations

during the time that no human has access underground, the whole system (cryogenic control and data taking)

is automated by implementation of monitoring softwares to supervise and and control the experiment in order

to keep the fridge operating without human intervention. This implementation made it possible for the shifter

experts to remotely monitor and control the run from a surface control room. The automated control system has



146 Chapter 5: CDMS−II Experiment at Soudan: An underground Laboratory

operated nearly perfectly at Soudan during the 5 CDMS-II runs.

Figure 5.4: Left: CDMS-II cryogenics workspace: the cryopad, adjacent to the CDMS clean room at
Soudan. It’s in this place that the dilution refrigerator, the monitoring computers, the intelligent gas
handling systems (IGH) as well as the nitrogen dewars and helium dewars needed for the cryogenics are
located. Right: Soudan 2 cavern taken from the mezzanine level. The RF room is visible on the far front
left, and the CDMS-II office space on the back front .

5.4 Cryogenics

The CDMS experiment achieves its low base temperature (∼ 50 mK) required for the operation of the ZIP-

detectors by cooling all the towers housed inside a cold compartment called the icebox. The base temperature

is achieved by using a 400S 3He-4He dilution refrigerator, from Oxford Instruments, which delivers a cooling

power of 400 µW at 100 mK and a base temperature below 10 mK with no external load.

Since the fridge is made of steel which is not radio-pure and contains some residues of Uranium, Thorium and

60Co, it is mounted outside the shielding on top of set of structures connecting various temperature stages to the

icebox. The thermal coupling to the dilution refrigerator is provided by a set of concentric copper pipes, called the

cold stem or c-stem, which couple each of the fridge’s temperature stages to the concentric low-activity copper

cans of the icebox. The dilution refrigerator is supported by vacuum pumps, plumbing, and cryogens (liquid

helium and nitrogen) located on the cryopad. Opposite to the c-stem we have the E-stem (electron stem) which

carries the detector stripline wiring from the icebox to the E-box. The E-box is a box-shaped structure which

connects the striplines to external cabling through an array of vacuum-sealed connectors (called D-connectors)

[315].

To maintain the purity of the 3He−4He gas mixture in our cryogenic system, the gas is circulated through

a series of regularly cleaned cold traps. The loop is controlled and monitored by an instrument unit referred to

as the Intelligent Gas Handling (IGH) system which is also operated remotely by a RS-232 serial port running

virtual instruments LabVIEW software to communicate with the DAQ (Data Acquisition) System. The IGH
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computer is equipped with remote desktop software that allows it to be accessible from the surface building Users

divert the mixture into or out of the storage keg and the circulation pumps, as well as turn on (off) the pump on

the 1K pot to prevent damage in runaway situations. The IGH also controls the heaters on the mixing chamber,

still and helium bath (although they are unused during ordinary running). The IGH also allows monitoring, but

not control, of fridge temperatures and cryogen levels. The cryogenic real-time monitoring status is published to

the internal web page: trending plots and long-term historical.

Figure 5.5: View of CDMS-II gas mixture circulation. The gas is regularly circulated through a loop in
order to clean up the cold traps. The loops are controlled and monitored by an instrument called the
Intelligent Gas Handler (IGH)

.

The circulation of the 3He-4He mixture is driven by a Pfieffer rotary pump and a Roots blower connected

in series, Figure (5.5). Before entering the fridge the mixture is circulated through a series of three cold traps

to clean it of impurities: a liquid nitrogen cold trap on the cryopad, an external liquid helium cold trap on the

cryopad, and an internal liquid helium trap within the helium bath of the refrigerator itself. All three of these

traps are cleaned regularly during normal operation, generally on a monthly interval. An Oxford Instruments

IGH unit controls and monitors the 3He-4He circulation loop. The IGH regularly reports pressures, valve settings,

and cryogen levels to a dedicated Macintosh computer, which publishes this information to a web site for remote

monitoring [318].

A Moore APACS automated industrial control system, located on the cryopad with the IGH and the mac

computer control housing the virtual instrument LabView codes, monitors and directs the numerous aspects of
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cryogenic operations, such as the refrigerator’s daily refilling of liquid helium and nitrogen baths. Refills occur

automatically at a user predefined time each day, but can be manually initiated if necessary. The automated

APACS system keeps the helium and nitrogen reservoirs and the cold trap dewars full and adjusts a needle valve

to control the filling rate of the 1K pot as needed (needle valve adjustment can also be done manually by the

shifter when it is required to do so) rendering our dilution refrigerator system capable of running over weekends

with no human intervention, and to reach a safe state if anything unexpected should happen overnight. APACS

also regularly records temperatures, pressures, flow rates and other quantities; this provides a complete historical

record of the cryogenic operations that can be accessed anywhere over the Internet through custom java graphical

user interfaces (GUIs).

The CDMS-II APACS was implemented with the ability to communicate with the DAQ in the situations

when the former needs to take some action while the latter is running and taking data. For instance, before

starting a cryogen transfer, APACS notifies the DAQ and waits until the later stopes the data taking. After the

transfer has finished, APACS signals the DAQ that it is safe to start taking data again and the DAQ will then

automatically resume taking the data. This level of automation and intercommunication between the APACS and

the DAQ makes our system able to run without risk of acquiring noisy data that could result from microphone

and elevation of the temperature due to the transfer.

Figure 5.6: CDMS-II cryogenic control system at the Soudan Underground Lab. Components inside
the dashed box are physically inside the mine. The remote Intellution nodes are the primary means of
remote control, with the surface IGH Mac for controlling mixture circulation. Figure from [318].



Chapter 5: CDMS−II Experiment at Soudan: An underground Laboratory 149

Immediately after successful installation of the CDMS experiment at Soudan, the collaboration increased

the number of ZIP detectors from 6 (as during the CDMS-I experiment at Stanford underground Facility) to 30

(at Soudan mine) detectors, stacked in 5 towers. Given the number of (additional) towers (each containing 6

ZIP detectors), the detector temperature quickly rose from the transition temperature (Tc ∼ 45mK) to ∼ 4K

due to extra heat load. This extra heat was mostly dumped out by radiation from the additional FETs and

conduction through striplines. Our thermal modeling showed that the heat leakage through the towers was

sufficient enough raise the detectors above the super conducting transition temperatures, rendering many phonon

readout channels inoperable. As a remedy, a Gifford-McMahon cryocooler was added as a second refrigeration

system. The cryocooler was mounted on the E-Stem, driven by an external compressor outside the clean room.

Helium gas is driven to the head at high pressure (∼20 atmospheres) and compression and expansion of the

piston providing us the cooling power needed to maintain the experiment at low base temperature. This cooling

unit has two cooling stages, cooling both the 77K and the 4K stages of the E-stem, intercepting the heat load

from the striplines to prevent large temperature excursion (or temperature gradient) across the 4K layer. The

cryocooler is connected to the E-Stem through flexible copper couplings designed to maintain excellent thermal

conductivity and limit the transmission of mechanical vibration.

Figure 5.7: CDMS II shield, E-stem and E-box (left to right), with detector cables unplugged to the
bulkhead. The double cylinder attached vertically to the E-stem is the cryocooler head, which normally
is connected to He flow lines. Structures bellow are used to aid in vibration isolation along the E-stem.
Figure from [315].

5.5 Shieldings

To reduce the background rate, the CDMS-II icebox is surrounded by several layers of shielding. The CDMS setup

consists of an active shielding component to suppress residual cosmic-ray interactions and a passive component
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to shield against natural radioactivity. Due to the fact that radioactivities induces low charge yield events (betas

or surface events) are extremely problematic, it is desirable that the detectors are exposed only to radioactive

backgrounds from inserted (calibration) sources as well as radioactivity from the immediate surrounding materials

and the detectors themselves.

5.5.1 Passive shield

The CDMS-II passive shielding consists of an outer layer of polyethylene, two layers of lead and an inner layer of

polyethylene. The purpose of passive shielding is to moderate the gamma-ray and neutron backgrounds. This is

achieved at the Soudan Underground Laboratory site by a use of tightly packed layers of lead and polyethylene.

The outer polyethylene layer is composed of one inch thick slabs that are designed to stick around the outer lead

layer. The outer poly layer (∼40 cm thick on the sides and ∼40.6 cm thick at the top and bottom) serves to

moderate incident low-energy neutrons sufficiently to prevent nuclear recoils above the detector energy threshold.

Several holes in the outer lead and polyethylene shields allowed access to the interior of the apparatus.

Additionally, there was a small hole with a removable plug in the south side of the outer lead shield, allowing

exposure of the detectors to gamma and neutron calibration sources (133Ba for gammas and 252Cf for neutrons).

To reduce the ambient gamma flux from radioactivity outside of the experimental apparatus, a lead shield is

used and it is composed of inner and outer layers of lead surrounding the detector’s cylindrical walls. The outer

layer consisting of low-activity lead has a thickness ∼ 17.8 cm on the top, bottom and the sides. The inner lead

layer with a thickness of 4.4 cm on the top, bottom and the sides is composed of ancient lead from a French ship.

210Pb, the naturally occurring radioactive lead isotope with the longest half-life of 22.3 years, is no longer present

in the ancient lead. The ancient lead is used to attenuate gamma backgrounds due to radioactive isotopes in the

outer lead.

The inner layer of polyethylene shielding is inside the inner ancient lead and provides an additional neutron

moderation. The inner poly (10 cm thick on the side, 7.6 cm thick on the top, and 10.2 cm thick at the

bottom) also suppresses the cosmic-ray induced neutrons in the lead. The ordering of the passive shielding was

determined by Monte Carlo simulations to be optimal in terms of suppression of neutron background. Inside

the inner polyethylene layer, a can of muon-metal surrounding the detectors is inserted in order to reduce the

external magnetic field that might affect the performance of parts of the cold electronics due to noise that could

eventually be produced by the magnetic flux in the vicinity of the detectors. If this noise is not reduced, it would

be mimicked with the phonon and charge readout channels. The purpose of the mu-metal is to further reduce

the effect of the earth’s magnetic field (by a factor of ∼10 to 100) on the SQUIDs, Figure (5.10).

Although the ZIP detectors are are kept under vacuum, the air radon level in the Underground Laboratory at

Soudan air is relatively high: ∼700 Bq/m3. Although there is adequate shielding from air outside the shield, any

substantial amount of air inside the shield will increase the gamma background rate significantly. Therefore, we

were forced to purge continuously with dry nitrogen any mine air between the outer copper can and the mu-metal
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Figure 5.8: CDMS-II shielding configuration. From the inside to the outside, the detectors were sur-
rounded by an inner polyethylene shield, an ancient-lead (taken from a sunk french ship), a copper
cryostat (Icebox), an outer polyethylene shield, an outer lead shield, and a plastic-scintillator muon veto.
The Icebox connected to the dilution refrigerator via a cold stem (C-stem) that penetrated through the
northern side of the outer shielding layers. Also shown is the region of the outer lead shield which gives
access to the interior. Figure from [315].

Figure 5.9: Top view of the active veto and passive shielding. From the outside to the inside the figures
show the veto panels (light blue) which enclose the outer polyethylene shield (green), the outer low
radioactive lead shielding (gray), the inner ancient lead shield (light gray), the inner polyethylene shield
(green) and finally the mu-metal shield (light metal colored). The E-stem and C- stem (brown) pass
between the veto panels and the passive shielding and connect to the mu-metal shield. The C-stem
connects to the dilution refrigerator (dark blue) providing the thermal contact between the cold layers
and the fridge. Figure from [317].

shield.
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Figure 5.10: View of the CDMS-II packed layer of passive shield: the lead and poly. The lead is used as
shield for gamma background resulting from radioactivity, the polyethylene is however used for modera-
tion for neutrons produced by fission decay and from (α,n) interactions resulting from Uranium/Thorium
decay chain. The mu-metal is a thin shell of aluminum that surrounds the inner-most copper can of the
icebox. It’s purpose is to reduce the effect of the earth’s magnetic field (by a factor of ∼10 to 100) on
the SQUIDs. Figure from Jodi Sekula’s talk at TAUP.

5.5.2 Active shield: muon scintillator veto

The purpose of the active muon veto system, made of plastic scintillator, is to reject the muon flux that is not

stopped by the rock overburden. Since muons could interact with nuclei in the passive shielding and produce

neutrons whose interaction with the ZIP detectors gives the same type of signature as a WIMP-induced recoil.

Figure 5.11: View of the CDMS-II active shield. The black panels in this picture are the muon veto made
of plastic scintillator covering all the sides of the passive shield. The icebox housing the ZIP-detectors
and the cold hardware is at the center.
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The CDMS-II muon veto consists of 40 plastic scintillator panels (BICRON BC-408) surrounding the inner

passive shielding. The panels are arranged in a way that adjacent panels have a slight overlap to cover the whole

experimental setup. Acrylic light guides direct the scintillation photons in the panels to the attached photo

multiplier tubes or PMTs (Hamamatsu R329-02). The scintillator panel and light guide are wrapped in mylar

foil for light isolation. The veto system also includes a source of blue light, transported to each panel with an

optical fiber. Periodic pulsing of the blue light source (between data acquisition runs) allows calibration checks of

the PMTs. Details about the architecture and design of the veto can be found in Ray Bunker’s PhD dissertation

[50].

Since a minimum ionizing muon typically deposits 2 MeV/g/cm2, muons deposit approximately 10 MeV in the

5 cm thick veto panels which have a density of 1.03 g cm−3. A muon passing through our scintillator generates

approximately 100 pC of collected charge (after amplification) and the veto efficiency is 99.9616±0.0035
0.0036% (or

99.9225±0.0060
0.0062% depending on the rejection threshold chosen) [317, 374].

5.6 Cold hardware

The CDMS-II icebox contains the cold hardware necessary to operate the experiment at a low base temperature.

The whole assembly, Figure (5.12), is mounted by a fixture designed to minimize the heat conducted and radiated

into the cold stages, allowing the FETs to operate with suitably low noise. The cold hardware components are

constructed with low radioativity materials namely kapton and a low-activity custom solder. Each tower of the

CDMS-II detectors contains a stack of 6 detectors hanging in the middle of the icebox can. Their electrical

connection is through an electronic board that we referred to as detector interface board (DIB) and side coax

board. Above the stack is a heatsinking assembly (known as the tower), and above the tower sit the cold hardware

electronics, the field effect transistor (FET) and superconducting quantum interference device (SQUID) boards

both together forming the SQUET board, Figure (5.12).

5.6.1 Detector housing

Every single ZIP detector is mounted in a hexagonal copper housing, and supported with three cirlex1 clamps on

the top face and three on the bottom face. The ZIP detector housing is open at the top and bottom, as shown

in Figure (5.13), with a vacuum gap of 2 mm between detectors to allow particles to multiply scatter in several

detectors. Such events are easily be tagged and rejected by a multiplicity cut during the analysis.

Each detector is connected to the readout electronics through a small DIB situated on one edge of its housing.

The DIB feeds into the end of a side coax and couples the detector through ten Aluminum wire-bond connections.

The DIB also houses two infrared LEDs for clearing trapped charges in the detectors. The LED shines on the

phonon face of its own detector and the charge face of the neighboring detector. The LED flashes periodically in

1A circlex is a substrate that helps block the IR radiation because it is capable of absorbing IR [175].
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order to maintain the charge collection over a certain period of time. The length of time over which the charge

stability is still acceptable is normally determined by a study done with the calibration data. The charge stability

study is referred as neutralization, which I will describe in bit more detail in the section (7.3.4).

Figure 5.12: Overview of cold hardware, detector stack, and icebox can. The configuration shown is for
the Stanford icebox. At Soudan the inner lead shield is absent, and the towers are placed closer to the
edge of the can (with one exactly in the center). Figure from [375].

5.6.2 Tower

A Tower is a hexagonal copper structure that supports the detector stack and connects it electrically to the

SQUET (SQUID+FET) cards. The Tower consists of four copper stages, each made of material heat-sunk

to one of the icebox cans consisting of four thermally isolated sections separated and supported by graphite

cylinders, which supports the four stages, holding them separated without excessive heat conduction. Each face

of the tower carries the bias and signal wires of one detector, connecting the side coax at the base temperature

stage to the SQUET card mounted at 4K. The wires are heat-sunk to three of the temperature stages (base, still,

and 4K) and held under tension in vacuum channels along the tower faces to limit their sensitivity to mechanical

vibration.
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Figure 5.13: ZIP housings pictured with metallic placeholders of the mass (Ge) and outer shape of ZIPs.
Right: Detector Interface Board. Figure from [375].

5.6.3 SQUETs

A SQUET (Figure 5.14) is a combination of two electronic circuit boards that houses the SQUID arrays for

phonon signal amplification and the first-stage FETs for charge signal amplification for the channels of a single

detector. The FETs are supported on a Kapton membrane within a copper gusset on the primary card. This

enables the FETs to self-heat to ∼140K for nominal operation, while still being mounted to the 4K stage. The

SQUID card is heat sunk to an extension of the still layer of the tower to improve SQUID performance and reduce

the Johnson noise of the shunt resistors. The two cards are joined by a flexible cable composed of twisted-pair

superconducting niobium wires sandwiched between layers of Kapton tape. The SQUID and FET cards are

connected by a flyover cable, each tower contains one SQUET card sitting on the top of the tower. The SQUET

cards reside at the 4K stage at the top of the tower. The wires connecting the SQUETs and the side coaxes

reside in vacuum coax channels, are tensioned to reduce microphonic noise, and are heat-sunk along the way to

reduce thermal load on the side coaxes at base temperature.

Figure 5.14: Left: is the SQUET circuit board layout. Right: show the SQUET card, a combination of
both the SQUID and FET cards. Figure from [375].
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Figure 5.15: Left: CDMS II tower, consisting of four isolated metal stages, and stretched wires on the
sides to provide connections between SQUET cards on top and the side coax mill-max connectors on the
bottom. Right: The cross-sectional view of the stack (composed of 6 ZIP-detectors) inside the icebox
can. Dennis Seitz.

5.6.4 Side coax

CDMS-II Detectors are normally electrically connected to the base temperature stage of their tower by a custom

connector card called a side coax (Figure 5.16). A side coax also houses the coupling capacitors (Cc) and bias

and feedback resistors (Rf ) for the charge channels of a detector, to minimize Johnson noise. Side coaxes for

CDMS-II were made in six different lengths to reach each of the detector’s positions in the stack.

Figure 5.16: CDMS side coax used in the ZIP detectors. Figure from [375].

5.6.5 Stripline

The signal created by particle interactions is carried to the electronic box through the cables called striplines

(Figure 5.17), which are flexible, 2.5 cm wide, 3m long made of copper-kapton to limit heat flow between the

room temperature and the 4K stage. These cables are heat-sunk at 4 ]textK and 77 ]textK, and pass through a

copper radiation shield as they proceed through the electronics stem and into the breakout box. The cold end

of a stripline attaches to a SQUET card, and the warm end attaches to a vacuum D connector in the E-stem

breakout box. The striplines are flexible enough to turn over a radius of a few inches, but cannot easily cross over

each other. Therefore, it is necessary to arrange them with the correct lengths to reach their target SQUET cards

with no crossings. This arrangement is fixed before the striplines are inserted, as the striplines are clamped into

the thermal intercepts and a gamma radiation intercept before the entire bundle is pulled through the electronics

stem.
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Figure 5.17: CDMS-II tower configuration of the Soudan icebox, showing the SQUETs and their respec-
tive striplines winding around and exiting the icebox through the e-stem. Stripline cables are made of
copper-kapton to limit the heat flow between the the room temperature and the cold hardware.

5.7 Warm electronics

The CDMS warm electronics is located in the RF room at room temperature. The electronics are used for the

readout of the signals from the detectors and recording of the data; they are placed outside of the experimental

clean room, to allow easy access to the different components and most importantly to control the experiment.

Some of the many of these warm electronics are visited below.

5.7.1 Front End Boards (FEBs)

Signals coming from the E-box pass through cables to a rack of front-end boards (FEBs) in the RF room (there

is one front-end board for each detector). Each FEB is a custom-made circuit board carrying the amplifiers

and other components of the ionization and phonon readout circuits: FET and SQUID boards. The FEBs also

contain circuits to control biasing of the detectors, cold amplifiers, LEDs flashes for neutralization, etc. Signals

are brought to them from the e-box by 50-wire cables with detachable connectors. The processed signals are then

sent to the electronics room for triggering and digitization. The FEBs are operated from the electronics room

by a fiber-optic-linked GPIB controller. A fiber-optic GPIB extender connects the GPIB Interface Box to the

data-acquisition computers, electrically isolating the front-end digital control [177].

Figure 5.18: CDMS-II frond-end boards in the electronic room.
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5.7.2 Receiver Trigger Filter Boards (RTFs)

Once the phonon and charge signals from the FEB are amplified, they are sent through the RF-room (electronic

room) according to the logic implemented in receiver trigger-filter (RTF) board in the electronics room. The

RTF board conditions the FEB signals for digitization by baseline adjustment and applying a 336 kHz 2-pole

Butterworth anti-aliasing filter. A Butterworth filter has a frequency response which is maximally flat in the

passband (below a pre-determined cut-off frequency), and decays (rolls off towards) to zero at the frequencies

above the cut-off. The filtered signals are then used to generate five types of triggers for the digitizers which are

hard-coded in a Trigger Logic Board (TLB); the TLB is responsible for generating the experimental trigger from a

configurable pattern of low- and high-level phonon and ionization hits whenever certain programmable conditions

are satisfied. The primary trigger, Plo, is issued when a comparator (from a Lecroy NIM crate) determines that

the sum of the four phonon pulses exceeds a pre-defined threshold set in software and dictated by the TLB,

generally 3-4mV. Phi is similar but has a larger threshold (∼500 mV), while Pwhisper has a lower threshold and

it’s intended for tagging multiply-scattered events. Similarly for the charge ionization signals, we define Qlo and

Qhi which are similar to Plo and Phi that uses the summed charge signal to generate triggers. Although all these

threshold are defined, the CDMS trigger logic is entirely based on Plo. We set our trigger threshold in TLB such

that the DAQ trigger whenever the energy deposited exceed the already pre-defined Plo threshold.

5.8 Veto Triggers

Similar to the phonon and charge signals, the veto signals are transported from the veto panels to the electronics

room (RF room) where their triggers are conditioned and controlled by LeCroy discriminators which compares

the PMT pulse heights to a software pre-defined threshold and issue triggers for veto panels whose signal exceeds

threshold. Scintillation light from particle interactions in each of the veto pannel counters are detected with two

photomultiplier tubes (PMTs) optically coupled to bars of wavelength shifter. The PMT signals are conditioned

by stretching them from ∼ns scales to ∼ µs scales by a special filter network before being sent to the DAQ

hardware. A ∼30 mV discriminator converts the analog veto signals to logical pulses that are continuously

monitored by a history-buffer unit. The resulting record of muon-veto hits is recorded to an event record

whenever a ZIP-detector causes an experimental trigger. The veto signals are also connected to a variety of

other electronics that do not contribute directly to ZIP-detector event records. These are used to monitor each

counters event rate as a function of time, control each PMT’s bias voltage, and diagnose and tune the PMT gains

[50, 318].
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5.9 Data Acquisition Hardware

Upon an interaction, a global trigger is issued to record the event and veto traces to disk whenever any of the

following conditions is satisfied:

• the Plo trigger for any ZIP is issued by an RTF board;

• The LeCroy discriminators issue triggers for two or more veto panels, and finally;

• the DAQ software issues a random trigger for purposes of monitoring the noise level.

During the 252Cf calibration run or during a WIMP-search run, when a global trigger is received, digitized

traces from the phonon and charge channels of all ZIPs as well as the 40 traces from the veto panels are recorded

to disk. However, during 133Ba-calibration run which is selective readout, only digitized traces from the phonon

and charge channels of ZIPs that had Plo triggers are recorded (the veto traces are not recorded during the

selective readout in the 133Ba-calibration run).

Immediately after the issuance of a global trigger, the six readout channels of each ZIP detector are recorded

by an array of 14-bit Struck SIS 3301 analog-digital converters and written to a disk located at the Soudan mine.

Later on, an automated perl script copies the data to a Stanford University disk. The digitizers operate at a

100MHz sampling rate, but 80-sample sequences are internally averaged to yield an output rate of 1.25MHz with

a corresponding reduction in digitizer noise. Each digitizer records a 2048-sample (1.6ms) trace. The trigger

itself occurs in the 512 th bin, so each trace includes 409µs preceding the trigger. Photomultiplier signals from

the 40 scintillator veto panels are processed by an analogous set of boards. The raw veto signals are extremely

short in duration (∼ 10 s of ns); these signals are reshaped by a pulse-stretching filter network before digitization.

The reshaped veto pulses are recorded by an array of 12-bit Joerger VTR812 ADCs, each acquiring 1024 samples

at 5MHz. A set of comparators also issues trigger signals from the veto shield; these are fed to the TLB for

evaluation of global triggers. All of the above trigger signals (phonon, charge and veto) are also recorded by a

set of Struck SIS 2400 time-to-digital convertors (TDC’s). These boards record the time stamps of each trigger

in a circular buffer with 1µs resolution. A portion of this trigger history buffer is recorded along with each event

written to disk, giving a record of the several triggers immediately preceding and following the global trigger.

Finally, a slow DAQ monitors all ZIP and veto channels, recording signal offsets and mean trigger rates

once every minute. The former monitor the evidence and track loss of SQUID flux lock point 2, and the latter

helps monitoring of changes in detector noise.

2The phonon DC offsets, the difference between the raw phonon trace’s baseline and zero, are a measure of the SQUID
and TES stability. If the offset is greater than the value of one flux quanta, approximately 0.2V, it indicates that the
SQUID has likely lost its stable lock point compromising the SQUID noise performance and possibly the phonon time
measurement (due to lower bandwidth). These DC offsets are measured and recorded for each detector channel every
minute. During each data set the offset for each detector channel is averaged. If at any point during the data set a detector
channels DC offset is greater than 0.2V, the data set is paused and all of the SQUIDs are relocked to restore stable SQUID
operation.
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5.10 Data acquisition software

The CDMS-II DAQ software has two components: the DAQ servers, which run in the mine and the DAQ GUI,

which can be used anywhere; the two software packages are detailed in the doctoral dissertation of Joel Sander

[429].

The CDMS-II DAQ is controlled by a custom-written software package of programs in Java and C++ and

run on a small cluster of computers in the electronics room. Different components of the DAQ are controlled by

dedicated pieces run on their own servers, but with great flexibility in adding or removing components. This is

facilitated by the CORBA network messaging framework and Java Remote Method Invocation for communication

between modules.

All the different modules have user interfaces for control by the operator, however the main interface is called

the RunControl which enables the control and monitoring of the experiment’s runs. The RunControl is a Java

cross-platform network application that can control the entire experiment over the internet. The DAQ has a

limited locations from which users can access the RunControl and monitor the progress of the experiment in

the mine. These locations are: the surface building at Soudan, and a few other super users located anywhere,

especially at Fermilab, Texas A&M and University of Evanville where some of our DAQ experts are.

The DAQ GUI allows users to see the DAQ state, monitoring information, and trending cryogenic data.

Users in this observer mode cannot control anything, beyond posting messages that are visible to all users. The

DAQ GUI can also be run in a trusted mode from a few locations in the mine and at the surface. This allows

runs to be started and stopped, and all run configurations to be changed. Operators taking shifts at Soudan can

fully control the experiment through the GUI, which communicates with the servers using Java remote method

invocation (RMI) and CORBA protocols. The DAQ also controls the automated routine operations which require

little or no operator intervention. Data taking is automatically stopped before a cryogen transfer begins, using

the signal received from APACs, and resume the data taking after the end of the transfer. The detectors and

DAQ hardware are configured at the start of each run using stored settings. LED flashes are also performed

periodically, in order to maintain good neutralization and ensure full charge collection.

There is a deadtime of about ∼50 ms required for the DAQ for acquiring traces from the digitizers and storing

them after a global trigger, allowing a maximum event rate of 20 Hz, far lower than the ∼0.3 Hz background

rate during WIMP-search running. In selective-readout mode for 133Ba calibration, this deadtime falls to ∼15

ms, enabling event rates as high as 70 Hz.

5.11 Data processing

The CDMS raw event data is acquired by a LabView software implemented and serviced by our automated data

acquisition system (DAQ). The acquired data are first stored to local disks in the mine and as each raw event file

is completed, a set of perl scripts compresses the file and writes a copy of the compressed file to a digital backup
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tape located in the mine and at the surface facilities. There is another script that transfers the the raw data

over the internet to Fermilab for complete data processing on the FermiGrid cluster in order to generate reduced

datasets that the users can analyze for WIMP search. Separately, another automated perl script monitors the

disk space in the mine to less than 90% full. If the disk reached 90%, the script will automatically transfer the

data to FermiLab and Stanford cluster and will automatically empty out the disk space for the new data to be

saved.

Most of the reprocessing tasks starts when the data is transferred at Fermilab. The raw data undergo several

stages of data processing on Fermilab’ss computing cluster before it becomes available for analysis. The first stage

for the CDMS raw data processing consist of generating detector’s quantities which contains information relative

to the trigger settings, event traces, veto activity, etc. These quantities are converted into reduced quantities

(RQs) which still are non-physical and not calibrated.

In the history of the CDMS experiment, the data processing pipe line was previously entirely a MATLAB

reprocessing package called DarkPipe which was used for data processing until the last CDMS Soudan runs

(called c58). This package was completely re-written in favor of a streamlined, C++ package called BatRoot,

the CDMS Soudan data processing pipeline is shown in Figure (5.19). BatRoot combined all the old algorithms

with new time-domain fitting routines from an alternate pipeline called PipeFitter. The advantage of the new

package was its modularity in adding new experimental algorithms, and its ability to produce RQs in ROOT

Ntuple format, a better standard ROOT (or C++) format for handling large datasets than the MATLAB’s data

format.

After the production of the RQs, the second step in the data processing is the calibration of the charge and

phonon RQs. The calibration of the RQs results in physically meaningful quantities called relative RQs (RRQs).

The energy calibration coefficients are calculated first for charge and then later for phonons. These calibrations

are used by BatCalib in order to produce the physical meaningful quantities (RRQs) needed for next level in the

data processing. The position dependence removal normally intervene at this stage using our position correction

scheme to generate the final physical quantities that are most important for the WIMP search analysis.
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Figure 5.19: Last CDMS-II Soudan’s run data processing pipeline. The Darkpipe processing package, a
MATLAB based software was replaced by the BatROOT, a streamline C++ software developed at the
end of the CDMS-II experiment. Figure adapted from [316].
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Chapter 6

Position Reconstruction and Energy

Calibration.

6.1 Introduction

The energy response of ZIP detectors is determined in-situ by using radioactive calibration sources. These

calibration sources are used to determine the amount of energy deposited in a ZIP detector as well as the

position of the event, i.e. the location where the interaction took place. For energy calibration, 133Ba source is

used, which is a gamma source with strong lines at 275, 303, 356 and 384 keV. For WIMP-like interactions, a

252Cf-neutron source is used. The calibration sources are inserted into the experimental setup, outside the icebox

copper cans, using two feedthroughs along the c-stem and the e-stem. In addition to the energy calibration, the

detector response shows a position dependence with event location caused by the geometrical properties of the

crystals. For a uniform response of the detectors, these position dependencies have to be corrected.

During the calibration, the spectral lines from the 133Ba are used to calibrate ionization energy (EQ) in Ge

ZIP detectors. These lines do not show up at all in Si-ZIP detectors because the gammas rarely deposit their full

energy in one single detector. To calibrate the Si-ZIP detectors, we instead use shared events (energy) between

two neigboring Si detectors. If a 356-keV gamma distributes its energy between a Si detector and an adjacent

Ge detector, the sum of the energy deposited in these two separate detectors should add up to the full 356 keV.

This is the trick to which we have resorted in order to calibration energy in the Si detectors. Each of the Ba

lines of the ZIP detectors for Ge and Si (under consideration of an adjacent Ge detector) are visible as a diagonal

line with slope of -1 in a scatter plot showing the energy in each detector. We normally adjust the calibration

in the Si detector to correctly place the shared energy line. The peaks are also visible in the phonon spectrum

for Ge detectors, but with coarser resolution at high energy. Therefore, the ionization energy is calibrated first,
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and then the calibration to the phonon energy response (EP ) is handled by setting the ionization yield1 to one

for gamma scatters as illustrated in Figure (6.1).

Figure 6.1: The calibrated charge energy as function of the total calibrated phonon energy. Notice that
the ratio of the ionization energy to the phonon energy, i.e. the yield, is exactly equal to 1 for events
laying at center of the band (electron recoil band). This is the normalization we impose to the 133Ba
calibration events; all gammas will have a yield 1. As for nuclear recoil events, events caused by neutron
illumination using 252Cf and WIMPS-induced recoil events will have a yield of about ≈ 1/3. This is why
the yield quantity can be used a good discriminator parameter.

6.2 Charge reconstruction: optimal filtering

The CDMS-II data processing package converts each event’s digitized ionization traces into more physical quan-

tities: energy, start time, etc which are used for later analysis. The major reconstruction algorithm used for the

ionization channels is based on an optimal filtering. Optimal filtering is the technique we use to estimate the

energy that an event deposits in the ZIP detector after an interaction. This algorithm is described in its entirety

in Appendix A of Jeff Filippini and in Appendix B of Sunil Golwala’s dissertations [175, 315]. In this chapter, I

am going to very briefly describe how this algorithm works.

The tool used for charge-reconstruction in the CDMS processing package is optimal filtering. The optimal

filtering technique takes advantage of the characteristics of ZIP ionization signals. Each pulse from a ZIP detector

is of essentially fixed shape, with time constants determined by the electrothermal time constant, and the noise

is assumed to be (predominantly) gaussian in nature which makes it ideal candidate for optimal filtering which

is done by transforming the timing domain to a frequency-domain and fit the fixed template to the observed

trace, accounting for variations in the noise power spectrum with frequency. More sophisticated versions of this

algorithm were recently developed by Matt Pyle [376, 377, 378] and it is implemented for SuperCDMS data taken

with the interleaved ZIP detectors (iZIPs).

1The ionization yield is a dimensionless quantity defined as the ratio between the ionization energy to the phonon energy

for a given event, i.e. yield =
EQ

EP
. This quantity is used for particle identification in the ZIP detectors.
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The charge reconstruction optimal filtering requires two ionization pulses QI and QO, and two crosstalk

pulses QIx and QOx between the inner and outer ionization electrodes as shown in Figure (6.2). Two ionization

pulses SI and SO, one for each ionization electrode, are formed using four template traces which represent

the pulse shapes of the two ionization channels and the crosstalk between them (see Equation 6.6), and fitted

simultaneously to a set of templates in order to determine the charge deposited in each channel. The crosstalk

between the two ionization electrodes is due to the mutual capacitance between them [315]. The portion of

the ionization pulse due to crosstalk is not identical in shape to that of the primary pulse. This poses a slight

problem for optimal filtering since the exact pulse shapes for any given event depend on the ratio of QI and QO

signals, and this ratio is not known before hand. To account for tiny variations between channels, we generate the

templates by averaging the ionization traces from a selection of well-chosen events from each detector. From this

well-chosen template, we compute the χ2 using the optimal filter algorithm in order to determine the goodness

of the fit parameters (the pulse amplitude and the start time).

Figure 6.2: Illustration of the optimal filter templates for the T1Z2 charge channels using c34 data. The
QI and QO templates represent the pulses generated in these channels by events from the Q-inner and
Q-outer electrodes, QIx and QOx are the crosstalk signals observed in QI and QO channels. Figure from
[315].

Charge start time t0:

The charge start time t0 is computed for every charge inner ionization signal (QI). This computation, done on

event by event basis, is accomplished via the use of the optimal filtering technique which takes into account

the noise power spectrum density and properly determines the fit parameters (such as the start time t0 and the

amplitudes) that we use for later analysis. Our processing software requires all ionization pulses to occur within

a search window of [-100 +10]µs for Ge ([-50 +10]µs for Si) around the global trigger time. This condition must

be satisfied for all normally-triggered events, but events can occasionally fall outside this window at high trigger
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rates. Also, cross-detector pileup is problematic because the pulses of the second particle event may occur outside

of the optimal filter search window. To determine the start time, we can thus shift the template from t = 0 to

t = t0 time offset, then apply the FFT to the resulting signal, producing a χ2 given by:

χ2(a, t0) =
∑
n

|S̃n − ae−2πit0fnÃn|2

Jn
(6.1)

We need to minimize the above χ2 to find the best estimates â and t̂0. The optimal amplitude estimator can be

derived similarly to (6.21):

â(t0) =

∑
n e2πit0fn Ã∗

n·S̃n

Jn∑
n

|Ãn|2
Jn

(6.2)

The value of t0 can similarly be found by minimizing the χ2 (6.1), i.e. ∂χ2(a,t0)
∂t0

= 0, therefore solving the equation

−2a
∑
n

2πifne
2πit0fn Ã∗

n · S̃n

Jn
= 0 (6.3)

which is a nonlinear equation which has no analytical solution. To circumvent this difficulty, we take the derivative

of equation (6.2) to find:

∂â

∂t0
=

∑
n 2πifne

2πit0fn Ã∗
n·S̃n

Jn∑
n

|Ãn|2
Jn

(6.4)

The above equation shows that the value of t0 which extremizes χ2(a, t0) is the value which extremizes â(t0).

