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ABSTRACT PAGE

In this dissertation, we investigate various aspects of dark matter detection and

model building. Motivated by the cosmic ray positron excess observed by PAMELA,

we construct models of decaying dark matter to explain the excess. Specifically we

present an explicit, TeV-scale model of decaying dark matter in which the approxi-

mate stability of the dark matter candidate is a consequence of a global symmetry

that is broken only by instanton-induced operators generated by a non-Abelian dark

gauge group. Alternatively, the decaying operator can arise as a Planck suppressed

correction in a model with an Abelian discrete symmetry and vector-like states at

an intermediate scale that are responsible for generating lepton Yukawa couplings.

A flavor-nonconserving dark matter decay is also considered in the case of fermionic

dark matter. Assuming a general Dirac structure for the four-fermion contact inter-

actions of interest, the cosmic-ray electron and positron spectra were studied. We

show that good fits to the current data can be obtained for both charged-lepton-

flavor-conserving and flavor-violating decay channels. Motivated by a possible excess

of gamma rays in the galactic center, we constructed a supersymmetric leptophilic

higgs model to explain the excess. Finally, we consider an improvement on dark

matter collider searches using the Razor analysis, which was originally utilized for

supersymmetry searches by the CMS collaboration.
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CHAPTER 1

Introduction

As the data from cosmological observations accumulates, we gain a better un-

derstanding on the composition of the universe. Interestingly, baryonic matter is

responsible for only 5% of the universe’s energy density. Other known particles,

such as electrons, photons and neutrinos make negligible contributions to the en-

ergy density. The rest of the universe is made of the presently unknown components.

Their existence is inferred only by their gravitational influence on the known matter.

Presently, it is understood that 22% of the universe is dark matter (DM) while the

rest, 73%, is dark energy, probably in the form of a cosmological constant. This

thesis focuses on understanding the nature of the DM. Before proceeding, we will

review the observational evidence for the existence of DM.

1.1 Observational Evidence of Dark Matter

The observational evidence for dark matter ranges from the galactic to the

cosmological scale. The earliest evidence for DM on the galactic scale comes from

the 1970 measurement of the rotational velocity of the Andromeda’s galaxy by Rubin

and Ford [30]. They measured the spectra of 67 H II regions at distance 3-24 kpc

2



3

from the galaxy center and found that the rotational velocity of these H II regions, v,

remain constant. This contradicts the expectation of Keplerian velocity, v ∝ 1/
√
r,

based on the observed mass distribution. In order to explain the discrepancy, the

existence of a non-luminous dark matter halo with a mass density ρ(r) ∝ 1/r2 needs

to be introduced. The current measurements of rotation curves of several galaxies

establish a lower bound of dark matter density, ΩDM & 0.1 [5], where Ω ≡ ρ/ρc. We

define ρc as the density of a flat universe.

On the galactic cluster scale, one can use weak gravitational lensing to deter-

mine the mass of the cluster. Additionally, the temperature measurement of the

hot intracluster medium provides another way to estimate the mass of galaxy clus-

ters [31]. When the baryon system is in a hydrostatic equilibrium, the outward pres-

sure of the system balances the inward gravity pressure influenced by both baryonic

and dark matter. By measuring the X-ray temperature of hot intracluster gas, the

cluster mass can be inferred. Just as in the case of the galactic mass measurement,

the ratio of visible to total mass in galactic clusters is significantly smaller than

unity. The obtained dark matter density from this observation is ΩDM ≃ 0.2 [5].

Finally at the cosmological scale, the analysis of the Cosmic Microwave Back-

ground (CMB) can be used to pin down the baryonic and dark matter densities. In

the early universe, when baryons and photons still interact strongly, many potential

wells were created from quantum-fluctuation-generated density inhomogeneities. As

the matter falls into the wells, the outward radiation pressure builds and the system

undergoes acoustic oscillation. The oscillation is dictated by the amount of baryons,

photons and dark matter inside the well. At the time of recombination, the pho-

ton decouples from the system and the density variation caused by the oscillation

is imprinted in the CMB anisotropies. The presence of CMB anisotropies have

been detected by various experiments and investigated in a great detail by WMAP

satellite. Fig. 1.1 shows the 7-year WMAP results expanded in the multipoles of



4

FIG. 1.1: The CMB anisotropies from WMAP 7-year data [2]. Cl is the correlation
function defined as 〈Θ∗

lmΘl′m′〉 = δll′δmm′Cl where Θlm =
∫
Θ(n̂)Y ∗

lm(n̂)dΩ and Θ(n̂) is
the CMB temperature at the direction of n̂.

CMB anisotropies l [2]. The solid line shows a prediction for Ωbaryon = 0.0450,

ΩDM = 0.220, ΩΛ = 0.738, where Λ denotes the cosmological constant/dark en-

ergy. The prediction agrees remarkably well with the WMAP data. This result

clearly shows that the dark matter density dominates over the baryon density on

the cosmological scales.

1.2 Thermal Production of Dark Matter

Since all the evidence for the existence of DM comes only from its gravitational

interaction, the other properties of dark matter are still largely unknown. In this

section, we will discuss possible scenarios for producing dark matter in the early

universe to get some idea of the necessary interaction between DM and Standard

Model (SM) particles.

DM can be produced thermally in the early universe while the temperature of

the universe is above the scale of the DM mass. SM particles then have enough

energy to produce the dark matter by the reaction ff̄ → χχ̄, where f is a SM par-

ticle and χ is the dark matter. The reverse process can also happen and equilibrium

between DM matter and SM particles can be maintained as long as the DM-SM
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interaction rate is large relative to the expansion rate of the universe and the avail-

able thermal energy is enough to create the DM pairs. When the temperature and

interaction rate decreases, the DM and SM particles start to decouple. This situa-

tion is called freeze-out. After freeze-out, the dark matter abundance per comoving

volume is unchanged until the present day.

Quantitatively, one could write down the abundance of the DM as a function

of time to be [3]:

dnχ
dt

+ 3Hnχ = −〈σv〉[n2
χ − (neqχ )

2], (1.1)

where nχ is the DM number density, neqχ is the DM equilibrium density, H is

the Hubble parameter, 〈σv〉 is the thermally average annihilation cross section for

χ χ̄ → f f̄ . Freeze out happens when

〈σv〉neqχ ≈ H. (1.2)

The solution of Eq. (1.1) is plotted in Fig. 1.2. One can see that the annihilation

cross section determines the dark matter relic density. The dark matter with a

bigger cross section decouples later which leads to a smaller relic density.

Assuming that 〈σv〉 is independent of the temperature, once can approximate

the current dark matter density to be

Ωχ ∼ 4× 10−10

〈σv〉 GeV2 , (1.3)

independent of the dark matter mass. The correct dark matter density Ωχ ∼ 0.1

can be achieved with an s-channel mediator of DM-SM interaction with a mass

O(100 GeV) and a coupling g ∼ O(0.1). The mass scale for this interaction is

remarkably close to the weak scale. This coincidence suggests a possibility of incor-
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FIG. 1.2: The dark matter number density per comoving volume as a function of time.
Figure taken from [3].

porating the DM into new physics at the weak scale. Some examples of weak scale

models that includes a DM candidate in the particle spectrum are the Minimal Su-

persymmetric Standard Model (MSSM) [32], Universal Extra Dimension (UED) [33]

and the Little Higgs model [34]. The possibility that DM is associated with new

physics at the weak scale is known as Weakly Interaction Massive Particles (WIMP)

scenario.

The WIMP scenario is not the only possible way to obtain the correct dark

matter density. An alternative picture that has been explored recently is the asym-

metric dark matter framework [35–38]. The relation of the current baryon and dark

matter density is given by ΩDM ∼ 5Ωbaryon. The asymmetric dark matter frame-

work offers an explanation for the relation by connecting the baryon asymmetry to

an asymmetry in dark sector.
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1.3 Dark Matter Detection

From the perspective of DM production in the early universe, there is a clear

motivation for an interaction between the DM and SM sectors besides the gravita-

tional interaction. This opens up possibilities of observing the DM in ways other

than looking at its gravitational influence. The DM can be detected either directly

or indirectly. It can also be produced in collider experiments. This section reviews

these various methods for detecting or producing DM.