The second derivatives indicate that these are minimum of χ2 and a maximum of â. The best-fit value of t̂0 is

indeed the value which maximizes the amplitude estimate â(t0).

6.3 Charge Calibration

The calibration of charge ionization energy in the ZIP detector is accomplished using the 356 keV line of the

133Ba calibration source. The calibrated quantities are labelled as qi and qo respectively for the two electrodes.

Prior to calibration, a correction to crosstalk between the two ionization channels and a position dependence

are performed. Such dependencies are removed in order to avoid skewing the charge amplitude and start times

estimate to obtain from the optimal filter algorithm. Section (6.3.1) discusses the crosstalk removal while section

(6.3.2) will shift the discussion to the position dependence.

6.3.1 Crosstalk Correction

A correction between the two ionization channels due to the capacitive crosstalk is applied to generate qi and

qo. Given QI, QO, QIx and QOx, and the two noise power spectral density (PSD) from the inner and outer

electrodes obtained from the 500 randoms taken at the beginning of each run, it is possible to construct the inner
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and outer charge signal SI and SO such that

−→
S = M · −→a +−→n (6.5)

where a⃗ is a vector amplitude whose estimate ̂⃗a is determined for a given template A(t), signal S(t) and noise

spectrum n(f) using the optimal filter, so the noise PSD is then defined as J(f) = |n(f)|2. To reconstruct the two

amplitudes aI and aO simultaneously, given these four templates and two noise spectra, JO and JI, equation

(6.5) can be conveniently written in the form of a matrix expression:

SI

SO

 =

 QI QIx

QOx QO

×

aI

aO

+

nI

nO

 (6.6)

To determine the best estimate amplitude â =

aI

aO

 for the inner and outer channel which properly account

for the crosstalk between them, one can construct a χ2 function which depends on

aI

aO

:

χ2(aI, aO) =
∑
n

[
|S̃I − (aIQ̃I + aOQ̃Ix)|2

JI
+ (I ↔ O)

]
(6.7)

where the second term in the above equation is exactly similar to the first term with inner quantities referred

by the index I replaced by outer ones, i.e those with index O, and vice versa. By minimizing the χ2 (6.7) with

respect to the amplitudes aI and aO, one finds:

 âI

âO

 = P−1 ×

∑
n Re

(
Q̃I

∗

JI
S̃I

∗
+ Q̃Ox

∗

JO
S̃O

∗)
∑

n Re
(

Q̃O
∗

JO
S̃O

∗
+ Q̃Ix

∗

JI
S̃I

∗)
 (6.8)

where P is a 2×2 non singular matrix whose complete expression is derived from the χ2 minimization, i.e. ∂χ2

∂aI
= 0

and ∂χ2

∂aO
= 0 (see appendix A of [315] for detailed expression of P ).

6.3.2 Energy and Position Dependence Correction

As described in the section (6.3), the ionization channels of each detector are calibrated using spectral lines from

133Ba sources. The most visible line Ge detectors is the is a 356-keV line. Before the ionization energy can be

calibrated to a physical meaningful energy deposition, a correction due to a position dependence of the ionization

signal has to be applied. This position dependence is only of importance for the inner electrode due to the fact

the outer electrode is dominantly used as a veto electrode which does not directly affect the result of any analysis

based on events in the fiducial volume. There is ∼ 5% of charge collection across the crystal which show a

dependence of the ionization amplitude of the 356 keV of 133Ba line as a function of the event position, defined

by the delay quantities xdel and ydel (see Equations (6.14)and (6.15) under the section (6.5.2)). By correcting

for such position dependencies, we see significant improvement in the ionization resolution at high energies. The
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flowchart shown in Figure (6.3) illustrates the steps in the crosstalk removal procedure.

Figure 6.3: Flow chart of the crosstalk correction procedure. Figure courtesy of Kyle Sundqvist [379].

Y-dependence

It is observed that the position dependence in the CDMS-II ZIP-detector is more pronounced in the y-direction

of the crystals than in the x-direction. Such a strong position dependence in the y-direction is not understood
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quantitatively, but it is conjectured that this may result from the TES ion implantation or neutralization effects

due to varying distance from the LED flashes. Due to the strong position dependence in the y-direction, we first

correct for such dependence before removing any position dependence in the x-direction.

The ionization correction removal is performed by selecting events which are located around the 356 keV line

(±2σ from the mean of the 356 spike-centroid). We correct qi (qo) using polynomials fitted to the centroid of

the 356 keV line as functions of xdel and ydel. In practice, we primarily correct the charge ionization in the

y-direction, i.e remove any position dependence in QI (QO) from the y-delay. The correction factor is determined

by taking the ratio of the polynomial value to a straight line. Each measured charge event is then multiplied by

this correction factor to correct for the position dependence.

The dependence in the y-direction is corrected for by cutting in energy around the 356 keV of the Ba line

and splitting the range in delay into 10 bins. We then project onto the QI axis and fit to a gaussian to the

line. The means of these gaussian fits, and their errors, were fitted with a 5 (4) parameter polynomial as shown

in Figure(6.4), however in a few cases a 4-term polynomial was used, when the 5-term polynomial appeared

to overfit. Figure (6.5) show the position dependence in the y-direction using the energy qi (QIOFvolts) as a

function of the y-delay (ydel). The left plot in this figure shows this dependence before any correction is applied,

and the right plot pictures what the left plot becomes after correcting for position dependence. The red horizontal

straight line on the left plot shows the 356 keV line of the 133Ba source. This line is clearly flat after removing

the dependence in position while, as one can observe in the left plot, it wasn’t prior to the correction.

Figure 6.4: Fitted 4-parameter polynomial of the 356 keV line as function of the y-del for T4Z2 (R130).
Figure courtesy of Scott Fallows [388].

X-dependence

After correcting for in the y-dependence (in the y-direction), the same procedure is applied to the events as

a function of the x-direction where the position dependence is not as strong as it is in the y-direction. We

believe that the position dependence is strong in ydel because of the y-dependence of TES ion implantation or

neutralization effects due to varying distance from the LEDs. Similarly to the y-dependence, the dependence in

the x-direction was corrected by also cutting in energy around the 356 keV of the Ba line and splitting the range
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Figure 6.5: Charge ionization position dependence correction in the y-direction (y-del) for T3Z5(Ge).
Red lines in this figure show the fitted contour of the 356 keV 133Ba line, both before and after polynomial
correction. Figure courtesy of Scott Fallows [388].

in delay into 10 bins and then project onto the QI axis and fit the line to a gaussian. The means of these gaussian

fits, and their errors, were fitted with a 4-parameter polynomial as shown in Figure(6.6). Figure (6.7) shows the

x-dependence before and after the correction. As one can see from the left plots of Figures (6.5) and (6.7), the

y-dependence is indeed stronger compared to the x-dependence.

Figure 6.6: Fitted 4-parameter polynomial of the 356 keV line as function of xdel for T4Z2 (R130).
Figure courtesy Scott Fallows [388].

Note

For Silicon ZIP detectors, due to the fact that 133Ba lines are not always visible, we calibrated the inner

electrode using 356 keV events shared with neighboring detectors. This calibration procedure is successful if

the neighboring detector is germanium, at the exception of T2Z1, which is the only silicon detector without a

neighboring germanium detector. In the absence of a charge line, the calibrations of the inner and outer electrode

are assumed to be equal and no charge position correction is performed [315].
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Figure 6.7: Charge ionization position dependence correction in the x-direction (xdel) for T3Z5(Ge). Red
lines in this figure show the fitted contour of the 356 keV 133Ba line, both before and after polynomial
correction. Figure courtesy Scott Fallows [388].

Figure 6.8: Scatter plot of the qo (QOOFvolts) as function of the qi (QIOFvolts) before and after
calibration for 133Ba events in T4Z2 (R130). The red line indicates qi + qo = 356 keV [379].

6.4 Phonon reconstruction

Phonon pulse reconstruction is more complex and more difficult than charge reconstruction due to variations in

pulse shape with amplitude, position and type of recoiling events. Preliminary estimates of phonon energy are

made using a fixed-pulse-shape optimal filter. This technique provides preliminary energy estimates with lowest

measurement noise with some systematic errors. Below, I am going to discuss basic principle of phonon energy

measurement in CDMS analysis using the optimal filter. Toward the end of this section, phonon calibration

procedure will discussed. This discussion is build on a past analysis that I worked on during one of the past

CDMS runs.
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6.4.1 Relative phonon calibration

Before discussing the phonon calibration in this section, it is important to introduce some of the phonon and

charge quantities which will be used in the subsequent discussion that we are going to delve into below. Once

an interaction occurs in the ZIP detectors, both phonon sensors and charge ionization electrodes measure and

record four signals for the phonon and two signals for the charge. The 4 phonon signals are labelled as pk (with

k representing a phonon channel: k = {a, b, c, d}) while the ionization signal is noted by qt (where t indicates the

inner electrode or the outer electrode: t = {i, o}). The total phonon energy pt is obtained by summing all the

phonon contribution, i.e. pt = pa+ pb+ pc+ pd. Similarly the total charge energy is given by qsum = qi+ qi.

The phonon energies (pa, pb, pc, and pd) are calibrated using the charge energies, particularly qsum, which

are calibrated beforehand. The first step in the phonon calibration is to find absolute coefficients that minimize

chi-squared between the uncalibrated phonon energies and the calibrated charge energies. Secondly, one finds the

relative coefficients that are iteratively adjusted, so that the peaks of the phonon fraction distributions (pa/pt,

etc.) are aligned for each detector as shown in Figure (6.9) [390]. The partition plots (also called box plots), as

illustrated in Figure (6.10) for a representative detector in R130, are shown for each detector in order to assess

the quality of the calibration. The more squares these plots look, the better the calibration is. To make the

phonon response more uniform across the detector, the four sensor amplitudes are scaled by four gain factors

chosen to minimize the width of the ionization yield band. After applying these relative gains, the phonon energy

is calibrated with reference to the ionization signal (qsum). The summed phonon amplitude is multiplied by an

overall gain factor chosen to ensure ionization yields near unity at low energies. Although we usually calibrate

our phonon pulse height to estimate recoil energy, based on discrete lines seen in the charge spectrum (qsum).

Walter Ogburn pointed out that it is also possible to convert our signals to units of power. The integral of a

pulse is then the total energy deficit in Joule heating, which (in the strong electrothermal feedback regime) is

equal to the total energy deposited in the TES. The absolute calibration then shows what fraction of the recoil

energy of an event is deposited in working TESs.

Both the optimal filtering phonon quantities and the phonon integral quantities are calibrated. As a reminder,

the optimal filter algorithm gives the best estimate for both charge and phonon energy by calculating their

respective pulse amplitudes. The integral gives a better estimate at high energy where noise does not have as

much of an effect to the signal as it does in a low energy region.

6.4.2 Some thoughts about phonon calibration

During the run R130, Mark Kos, a postdoc with the CDMS collaboration at Syracuse University, proposed

another way for calibrating the phonon energies. The charge ionization qi (for the inner electrode) and qo (for

the outer electrode) are calibrated using the 356 keV line in the 133Ba calibration, and since this line is also

visible in the summed phonon energy, one can devise a way of calibration energy by finding the coefficient α, β,

γ and δ such that



Chapter 6: Position Reconstruction and Energy Calibration 173

Figure 6.9: Histogram of the phonon fraction for the optimal filtering quantities and the integral phonon
quantities for T3Z2 - R130.

Figure 6.10: The partition plot (also referred to as the box plot) generated after phonon calibration for
the optimal filtering quantities and the integral phonon quantities for T4Z4 - R130. A square box plot
is an indication that the phonons energy are well calibrated.

α · pa + β · pb + γ · pc + δ · pd = 356 (6.9)

By resealing the coefficients α, β, γ and δ to α′ → α/356, β′ → β/356, γ′ → γ/356 and δ′ → δ/356, the equation

6.9 becomes equivalent to

α′ · pa + β′ · pb + γ′ · pc + δ′ · pd = 1 (6.10)
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which is nothing else, but the sum of the phonon fraction

fk =
pk

pa + pb + pc + pd
(6.11)

obeying the same constraint as (6.10), i.e
∑4

k=1 fk = 1 with k = {a, b, c, d}.

6.5 Position Reconstruction

The segmentation of the phonon sensors of CDMS-II ZIP detectors into four quadrants provides a very rich stream

of information and a way for reconstructing the position of the events in the plane parallel to the detector’s top

and bottom surfaces (xy position). In practice, the (x,y) position of an event can be measured from differences

in either phonon-signal start times or pulse heights. Since the quasiparticle-assisted TESs respond quickly to

athermal phonons, with rise times on the order of tens of microseconds and since the sound speed in the crystal

is about 5mm/µs in Ge (8mm/µs in Si), the shapes and start times of the phonon pulses contain information

about the types of phonons absorbed and the distances they travelled before reaching the sensors.

6.5.1 x-y position from energy partitioning

The first position reconstruction of events in the CDMS-II ZIP-detectors comes from the partition of phonon

energy among the four phonon quadrants. The x-y position, whose coordinate is denoted (xppart,yppart), is

defined as:

xppart =
pc + pd − pa − pb

pt
(6.12)

and

yppart =
pa + pd − pb − pc

pt
(6.13)

with pt = pa + pb + pc + pd, the sum of the four phonon energy from the four channels.

Due to its characteristically square shape, the plot of the partition coordinates is referred to as the box

plot. The partition coordinate is a good estimator of position near the center of the detector, however, as

you go farther out it begins to exhibit some pathologies: events closer to the outer edge of the detector (i.e.

events in the outer ionization electrode) with the larger physical radius, do not have the largest values of rppart =√
xppart2 + yppart2

(
θppart = tan−1( yppart

xppart
)
)
, the equivalent polar coordinate), but instead fold back to smaller

values. Second, the density of points is very high at the outer edge of the plot, representing a second pathology

called pile-up, where rppart is not very sensitive to changes in the physical radius. The foldback and pile-up are

clearly visible in the partition plot shown in Figure (6.11), where the outer-electrode events (orange) occur closer

to the center of the plot than many inner-electrode events [46, 318].
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Figure 6.11: CDMS-II ZIP detector xy position reconstruction using partition coordinates (box plot).
Each data point corresponds to an electron recoil induced by a uniformly illuminating 133Ba gamma-ray
source (dark-black dots). Events with more significant Q-outer than -inner signals (light-orange dots)
correspond to events occurring near the edge of the detector. However they appear at smaller partition
radius than expected due to a position dependent phonon response.

6.5.2 x-y position from the phonon delays relative to the charge

The start-time delay for each phonon signal relative to the start time of the prompt charge (Q-inner) signal also

provides a good estimator for event positions in the ZIP detectors. The x-delay and the y-delay coordinates are

defined as the difference between the shortest such time (among the four phonon channels) and the start-time

delay for the horizontally (vertically) adjacent channel. We use a start time defined by the point at which the

pulse in each quadrant reaches 20% of its peak value, PXr20 (X = {A,B,C,D}). The two coordinates are defined

by

xdel =


PAr20− PDr20 if the interaction occurs in quadrants A or D.

PBr20− PCr20 if the interaction occurs in quadrants B or C.

(6.14)

ydel =


PBr20− PAr20 if the interaction occurs in quadrants A or B.

PCr20− PDr20 if the interaction occurs in quadrants C or D.

(6.15)

with r20, the 20% phonon rise time. The x and y delay coordinates (in µs) is negative if the shortest start-time

delay occurs in channels A or B (B or C), and positive otherwise. Figure (6.12) show the delay plot using the

delay coordinate x delay and y-delay. In this coordinate system once again the fold back and pile-up pathology

observed with the partition coordinate show up again in the delay plot. The outer-electrode events (orange)
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occur closer to the center of the plot than many inner-electrode events [46, 318].

Figure 6.12: CDMS-II ZIP detector xy position reconstruction using delay coordinates (delay plot).
Each data point corresponds to an electron recoil induced by a uniformly illuminating 133Ba gamma-ray
source (dark-black dots). Events with more significant Q-outer than -inner signals (light-orange dots)
correspond to events occurring near the edge of the detector. However they appear at smaller than
expected partition and delay radius due to a position dependent phonon response.

Like the partition coordinates, the delay coordinate has a very clean response near the center of the detector.

As you go further out, it begins to pile up and fold back somewhat at large delay radius
(
rdel =

√
xdel2 + ydel2

)
.

There is a clear difference in the delay plot caused by the choice of crystal substrate. For instance, the delay

plots in Si are much smaller than those in Ge because of the faster sound speed in Si [318]. The physical outer

edge of the crystal actually corresponds to the inner edge of the ring of QO events. This radial degeneracy is

unfortunately generic to ZIP detector position estimators, because of decreased resolution far from the quadrant

boundaries, and because of increased reflection from the outer detector edge. Fortunately, delay and partition

do not undergo foldback at exactly the same physical radius, so one can be used to break the degeneracy of the

others.

6.5.3 Radial Degeneracy

The first attempt to reconstruct the event position in the ZIP detectors comes from the delay and partition

quantities. However, the delay and partition radius exhibit a pathology that we have called fold back: events

of low and high radius can have degenerate reconstructed radii. Fortunately, the x-y position reconstruction

technique can be combined to break this degeneracy since the location of the degeneracy is different for the

partition plot than in the delay parameters. The combination of the x and y partition coordinates with delay

radius produces a three-dimensional plot that is commonly referred to as the phonon position manifold shown

in Figure (6.13). The projection of any event in the manifold onto the partition radius and delay radius plane is
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a shrimp-shaped plot, where the true radius of an event can thus be estimated by walking along the shrimp.

Figure 6.13: The manifold plot showing the x-y reconstruction degeneracies broken by combining infor-
mation from both the partition and delay information. Events occurring under the Q-inner electrode
(blue) are distinguished from those occurring under the Q-outer electrode (red), highlighting the degen-
eracy. Figure from [316].

Figure 6.14: The delay radius as a function of the x-partition parameter for a restricted range of y-
partition values (-0.25 to 0.25), demonstrating how the degeneracy in the xy-position reconstruction can
be broken. Each data point corresponds to an electron recoil from a 60Co gamma-ray calibration. Events
occurring under the Q-inner electrode (black) are distinguished from those occurring under the Q-outer
electrode (orange), highlighting the degeneracy of the delay and partition parameters when not used in
conjunction [50].

6.6 Position Correction

After the calibration of the phonon energy, a small population of surface events (non-gaussian tail of timing)

constitute a class of outliers that cannot be discriminated without further correction. These outlier events extend

to low yield and slow timing in the Ba calibration data and thus pollute the nuclear recoil band where any WIMP

signal should lie. The degeneracy shown in Figure (6.13) in xy-position reconstruction is caused by (and is one
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example of) position (and energy) dependence [395]. The projection of the manifold into a 2D plane as shown

for example in Figure (6.14) shows that one can use the x-partition and xy-delay radius for a restricted values

of y-partition in order to break the degeneracy at high radii. These degeneracies introduce mis-corrections of

timing parameters, which generally become slower at large detector radii. The timing parameters we use for

event discrimination have some energy and position dependence. In order to make the cuts simple, we have to

correct for that, otherwise we are obliged to form energy and position dependent cuts.

6.6.1 Energy measurement

The phonon energy deposited by a particle in a ZIP detector is estimated by measuring the height of the resulting

pulses from the four phonon channels. For every event in a detector, the pulse height is estimated in first-tier

data processing using a fixed-template optimal filter for each quadrant [316]. The template pulse uses a two-

exponential functional form, A(t) = A0 × (1− e−t/τ1)× e−t/τ2 , where τ1 and τ2 are characteristic risetimes and

falltimes, estimated from several good pulses.

To estimate the phonon energy, we can also fit the phonon pulses to functional forms in the time-domain

[315, 381]. However, such fits have convergence problems and other systematic issues, leading to degraded energy

resolution compared to the estime found using optimal filter algorithm [382, 383, 384, 385].

Another possible way to estimate the event energy is to compute the area of the raw pulse by integrating

the pulse after the fitting. However, the optimal filter estimate has better resolution than the integral estimate

because it is able to suitably de-weight noisy low-frequency components of the acquired traces. With increasing

energy, the integral estimate improves as the signal-to-noise increases, whereas the optimal-filter estimate starts

to suffer from systematic errors because of mismatches in true pulse shape and template shape [386]. The optimal

filter gives better estimates at low energy since optimal filtering takes into account the noise and de-weights them

accordingly. The integral estimates are better at high energy. However care must be taken for saturated pulses

because the integral quantities may not be accurate since the pulse shape is truncated due to saturation. In such

a situation, the estimate obtained using the optimal filter may be more accurate than the integral one because

the optimal filter fits the pulse shape using a two-exponential functional form as described at the beginning of

this section.

In summary, the CDMS-II collaboration has relied to two methods for estimating phonon pulse energy: (i)

the simple amplitude estimators (and the phonon integral) and (ii) the optimal filter amplitude estimator. These

techniques are discussed in more detail in [315]. In the past, the integral quantities have been used as a cross-

checked to the estimates obtained using the optimal filter and I am not going to pursue its discussion further in

this dissertation. Below, I briefly describe how one can crudely estimate a pulse energy by measuring its height.

After that I will switch the discussion to a far more sophisticated method to which we have always resorted to

using and which gives better energy estimates, especially at low energy: the optimal filter.
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Simple amplitude estimators

A very simple way to estimate the energy of an event from its phonon pulse is to take the peak value of the signal

trace. This method assumes that the pulse A(t) decay quickly as t → ∞. Assuming that the pulse in the time

domaine is given by

S(t) = a×A(t), (6.16)

the amplitude, â, representing the energy estimate, is the given by

â =
max(Sk)

max(Ak)
. (6.17)

The above estimator, however, is quite poor because it assumes no prior knowledge about noise spectrum and

the pulse shape. Since, in practice, the measured signal will be polluted (mimicked) with noise n(t), the most

general expression of (6.16) should then be

S(t) = a×A(t) + n(t). (6.18)

A better way to determine the amplitude â is to perform a time-domain fit and minimize the χ2 between

template and model which yield the following result:

â =

∑
k

Sk∗Ak

<n2
k
>∑

k
|Ak|2
<n2

k
>

, (6.19)

where ⟨n2
k⟩ is the noise variance. Although the estimator (6.19) takes into the account the noise spectrum and

the pulse shape of the signal, however this formula gives accurate results if the noise fluctuations are statistically

independent in every consecutive time bins. If the noise has a non-trivial power spectrum then noise fluctuations

at different times are correlated, the equation(6.19) will no longer be a proper maximum-likelihood estimator.

In the frequency domain, all the frequency components are truly independent for gaussian random noise. It is

therefore desirable to shift gear into the frequency domain.

Optimal filter amplitude estimators

The optimal filtering algorithm transforms the signal S(t) from the time domain to the frequency domain using

Fourier transformation. In light of this, the χ2(a) will then written as

χ2(a) =
∑
n

(S̃n − aÃn)× (S̃n − aÃn)
†

Jn
, (6.20)

which is minimized when

â =

∑
n

Ã∗
n·S̃n

Jn∑
n

|Ãn|2
Jn

, (6.21)
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with Jn the power spectral density of the random noise taken at the beginning of every single run.

6.6.2 Energy dependence

The phonon delay and phonon rise-time of the phonon pulses have some energy dependence that makes them

become slower as the energy increases, as shown in Figure (6.15). As the energy of an event increases more and

more, TESs which are very near the event location, begin to saturate, i.e. the phonon pulse flattens and peaks

later in time since the TESs further away from the event location have a significantly retarded response. The

net effect is that timing parameters become slower as the event increases in energy. After the energy corrections

of the data, this energy dependence is minimized and the pulse shape quantities are nearly independent of the

event’s energy (see Figure (6.15)).

6.6.3 Position dependence

Phonon pulse shapes vary substantially with position (and even with energy), resulting in amplitude estimates

that have significant position dependence and energy nonlinearity which must be corrected for since such de-

pendencies tend to wash out intrinsic discrimination. Figures (6.16) and (6.17) show how position (and energy)

dependence limits our ability to efficiently discriminate surface events against what could potentially be a WIMP

signal. In order to create a uniform response of the detector which does not depend on the event’s location, this

dependence must be corrected for. The partition and the delay coordinates defined in sections (6.5.1) and (6.5.2)

are not perfect candidates for reconstructing the event location because they both present a fold back pathology

that we have already described. As the location of a particle interaction moves radially outward, a larger percent-

age of phonons are absorbed after bouncing off of the detector’s cylindrical wall. This physical process manifests

itself by folding back (reflection) the timing and energy radial estimates. It is, however, possible to construct a

monotonic event location using a combination of the delays and partition. In particular a 3-dimensional position

coordinate using xppart, yppart and the delay radius (rdel =
√

xdel2 + ydel2) can be used to break most of the

degeneracies in the reconstructed position. Figure (6.14) shows the position of events under the central inner

electrode and the outer electrode at the edge of the detectors. The fold-back for the individual parameters for

events at high radius can clearly be seen and how the chosen position coordinates break this degeneracy.

6.6.4 Phonon correction table

Position and energy-dependencies are reduced by making use of a phonon correction table. This technique was

initially developed by Blas Cabrera and Clarence Chang as described in its doctoral dissertation [395]. The basic

idea for this technique is to compare the phonon parameter values for each event against a look-up table which

describe how the mean values of these parameters vary with the location and energy of the event. By factoring

out the bulk trends expressed in the look-up table, one obtains corrected parameters with more uniform response

and superior resolutions.
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The position correction is described in the doctoral dissertation of Z. Ahmed [316]. The phonon position

correction is achieved by first producing a table that is used later for correction. We call this table the phonon

correction table or look-up table. The basic principle of this method is to compare each event’s phonon parameter

values against the look-up table describing how the mean of these parameters vary with event location and energy.

The look-up table correction homogenizes the detector’s response throughout the entire crystal by comparing an

event’s parameter to those of its nearest neighbors. The look-up table of correction factors is derived empirically

from the large sample of photon events from 133Ba calibration runs. A separate table is defined for each ZIP

detector and for each of the four phonon sensors. Each event is located in a five-dimensional manifold defined by

four position variables (xppart, yppart, xdel, ydel) and the energy. The addition of phonon energy to the table

definition was an innovation introduced by Bruno Serfass during runs 123 and 124. The inclusion of this new

coordinate into the correction table achieved superior parameter resolution and avoided the need for a separate

correction for energy nonlinearities. The position within the manifold is defined by a metric which can be written

the following vectorial form

−→r = xppart · −→e 1 + yppart · −→e 2 +
xdel

Ldel
· −→e 3 +

ydel

Ldel
· −→e 4 +

prg

LE
· −→e 5 (6.22)

where (−→e 1,
−→e 2,

−→e 3,
−→e 4,

−→e 5) represent an orthogonal basis in a 5 dimensional space. Ldel and LE are weight

factors which take into account the relative importance of partition, delay, and energy quantities in determining

the position of an event and its associated nearest neighbors within the manifold. The above metric on this five

dimensional parameter space and the weight factors are chosen empirically to achieve good correction perfor-

mance. The look-up table is thus a mapping between each of the calibration photon events and the mean values

of the phonon parameters across a set of nearest neighbors events. The number of nearest neighbors affects the

performance of the correction algorithm: a table with too few nearest neighbors is limited by statistical noise,

while a table with too many nearest neighbors averages over a too large region in the manifold and misses local

trends.

For every single event from low-background or calibration data, the nearest neighbors from the look-up table

gammas are computed according to the metric defined above. The lookup table provides a mean value of the

quantity to be corrected over a set of neighboring events. Given an event and phonon parameter rq the corrected

parameter rqc is defined as

rqc = rq · < rqcal >all

< rqcal >NN
(6.23)

where < rqcal >all is the mean over all calibration events, and < rqcal >NN stands for the mean of the parameter

for those events in the nearest neighbor cluster drawn from the look-up table. Figures (6.15) to (6.17) illustrates

the results of the position correction removal in the ZIP detectors.
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Figure 6.15: Normalized pminrt as function of recoil energy for 133 Ba calibration gammas before and
after removal of position and energy dependencies. Figure from [316].

Figure 6.16: Histograms of normalized pminrt+pdel distributions for 133Ba induced surface events (SE)
and neutrons from 252Cf (NR) before and after removal of position and energy dependencies.

Figure 6.17: Surface-event leakage rate vs. nuclear-recoil acceptance efficiency for 133Ba induced surface
events and neutrons from 252Cf. At 60% signal acceptance, the empirically corrected phonon timing
provides 20x better rejection of surface events. Figure from [316].
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Chapter 7

c58 Reanalysis: CDMS-II Soudan’s

last runs.

7.1 Introduction

The last CDMS-II science run data was taken during the period of time running from July 2007 to August 2008.

The main WIMP-search analysis for the data acquired during this science run started from September 2008 and

ended at December 2009. This last CDMS-II WIMP-search analysis resulted in two observed event candidates

(in detectors T1Z5 and T3Z4) after the unblinding. All the checks conducted concluded that the analysis could

not be interpreted as statistically significant evidence for WIMP interactions, but that neither event could be

rejected as signal [425].

Although the two candidate events were recorded under normal running conditions of the experiment without

any indication of reduced performance which would have, in principle, resulted in rejection of these events as

WIMP candidates, the investigation of the raw data pulses revealed an issue with the ionization pulse reconstruc-

tion algorithm. One of the two candidate events suffered from an approximation in the fitting algorithm that

yielded an optimal filter start time not being a global minimum of the χ2, therefore overestimating the phonon

delay, Figure (7.1). A start time inferred from the global minimum of the χ2 would have resulted in the event

failing the timing cut.

Given what we learned after all the checks conducted during the post unblinding, it was then decided to

improve our software fitting routine and reprocess the entire CDMS-II 2007-2008 data and carry out a separate

and independent analysis with the reprocessed data in order to ascertain whether or not the two observed events

would still show up inside the signal region and whether other events might move into the signal region. The

reprocessing of the last CDMS-II data started in October 2010 and the reprocessed data has been available for
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more than a year. During the reanalysis, 3 different timing cuts were explored: the traditional (or classical)

timing cut used during the CDMS-II previous WIMP search analysis and two other new methods developed

during the c58 reanalysis: the neural network and the 5 dimensional χ2. I was the architect of the 5 dimensional

χ2, a timing cut which was tuned in a way that the total target leakage is exactly the leakage at which the

expected sensitivity is optimal.

Figure 7.1: Top: Value of the optimal filter fit χ2 as a function of the start time bin of the ionization
pulse. The selected bin from the maximal amplitude algorithm is indicated by the red-dashed line, which
is at the global maximum of the summed amplitude; however the global minimum of the χ2 distribution
occurs 5 ADC bins later. Bottom: Amplitude of the summed inner and outer-electrode ionization signal
as a function of the start time bin of the ionization pulse. The start time is determined by the bin which
maximizes the summed amplitude (marked by the red/dashed line). Figure courtesy of Lauren Hsu.

In this chapter, I will touch upon some of the works I authored during the last CDMS-II WIMP-search anal-

ysis and its main analysis streamline compared with the reanalysis for some cuts which needed to be tuned. This

chapter is structured as follows: first I discuss, in section (7.2), the blinding procedure used in the CDMS experi-
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ment which requires that the signal region (or nuclear recoil band) has to be masked during cuts development. In

section (7.3), I discuss cuts related to good time events selection. Section (7.4) discusses the bad detector region

cut, section (7.5) describes the reconstruction quality cuts and section (7.6) event-selection cuts are discussed in

details. The ionization yield based rejection in section (7.7) while section (7.8) discusses the limitation of the

ionization yield based rejection. Section (7.9) talks about the timing and motivates the need for using the timing

parameters for surface event rejection. At the end of the chapter, more precisely in section (7.10), I will briefly

introduce our traditional-classical-simple timing cuts which uses the timing quantities from the phonon pulse

shape to define a discriminator threshold for surface-events rejection. In the next chapter, chapter (8), I will take

sufficient time to delve into the details of 5 dimensional χ2 timing cuts for surface events rejection, a technique

in which I played a key role.

7.2 WIMP Search Analysis: A Blind Analysis

The goal of WIMP-search analysis is to develop a series of cuts that will be applied to the WIMP-search data

in order to find WIMP candidates. Normally this analysis is done using the calibration data and the entire

analysis is blind, i.e. the events which could potentially be WIMP candidates, for example those in the nuclear

recoil band, are removed from the WIMP-search data until the cuts are finalized, so the entire analysis is a blind

analysis in the sense that no one looks at what is inside the nuclear-recoil band until the cuts are fully defined.

The analysis blindness is assured during the analysis development by removing any potential candidate events

from the data by a cut called the blinding cut. The blinding cut represents a simplified and conservative version

of the WIMP-search analysis. It is conservative in the sense that it removes more events from the data set than

the final selection criteria would. Events satisfying the following criteria are removed from the data set until the

final selection criteria have been defined:

• Single scatters: This cuts checks whether or not the total phonon recorded is inconsistent with the noise

distribution in a single detector only. An event is classified as a single scatter if it shows significant energy

deposition in one and only one detector. More specifically, the cut requires that the uncorrected phonon

energy be 6σ above the detector’s phonon noise mean and should fall below the 4σ upper edge for all other

detectors.

• Energy range: the energy range cut selects events for which the recoil energy lies in the interval from

5 − 120 keV. This energy range is not the analysis energy range; the final results are calculated with

10− 100 keV energy range with 10 keV considered as the phonon recoil energy threshold.

• Fiducial volume: The ionization signal in the outer electrode (Qouter) has to be consistent with the

noise distribution of the outer electrode: |Qinner−Qouter
Qinner+Qouter

| < 0.2, yielding the restriction that the ionization

charge in outer electrode must normally have less than 5 keV energy deposited or |Qouter| < 5 keV given

the nature of the previous condition.
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• Ionization yield: the ionization yield requires the events to lie within ±3σ of the nuclear recoil band

predefined using the 252Cf data.

• Veto anti-coincident: this cut require that there should be no signal in the scintillator veto shield within

50 µs preceding the global trigger of the event.

The blinding cut is normally created using the non-position-corrected quantities; however, after the position

correction, few events in the yield vs recoil energy plane can move inside the nuclear recoil band, rendering the

whole not blind if nothing is done to mask them. This was noticed during the c58 analysis and also probably

during the previous runs. For this reason and in order to stick to the blindness of the analysis, it is required that

another blinding mask is developed with the position corrected quantities and apply to the data in order to remove

events that could make their way inside the signal region. For the rest of this chapter, I will be discussing some

of the many important data selection and data quality cuts which goes into the whole WIMP-search analysis.

Some of these cuts were developed during the original c58 analysis and they did not changed if they are phonon

based cuts. However, the ones requiring the charge information were re-tuned using the reanalysis c58 data and

if need be, I will discuss the main difference between the previous results and the new ones.

7.3 Good times events selection

In order to guarantee the stability of WIMP-search analysis, several cuts are created in order to select events

during periods of stable running. This section discusses some of the relevant cuts used during a WIMP-search

analysis. Among these cuts, the trigger rate and stability, which looks at the number of events over a period

of time is discussed. The Kolmogorov-Smirnov test, which selects events (or data series) which belongs to the

same parent is also described in this section. The Helium film, neutralization for the charge stability and neutron

activation are all part of the discussion.

7.3.1 Trigger rate and trigger stability

To ensure the quality of the data, we need to make sure that all the data has been acquired under good conditions.

Any period of time with excessive trigger rate can be indicative of electronics problems and/or an increased

phonon noise. During the c58 analysis, I carried out this analysis of trigger rate in order to investigate whether

the event rate for the WIMP-search data was within our accepted trigger rate threshold [396]. Data series with

short livetimes and high trigger rate must be removed.

The trigger rate was examined on a series by series basis. Periods with an overall trigger rate > 0.7Hz over

at least 100 consecutive non-random events are considered as periods with high trigger rates and completely

or partially removed from the analysis. For the partial removal of the data, only the live data that was mostly

affected by the high trigger rate was cut out, this was however governed by investigating the empirical cumulative

distribution function of the live time for the culprit data series and remove only the fraction of live time where
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the slope tend to exhibit a curvature. If the slope is the same, the whole series was kept and used for the

WIMP-search analysis. The trigger rates were investigated for each data series in every detector separately to

cut periods of high trigger rates on a specific detector but keep the data for non affected detectors. Figure (7.2)

shows the trigger rate as function of the live time for all the runs, and Figure (7.3) shows the cumulative live

time for the runs that were affected by high trigger rates during the c58 analysis. The trigger rate cut is entirely

based on the time; a cut on noise might be effective, however, cutting out on times of high rates remove negligible

livetime.

Figure 7.2: Trigger rate (in Hz) as function of the Live time (in sec) for R125-R128. Each dot in these
graphs represents a single data series; the green horizontal line shows the trigger rate threshold (0.7Hz).
As can be observed, only two low background runs, R125 and R127, experience some high trigger rate.
The fraction of livetime removed is 0.048% for R125 and 0.018% for R127.

7.3.2 KS test

The Kolmogorov Smirnov (KS) test determines whether two data sets differ significantly from each other, or

whether they consistent with having been drawn from the same parent. The KS-test has the advantage of

making no assumption about the distribution of data, i.e. KS test is non-parametric and distribution free [401].

For the KS test, one needs to determine first the cumulative distribution functions (CDF) or the empirical

distribution functions of the data sets one is comparing. The KS-test uses the maximum vertical deviation D

between the two curves (CDF) as the test statistic. From the statistic D, one can calculate the significance or
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Figure 7.3: Cumulative live time as function of the event count before and after the removal of the period
with high trigger rate.

the p-value or the KS probability which is used to tell whether the two distributions are similar or not. So, the

KS test compares a 1-dimensional empirical distribution with the cumulative distribution of a reference set and

assigns a distance between them called the KS statistic, see Figure (7.4). Under the null hypothesis, both sets

are derived from the same parent distribution.

Figure 7.4: Illustration of the comparison of two different data sets, whose the cumulative distribution
functions are shown, using the KS test. The test statistics D (red line) is the maximum deviation
(distance) between the the two data set. Figure taken from [401].
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For the c58 analysis, the KS tests were performed for every data series in a run against a carefully selected

golden set of about 30 data series (of the same run) called the template with average livetime [402, 403, 404, 405].

The KS test is usually performed separately for calibration data series and for WIMP-search data using variables

such as ionization yield, primary rise-time, primary fall-time, delay radius, partition radius, charge partition

distribution and the charge chi-squared representing the goodness-of-fit parameter for the charge optimal filter.

For each data series, the 30 data series in the template, the KS statistic values were averaged for each of the

seven relative reduced quantities (RRQs) and then assembled into distributions. Data series that had average KS

statistic values below 2σ of the mean KS value for any of the tested RRQs was removed by cuts cBadDet bg c58

for WIMP-search data and cBadDet ba c58 for 133Ba data.

7.3.3 Helium films on the detectors

During the c58 analysis, many detectors exhibited a large increase in trigger rate, especially during the runs R125

and R127 for the following periods of time: December 2007 - January 2008 for R125 and July 2008 - August

2008 for Run 127. The increased trigger rate was caused by events showing only a phonon signal but without the

ionization signal. It was believed that this event pathology was caused by the settlement of helium films creeping

on to the detectors. If a helium atom hits a detector, a phonon signal is released but no ionization signal, since

the helium nucleus does not penetrate deep into the crystal, therefore result to a high rate of events with no or

extremely low ionization yield value (<0.1). One sign of these helium films is the increased temperature following

the shutdown of the cryocooler. Helium frozen in the E-box can migrate into the icebox and to the detectors.

The high trigger rates caused by the Helium films prevented us from taking good WIMP search data for

certain runs as we have learned from the previous high trigger rate analysis. In order to restore a stable WIMP

search operation, the phonon triggers of affected detectors had been turned off (using the cut cTrigBurst c58 cut)

for any WIMP search analysis.

To remove the data affected by the Helium films, Mark Kos conducted an analysis study where he flagged

out all events with excessive low charge yield [406] . For each of the runs before and after the the Helium film

onset the rate of events with yield < 0.1 was determined. A flat line was fitted to the low-yield rate before the

onset of He films. Figure (7.5) shows the event rate for yield < 0.1 for runs before and after the He film onset.

The red line is 10σ cut above the straight line fit.

7.3.4 Neutralization

In order to maintain good ionization-yield discrimination in the CDMS WIMP-search detectors, charge trapping,

which leads to incomplete ionization collection, must be minimized. To reduce bulk trapping by defects and

lattice impurities, detectors routinely undergo neutralization, a process during which the detector is grounded

and bombarded with energetic particles (process we call baking or flashing when used for short periods of time),

see Figure(7.6). These particles create electron-hole pairs in the crystal which diffuse to neutralize ionized
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Figure 7.5: Left: the rate of events with yield < 0.1 for runs before and after the He film onset for R125.
The plot to the middle shows a zoom in of the fit region, and the right plot shows the event rates with
a charge threshold cut applied. Figure courtesy Mar Kos [406].

impurities by releasing trapped charged particles (electrons and holes) by recombination. Neutralizing ionized

impurities causes these sites to have a smaller trapping cross-section than if they were charged, therefore reducing

bulk trapping in the detector.

There are several methods for generating the energetic particles used to bombard the detector crystals during

neutralization. These techniques include the use of LED photons, radiation from radioactive sources, and ambient

background radiation. Each of these methods is particularly well suited for certain circumstances and each has

its own set of variables to take into consideration. Depending on the testing location, a combination of LED and

source neutralization techniques should be used together. A complete and detailed study of neutralization can

be found in the doctorate dissertation of Cathy N. Bailey [407], its architect.

Figure 7.6: Photo of LED mounted in CDMS ZIP detector housing. Figure from [407].

To maintain detector neutralization over long periods of time during WIMP search running there were two

LED ashes each day (for more than 30 minutes after every barium calibration data set). One of these LED ashes
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occurred automatically during the daily cryogen transfers and the other occurred after approximately 11 hours

of data taking. The neutralization state of the detectors is monitored off-line for 133Ba calibration and WIMP

search data. Any period of time showing a loss in neutralization is in general excluded from the analysis.

The the state of neutralization in the barium calibration data is evaluated by grouping the data series into

chunks with 105 events. The fraction of low yield events (0 < yield < 0.8) passing basic quality cuts and their

standard deviations based on the confidence intervals from a binomial distribution were calculated for each chunk

and for the whole series. The means of the fraction of low yield events over each run and series were calculated

under the assumption that the fractions of low yield events follow a normal distribution. For each chunk, the

Poisson probability of observing as many low yield events or more in a particular chunk given the mean low yield

event fraction was calculated according to the statistical formula below

Q = 1−
kobs−1∑
k=0

Nk

k!
e−N . (7.1)

kobs is the number of low yield events in a given chunk and N is the expected number of low yield events given

the mean fraction of low yield events over each run. Any series or chunk with a Poisson probability criteria

(Q < 10−10) or chunks of data with loss of neutralization greater than 2σ above the run mean were rejected,

with σ defined by:

σ =

√
n∑n

i=1
1
σ2
i

, (7.2)

where σi is the standard deviation of the ith series while n is the number of series.

For the WIMP search data however, due to the lower statistics, it was not possible to subdivide the data

series into chunks. For this reason, we monitored the neutralization state within a series. In addition to the

two conditions used to reject data series (or even a chunk) with low charge yield in the Ba calibration, for the

WIMP-search data, however, another criterion was added. If the low-yield fraction was an outlier located 5σ

away from the average standard deviation from all data series, the chunk or the suspected series was removed

[408, 409, 410].

7.3.5 Neutron activation

When the ZIP detectors are exposed to neutron calibrations, the copper (precisely 64Cu) from the detector

supporting structure is activated. The weak interaction, more precisely the beta decay, is the physical process

through which the decay occurs (β+ and β−). Betas are not penetrating and since copper possesses a small

solid angle to the detector faces, there is no increased surface event rate after neutron calibration. Nonetheless,

the gamma rates normally increase by a factor of 6 after the calibrations, potentially increasing ambient gamma

induced surface-events during this activated period of time. The bottom panel of Figure (7.8) shows the gamma

rate since the last time of the neutron calibration. The data is fitted with decaying exponential plus a constant.
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Figure 7.7: Low-yield fraction vs. time for WIMP-search data in T1Z5 for the WIMP-search data (top)
and Barium calibration data (bottom) in Run 125. Data series passing cBadNeut bg c58 are marked
with black points. Data series 2σ above the run mean are marked with red points and are removed.
Series that fail the probability condition and the 2σ condition are marked with cyan points and are
also removed. The 5σ run-averaged outlier level is marked with a blue dashed line and all series with
low-yield fraction above this are removed as well. Figure taken and adapted from [408, 409].

The decay times constant correspond to the 64Cu half-life, thus indicating that the dominant contribution to

the increased rate after neutron calibrations is caused by 64Cu. To ensure that no significant contribution from

gamma due to the activation is included in the final data set, all data taken within two days after a neutron

calibration are not considered in the analysis. It is also worth mentioning that neutron capture on 70Ge produces

71Ge during the neutron calibrations which undergo an internal conversion and produce 1.36 keV X-rays and an

Auger-electrons causing 10.36 keV electron recoil events. These lines can be used for detectors energy calibration

at low energies, see the two top plots of Figure (7.8).

7.3.6 Disabled triggers

During the runs R125 to R128, some detectors had their Plow triggers inadvertently disabled mostly in run 127.

The trigger efficiency as function of energy and as function of time has been re-calculated by taking into account

the fact that the plow triggers were disabled in some detectors in this run. A cut, name cPlo Disabled c58 were

created to remove events recorded in detectors without a plow trigger in R127. A total of 24 series in this run

were identified with no plow trigger in one or more detectors, they were removed based on the rate since the rate

will drop to zero for detectors which do not trigger [420].
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Figure 7.8: Resolution of the 10.36 keV line from 71Ge for the inner ionization electrode signal (top left)
and the phonon signal (top right) overlaid with the fit (blue) consisting of the Gaussian with constant
background added to it. In the bottom is shown the background rate as function of time since the last
neutron calibration (for an energy range from 15 to 200 keV) fitted with an exponential decay component
plus a constant (black) and the sum of the two components is shown in red (τ = 12.7h, corresponding
64Cu half-life). Figure taken and adapted from [317].

7.4 Bad detector regions

Individual phonon channels in some detectors were malfunctioning or had broken sensors. This pathology was

evident in the partition and delay plots.

Figure 7.9: Malfunctioning phonon sensor, channel C, for T3Z1 (lazy channel). Figure courtesy Kevin
McCarthy.

The ZIP detector T3Z1, for instance, does not have the box shaped plot as normally seen with other detectors.

This is because the phonon channel C of this detector is malfunctioning (this phonon channel C is called lazy

channel), see Figure (7.9). To remove the data from the malfunctioning channel, a cut called cBadDetRegion was
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Figure 7.10: Shown in the left is the phonon delay plot for detector T3Z2 where green events are the and
the black dots indicate the low yield surface events (phonon-side events in blue and charge-side events in
red). Along the positive value of the x-delay, there is an excess in low yield events in the quadrant C and
D. The plot in the right illustrates the detector’s malfunctioning region causing the excess in low-events.
Black indicates inner ionization electrode events, blue indicates outer ionization electrode events, and
magenta indicates shared events. Figure taken from [317].

devised in order to ensure that data from the broken phonon channels are excluded. Another pathological issue

which was also identified in R123/R124 was seen in T3Z2 which showed a localized anomalous behavior in the

charge collection of the outer electrode, producing an excess of events at low ionization yield and slow phonon

timing in quadrants C and D. The right graph in Figure (7.10) shows that this population is concentrated in the

gap between the inner and the outer ionization electrodes. It is believed that the outer electrode was disconnected

or other effects prevented the charge collection on the outer electrode in this region although the malfunctioning

charge collection in this particular detector region is not fully understood. To exclude any affected event from

the analysis in this detector region, only events with xdel < 0 are considered in the analysis, reducing thus this

detector’s exposure by half.

7.5 Reconstruction Quality Cuts

The reconstruction quality cuts remove events with specific reconstruction pathologies or misfitted traces since

such traces may produce faulty energy and timing information which are crucial for the WIMP-search analysis.

Some of these cuts are discussed in the rest of this section of this chapter.

7.5.1 Charge χ2

The quality of charge optimal filter the ionization-pulse reconstruction,is assessed by the use a χ2 that is calculated

on an event-by-event basis. All abnormal events with high χ2 value are rejected. The upgraded software used

to reprocess the c58 data used a charge optimal filter which chooses the delay based on the minimum of the χ2

instead of the maximum of the summed amplitudes [411].

The χ2 goodness of fit is used for rejecting events mainly arising due to pile-up of multiple events within a
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single trace or electronic glitches in the ionization channel with a trigger time sufficiently close (the occurrence of

more than one particle hit in a single trace length of ∼ 1640µs). This kind of trace cannot be used to correctly

estimate energy or timing. Pileups have large optimal filter χ2 values and can be removed by setting a cut on

this parameter, as a function of energy. Although pileups events are very rare at the low trigger rates required for

WIMP search data, they are very common in calibration data. The reconstruction of such distorted pulses usually

yields faulty results and therefore must be removed from consideration as WIMP candidates and in calibration

data for detector characterization.

Figure 7.11: The reprocessed ionization charge χ2 (blue dots) as function of the total charge energy
Qsum. The red and the black curves indicate the χ2 cut cChiSq c58 before and after the reprocessing.
Figure courtesy of Jianjie Zhang.

To define the χ2 cut cChiSq c58, for each detector in each run, the χ2 distributions were binned into four

energy intervals as shown in Figure(7.11), the fitted to Gaussians. The 3.5σ deviations from each mean χ2 value

from each of the bins were fit to a quadratic function to provide the energy-dependent cut [412]

χ2 = A1 +A2 · qsum2. (7.3)

Figure (7.11) shows the χ2 distribution as a function of the total charge energy qsum. The new χ2, obtained

as a result of the improved reprocessing charge software is shown in black while the old χ2 is shown in red. Given

the position of the cut lines (red and black), one can see that the distribution of the χ2 QSOFchisq was broader

because of the change in the charge optimal filter. The less broad distribution of this χ2 in much wider energy

range is indicative of better reconstructed ionization charge traces.

The distribution of QSOFchisq at lower energy bins is close to Gaussian and identical to the old one. At

higher energies, however, QSOFchisq distributions have slower decaying tails at high values of QSOFchisq than

a Gaussian distribution, making its distribution to broaden.
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7.5.2 Phonon and Charge pre-pulse baseline

I have describe in section (7.5.1) that pileup events are rejected using the χ2 cut (cChiSq c58R). Another safety

precaution to protect our WIMP-search data sample from pileup events is to cut on the standard deviation of

pre-pulse baseline of the phonon traces. This helps to identify traces that may contain residual long phonon

tails of events preceding the global trigger. This category of traces need to be discarded before we attempt to

determine the energy and timing information. The cut cPstd c58 rejects phonon-tail pileup events. This cut is

engineered by fitting a gaussian to the distribution of the standard deviation of the first 400µs (stored as RQ

PAstd, PBstd, PCstd and PDstd) of all traces of a data series and then rejecting 5σ outliers on a series-by-series

basis [415, 416].

The charge pre-pulse baseline cut, cQstd c58, is implemented in a similar manner as the phonon pre-pulse

baseline cut. The purpose of this cut is to reject events with high noise caused by microphonic pickup from

cryocooler mechanical vibrations. The cQstd c58, similar to cPstd c58, is defined by fitting to gaussians the

distribution of QAstd, QBstd, QCstd and QDstd to a gaussian. For the charge pre-pulse baseline for all traces

of a data series, a 4σ outlier cut is chosen to remove noise data on a series-by- series basis, QXstd > 4σ (with

X={i , o}) are [157, 158].

Figure 7.12: Phonon pre-pulse (two top plot) cut cPstd c58 and charge pre-pulse (bottom) baseline cut
cQstd c58. Shown in blue are the events which pass these cuts and in red, the events rejected by the
phonon and charge pre-pulse baseline cuts. Figure taken from [415, 416].
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7.5.3 Good phonon and charge start time

To reject pileup events, the CDMS analysis resorts to using the charge χ2 and the pre-pulse baseline (for both

phonon and charge) cuts: cChiSq c58, cPstd c58 and cQstd c58. Another safety line to help rejecting such

pathological events which, if not removed, are usually misreconstructed and lead to wrong energy and timing

information, is to constrain the WIMP-search data sample to events for which the start time is within the

optimal search window and this requirement is enforced by the use of the good pulse start time cut. The CDMS

reprocessing package BATROOT only searches for the start time of a Ge ionization pulse within a window of

[-50,+100] around the trigger time. The phonon pulse start time is searched in the interval of [-50,+10]µs around

the trigger time, which occurs 512 bins (∼400µs) into the digitized trace. For the Si detectors however, due to

the faster phonon response, the search windows are slightly modified to [-25,+10] (for the ionization pulse) and

[-25,+100]µs (for the phonon pulse) respectively. If a pulse lies outside this window the optimal filter will select

an incorrect start time within the window, resulting in anomalously low amplitudes. Widening this window

would worsen the threshold energy, and pulses well outside the window may be truncated and thus not well-

reconstructed. The good phonon start times cut, cGoodPStartTime, rejects cross-detector pileup by enforcing

that the start time of the primary phonon pulse lies within the optimal filter window for the ionization channels,

i.e. that PXr20 (X={A,B,C,D}) start time be in the interval of [-50; +10]µs for Ge ([-25; +10]µs for Si).

As the collaboration has moved toward the SuperCDMS phase with detectors, about 2.54 times thicker than

the CDMS ZIP detectors, it is worth bring the reader’s attention that for such thicker detectors, the optimal filter

window, as mentioned in this section here, will no longer be valid. During the run R130, I conducted a study

investigating the optimal filter window for the mercedes detectors (mZIPs) which are as thick as the currently

deployed CDMS detectors at Soudan, the iZIPs. This study revealed that the phonon optimal filter window

needed to be widened for these tick detectors, and that the proposed new optimal filter window was [-80; +10]µs

[419]. At the time of the writing of this dissertation, this change has already been implemented with the data

acquired using the interdigitated detectors (iZIPs).

7.5.4 Charge Threshold and charge time stability

The charge threshold cut is designed to reject events that are consistent with noise. In order to define the charge

threshold cut, we select all the noise blobs (randoms) and plot them in the (qi, q0) plane. In the c58 original

analysis and in prior CDMS analyzes, the histograms of the distribution of these noise blobs in terms or qi and qo

were uni-modal (one peak) and could then be fitted to a single gaussian function. However, for the c58 reanalysis

data, with the implementation of the full chi-square in the optimum filter [411], the noise blobs are now rather

bimodal, Figure(7.13).

The noise distributions in the inner charge electrode vs outer charge electrode is shown in Figure (7.14). The

noise blob charge energies are circularly distributed around zero (since they are just random noise) and have the

form of donut that we commonly call noise donuts.



198 Chapter 7: c58 Reanalysis: CDMS-II Soudan’s last runs

Figure 7.13: Histogram of the charge energy QIOFvolts. The bimodality nature of this distribution is
particular to c58 reanalysis data due to the implementation of the full χ2 in the charge optimal filter.

To define the charge threshold, the noise donuts have been examined series by series. We calculate the

series-independent detector thresholds, by fitting the rightmost peak of the inner charge distribution to a partial-

Gaussian and set the threshold 4.5σ beyond the mean of the peak. The efficiency of the charge threshold

(cQThresh c58R) and the effect of the effect of the cut on the data are shown in Figure(7.15)

Figure 7.14: Distribution of the noise donut in q-outer vs q-inner. The green vertical line shows the cut
(threshold) position which is situated at 4.5σ away from the mean of the q-inner distribution. Figure
courtesy of Danielle Speller.
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Figure 7.15: Charge threshold effect on the data in the yield vs energy plane (left). Blue events represents
the californium (neutron) data satisfying the basic data-quality cuts, but failing the charge-threshold cut
(green curve). The red events represents the events passing the data quality-cuts and the charge threshold
cut (cQThresh c58R). The black curves represents the nuclear recoil band and the vertical line is the
phonon energy threshold. On the right is the cQThresh c58R efficiency calculated using the neutron
calibration data. Figure courtesy of Danielle Speller.

In addition to the cQThresh c58R cut efficiency, the noise variations during the course of the runs were also

investigated as shown in Figure(7.16). For this purpose, the mean and the standard deviation of the charge noise

(the most right peak) for every series independently were calculated. Series removed by cBadDet Ba c58 (the

KS test) or cStabTuning c58 (series with stable tunings) are marked with magenta dots. In order to account

for noise fluctuations a run-dependent threshold cut was defined in addition to the run-independent cut, the

cQThresh c58R cut. This new cut was also set at 4.5σ above the mean of each noise blob and is computed for

every detector and every series independently. The maximum of both thresholds was choosen to set the final cut.

7.6 Event-selection cuts

WIMP-search analysis requires that anyWIMP-event satisfies certain event selection based on the event properties

and run conditions in order to minimize the expected background in the signal region. These-event selection cuts

are discussed below in this section.

7.6.1 Q-inner cut

Events near the outer side wall of the detector suffer from incomplete charge collection due to distortions (fringing)

of the electric field configuration. Such events have characteristically low charge yield which droops inside the
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Figure 7.16: Time stability of the charge noise for the reanalysis c58 for both the the neutron and the
barium calibration data. Figure courtesy of Danielle Speller.

region of interest and mimicking any event-like signal. To reject these events, the charge fiducial volume cut

(cQin c58) is created by requiring the candidate events to have energy in the outer-charge electrode of each

detector consistent with ±2σ of the series-specific noise for the electrode [166].

Figure 7.17: Outer ionization electrode (qo) mean and sigma as function of the inner ionization energy
(qi). The data shown in red is fitted by a polynomial function. Figure courtesy of Jianjie Zhang.

The outer-charge electrode energy is binned by inner charge energy and fitted to a Gaussian for each of the

bins to determine the bin-wise mean and standard deviation. The outer-charge noise band is defined by fitting

polynomials to the bin-wise mean and standard deviation. During the c58 analysis, the means of the distributions

are fitted to a first order polynomial and the widths to a second order polynomial to define the cut as a function

of the inner-electrode ionization signal. Any event that lies > 2σ away from the mean is rejected in the analysis
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as shown in Figure (7.18). However, during the c58 reanalysis, it was observed that both the means and sigmas

were fit to a polynomial functional form which fitted the data better.

Figure 7.18: Charge-outer energy (qo) as function of Inner-charge energy (qi). The black events represents
the calibration data while the magenta lines are the ±2σ from the q-outer fitted mean. Figure courtesy
of Jianjie Zhang.

The efficiency of the fiducial volume cut (cQin c58R) is calculated using the neutron calibration data by

taking the ratio of the number of events passing the preselection cuts and the cQin c58R to the number of events

passing the preselection cuts without the cQin c58R cut. Given that the inner electrode covers ∼ 85% of the

detector’s volume, the expected cQin c58R cut efficiency should be around that number. It has been noticed,

however, this approach underestimated the efficiency due to the contamination of the nuclear recoil band from the

gamma leakage. A corrective approach, formulated by J. Sander and R. Mahapatra [413], was motivated for the

following reasons: since we are interested in the passage fraction of nuclear recoils after applying the cQin c58R

fiducial volume cut given that the cut feeds into our overall WIMP search analysis efficiency and given that a

simple measure of cQin c58R efficiency is inaccurate because of contamination of the NR region with gamma

leakage. Low-yield gammas in the Q-outer region bias the efficiency to be lower, and low-yield gammas in the

Q-inner region bias it higher. Fortunately, one can make an estimate of gamma leakage and subtract it before

calculating the efficiency [413]:

1. Define reasonable preselection cuts, and bin data by energy.

2. Define the electron recoil (ER) and nuclear recoil (NR) bands according to the fitted means and sigmas

obtained from the calibration data.

3. for evey i ={ear, funnel, qpart>funnel}, see the right plot in Figure(7.19):
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• Use the Ba calibration data to compute, bin-wise, the ratio of events in NR to number events between

ER and NR.

• Use the neutron calibration data to count the number of {(events between ER and NR) - spill of

neutrons above NR} and infer the low-yield count.

• Multiply the neutron low-yield count with the correction ratio to get gamma leakage in NR for each

blob i.

4. compute the bin-wise efficiency as follow:

Qin eff bin i =

∑
i{cQin(events in NR− leakage)}∑

i{events in NR− leakage} (7.4)

Figure 7.19: On the left is the funnel plot using the yield quantities yi (in the inner ionization ring) and
yo (in the outer electrode). The black events represent all the data while the events in red, orange and
magenta indicate the yield events in the outer electrode, the bulk and the outer electrode used to correct
the cQinner efficiency. On the right is the efficiency of the cQinner cut calculated using the simple and
the corrected methods. Figure from [414].

The right plot in Figure(7.19) compares the cQin c58R cut efficiency as calculated using the simple method

and the correction approach formulated in [413]. Ignoring the error bars indicating the uncertainties, the two

methods give similar results at low energies. At high energy, there is a clear and distinct increase in efficiency

(by 1% to 4% level bin-wise) with the corrected approach. Although the efficiency is not improved by a lot, this

method gives an estimate for the cQin c58R efficiency by removing (correcting by subtracting) for surface events

leakage that pollutes the nuclear recoil band.
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7.6.2 Singles cut

WIMPs are expected to interact only once in the entire experimental apparatus due to their small and vanishing

interaction cross section. Radioactive particles, which make the majority of backgrounds, will typically scatter

multiple times. Multiple interactions in different detectors can be used as an excellent way to reject background.

Single-scatter events are classified as events that deposit energy above the threshold in only one detector, while

the signal recorded in all other detectors is consistent with noise.

The singles cut (cSingle c58R) is defined in the following way: for every data series, the threshold is determined

using the optimal filter for the WIMP-search data and the calibration data. This optimal filter amplitude is

determined for random trigger traces for all phonon and charge channels in order to define the noise distributions

for every channel. These distributions are fit to Gaussians, and a mean and standard deviation of the noise

distributions is then calculated for each channel of every ZIP detector for all data series in all four runs [417].

An event is selected as a single scatter in a detector if the phonon energy of that event is 6σ above the mean

of the noise distribution for that detector and series, and the phonon energy in every other detector is within 4σ

of the mean of its series-noise distribution. The efficiency of cSingle c58R was > 99% for all detectors in all runs

except few detectors, where the efficiencies hover around 98%. The efficiency is plotted as a function of data

series in Figure(7.20) for detector T1Z2.

Figure 7.20: The efficiency of the cSingle c58 as function of time for T1Z2 shown the four runs of the
c58 analysis [417].
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7.6.3 Veto-anticoincident events

The CDMS experimental setup is surrounded by a plastic scintillator veto whose primary purpose is to protect the

experiment from muons that could produce neutrons whose signals are indistinguishable from WIMP interactions.

The veto cut cVTStrict c58 selects detector events coincident with activity in any of the 40 scintillator panels

of the surrounding muon veto counter. The events passing this cut are rejected from consideration as WIMP

candidates. An average of one muon per minute is incident on the veto, while the mean veto rate is approximately

∼600 Hz. The primary obstacle to setting this cut is the high trigger rate in the veto counter from ambient gamma

rays. The detectors are protected from these events by several layers of shielding and powerful discrimination,

but these gammas would lead to a loss of < 5% in livetime if they were allowed to trigger the veto rejection cut.

The amplitude trace of every panel is recorded for every event in a time window of [-180 +25] µs relative to the

global trigger. This threshold is set high enough to exclude essentially all gamma events, generally between 30-50

pC [418]. The cut position for one panel is plotted in Figure (7.21), indicating a threshold near the upper edge

of the gamma distribution but well below most muons and showers. Any events removed the veto cut must thus

satisfy at least one of the two following two conditions:

• The photoelectron signal in at least one scintillator panel lies above a panel specific threshold within the

recorded veto trace window.

• A discriminator threshold is exceeded at less than 50 µs before or during the event trigger

Figure 7.21: Histogram of maximum amplitude of veto traces from a top panel during runs c58. The
green vertical dashed line indicates the hardware threshold, and the red vertical dashed line indicates
the threshold. The characteristic 10MeV muon bump is visible. Figure taken from [418].

In Figure (7.21), the bump between 1 & 2 volts is a peak is due to minimum ionizing muons. Muons tend

to deposit ∼ 2MeV per cm of material they pass through and the thickness of CDMS veto panels is 2” (5 cm).

Therefore, minimum-ionizing muons will deposit total of ∼ 2Mev/cm × 5 cm = 10MeV. The broadness of the

peak is primarily caused by variations in path length of the muons in the scintillator. If the muon is incident at
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a slight angle, it will traverse a greater distance inside the scintillator and thus deposit more energy. Also, the

broadness of the peak tells you something about the angular distribution of muons underground (see, e.g., Bob

Nelson’s undergrad UCSB thesis, [423]). The long tail toward high energy is due to the less common creation of

a delta ray (basically a high-energy electron) as the muon passes through the scintillator. The peak at ∼ 5 volts

is a saturation peak, in this case, it is a saturation of the veto digitizer. Sometimes a broader saturation peak can

also be seen and doesn’t cut off sharply, which is saturation of the veto amplifier. Below the muon bump, there

is an exponential rise in rate due to environmental gammas (the thorium 2.6MeV end point) starting roughly

below the red dashed line (this is in fact the reason for the red dashed line). We normally don’t want to veto ZIP

events that show gamma-like energy in the veto because those gammas will not make it through the lead shield.

Any events with energy greater than gamma energies, however, may be indicative of a muon passing through the

shielding since muons can very easily get through the lead, therefore we want to veto such events. Finally, the

region below 1 volt but above the red dashed line gets filled in by a combination of muons that clip the edges of

the veto panels and by resolution smearing the gamma tail to higher energy [424].

7.7 Ionization Yield

The ZIP detectors have been designed in order to provide a discrimination between nuclear recoils and electron

recoils. The discrimination parameter is a dimensionless quantity called ionization yield and is defined as the

ratio of ionization to recoil energy.

y =
EQ

ER
(7.5)

with EQ the calibrated charge ionization energy and ER, the event’s recoil energy. The measured total phonon

energy is a sum of the recoil energy (ER) and the contribution by Neganov-Luke phonons (ELuke); they are related

to the recoil energy ER by the relationship give by Equation (4.12). The phonon, due to Luke contribution is

defined by ELuke = ER + NQe · Vb (NQ is the number of electron-hole pairs created and Vb, the applied bias

voltage). Given that EQ = ϵNQ, where ELuke = e·Vb
ϵ

EQ, which remains true even when some charges are trapped

before reaching the surface. This true with a single biased electrode. However, with two electrodes, as it is the

case for the CDMS experiment, the Ramo potential and the physical potential are not the same. Moreover, if

there is enough trapping to produce space charge, then the physical potential may deviate significantly from the

Ramo potential. The total phonon energy is given by

pt = ER +
e · Vb

ϵ
EQ, (7.6)

from which the recoil energy ER can be inferred:

ER = pt− e · Vb

ϵ
EQ. (7.7)
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Therefore the ionization yield y is

y =
EQ

pt− e·Vb
ϵ

EQ

. (7.8)

If the charge fiducial volume cut is defined and applied, then events passing the cut have outer-charge electrode

signal consistent with noise. For such events, the phonon energy can be written as:

pri = pt− e · Vb

ϵ
qi (7.9)

with pri the phonon energy and qi is the charge energy in the q-inner electrode. For photons, ionization yield

is normalized to 1 due to the definition of EQ. We define a quantity called photon-equivalent recoil energy, prg,

defined only using pt. This quantity has the advantage of being a less noisy estimator of recoil energy for photons

than pr: prg = pt− e·Vb
ϵ

prg, implying that

prg =
pt

1 + e·Vb
ϵ

. (7.10)

Photon-equivalent yields can also be defined: yg = qsum
prg

and ygi = qi
prg

. These photon-equivalent quantities are

useful for phonon-pulse-shape correction, since they are not affected by charge noise. Nonetheless yg and ygi are

affected by noise on ionization energies qsum and qi.

Theoretically, nuclear-recoil ionization yield in semiconductors is well described by Lindhard theory [330,

331], in which a material’s stopping power is understood in terms of velocity-dependent electronic and nuclear

components. Low-velocity nuclear recoils deposit most of their energy through nuclear interactions, while high-

velocity electron recoils prefer electronic interactions. Since ionization results from electronic excitations, the

ionization yield for nuclear recoils (relative to electron recoils) is smaller. This, of course, is the basis of CDMS

electron-recoil discrimination. Lewin and Smith have simplified Lindhard theory to the following set of equations

[391]:

y(ER) =
κg(εz)

1 + κg(εz)
(7.11)

g(εz) = 3ε0.15z + 0.7ε0.6z + εz (7.12)

κ = 0.133Z2/3A−1/2 (7.13)

and

εz = 11.5ERZ
−7/3 (7.14)

where ER is the recoil energy (in keV). A number of neutron-scattering experiments have attempted to test

the recoil-energy dependence predicted by these equations. Figure (7.22) shows a compilation of measurements

obtained with various Ge detectors compared to the Lindhard-theory prediction. The average ionization yield

for a representative Ge ZIP (operated with a -3V bias) is shown as well. The comparison confirms that the

ZIP-detector energy scale, as derived from electron recoils, is roughly appropriate for nuclear recoils. A more
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thorough inspection of the nuclear-recoil energy scale will be discussed in doctorate dissertation of Scott Fallows

and this analysis is still on going.

Figure 7.22: Compilation of ionization-yield measurements for neutrons scattering in Ge (data points
with error bars) compared to Lindhard theory (black/solid line), and the average ionization yield as
measured (between 2 and 100 keV) with a representative Ge ZIP (dark red/solid line). The latter is
extrapolated below 2 keV and above 100 keV (dark red/dotted lines) via a power law such that y = 0
at 0 keV. Figure from [50].

The ionization yield is one of the main discriminators between electron and nuclear recoils provided by the

ZIPs. To calibrate the ionization yield parameter and define the recoil type populations the ionization yield

of electron recoils from 133Ba calibration is calibrated to a value of 1; this is a normalization we impose on a

true average for an electron-recoil event. The calibration based on electron recoil events sets the scale for the

ionization yield of nuclear recoil (NR) and electron recoil (ER) bands.

7.7.1 Nuclear Recoil Band

The nuclear-recoil (NR) band is defined from 252Cf calibration data as shown in Figure (7.23). As for the electron-

recoil band a gaussian distribution function is fitted to the ionization yield distribution in several energy bins. Due

to the approximately exponential energy spectrum of nuclear recoils from the calibration runs, logarithmically

spaced energy bins are chosen. The functional form fitted to the means of the gaussian in the energy bins as a

function of recoil energy is the same as used for the electron recoil band. However the functional form used for

the standard deviations is defined differently:

σER(ER) =



β2
1 ·E

β2
R

+β2
3

ER
+ β4E

β5
R if ER ≤ Ecut

β2
1 ·E

β2
R

+β2
3

ER
+ β4E

β5
cut if ER > Ecut

(7.15)
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where the cutoff energies Ecut was defined for each individual detector and it was found to be in the 20-40 keV

range. The additional terms in the equation (7.15) were deemed necessary for the stability of the band at high

energies

Figure 7.23: Nuclear Recoil (NR) band in the ionization yield vs recoil energy. Top: the centroid and
the ±2σ region of the band are shown by the red error bars data points (fitted with the black line) and
the blue curves [392]. Bottom: comparison of the NR bands from the c58 analysis and c58 re-analysis
[393].

7.7.2 Electron Recoil Band

The electron-recoil (ER or gamma) band is defined from 133Ba calibrations. The electron-recoil distribution is

defined by fitting gaussian distribution functions to the ionization yield distribution in several energy bins. The
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mean and the edges of the band are the fitted by functional forms that depend on the recoil energy (ER). The

fit is performed in the yic vs pric plane, where yic and pric are the ionization yield and phonon recoil energy

subjected to the position correction. During the runs 125-128, the gamma bands were fitted with the following

functional forms:

µER(ER) = α1 · Eα2
R (7.16)

and

σER(ER) =
β2
1 · Eβ2

R + β2
3

ER
(7.17)

The coefficients αk and βk are determined individually for each detector. Knowing the fitted mean µER(ER) and

fitted sigma σER(ER)(or standard deviation), it becomes simple to define a selection of electron recoils events in

the ionization yield vs. energy plane as shown in Figure (7.24). This ±2σ region is what we referred to as the

electron-recoil band or simply ER band. The electron-recoil band widens at lower recoil energies due to

fluctuations in noise which become a large fraction of the recoil energy where it becomes small.

Figure 7.24: Electron- Recoil (ER) band in the ionization yield vs recoil energy. The centroid and the
±2σ region of the electron-recoil distribution are shown by the red lines. Selected events are shown in
green. The dashed black line shows the charge threshold from the ionization signal applied to the 133Ba
calibration data shown in the figure.