1.3.1 Direct Detection of Dark Matter

As the solar system circles around the galactic center, the Earth passes through

the “wind” of the DM halo. Occasionally, the DM scatters off a target nuclei in an

experiment located on the Earth. Based on the constructed nuclear-recoil energy

and the scattering event rate, some properties of dark matter can be inferred. This

method of detecting DM is called direct detection.

The typical recoil energy varies between ∼ 1 to ∼ 100 keV, depending on the

DM and the target nucleus masses. In the standard WIMP scenario, the DM-

nucleus interaction rate is about 1 event day−1kg−1. Given the low rate of DM-

nucleon scattering, experimenters have to understand the backgrounds well in order

to extract the DM signal.

The backgrounds for the direct detection of DM mainly come from cosmic ray

muons and natural radioactivity from the surrounding materials. One could elimi-

nate the cosmic ray muon background by locating the targets in deep underground

laboratories and shielding them with materials with a muon veto capability, such

as plastic scintillators. Radioactive beta and gamma ray background can be elim-

inated by shielding the target and vetoing the events that are most likely coming

from electron recoils. A veto on multiple scattering also helps reduce backgrounds
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since it is expected that a weakly interacting DM particle will scatter in the target

material at most once before exiting. Various experiments, such as CDMS-II and

XENON100 are able to efficiently veto the background to obtain the best limits on

the scattering cross section. Some other experiments, such as DAMA, are looking

for an annual modulation of events. The DM-nucleon relative velocity varies annu-

ally as the Earth orbits the Sun. This annual velocity variation leads to an annual

variation of the DM flux, and hence, the scattering events are modulated annually.

Since the radioactive background is expected to be constant over the course of the

year, an annual modulation of observed events might be a signal of DM scatterings

off the target nuclei.

DM can interact with the target nucleon either through spin-independent inter-

actions or spin-dependent interactions. For the spin-independent interactions and

a typical momentum transfer between nuclei and DM, the DM interacts coherently

with all nucleons inside the nuclei. Therefore target materials with bigger atomic

mass number are preferred in detecting spin-independent interactions. In the spin-

dependent case, the spins between paired nucleon cancel. Therefore target nuclei

with unpaired protons or neutrons, such as 19F and 131Xe, are more desirable.

Assuming a spin-independent interaction, the exclusion regions in themDM − σSI

plane are shown in Fig. 1.3. Currently, the DAMA [22], CoGeNT [21] and CRESST [4]

experiments have claimed to see some hints of dark matter signals with mass around

10 GeV. However, their preferred regions do not seem compatible with each other.

Moreover, CDMS-II [10] and XENON100 [23] bounds severely exclude the favored

signal regions. One should note that the bounds and the favored regions depends

on the assumption of the dark matter halo distribution. Moreover, an O(10) GeV

dark matter signal is near the detection threshold of the CDMS-II and XENON100

experiments, where background noise starts to dominate. Possible solutions to the

tension between these results are reviewed in [39]. The spin dependent bounds is
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FIG. 1.3: The spin-independent exclusion by CDMS and XENON and the preferred
region by CoGeNT, DAMA and CRESST in the mDM−σSI plane. Figure taken from [4].

FIG. 1.4: The spin-dependent exclusion and DAMA preferred region. The figure taken
from [5]

shown in Fig. 1.4. The DAMA annual modulation signals can be interpreted as DM

spin-dependent scattering, and the favored region is shown in the figure. As in the

case of a spin-independent interaction, the DAMA favored regions appear to be in

conflict with other experimental results.
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FIG. 1.5: a) Cosmic ray antiprotons flux. b) Antiproton-proton fluxes ratio. Both figures
are taken from Ref. [6]. The lines are various background predictions.

1.3.2 Indirect Detection of Dark Matter

Dark matter can also be detected indirectly by looking at the products of dark

matter annihilations or decays in cosmic rays. Dark matter may annihilate or decay

into various SM particles which become the components of the cosmic rays. Since

cosmic rays propagation time is much longer than the lifetime of any unstable SM

particle, the components that reach the earth mainly consist of secondary stable

SM particles, such as electrons, positrons, nucleons and photons. Therefore, by

looking for an excess of these particles over the expected astrophysical background,

one could deduce the properties of the DM.

Various experiments have measured the cosmic-ray antiproton flux from 0.1 GeV

to 100 GeV [6, 17, 40–43], shown in Fig. 1.5(a), and found no excess over the expected

background. Moreover, the ratio of the antiproton to proton flux [6, 17, 40–42, 44]

agrees well with the estimated background, as seen in Fig. 1.5(b).

The positron flux has also been measured by many experiments [7, 11–13].

In 2008, the PAMELA collaboration found an excess of the positron flux over the
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FIG. 1.6: a) Cosmic ray positron flux taken from Ref. [7]. The solid line is the expected
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expected background from 7 GeV to 100 GeV [7]. Their observation is shown in

Fig. 1.6(a). Their result was later confirmed by the Fermi-LAT collaboration [45].

The measurements of total electron and positron flux [8, 13–16, 43, 46–48], shown in

Fig. 1.6(b), also shows and excess above background between 100 GeV and 1 TeV.

A dark matter annihilation explanation of the excess requires 〈σv〉 ∼ 10−23 cm3/s,

O(103) larger than the thermal WIMP cross section. Therefore a standard WIMP

annihilation scenario can not account for the anomaly. In order to explain theO(103)

boost factor, some additional mechanisms need to be introduced, e.g., Sommerfeld

enhancement [49] or Breit-Wigner enhancement [50]. Alternatively, the excess can

be interpreted as dark matter decaying to leptons with a lifetime of O(1026) s [51].

One should also note that astrophysical sources, such as a nearby pulsar [52], have

not been ruled out as the possible explanation of the excess.

Various observatories, such as EGRET, VERITAS, HESS and Fermi-LAT, are

sensitive to cosmic gamma rays at the WIMP energy scale. In contrast to positrons

or antiproton, gamma rays do not interact significantly with the galactic magnetic
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field. Therefore the direction of incoming gamma rays points out to their production

source. Moreover, the photon energy is not significantly dissipated as in the case of

charged particles. A signal from the region where the dark matter is expected to

be denser such as the galactic center or satellite galaxies will provide an indication

of the dark matter’s presence. If photons are the primary products of dark matter

annihilations, the photon spectrum would have be monoenergetic with the energy

equal to the dark matter mass. The monoenergetic photons will show up as a sharp

peak in the gamma ray spectrum over the continuous background. An observation

of this peak would provide an indisputable signature of dark matter annihilations.

However in the galactic center where the signal is expected to be strongest, the

gamma ray emissions from the supermassive black hole Sgr A* potentially overwhelm

the signal.

1.3.3 Collider Production

Dark matter production at colliders can provide a complementary way to search

for DM. Unlike direct and indirect detection techniques that require uncertain astro-

physical inputs, collider experiment paramaters, such as center of mass energy and

beam luminosity, are accurately known. Additionally, colliders can probe smaller

dark matter masses than direct detection experiments which are limited by their

energy thresholds.

A simplified model of dark matter collider production was first introduced in

Ref. [53]. In this model, one assume that the mediator for SM-DM interaction is

heavier than the collider energy scale and can be integrated out leading to effective

contact operators. This allows a more straightforward comparison between collider

and direct detection bounds.

In order to be produced at a hadron collider, the DM has to couple to either
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quarks or gluons in the effective theory. In an electron-positron collider, such as

LEP, a coupling to a positron-electron pair is required. Since the DM manifests

itself as missing energy at colliders, the main signature at hadron colliders is initial

state radiation jets or photons and missing transverse energy ( /ET ). The potential of

obtaining a limit from the monojet + /ET channel has been discussed in Refs. [54–56]

for the Tevatron and in Refs. [20, 57] for the LHC. Very recently, dedicated searches

in this channel have been performed by experimental groups both at the Tevatron

and the LHC. In particular, the CDF collaboration has released their results from

6.7 fb−1 of data [58] and the CMS collaboration has presented their preliminary

results for 4.7 fb−1 of their data [9]. A monophoton + /ET dark matter signal is

also present at hadron colliders for dark matter that interacts with quarks, however

the cross section is lower by O(α/αs) compared with the monojet + /ET channel.

A dedicated search was done by the CMS collaboration using 4.7 fb−1 of integrated

luminosity [59]. The bound from LEP has been calculated in Refs. [60, 61]. In this

case, monophoton + /ET is the signature for the search.

For an illustration, the LHC results for monojet and monophoton + /ET chan-

nels are shown in Fig. 1.7 for dark matter that couples to quarks [9]. For the

spin-independent case, where the effective operator considered for the interaction

is given by q̄γµq χ̄γµχ, the LHC has obtained a bound on light dark matter that is

below the threshold of the direct detection experiments. The operator considered in

the spin-dependent case is q̄γµγ5q χ̄γµγ
5χ. The cross section bounds coming from

spin-dependent experiments is much weaker than the bounds from spin-independent

experiments, because DM-nucleon spin-dependent scattering is not coherent over

the whole nucleus. However, the LHC limit does not change significantly. The LHC

provides the best bound for dark matter mass . 1 TeV for the spin-dependent case.

This thesis explores new models for the origin of dark matter, including mod-

els that can explain the possible astrophysical indications of the existence of dark
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dependent DM-nucleon scattering cross section. The figures are taken from [9].

matter. New analysis techniques for discovering dark matter at colliders is also

presented. This thesis is organized as follows. The next two chapters are dedicated

to constructing models of decaying dark matter. In particular, Chapter 2 discusses

a model of decaying dark matter from dark instantons. In Chapter 3, a decaying

dark matter model based on the Froggatt-Nielsen model is considered. Chapter 4

considers flavor-violating three-body dark matter decays. In Chapter 5, we discuss

the explanation of a possible gamma ray excess at the galactic center in the super-

symmetric leptophilic Higgs model framework. Finally, in Chapter 6, the possibility

of improving the collider limits on dark matter production using the Razor analysis

is considered.



CHAPTER 2

Decaying Dark Matter from Dark

Instantons1

2.1 Introduction

Evidence has been accumulating for an electron and positron excess in cosmic

rays compared with expectations from known galactic sources. Fermi LAT [62] and

H.E.S.S. [47] have measured an excess in the flux of electrons and positrons up to a

TeV or more. The PAMELA satellite is sensitive to electrons and positrons up to a

few hundred GeV in energy, and is able to distinguish positrons from electrons and

charged hadrons. PAMELA detects an upturn in the fraction of positron events be-

ginning around 7 GeV [7]. This is in contrast to the expected decline in the positron

fraction from secondary production mechanisms. Curiously, no corresponding excess

of protons or antiprotons has been detected [63].

Although conventional astrophysical sources may ultimately prove the expla-

nation of the anomalous cosmic ray data [52, 64], an intriguing possibility is that

1This chapter was previously published in Phys. Rev. D82 (2010) 055028.

15
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dark matter annihilation or decay provides the source of the excess leptons. If dark

matter annihilation is responsible for the excess leptons, then the annihilation cross

section typically requires a large boost factor ∼ 100− 1000 to produce the observed

signal [65]. Possible sources of the boost factor include Sommerfeld enchancement

from additional attractive interactions in the dark sector [49], WIMP capture [66, 67]

or Breit-Wigner resonant enhancement [50, 68, 69].

Alternatively, decaying dark matter can provide an explanation of the cos-

mic ray data if the dark matter decay channels favor leptonic over hadronic final

states [70–89]. A typical scenario of this type that is consistent with PAMELA

and Fermi LAT data includes dark matter with a mass of a few TeV that decays

to leptons, with an anomalously long lifetime of ∼ 1026 seconds [51, 90]. From a

model-building perspective, an intriguing issue is the origin of this long lifetime, and

whether it can be explained with a minimum of theoretical contrivance. With this

goal in mind, we present a new model of TeV-scale dark matter, one in which an

anomalous global symmetry prevents dark matter decays except through instantons

of a non-Abelian gauge field in the dark sector. Instanton-induced decays naturally

produce the long required lifetime. Small mixings between standard model leptons

and dark fermions gives rise to the leptonic final states observed in the cosmic ray

data. Dark matter annihilation through the Higgs portal allows for the appropriate

dark matter relic abundance, with dark matter masses consistent with the range

preferred by PAMELA and Fermi-LAT data.

Superheavy dark matter decays through instantons have been considered before

as a possible explanation for ultra-high energy cosmic ray signals, but those scenarios

assumed superheavy dark matter with a mass of 1013 GeV or higher [91] which

cannot simultaneously explain the lower energy electron and positron flux being

considered here. Models of anomaly-induced dark matter decays without a dark

gauge sector can also be constructed. For example, a supersymmetric extension
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FIG. 2.1: Dark matter decay vertex. The circle represents the instanton-induced interac-
tion, while X’s represent mass mixing between the χ fields and standard model leptons.
Note that e and ν represent leptons of any generation.

of the radiative seesaw model of neutrino masses can explain the PAMELA data

through dark matter decays via an anomalous discrete symmetry [92]. The TeV-

scale model we present, which is based on the smallest, continuous non-Abelian dark

gauge group and smallest set of exotic particles necessary to implement our idea,

suggests a prototypical set of new particles and interactions that could perhaps be

probed at the LHC.

In Section 2.2 we present the model and describe the leptonic decay mode

via instantons. In Section 2.3 we consider dark matter annihilation channels and

demonstrate that annihilation through the Higgs portal can lead to the measured

dark matter relic density. In Section 2.4 we consider dark matter interactions with

nuclei and find that our model is safely below current direct detection bounds. We

conclude in Section 2.5.
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2.2 The Model

The gauge group of the dark sector is SU(2)D×U(1)D. The matter content

consists of four sets of left-handed SU(2)D doublets and right-handed singlets:

ψL ≡




ψu

ψd



L

ψuR, ψdR ; χ
(i)
L ≡




χ
(i)
u

χ
(i)
d



L

χ
(i)
uR, χ

(i)
dR (i = 1 . . . 3)(2.1)

We include an SU(2)D doublet and singlet Higgs field, HD and η, respectively, that

are responsible for completely breaking the dark gauge group. In addition, the Higgs

field HD is responsible for giving Dirac masses to the ψ and χ fields. The model is

constructed so that ψ number corresponds to an anomalous global symmetry that

is violated by the ψχ(1)χ(2)χ(3) vertex generated via SU(2)D instantons, as indicated

in Fig. 2.1. The χ fields are assigned hypercharges so that they mix with standard

model leptons, leading to the decay ψ → ℓ+ℓ−ν. The required lifetime (∼1026 s) and

the appropriate dark matter relic density (ΩDh
2 ∼ 0.1) constrain the free parameters

of the model.

The charge assignments for these fields are summarized in Table 2.1.

TABLE 2.1: Particles charged under the dark gauge groups. The SU(2)D×U(1)D charge
assignments are indicated in parentheses; the subscripts +, − and 0 represent the stan-
dard model hypercharges +1, −1 and 0, respectively. Note that the ψ and χ states are
fermions, while the HD and η are complex scalars.

ψL (2,−1/2)0 ψuR, ψdR (1,−1/2)0
χ
(1)
L (2,+1/6)+ χ

(1)
uR, χ

(1)
dR (1,+1/6)+

χ
(2)
L (2,+1/6)0 χ

(2)
uR, χ

(2)
dR (1,+1/6)0

χ
(3)
L (2,+1/6)− χ

(3)
uR, χ

(3)
dR (1,+1/6)−

HD (2, 0)0 η (1, 1/6)0

Let us first discuss the consistency of the charge assignments. Cancellation of
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the SU(2)2D U(1) anomalies requires that the sum of the U(1) charges over all the

dark doublet fermion fields must vanish. As one can see from Table 2.1, this is

clearly the case for the U(1)D and U(1)Y charges of the left-handed doublet ψ and χ

fields. Since SU(2) is an anomaly free group and has traceless generators, all other

SU(2)D anomalies vanish trivially. Now consider the U(1)pDU(1)
q
Y anomalies (where

p and q are non-negative integers satisfying p + q = 3). For each field in Table 2.1

with a given U(1)D×U(1)Y charge assignment, one notes that there is another with

the same charge assignment but opposite chirality. As far as the Abelian groups

are concerned, the theory is vector-like and the corresponding anomalies vanish.

Finally, we note that the theory has precisely four SU(2)D doublets and is free of a

Witten anomaly.