7.8 Limitation of yield-based discrimination

Figure(7.25) illustrates the illumination of one of the ZIP-detectors to the 133Ba and 252Cf radioactive calibration

sources. The gamma band and nuclear recoil band are shown as well to demonstrate how gamma backgrounds

can be mitigated from nuclear induced events by rejecting all events inside the ER band. However, outside the
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ER band, there still is a lot of events from the 133Ba with low yield, characteristics of nuclear recoil induced

events, drooping inside the NR band and therefore mimicking the signal. These events are classified as surface

events or beta events. We normally call surface events any low yield event from the 133Ba located 5σ below the

mean of the ER band. Surface-events are events with incomplete charge collection. Their occurs not too far from

ZIPs detector’s surfaces, a region called the dead layer (∼ 10µm deep) [422].

Figure 7.25: Nuclear Recoil (NR) band (blue) and Electron Recoil (ER) band (red). Notice other low
yield events from the 133Ba droops inside the NR band which cannot be rejected using the yield based
rejection. This class of events are called surface events (or betas). To reject these events we resort to
the phonon pulse shape discrimination based on the timing between these events and NR events.

Although the yield based rejection has demonstrated a discrimination level of > 104 : 1, drooping (low-yield)

events cannot be rejected by the ionization yield based rejection. To reject surface-event leakage inside the NR

band, we use phonon pulse-shape discrimination (PSD). The standard signal acceptance region in ionization yield

is defined by the cut cNR c58R as a ±2σ band about the mean ionization yield as a function of recoil energy.

This cut is slightly different for each of the runs because of the changes in phonon response and noise variation

between all the four cryogenic runs.

As it will be shown and discussed in chapter 8, section (8.6.6), the traditional nuclear recoil band definition

of ±2σ is not quite optimal. A simultaneous optimization aimed at determining the optimal timing cut positions

for surface-events rejection and an optimized nuclear recoil band was performed. The optimized nuclear recoil

band which maximize the the experiment’s expected sensitivity was found to be [−1.9 ,+1.8]σ [444]. This is the

nuclear recoil cut that was used in the final analysis for the WIMP-search data discussed in chapter 8.
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7.9 Phonon Timing

The sensitivity of a ZIP detector to athermal phonons produced by an interaction provides for background

rejection using phonon pulse-shape information. The timing from the phonon pulse is intrinsically different for

surface events than for nuclear-recoil events. Surface events are normally faster than the bulk nuclear recoils

due to their quick down-conversion from the edge effect catalyzed by the Al fin collector coating the surface of

the ZIP-detector. As soon as the primary phonon are down-converted, they become ballistic phonons and they

propagate at the speeds of sound in the crystal. Since down-conversion for surface events occur much earlier

for surface-events than for bulk nuclear recoils, phonons from surface events tend to arrive at the TESs earlier

than the phonons from the bulk NR events [319]. Using the phonon pulse shape to reject surface-electron recoils

is especially significant, since these events can have reduced ionization collection, leading to misidentification

if using the ionization yield alone as discriminator. In this section, the surface event will be introduced and a

simple timing cut will be used as an illustration. Although the timing cut is introduced and discussed here, a

more sophisticated and optimized timing cut that I have developed during the reanalysis will be the central topic

of the next chapter.

Phonon-pulse-shape characteristics help distinguish background surface events from nuclear-recoil signal.

Figures of merit for characterizing the pulse shape are constructed during the processing. Phonon pulses are

first low-pass filtered using a 50 kHz Butterworth filter [427]. Filters are electronics designed to let pass or

suppress (attenuate) signals for certain range of frequencies. There exist various different kind of filter, the most

well know are: low passes which passes only low-frequency signals below a certain frequency cutoff called the

-3dB frequency; a low-pass filter attenuates (reduces the amplitude of) signals with frequencies higher than the

cutoff frequency. The attenuation factor for each frequency varies from filter to filter. Another type of filter is

a high-pass filter which is the opposite of a low-pass filter, i.e. it accepts frequency above the cutoff frequency

and attenuates signals below the cutoff frequency. A band-pass filter is another type of filter. This filter is a

combination of a low-pass and a high-pass. Low-pass filters exist in many different forms. The Butterworth filter

is a type of signal processing filter designed to have as flat a frequency response as possible in the passband. It

is also referred to as a maximally flat magnitude filter [428]. The gain G(ω) of an n-order Butterworth low pass

filter is given in terms of the transfer function H(s) as

G(ω) = |H(jω)|2 =
G2

0

1 + ( ω
ωc

)2n
, (7.18)

where n =is the order of filter, ωc is the cutoff frequency (or the -3dB frequency). G0 is the DC gain (gain at zero

frequency). It can be noticed that as n approaches infinity, the gain becomes a rectangle function and frequencies

below ωc will be passed with gain G0, while frequencies above ωc will be suppressed. For smaller values of n, the

cutoff will be less sharp.

During the data processing, an an algorithm called the RTFT (Rise Time and Fall Time) walk algorithm

walks down the rising edge of the filtered pulse, and records the time corresponding to the first-crossing point
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in pulse amplitude at some fraction of the pulse height, such as 10%, 20%, 40% and 70% [319]; these quantities

are used to create the phonon risetimes. The primary phonon risetime is defined as the time difference between

the 40% and the 10% times measured along the slope of the rising edge of the phonon pulse. Similarly, the same

algorithm is applied on the falling edge of the pulse to provide the falltimes, but falltimes do not provide surface

event discrimination in ZIP detectors and we don’t use them for surface events rejection in the main analysis.

The risetimes can be compared with the charge-signal start time, from the ionization optimal filter, to provide a

phonon-pulse arrival delay.

Figure 7.26: Traces from a high-energy event for all four phonon channels and the two charge channels
are shown as a function of time. The primary channel A and its 10%-40% risetime is the primary phonon
risetime (dashed vertical red lines) and the difference of its 20% risetime and the charge-pulse start time
t0 is the primary phonon delay (dashed vertical blue lines). Figure adapted from [315].

Risetimes and delays are constructed for the primary channel (phonon quadrant with maximum pulse height).

These quantities are defined as follows [as shown in Figure (7.27)]:

• Primary Phonon Risetime: The phonon risetime is defined as the difference between the 40% and 10%

risetimes of the primary phonon pulse, and it is denoted as pminrt within the CDMS analysis reduced

quantities (RQs). The primary risetime (pminrt) is a powerful discriminator between surface events and

nuclear recoils.

• Primary Phonon Delay: The phonon delay is defined as the difference between the charge signal start

time t0 (computed by the charge optimal filtering) and the 20% risetime of the primary phonon pulse.

Denoted by pdel, the primary phonon delay is also a powerful discriminator against surface events in

WIMP-search running.

The phonon pulses from the four quadrants of every ZIP detector are different for background and signal-like

events. The most difficult class of background in our experiment is surface events that result in low charge yield
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Figure 7.27: RTFT walk algorithm used to extract various timing information from the phonon pulse
shape. The top row shows the inner charge trace, and the four lower rows are the four phonon channels.
(the right column is simply a zoomed in view of the left) The raw traces are shown in black; the filtered
(50kHz cutoff butterworth) traces in blue. For each of the four phonon traces, the red crosses indicate
the 20% crossing times, as calculated by passing the filtered trace into RTFT Walk. The same event is
shown on both the left and the right (zoomed in on the rising edge). Channel C is the primary phonon
channel (well-measured using a 50kHz cutoff), and channel A is the opposite channel (poorly-measured
using a 50kHz cutoff). At low energy, the RTFT algorithm suffers from poor signal-to-noise, leading to
mis-estimated timing parameters and poor resolution. Figure from [394].

and are thought to be primarily due to 210Pb betas. The timing distributions for surface events and bulk nuclear

recoils differs in two aspects: their phonon rise and delay times. Therefore, surface-event rejection parameters

are defined to exploit these differences. The 5 timing parameters used in the development of the optimized χ2

analysis discussed in chapter 8 are described below.

pminrtc

The difference between the rise time at the 40% and the rise time at the 10% amplitude is defined as the primary

rise time or pminrtc1.

pminrtCFc

The primary phonon rise time pminrtCFc is extracted from the fitted phonon pulse, following application of a

constant frequency (of 50 kHz) Butterworth low-pass filter [427]. Then using the 40% and 20% rise time difference,

the value of the quantity pminrtCFc is determined. It is important to stress the fact the difference between

the previous timing quantity pmirtc and the pminrtCFc discussed here is that pminrtCFc is evaluated after

1The subscript ”c” at the end of each parameter’s name indicates that the parameter has been position corrected.
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applying a Butterworth low-pass filter at constant frequency of 50 kHz while the quantity pminrtc is calculated

at a variable frequency components. The constant Butterworth frequency was used during during the original

c58 analysis. The reason for developing the RD pminrtc was the following: when the signal-to-noise of a pulse

is low, the walk algorithm finds noise dips rather than the actual crossing points. To avoid this situation, we

needed to use a butterworth filter that emphasized on the longer-frequency components in this low-signal-to-noise

situation, and a butterworth that allowed all frequency information for the high-signal-to-noise situation. This

variable filter was useful in making delay-based position measures (used later for position correction). The RTFT

algorithm strategy works well under the followings assumptions: the amplitude of the noise is much smaller than

the amplitude of the pulse, and the slope of the rising edge is relatively steep. If either of these two conditions

fails, then the rising edge will be non-monotonic, and the walk algorithm will find the first instance of a 20%

point at the position of a random downward fluctuation from the noise, rather than at a point more accurately

representative of the rising edge timing. As shown in Figure (7.27), one would have to smooth the pulses more,

by decreasing the cutoff to the low-pass filter. One draw back here is that the rising edge slope of primary pulses

would start to loose its distinctive steep shape if we decrease this low-pass filter for all pulses. This is of a crucial

importance to our analysis and we cannot afford to loose such ability. The question that needed to be answered

here was to find the highest cutoff frequency for which the rising pulse will be monotonic given the signal-to-noise

ratio input. An analysis conducted by Scott Hertel showed that 50 kHz was that cutoff [394].

pminrtCF4070c

In similar fashion we define the pminrt4070c as the difference between the 70% and 40% rise times.

pdelc

The phonon delay time, or pdel, is defined as the difference between the charge arrival time and the 20% rise

time of the phonon pulse. Phonon pulses from surface events arrive sooner relative to their associated ionization

pulses than do phonon pulses from nuclear recoils. The typical time delay for phonons relative to ionization

is 2 to 15 µs. Surface events, however, have shorter delays due to quick downconversion from high (slower) to

low frequency phonons (faster), caused by interactions with the superconducting aluminum fins at the crystal

surfaces.

pdelCFc

In a similar way the delay time pdelCFc is calculated from constant frequency low-pass Butterworth filter,

using the difference between the charge arrival time and the 20% rise time of the phonon pulse as illustrated in

Figure (7.26).
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Note:

The new pulse-specific filter definitions created using a constant frequency Butterworth low-filter work wonderfully

well at low-energy. At high energy, the traditional ones still performed better. For this reason, we have decided

to combine all of them together in a χ2 analysis in order to exploit each one’s discrimination in the whole energy

range of interest in our analysis. The simple timing (or the classical timing) cut analysis used both pminrtCFc

and pdelCFc.

7.10 Simple Timing cut

The sum of the primary risetime and primary delay was often used as a key discriminator for surface event

rejection during CDMS-II WIMP-search analysis. Several other timing discriminators have been constructed and

tested but the two above have provided most surface-event rejection in past WIMP searches [425]. In Chapter

8, I will describe in detail, another timing cut technique we have developed for surface-event rejection using an

optimized χ2 which corrects for the energy dependencies of the elements of the covariance matrix. First, let’s

illustrate how a simple timing cut can be implemented for surface-events discrimination.

The ultimate goal of a WIMP-search analysis is to be able to distinguish background events and the signal

events which will potentially become the WIMP signal. In the CDMS analysis, such a goal is accomplished

through the use of the phonon timings which are intrinsically different for surface events and signal events. One

simple method that is used to discriminate surface-events electron-recoils is ”the simple timing cut” which uses the

phonon primary rise and delay times: pdelCFc and pminrtCFc. Rather than making independent cuts using

the reduced quantities pminrtCFc and pdelCFc, we take advantage of the strong correlation between the two

variables and employ principle component analysis (PCA) by making cuts along rotated axes: pdelc+pminrtc

and pdelCFc-pminrtCFc. A lower limit in (pdelc+pminrtc) serves as a discrimination cut, positioned to

accept nuclear recoils while rejecting surface events. An upper and lower limit in (pdelCFc-pminrtCFc) acts

as a consistency cut, rejecting events which lie far from the nuclear recoil population. Figure (7.28) illustrates

the implementation of such cut showing the distributions of neutrons, bulk gammas and surface events for c58

analysis [425].
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Figure 7.28: Illustration for a typical detector using in situ calibration sources and as the plots indicates:
bulk electron recoils (red points), surface electron events (black crosses) and nuclear recoils (blue circles)
with recoil energy between 10 and 100 keV. Left: Ionization yield as function of recoil energy. The solid
black lines define bands that are ±2σ from the mean electron and nuclear-recoil yields. The sloping
magenta line indicates the ionization energy threshold while the vertical dashed line is the recoil energy
analysis threshold. The region enclosed by the black dotted lines defines the sample of events that are
used to develop surface-event cuts. Right: Normalized ionization yield (number of standard deviations
from mean of nuclear recoil band) versus normalized timing parameter (timing relative to acceptance
region) is shown for the same data. Events to the right of the vertical red dashed line pass the surface-
event rejection cut for this detector. The solid red box is the WIMP signal region. Figure adapted from
[394].
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Chapter 8

Optimized 5-dimensional χ2

timing-cut analysis

8.1 Introduction

One of the primary challenges of a CDMS analysis is to develop techniques that are able to clearly differentiate

a WIMP signal from interactions due to radioactive backgrounds which can mimic the expected signal. It’s in

this spirit that the CDMS experiment uses the timing parameters derived from the phonon pulse to construct an

event-by-event discriminator.

In the previous chapter, a few CDMS timing quantities were introduced. These timing quantities are the basis

of the 5 dimensional χ2 timing-cut analysis featured in this thesis. In this chapter, I explore the energy dependence

of the χ2 analysis and expand on the details of how one forms a simple timing cut using the χ2 technique. Before

doing so, it is necessary to lay down the foundation on which this analysis is built on. We structure this chapter

as follows: first, we discuss on the construction of a χ2 and motivate the energy dependence of the mean and

the covariance matrix going into the computation of the χ2. After this discussion, the implementation of a

simple timing cut based on the χ2 will be introduced. Since the goal of this analysis was to optimize the energy-

dependent χ2 timing cut, the expected leakage and the exposure, two important ingredients for this recipe, will be

discussed. Finally, a simultaneous optimization of the yield and timing cuts will described in order to implement

an energy-dependent cut which is defined in a manner that optimizes the experiment’s sensitivity to WIMPs.

It is worth mentioning that the χ2 timing-cut technique was originally developed by previous CDMS analyzers.

For example, χ2 timing-cut surface-event rejection was the main subject of Joel Sander’s doctoral dissertation

[429]. Other CDMS collaborators have explored 3 and 4 dimensional χ2 timing-cut. J. Sander and R. Mahapatra

in [430, 431, 432, 433], Jeff Filippini in [434, 435, 437, 438], and Walter Ogburn in [439, 440, 441] have explored
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energy-independent and an energy-dependent χ2 cuts, correcting for the energy dependence of the covariance-

matrix elements in the latter case. Following these authors footsteps’, Kunj Prassad combined timing parameters

with phonon energy partition and delay variables, the fractional timing from the primary phonon pulse’s rise time,

and the total-phonon rise time variables to form a 5-dimensional χ2 for surface-event rejection in mZIP (mercedes)

detectors [442]. Concurently, I developed a 3-dimensional χ2 cut using three timing variables. Unfortunately,

this cut performed poorly; it had too many outliers, necessitating a relatively severe cut that compromised

nuclear recoil detection efficiency. Subsequently, I started developing an energy-dependent analysis, correcting

for the energy dependence of the covariance-matrix elements, while leaving the timing-parameter means energy

independent [443]. This energy-dependent χ2 cut performed a little better (56% of neutron efficiency) compared

to the 5-dimensional energy-independent that Kunj developed (52% of neutron efficiency with the same expected

leakage).

The 5-dimensional energy-dependent and sensitivity-optimized χ2 timing cut described in this chapter evolved

further for the c58 reanalysis, building upon the CDMS work that precedes it. This timing-cut differs from the

previous works by correcting for the energy dependence of the means (µ) of the variables going into the χ2 and

by tuning the cut to allow a total background-event leakage that optimizes the total sensitivity. This goal is

accomplished by incorporating the energy-dependence of the cut-position and simultaneously optimizing the yield

and the timing cut. These aspects are implemented for the first time in this analysis. This analysis achieved

the best expected sensitivity among all three timing-cut techniques developed for the reanalysis as described in

section (8.7). It has also yielded a 2× lower limit than the original c58 analysis.

8.2 χ2 Analysis

For the sake of developing a timing cut capable of rejecting surface events while maintaining signal efficiency,

two event types are needed: one representing the signal (or nuclear recoils) and one representing the background

(or surface events). In a CDMS analysis, a 252Cf neutron source is used to acquire nuclear recoils, while a 133Ba

gamma-ray source is used to acquire surface events. For simplicity, we refer to signal-like events as a neutrons

and surface-events as betas.

With these two events types, a χ2 must be calculated for two hypotheses: a neutron hypothesis and a beta

hypothesis. A χ2 for the neutron hypothesis is calculated on an event-by-event basis and denoted χ2
N . Similarly,

for the beta hypothesis, χ2
B is computed.

8.3 Constructing a χ2 statistic.

The general form of a χ2 statistic can be written as [426]

χ2 =
∑
j,k

(xj − µj) · (Σ)−1
jk · (xk − µk), (8.1)
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where x represents the observables, µ is the mean of the observables and (Σ)−1 is the covariance matrix defined

as the inverse of the error matrix Σ. In 2 dimensions, the error matrix Σ for the observables x and y is defined

as

Σ =

 σ2
x cov(x, y)

cov(x, y) σ2
y

 , (8.2)

with cov(x, y) the correlation term between the variables x and y. The covariance matrix can then be written as

(Σ)−1 =
1

1− ρ2

 1
σ2
x

− ρ
σxσy

− ρ
σxσy

1
σ2
y

 , (8.3)

where the parameter ρ is known as the correlation coefficient (for the variables x and y):

ρ ≡ cov(x, y)

σxσy
. (8.4)

The correlation coefficient ρ is bounded between -1 and 1, i.e |ρ| ≤ 1. Not surprisingly, ρ = 0 when the variables

are uncorrelated, therefore the off-diagonal terms of the matrix (8.2), or (8.3) for the 2-dimensional case,will

vanish. In such a situation, the variables x and y are therefore independent.

In the analysis described here, the variables used in the χ2 are the timing parameters extracted from phonon

pulse shapes: the primary rise time and the delay with respect to the ionization pluses. Specifically (and

in the jargon of CDMS reduced quantities): pminrtc, pdelc, pminrtCFc, pdelCFc and pminrtCF4070c

parameters described in section (7.9) are used. Figures (8.1) and (8.2) shows the binned energy dependence of

the correlation coefficients ρ12 and ρ24. Plots for other correlation coefficients are shown in Appendix B. As it

can be notice (from these two plots as well the plots for other correlation coefficients shown in Appendix B),

the variables are highly correlated for the neutron sample in all detectors and these coefficients are consistent

to being constant for the energy range of 10 − 100 keV corroborating the results Jeff Filippini found during

his 3-dimensional energy-dependent χ2 that used the pdelc, pminrtc and pfrac [435]. The quantity pfrac

is defined as the fraction of phonon energy deposited in one phonon sensor relative to the total (the sum) of

the phonon energy in the 4 phonon sensors (also called quadrants). Since phonon sensors are denoted by pk;

k = {a, b, c, and d}, the total phonon energy in the 4 quadrants is then given by pt =
∑4

k=1 pk. Therefore the

phonon fraction in each quadrant is pk
pt
.

8.4 Correcting for energy dependence

The timing parameters used in this χ2 analysis possess a strong energy dependence. As the energy decreases, their

resolutions (the variance or σ2) flare out, as shown in Figure (8.4). Since the WIMP rate is expected to be much

higher at low energy, it is critical to have the surface-event rejection cut perform well at low energy. If one forms

a cut without correcting for these energy dependencies, the cut will perform poorly at low energy, thus making
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Figure 8.1: The correlation coefficient between the first and the second timing variables (i.e. pminrtc
and pdelc) as function of energy. The blue curve represents the energy dependence of ρ12 for the neutron
sample while the green, the red and the cyan curves represents the energy dependence for the surface
events betas, the phonon and the charge-side events respectively.
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222 Chapter 8: Optimized 5-dimensional χ2 timing-cut analysis

the rejection cut insensitive to distinguishing background from signal in the most important energy regime. The

energy-dependent cut which is the subject of this chapter was implemented by incorporating and correcting for

the energy dependence of the elements of the covariance matrix and the means of the timing variables used in

the χ2.

For the fits discussed in the subsequent part of this section, the events used were required to pass simple

timing-parameter outlier cuts. The outlier cuts were formed by keeping only events within ±3σ from the mean of

the timing distributions for a given event type. Since ZIP detectors have phonon sensors at the top and ionization

sensors at the bottom, there is an intrinsic asymmetry that causes phonon and charge-side surface events to have

different distributions. Consequently, there are more low-yield events from the phonon-side than from the charge

side. For this reason, the energy dependence of the covariance matrix was calculated for side-specific surface-event

populations.

8.4.1 Means of the χ2 variables

The means (µ) of the timing parameters used in the χ2 were calculated as functions of energy from 10 to 100 keV

in five 10-keV bins from 10 to 60 keV and two 20-keV bins from 60 to 100 keV. The following functional form

was fit to the bin-wise collection of means to model each parameter’s energy dependence. The energy-dependent

mean µα(E) of the kth timing variable for sample α was fitted to the binned means using the functional form

µkα(E) = Akα(1) +Akα(2) · E2 +Akα(3)
√
E, (8.5)

where Akα(1), Akα(2) and Akα(3) are the fit parameters and depend on event type and detector [444]. The

index α refers to event types (α = {neutron, phonon-side betas, charge-side betas}) and k refers to the timing

variables: k = {1, 2, 3, 4, and 5} taken for the following order {pminrtc, pdelc, pminrtCFc, pdelc, and

pminrtCF4070c}.

The fits were performed for a variety of event types: signal-like using californium neutron events, and

background-like events. The background sample is extracted from the Barium calibration to form a data subset

that we call the beta sample. The betas are considered as electron recoils with low charge yield or with incomplete

charge collection. Charge-side events are selected by requiring that the detector under test and the detector right

above it to have a hit (i.e. energy deposited by the interacting event above the noise threshold), but no hit should

be observed from the detector below. For phonon-side events, we require that the event deposits energy on the

detector under test and the detector underneath, and not on the detector above.

The fit parameters used to model the means of the timing parameters according to equation (8.5) are shown

in the tables of Appendix A.
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Figure 8.3: Energy dependence of the means of the timing variables used in the χ2 for T1Z2. In black
is shown the fit to the data using the functional form fit in equation (8.5). Different colors indicate
different event types: neutron (blue), surface events - betas(green), phonon-side surface events (red) and
charge-side surface events (cyan).

8.4.2 The covariance matrix

The elements of the covariance matrix exhibit a strong residual energy dependence. To compensate, the covariance

matrix elements were also calculated as functions of energy from 10 to 100 keV (using the same energy bins used

for the timing parameter means).

For each detector, the covariance matrix was calculated in every energy bin for each event type (surface events

and neutrons). The diagonal elements of the covariance matrix, the variances (σ2
kl), as well as the off-diagonal

terms, the correlation terms (covkl, k ̸= l), are plotted against recoil energy, Figure (8.4). The energy dependence

of the covariance matrix element between the kth and lth timing variables for the α sample, σ2
klα, was fitted using

the functional form [445]

σ2
klα(E) = Bklα(1) +

Bklα(2)

E2
. (8.6)

where the constants Bklα(1) and Bklα(2) are the fit parameters and depend on the event type α and detector.

The parameter Bklα(2) takes into account the noise distribution, which is dominant at low energy, i.e. when
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E → 0. Bklα(1), however, is the asymptotic value of the variance at high energy. The fits for the variances and

the correlation terms are shown in Figure (8.4) for a representative detector (see appendix B for equivalent plots

for other detectors and for tables with the fit parameters).

The χ2
α for each particle-type is then formed for every event candidate under the approximation that the

timing variables are each gaussian distributed, i.e.

χ2
α(E) = (x− µkα)

T · σklα(E)−1 · (x− µlα). (8.7)
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Figure 8.4: Covariance matrix elements binned as function of energy for T1Z2. In black is shown the fits
to the data using the functional form in equation 8.6. Different colors indicate events of different type:
neutron (blue), surface events - betas(green), phonon-side events (red) and charge-side events (cyan).
The numbers {1, 2, 3, 4, and 5} refers to the timing variables used in the construction of the χ2, they
must be taken in the following order {pminrtc, pdelc, pminrtCFc, pdelc, and pminrtCF4070c}.
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8.4.3 Method

Given the neutron and beta hypotheses, the χ2s represent the likelihood for a given event to be neutron-like

or beta-like. In order to compute χ2
N for neutron-like distributions and χ2

B for the beta-like distributions, the

appropriate covariance matrices for these specific classes of events have to determined using well-defined samples

of neutron and beta events.

For a preselected sample of neutrons, the means of the 5 timing variables and the covariance matrix were

calculated as function of energy. Using the energy-dependent mean and covariance matrix, χ2
N (E) can thus be

determined. For the the beta distributions however, side (face) events were used to infer the χ2
B(E). Using

phonon-side and charge-side events, energy-dependent means and covariance matrices were computed to obtain

χ2
p(E) and χ2

q(E). From these, the beta χ2
B was inferred:

χ2
B(E) = min(χ2

p(E), χ2
q(E)). (8.8)

8.4.4 Forming the cut

The final goal is to form a cut which can reject as many surface events as possible. Once χ2
B and χ2

N are computed,

they are plotted against each other for both neutron and beta event populations. In the 2 dimensional plane as

shown in Figure (8.5), one needs two cut types:

• The rejection cut, and

• The consistency cut.

Rejection cut:

The rejection cut is intended to distinguish potential signal events from the expected distribution of surface

events. The rejection cut is related to the probability that the event is a nuclear recoil (∼ e−
1
2
χ2
N ) and to the

probability that the event is a surface event (∼ e−
1
2
χ2
B ). χ2

N and χ2
B can also be interpreted as the distance of

an event from the mean of the nuclear recoil band, µ(ER)NR, which exhibit a strong energy dependence as well.

In order to form this cut, one can explore two different approaches:

1. Rejection cut based on a constant χ2
B:

Cutting on a constant χ2
B requires a definition based only on χ2

B such that most of the surface events (green

dots) are rejected while most of the neutrons (blue dots) are accepted. Such a cut can be accomplished by

keeping only events for which

χ2
B ≥ C. (8.9)

However, there obviously a more intelligent approach that can be taken and this is discussed below.

2. Rejection cut based on χ2
B − χ2

N :
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To cut on χ2
B − χ2

N , requires very good knowledge of the functional form that defines the relationship

between χ2
B and χ2

N , which can depend on many factors. The simplest way to derive such a functional

form was studied in the past by Joel Sander [429] and Xinjie Qiu [446], who used the ratio of the probability

that an event is likely be a surface event to the probability that of an event to likely be a nuclear recoil,

i.e:

r ≈ e−
1
2
(χ2

B−χ2
N ). (8.10)

It is easy to define a cut by taking the negative logarithm of the above expression. This negative logarithm

is referred to as the χ2 distance (denoted dχ2).

dχ2 = −2 ln(r) = χ2
B − χ2

N , (8.11)

so, in order to keep more neutron events and reject most of the surface events, the dχ2 must satisfy the

following criteria:

dχ2 = χ2
B − χ2

N ≥ η. (8.12)

where η may be constant or energy-dependent.

Consistency cut:

A potential WIMP signal must have a value of χ2 that is consistent with nuclear recoils. For this reason,

a consistency cut (also referred to as the outlier cut) has to be applied in order to keep as many neutrons as

possible while rejecting events at very large values of χ2
N . Most neutrons pile up at low χ2

N . Consequently, this

analysis is simplified by rejecting large χ2
N events without losing much detection efficiency. Events are kept if

and only if

χ2
N ≤ C1. (8.13)

where C1 is a hard cut value chosen in such a way that most of the signal is kept. Concurrently, this same cut also

helps to reject surface-events outlier events at large χ2
N values. There is an important reason for the consistency

cut to be defined in the way it is written in equation (8.13). This cut is used to protect against shortcomings of

the model. Surface-events betas become harder to cut at large χ2
N . Furthermore, the consistency cut (8.13) is

justified since most neutrons are at low χ2
N , so it makes sense not to use large χ2

N .

A combination of the cuts (8.13) and (8.9) or a combination of the cuts (8.13) and (8.12) suffice to form a χ2-

based timing cut. However, one figure of merit which goes into the preference between these different approaches

is the signal efficiency. Obviously, the cut with higher neutron efficiency will be preferred. A study by Xinjie

Qiu [446] using the 2-dimensional Gaussian density of the χ2 timing cut, demonstrated that neutron efficiency is

much higher if one cuts on the difference of χ2
B and χ2

N rather than cutting on a constant χ2
B . Consequently, I

use the combination of the cuts (8.13) and (8.12).
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8.5 Energy-Independent χ2 cut

The energy-independent χ2 timing cut discussed in this section uses the energy-dependent covariance matrix and

means in the computation of χ2
B and χ2

N . What makes this cut energy-independent is the fact that the two cut

types (the consistency and rejection cuts) have not been made energy-dependent.

The consistency cut in this analysis and for the subsequent parts of this chapter was set such that it passes 90%

of neutrons. However, the rejection cut for this energy-independent cut is determined on a detector-by-detector

basis by requiring that the surface-event leakage fraction, calculated using the beta sample in energy range of

10 − 100 keV, be of the order of 1 out of 200, i.e. by changing η in bins of 0.1 and requiring a leakage fraction

≤ 1
200

. If two different cuts have the same leakage fraction, we select the cut with the largest efficiency. Figure

(8.5) shows the implementation of the cut for a representative detector. Table (8.1) shows the neutron efficiency

and surface-events passage fraction for all detectors. The energy dependence of the efficiency was explored and

Figure (8.6) illustrates it for a representative detector. The functional form used to fit the neutron efficiency

data was an error function times a decaying exponential:

f(E) = A(1) · [1 + erf (A(2) · (E −A(3)))] · e−A(4)·E . (8.14)
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Figure 8.5: χ2
B as function of χ2

N with an energy-independent cut implemented. The black vertical line is
the consistency cut which is set in such that 90% of neutrons survive. The rejection cut however (cyan),
which is energy independent, is defined so that the surface-event leakage fraction is 1:200. The overall
neutron efficiency (dark yellow circles) is 68.91%, while the surface leakage fraction (red black circled
events) is ∼ 0.49% for this detector.
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Figure 8.6: Neutron efficiency of the χ2 energy-independent cut as a function of recoil energy. The solid
darker red line is the fit to the data obtained using an error functional form, cyan and yellow regions
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As can be noticed from Table (8.1), the neutron efficiency is quite acceptable in most detectors with an

average efficiency significantly better than the original c58 result. However, this cut is limited by systematics

for the leakage estimate. The leakage estimate obtained with this cut is underestimated since its computation

does not take into account the energy spectrum of the background. The energy dependent cut discussed in

section (8.6), however, will address this issue. Figure (8.5) shows the distribution of χ2
B as function of χ2

N and

the (energy-independent) cut positions. The efficiency of the cut as function of energy is shown in Figure (8.6).

The error bars shown in orange color represents the data while the dark red curve is the fit to data obtained

with the functional form given by Equation (8.14). The cyan and yellow region in Figure (8.6) are the 1σ and

2σ confidence interval. The plots and fits for other detectors are shown in Appendix C.

8.6 Energy-Dependent χ2 timing cuts

In the previous section, an energy independent cut was developed to establish the χ2-based timing-cut method.

The following two improvements can be implemented in order to improve the rejection of surface events, especially

at low energy where leaking events are most likely:

1. account for the energy dependence of χ2
B − χ2

N : The energy dependence of the χ2 difference for the

surface events and the signal was completely ignored in setting the energy-independent cut. Figure (8.7)

shows that this χ2 difference does indeed depend on energy. For the detector shown, there are quite a few

outliers at low energy with substantially larger values of the χ2 difference that cannot be rejected with an
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Detector Name Neutron Efficiency(%) Surface Events Leakage Fraction
T1Z2 68.91 0.00490±3.92× 10−4

T1Z5 64.93 0.00460±4.14× 10−4

T2Z3 69.58 0.00486±4.37× 10−4

T2Z5 59.89 0.00472±5.19× 10−4

T3Z2 54.02 0.00478±3.34× 10−4

T3Z4 73.60 0.00487±3.41× 10−4

T3Z5 73.81 0.00499±4.49× 10−4

T3Z6 45.62 0.00500±4.25× 10−4

T4Z2 37.89 0.00481±4.33× 10−4

T4Z4 66.08 0.00478±3.49× 10−4

T4Z5 71.56 0.00495±4.46× 10−4

T4Z6 40.05 0.00473±5.20× 10−4

T5Z4 24.02 0.00497±3.73× 10−4

T5Z5 37.52 0.00497±3.74× 10−4

Table 8.1: Neutron Efficiency and Surface events passage fraction for the energy-independent χ2 cut
for the ZIP detectors used during the reanalysis c58R. The neutron passage fraction satisfies both the
consistency (set in order to allow 90% of neutrons to pass) and the rejection cuts (tuned for a rejection
of 200:1).

energy-independent cut without compromising the signal efficiency at higher energies.

2. optimize the cut: The χ2 timing cut for which the neutron efficiency and leakage passage fraction shown

in Table(8.1) was not optimized in any sense. Because all detectors do not have the same performance, an

optimized cut could set the cut positions in such a way that the exposure is higher while the surface-event

leakage is lower in detectors with stable running periods and good performance. For detectors with less

performance however, the cut position will be stricter so that the leaking surface events are minimized.

This has the potential to have a strong impact on the overall WIMP-search exposure.

In this section, I develop a χ2 energy-dependent cut which makes these two improvements. The energy

dependence is taken into account by the use of three energy bins: 10 − 20 keV, 20 − 30 keV and 30 − 100 keV.

Prior to developing an optimized χ2 timing cut, two important ingredients need to be determined: the expected

leakage and the final signal efficiency for a set of timing cuts weighted by the live time and the expected WIMP

spectrum-averaged exposure, or SAE, which depends on WIMP mass as discussed in section (8.6.2). These two

quantities have to be calculated for different timing-cut positions. The optimization which will be discussed later

will determine the optimal timing cut to use; which should optimize the experimental sensitivity, see section (8.6.4)

for more details.

8.6.1 The Expected Leakage

The expected leakage in each energy bin of each detector is calculated according to the recipe developed during

the c58 analysis [447], where, for any desired cut position η on a given detector z, the expected WIMP-search

nuclear-recoil single-scatter (NRSS) leakage nz was determined from the scalar product of the expected number
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of WIMP-search single-scatter events (Nz) in the nuclear-recoil band with the expected leakage fraction ( L
B
), in

three energy bins and for both detector’s faces, after taking into account the systematic differences between the

background energy spectrum in barium data and the leakage spectrum in the WIMP-search data. The barium

background leakage fraction was calculated according to

(
L

B

)
z

=
∑
e,f

(bef )z · (Sef )z, (8.15)

where the subscript z refers to a given ZIP detector. The other subscripts e, f represent specific interaction

categories for recoil energy bin e and detector face f . The bef values are the leakage fractions of surface electron

recoils in the various categories expressed as a function of the timing-cut cut position. They are calculated using

the barium calibration data as the ratio of events passing the cut position (η) to the total number of calibration

events in the energy bin and face of the detector considered, i.e:

(bef )z =
(Lef )z
(Bef )z

, (8.16)
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where Lef and Bef are the number of leakage events passing the timing cut and the total number of calibration

events in the energy bin e and detector face f respectively for the detector under consideration. Finally, the

scaling factor Sef is calculated using R123/R124 data and takes into account the systematics difference between

the surface-event energy spectrum in Ba calibration data and WIMP-search data. The scaling factor was simply

determined as the scaling factor needed to reweigh (multiply) the Barium expected leakage in energy bin and

detector’s face in order to get the same expected leakage in WIMP-search data. For the exteriors detectors

(endcaps), it is not as straightforward to tag phonon vs. charge side events since there is no adjacent detector

on the phonon/charge face for top/bottom detectors. For the c58 analysis as well as for the reanalysis, the only

endcaps considered are bottom endcaps (T3Z6 and T4Z6). To estimate the scaling factors for these detectors, it

was assumed that all single scatters are untagged charge side events, which slightly overestimates the number of

charge side events. Howsever, this approach was deemed to be conservative since charge side betas have higher

passage fraction than phonon side giving a conservative estimate of the true fraction of phonon side and charge

side events for the endcaps. The overall expected leakage for a given cut position is estimated according to the

formula

nz(η) = Nz ·
∑
e,f

(bef (η))z · (Sef )z (8.17)

where η is the timing cut position and Nz is the number of surface electron recoils with WIMP-like ionization

yield (NRSS) expected in c58 for a ZIP detector z.

The value of Nz was calculated using three different methods [447]

1. Measure the number of nuclear recoil single scatters (NRSS) in the unblinded c34 data, and then scale this

number by the livetime of c58 to the livetime of c34. This method assumes that the surface-event rate of

c34 is the same as the surface-event rate in c58.

2. Measure the ratio of nuclear recoil multiple scatters (NRMS) to NRSS in the unblinded c34 data by

counting the NRMS in c58 low background data, and scale this observed number by the ratio computed in

c34. Because the blinding cut includes cSingle, the NRMS of c58 can be counted without unblinding the

NRSS. This method assumes that the NRMS : NRSS ratio of c34 is the same as that of c58.

3. Measure the ratio of multiple scatters to single scatters outside of the NR band in c58 data by counting the

NRMS in c58 low background, and scale according to the MS:SS ratio observed outside of the NR band.

This method assumes that the MS : SS ratio outside of the NR band is the same as that in the NR band.

In the computation of the expected leakage, only the values of Nz calculated using Method 1 were used.

The outcomes from the other two methods were used as cross checks of the calculated expected leakage. These

numbers can be found in chapter 6 of Matt Frits’s dissertation [382].

The expected leakage was calculated using the equation (8.17) for the c58 reanalysis data. Because of the

small data samples and lack of statistics in Ba calibration data as the timing-cut position becomes tighter, the
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tails of the surface-event leakage distributions in each energy category are fit to a functional form to allow an

extrapolation beyond the data, allowing flexibility to set the timing cut position in regions where the surface-

event background statistics are low. In order to get the right shape of the expected leakage, the cut position

was changed by units of 2 for χ2
B − χ2

N < 50 and ina step size of 1 for χ2
B − χ2

N > 50 (finer binning might be

better, but would compromise the software speed). Figure (8.8) shows the expected leakage as a function of the

cut position for a representative detector (see Appendix F for equivalent plots for the other detectors).
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Figure 8.8: The expected leakage as function of cut positions calculated using the 133Ba calibration data
for the c58 reanalysis. The black lines represent fits to the data (shown in solid for the red 10-20 keV
data, dashed for the blue 20-30 keV data and dotted for green 30-100 keV data). The vertical magenta,
cyan and dark red lines represents the optimal cut positions while the dashed magenta, dashed cyan and
dashed dark red lines are the cut positions for equal leakage in the three energy bins respectively. Plots
for other detectors are shown in Appendix F.

The curves of the expected leakage as a function of cut position (χ2
B−χ2

N ) for the three energy bins are stored

as a set of points, one for each cut position. As can be seen in figure (8.8) this resolution is sufficient for encoding

the shape of the curve. The black lines in figure (8.8) are the fits to the expected leakage computed in the three

energy bins. The most interesting regions of the fits are the tails of the distributions where the statistics become

extremely small. The fits allow extrapolation of an expected leakage for tighter cut positions. The tails of the

leakage distributions were modelled with the functional form

fl(η) = a1 · log
(
1 + e−a2η

a3
)
, (8.18)
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with [a1, a2, a3] the fit parameters and η = χ2
B − χ2

N the cut position. The function fl(η) was chosen because it

seemed to fit the data well.

8.6.2 Spectrum-Averaged Exposure

The spectrum-averaged exposure was also calculated as a function of cut position η = χ2
B−χ2

N , similar to leakage.

The exposure is defined as the product of the live time and the nuclear-recoil detection efficiency calculated for

252Cf passing all the data-selection cuts, including the timing cuts (the χ2 timing cut in this case). Since in

general these efficiencies are energy-dependent, the true efficiency is an average weighted by the expected WIMP

spectrum. This spectrum depends on the WIMP mass; a 60 GeV/c2 WIMP was used to generate the expected

WIMP spectrum used to weight the efficiency. The following formula was used to compute the spectrum averaged

exposure S:

S(η) = MT

∫ qmax

qmin

dR
dq

· ϵη(q)dq∫ qmax

qmin

dR
dq

dq
, (8.19)

where dR
dq

is the WIMP spectrum (or differential rate), ϵη is the energy-dependent analysis efficiency calculated

at a given cut position η = χ2
B −χ2

N and qmin and qmax represent the analysis energy range. qmin = 10 keV is the

recoil-energy threshold and qmax = 100 keV is the maximum analysis energy. The quantityMT in Equation (8.19)

represents the exposure, which is defined as the product of the detector’s mass M and the livetime T .

Similarly to the expected leakage, the WIMP spectrum-averaged exposure, shown for a representative detector

in Figure (8.9), was also calculated and stored as function of cut position η = χ2
B − χ2

N . The tails of the

distributions of the exposures were fit using the following functional form:

fS(η) = (b1η + b2) · e−b3η
b4
, (8.20)

with [b1, b2, b3, b4] the fit parameters and η is the cut position. This function fS(η) was also chosen because it

fitted the data well.

It is important to mention at this point that the three energy bins used in this analysis show that there is

more exposure and leakage in the lowest energy bin, i.e. in 10− 20 keV, as shown in Figures (8.8) and (8.9). If

we chose to set a constant cut position for the three energy bins, the lowest energy bin would dominate both the

expected leakage and the signal-exposure. Such a cut will compromise the detection sensitivity.

The optimization scheme developed in this analysis rather chooses different cut positions for the three energy

bins. This optimization selects the cut positions by cutting hard, i.e. rejecting more leakage, in bins where the

leakage is higher while softening the cut position in energy bins with less leakage. As it will become clear as we

move forward, this scheme maximizes the expected sensitivity.

The WIMP-search exposure is in general composed of two main components: the live time of the target

mass and an energy-dependent signal efficiency associated with live time. The live time of the target mass is
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for 10− 20 keV, dashed blue for 20− 30 keV and dotted green for 30− 100 keV). The vertical magenta,
cyan and dark red lines represents the optimal cut positions while the dashed magenta, dashed cyan and
dashed dark red lines are the cut positions for equal leakage in the three energy bins respectively. Plots
for other detectors are shown in Appendix F.

simply the product of the live time with the detector’s mass, where the live time indicates the number of the

live days in the data after removing periods of elevated noise and abnormal running conditions. The power

of a WIMP-search analysis is characterized by its sensitivity to observation of WIMP recoils and its expected

background rate (which determines the significance of any observed events). This sensitivity can only be known

if the exposure is accurately determined.

Live time

The live times (in days) for the runs 125 through 128 analyzes are shown in Table (8.2). They were calculated

by imposing the cuts ∼ cBad c58R&cQstd c58R described in section (7.6.1). Values highlighted in red, in

Table (8.2), indicate the Ge detectors that were deemed viable for the analysis featured in this thesis. A similar

analysis using data from the Si detectors will be explored in Kevin McCarthy’s dissertation (using a similar

analysis technique) [461].

Target mass

The CDMS-II ZIP detectors are normally 240 g (105 g) for the Ge (Si) crystals respectively. Detectors whose

sensors needed to be refurbished were repolished, therefore reducing their thickness below 1 cm. The actual ZIP
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R125R R126R
T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Z1 0 81.95 0 102.81 0 Z1 0 45.96 0 57.83 0
Z2 96.14 90.24 34.64 92.72 0 Z2 57.74 58.73 18.43 59.11 0
Z3 0 81.64 95.51 103.33 94.67 Z3 0 44 52.83 58.96 55.51
Z4 62.78 82.29 103.13 98.96 98.79 Z4 0 55.50 59.17 59.05 58.31
Z5 105.6 90.72 71.38 89.23 93.22 Z5 61.34 51.74 34.48 51.20 56.36
Z6 103.94 100.10 98.50 93.31 0 Z6 0 0 58.02 58.34 0

R127R R128R
T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Z1 0 27.85 0 42.05 0 Z1 0 14.85 0 20.45 0
Z2 37.24 40.41 15.62 34.25 0 Z2 20.21 20.30 7.97 0 0
Z3 0 32.49 0 45.15 35.76 Z3 0 0 20.53 19.26 21.09
Z4 0 46.33 47.19 39.88 34.70 Z4 0 19.88 21.89 19.62 21.58
Z5 0 39.48 28.11 40.72 40.90 Z5 0 0 12.11 20.86 19.64
Z6 0 0 40.19 42.78 0 Z6 0 21.26 21.71 20.54 0

Table 8.2: Live Times for the c58 reanalysis (in days). Highlighted in red colors are the 14 detectors
deemed viable for the c58 original analysis and during the reanalysis.

detector masses used in the c58 reanalysis and during the original c58 analysis are shown in Table(8.3). Although

earlier analyses used the approximate 250 g (100 g) masses for all CDMS II Ge (Si) crystals, starting with the

original c58 analysis, we have used more accurate values for the masses. The c58 analysis exposures are shown

in Table (8.4).

T1 T2 T3 T4 T5
Z1 230.5 101.4 104.6 101.4 224.5
Z2 227.6 104.6 231.2 238.9 229.5
Z3 219.3 219.3 104.6 101.4 101.4
Z4 104.6 104.6 238.9 234.6 224.5
Z5 0 0 12.11 20.86 19.64
Z6 219.3 238.9 238.9 231.9 234.8

Table 8.3: ZIP detector masses (in grams).

8.6.3 Exposure vs Expected Leakage

Given the expected leakage and the exposure as a function of cut position, it is possible to map the spectrum-

averaged exposure as a function of the expected leakage. These curves are shown in Figure (8.10).

To compute the total exposure and total leakage, two different and independent approaches can been explored.

1. use the same cut positions (η = χ2
B − χ2

N ) for all detectors to get their respective exposures and expected

leakage and sum them up to get the total exposure and total expected leakage;

2. use different detector-dependent cut positions (η = χ2
B − χ2

N ) for all detectors to get their respective

exposures and expected leakage and sum them up to get the total exposure and total expected leakage.
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R125R R126R
T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Z1 0 8.31 0 10.43 0 Z1 0 4.66 0 5.86 0
Z2 21.88 9.44 8.01 22.15 0 Z2 13.14 6.14 4.26 14.12 0
Z3 0 17.90 9.99 10.48 9.60 Z3 0 9.65 5.53 5.98 5.63
Z4 6.57 8.61 24.64 20.69 22.18 Z4 0 5.80 14.14 13.85 13.09
Z5 23.04 21.67 17.05 20.69 21.89 Z5 13.45 12.36 8.24 11.87 13.23
Z6 10.87 10.47 22.82 22.29 0 Z6 0 0 13.44 13.94 0

R127R R128R
T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Z1 0 2.82 0 4.26 0 Z1 0 1.51 0 2.07 0
Z2 8.48 4.23 3.61 8.18 0 Z2 4.60 2.12 1.84 0 0
Z3 0 7.13 0 4.56 3.61 Z3 0 0 2.15 1.95 2.14
Z4 0 4.85 11.27 9.36 7.79 Z4 0 2.08 5.23 4.60 4.84
Z5 0 9.43 6.72 9.44 9.60 Z5 0 0 2.89 4.84 4.61
Z6 0 0 9.31 10.22 0 Z6 0 2.22 5.03 4.91 0

Table 8.4: Exposures for the c58 reanalysis exposures (kg×days). Highlighted in red colors are the 14
detectors deemed viable for the c58 original analysis and during the reanalysis.
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Figure 8.10: The spectrum-averaged exposure as function of the expected leakage (in terms of the number
of leaked events) for the 14 Ge-ZIP detectors considered in the c58 reanalysis. Each color represents a
single detector and different symbols for each color indicate the three energy bins of 10-20 keV, 20-30
keV and 30-100 keV.

In the subsequent development of the χ2 timing cut, the second approach was used because it yields higher

exposure for the same total expected leakage.

The total exposure and total expected leakage are obtained by summing individual detectors’ exposures and
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expected leakages. Furthermore, the knowledge of the total exposure and total expected leakage is prerequisite

to the simultaneous optimization of yield and timing cuts. The optimization was implemented as follows:

1. The cuts may be optimized for a given total expected leakage by requiring that the first derivatives of

the spectrum-averaged exposure with respect to the expected leakage dS
dL are equal for each detector and

every energy bin (slopes of the curves in Figure (8.10)). The reason why we require the slopes to be equal

is that we want the change in exposure over the change in leakage to be the same for all energy bins in

every detector. If the slopes are not the same, we could increase the total exposure for the same leakage by

tightening the cut with flatter slope while loosening the cut with the larger slope. So, choosing the same

slope is equivalent to distributing the leakage in all these bins while we maximize the exposure.

2. Find the best total expected leakage (or equivalently the best slope) by choosing the exposure-leakage

combination that yields smallest expected upper limit.

Figure (8.11) shows a cartoon that illustrates how the total exposure and total expected leakage were cal-

culated. To determine the different cut positions, we use the slopes as a function of the expected leakage. The

slopes are defined as the first derivative of the spectrum-averaged exposure with respect to the expected leakage.

Since the exposure and the expected leakage are both functions of the cut position η, the above expression can

also be written in the following form:

m =
dS
dη

· dη
dL =

(
dS
dη

)
(

dL
dη

) , (8.21)

where the chain rule has been applied to get the analytic form of the first derivative using the functional forms

used to fit the exposure S and the expected leakage distribution tails L. The illustration shown in Figure (8.11)

is for a single detector with three energy bins employed to make the cut energy dependent. The curves of the

slopes as a function of cut position, shown in Figure (8.12), were used to set the combinations of cuts.

To calculate the total exposure S and total expected leakage L for different detector-dependent cut positions,

about 900 values of the slope, ranging from 10 to 100 in steps of 0.1, were used. For a selected slope, the expected

leakage for each single energy bin was determined by a simple projection of the intersection points to the x-axis,

call this Le(z) (with e = 1, 2, 3 indicating the three energy bins and z refers to the ZIP detectors) as illustrated

in the cartoon shown in Figure (8.11). Knowing the dependence of the expected leakage as a function of the cut

position, the latter can be determined. Finally, using the exposure curves as a function of the cut position, the

exposure Se(z) can be calculated. The total exposure and total expected leakage for the chosen slope is given

by
∑

{e,z} Se(z) and
∑

{e,z} Le(z), which is represented by a single dot shown in lower bottom-left plot of Figure

(8.11).
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Figure 8.11: Cartoon illustrating the scheme used to calculate the total spectrum averaged exposure and
the total expected leakage. The three colors used in the figure represents the three energy bins for a
single detector. The scheme shown in the cartoon uses the slopes to compute the total exposure and
total leakage. Starting from the top-left and proceeding to top right, bottom-left and bottom-right, this
computation proceeds as follows: (1) pick a slope m and determine the expected leakage Le(z) with e
representing the three energy bins 10 − 20 keV, 20 − 30 keV, and 30 − 100 keV. (2) use the expected
leakages Le(z) computed in step (1) to determine the cut positions ηe(z). (3) knowing how the exposures
vary as functions of the cut positions, one can determine the exposures Se(z). Although illustrated only
for one detector, steps (1)-(3) were carried out for the 14 detectors used in this analysis. Finally, (4)
summing all the exposures

∑
{e,z} Se(z) and leakages

∑
{e,z} Le(z) to get the total exposure and total

leakage represented by the black dot in the bottom-left plot. By repeating the steps (1)-(4), the curve
of the total exposure as function of the total leakage can be determined.

8.6.4 Optimization

The values of the total expected leakage and the exposure as functions of cut position are used in this section to

define an optimized χ2 timing cut. At the same time, the nuclear-recoil (NR) acceptance band, in the ionization

yield (µNR − 2σNR ≤ µNR ≤ µNR + 2σNR), can be re-defined by simultaneously optimizing both the timing

and yield cuts. The whole optimization recipe defines the timing and yield cuts that optimize the experiment’s

expected sensitivity.

8.6.5 Yield cut

The standard CDMS analysis uses a nuclear-recoil (NR) band to describe the expected WIMP-acceptance region.

This signal region is typically defined by requiring the ionization yield to be within ±2σ from the mean of the NR
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Figure 8.12: Slope as function of the expected leakage. The black dot-dashed horizontal line corresponds
to the optimal set of timing-cut positions.

band. However, no prior study has been done to determine if this NR-band definition is optimal. The traditional

NR band was designed to have high nuclear-recoil acceptance efficiency, about 95%. Moreover, this choice of

±2σ was arbitrary.

During the original c58 analysis, I performed a study that indicated that ±2σ NR-band is, in fact, not optimal.

The optimized yield cut for this study was determined as [−1.9, 1.5]σ, with 90.45% NR band acceptance efficiency

[448, 449]. This study, however, was not completed in time to be applied to the 2010 Science publication [425].

Optimizing the nuclear acceptance region is important in order to limit the low-yield surface events that

droop into the NR-band as shown in Figure (8.13). The high-yield side of the NR band is more polluted from

these low-yield background events than the low-yield side. Consequently, an asymmetric NR-band is optimal. In

the past CDMS analyses, the width of the nuclear-recoil band was considered to be 2σ above and below the mean

of the band, as already mentioned in the previous paragraph, this choice was somewhat arbitrary.The optimal

band may not have the width that we have always used and may not necessarily be symmetric.

Figure (8.13) shows the cumulative distribution of the low-yield leakage as function of the y∗ variable defined

by

y∗ =
yic− µNR

σNR
. (8.22)

where yic is the ionization yield for events inside the inner charge electrode, µNR and σNR are the mean and

standard deviation of the nuclear-recoil band. For the traditional ±2σ NR-band, y∗ is bounded between −2 and

+2.

In the WIMP-search data, low-yield events come from betas (not present in Ba) and gamma interactions
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at the surface of the detectors, also giving rise to singles and multiples. The yield distribution of beta singles

and multiples are roughly similar, so the WIMP-search multiples used in this study are appropriate to inform us

about the yield distribution of WIMP-search singles.

Figure 8.13: The cumulative distribution (CDF) of the leakage (blue) as function of the y∗ variable
introduced in equation (8.22) as observed using the R123-124 during the first study I conducted. On
the left is the leakage estimated from the Ba calibration while on the right is the leakage calculated
using WIMP-search data. Both distributions indicate that there are more leakage events at y∗ > 0 than
expected for uniform distribution (green dotted) and more leakage events at |y ∗ | > 1 than expected
for nuclear recoils (red dotted CDF for a Gaussian distribution of mean 0 and standard deviation of 1),
suggesting that the higher side of the nuclear-recoil band is exposed to more leakage events than the
lower side.

For a given yield cut, defined by a lower and upper edge (running from 0.1 to 2.5 with a step size of 0.1 in

order to account for a wide range of NR-band definitions (possibilities), the neutron efficiency and the number of

leakage events (WIMP-search multiple scatters: WSMS) were calculated using the WIMP-search data. For each

of these yield cuts, the neutron efficiency was calculate assuming the neutron data is gaussian distributed, i.e.

ϵ(ζ) =
1√
2π

∫ u

−l

e−y2/2dy, (8.23)

where ζ = (l, u) is the yield cut (i.e. yic ∈ [−l,+u]σ); l and u are the lower and upper edges of the nuclear-recoil

band (which are allowed to vary between 0.1 to 2.5 for both in bins of 0.1).

Figure (8.14) shows the plot for the neutron efficiency ϵ as a function of the leakage l expressed in terms of

the number of WIMP-search multiple scatters. The black dot indicates the efficiency ϵ and the leakage l for the

traditional yield cut, i.e. the ±2σ NR-band.
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Figure 8.14: Neutron efficiency as function of WIMP-search multiple scatters. Each dot represents a
yield cut. The traditional ±2σ NR band with a neutron efficiency of 95.45%, shown in black dot, has a
total WIMP-search multiple leakage of 298 events.

8.6.6 Simultaneous optimization

The simultaneous optimization scheme used in this analysis assumes that both the timing and the yield cuts

are completely uncorrelated (or independent). Up to this point, the ±2σ yield cut for the nuclear-recoil band is

used. Moreover, this yield cut is not optimal. In order to find an optimal NR-band, a simultaneous optimization

scheme that uses both the yield and the timing cuts is developed. In the definitions (8.24) and (8.25), the

following terminology are used:

• L(η⃗, ζ): the final expected leakage of the timing cut η and yield cut ζ.

• Ltc(η⃗): the expected leakage of the timing cut η. This leakage was calculated according to the scheme

described in the cartoon shown in Figure (8.11).

• L(±2σ): the expected leakage of the traditional yield cut. This leakage is the number of WIMP-search

multiple scatters inside the nuclear-recoil band.

• L(ζ): the leakage of the yield cu, i.e. the number WIMP-search multiple scatters inside the [−l,+u]σ

NR-band calculated using the WIMP-search data.

• S(η⃗, ζ): the final spectrum-averaged exposure of the timing cut η for a defined yield cut ζ.

• Stc(η⃗): the final spectrum-averaged exposure of the timing cut η only calculated according to the scheme
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described in the cartoon shown in Figure (8.11).

• S(ζ): the neutron efficiency for a given yield cut ζ calculated by assuming the neutron calibration data

is Gaussian distributed. This is the efficiency of the [−l,+u]σ NR-band, whose the nominal efficiency is

given by Equation (8.23).

• S(±2σ): the neutron efficiency for the standard yield cut definition of ±2σ, corresponding to 95.45%.

The final leakage and the final spectrum averaged exposure of the timing and yield cuts were then calculated

using the following formulas:

L(η, ζ) = Ltc(η) ·
L(ζ)

L(±2σ)
, (8.24)

S(η, ζ) = Stc(η) ·
S(ζ)

S(±2σ)
, (8.25)

where L(±2σ) = 298 events and S(±2σ) = 95.45% according to Figure (8.14).

Using the total exposure Stc(η) and the total expected leakage Ltc(η) calculated using the procedure illustrated

in Figure (8.11) and the relative efficiencies and the leakages of the yield cuts shown in Figure (8.14), the final

leakage and exposure of both the timing and yield cuts were determined and used to compute the experimental

sensitivity defined as

s =
N90(L(η, ζ))

S(η, ζ) . (8.26)

where N90 is an approximation of the 90% confidence level Poisson upper limit. This approximation was already

discussed in chapter 3 and is given by Equation (3.57).

The result for the simultaneous optimization is shown in Figure (8.15), where each curve indicates a single

yield cut while the timing cut is varied. The set of timing and yield cuts that optimizes the sensitivity is

indicated by the blue solid curve overlaid with a thicker dashed black line, yielding an optimal NR-band defined

as −1.9 ≤ y∗ ≤ 1.8.

The target leakage

The total leakage in a timing cut analysis is normally understood as the sum of the leakage contributions from

all detectors considered in the analysis. As in a counting experiment, this total leakage, oftentimes referred to as

target leakage, has to be defined in such way that the signal-to-background ratio ( S
B
) is high. Since the WIMP

signal is determined by the spectrum averaged exposure, the choice of the target leakage has a direct impact on

the total signal the experiment might measure. However, the total WIMP exposure cannot be the only criterion

for choosing the target leakage since leakage necessarily increases with exposure. As Matt Fritts mentioned in his

thesis ”If the leakage is set very low, the exposure will be unacceptably small; if it is set too large, the presence of

surface electrons recoils (SERs) in the WIMP signal region will weaken any conclusion that can be drawn from

the result” [382], meaning that we really want a background free experiment. Since a background free experiment

is extremely hard to achieve in practice, the only thing we can do is to keep these backgrounds extremely as low

as we can while we maximize the sensitivity of the experiment. As shown in Figure (8.15), from our simultaneous
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Figure 8.15: Sensitivity as function of the expected leakage. Each curve in this plot represents a fixed
yield cut while the timing cut varies. The sensitivity for the standard yield cut is shown in green overlaid
with a ticker dashed blue line, while the optimized sensitivity is the blue solid curve overlaid with a ticker
dashed black line. This plot also shows that, as indicated in the legend, the optimal yield cut is given
by −1.9 ≤ y∗ ≤ 1.8.

optimization scheme, the background dependent sensitivity curve has a minimum at an expected leakage of 0.499

events, the leakage at which the sensitivity is optimized. Consequently, the target leakage can be taken as the

leakage for which the sensitivity is optimal.

This target leakage defines each detector’s optimized timing cuts. In order to find these cuts, we use the slope

calculated as a function of the expected leakage. The optimal slope is the slope at which the target leakage can

be achieved (the black dash line in Figure (8.12) represents that optimal slope). The optimal slopes intersect

each energy bin of each detector at a single point corresponding to the expected leakage. As a consistency check,

the sum of these expected leakages add up to the target leakage of 0.499 events. Using the cartoon in Figure

(8.11), the cut positions were determined as well as the exposure (after cuts) for each energy bin in each detector.

This cut is named cChi2Edep c58.

Figure (8.17) shows the total exposure as function of the total expected number of leakage events. The

simultaneous optimization, as shown in the same figure, is better than the equal-leakage cut. The advantage

of the optimized timing cut is that it uses the slope to determine the expected leakage for each energy bin in

each detector, and so the cut positions. This optimization scheme chooses one (optimal) slope for all detectors

and that results in tighter cut positions in some energy bins and detector, and looser cuts in others, so that the
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Figure 8.16: Exposure as function of the expected leakage for the 14 detectors (and 3 energy bins) used
in this analysis. The black squares define the optimized timing-cut positions are and the green x’s are
the cut positions for equal-detector leakage.

expected sensitivity is optimized.

The energy dependence of the timing cut (cChi2Edep c58) efficiency was calculated using five 5 keV bins

from 5 to 30 keV, two 20 keV bins from 30 to 70 keV and one bin from 70 to 100 keV. The two lowest energy bins

were added to determine the trend of the efficiency plot below our nominal recoil-energy threshold of 10 keV.

Since this timing cut was binned into three energy bins of 10-20 keV, 20-30 keV and 30-100 keV, the energy bins

for the efficiency estimates were carefully chosen in order not to mix data belonging to separate energy ranges.

The data were fit using the following functional form:

g(E) = A1 +
A2E

(E +A3)A4
+A5e

−A6E +A7E. (8.27)

T4Z2 was the exception, and is better modelled using

g(E) = B1 · (1 + erf(B2(E −B3))) · e−B4E . (8.28)

A = [A1, ..., A7] and B = [B1, ..., B4] are the fit parameters calculated using a MATLAB minimization routine.

Figure (8.18) shows the timing-cut efficiency for a representative detector. For all the other detectors, the

efficiency plots and fits are shown in Appendix C.
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Figure 8.17: Total exposure as function of the total expected leakage. The blue curve is the exposure
obtained for the optimized l = −1.9, u = 1.8 yield and timing cuts. The red curve is the exposure vs. the
expected leakage for the traditional ±2σ yield cut and optimized timing cut. The magenta x indicates
the total exposure and the expected leakage that maximizes the expected sensitivity, and the black x
shows the total exposure for the equal-leakage timing cut.
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Figure 8.18: The optimized χ2 timing-cut efficiency as function of energy for T1Z2 and T1Z5. The green
error bars represent the fraction of 252Cf neutrons data passing the cut while the dark red solid line is
the fit to the data obtained using the function form given by Equation (8.27). The vertical dashed cyan
line is the phonon energy threshold. The fits for other detectors are shown in Appendix C.
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Combined Efficiency

The combined efficiency is calculated by the combination of the data-quality cut efficiencies and the timing-cut

efficiency. A detector’s overall efficiency is obtained by multiplying the respective efficiencies of each cut (energy

dependent and energy independent alike).

Figure (8.19) show the efficiencies of the quality cuts, nuclear-recoil band (discussed in section 7.7.1), the

fiducial volume (section 7.6.1) and the timing cut discussed in the next chapter (chapter 8). The efficiency of the

quality cut includes the efficiencies of all the following energy independent-cuts: phonon standard deviation cut

(section 7.5.2), phonon good start times (section 7.5.3), non negative phonon cut [318], the phonon saturation

cut [318], the glitch cut [318], the veto cut (section 7.6.3), the MINOS neutrino beam cut and the singles

cut (section 7.6.2), as well as the energy dependent cuts: the phonon trigger efficiency, the charge threshold

(section 7.5.4), the surface events selection cut (cBelowER) [318] and the charge χ2 cut (section 7.5.1).

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Overall cut efficiency T1Z2 − c58R

Recoil Energy [ pric (kev)]

E
ffi

ci
en

cy

 

 

Qual. cuts
NR cut
Qinner cut
Timing cut (cEdepChi2_c58R)
c58 Timing cut (cRT_vanilla_c58)
Energy Threshold

Figure 8.19: T1Z2 cut efficiencies for the c58 reanalysis. Shown in black is the efficiency all the basic
data-quality cuts, the blue curve shows the nuclear recoil efficiency, in red is shown the the fiducial-volume
cut efficiency and in green is plotted the efficiency of the χ2 optimized timing cut analysis. Shown in
color orange, is the c58 analysis timing cut efficiency. Plots for other detectors are shown in Appendix G

8.6.7 Signal efficiency

The total experimental efficiency is an average of the individual detector efficiencies, weighted by their relative

exposure MT (product of masses and live times). Figure (8.20) plots this total efficiency as a function of recoil

energy, indicating the cumulative contributions of various cuts. The net efficiency of the c58 analysis is also

shown in Figure (8.20), orange color, while the net efficiency of the optimized timing cut of this analysis is shown

in dark red color. The c58 timing cut is slightly higher than the optimized timing cut around the threshold
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energy, specifically in 10 − 14 keV range. Outside this energy range, the χ2 optimized timing cut efficiency

(cChi2Edep c58R) is higher than the c58 timing cut (cRT vanilla c58) It is worth mentioning that the largest

costs in WIMP detection efficiency come from the fiducial-volume and surface-event rejection cuts.
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Figure 8.20: Overall analysis efficiency for the c58 reanalysis after all detectors are combined and weighted
by their respective exposures. Shown in solid grey is the efficiency of all the basic data-quality cuts. The
dashed grey curve shows the efficiency after adding the nuclear recoil band cut. The curve in dashed
black color is the efficiency obtained after adding the fiducial-volume cut. Finally the efficiency curve
shown in dark red is the overall efficiency of this analysis including the χ2 timing cut analysis. The
resulting overall efficiency of the χ2 optimized timing cut is about 50% at 30 keV. Shown in color orange,
is the original c58 analysis efficiency.

8.7 WIMP Search Results

The entire CDMS analysis procedure is carried out blindly, i.e. all the quality cuts, and more importantly the

surface-event rejection cuts, are created and frozen before applying them to an independent data set, the WIMP-

search data. The whole analysis streamline is blind in the sense that a blinding cut is created and applied to the

WIMP-search data. This latter cut masks all signal events located inside the nuclear-recoil band (or simply the

signal region). This procedure is strictly followed and applied by the collaboration in order to avoid bias.

In this section, I show and discuss the results of the blind analysis described in section (8.6). The expected

surface-event background for the c58 reanalysis is described here as well. A detailed description of the cosmogenic

neutron background for the current exposure is not considered, but is discussed extensively in the theses of Z.

Ahmed [316] and T. Bruch [317]. This section starts with a description of the unblinding procedure, post-

unblinding checks and then discuss the final results. Zero WIMP candidate events are observed in the signal
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region for the energy-dependent χ2 analysis, and an upper limit on the WIMP-nucleon elastic cross section is

determined as a function of WIMP mass. This limit on the spin-independent WIMP-nucleon cross section is

1.96 × 10−44 cm2 for a WIMP mass of 60 GeV/c2 (which is ∼ 50% lower than the original c58 analysis limit of

3.8× 10−44cm2 [425]).

8.7.1 Pre-unblinding checks

Before applying the surface-event rejection cut to the WIMP-search data and un-masking the nuclear-recoil band,

it’s important to perform few a sanity checks in order to ensure the performance of the surface-event rejection

using an independent data set. One first check that was performed was to check that the number of nuclear-recoil

single scatters Nz failing the timing cuts roughly matched the number that was predicted. The second check

was to use WIMP-search data estimate number of the expected leakage surface events into the signal region.

In addition to checking that estimate from the Barium calibration and WIMP-search data are consistent, the

data are all combined to form our best estimate of the expected leakage. The leakage estimate is computed

using multiple scatter events inside and outside the nuclear recoil-band in the WIMP-search data. Although

the leakage may vary wildly from detector to detector, it is expected that WIMP-search multiples are likely

distributed similarly to the WIMP-search singles. Therefore using this sample of events to estimate the leakage

will give us a pretty good idea of how much leakage is expected for a particular surface-event rejection cut.

Three different methods were used to compute the leakage estimate. Although I will briefly discuss them

below, these procedures were first applied during the original c58 analysis by Z. Ahmeed, D. Moore, M. Fritts

and O. Kamaev [447] and are also discussed in the dissertations of Z. Ahmed [316] and M. Fritts [382]. This

method uses beta multiples inside and outside the NR band and accounts also for face distribution systematics.

The starting formula for computing a leakage estimate is given by a revised form of equation (8.17), which

can be simplified to

n =
∑
z

Nz ·
(

bz
Bz

)
, (8.29)

where where n is the expected number of WIMP-search nuclear-recoil single scatters passing a given timing-

cut (summed over all detectors), Nz is now the number of nuclear-recoil single scatters failing the timing-cut

(previously Nz stood for the total number passing or failing the timing cut) and the index z refers to a given

ZIP detector. The ratio
(

bz
Bz

)
is an estimator for the cut performance in terms of a pass-fail ratio, bz (Bz) is

the number of surface events passing (failing) the timing cut. This formula statistically decouples the number of

nuclear-recoil singles passing or failing surface-event rejection cut from the total number of WIMP-search singles.

The methods exploited to determine the expected leakage are described below:

1. Method 1:

The leakage can be estimated by calculating the pass-fail ratio of surface-event multiple scatters inside

the nuclear-recoil band (NRMS) and multiply it by the expected number of nuclear-recoil single scatters

(NRSS) for each detector, and finally summing over all detectors. This approach assumes that multiples
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and singles scatters are distributed identically. This method has the disadvantage of poor statistics and,

additionally, it cannot properly account for the leakage estimate for the bottom, exterior detectors (such

as T3Z6 and T4Z6) since all multiples on these detectors will be phonon side, which biases the leakage

estimate low because charge-side betas have higher passage fractions. This method uses Equation (8.29)

as is to get the leakage estimate.

2. Method 2:

Given that events at low yield are more likely to be surface events on the phonon side rather than the

charge side events, and that the phonon-side events are significantly less likely to leak past surface-event

rejection cut, the leakage passage fractions can alternatively be estimated using the wide-beta-multiples

sample located 5σ below the electron-recoil (ER) band but outside the nuclear-recoil band for the charge

and phonon sides separately. These fractions are multiplied with the best estimates of the face distributed

NRSS. For the bottom exterior detectors, since charge-side events cannot be tagged, it is assumed that

all singles in the wide beta region are charge side. This is conservative since it slightly overestimates the

number of charge-side events, which have higher passage fraction than phonon side events. Equation (8.29)

is modified to reflect the extra input for this method:

nz = Nz ·
(
fp

pz
Pz

+ fq
qz
Qz

)
(8.30)

where fp and fq (with fp + fq = 1) represent the phonon-side and charge-side scaling factors and reflect

the face distributions measured using c34 NR multiples (and found to be consistent with c58) [453]. The

values of fp and fq are listed in Table (8.5). The terms pz (Pz) and qz (Qz) are the number of phonon-side

and charge-side events passing (failing) the surface-event rejection cut.

The advantages of method 2 are better statistics and the ability to use single scatters to estimate the

passage fraction and accounts for the systematic difference in passage fraction between detector faces. The

disadvantage of this method, however, is that the fraction of singles that are phonon-side vs charge-side

is different at different yield and energy, therefore they must be corrected for. This approach fails to take

into account the systematic differences between the wide-beta region and the signal region. Additionally,

this method doesn’t account for the energy dependence of the face distributions. Two extensions of this

method that attempt to address shortcomings are discussed below.

3. Method 2+:

Since there is a systematic difference in the energy spectra of wide betas and NRSS, the leakage passage

fraction estimated using method 2 might be improved by incorporating energy dependence in a similar

manner to the face distributions, by measuring the passage fraction in bins of energy. For method 2+,

Two coarse energy bins are used: 10-30 keV and 30-100 keV, respectively referred to by low (l) and high
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Method 2
Detector Name fq fp

T1Z2 0.3656 0.6344
T1Z5 0.3656 0.6344
T2Z3 0.3656 0.6344
T2Z5 0.3656 0.6344
T3Z2 0.1330 0.8670
T3Z4 0.1330 0.8670
T3Z5 0.1330 0.8670
T3Z6 0.8607 0.1394
T4Z2 0.1330 0.8670
T4Z4 0.1330 0.8670
T4Z5 0.1330 0.8670
T4Z6 0.8607 0.1394
T5Z4 0.1330 0.8670
T5Z5 0.1330 0.8670

Table 8.5: Scaling factors fq and fp used for the estimate of the expected leakage for Method 2 in the
energy range of 10− 100 keV.