The gauge symmetries of the model lead to a global U(1)ψ symmetry that pre-

vents the decay of the lightest ψ mass eigenstate at any order in perturbation theory.

To confirm this statement, we need to show that all renormalizable interactions that

violate this symmetry are forbidden by the dark-sector gauge symmetry. The pos-

sible problematic interactions that could violate this global symmetry fall into the

following categories:

1. Terms involving ψcψ. Here the superscript indicates charge conjugation,

ψc ≡ iγ0γ2ψ
T
. This combination has U(1)ψ charge +2. However, it also has U(1)D

charge −1. Since we have no Higgs field with the U(1)D charge ±1, there are no

renormalizable interactions that violate ψ number by two units.

2. Terms involving a χ fermion and ψ or ψc. Such terms violate ψ number by

±1 unit. However, the possible bilinears involving ψ and any χ have U(1)D charges

±1/3 or ±2/3. Again, we have no Higgs field with the necessary U(1)D charge to

form a renormalizable gauge invariant term of this type.

3. Terms involving a standard model fermion and ψ or ψc. Such an interac-

tion would violate ψ number by ±1, but would have U(1)D charge ±1/2. Again,
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we have no Higgs fields with charge ±1/2 that would allow the construction of a

renormalizable invariant.

Since the renormalizable interactions of the theory have an unbroken U(1)ψ

symmetry, no perturbative process involving these interactions will violate the global

symmetry. However, since the SU(2)2D U(1)ψ anomaly is non-zero, non-perturbative

interactions due to instantons will generate operators that violate the U(1)ψ sym-

metry.

Instantons are gauge field configurations which stationarize the Euclidean action

but have a nontrivial winding number around the three-sphere at infinity. Following

’t Hooft [93, 94], if there are Nf Dirac pairs of chiral fermions which transform in

the fundamental representation of a gauge group, then due to the chiral anomaly

a one-instanton configuration violates the axial U(1)A charge by 2Nf units. The

non-Abelian, SU(Nf )×SU(Nf ) chiral symmetry is non-anomalous, so the instanton

process must involve the 2Nf chiral fermions in a symmetric fashion. Fig. 2.1 shows

the effective ψχ(1)χ(2)χ(3) interaction induced by the instanton configuration in our

model.2 Given the hypercharge assignments of the χ fields, these states have electric

charges +1, 0 and −1, the same as standard model leptons, of any generation. After

the dark and standard model gauge symmetries are spontaneously broken, there is

no symmetry which prevents the χ states and the standard model leptons from

mixing. By including a single vector-like lepton pair, we now show that mixing

leading to the decay ψ → ℓ+ℓ−ν can arise via purely renormalizable interactions.

We introduce a vector-like lepton pair, EL, ER, with mass ME and the same

quantum numbers as a right-handed electron; in the notation of Table 2.1:

EL ∼ ER ∼ (1, 0)− . (2.2)

2In this model, Planck-suppressed operators of this form, if they are present, are negligible
compared to the instanton-induced effects.
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FIG. 2.2: Diagrammatic interpretation of mixing from χ states to standard model
fermions, corresponding to the right-hand-side of Fig. 2.1. Here E represents the vector-
like lepton described in the text, and H is the standard model Higgs.

In addition, we assume in this model that standard model neutrinos have purely

Dirac masses. If the Higgs vacuum expectation values (vevs) are smaller than the

masses of the heavy states, then the mixing to standard model leptons shown in

Fig. 2.1 can be estimated via the diagram in Fig. 2.2. Otherwise, one has to diago-

nalize the appropriate fermion mass matrices. We discuss the exact diagonalization

in an appendix for the reader who is interested in the details. Here, the diagram-

matic approach is sufficient to establish that the mixing is present, and is no larger

than order 〈η〉/Mχ, 〈η〉/Mχ, and 〈η〉〈H〉/(MχME), where H is the standard model

Higgs, for the χ
(1)
L − ecR, χ

(2)
L − νcR and χ

(3)
L − eL mixing angles, respectively. We

take each mixing angle to be 0.01 in the estimates that follow, and demonstrate

in the appendix how this choice can be easily obtained. Further, we assume that

decays to the heavy eigenstates are not kinematically allowed, as is also illustrated

in the appendix. Due to the mixing, the χ(i) particles decay quickly to standard

model particles via couplings to the Higgs bosons and standard model electroweak

gauge bosons. The heavier ψ mass eigenstate decays to lighter states via SU(2)D

gauge-boson-exchange interactions.
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The instanton-induced vertex in Fig. 2.1 follows from an interaction of the form

LI =
C

6 g8D
exp

(
−8π2

g2D

)(
mψ

vD

)35/6
1

v2D
(2 δαβδγσ − δασδβγ)

·
[
(χ

(2) c
Lβ ψ

α
L)(χ

(1) c
Lσ χ

(3) γ
L )− (χ

(1) c
Lβ ψ

α
L)(χ

(2) c
Lσ χ

(3) γ
L )

]
+ h.c. , (2.3)

where α, β, γ and σ are SU(2)D indices [94, 95]. The dimensionless coefficient C can

be computed using the results in Ref. [94] and one finds C ≈ 7×108. The operators

in Eq. (2.3) lead, via mixing, to operators of the form ν̄RψLēReL and ēRψLν̄ReL.

Assuming that the product of mixing angles is ≈ 10−6, as discussed earlier, one may

estimate the decay width:

Γ(ψ → ℓ+ℓ−ν) ≈ 1

g16D
exp(−16π2/g2D)

(
mψ

vD

)47/3

mψ . (2.4)

For example, for mψ = 3.5 TeV and vD = 4 TeV, one obtains a dark matter lifetime

of 1026 s for

gD ≈ 1.15 , (2.5)

where gD is defined in dimensional regularization and renormalized at the scale

mψ [94]. For similar parameter choices, one can slightly adjust gD to maintain the

desired lifetime. As mentioned earlier, dimension-six Planck-suppressed operators

are much smaller than the operators in Eq. (2.3). Sphaleron-induced interactions

are suppressed by ∼ exp[−4πvD/(gDT )] ∼ exp(−44 TeV/ T ), and become negligible

well before the temperature at which dark matter freeze out occurs.

Finally, let us consider whether the choice vD = 4 TeV conflicts with other

meaningful constraints on the heavy particle content of the model. In short, a

spectrum of ∼ 4 TeV χ and E fermions with order 0.01 mixing angles with standard

model leptons presents no phenomenological problems. These states are above all

direct detection bounds; they are vector-like under the standard model gauge group
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so that the S parameter is small; they mix weakly enough with standard model

leptons so that other precision observables are negligibly affected. On this last

point, we note that the correction to the muon and Z-boson decay widths due to

the fermion mixing is a factor of 10−8 smaller than the widths predicted in the

standard model, which is within the current experimental uncertainties. The dark

sector gauge bosons are also phenomenologically safe. They do not have couplings

that distinguish standard model lepton flavor (since they do not couple directly

to standard model leptons) so that tree-level lepton-flavor violating processes are

absent. The effective four-standard-model-fermion operators that are induced by

dark gauge boson exchanges are suppressed by ∼ (0.01)4/v2D ∼ 1/(40, 000 TeV)2,

which is consistent with the existing contact interaction bounds [5].

We now turn to the question of whether the model provides for the appropriate

dark matter relic density.

2.3 Relic Density

For the regions of model parameter space considered in this section, dark matter

annihilations to standard model particles proceed via mixing between the dark and

ordinary Higgs bosons, often described as the Higgs portal [96]. We take into account

mixing between the doublet Higgs fields, HD and H, in our discussion below. This

is consistent with a simplifying assumption that the η Higgs does not mix with the

others in the scalar potential. Such an assumption is adequate for our purposes since

we aim only to show that some parameter region exists in which the correct dark

matter relic density is obtained. Consideration of a more general potential would

likely provide additional solutions in a much larger parameter space, but would not

alter the conclusion that the desired relic density can be achieved.

In this section, ψ will refer to the dark matter mass eigenstate, i.e., the lightest
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mass eigenstate of the ψu-ψd mass matrix, which we take as diagonal, for conve-

nience. The potential for the doublet fields has the form:

V = −µ2H†H + λ(H†H)2 − µ2
DH

†
DHD + λD(H

†
DHD)

2 + λmix(H
†H)(H†

DHD). (2.6)

In unitary gauge, H and HD are given by

H =
1√
2




0

v + h


 , HD =

1√
2




0

vD + hD


 , (2.7)

where v and vD are the H and HD vevs, respectively. At the extrema of this

potential,

v (−µ2 + λ v2 +
1

2
λmix v

2
D) = 0

vD (−µ2
D + λD v

2
D +

1

2
λmix v

2) = 0 . (2.8)

The h-hD mass matrix follows from Eq. (2.6),

M2
H =




2λ v2 λmix v vD

λmix v vD 2λD v
2
D


 . (2.9)

Diagonalizing the mass matrix, one finds the mass eigenvalues

m2
1,2 = (λDv

2
D + λ v2)∓ (λDv

2
D − λv2)

√
1 + y2, (2.10)

where

y =
λmixv vD

λDv2D − λ v2
. (2.11)
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The mass eigenstates h1 and h2 are related to h and hD by a mixing angle

h1 = h cos θ − hD sin θ

h2 = h sin θ + hD cos θ, (2.12)

where

tan 2 θ = y . (2.13)

Dark matter annihilations proceed via exchanges of the physical Higgs states

h1 and h2. We take into account the final states W+W−, ZZ, h1h1 and tt̄, where

t represents the top quark. For the parameter choices considered later, final states

involving h2 will be subleading. The relevant annihilation cross sections are given

by

σW+W− =
g2m2

ψ sin
2 θ cos2 θ

128πm2
Wv

2
D

s2
∣∣∣∣

1

s−m2
1 + im1Γ1

− 1

s−m2
2 + im2Γ2

∣∣∣∣
2

×

√

1−
4m2

ψ

s

√
1− 4m2

W

s

(
1− 4m2

W

s
+

12m4
W

s2

)
, (2.14)

σZZ =
g2m2

ψ sin
2 θ cos2 θ

256πm2
Wv

2
D

s2
∣∣∣∣

1

s−m2
1 + im1Γ1

− 1

s−m2
2 + im2Γ2

∣∣∣∣
2

×

√

1−
4m2

ψ

s

√
1− 4m2

Z

s

(
1− 4m2

Z

s
+

12m4
Z

s2

)
, (2.15)

σh1h1 =
m2
ψ

16πv2D

∣∣∣∣
3g111 sin θ

s−m2
1 + im1Γ1

+
g112 cos θ

s−m2
2 + im2Γ2

∣∣∣∣
2

×

√

1−
4m2

ψ

s

√

1−
4m2

h1

s
, (2.16)
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σtt̄ =
3m2

ψm
2
t sin

2 θ cos2 θ

16πv2Dv
2

s

∣∣∣∣
1

s−m2
1 + im1Γ1

− 1

s−m2
2 + im2Γ2

∣∣∣∣
2

×
(
1− 4m2

t

s

)(
1−

4m2
ψ

s

)
. (2.17)

In Eqs. (2.14) and (2.15), g is the standard model SU(2) gauge coupling. In

Eq. (2.16), g111 and g112 represent the h31 and h2h
2
1 couplings, respectively:

g111 = (λ cos3 θ +
1

2
λmix cos θ sin

2 θ) v − (λD sin3 θ +
1

2
λmix sin θ cos

2 θ) vD ,

g112 = [3λ cos2 θ sin θ − λmix(cos
2 θ sin θ − 1

2
sin3 θ)] v

+ [3λD sin2 θ cos θ − λmix(sin
2 θ cos θ − 1

2
cos3 θ)] vD . (2.18)

Finally, in all our annihilation cross sections, Γ1 (Γ2) represents the decay width of

the Higgs field h1 (h2). The width Γ1 is comparable to that of a standard model

Higgs boson and can be neglected without noticeably affecting our numerical results.

However, since our eventual parameter choices will place the mass of the heavier

Higgs field around 2mψ, we must retain Γ2; the leading contributions to Γ2 come

from the same final states relevant to the ψ annihilation cross section:

Γh2→W+W− =
g2m3

2

64πm2
W

sin2 θ

√
1− 4m2

W

m2
2

(
1− 4m2

W

m2
2

+
12m4

W

m4
2

)

Γh2→ZZ =
g2m3

2

128πm2
W

sin2 θ

√
1− 4m2

Z

m2
2

(
1− 4m2

Z

m2
2

+
12m4

Z

m4
2

)

Γh2→h1h1 =
g2112

32πm2

√
1− 4m2

1

m2
2

Γh2→tt̄ =
3m2m

2
t

8πv2
sin2 θ

(
1− 4m2

t

m2
2

)3/2

. (2.19)

The evolution of the ψ number density, nψ, is governed by the Boltzmann
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TABLE 2.2: Examples of viable parameter sets for vD = 4 TeV. For each point listed,
ΩDh

2 ≈ 0.1 and the Higgs masses are consistent with the LEP bound.

mψ(TeV)
√
2λv2(TeV)

√
2λDv2D(TeV) λmix m1(GeV) m2(TeV)

1.0 0.19 1.98 0.30 117 1.99
1.5 0.22 2.98 0.40 175 2.98
2.0 0.26 3.97 0.56 220 3.97
2.5 0.27 4.97 0.65 237 4.97
3.0 0.29 5.96 0.80 258 5.96
3.5 0.31 6.96 0.90 283 6.96
4.0 0.35 7.95 1.10 322 7.95

equation

dnψ
dt

+ 3H(t)nψ = −〈σv〉[n2
ψ − (nEQψ )2], (2.20)

where H(t) is the Hubble parameter and nEQψ is the equilibrium number density.

The thermally-averaged annihilation cross section times relative velocity 〈σv〉 is

given by [97]

〈σv〉 = 1

8m4
ψTK

2
2(mψ/T )

∫ ∞

4m2
ψ

(σtot) (s− 4m2
ψ)
√
sK1(

√
s/T ) ds , (2.21)

where σtot is the total annihilation cross section, and the Ki are modified Bessel

functions of order i. We evaluate the freeze-out condition [3]

Γ

H(tF )
≡
nEQψ 〈σv〉
H(tF )

≈ 1 , (2.22)

to find the freeze-out temperature Tf , or equivalently xf ≡ mψ/Tf . We assume the

non-relativistic equilibrium number density

nEQψ = 2

(
mψT

2π

)3/2

e−mψ/T , (2.23)
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and the Hubble parameterH = 1.66 g
1/2
∗ T 2/mP l, appropriate to a radiation-dominated

universe. The symbol g∗ represents the number of relativistic degrees of freedom and

mP l = 1.22× 1019 GeV is the Planck mass. For the parameter choices in Tables 2.2

and 2.3, we find xf ∼ 27–28. We approximate the relic abundance using [97]

1

Y0
=

1

Yf
+

√
π

45
mP lmψ

∫ x0

xf

g
1/2
∗
x2

〈σv〉 dx (2.24)

where Y is the ratio of the number to entropy density and the subscript 0 indicates

the present time. The ratio of the dark matter relic density to the critical density ρc

is given by ΩD = Y0s0mψ/ρc, where s0 is the present entropy density, or equivalently

ΩDh
2 ≈ 2.8× 108 GeV−1 Y0mψ . (2.25)

In our numerical analysis, we assume that the heavy states are sufficiently non-

degenerate, so that we do not have to consider co-annihilation processes [98]. In

Tables 2.2 and 2.3, we show representative points in the model’s parameter space,

spanning a range of ψ masses, in which we obtain the correct dark matter relic

abundance, ΩDh
2 ≈ 0.1, and in which the masses m1 and m2 are consistent with

the LEP bound m1,2 > 114.4 GeV [5].

It is common wisdom that weakly interacting dark matter candidates with

masses of a few hundred GeV typically yield relic densities in the correct ballpark.