(h). Equation (8.29) is modified as follows:

nz = Nz ·
∑

e=(l,h)

(
fe
p
pei
P e
i

+ fe
q
qei
Qe

i

)
= Nz ·

∑
e=(l,h)

∑
f=(p,q)

Sef ·Bef . (8.31)

Nz is the number of nuclear-recoil single scatters failing the timing cuts. This number is calculated using

the number of expected NRSS failing the timing cuts scaled by the livetime ratio between c34 and c58.

Bef are the energy and face-dependent leakage passage fractions. Finally, Sef are scaling factors that take

into account the systematic difference in the energy and yield distributions between the calibration and

WIMP search data [454]. This latter factor can be understood as the number which converts the barium

leakage passage fraction Bef into a WIMP-search expected leakage.

4. Method 2++:

A similar extension to method 2, an improvement to method 2+, uses three energy bins rather than two.

For method 2++, the leakage estimates are divided into low (l), medium (m) and high (h) bins: 10 - 20

keV, 20 - 30 keV and 30 - 100 keV. Equation (8.31) is modified accordingly:

nz = Nz ·
∑

e=(l,m,h)

(
fe
p
pei
P e
i

+ fe
q
qei
Qe

i

)
= Nz ·

∑
e=(l,m,h)

∑
f=(p,q)

Sef ·Bef . (8.32)

This method yields an estimate comparable to method 2++Ba, which is the leakage estimate obtained from

the timing cut with the application of method 2++ using barium calibration data. The scaling factors for

the three energy bins used for Method 2++ are shown in Table (8.6).
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Method 2++
Detector Name Ql Qm Qh Pl Pm Ph

T1Z2 0.3060 0.0601 0.0929 0.1913 0.1148 0.2350
T1Z5 0.3060 0.0601 0.0929 0.1913 0.1148 0.2350
T2Z3 0.3060 0.0601 0.0929 0.1913 0.1148 0.2350
T2Z5 0.3060 0.0601 0.0929 0.1913 0.1148 0.2350
T3Z2 0.1313 0.0299 0.0119 0.2925 0.1463 0.3881
T3Z4 0.1313 0.0299 0.0119 0.2925 0.1463 0.3881
T3Z5 0.1313 0.0299 0.0119 0.2925 0.1463 0.3881
T3Z6 0.5110 0.0902 0.2104 0.0366 0.0314 0.1203
T4Z2 0.1313 0.0299 0.0119 0.2925 0.1463 0.3881
T4Z4 0.1313 0.0299 0.0119 0.2925 0.1463 0.3881
T4Z5 0.1313 0.0299 0.0119 0.2925 0.1463 0.3881
T4Z6 0.5110 0.0902 0.2104 0.0366 0.0314 0.1203
T5Z4 0.1313 0.0299 0.0119 0.2925 0.1463 0.3881
T5Z5 0.1313 0.0299 0.0119 0.2925 0.1463 0.3881

Table 8.6: Scaling factors used for the estimate of the expected leakage for Method 2++. Ql, Qm, Qh,
Pl, Pm and Ph are the charge and phonon-side scaling factors for low, medium and high energy bins
respectively of 10− 20 keV, 20− 30 keV and 30− 100 keV.

Leakage estimate results

The expected leakage was estimated using the events inside and outside the nuclear recoil band in the WIMP-

search data according the recipes described by method 1, method 2, method 2+ and method 2++. These

estimates were done for the interior and exterior detectors, then combined together to get the overall expected

leakage. In order to get the uncertainties on the leakage estimates for various methods, an assumption that

the data follow a binomial distribution was used. The two uncertainties represents the lower and upper bound

uncertainties from the binomial distributions obtained from the various ratio of pass/faill leakage estimates (for

phonon and charge-side events).

To test the performance of the timing cut, the leakage from method 2++Ba is compared against the leakage

estimates obtained from the other methods. The leakage from method 2++Ba is the leakage estimate obtained

from the timing cut using the 133Ba calibration data. The leakage estimates calculated using Nz,2 were used as

cross checks to the estimates obtained using Nz,1. Tables (8.7) and (8.8) show the results of the expected leakage

for the various leakage estimate methods.

8.7.2 Results

Once the leakage estimate is calculated, the nuclear-recoil signal region is ready to be opened for the WIMP-

search data. This step is called unblinding (or opening the box). The number of WIMP candidate events in the

low-background data are the number of veto-anticoincident nuclear-recoil single scatters passing the timing cut

together with the cut called cInsideNRChi2 c58. The latter cut is a version of the cut cWhatsInTheBox c58R,

with a tighter yield cut of −1.9σ ≤ y∗ ≤ 1.8σ (as determined by the simultaneous optimization). After the
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Interior Detectors
Nz,1 Nz,2

Metho1Ba 0.51+0.08− 0.20 0.46+0.12− 0.22
Metho1 1.21+0.08− 0.20 0.95+0.40− 1.16
Metho2 0.17+0.07− 0.55 0.22+0.21− 0.59
Metho2+ 0.50+0.28− 0.74 0.67+0.39− 0.97
Metho2++ 0.64+0.40− 0.17 0.85+0.55− 1.36

Metho2++Ba 0.42+0.10− 0.10 0.47+0.10− 0.10
Exterior Detectors

Metho1Ba 0.15+0.07− 0.20 0.17+0.12− 0.2
Metho1 0.72+0.62− 1.74 1.31+1.25− 1.79
Metho2 0.28+0.15− 0.31 0.36+0.52− 0.77
Metho2+ 0.15+0.06− 1.06 0.17+0.08− 1.27
Metho2++ 0.18+0.11− 1.98 0.18+0.12− 2.04

Metho2++Ba 0.08+0.05− 0.05 0.09+0.05− 0.05

Table 8.7: Leakage estimates from various methods (Method 1, Method 2, Method 2+ and Method 2++).
The leakage obtained by Method 2++Ba is the leakage of the timing cut using the 133Ba calibration. Nz,1

and Nz,2 are the expected number of nuclear-recoil singles calculated according to two of the techniques
described in section (8.6.1).

Combined expected leakage (Interior + Exterior Detectors)
N1 N2

Metho1Ba 0.325+0.05− 0.14 0.32+0.08− 0.14
Metho1 1.93+0.58− 2.10 2.26+1.31− 2.69
Metho2 0.45+0.17− 0.63 0.58+0.56− 0.97
Metho2+ 0.65+0.29− 1.29 0.84+0.38− 1.60
Metho2++ 0.82+0.41− 2.30 1.03+0.56− 2.45

Metho2++Ba 0.50+0.11− 0.11 0.55+0.11− 0.11
Best fit (1, 2++, 2++Ba) 0.501+0.090− 0.108 0.567+0.106− 0.109

chisq prob. 0.695 ( 0.706) (0.987) 0.568 ( 0.702)( 0.981)

Table 8.8: The combine expected leakage for the χ2 optimized timing cut. The best fits leakage is
calculated from the leakage estimate from method1, method2++ and method2++Ba as well as the
chi-square probabilities using Nz,1 and Nz,2.
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application of these cuts, no WIMP candidate events were observed.

Two other timing cuts were also developed for the c58 reanalysis. The first is a traditional timing-cut analysis

that uses only the phonon delay and rise time variables additively combining them to get a single discriminator

(often referred to as the simple timing cut). This cut was developed during the original c58 analysis [447] and

tuned for the reanalysis by Jianjie Zhang [451]. Tommy Hoffer used a neural network to develop the other timing

cut [452]. Each alternative analyses resulted in two candidate events. One candidate (in T1Z5) was common

to both analyses, while the neural network analysis resulted in a second event in T1Z5, and the simple timing

analysis resulted in a candidate in T2Z3. My optimized timing cut developed in this analysis was chosen before

the unblinding because of its better expected sensitivity. The events observed by the alternatives timing cut

analyses are shown in the dχ2 vs energy plane in Figure (8.22) and the optimized energy-dependent cut positions

clearly demonstrate why these events are rejected by the energy-dependent χ2.

As shown in Figures (8.22) and (8.23), the T1Z5 candidate event passing only the neural net cut has an

ionization yield of y = 0.204 and a recoil energy of ER = 13.44 keV and the candidate passing both the neural

net and the simple timing cut has y = 0.33 with a recoil energy of ER = 12.30 keV. This later candidate also

passed the original timing cut, and it would have been a WIMP candidate event in my analysis if the energy

dependence had not been taken into account because, as shown in Figure (8.22), at low energy, i.e. in the

10−20 keV bin, significantly more leakage is expected for the same cut value. The advantage of the optimization

is that it sets the cut position by minimizing the exposure in bins with worse expected leakage. The fact that

the optimization distributes the total leakage in a such a way that the sensitivity is maximized, is equivalent to

cutting hard in energy bins where leakage events are dominant.

An additional other WIMP candidate passed the simple timing-cut in detector T2Z3. This event, with

an ionization yield y = 0.332 and a recoil energy ER = 10.81 keV, is rejected by both the energy-dependent

and independent χ2 timing cuts due to its low χ2
B − χ2

N = 17.405 as can be noticed from the bottom plot in

Figure (8.22).

Figure (8.21) illustrates the distribution of the WIMP-Search data in χ2
B − χ2N plan. In this plan, electron-

recoil events are shown in dark cyan color while non-electron-recoils are shown in blues. Electron-recoils are

considered to be events 3σ below the mean of the electron-recoil band to +Infinity. This definition is similar

to selecting events above the cBelowER c58 cut which is defined as a selection of events laying 3σ below the

mean of the electron-recoil band. Non-electron-recoils events, however, are a mixture of surface events and events

that can potentially become event candidates if they pass both the timing cuts and the nuclear-recoil band

cut (i.e. ionization yield cut). This plot is not very insightful due to lack of direct visible energy dependence.

Figures (8.22) and (8.23) demarcates from Figure (8.21) due to such energy dependence which is also reflected by

the way the optimized timing cut is implemented. A different version of the plot shown in Figure (8.22)is shown

in ionization vs recoil energy plan and it is depicted in Figure (8.24). Events passing the rejection cut are shown

in red dots and those failing the consistency cut are shown in black.
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Figure 8.21: WIMP-Search distribution of χ2
B as function of χ2

N for T1Z5 (top) and T2Z3 (bot-
tom). Events shown in dark cyan color represents events located above cBelowER c58 above the
cBelowER c58 (representing mostly electron recoils events) while events in blue dots indicates non-
electron-recoil events (which can either be surface events or event candidates for those laying inside the
tight nuclear-recoil band). Events shown in red dots are WIMP-search events inside the tight nuclear-
recoil band cut, i.e. the optimized nuclear-recoil band defined by a yield cut of [l = −1.9;u = 1.8] while
events in yellows dots are events shown passing the rejection cut. The green circle events with the black
face represent events passing the alternative timing cuts developed during the reanalysis. The black
vertical line show the consistency cut position. Plots for other detectors are shown in Appendix D.
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Figure 8.22: χ2
B − χ2

N vs recoil energy for the low background data for T1Z5 (top) and T2Z3 (bottom).
Events shown in dark cyan color represents events located 3σ above the cBelowER c58 (representing
mostly electron-recoil events) while events in blue dots indicates non-electron-recoil events (which can
either be surface events or event candidates for those laying inside the tight nuclear-recoil band). Red
dots are WIMP-search events inside the tight nuclear-recoil band cut, i.e. the optimized nuclear-recoil
band defined by a yield cut of [l = −1.9;u = 1.8]. Events shown in magenta circled with blue faces are
events failing the consistency cut. The green circle events with the grey face represents events passing the
alternative timing cuts developed during the reanalysis. The blue horizontal straight line is the energy
independent cut while the dark red line represent the energy-dependent cut. Plots for other detectors
are shown in Appendix D.
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Figure 8.23: Ionization yield vs recoil energy showing the distribution of events in the WIMP-search
(black dots) for T1Z5 (top) and T2Z3 (bottom). The events shown in red dots are the events passing
the χ2 optimized timing cuts above the 10 keV threshold. Note that all events passing the timing cut
lie within 3σ of the electron-recoil band (yellow curve). The cyan and magenta curves indicate the tight
and loose nuclear-recoil bands ([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green
circle with black face indicate the WIMP candidates identified by alternate timing-cut analyses. Plots
for other detectors are shown in Appendix E.
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Figure 8.24: Another version of ionization yield vs recoil energy showing the distribution of events in
the WIMP-search (blue dots) for T1Z5 (top) and T2Z3 (bottom). The events shown in red dots are the
events passing the rejection cuts above the 10 keV threshold while the black dots are events failing the
consistency cut. The yellow curve show the region of space of events laying within 3σ below the mean of
the electron-recoil band. The cyan and magenta curves indicate the tight and loose nuclear-recoil bands
([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green circle with black face indicate
the WIMP candidates identified by alternate timing-cut analyses. Plots for other detectors are shown in
Appendix E.
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8.8 WIMP exclusion limit

Since no WIMP candidates were observed in this analysis, an upper limit on the WIMP-nucleon scattering cross

section is set. An upper limit calculation typically depends on the experimental exposure, the energy-dependent

detection efficiency, and (normally) the energies of any observed candidate events. Since, for the optimized χ2

timing-cut analysis, no candidates are observed, the last of these can be ignored.

The upper limit is calculated using the statistical procedure called the optimum interval method [455, 456].

This method sets an upper limit based on the normalization of a signal of known spectral shape in presence of

an unknown background. The optimum interval method generally sets a stronger upper limit than one obtained

simply from Poisson statistics when there are candidate events, since the expected energy distribution of the

events is taken into account. In the case of zero candidate events, the upper limit determined from the optimum

interval method is identical to the usual Poisson-statistics upper limit [460].

Beside the optimum interval method, one might also consider the Feldman-Cousins technique. If the proba-

bility distributions of the expected backgrounds are known, the Feldman-Cousins technique [457] can be used to

set a one or two-sided limit while the optimum interval method only sets a one-sided limit. There is a note by

Richard W. Schnee detailing how the Feldman-Cousins ordering principle can be used [458] to set limits in the

context of the CDMS experiment. During the c58 analysis, Tobias Bruch used this prescription to estimate the

projected limit of the original c58 analysis [459]. This approach requires a full likelihood analysis of the expected

backgrounds, and can be used to claim discovery if appropriate.

To compute the WIMP-nucleon cross-section limit, a standard halo-model WIMP distribution is assumed

as discussed in (3.3.5). The WIMPs have a Maxwellian velocity distribution with a characteristic velocity of

v0 = 220 km/s, a local density of ρ0 = 0.3GeV/c2 and an escape velocity of vesc = 545 km/s, where the latter

is taken from recent results from the RAVE survey [243]. These values are used as a conventional model in

order to compare different experimental results. The expected recoil spectra for spin-independent interactions is

calculated using equation (3.42), which requires the Helm nuclear form factor to be determined as function of

the momentum transfer (Equation (3.11)) and is described in the Lewin and Smith paper [391].

The 90% confidence upper limit on the spin-independent WIMP-nucleon elastic-scattering cross section,

determined by the procedure above, and is shown shown as the orange curve as orange curve in Figure (8.25).

This limit is lower than those from the alternative analyses developed during the reanalysis by more than 60%.

This analysis was chosen to be the primary timing cut for the reanalysis because its expected sensitivity was

a factor of ∼ 2 better than that of the other methods and the limit obtained with this analysis, as shown in

Figure (8.25), will be quoted in a PRD paper in preparation [462].

The combined limit from this reanalysis including the exposure of all previous CDMS II data to the reanalysis

is compared against the previous combined CDMS II limits in Figure (8.26) and the limit of this analysis is about

a factor 2 lower than the original c58 analysis because its improved expected sensitivity. Also the optimized χ2

timing cut has less total expected leakage of 0.5 event versus 0.9 events for the original analysis. The optimized
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timing cut optimizes the sensitivity while the timing cut developed during the original analysis maximized the

exposure for a given total expected leakage. The total net exposure of the original c58 analysis was ∼ 191 kgdays

while this analysis net exposure after cuts is 250.2 kgdays while the sensitivity is two improved during the

reanalysis.

The upper limit from this analysis is also compared against the results of other leading experiments. Results

from DAMA/LIBRA [463], CoGeNT [464], EDELWEISS [467], CREST II [465] and XENON100 [466] are shown.

The combined CDMS upper limit reported with this analysis is second stringent limit in the field after XENON100.

The dashed red line in the Figure (8.26) indicates the projected expected sensitivity for the SuperCDMS Soudan

limit, and the XENON100 limit (solid back curveI is about the same than the projected SuperCDMS.

The timing cut analysis technique described in this dissertation has been applied to CDMS II silicon detectors

by Kevin McCarthy [461] for the runs 125− 128. These detectors were not position corrected during the original

c58 analysis. However, after the upgrade of charge optimal filter, the silicon detectors were processed and

calibrated. The analysis results from the the optimized timing cut on these detectors will the central subject of

Kevin McCarthy’s dissertation and a central object of another publication.

To put our results in the context of supersymmetric framework based on the standards assumptions of the

constrained minimal supersymmetric standard model (cMSSM), we overlaid our limit as well as limits from other

WIMP-search experiments to the most recent SUSY parameter space obtained from a profile likelihood to the

global fits of the cMSSM including the latest LHC SUSY and Higgs searches and XENON100 data as described

in [468]. This new global fits of the cMSSM includes LHC 1 fb−1 integrated luminosity SUSY exclusion limits,

recent LHC 5 fb−1 constraints on the mass for the Higgs boson and XENON100 direct detection data. The

colored contour regions in the bottom of Figure (8.26) shows the current constrained minimal supersymmetric

standard model (cMSSM) regions (with recent LHC and Higgs constraints) predicting where WIMPs may be

found, assuming flat priors, at 68% (green), 95% (light green), and 99% (cyan) C.L. [468]. SuperCDMS Soudan

and XENON100 will explore more of this regions in runs to come.

Current experiments are beginning to probe the most optimistic models of supersymmetry and future experi-

ments will cut deep into the supersymmetric allowed parameter space. The future of the SuperCDMS experiment

will focus to exploring these new regions where theoretical models predicts that WIMPs are likely to be found.
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Figure 8.25: The calculated limit for this analysis as well the limits obtained with the traditional-
classical-simple timing cut and the neural network timing cut. These limits are compared with a com-
bined limits obtained using the respective timing cuts analyses developed during the c58 reanalysis with
previous CDMS data. The limit achieved with previous CDMS-II and this analysis is sensitive to a
spin-independent cross section of σSI = 1.96 × 10−44cm2 for a WIMP mass of 60 GeV/c2. The com-
bined CDMS+this analysis limit is at least 60% better than the limits obtained with the classical timing
analysis (2.91× 10−44 cm2) and the neural net analysis (3.06× 10−44 cm2).
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Figure 8.26: Plot of WIMP parameter space in the cross section vs WIMP mass plane. The calculated
limit for this analysis (orange curve) [462] as well the limit from the previous CDMS II analysis (blue
curve) [425]. On this plot is also shown other exclusion limit curves from other experiment and the
constrained minimal supersymmetric standard (cMSSM) model theory region. The filled contours region
shown in light purple and red represent the DAMA/LIBRA 90% and 99% confidence region for the recent
excess of low energy events observed by the CoGeNT collaboration and the annual modulation reported
by the DAMA/LIBRA collaboration [463]. The CoGeNT contour region for the annual modulation in
the region of interest is the region shown with filled dark yellow color [464]. The WIMP parameter space
compatible with the CRESST II results are shown in blue and light grey contour regions for 1σ and 2σ
respectively [465]. The contour regions shown in cyan, light cyan and dark green represent the updated
global fits of the cMSSM including the latest LHC SUSY and Higgs searches and XENON100 data [468].
The green cureve represents the final results of the EDELWEISS-II WIMP search using a 4-kg array
of cryogenic germanium detectors with interleaved electrodes [467] while the black curve is the results
from 225 Live Days of XENON100 Data [466]. The dashed red curve indicate the projected SuperCDMS
Soudan limit. The limit from this analysis is ∼ 50% better than the 2009 CDMS II science result. Figure
adapted from the SuperCDMS Soudan proposal, 2012 [469].
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Conclusions

The last operations of CDMS II has concluded with the runs 125−128. The analysis of these runs resulted in

two candidate events and an upper limit on the WIMP-nucleon cross section of 3.8×10−44 cm2, making the CDMS

experiment sensitive to a WIMP mass of 60 GeV/c2 and the most stringent limit at the time the results was

published. The discovery that one of the candidate events suffered from pulse reconstruction led to the software

upgrade, which has triggered a reanalysis. This dissertation has described the results of a WIMP-search using

CDMS II reanalysis data accumulated at Soudan Underground Laboratory in Minnesota. No event candidates

are observed using the analysis technique described in this dissertation. The results from the reanalysis of the

five tower, among which only 14 viable detectors were used, has set an improved sensitivity and limit for Ge

detectors due to the improved data processing and analysis techniques. The WIMP-nucleon limit set with the

optimized χ2 analysis two times lower than the previously published limit from the original c58 analysis [425].

The CDMS II experiment have now moved beyond, the SuperCDMS. The SuperCDMS collaboration is

actively engaged in research and development programs to address their challenges and proceed to the design

and fabrication of larger detector masses. In the SuperCDMS Soudan proposal [469], an extension of low-

temperature WIMP detector technology to much larger masses and alternate bias and sensors in both face

of the detectors has been proposed. These detectors are called the interleaved (or interdigitated) detectors,

simply called the iZIPs. The aim of this proposal is to scale up (up to a ton-scale) the cryogenic experiment in

order to make competitive and complementary to the large noble-liquid experiments and increase its detection

potential. Although the identification of the nature of dark matter still remains an unanswered question of

modern astrophysics, SuperCDMS Soudan projected and SuperCDMS SNOLAB limit will expore a large part of

the SUSY parameter space and with a good control of the background, the discovery may just be at our corner.
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Figure 8.27: Current status for the recent upper limits (90% C.L.) on the WIMP-nucleon spin-
independent cross section versus WIMP mass are shown for CDMS II Soudan (blue solid curve for
previous limit and the limit shown in orange solid curve for this analysis), EDELWEISS II (green solid),
combined CDMS-EDELWEISS II (magenta), and XENON100 (black solid). The purple filled region
indicates the region where CRESST II reports a signal: 1σ allowed region (dark purple), 2σ allowed
region (light purple). The red filled portions of the graph indicate the regions where DAMA reports a
signal: 90% C.L. (red), and 99% C.L. (dark red). The orange colored region indicates where CoGeNT
reports a signal. The other colored regions show the current cMSSM regions (with recent LHC and Higgs
constraints) predicting where WIMPs may be found, assuming flat priors, at 68% (green), 95% (light
green), and 99% (cyan) C.L. Also shown are projected sensitivities for the G1 SuperCDMS Soudan ex-
periment for a three-year run (dashed red) and the proposed G2 SuperCDMS SNOLAB experiment with
a 200 kg payload for four years running (dot- dashed light red); these assume no background subtraction.
Figure adapted from the SuperCDMS Soudan proposal, 2012 [469].
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Appendix A

Mean energy dependence

A.1 Multivariate distributions

In the treatment of our 5D χ2 analysis, we have exploited the multivariate gaussian distribution using 5 timing

variables. In one dimension, a gaussian distribution of a variable x with a mean µx and a standard deviation σx

is given by

P (x) =
1√
2πσx

e
− (x−µx)2

2σ2
x . (A.1)

In order to grasp the intuition of the how to generalize the above distribution to a multivariate, let’s illustrate

it using a 2 dimensional system of the variables x and y. First, I am going to make the assumption that the two

variables are not correlated. In addition to that, the two distributions are centered at zero. According to the

rules of probability:

P (x, y) = P (x) · P (y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
. (A.2)

Now, we can rewrite the argument in the exponential (A.2) in matrix notation as:

P (x, y) =
1

2πσxσy
exp

[
− 1

2

(
x y

)
·

 1
σ2
x

0

0 1
σ2
y

 ·

x

y

]
, (A.3)

In which we can invert the 2×2 matrix in the above equation to obtain the matrix

M =

σ2
x 0

0 σ2
y

 . (A.4)

which is known as the error matrix for x and y. The diagonal terms σ2
x and σ2

y are respectively the variances of
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x and of y, while the off-diagonal zeroes indicate that the errors of x and y are uncorrelated. The 2×2 matrix in

(A.3) is known as the inverse error matrix. In general the element Mij of an error matrix for a set of variables

xl, x2, · · · , xn is defined as the expectation value in case the distributions x and y are not gaussian. In such a

situation, Mij are calculated as

Mij = ⟨(xi − xi)⟩⟨(xj − xj)⟩. (A.5)

The above equation (A.5) lead to the property that the the covariance matrix is symmetric. The off-diagonal

term is denoted as cov(x, y). The probability (A.5) can be written the following compact for:

P (x, y) =
1

2πσxσy
exp

[
− 1

2

(
x y

)
·M−1 ·

x

y

]
. (A.6)

With this background introduction, we are now at the good standing to tackle the case where the variables are

correlated. In such a case, the error matrix (A.4), takes the following form:

M =

 σ2
x cov(x, y)

cov(x, y) σ2
y

 . (A.7)

Introducing (A.7) into (A.6), we get a 2 dimensional generalized multivariate gaussian distributions.

P (x, y) =
1

2πσxσy

1√
1− ρ2

exp

[
− 1

2(1− ρ2)

(
x2

σ2
x

+
x2

σ2
x

− 2ρxy

σxσy

)]
, (A.8)

with

ρ =
cov(x, y)

σxσy
. (A.9)

In general, for N-dimension X = (x1, x2, · · · , xN ):

P (x, y) =
1

(2π)N/2

1

det(M)
exp

(
−1

2
X̃ ·M−1 ·X

)
=

1

(2π)N/2

1

det(M)
exp

(
−1

2
χ2

)
, (A.10)

where χ2 = X̃ ·M−1 ·X, is the N-dimensional χ2 and det(M) is the determinant of the error matrix M, which

can be generalized to the following form:

M =



σ2
x1x1

cov(x1x2) · · · cov(x1xN )

cov(x2x1) σ2
x2x2

· · · cov(x2xN )

...
...

. . .
...

cov(xNx1) cov(xNx2) · · · σ2
xNxN


. (A.11)

Note that cov(xixj) = cov(xjxi), so the covariance matrix M is symmetric. Any symmetric matrix has N diagonal

elements and N(N−1)
2

off-diagonal elements, making a total of N(N+1)
2

matrix elements. The fit parameters for

the means of the 5 variables are shown in the tables (A.1) to (A.5) listed in the subsequent pages of this appendix.
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A.2 Implementation to the CDMS analysis

With 5 timing quantities used for the surface-event rejection, we created a 5-dimensional χ2 = X̃ ·M−1 ·X, with

X = {pmintc,pdelc,pminrtCFc,pdeCFc,pminrtCF4070c}. The means of each of the variables used in the

χ2 analysis were calculated and fitted to the functional form fit indicated by Equation µkα = Akα(1) + Akα(2) ·

E2 + Akα(3)
√
E. In order to get correct mean values, the distributions of these variables are assumed to be

gaussian distributed and fitted to a gaussian in a preselected energy bin. These fits were performed for neutrons

events as well as surface events making a clear distinction between face distribution (phonon and charge-side

events) and betas. The fits obtained are shown in Tables (A.1) to (A.5). Figures (A.1) to (A.13) show the binned

means as function of the recoil energy fron 10 to 100 keV. The black solid line overlaid to the data is the fit used

to model the distributions of the means as a function of energy.
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Table A.1: pdelc Fit parameters

µ− pdelc
Neutron Phonon - side Charge - side

Detector Name Akn(1) Akn(2) Akn(3) Akp(1) Akp(2) Akp(3) Akq(1) Akq(2) Akq(3)
T1Z2 11.502 -0.065 -0.0000 6.156 0.296 -0.0001 7.878 0.053 -0.0000
T1Z5 11.430 -0.051 -0.0000 5.508 0.476 -0.0002 7.376 0.238 -0.0001
T2Z3 11.971 -0.166 0.0000 4.251 0.674 -0.0003 5.859 0.463 -0.0003
T2Z5 11.689 -0.015 -0.0001 3.546 0.745 -0.0003 6.265 0.367 -0.0002
T3Z2 11.326 -0.022 -0.0001 4.515 0.583 -0.0002 8.074 0.049 -0.0000
T3Z4 12.418 -0.090 -0.0001 3.601 0.729 -0.0003 5.732 0.446 -0.0002
T3Z5 11.857 -0.106 -0.0000 5.107 0.495 -0.0002 6.619 0.292 -0.0001
T3Z6 12.158 -0.167 0.0000 6.934 0.249 -0.0001 7.950 0.085 -0.0000
T4Z2 9.382 0.330 -0.0002 0.097 1.203 -0.0005 3.606 0.720 -0.0003
T4Z4 11.019 0.148 -0.0002 1.447 0.980 -0.0004 2.916 0.841 -0.0004
T4Z5 11.295 0.091 -0.0002 2.392 0.848 -0.0003 5.439 0.411 -0.0002
T4Z6 7.919 0.735 -0.0005 -4.259 1.700 -0.0007 -2.042 1.505 -0.0006
T5Z4 9.870 0.312 -0.0002 0.419 1.104 -0.0004 6.249 0.196 -0.0001
T5Z5 7.072 0.791 -0.0005 -2.623 1.635 -0.0007 -0.651 1.369 -0.0006
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Table A.2: pminrtc Fit parameters

µ− pminrtc
Neutron Phonon - side Charge - side

Detector Name Akn(1) Akn(2) Akn(3) Akp(1) Akp(2) Akp(3) Akq(1) Akq(2) Akq(3)
T1Z2 10.321 -0.136 0.0001 7.659 -0.155 0.0001 8.442 -0.275 0.0002
T1Z5 13.157 -0.533 0.0003 9.070 -0.332 0.0002 10.031 -0.598 0.0003
T2Z3 13.481 -0.637 0.0004 8.804 -0.311 0.0002 10.024 -0.642 0.0003
T2Z5 12.242 -0.464 0.0002 9.792 -0.552 0.0003 10.266 -0.661 0.0003
T3Z2 9.962 -0.057 -0.0000 7.928 -0.134 0.0001 8.711 -0.344 0.0002
T3Z4 14.520 -0.655 0.0004 10.091 -0.541 0.0003 10.679 -0.791 0.0003
T3Z5 13.198 -0.505 0.0002 9.728 -0.459 0.0003 9.974 -0.655 0.0003
T3Z6 11.292 -0.310 0.0002 8.884 -0.351 0.0002 8.696 -0.298 0.0002
T4Z2 15.781 -1.184 0.0007 12.339 -0.947 0.0005 11.355 -0.825 0.0004
T4Z4 15.336 -0.855 0.0004 11.497 -0.805 0.0005 13.074 -1.233 0.0006
T4Z5 13.942 -0.667 0.0003 11.225 -0.787 0.0004 10.648 -0.782 0.0003
T4Z6 14.386 -0.915 0.0005 11.564 -0.893 0.0004 11.399 -0.818 0.0004
T5Z4 14.098 -0.839 0.0004 11.571 -0.869 0.0004 11.879 -0.920 0.0004
T5Z5 15.214 -0.984 0.0005 12.305 -0.967 0.0005 14.082 -1.370 0.0006

Table A.3: pdelCFc Fit parameters

µ− pdelCFc
Neutron Phonon - side Charge - side

Detector Name Akn(1) Akn(2) Akn(3) Akp(1) Akp(2) Akp(3) Akq(1) Akq(2) Akq(3)
T1Z2 11.703 -0.110 0.0000 5.837 0.331 -0.0001 7.818 0.053 -0.0000
T1Z5 12.079 -0.086 -0.0000 5.841 0.361 -0.0001 8.139 0.032 -0.0000
T2Z3 12.625 -0.219 0.0001 4.593 0.541 -0.0002 6.751 0.207 -0.0001
T2Z5 12.204 -0.100 -0.0000 4.431 0.541 -0.0002 7.428 0.118 -0.0001
T3Z2 11.496 -0.039 -0.0001 4.599 0.534 -0.0002 8.290 -0.016 0.0000
T3Z4 13.567 -0.204 0.0000 4.209 0.549 -0.0002 7.030 0.107 -0.0001
T3Z5 12.443 -0.146 -0.0000 5.731 0.328 -0.0001 7.491 0.064 -0.0000
T3Z6 12.375 -0.203 0.0001 7.282 0.156 -0.0001 8.155 0.028 -0.0000
T4Z2 12.531 -0.258 0.0001 4.288 0.421 -0.0001 6.864 0.125 -0.0000
T4Z4 13.560 -0.229 0.0000 3.442 0.523 -0.0001 5.966 0.198 -0.0001
T4Z5 12.285 -0.036 -0.0001 4.373 0.422 -0.0001 6.991 0.063 0.0000
T4Z6 12.440 -0.100 -0.0000 2.268 0.554 -0.0002 3.492 0.536 -0.0002
T5Z4 12.696 -0.211 0.0000 3.979 0.449 -0.0001 8.911 -0.291 0.0002
T5Z5 11.618 -0.022 -0.0000 2.931 0.598 -0.0002 4.252 0.469 -0.0002
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Table A.4: pminrtCFc Fit parameters

µ− pminrtCFc
Neutron Phonon - side Charge - side

Detector Name Akn(1) Akn(2) Akn(3) Akp(1) Akp(2) Akp(3) Akq(1) Akq(2) Akq(3)
T1Z2 9.689 0.056 -0.0000 6.853 0.137 -0.0001 7.645 0.004 0.0000
T1Z5 9.953 0.022 -0.0000 7.162 0.159 -0.0001 7.502 0.061 -0.0000
T2Z3 10.682 -0.150 0.0001 6.893 0.193 -0.0001 7.024 0.111 -0.0000
T2Z5 10.447 -0.065 0.0000 6.642 0.181 -0.0001 7.727 -0.036 0.0000
T3Z2 9.480 0.086 -0.0001 7.148 0.150 -0.0001 7.498 0.033 -0.0000
T3Z4 11.008 -0.084 0.0000 7.003 0.184 -0.0001 7.617 -0.030 0.0000
T3Z5 10.856 -0.101 0.0000 7.529 0.092 -0.0000 7.463 0.005 0.0000
T3Z6 10.344 -0.070 0.0000 7.553 0.050 -0.0000 7.602 0.045 -0.0000
T4Z2 11.648 -0.291 0.0002 6.513 0.226 -0.0001 6.890 0.066 -0.0000
T4Z4 10.572 -0.024 -0.0000 7.077 0.163 -0.0001 8.125 -0.141 0.0001
T4Z5 10.800 -0.085 0.0000 6.838 0.183 -0.0001 7.301 -0.012 0.0000
T4Z6 10.647 -0.082 0.0000 5.283 0.301 -0.0001 5.507 0.298 -0.0001
T5Z4 10.731 -0.111 0.0000 6.219 0.204 -0.0001 7.192 0.005 0.0000
T5Z5 9.288 0.169 -0.0001 5.939 0.297 -0.0001 7.964 -0.169 0.0001

Table A.5: pminrtCF4070c Fit parameters

µ−pminrtCF4070c
Neutron Phonon - side Charge - side

Detector Name Akn(1) Akn(2) Akn(3) Akp(1) Akp(2) Akp(3) Akq(1) Akq(2) Akq(3)
T1Z2 9.948 0.165 -0.0001 7.183 0.254 -0.0001 9.916 -0.159 0.0001
T1Z5 11.203 0.083 -0.0001 7.603 0.255 -0.0001 8.254 0.085 -0.0000
T2Z3 11.611 -0.084 0.0001 7.043 0.320 -0.0002 7.590 0.164 -0.0001
T2Z5 10.289 0.101 -0.0001 6.557 0.347 -0.0001 8.717 -0.028 0.0000
T3Z2 10.132 0.137 -0.0001 7.443 0.281 -0.0001 8.168 0.141 -0.0001
T3Z4 12.029 -0.004 -0.0000 7.484 0.279 -0.0001 8.239 -0.011 0.0000
T3Z5 11.997 -0.026 -0.0000 8.213 0.149 -0.0001 8.558 -0.051 0.0001
T3Z6 10.424 0.084 -0.0000 8.011 0.152 -0.0001 8.457 0.107 -0.0000
T4Z2 14.384 -0.622 0.0004 7.106 0.270 -0.0001 6.997 0.208 -0.0001
T4Z4 12.200 -0.027 -0.0000 7.588 0.252 -0.0001 9.237 -0.223 0.0001
T4Z5 12.288 -0.156 0.0001 7.593 0.216 -0.0001 7.832 0.044 -0.0000
T4Z6 13.585 -0.528 0.0002 5.841 0.296 -0.0001 6.907 0.200 -0.0001
T5Z4 12.332 -0.309 0.0001 7.489 0.127 -0.0000 9.752 -0.193 0.0001
T5Z5 11.972 -0.152 0.0001 6.292 0.354 -0.0001 8.042 -0.050 0.0001
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Figure A.1: Energy dependence of the means of the timing variables used in the χ2 for T1Z2. In black is
shown the fit to the data using the functional form fit in equation (8.5). Different colors indicate different
event types: neutron (orange), phonon-side surface events (dark yellow) and charge-side surface events
(dark red).
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Figure A.2: Energy dependence of the means of the timing variables used in the χ2 for T1Z5. In black is
shown the fit to the data using the functional form fit in equation (8.5). Different colors indicate different
event types: neutron (orange), phonon-side surface events (dark yellow) and charge-side surface events
(dark red).
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Figure A.3: Energy dependence of the means of the timing variables used in the χ2 for T2Z3. In black is
shown the fit to the data using the functional form fit in equation (8.5). Different colors indicate different
event types: neutron (orange), phonon-side surface events (dark yellow) and charge-side surface events
(dark red).
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Figure A.4: Energy dependence of the means of the timing variables used in the χ2 for T2Z5. In black is
shown the fit to the data using the functional form fit in equation (8.5). Different colors indicate different
event types: neutron (orange), phonon-side surface events (dark yellow) and charge-side surface events
(dark red).
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Figure A.5: Energy dependence of the means of the timing variables used in the χ2 for T3Z2. In black is
shown the fit to the data using the functional form fit in equation (8.5). Different colors indicate different
event types: neutron (orange), phonon-side surface events (dark yellow) and charge-side surface events
(dark red).
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Figure A.6: Energy dependence of the means of the timing variables used in the χ2 for T3Z4. In black is
shown the fit to the data using the functional form fit in equation (8.5). Different colors indicate different
event types: neutron (orange), phonon-side surface events (dark yellow) and charge-side surface events
(dark red).
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Figure A.7: Energy dependence of the means of the timing variables used in the χ2 for T3Z5. In black is
shown the fit to the data using the functional form fit in equation (8.5). Different colors indicate different
event types: neutron (orange), phonon-side surface events (dark yellow) and charge-side surface events
(dark red).
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Figure A.8: Energy dependence of the means of the timing variables used in the χ2 for T3Z6. In black is
shown the fit to the data using the functional form fit in equation (8.5). Different colors indicate different
event types: neutron (orange), phonon-side surface events (dark yellow) and charge-side surface events
(dark red).
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Figure A.9: Energy dependence of the means of the timing variables used in the χ2 for T4Z2. In black is
shown the fit to the data using the functional form fit in equation (8.5). Different colors indicate different
event types: neutron (orange), phonon-side surface events (dark yellow) and charge-side surface events
(dark red).
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Figure A.10: Energy dependence of the means of the timing variables used in the χ2 for T4Z4. In black
is shown the fit to the data using the functional form fit in equation (8.5). Different colors indicate
different event types: neutron (orange), phonon-side surface events (dark yellow) and charge-side surface
events (dark red).
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Figure A.11: Energy dependence of the means of the timing variables used in the χ2 for T4Z5. In black
is shown the fit to the data using the functional form fit in equation (8.5). Different colors indicate
different event types: neutron (orange), phonon-side surface events (dark yellow) and charge-side surface
events (dark red).
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Figure A.12: Energy dependence of the means of the timing variables used in the χ2 for T4Z6. In black
is shown the fit to the data using the functional form fit in equation (8.5). Different colors indicate
different event types: neutron (orange), phonon-side surface events (dark yellow) and charge-side surface
events (dark red).
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Figure A.13: Energy dependence of the means of the timing variables used in the χ2 for T5Z4. In black
is shown the fit to the data using the functional form fit in equation (8.5). Different colors indicate
different event types: neutron (orange), surface events - betas(grey), phonon-side surface events (dark
yellow) and charge-side surface events (dark red).
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Appendix B

Energy dependence of covariance

matrix elements

To form the matrix M (A.11) in 5 dimensions, we need to compute 15 matrix elements in total in which 5 are

the diagonal elements and 10 are the off-diagonal (correlation terms). With the energy dependent χ2, the means

and the 15 elements of the covariance matrix (A.11) were calculated as function of the phonon recoil energy. The

fit parameters for the elements of the covariance matrix are shown in Tables (B.1) to (B.15).