We have assumed masses above 1 TeV since most fits to the positron excess in

PAMELA and Fermi LAT indicate that a decaying dark matter candidate should

have a mass in this range. One would therefore expect that ΩDh
2 in our model

should be larger than desirable. The reason this is not the case is that we have

chosen parameters for which the heavier Higgs h2 is within 1% of 2mψ, leading to a

resonant enhancement in the annihilation rate. While we would be happier without
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TABLE 2.3: Examples of viable parameter sets for vD = 4 TeV, with m1 below 130 GeV.
For each point listed, ΩDh

2 ≈ 0.1 and the Higgs masses are consistent with the LEP
bound.

mψ(TeV)
√
2λv2(TeV)

√
2λDv2D(TeV) λmix m1(GeV) m2(TeV)

1.0 0.19 1.98 0.30 117 1.99
1.5 0.18 2.98 0.40 122 2.98
2.0 0.19 3.97 0.57 127 3.97
2.5 0.18 4.97 0.65 125 4.97
3.0 0.18 5.96 0.80 122 5.96
3.5 0.18 6.96 0.90 127 6.96
4.0 0.18 7.95 1.10 117 7.95

this tuning, it is no larger than tuning that exists in, for example, the Higgs sector of

the minimal supersymmetric standard model. It is also worth pointing out that this

tuning is related to the portal that connects the dark to standard model sectors of

the theory and is not strictly tied to the mechanism that we have proposed for dark

matter decay. Other portals are possible. For example, one might study the limit

of the model in which the U(1)D gauge boson is lighter and kinetically mixes with

hypercharge, a possibility that would lead to other annihilation channels. Finally, we

point out that Tables 2.2 and 2.3 includes mψ = 3.5 TeV, which naively corresponds

to the value preferred by a fit to the PAMELA and Fermi-LAT data, assuming a

spin-1/2 dark matter candidate that decays to ℓ+ℓ−ν [51]. However, other masses

should not be discounted since astrophysical sources may also contribute to the

observed positron excess [52, 64].

2.4 Direct Detection

We now consider whether the parameter choices described in the previous sec-

tion are consistent with the current bounds from direct detection experiments. The

most relevant constraints come from experiments that search for spin-independent,
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FIG. 2.3: Dark matter-nucleon elastic scattering cross section for the parameter sets in
Table 2.2 (stars) and Table 2.3 (triangles). The solid line is the current bound from
CDMS Soudan 2004-2009 Ge [10]. The dashed line represents the projected bound from
SuperCDMS Phase A. The dotted line represents the projected reach of the LUX LZ20T
experiment, assuming 1 event sensitivity and 13 ton-kilodays. The graph is obtained
using the DM Tools software available at http://dmtools.brown.edu.

elastic scattering of dark matter off target nuclei. The relevant low-energy effective

interaction from t-channel exchanges of the Higgs mass eigenstates is given by

Lint =
∑

q

αq ψ̄ψ q̄q , (2.26)

where

αq =
mqmψ sin θ cos θ

v vD

(
1

m2
1

− 1

m2
2

)
. (2.27)

This interaction is valid for momentum exchanges that are small compared to

m1,2, which is always the case given that typical dark matter velocities are non-

relativistic. Following the approach of Ref. [99], Eq. (2.26) leads to an effective

interaction with nucleons

Leff = fp ψ̄ψ p̄p+ fn ψ̄ψ n̄n , (2.28)
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where fp and fn are related to αq through the relation [99]

fp,n
mp,n

=
∑

q=u,d,s

f
(p,n)
Tq αq

mq

+
2

27
f
(p,n)
Tg

∑

q=c,b,t

αq
mq

, (2.29)

where 〈n|mq q̄q|n〉 = mnf
n
Tq. Numerically, the f

(p,n)
Tq are given by [100]

f pTu = 0.020± 0.004, f pTd = 0.026± 0.005, f pTs = 0.118± 0.062 (2.30)

and

fnTu = 0.014± 0.003, fnTd = 0.036± 0.008, fnTs = 0.118± 0.062 , (2.31)

while f
(p,n)
Tg is defined by

f
(p,n)
Tg = 1−

∑

q=u,d,s

f
(p,n)
Tq . (2.32)

We can approximate fp ≈ fn since fTs is larger than other fTq’s and fTg. For the

purpose of comparing the predicted cross section with existing bounds, we evaluate

the cross section for scattering off a single nucleon, which can be approximated

σn ≈
m2
rf

2
p

π
(2.33)

where mr is nucleon-dark matter reduced mass 1/mr = 1/mn + 1/mψ. Our results

are shown in Fig. 2.3, for the parameter sets given in Tables 2.2 and 2.3. The

predicted cross sections are far below the current CDMS bounds [10] for dark matter

masses between 1 and 4 TeV. However, there is hope that the model can be probed

by the future LUX LZ20T experiment [101, 102].
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2.5 Conclusions

We have presented a new TeV-scale model of decaying dark matter. The ap-

proximate stability of the dark matter candidate, ψ, is a consequence of a global

U(1) symmetry that is exact at the perturbative level, but is violated by instanton-

induced interactions of a non-Abelian dark gauge group. The instanton-induced

vertex couples the dark matter candidate to heavy, exotic states that mix with

standard model leptons; the dark matter then decays to ℓ+ℓ−ν final states, where

the leptons can be of any generation desired. We have shown that a lifetime of

∼ 1026 s, which is desirable in decaying dark matter scenarios, can be obtained for

perturbative values of the non-Abelian dark gauge coupling. In addition, by study-

ing dark matter annihilations through the Higgs portal, we have provided examples

of parameter regions in which the appropriate dark matter relic density may be ob-

tained, assuming dark matter masses that are consistent with fits to the results from

the PAMELA and Fermi-LAT experiments. The nucleon-dark matter cross section

in our model is lower than the present bound from CDMS, but may be probed in

future experiments. It might also be possible to probe the spectrum of our model

at the LHC.

The model in this chapter provides a concrete, TeV-scale scenario in which

dark matter decay is mediated by instantons, and gives a new motivation for the

study of non-Abelian dark gauge groups [103–107]. However, it is by no means the

only possible model of this type. One might study variations of the model in which

different annihilation channels are dominant, or the dark matter is lighter, or the

standard model leptons are directly charged under the new non-Abelian gauge group.

It may also be worthwhile to consider how low-scale leptogenesis and baryogenesis

might be accommodated in this type of scenario. While we have assumed parameter

choices motivated by the observed cosmic ray positron excess, one might incorporate
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the present model in a multi-component dark matter scenario if this were required

to explain new results from ongoing and future direct detection experiments.



CHAPTER 3

A Froggatt-Nielsen Model for

Leptophilic Scalar Dark Matter

Decay3

3.1 Introduction

A number of earth-, balloon-, and satellite-based experiments have observed

anomalies in the spectra of cosmic ray electrons and positrons. Fermi-LAT [62] and

H.E.S.S. [47] have measured an excess in the flux of electrons and positrons up to,

and beyond 1 TeV, respectively. PAMELA [7], which is sensitive to electrons and

positrons up to a few hundred GeV in energy, detects an upturn in the positron

fraction beginning around 7 GeV, in disagreement with the expected decline from

secondary production mechanisms. Recent measurements at Fermi-LAT support

this result [45]. In contrast, current experiments observe no excess in the proton or

antiproton flux [63]. Although astrophysical explanations are possible [52, 64], these

3This chapter was previously published in Phys. Rev. D84 (2011) 035002.
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observations can be explained if the data includes a contribution from the decays of

unstable dark matter particles that populate the galactic halo [51, 84, 90, 108–119].

The dark matter candidate must be TeV-scale in mass, have a lifetime of order

1026 seconds, and decay preferentially to leptons. A number of scenarios have been

proposed to explain the desired dark matter lifetime and decay properties [70, 71,

73, 75, 77–79, 81, 85, 87, 92, 120–145].

To be more quantitative, consider a scalar dark matter candidate χ which

(after the breaking of all relevant gauge symmetries) has an effective coupling geff

to some standard model fermion f given by geffχf̄LfR + h.c. To obtain a lifetime

of 1026 seconds, one finds geff ∼ 10−26 if mχ ∼ 3 TeV. From the perspective of

naturalness, the origin of such a small dimensionless number requires an explanation.