B.1 Covariance matrix fit parameters
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Table B.1: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
11) for

the energy dependent χ2 timing cut analysis.

σ2
11

Neutron Phonon - side Charge - side
Detector Name Akn(1) Akn(2) Akp(1) Akp(2) Akq(1) Akq(2)

T1Z2 A=[ 1.057 17.238 ] A=[ 0.234 7.063 ] A=[ 0.341 8.595 ]
T1Z5 A=[ 1.507 22.667 ] A=[ 0.376 10.907 ] A=[ 0.217 13.191 ]
T2Z3 A=[ 1.687 21.491 ] A=[ 0.437 10.323 ] A=[ 0.437 11.635 ]
T2Z5 A=[ 1.330 20.067 ] A=[ 0.270 13.610 ] A=[ 0.241 14.963 ]
T3Z2 A=[ 1.162 16.906 ] A=[ 0.479 7.698 ] A=[ 0.501 8.284 ]
T3Z4 A=[ 1.885 21.892 ] A=[ 0.469 9.838 ] A=[ 0.336 12.448 ]
T3Z5 A=[ 1.515 19.998 ] A=[ 0.408 10.565 ] A=[ 0.350 13.096 ]
T3Z6 A=[ 1.086 14.444 ] A=[ 0.426 7.787 ] A=[ 0.470 7.192 ]
T4Z2 A=[ 1.611 19.306 ] A=[ 0.513 19.590 ] A=[ 0.505 15.965 ]
T4Z4 A=[ 2.001 25.336 ] A=[ 0.562 15.324 ] A=[ 0.719 17.265 ]
T4Z5 A=[ 1.719 24.875 ] A=[ 0.491 15.534 ] A=[ 0.464 16.499 ]
T4Z6 A=[ 1.792 18.033 ] A=[ 0.661 17.393 ] A=[ 0.675 17.316 ]
T5Z4 A=[ 1.468 22.286 ] A=[ 0.464 17.325 ] A=[ 0.494 20.247 ]
T5Z5 A=[ 1.965 20.027 ] A=[ 0.586 22.174 ] A=[ 0.655 24.320 ]

Table B.2: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
12) for

the energy dependent χ2 timing cut analysis.

σ2
12

Neutron Phonon - side Charge - side
Detector Name Akn(1) Akn(2) Akp(1) Akp(2) Akq(1) Akq(2)

T1Z2 A=[ 0.833 16.144 ] A=[ 0.136 0.454 ] A=[ 0.246 1.099 ]
T1Z5 A=[ 1.070 16.222 ] A=[ -0.002 -0.131 ] A=[ 0.119 0.002 ]
T2Z3 A=[ 1.141 20.510 ] A=[ 0.200 0.003 ] A=[ 0.184 0.004 ]
T2Z5 A=[ 1.171 18.179 ] A=[ -0.000 0.049 ] A=[ 0.204 -0.037 ]
T3Z2 A=[ 0.979 14.207 ] A=[ 0.206 0.001 ] A=[ 0.208 0.012 ]
T3Z4 A=[ 1.167 22.512 ] A=[ 0.002 -0.200 ] A=[ 0.088 0.001 ]
T3Z5 A=[ 1.028 14.531 ] A=[ -0.000 0.002 ] A=[ 0.216 -0.004 ]
T3Z6 A=[ 0.939 15.173 ] A=[ 0.264 0.037 ] A=[ 0.307 4.356 ]
T4Z2 A=[ 1.325 9.788 ] A=[ -0.002 -0.232 ] A=[ 0.102 -0.002 ]
T4Z4 A=[ 1.328 21.572 ] A=[ 0.001 0.183 ] A=[ 0.398 0.003 ]
T4Z5 A=[ 1.137 22.367 ] A=[ -0.002 -0.257 ] A=[ 0.228 0.003 ]
T4Z6 A=[ 1.653 0.001 ] A=[ 0.309 -0.000 ] A=[ 0.496 0.001 ]
T5Z4 A=[ 1.353 10.477 ] A=[ -0.002 0.143 ] A=[ 0.397 -0.004 ]
T5Z5 A=[ 1.591 -0.001 ] A=[ 0.057 -0.001 ] A=[ -0.004 0.111 ]
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Table B.3: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
13) for

the energy dependent χ2 timing cut analysis.

σ2
13

Neutron Phonon - side Charge - side
Detector Name Akn(1) Akn(2) Akp(1) Akp(2) Akq(1) Akq(2)

T1Z2 A=[ 0.944 18.015 ] A=[ 0.218 5.642 ] A=[ 0.305 6.347 ]
T1Z5 A=[ 1.158 19.600 ] A=[ 0.285 3.264 ] A=[ 0.183 6.394 ]
T2Z3 A=[ 1.227 21.076 ] A=[ 0.295 6.216 ] A=[ 0.307 6.687 ]
T2Z5 A=[ 1.159 21.746 ] A=[ 0.276 7.562 ] A=[ 0.217 10.658 ]
T3Z2 A=[ 0.976 18.202 ] A=[ 0.371 6.155 ] A=[ 0.376 6.081 ]
T3Z4 A=[ 1.399 24.444 ] A=[ 0.323 4.901 ] A=[ 0.254 7.605 ]
T3Z5 A=[ 1.167 20.262 ] A=[ 0.302 6.494 ] A=[ 0.271 8.542 ]
T3Z6 A=[ 0.916 15.848 ] A=[ 0.370 4.625 ] A=[ 0.382 5.592 ]
T4Z2 A=[ 1.472 22.839 ] A=[ 0.489 13.679 ] A=[ 0.474 12.396 ]
T4Z4 A=[ 1.545 26.146 ] A=[ 0.396 8.556 ] A=[ 0.583 9.063 ]
T4Z5 A=[ 1.395 26.537 ] A=[ 0.409 7.572 ] A=[ 0.419 9.551 ]
T4Z6 A=[ 1.798 21.998 ] A=[ 0.655 10.006 ] A=[ 0.672 11.311 ]
T5Z4 A=[ 1.395 25.723 ] A=[ 0.445 13.265 ] A=[ 0.484 17.244 ]
T5Z5 A=[ 1.759 22.859 ] A=[ 0.513 14.252 ] A=[ 0.660 15.095 ]

Table B.4: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
14) for

the energy dependent χ2 timing cut analysis.

σ2
14

Neutron Phonon - side Charge - side
Detector Name Akn(1) Akn(2) Akp(1) Akp(2) Akq(1) Akq(2)

T1Z2 A=[ 0.852 16.227 ] A=[ 0.133 2.499 ] A=[ 0.257 3.525 ]
T1Z5 A=[ 1.231 18.199 ] A=[ 0.218 0.002 ] A=[ 0.151 6.615 ]
T2Z3 A=[ 1.372 20.853 ] A=[ 0.316 -0.014 ] A=[ 0.299 0.006 ]
T2Z5 A=[ 1.200 18.425 ] A=[ 0.200 -0.008 ] A=[ 0.210 7.087 ]
T3Z2 A=[ 1.000 14.579 ] A=[ 0.263 -0.009 ] A=[ 0.286 2.566 ]
T3Z4 A=[ 1.401 21.487 ] A=[ 0.224 -0.003 ] A=[ 0.251 0.032 ]
T3Z5 A=[ 1.183 14.647 ] A=[ 0.215 0.002 ] A=[ 0.292 3.107 ]
T3Z6 A=[ 0.960 15.253 ] A=[ 0.306 3.256 ] A=[ 0.345 5.338 ]
T4Z2 A=[ 1.379 11.534 ] A=[ 0.296 0.001 ] A=[ 0.345 -0.004 ]
T4Z4 A=[ 1.588 22.916 ] A=[ 0.249 -0.002 ] A=[ 0.484 9.714 ]
T4Z5 A=[ 1.269 22.693 ] A=[ 0.267 0.000 ] A=[ 0.295 7.373 ]
T4Z6 A=[ 1.688 0.000 ] A=[ 0.506 3.412 ] A=[ 0.626 3.060 ]
T5Z4 A=[ 1.363 12.246 ] A=[ 0.284 -0.003 ] A=[ 0.380 10.731 ]
T5Z5 A=[ 1.699 5.181 ] A=[ 0.453 4.034 ] A=[ 0.511 -0.001 ]
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Table B.5: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
15) for

the energy dependent χ2 timing cut analysis.

σ2
15

Neutron Phonon - side Charge - side
Detector Name Akn(1) Akn(2) Akp(1) Akp(2) Akq(1) Akq(2)

T1Z2 A=[ 0.794 16.641 ] A=[ 0.188 3.794 ] A=[ 0.310 7.097 ]
T1Z5 A=[ 1.294 20.457 ] A=[ 0.305 0.003 ] A=[ 0.218 4.004 ]
T2Z3 A=[ 1.396 19.161 ] A=[ 0.335 5.557 ] A=[ 0.333 4.116 ]
T2Z5 A=[ 1.005 17.880 ] A=[ 0.328 6.187 ] A=[ 0.252 11.431 ]
T3Z2 A=[ 0.864 14.284 ] A=[ 0.377 3.565 ] A=[ 0.407 1.508 ]
T3Z4 A=[ 1.492 21.756 ] A=[ 0.375 1.531 ] A=[ 0.284 5.134 ]
T3Z5 A=[ 1.277 18.556 ] A=[ 0.335 6.122 ] A=[ 0.299 5.273 ]
T3Z6 A=[ 0.804 13.183 ] A=[ 0.426 -0.005 ] A=[ 0.427 4.691 ]
T4Z2 A=[ 1.365 19.733 ] A=[ 0.526 14.339 ] A=[ 0.561 8.046 ]
T4Z4 A=[ 1.722 22.851 ] A=[ 0.453 7.980 ] A=[ 0.637 6.664 ]
T4Z5 A=[ 1.403 23.467 ] A=[ 0.472 8.341 ] A=[ 0.417 9.378 ]
T4Z6 A=[ 1.449 20.445 ] A=[ 0.762 9.245 ] A=[ 0.746 12.450 ]
T5Z4 A=[ 1.115 21.317 ] A=[ 0.518 10.032 ] A=[ 0.426 15.854 ]
T5Z5 A=[ 1.633 21.627 ] A=[ 0.576 15.267 ] A=[ 0.649 13.301 ]

Table B.6: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
22) for

the energy dependent χ2 timing cut analysis.

σ2
22

Neutron Phonon - side Charge - side
Detector Name Akn(1) Akn(2) Akp(1) Akp(2) Akq(1) Akq(2)

T1Z2 A=[ 0.874 21.837 ] A=[ 0.202 9.201 ] A=[ 0.372 5.408 ]
T1Z5 A=[ 0.970 24.688 ] A=[ 0.326 12.809 ] A=[ 0.247 9.402 ]
T2Z3 A=[ 1.062 30.083 ] A=[ 0.312 15.686 ] A=[ 0.507 6.315 ]
T2Z5 A=[ 1.182 33.702 ] A=[ -0.000 20.391 ] A=[ 0.196 14.440 ]
T3Z2 A=[ 1.094 23.463 ] A=[ 0.481 9.314 ] A=[ 0.390 7.835 ]
T3Z4 A=[ 1.005 36.748 ] A=[ 0.355 15.752 ] A=[ 0.392 13.114 ]
T3Z5 A=[ 0.986 23.700 ] A=[ 0.418 8.931 ] A=[ 0.429 11.534 ]
T3Z6 A=[ 1.022 24.861 ] A=[ 0.352 12.087 ] A=[ 0.336 12.498 ]
T4Z2 A=[ 1.358 49.402 ] A=[ 0.285 30.156 ] A=[ 0.118 27.536 ]
T4Z4 A=[ 1.188 50.485 ] A=[ 0.414 23.144 ] A=[ 0.817 18.894 ]
T4Z5 A=[ 0.962 41.396 ] A=[ 0.204 23.123 ] A=[ 0.380 20.372 ]
T4Z6 A=[ 1.875 66.830 ] A=[ 0.793 37.825 ] A=[ 0.994 48.461 ]
T5Z4 A=[ 1.415 52.922 ] A=[ 0.266 34.461 ] A=[ 0.462 31.384 ]
T5Z5 A=[ 1.723 61.335 ] A=[ 0.278 40.960 ] A=[ 0.417 41.901 ]
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Table B.7: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
23) for

the energy dependent χ2 timing cut analysis.

σ2
23

Neutron Phonon - side Charge - side
Detector Name Akn(1) Akn(2) Akp(1) Akp(2) Akq(1) Akq(2)

T1Z2 A=[ 0.756 17.379 ] A=[ 0.086 4.014 ] A=[ 0.226 3.299 ]
T1Z5 A=[ 0.829 15.802 ] A=[ 0.101 -0.037 ] A=[ 0.114 2.720 ]
T2Z3 A=[ 0.873 20.181 ] A=[ 0.164 5.232 ] A=[ 0.264 -0.001 ]
T2Z5 A=[ 1.022 22.803 ] A=[ 0.054 8.975 ] A=[ 0.139 7.860 ]
T3Z2 A=[ 0.863 15.569 ] A=[ 0.226 0.013 ] A=[ 0.232 0.024 ]
T3Z4 A=[ 0.872 23.875 ] A=[ 0.137 1.349 ] A=[ 0.184 -0.001 ]
T3Z5 A=[ 0.802 16.854 ] A=[ 0.141 -0.000 ] A=[ 0.253 3.319 ]
T3Z6 A=[ 0.814 17.099 ] A=[ 0.204 5.679 ] A=[ 0.249 7.218 ]
T4Z2 A=[ 1.204 25.609 ] A=[ 0.267 0.003 ] A=[ 0.291 6.870 ]
T4Z4 A=[ 1.019 26.443 ] A=[ 0.177 4.156 ] A=[ 0.428 4.767 ]
T4Z5 A=[ 0.922 25.831 ] A=[ 0.186 4.332 ] A=[ 0.261 4.336 ]
T4Z6 A=[ 1.685 26.861 ] A=[ 0.423 13.577 ] A=[ 0.481 17.546 ]
T5Z4 A=[ 1.271 24.996 ] A=[ 0.340 -0.003 ] A=[ 0.370 10.434 ]
T5Z5 A=[ 1.428 25.963 ] A=[ 0.268 12.729 ] A=[ 0.476 0.001 ]

Table B.8: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
24) for

the energy dependent χ2 timing cut analysis.

σ2
24

Neutron Phonon - side Charge - side
Detector Name Akn(1) Akn(2) Akp(1) Akp(2) Akq(1) Akq(2)

T1Z2 A=[ 0.869 21.700 ] A=[ 0.204 8.986 ] A=[ 0.360 5.477 ]
T1Z5 A=[ 1.039 25.634 ] A=[ 0.351 12.028 ] A=[ 0.239 9.271 ]
T2Z3 A=[ 1.137 30.854 ] A=[ 0.346 15.340 ] A=[ 0.467 6.154 ]
T2Z5 A=[ 1.195 32.742 ] A=[ 0.224 17.441 ] A=[ 0.213 13.093 ]
T3Z2 A=[ 1.082 23.678 ] A=[ 0.468 9.255 ] A=[ 0.367 7.860 ]
T3Z4 A=[ 1.074 36.965 ] A=[ 0.392 14.967 ] A=[ 0.355 12.991 ]
T3Z5 A=[ 1.055 23.330 ] A=[ 0.434 7.743 ] A=[ 0.389 11.088 ]
T3Z6 A=[ 1.016 24.808 ] A=[ 0.354 11.701 ] A=[ 0.333 12.210 ]
T4Z2 A=[ 1.432 44.714 ] A=[ 0.429 25.600 ] A=[ 0.300 23.694 ]
T4Z4 A=[ 1.342 49.775 ] A=[ 0.512 20.540 ] A=[ 0.746 19.177 ]
T4Z5 A=[ 1.031 40.547 ] A=[ 0.325 20.707 ] A=[ 0.365 19.837 ]
T4Z6 A=[ 1.942 57.991 ] A=[ 0.911 28.437 ] A=[ 1.124 39.520 ]
T5Z4 A=[ 1.461 49.010 ] A=[ 0.429 29.754 ] A=[ 0.498 29.081 ]
T5Z5 A=[ 1.852 53.984 ] A=[ 0.586 32.683 ] A=[ 0.613 34.992 ]



Appendix B 283

Table B.9: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
25) for

the energy dependent χ2 timing cut analysis.

σ2
25

Neutron Phonon - side Charge - side
Detector Name Akn(1) Akn(2) Akp(1) Akp(2) Akq(1) Akq(2)

T1Z2 A=[ 0.522 16.953 ] A=[ 0.026 4.279 ] A=[ 0.067 4.413 ]
T1Z5 A=[ 0.865 18.007 ] A=[ -0.002 4.578 ] A=[ 0.024 3.275 ]
T2Z3 A=[ 0.908 21.517 ] A=[ 0.151 7.118 ] A=[ 0.208 0.004 ]
T2Z5 A=[ 0.857 20.888 ] A=[ 0.039 12.627 ] A=[ 0.004 10.007 ]
T3Z2 A=[ 0.694 15.890 ] A=[ 0.184 4.721 ] A=[ 0.195 3.929 ]
T3Z4 A=[ 0.796 25.873 ] A=[ 0.003 5.364 ] A=[ -0.003 3.772 ]
T3Z5 A=[ 0.820 17.611 ] A=[ 0.086 -0.016 ] A=[ 0.071 3.201 ]
T3Z6 A=[ 0.686 15.704 ] A=[ 0.112 8.390 ] A=[ 0.192 9.579 ]
T4Z2 A=[ 1.148 29.976 ] A=[ 0.265 13.489 ] A=[ 0.244 14.504 ]
T4Z4 A=[ 1.043 32.008 ] A=[ 0.146 9.031 ] A=[ 0.143 9.490 ]
T4Z5 A=[ 0.872 29.170 ] A=[ 0.192 7.311 ] A=[ -0.002 8.535 ]
T4Z6 A=[ 1.476 38.406 ] A=[ 0.521 23.490 ] A=[ 0.726 27.670 ]
T5Z4 A=[ 1.050 29.982 ] A=[ 0.332 17.658 ] A=[ -0.002 17.931 ]
T5Z5 A=[ 1.405 38.454 ] A=[ 0.140 24.039 ] A=[ 0.396 11.398 ]

Table B.10: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
33) for

the energy dependent χ2 timing cut analysis.
σ2
33

Detector Name Neutron Phonon - side Charge - side
T1Z2 A=[ 0.842 19.591 ] A=[ 0.198 6.345 ] A=[ 0.260 7.204 ]
T1Z5 A=[ 0.906 18.941 ] A=[ 0.198 5.978 ] A=[ 0.132 6.606 ]
T2Z3 A=[ 0.928 21.241 ] A=[ 0.226 6.961 ] A=[ 0.230 7.852 ]
T2Z5 A=[ 0.999 26.148 ] A=[ 0.205 9.929 ] A=[ 0.152 11.617 ]
T3Z2 A=[ 0.840 19.941 ] A=[ 0.319 6.179 ] A=[ 0.310 6.451 ]
T3Z4 A=[ 1.052 26.528 ] A=[ 0.242 6.428 ] A=[ 0.206 7.419 ]
T3Z5 A=[ 0.921 21.450 ] A=[ 0.247 6.990 ] A=[ 0.231 7.729 ]
T3Z6 A=[ 0.783 17.928 ] A=[ 0.322 5.698 ] A=[ 0.306 7.453 ]
T4Z2 A=[ 1.274 40.563 ] A=[ 0.451 16.490 ] A=[ 0.412 16.775 ]
T4Z4 A=[ 1.198 31.548 ] A=[ 0.302 9.656 ] A=[ 0.476 10.617 ]
T4Z5 A=[ 1.123 31.525 ] A=[ 0.337 9.488 ] A=[ 0.375 9.260 ]
T4Z6 A=[ 1.672 51.909 ] A=[ 0.611 17.862 ] A=[ 0.627 19.408 ]
T5Z4 A=[ 1.231 41.687 ] A=[ 0.421 16.784 ] A=[ 0.393 22.570 ]
T5Z5 A=[ 1.507 42.822 ] A=[ 0.449 17.507 ] A=[ 0.630 15.917 ]
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Table B.11: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
34) for

the energy dependent χ2 timing cut analysis.

σ2
34

Neutron Phonon - side Charge - side
Detector Name Akn(1) Akn(2) Akp(1) Akp(2) Akq(1) Akq(2)

T1Z2 A=[ 0.772 17.076 ] A=[ 0.095 3.627 ] A=[ 0.237 3.431 ]
T1Z5 A=[ 0.949 16.242 ] A=[ 0.122 0.002 ] A=[ 0.141 1.919 ]
T2Z3 A=[ 1.021 20.000 ] A=[ 0.226 4.301 ] A=[ 0.259 -0.003 ]
T2Z5 A=[ 1.054 21.454 ] A=[ 0.166 6.850 ] A=[ 0.179 6.880 ]
T3Z2 A=[ 0.876 15.532 ] A=[ 0.243 -0.000 ] A=[ 0.257 0.592 ]
T3Z4 A=[ 1.047 22.603 ] A=[ 0.180 0.012 ] A=[ 0.199 -0.009 ]
T3Z5 A=[ 0.916 16.161 ] A=[ 0.164 0.002 ] A=[ 0.243 4.457 ]
T3Z6 A=[ 0.828 16.757 ] A=[ 0.239 5.305 ] A=[ 0.281 6.782 ]
T4Z2 A=[ 1.287 18.038 ] A=[ 0.234 0.000 ] A=[ 0.308 6.342 ]
T4Z4 A=[ 1.235 23.706 ] A=[ 0.234 0.003 ] A=[ 0.442 3.063 ]
T4Z5 A=[ 1.040 24.116 ] A=[ 0.238 -0.013 ] A=[ 0.272 4.564 ]
T4Z6 A=[ 1.712 13.915 ] A=[ 0.462 8.455 ] A=[ 0.524 13.395 ]
T5Z4 A=[ 1.321 17.803 ] A=[ 0.308 0.003 ] A=[ 0.394 8.100 ]
T5Z5 A=[ 1.524 17.797 ] A=[ 0.338 8.136 ] A=[ 0.517 0.003 ]

Table B.12: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
35) for

the energy dependent χ2 timing cut analysis.

σ2
35

Neutron Phonon - side Charge - side
Detector Name Akn(1) Akn(2) Akp(1) Akp(2) Akq(1) Akq(2)

T1Z2 A=[ 0.699 17.289 ] A=[ 0.159 6.159 ] A=[ 0.277 6.382 ]
T1Z5 A=[ 1.023 18.801 ] A=[ 0.232 6.171 ] A=[ 0.165 5.525 ]
T2Z3 A=[ 1.048 19.398 ] A=[ 0.284 6.755 ] A=[ 0.252 6.491 ]
T2Z5 A=[ 0.885 19.475 ] A=[ 0.251 10.843 ] A=[ 0.143 12.664 ]
T3Z2 A=[ 0.753 14.321 ] A=[ 0.337 4.794 ] A=[ 0.323 4.369 ]
T3Z4 A=[ 1.133 23.268 ] A=[ 0.308 5.637 ] A=[ 0.225 6.209 ]
T3Z5 A=[ 1.017 18.681 ] A=[ 0.309 5.731 ] A=[ 0.229 5.614 ]
T3Z6 A=[ 0.686 14.026 ] A=[ 0.367 4.901 ] A=[ 0.330 7.497 ]
T4Z2 A=[ 1.263 20.577 ] A=[ 0.515 14.887 ] A=[ 0.508 10.368 ]
T4Z4 A=[ 1.389 24.006 ] A=[ 0.360 9.853 ] A=[ 0.499 9.781 ]
T4Z5 A=[ 1.166 24.542 ] A=[ 0.406 10.427 ] A=[ 0.356 9.264 ]
T4Z6 A=[ 1.495 15.576 ] A=[ 0.731 15.500 ] A=[ 0.685 17.553 ]
T5Z4 A=[ 1.104 19.541 ] A=[ 0.505 13.258 ] A=[ 0.424 12.296 ]
T5Z5 A=[ 1.504 23.639 ] A=[ 0.540 16.632 ] A=[ 0.593 14.095 ]
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Table B.13: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
44) for

the energy dependent χ2 timing cut analysis.

σ2
44

Neutron Phonon - side Charge - side
Detector Name Akn(1) Akn(2) Akp(1) Akp(2) Akq(1) Akq(2)

T1Z2 A=[ 0.868 21.692 ] A=[ 0.208 8.929 ] A=[ 0.353 5.859 ]
T1Z5 A=[ 1.152 27.047 ] A=[ 0.377 12.443 ] A=[ 0.241 10.619 ]
T2Z3 A=[ 1.285 31.832 ] A=[ 0.401 15.573 ] A=[ 0.457 7.404 ]
T2Z5 A=[ 1.211 32.491 ] A=[ 0.285 16.088 ] A=[ 0.220 13.159 ]
T3Z2 A=[ 1.082 23.932 ] A=[ 0.469 9.439 ] A=[ 0.365 8.266 ]
T3Z4 A=[ 1.207 37.431 ] A=[ 0.440 15.012 ] A=[ 0.355 13.679 ]
T3Z5 A=[ 1.159 23.265 ] A=[ 0.458 7.742 ] A=[ 0.376 11.211 ]
T3Z6 A=[ 1.016 24.874 ] A=[ 0.367 11.630 ] A=[ 0.344 12.136 ]
T4Z2 A=[ 1.465 44.175 ] A=[ 0.484 24.132 ] A=[ 0.368 22.100 ]
T4Z4 A=[ 1.546 51.035 ] A=[ 0.594 20.366 ] A=[ 0.689 22.835 ]
T4Z5 A=[ 1.111 40.823 ] A=[ 0.383 20.588 ] A=[ 0.355 20.625 ]
T4Z6 A=[ 1.925 57.705 ] A=[ 0.928 26.278 ] A=[ 1.173 35.563 ]
T5Z4 A=[ 1.457 49.139 ] A=[ 0.483 28.111 ] A=[ 0.474 29.732 ]
T5Z5 A=[ 1.927 52.538 ] A=[ 0.702 29.846 ] A=[ 0.676 33.188 ]

Table B.14: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
45) for

the energy dependent χ2 timing cut analysis.

σ2
45

Neutron Phonon - side Charge - side
Detector Name Akn(1) Akn(2) Akp(1) Akp(2) Akq(1) Akq(2)

T1Z2 A=[ 0.567 16.626 ] A=[ 0.122 2.892 ] A=[ 0.160 3.576 ]
T1Z5 A=[ 1.048 18.702 ] A=[ 0.109 1.965 ] A=[ 0.160 2.067 ]
T2Z3 A=[ 1.135 21.237 ] A=[ 0.268 6.273 ] A=[ 0.272 0.013 ]
T2Z5 A=[ 0.907 19.557 ] A=[ 0.236 9.787 ] A=[ 0.199 8.107 ]
T3Z2 A=[ 0.722 15.962 ] A=[ 0.245 3.812 ] A=[ 0.260 3.628 ]
T3Z4 A=[ 1.058 24.351 ] A=[ 0.206 2.646 ] A=[ 0.184 1.987 ]
T3Z5 A=[ 0.992 17.140 ] A=[ 0.194 -0.009 ] A=[ 0.192 2.988 ]
T3Z6 A=[ 0.716 15.415 ] A=[ 0.240 7.439 ] A=[ 0.270 8.940 ]
T4Z2 A=[ 1.259 23.199 ] A=[ 0.351 9.153 ] A=[ 0.390 10.406 ]
T4Z4 A=[ 1.374 29.181 ] A=[ 0.321 5.260 ] A=[ 0.371 6.058 ]
T4Z5 A=[ 1.037 27.243 ] A=[ 0.323 -0.006 ] A=[ 0.177 7.490 ]
T4Z6 A=[ 1.508 31.550 ] A=[ 0.652 12.005 ] A=[ 0.834 18.109 ]
T5Z4 A=[ 1.108 25.346 ] A=[ 0.449 11.329 ] A=[ 0.233 15.702 ]
T5Z5 A=[ 1.569 28.450 ] A=[ 0.398 17.860 ] A=[ 0.514 7.622 ]



286 Appendix B

Table B.15: Fit parameters used to compute the energy dependent covariance matrix elements (σ2
55) for

the energy dependent χ2 timing cut analysis.

σ2
55

Neutron Phonon - side Charge - side
Detector Name Akn(1) Akn(2) Akp(1) Akp(2) Akq(1) Akq(2)

T1Z2 A=[ 0.741 20.481 ] A=[ 0.335 8.389 ] A=[ 0.317 14.716 ]
T1Z5 A=[ 1.249 25.540 ] A=[ 0.325 7.969 ] A=[ 0.261 7.296 ]
T2Z3 A=[ 1.269 24.387 ] A=[ 0.415 7.874 ] A=[ 0.358 8.272 ]
T2Z5 A=[ 0.905 25.466 ] A=[ 0.419 14.729 ] A=[ 0.319 17.664 ]
T3Z2 A=[ 0.769 21.313 ] A=[ 0.423 9.037 ] A=[ 0.422 8.741 ]
T3Z4 A=[ 1.315 31.311 ] A=[ 0.431 7.772 ] A=[ 0.327 9.070 ]
T3Z5 A=[ 1.246 25.220 ] A=[ 0.456 5.669 ] A=[ 0.333 8.218 ]
T3Z6 A=[ 0.690 17.270 ] A=[ 0.510 6.913 ] A=[ 0.421 11.334 ]
T4Z2 A=[ 1.321 53.333 ] A=[ 0.693 23.991 ] A=[ 0.804 21.649 ]
T4Z4 A=[ 1.725 41.693 ] A=[ 0.486 13.576 ] A=[ 0.625 16.131 ]
T4Z5 A=[ 1.350 37.674 ] A=[ 0.541 16.483 ] A=[ 0.417 19.211 ]
T4Z6 A=[ 1.386 67.340 ] A=[ 1.041 28.136 ] A=[ 1.078 34.927 ]
T5Z4 A=[ 1.004 49.817 ] A=[ 0.648 27.313 ] A=[ 0.569 32.842 ]
T5Z5 A=[ 1.756 59.695 ] A=[ 0.710 26.882 ] A=[ 0.866 21.029 ]
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B.2 Covariance matrix elements

Figures (B.1) to (B.13) show the energy dependence of the covariance elements as a function of the recoil energy

for the neutrons, betas, phonon and charge-side events. The black solid line represents the fit to the data.
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Figure B.1: Covariance matrix elements binned as function of energy for T1Z2. In black is shown the fit
to the data using the functional form in equation (8.5). Different colors indicate events of different type:
neutron (orange), surface events - betas(grey), phonon-side events (dark yellow) and charge-side events
(dark red).
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Figure B.2: Covariance matrix elements binned as function of energy for T1Z5. In black is shown the fit
to the data using the functional form in equation (8.5). Different colors indicate events of different type:
neutron (orange), surface events - betas(grey), phonon-side events (dark yellow) and charge-side events
(dark red).
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Figure B.3: Covariance matrix elements binned as function of energy for T2Z3. In black is shown the fit
to the data using the functional form in equation (8.5). Different colors indicate events of different type:
neutron (orange), surface events - betas(grey), phonon-side events (dark yellow) and charge-side events
(dark red).
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Figure B.4: Covariance matrix elements binned as function of energy for T2Z3. In black is shown the fit
to the data using the functional form in equation (8.5). Different colors indicate events of different type:
neutron (orange), surface events - betas(grey), phonon-side events (dark yellow) and charge-side events
(dark red).
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Figure B.5: Covariance matrix elements binned as function of energy for T2Z3. In black is shown the fit
to the data using the functional form in equation (8.5). Different colors indicate events of different type:
neutron (orange), surface events - betas(grey), phonon-side events (dark yellow) and charge-side events
(dark red).
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Figure B.6: Covariance matrix elements binned as function of energy for T2Z3. In black is shown the fit
to the data using the functional form in equation (8.5). Different colors indicate events of different type:
neutron (orange), surface events - betas(grey), phonon-side events (dark yellow) and charge-side events
(dark red).
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Figure B.7: Covariance matrix elements binned as function of energy for T2Z3. In black is shown the fit
to the data using the functional form in equation (8.5). Different colors indicate events of different type:
neutron (orange), surface events - betas(grey), phonon-side events (dark yellow) and charge-side events
(dark red).
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Figure B.8: Covariance matrix elements binned as function of energy for T2Z3. In black is shown the fit
to the data using the functional form in equation (8.5). Different colors indicate events of different type:
neutron (orange), surface events - betas(grey), phonon-side events (dark yellow) and charge-side events
(dark red).
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Figure B.9: Covariance matrix elements binned as function of energy for T2Z3. In black is shown the fit
to the data using the functional form in equation (8.5). Different colors indicate events of different type:
neutron (orange), surface events - betas(grey), phonon-side events (dark yellow) and charge-side events
(dark red).
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Figure B.10: Covariance matrix elements binned as function of energy for T2Z3. In black is shown the
fit to the data using the functional form in equation (8.5). Different colors indicate events of different
type: neutron (orange), surface events - betas(grey), phonon-side events (dark yellow) and charge-side
events (dark red).
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Figure B.11: Covariance matrix elements binned as function of energy for T2Z3. In black is shown the
fit to the data using the functional form in equation (8.5). Different colors indicate events of different
type: neutron (orange), surface events - betas(grey), phonon-side events (dark yellow) and charge-side
events (dark red).
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Figure B.12: Covariance matrix elements binned as function of energy for T2Z3. In black is shown the
fit to the data using the functional form in equation (8.5). Different colors indicate events of different
type: neutron (orange), surface events - betas(grey), phonon-side events (dark yellow) and charge-side
events (dark red).
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Figure B.13: Covariance matrix elements binned as function of energy for T2Z3. In black is shown the
fit to the data using the functional form in equation (8.5). Different colors indicate events of different
type: neutron (orange), surface events - betas(grey), phonon-side events (dark yellow) and charge-side
events (dark red).
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B.3 correlation coefficients

The correlation coefficients ρjk =
cov(xj ,xk)

σj ·σk
of the 5 variables used in the construction of the χ2 are shown in

Figures (B.14) to (B.23). These timing variables are taken in the following order {pminrtc, pdelc, pminrtCFc,

pdelCFc and pminrt4070CFc}; they are indexed by {1, 2, 3, 4 and 5} as indicated in the plots below.
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Figure B.14: The correlation coefficient ρ12. The blue curve represents the energy dependence for the
neutron sample while the green, the red and the cyan curves represents the energy dependence for the
surface events betas, the phonon and the charge-side events respectively.
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Figure B.15: The correlation coefficient ρ13. The blue curve represents the energy dependence for the
neutron sample while the green, the red and the cyan curves represents the energy dependence for the
surface events betas, the phonon and the charge-side events respectively.
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Figure B.16: The correlation coefficient ρ14. The blue curve represents the energy dependence for the
neutron sample while the green, the red and the cyan curves represents the energy dependence for the
surface events betas, the phonon and the charge-side events respectively.
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Figure B.17: The correlation coefficient ρ15. The blue curve represents the energy dependence for the
neutron sample while the green, the red and the cyan curves represents the energy dependence for the
surface events betas, the phonon and the charge-side events respectively.
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Figure B.18: The correlation coefficient ρ23. The blue curve represents the energy dependence for the
neutron sample while the green, the red and the cyan curves represents the energy dependence for the
surface events betas, the phonon and the charge-side events respectively.
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Figure B.19: The correlation coefficient ρ24. The blue curve represents the energy dependence for the
neutron sample while the green, the red and the cyan curves represents the energy dependence for the
surface events betas, the phonon and the charge-side events respectively.
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Figure B.20: The correlation coefficient ρ25. The blue curve represents the energy dependence for the
neutron sample while the green, the red and the cyan curves represents the energy dependence for the
surface events betas, the phonon and the charge-side events respectively.
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Figure B.21: The correlation coefficient ρ34. The blue curve represents the energy dependence for the
neutron sample while the green, the red and the cyan curves represents the energy dependence for the
surface events betas, the phonon and the charge-side events respectively.
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Figure B.22: The correlation coefficient ρ35. The blue curve represents the energy dependence for the
neutron sample while the green, the red and the cyan curves represents the energy dependence for the
surface events betas, the phonon and the charge-side events respectively.
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Figure B.23: The correlation coefficient ρ45. The blue curve represents the energy dependence for the
neutron sample while the green, the red and the cyan curves represents the energy dependence for the
surface events betas, the phonon and the charge-side events respectively.
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Appendix C

Energy-independent and

energy-dependent efficiencies

C.1 Energy-Independent

Plots below show the χ2 distributions and the energy dependence of the cut efficiencies for some detectors used

in this analysis.