One possibility is that physics near the dark matter mass scale is entirely responsible

for the appearance of a small number, as is the case in models where a global

symmetry, that would otherwise stabilize the dark matter candidate, is broken by

instanton effects of a new non-Abelian gauge group GD. A leptophilic model of

fermionic dark matter along these lines was presented in Ref. [120]: the new gauge

group is broken not far above the dark matter mass scale and the effective coupling

is exponentially suppressed, geff ∝ exp(−16π2/g2D), where gD is the GD gauge

coupling. (An example of a supersymmetric model with anomaly-induced dark

matter decays can be found in Ref. [92].) On the other hand, the appearance

of a small effective coupling can arise if the breaking of the stabilizing symmetry

is communicated to the dark matter via higher-dimension operators suppressed by

some high scaleM . Then it is possible that geff is suppressed by (mχ/M)p, for some

power p; it is well known that for mχ ∼ O(1) TeV and p = 2, the correct lifetime can

be obtained forM ∼ O(1016) GeV, remarkably coincident with the grand unification

(GUT) scale in models with TeV-scale supersymmetry (SUSY) [77, 121]. If the LHC

fails to find SUSY in the coming years, however, then the association of 1016 GeV
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with a fundamental mass scale will no longer be strongly preferred. Exploring other

alternatives is well motivated from this perspective and, in any event, may provide

valuable insight into the range of possible decaying dark matter scenarios.

The very naive estimate for geff discussed above presumes that the result is

determined by a TeV-scale dark matter mass mχ, a single high scale M and no

small dimensionless factors. Given these assumption, the choice M = M∗, where

M∗ = 2 × 1018 GeV is the reduced Planck mass, would not be viable: the dark

matter decay rate is much too large for p = 1 (i.e., there would be no dark matter

left at the present epoch) and is much too small for p = 2 (i.e., there would not be

enough events to explain the cosmic ray e± excess). However, Planck-suppressed ef-

fects arise so generically that we should be careful not to discount them too quickly.

What we show in the present chapter is that Planck-suppressed operators can lead

to the desired dark matter lifetime if they correct new physics at an intermediate

scale. In the model that we present, this is the scale at which Yukawa couplings of

the standard model charged leptons are generated via the integrating out of vector-

like states. This sector will have the structure of a Froggatt-Nielsen model [146]:

an Abelian discrete symmetry will restrict the couplings of the standard model lep-

tons and the vector-like states, but will be spontaneously broken by the vacuum

expectation values (vevs) of a set of scalar fields {φ}. Integrating out the heavy

states will not only lead to the standard model charged lepton Yukawa couplings,

but also to dark matter couplings that are naturally leptophilic and lead to dark

matter decay. Aside from setting the overall scale of the charged lepton masses, the

symmetry structure of our model will not restrict the detailed textures of the stan-

dard model Yukawa matrices. This feature is not automatic; symmetries introduced

to guarantee dark matter leptophilia may also make it difficult to obtain the cor-

rect lepton mass matrices, at least without additional theoretical assumptions (for

example, the addition of electroweak Higgs triplets, as in the model of Ref. [145]).
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Our framework is free of such complications and is compatible, in principle, with

many possible extensions that might address the full flavor structure of the standard

model.

This chapter is organized as follows. In the next section, we present a model that

illustrates our proposal. In Section 3.3, we compute the predicted e± flux, Φ(e±),

and the positron fraction Φ(e+)/[Φ(e+) + Φ(e−)] for some points in the parameter

space of our model and compare our results to the relevant cosmic ray data. It is

worth noting that this analysis has applicability to any model that leads to similar

dark matter decay operators. In Section 3.4, we comment on the relic density and

dark matter direct detection in our example model. In Section 3.5, we summarize

our conclusions.

3.2 A Model

We assume that the right-handed charged leptons of the standard model, eR,

and four sets of heavy vector-like charged leptons are constrained by the discrete

symmetry

G = Zp × Zq , (3.1)

with p and q to be determined shortly. We assume that the vector-like leptons have

the same electroweak quantum numbers as eR

E
(i)
R ∼ E

(i)
L ∼ eR, (i = 1 . . . 4) . (3.2)

All the fields shown are assumed to be triplets in generation space, with their gen-

eration indices suppressed. Under the discrete symmetry, the fields in Eq. (3.2) are

taken to transform as

eR → ω−4 eR , (3.3)
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E
(i)
L,R → ω1−iE

(i)
L,R, (i = 1 . . . 4) . (3.4)

We will take ω and η to be elements of Zp and Zq, respectively, with ωp = 1 and

ηq = 1. In addition, we assume the presence of a heavy right-handed neutrino, νR,

that is a singlet under G. We note that the fields that are charged under G do not

transform under any of the non-Abelian standard model gauge group factors, so that

G satisfies the consistency conditions of a discrete gauge symmetry in the low-energy

theory [147]; such discrete symmetries are not violated by quantum gravitational

effects4. The Yukawa couplings of the standard model charged leptons arise when

the symmetry G is spontaneously broken and the vector-like leptons are integrated

out of the theory. Symmetry breaking is accomplished via the vacuum expectation

values of two scalar fields φE and φD, which transform as

φE → ω φE ,

φD → η φD . (3.5)

The following renormalizable Lagrangian terms involving the charged lepton fields

are allowed by the discrete symmetry:

LE = LLHE
(1)
R +

3∑

i=1

E
(i)

L φEE
(i+1)
R + E

(4)

L φE eR

+
4∑

i=1

M (i)E
(i)

L E
(i)
R + h.c. (3.6)

4The consistency conditions require that anomalies involving the non-Abelian gauge groups
that are linear in a continuous group that embeds G must vanish, as is automatic above. Ref. [147]
indicates that no rigorous proof exists that the cancellation of the linear gravitational anomalies is
a necessary condition for the consistency of the low-energy theory. Nonetheless, such a cancellation
can be achieved here by including a singlet, left-handed fermion, NL, that transforms in the same
way as eR under G. For the choice p = 8, adopted later in this section, NL can develop a
Majorana mass somewhat below M∗ and decay rapidly to lighter states via Planck-suppressed
operators. Including such a state does not affect the phenomenology of the model otherwise.
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While it is not our goal to produce a theory of flavor, we note that the terms in

Eq. (3.6) are of the type one expects in flavor models based on the Froggatt-Nielsen

mechanism. Hence, integrating out the E fields leads to a higher-dimension operator

L ⊃ 1

M4
LLHφ

4
EeR + h.c. , (3.7)

which provides an origin for the charged lepton Yukawa couplings. Choosing 〈φE〉/M ∼

0.3 gives the correct scale for the tau lepton Yukawa coupling; the smaller, electron

and muon Yukawa couplings may be accommodated by suitable choices of the un-

determined couplings in Eq. (3.6). One might imagine that the remaining Yukawa

hierarchies could be arranged by the imposition of additional symmetries, though

we will not explore that possibility here.

We now introduce our dark matter candidate χ, a complex scalar field that

transforms as

χ→ ω4 χ and χ→ η−2χ (3.8)

under Zp × Zq. We assume that all the nonvanishing powers of ω and η shown in

Eqs. (3.3), (3.4) and (3.8) are nontrivial, which requires that p > 4 and q > 2.

Then, there are no renormalizable interactions involving a single χ field (or its con-

jugate) and two fermionic fields that could lead to dark matter decay. However,

non-renormalizable, Planck-suppressed operator provide the desired effect. The

lowest-order, Planck-suppressed correction to Eqs. (3.6) that involves a single χ

field is the unique dimension-six operator

∆Le =
1

M2
∗
χE

(1)

L φ2
D eR + h.c. (3.9)

Including Eq. (3.9) and again integrating out the heavy, vector-like states, one ob-
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tains a new higher-dimension operator,

Ldecay =
φ2
D

MM2
∗
χLLHeR + h.c., (3.10)

which leads to dark matter decay. For mχ ∼ 3 TeV (compatible qualitatively with

fits to the PAMELA and Fermi-LAT data), a lifetime of 1026 seconds is obtained

when

〈φD〉2
M2

∗

〈H〉
M

∼ 1× 10−26 . (3.11)

For our operator expansion to be sensible, we require 〈φD〉 < M ; however, we also

do not want a proliferation of wildly dissimilar physical scales, if this can be avoided.