Figure C.1: Left:χ2
B as function of χ2

N where the neutrons distribution is shown in orange and the surface
events in cyan for T1Z2. Dark yellow represents the events that pass the the energy-independent cuts
indicated by a combination of the black vertical line and the cyan, slanting, line. The red black circled
events represents the surface events leakage. Right is the neutron efficiency of the energy-independent
cut as a function of energy. Orange error bars represents the data while the red solid line is the fit; the
cyan and yellow regions are the ±1σ and ±2σ confidence intervals.
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Figure C.2: Left:χ2
B as function of χ2

N where the neutrons distribution is shown in orange and the surface
events in cyan for T1Z5. Dark yellow represents the events that pass the the energy-independent cuts
indicated by a combination of the black vertical line and the cyan, slanting, line. The red black circled
events represents the surface events leakage. Right is the neutron efficiency of the energy-independent
cut as a function of energy. Orange error bars represents the data while the red solid line is the fit; the
cyan and yellow regions are the ±1σ and ±2σ confidence intervals.
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Figure C.3: Left:χ2
B as function of χ2

N where the neutrons distribution is shown in orange and the surface
events in cyan for T2Z3. Dark yellow represents the events that pass the the energy-independent cuts
indicated by a combination of the black vertical line and the cyan, slanting, line. The red black circled
events represents the surface events leakage. Right is the neutron efficiency of the energy-independent
cut as a function of energy. Orange error bars represents the data while the red solid line is the fit; the
cyan and yellow regions are the ±1σ and ±2σ confidence intervals.

Figure C.4: Left:χ2
B as function of χ2

N where the neutrons distribution is shown in orange and the surface
events in cyan for T2Z5. Dark yellow represents the events that pass the the energy-independent cuts
indicated by a combination of the black vertical line and the cyan, slanting, line. The red black circled
events represents the surface events leakage. Right is the neutron efficiency of the energy-independent
cut as a function of energy. Orange error bars represents the data while the red solid line is the fit; the
cyan and yellow regions are the ±1σ and ±2σ confidence intervals.
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Figure C.5: Left:χ2
B as function of χ2

N where the neutrons distribution is shown in orange and the surface
events in cyan for T3Z2. Dark yellow represents the events that pass the the energy-independent cuts
indicated by a combination of the black vertical line and the cyan, slanting, line. The red black circled
events represents the surface events leakage. Right is the neutron efficiency of the energy-independent
cut as a function of energy. Orange error bars represents the data while the red solid line is the fit; the
cyan and yellow regions are the ±1σ and ±2σ confidence intervals.
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C.2 Energy dependence of the optimized χ2 cut

The energy-dependent χ2 timing cut (cEdepChi2 c58R) efficiency was calculated using the neutron calibration

data. Figures (C.6) to (C.12) pictures the computed fitted efficiencies for the detectors used in this analysis.
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Figure C.6: The optimized χ2 timing cut efficiency as function of energy for T1Z2 and T1Z5 (c58
reanalysis).
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Figure C.7: The optimized χ2 timing cut efficiency as function of energy for T2Z3 and T2Z5 (c58
reanalysis).
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Figure C.8: The optimized χ2 timing cut efficiency as function of energy for T3Z2 and T3Z4 (c58
reanalysis).
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Figure C.9: The optimized χ2 timing cut efficiency as function of energy for T3Z5 and T3Z6 (c58
reanalysis).
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Figure C.10: The optimized χ2 timing cut efficiency as function of energy for T4Z2 and T4Z4 (c58
reanalysis).
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Figure C.11: The optimized χ2 timing cut efficiency as function of energy for T4Z5 and T4Z6 (c58
reanalysis).
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Figure C.12: The optimized χ2 timing cut efficiency as function of energy for T5Z4 and T5Z5 (c58
reanalysis).
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Appendix D

χ2B − χ2N vs energy (WS data).
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Figure D.1: χ2
B − χ2

N vs recoil energy for the low background data for T1Z2 (top) and T1Z5 (bottom).
Events shown in dark cyan color represents events located 3σ above the cBelowER c58 (representing
mostly electron-recoil events) while events in blue dots indicates non-electron-recoil events (which can
either be surface events or event candidates for those laying inside the tight nuclear-recoil band). Red
dots are WIMP-search events inside the tight nuclear-recoil band cut, i.e. the optimized nuclear-recoil
band defined by a yield cut of [l = −1.9;u = 1.8]. Events shown in magenta circled with blue faces are
events failing the consistency cut. The green circle events with the grey face represents events passing the
alternative timing cuts developed during the reanalysis. The blue horizontal straight line is the energy
independent cut while the dark red line represent the energy-dependent cut.
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Figure D.2: χ2
B − χ2

N vs recoil energy for the low background data for T2Z3 (top) and T2Z5 (bottom).
Events shown in dark cyan color represents events located 3σ above the cBelowER c58 (representing
mostly electron-recoil events) while events in blue dots indicates non-electron-recoil events (which can
either be surface events or event candidates for those laying inside the tight nuclear-recoil band). Red
dots are WIMP-search events inside the tight nuclear-recoil band cut, i.e. the optimized nuclear-recoil
band defined by a yield cut of [l = −1.9;u = 1.8]. Events shown in magenta circled with blue faces are
events failing the consistency cut. The green circle events with the grey face represents events passing the
alternative timing cuts developed during the reanalysis. The blue horizontal straight line is the energy
independent cut while the dark red line represent the energy-dependent cut.



Appendix D 317

10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

Recoil Energy [pric (keV)]

χ
2 B

 −
 χ

2 N

χ2
B
 − χ2

N
 vs energy: WIMP−Search Data − c58R (T3Z2 − 5D χ2 cut)

 

 
Above cBelowER
Below cBelowER
Tight NR
Fail Consistency

10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

Recoil Energy [pric (keV)]

χ
2 B

 −
 χ

2 N

χ2
B
 − χ2

N
 vs energy: WIMP−Search Data − c58R (T3Z4 − 5D χ2 cut)

 

 
Above cBelowER
Below cBelowER
Tight NR
Fail Consistency

Figure D.3: χ2
B − χ2

N vs recoil energy for the low background data for T3Z2 (top) and T3Z4 (bottom).
Events shown in dark cyan color represents events located 3σ above the cBelowER c58 (representing
mostly electron-recoil events) while events in blue dots indicates non-electron-recoil events (which can
either be surface events or event candidates for those laying inside the tight nuclear-recoil band). Red
dots are WIMP-search events inside the tight nuclear-recoil band cut, i.e. the optimized nuclear-recoil
band defined by a yield cut of [l = −1.9;u = 1.8]. Events shown in magenta circled with blue faces are
events failing the consistency cut. The green circle events with the grey face represents events passing the
alternative timing cuts developed during the reanalysis. The blue horizontal straight line is the energy
independent cut while the dark red line represent the energy-dependent cut.
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Figure D.4: χ2
B − χ2

N vs recoil energy for the low background data for T3Z5 (top) and T3Z6 (bottom).
Events shown in dark cyan color represents events located 3σ above the cBelowER c58 (representing
mostly electron-recoil events) while events in blue dots indicates non-electron-recoil events (which can
either be surface events or event candidates for those laying inside the tight nuclear-recoil band). Red
dots are WIMP-search events inside the tight nuclear-recoil band cut, i.e. the optimized nuclear-recoil
band defined by a yield cut of [l = −1.9;u = 1.8]. Events shown in magenta circled with blue faces are
events failing the consistency cut. The green circle events with the grey face represents events passing the
alternative timing cuts developed during the reanalysis. The blue horizontal straight line is the energy
independent cut while the dark red line represent the energy-dependent cut.
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Figure D.5: χ2
B − χ2

N vs recoil energy for the low background data for T4Z2 (top) and T4Z4 (bottom).
Events shown in dark cyan color represents events located 3σ above the cBelowER c58 (representing
mostly electron-recoil events) while events in blue dots indicates non-electron-recoil events (which can
either be surface events or event candidates for those laying inside the tight nuclear-recoil band). Red
dots are WIMP-search events inside the tight nuclear-recoil band cut, i.e. the optimized nuclear-recoil
band defined by a yield cut of [l = −1.9;u = 1.8]. Events shown in magenta circled with blue faces are
events failing the consistency cut. The green circle events with the grey face represents events passing the
alternative timing cuts developed during the reanalysis. The blue horizontal straight line is the energy
independent cut while the dark red line represent the energy-dependent cut.
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Figure D.6: χ2
B − χ2

N vs recoil energy for the low background data for T4Z5 (top) and T4Z6 (bottom).
Events shown in dark cyan color represents events located 3σ above the cBelowER c58 (representing
mostly electron-recoil events) while events in blue dots indicates non-electron-recoil events (which can
either be surface events or event candidates for those laying inside the tight nuclear-recoil band). Red
dots are WIMP-search events inside the tight nuclear-recoil band cut, i.e. the optimized nuclear-recoil
band defined by a yield cut of [l = −1.9;u = 1.8]. Events shown in magenta circled with blue faces are
events failing the consistency cut. The green circle events with the grey face represents events passing the
alternative timing cuts developed during the reanalysis. The blue horizontal straight line is the energy
independent cut while the dark red line represent the energy-dependent cut.
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Figure D.7: χ2
B − χ2

N vs recoil energy for the low background data for T5Z4 (top) and T5Z5 (bottom).
Events shown in dark cyan color represents events located 3σ above the cBelowER c58 (representing
mostly electron-recoil events) while events in blue dots indicates non-electron-recoil events (which can
either be surface events or event candidates for those laying inside the tight nuclear-recoil band). Red
dots are WIMP-search events inside the tight nuclear-recoil band cut, i.e. the optimized nuclear-recoil
band defined by a yield cut of [l = −1.9;u = 1.8]. Events shown in magenta circled with blue faces are
events failing the consistency cut. The green circle events with the grey face represents events passing the
alternative timing cuts developed during the reanalysis. The blue horizontal straight line is the energy
independent cut while the dark red line represent the energy-dependent cut.
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Figure D.8: WIMP-Search distribution of χ2
B as function of χ2

N for T1Z2 (top) and T1Z5 (bot-
tom). Events shown in dark cyan color represents events located above cBelowER c58 above the
cBelowER c58 (representing mostly electron recoils events) while events in blue dots indicates non-
electron-recoil events (which can either be surface events or event candidates for those laying inside the
tight nuclear-recoil band). Events shown in red dots are WIMP-search events inside the tight nuclear-
recoil band cut, i.e. the optimized nuclear-recoil band defined by a yield cut of [l = −1.9;u = 1.8] while
events in yellows dots are events shown passing the rejection cut. The green circle events with the black
face represent events passing the alternative timing cuts developed during the reanalysis. The black
vertical line show the consistency cut position.
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Figure D.9: WIMP-Search distribution of χ2
B as function of χ2

N for T2Z3 (top) and T2Z5 (bot-
tom). Events shown in dark cyan color represents events located above cBelowER c58 above the
cBelowER c58 (representing mostly electron recoils events) while events in blue dots indicates non-
electron-recoil events (which can either be surface events or event candidates for those laying inside the
tight nuclear-recoil band). Events shown in red dots are WIMP-search events inside the tight nuclear-
recoil band cut, i.e. the optimized nuclear-recoil band defined by a yield cut of [l = −1.9;u = 1.8] while
events in yellows dots are events shown passing the rejection cut. The green circle events with the black
face represent events passing the alternative timing cuts developed during the reanalysis. The black
vertical line show the consistency cut position.
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Figure D.10: WIMP-Search distribution of χ2
B as function of χ2

N for T3Z2 (top) and T3Z4 (bot-
tom). Events shown in dark cyan color represents events located above cBelowER c58 above the
cBelowER c58 (representing mostly electron recoils events) while events in blue dots indicates non-
electron-recoil events (which can either be surface events or event candidates for those laying inside the
tight nuclear-recoil band). Events shown in red dots are WIMP-search events inside the tight nuclear-
recoil band cut, i.e. the optimized nuclear-recoil band defined by a yield cut of [l = −1.9;u = 1.8] while
events in yellows dots are events shown passing the rejection cut. The green circle events with the black
face represent events passing the alternative timing cuts developed during the reanalysis. The black
vertical line show the consistency cut position.
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Figure D.11: WIMP-Search distribution of χ2
B as function of χ2

N for T3Z5 (top) and T3Z6 (bot-
tom). Events shown in dark cyan color represents events located above cBelowER c58 above the
cBelowER c58 (representing mostly electron recoils events) while events in blue dots indicates non-
electron-recoil events (which can either be surface events or event candidates for those laying inside the
tight nuclear-recoil band). Events shown in red dots are WIMP-search events inside the tight nuclear-
recoil band cut, i.e. the optimized nuclear-recoil band defined by a yield cut of [l = −1.9;u = 1.8] while
events in yellows dots are events shown passing the rejection cut. The green circle events with the black
face represent events passing the alternative timing cuts developed during the reanalysis. The black
vertical line show the consistency cut position.
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Figure D.12: WIMP-Search distribution of χ2
B as function of χ2

N for T4Z2 (top) and T4Z4 (bot-
tom). Events shown in dark cyan color represents events located above cBelowER c58 above the
cBelowER c58 (representing mostly electron recoils events) while events in blue dots indicates non-
electron-recoil events (which can either be surface events or event candidates for those laying inside the
tight nuclear-recoil band). Events shown in red dots are WIMP-search events inside the tight nuclear-
recoil band cut, i.e. the optimized nuclear-recoil band defined by a yield cut of [l = −1.9;u = 1.8] while
events in yellows dots are events shown passing the rejection cut. The green circle events with the black
face represent events passing the alternative timing cuts developed during the reanalysis. The black
vertical line show the consistency cut position.
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Figure D.13: WIMP-Search distribution of χ2
B as function of χ2

N for T4Z5 (top) and T4Z6 (bot-
tom). Events shown in dark cyan color represents events located above cBelowER c58 above the
cBelowER c58 (representing mostly electron recoils events) while events in blue dots indicates non-
electron-recoil events (which can either be surface events or event candidates for those laying inside the
tight nuclear-recoil band). Events shown in red dots are WIMP-search events inside the tight nuclear-
recoil band cut, i.e. the optimized nuclear-recoil band defined by a yield cut of [l = −1.9;u = 1.8] while
events in yellows dots are events shown passing the rejection cut. The green circle events with the black
face represent events passing the alternative timing cuts developed during the reanalysis. The black
vertical line show the consistency cut position.
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Figure D.14: WIMP-Search distribution of χ2
B as function of χ2

N for T5Z4 (top) and T5Z5 (bot-
tom). Events shown in dark cyan color represents events located above cBelowER c58 above the
cBelowER c58 (representing mostly electron recoils events) while events in blue dots indicates non-
electron-recoil events (which can either be surface events or event candidates for those laying inside the
tight nuclear-recoil band). Events shown in red dots are WIMP-search events inside the tight nuclear-
recoil band cut, i.e. the optimized nuclear-recoil band defined by a yield cut of [l = −1.9;u = 1.8] while
events in yellows dots are events shown passing the rejection cut. The green circle events with the black
face represent events passing the alternative timing cuts developed during the reanalysis. The black
vertical line show the consistency cut position.
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yield vs energy (WS data).

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

1.2

Recoil Energy [pric (keV)]

Io
niz

at
ion

 yi
eld

 (y
ic)

yield vs energy: WIMP−Search Data − c58R (T1Z2 − 5D χ2 cut)

 

 

Passed Timing cut

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

1.2

Recoil Energy [pric (keV)]

Io
niz

at
ion

 yi
eld

 (y
ic)

yield vs energy: WIMP−Search Data − c58R (T1Z5 − 5D χ2 cut)

 

 

Passed Timing cut
Ev. cand (alternative meth)

Figure E.1: Ionization yield vs recoil energy showing the distribution of events in the WIMP-search
(black dots) for T1Z2 (top) and T1Z5 (bottom). The events shown in red dots are the events passing
the χ2 optimized timing cuts above the 10 keV threshold. Note that all events passing the timing cut
lie within 3σ of the electron-recoil band (yellow curve). The cyan and magenta curves indicate the tight
and loose nuclear-recoil bands ([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green
dots indicate the WIMP candidates identified by alternate timing-cut analyses.
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Figure E.2: Ionization yield vs recoil energy showing the distribution of events in the WIMP-search
(black dots) for T2Z3 (top) and T2Z5 (bottom). The events shown in red dots are the events passing
the χ2 optimized timing cuts above the 10 keV threshold. Note that all events passing the timing cut
lie within 3σ of the electron-recoil band (yellow curve). The cyan and magenta curves indicate the tight
and loose nuclear-recoil bands ([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green
dots indicate the WIMP candidates identified by alternate timing-cut analyses.
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Figure E.3: Ionization yield vs recoil energy showing the distribution of events in the WIMP-search
(black dots) for T3Z2 (top) and T3Z4 (bottom). The events shown in red dots are the events passing
the χ2 optimized timing cuts above the 10 keV threshold. Note that all events passing the timing cut
lie within 3σ of the electron-recoil band (yellow curve). The cyan and magenta curves indicate the tight
and loose nuclear-recoil bands ([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green
dots indicate the WIMP candidates identified by alternate timing-cut analyses.
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Figure E.4: Ionization yield vs recoil energy showing the distribution of events in the WIMP-search
(black dots) for T3Z5 (top) and T3Z6 (bottom). The events shown in red dots are the events passing
the χ2 optimized timing cuts above the 10 keV threshold. Note that all events passing the timing cut
lie within 3σ of the electron-recoil band (yellow curve). The cyan and magenta curves indicate the tight
and loose nuclear-recoil bands ([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green
dots indicate the WIMP candidates identified by alternate timing-cut analyses.
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Figure E.5: Ionization yield vs recoil energy showing the distribution of events in the WIMP-search
(black dots) for T4Z2 (top) and T4Z4 (bottom). The events shown in red dots are the events passing
the χ2 optimized timing cuts above the 10 keV threshold. Note that all events passing the timing cut
lie within 3σ of the electron-recoil band (yellow curve). The cyan and magenta curves indicate the tight
and loose nuclear-recoil bands ([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green
dots indicate the WIMP candidates identified by alternate timing-cut analyses.
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Figure E.6: Ionization yield vs recoil energy showing the distribution of events in the WIMP-search
(black dots) for T4Z5 (top) and T4Z6 (bottom). The events shown in red dots are the events passing
the χ2 optimized timing cuts above the 10 keV threshold. Note that all events passing the timing cut
lie within 3σ of the electron-recoil band (yellow curve). The cyan and magenta curves indicate the tight
and loose nuclear-recoil bands ([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green
dots indicate the WIMP candidates identified by alternate timing-cut analyses.
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Figure E.7: Ionization yield vs recoil energy showing the distribution of events in the WIMP-search
(black dots) for T5Z4 (top) and T5Z5 (bottom). The events shown in red dots are the events passing
the χ2 optimized timing cuts above the 10 keV threshold. Note that all events passing the timing cut
lie within 3σ of the electron-recoil band (yellow curve). The cyan and magenta curves indicate the tight
and loose nuclear-recoil bands ([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green
dots indicate the WIMP candidates identified by alternate timing-cut analyses.
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Figure E.8: Another version of ionization yield vs recoil energy showing the distribution of events in
the WIMP-search (blue dots) for T1Z2 (top) and T1Z5 (bottom). The events shown in red dots are the
events passing the rejection cuts above the 10 keV threshold while the black dots are events failing the
consistency cut. The yellow curve show the region of space of events laying within 3σ below the mean of
the electron-recoil band. The cyan and magenta curves indicate the tight and loose nuclear-recoil bands
([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green circle with black face indicate the
WIMP candidates identified by alternate timing-cut analyses.
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Figure E.9: Another version of ionization yield vs recoil energy showing the distribution of events in
the WIMP-search (blue dots) for T2Z3 (top) and T2Z5 (bottom). The events shown in red dots are the
events passing the rejection cuts above the 10 keV threshold while the black dots are events failing the
consistency cut. The yellow curve show the region of space of events laying within 3σ below the mean of
the electron-recoil band. The cyan and magenta curves indicate the tight and loose nuclear-recoil bands
([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green circle with black face indicate the
WIMP candidates identified by alternate timing-cut analyses.
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Figure E.10: Another version of ionization yield vs recoil energy showing the distribution of events in
the WIMP-search (blue dots) for T3Z2 (top) and T3Z4 (bottom). The events shown in red dots are the
events passing the rejection cuts above the 10 keV threshold while the black dots are events failing the
consistency cut. The yellow curve show the region of space of events laying within 3σ below the mean of
the electron-recoil band. The cyan and magenta curves indicate the tight and loose nuclear-recoil bands
([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green circle with black face indicate the
WIMP candidates identified by alternate timing-cut analyses.
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Figure E.11: Another version of ionization yield vs recoil energy showing the distribution of events in
the WIMP-search (blue dots) for T3Z5 (top) and T3Z6 (bottom). The events shown in red dots are the
events passing the rejection cuts above the 10 keV threshold while the black dots are events failing the
consistency cut. The yellow curve show the region of space of events laying within 3σ below the mean of
the electron-recoil band. The cyan and magenta curves indicate the tight and loose nuclear-recoil bands
([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green circle with black face indicate the
WIMP candidates identified by alternate timing-cut analyses.



340 Appendix E

0 10 20 30 40 50 60 70 80 90 100

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Recoil Energy [pric (keV)]

Io
n

iz
a

ti
o

n
 y

ie
ld

 (
y
ic

)

yield vs energy: WIMP−Search Data − c58R (T4Z2 − 5D χ2 cut)

 

 

Pass Rej. cut
Fail Const. cut

0 10 20 30 40 50 60 70 80 90 100

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Recoil Energy [pric (keV)]

Io
n

iz
a

ti
o

n
 y

ie
ld

 (
y
ic

)

yield vs energy: WIMP−Search Data − c58R (T4Z4 − 5D χ2 cut)

 

 

Pass Rej. cut
Fail Const. cut

Figure E.12: Another version of ionization yield vs recoil energy showing the distribution of events in
the WIMP-search (blue dots) for T4Z2 (top) and T4Z4 (bottom). The events shown in red dots are the
events passing the rejection cuts above the 10 keV threshold while the black dots are events failing the
consistency cut. The yellow curve show the region of space of events laying within 3σ below the mean of
the electron-recoil band. The cyan and magenta curves indicate the tight and loose nuclear-recoil bands
([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green circle with black face indicate the
WIMP candidates identified by alternate timing-cut analyses.
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Figure E.13: Another version of ionization yield vs recoil energy showing the distribution of events in
the WIMP-search (blue dots) for T4Z5 (top) and T4Z6 (bottom). The events shown in red dots are the
events passing the rejection cuts above the 10 keV threshold while the black dots are events failing the
consistency cut. The yellow curve show the region of space of events laying within 3σ below the mean of
the electron-recoil band. The cyan and magenta curves indicate the tight and loose nuclear-recoil bands
([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green circle with black face indicate the
WIMP candidates identified by alternate timing-cut analyses.
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Figure E.14: Another version of ionization yield vs recoil energy showing the distribution of events in
the WIMP-search (blue dots) for T5Z4 (top) and T5Z5 (bottom). The events shown in red dots are the
events passing the rejection cuts above the 10 keV threshold while the black dots are events failing the
consistency cut. The yellow curve show the region of space of events laying within 3σ below the mean of
the electron-recoil band. The cyan and magenta curves indicate the tight and loose nuclear-recoil bands
([l = −1.9;u = 1.8] and [l = −2;u = 2], respectively), while the green circle with black face indicate the
WIMP candidates identified by alternate timing-cut analyses.
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Appendix F

SAE and leakage vs cut positions.
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Figure F.1: The expected leakage as function of cut positions calculated from the 133Ba calibration data
for the c58 reanalysis for T1Z2 (top) and T1Z5 (bottom). The black solid lines represent fits to the
data (shown in solid red for 10-20 keV, dashed blue for 20-30 keV and dotted green for 30-100 keV). The
vertical magenta, cyan and dark red lines represents the optimal cut positions while the dashed magenta,
dashed cyan and dashed dark red lines are the cut positions for equal leakage in the three energy bins
respectively.
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Figure F.2: The expected leakage as function of cut positions calculated from the 133Ba calibration data
for the c58 reanalysis for T2Z3 (top) and T2Z5 (bottom). The black solid lines represent fits to the
data (shown in solid red for 10-20 keV, dashed blue for 20-30 keV and dotted green for 30-100 keV). The
vertical magenta, cyan and dark red lines represents the optimal cut positions while the dashed magenta,
dashed cyan and dashed dark red lines are the cut positions for equal leakage in the three energy bins
respectively.
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Figure F.3: The expected leakage as function of cut positions calculated from the 133Ba calibration data
for the c58 reanalysis for T3Z2 (top) and T3Z4 (bottom). The black solid lines represent fits to the
data (shown in solid red for 10-20 keV, dashed blue for 20-30 keV and dotted green for 30-100 keV). The
vertical magenta, cyan and dark red lines represents the optimal cut positions while the dashed magenta,
dashed cyan and dashed dark red lines are the cut positions for equal leakage in the three energy bins
respectively.
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Figure F.4: The expected leakage as function of cut positions calculated from the 133Ba calibration data
for the c58 reanalysis for T3Z5 (top) and T3Z6 (bottom). The black solid lines represent fits to the
data (shown in solid red for 10-20 keV, dashed blue for 20-30 keV and dotted green for 30-100 keV). The
vertical magenta, cyan and dark red lines represents the optimal cut positions while the dashed magenta,
dashed cyan and dashed dark red lines are the cut positions for equal leakage in the three energy bins
respectively.
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Figure F.5: The expected leakage as function of cut positions calculated from the 133Ba calibration data
for the c58 reanalysis for T4Z2 (top) and T4Z4 (bottom). The black solid lines represent fits to the
data (shown in solid red for 10-20 keV, dashed blue for 20-30 keV and dotted green for 30-100 keV). The
vertical magenta, cyan and dark red lines represents the optimal cut positions while the dashed magenta,
dashed cyan and dashed dark red lines are the cut positions for equal leakage in the three energy bins
respectively.
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Figure F.6: The expected leakage as function of cut positions calculated from the 133Ba calibration data
for the c58 reanalysis for T4Z5 (top) and T4Z6 (bottom). The black solid lines represent fits to the
data (shown in solid red for 10-20 keV, dashed blue for 20-30 keV and dotted green for 30-100 keV). The
vertical magenta, cyan and dark red lines represents the optimal cut positions while the dashed magenta,
dashed cyan and dashed dark red lines are the cut positions for equal leakage in the three energy bins
respectively.
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Figure F.7: The expected leakage as function of cut positions calculated from the 133Ba calibration data
for the c58 reanalysis for T5Z4 (top) and T5Z5 (bottom). The black solid lines represent fits to the
data (shown in solid red for 10-20 keV, dashed blue for 20-30 keV and dotted green for 30-100 keV). The
vertical magenta, cyan and dark red lines represents the optimal cut positions while the dashed magenta,
dashed cyan and dashed dark red lines are the cut positions for equal leakage in the three energy bins
respectively.
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Figure F.8: The spectrum-averaged exposure as functions of cut positions calculated from the 252Cf
calibration data for the c58 reanalysis for T1Z2 and T1Z5. The black lines represent the fits to the data
(shown in solid red for 10−20 keV, dashed blue for 20−30 keV and dotted green for 30−100 keV). The
vertical magenta, cyan and dark red lines represents the optimal cut positions while the dashed magenta,
dashed cyan and dashed dark red lines are the cut positions for equal leakage in the three energy bins
respectively.
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Figure F.9: The spectrum-averaged exposure as functions of cut positions calculated from the 252Cf
calibration data for the c58 reanalysis for T2Z3 and T2Z5. The black lines represent the fits to the data
(shown in solid red for 10−20 keV, dashed blue for 20−30 keV and dotted green for 30−100 keV). The
vertical magenta, cyan and dark red lines represents the optimal cut positions while the dashed magenta,
dashed cyan and dashed dark red lines are the cut positions for equal leakage in the three energy bins
respectively.
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Figure F.10: The spectrum-averaged exposure as functions of cut positions calculated from the 252Cf
calibration data for the c58 reanalysis for T3Z2 and T3Z4. The black lines represent the fits to the data
(shown in solid red for 10−20 keV, dashed blue for 20−30 keV and dotted green for 30−100 keV). The
vertical magenta, cyan and dark red lines represents the optimal cut positions while the dashed magenta,
dashed cyan and dashed dark red lines are the cut positions for equal leakage in the three energy bins
respectively.
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Figure F.11: The spectrum-averaged exposure as functions of cut positions calculated from the 252Cf
calibration data for the c58 reanalysis for T3Z5 and T3Z6. The black lines represent the fits to the data
(shown in solid red for 10−20 keV, dashed blue for 20−30 keV and dotted green for 30−100 keV). The
vertical magenta, cyan and dark red lines represents the optimal cut positions while the dashed magenta,
dashed cyan and dashed dark red lines are the cut positions for equal leakage in the three energy bins
respectively.
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Figure F.12: The spectrum-averaged exposure as functions of cut positions calculated from the 252Cf
calibration data for the c58 reanalysis for T4Z2 and T4Z4. The black lines represent the fits to the data
(shown in solid red for 10−20 keV, dashed blue for 20−30 keV and dotted green for 30−100 keV). The
vertical magenta, cyan and dark red lines represents the optimal cut positions while the dashed magenta,
dashed cyan and dashed dark red lines are the cut positions for equal leakage in the three energy bins
respectively.
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Figure F.13: The spectrum-averaged exposure as functions of cut positions calculated from the 252Cf
calibration data for the c58 reanalysis for T4Z5 and T4Z6. The black lines represent the fits to the data
(shown in solid red for 10−20 keV, dashed blue for 20−30 keV and dotted green for 30−100 keV). The
vertical magenta, cyan and dark red lines represents the optimal cut positions while the dashed magenta,
dashed cyan and dashed dark red lines are the cut positions for equal leakage in the three energy bins
respectively.
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Figure F.14: The spectrum-averaged exposure as functions of cut positions calculated from the 252Cf
calibration data for the c58 reanalysis for T5Z4 and T5Z5. The black lines represent the fits to the data
(shown in solid red for 10−20 keV, dashed blue for 20−30 keV and dotted green for 30−100 keV). The
vertical magenta, cyan and dark red lines represents the optimal cut positions while the dashed magenta,
dashed cyan and dashed dark red lines are the cut positions for equal leakage in the three energy bins
respectively.
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Appendix G

Overall efficiencies vs energy.
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Figure G.1: Timing cut efficiencies for T1Z2 (top) and T1Z5 (bottom). Shown in black is the efficiency
all the basic data-quality cuts, the blue curve shows the nuclear recoil efficiency, in red is shown the
the fiducial-volume cut efficiency and in green is plotted the efficiency of the χ2 optimized timing cut
analysis. Shown in color orange, is the c58 analysis timing cut efficiency.
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Figure G.2: Timing cut efficiencies for T2Z3 (top) and T2Z5 (bottom). Shown in black is the efficiency
all the basic data-quality cuts, the blue curve shows the nuclear recoil efficiency, in red is shown the
the fiducial-volume cut efficiency and in green is plotted the efficiency of the χ2 optimized timing cut
analysis. Shown in color orange, is the c58 analysis timing cut efficiency.
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Figure G.3: Timing cut efficiencies for T3Z2 (top) and T3Z4 (bottom). Shown in black is the efficiency
all the basic data-quality cuts, the blue curve shows the nuclear recoil efficiency, in red is shown the
the fiducial-volume cut efficiency and in green is plotted the efficiency of the χ2 optimized timing cut
analysis. Shown in color orange, is the c58 analysis timing cut efficiency.
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Figure G.4: Timing cut efficiencies for T3Z5 (top) and T3Z6 (bottom). Shown in black is the efficiency
all the basic data-quality cuts, the blue curve shows the nuclear recoil efficiency, in red is shown the
the fiducial-volume cut efficiency and in green is plotted the efficiency of the χ2 optimized timing cut
analysis. Shown in color orange, is the c58 analysis timing cut efficiency.
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Figure G.5: Timing cut efficiencies for T4Z2 (top) and T4Z4 (bottom). Shown in black is the efficiency
all the basic data-quality cuts, the blue curve shows the nuclear recoil efficiency, in red is shown the
the fiducial-volume cut efficiency and in green is plotted the efficiency of the χ2 optimized timing cut
analysis. Shown in color orange, is the c58 analysis timing cut efficiency.
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Figure G.6: Timing cut efficiencies for T4Z5 (top) and T4Z6 (bottom). Shown in black is the efficiency
all the basic data-quality cuts, the blue curve shows the nuclear recoil efficiency, in red is shown the
the fiducial-volume cut efficiency and in green is plotted the efficiency of the χ2 optimized timing cut
analysis. Shown in color orange, is the c58 analysis timing cut efficiency.
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Figure G.7: Timing cut efficiencies for T5Z4 (top) and T5Z5 (bottom). Shown in black is the efficiency
all the basic data-quality cuts, the blue curve shows the nuclear recoil efficiency, in red is shown the
the fiducial-volume cut efficiency and in green is plotted the efficiency of the χ2 optimized timing cut
analysis. Shown in color orange, is the c58 analysis timing cut efficiency.
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