Interestingly, if we choose M to be the geometric mean of 〈H〉 and M∗, one finds

M = 2× 1010 GeV, 〈φE〉 = 0.3M, 〈φD〉 = 0.1M , (3.12)

which meets our aesthetic requirements. Standard model quark and neutral lepton

masses are unaffected by the discrete symmetry of our model, by construction. Light

neutrino masses arise via a conventional see-saw mechanism, and it is possible to

obtain a right-handed neutrino mass scale MR ≈ M , so that all the heavy leptons

appear at a comparable scale. Assuming that the largest neutrino squared mass

is comparable to ∆m2
32 = 2.43 × 10−3 eV2, as suggested by atmospheric neutrino

oscillations [5], then this possibility is obtained if the overall scale of the Yukawa

coupling matrix that appears in the neutrino Dirac mass term is of the same order

as the charm quark Yukawa coupling. This scenario is depicted in Fig. 3.1. In this

case, the theory is characterized by three fundamental scales: the Planck scale, an

intermediate scale (associated with charged lepton flavor and right-handed neutrino

masses), and the TeV-scale. Symmetry-breaking vevs appear within a factor of . 10

below the latter two. Of course, the right-handed neutrino scale need not be linked
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FIG. 3.1: A possible choice for the mass scales in the theory. Symmetry breaking vevs
appear within approximately an order of magnitude of the lower two scales.

with the scale at which the charged lepton Yukawa couplings are generated; this is

simply one of many viable possibilities that depend on choices of the free parameters

of the model.

Finally, we return to the discrete symmetry group G = Zp×Zq. We have noted

that the structure of the theory that we have described is obtained for p > 4 and

q > 2, but this does not take into account an important additional constraint: there

must be no Planck-suppressed operators involving couplings between the various

scalar fields in the theory that can lead to other dark matter decay channels that

are either (i) too fast or (ii) too hadronic. For example, the choice p = 5 and q = 3,

allows the renormalizable G-invariant operator χφEφ
†
D, which leads to mixing, for

example, between the χ and φE fields; the latter couples to two standard model

leptons via the operator in Eq. (3.7), leading to a disastrously large decay rate. We

find that all unwanted operators are sufficiently suppressed if we take p = 8 and

q = 4, that is

GI = Z8 × Z4 . (3.13)

The lowest-order combination of scalar fields that is invariant under GI , as well as
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the standard model gauge group, is

1

M3
∗
χφ2

D φ
4
E , (3.14)

Suppression by three factors of the Planck scale is more than sufficient to suppress

any operators that are generated when the φE and φD fields are integrated out of

the theory, or that may be constructed from products of Eq. (3.14) with any GI-

singlet, gauge-invariant combination of standard model fields. It is straightforward

to confirm that the alternative choice

GII = Z8 × Z5 , (3.15)

is also viable, by similar arguments. The difference between the symmetry groups

GI and GII is that the former allows two types of dark matter mass terms: χ2+h.c.

and χ†χ. This leads to a mass splitting between the two real scalar components

of χ, so that the lighter is the dark matter candidate. The choice GII forbids

the χ2 mass terms, so that the dark matter consists of particles and anti-particles

associated with the original complex scalar field. We note that in this theory, the

renormalizable interactions involving χ have an accidental U(1)χ global symmetry

which would lead to dark matter stability in the absence of the Planck-suppressed

effects. The analysis that we present in the following sections is somewhat simplified

by the choice of GII , which we adopt henceforth.

3.3 Cosmic Ray Spectra

In this section, we investigate the cosmic ray e± and proton/antiproton spectra

of our model. Our treatment of cosmic ray propagation follows that of Ref. [51]. We
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show that model parameters may be chosen to accommodate the positron excess

and the rising electron-positron flux observed by the PAMELA and Fermi-LAT

experiments, respectively.

In Eq. (3.10), we identified the operator responsible for dark matter decays.

More explicitly, this operator may be written

Ldecay = cij
〈φD〉2
MM2

∗
χL

i

LHe
j
R + h.c., (3.16)

where i and j are generation indices, and cij represents unknown order-one coef-

ficients. Different choices for the couplings cij will lead, in principle, to different

cosmic ray spectra. To simplify the analysis, we focus on two possibilities: In the

lepton mass eigenstate basis, the fermions appearing in the decay operators are ei-

ther (i) muons exclusively, or (ii) taus exclusively. We will find that either of these

choices is consistent with the data, even though we have not fully exploited the

parametric freedom available in the cij. This is sufficient to demonstrate the via-

bility of our model. The remaining factors in the operator coefficient are chosen to

obtain the desired dark matter lifetime, as we discussed in the previous section.

In unitary gauge, the operator (3.16) can be be expanded

Ldecay =
1√
2
gij(vew + h)χeiL e

j
R + h.c., (3.17)

where h is the standard model Higgs field, which we will assume has a mass of

117 GeV, vew = 246 GeV, and gij ≡ cij〈φD〉2/(MM2
∗ ). The term proportional to

the Higgs vev leads to the two-body decay χ → ℓ+ℓ−, for ℓ = µ or τ , while the

remaining term contributes to χ → ℓ+ℓ−h. We take both of these decay channels

into account in our numerical analysis. The final state particles in these primary

decays will subsequently decay. The electrons, positrons, protons and antiprotons



44

that are produced must be added to expected astrophysical backgrounds to predict

the spectra at experiments like PAMELA and Fermi-LAT.

Electrons and positrons that are produced in dark matter decays must prop-

agate through the Milky Way before reaching the Earth. In order to determine

the observed fluxes, one must model this propagation. The transport equation for

electron and positrons is given by

0 = ∇ · [K(E,~r)∇fe± ] +
∂

∂E
[b(E,~r)fe± ] +Qe±(E,~r), (3.18)

where fe±(E,~r, t) is the number density of electron or positrons per unit energy,

K(E,~r) is the diffusion coefficient and b(E,~r) is the energy loss rate. We assume

the MED propagation model described in Ref. [148]. The diffusion coefficient and

the energy loss rate are assumed to be spatially constant throughout the diffusion

zone and are given by

K(E,~r) = 0.0112ǫ0.70 kpc2/Myr (3.19)

and

b(E,~r) = 10−26ǫ2 GeV/s , (3.20)

where ǫ = E/1 GeV. The last term in Eq. (3.18) is the source term given by

Q(E,~r) =
ρ(~r)

Mχτχ

dN

dE
, (3.21)

where Mχ is the dark matter mass and τχ is the dark matter lifetime. In models

like ours, where the dark matter can decay via more than one channel, the energy
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spectrum dN/dE is given by

dN

dE
=
∑

i

Γi
Γ

(
dN

dE

)

i

, (3.22)

where Γi/Γ is the branching fraction and (dN/dE)i is the electron-positron en-

ergy spectrum of the ith decay channel. We use PYTHIA [149] to determine the

(dN/dE)i. For the dark matter density, ρ(~r), we adopt the spherically symmetric

Navarro-Frenk-White halo density profile [150]

ρ(r) =
ρ0

(r/rc)[1 + (r/rc)]2
, (3.23)

with ρ0 ≃ 0.26 GeV/cm3 and rc ≃ 20 kpc. The solutions to the transport equation

are subject to the boundary condition fe± = 0 at the edge of the diffusion zone, a

cylinder of half-height L = 4 kpc and radius R = 20 kpc measured from the galactic

center.

The solution of the transport equation can be written

fe±(E) =
1

Mχτχ

∫ Mχ

0

dE ′Ge±(E,E
′)
dNe±(E

′)

dE ′ , (3.24)

whereGe±(E,E
′) is a Green’s function, whose explicit form can be found in Ref. [151].

The interstellar flux then follows immediately from

ΦDM
e± =

c

4π
fe±(E). (3.25)

We adopt a parameterization of the interstellar background fluxes given in Ref. [51]:

Φbkg
e− (E) =

(
82.0ǫ−0.28

1 + 0.224ǫ2.93

)
GeV−1m−2s−1sr−1, (3.26)
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Φbkg
e+ (E) =

(
38.4ǫ−4.78

1 + 0.0002ǫ5.63
+ 24.0ǫ−3.41

)
GeV−1m−2s−1sr−1. (3.27)

Finally, the flux at the top of the earth’s atmosphere, ΦTOA
e± , is corrected by solar

modulation effects [51],

ΦTOA
e± (ETOA) =

E2
TOA

E2
IS

ΦIS
e±(EIS) , (3.28)

where EIS = ETOA + |e|φ, and |e|φ = 550 MeV. EIS and ETOA are the energy

of positron/electron at the heliospheric boundary and at the top of atmosphere,

respectively.

The total electron and positron flux is determined by

Φtot(E) = ΦDM
e− (E) + ΦDM

e+ (E) + kΦbkg
e− (E) + Φbkg

e+ (E), (3.29)

where k is a free parameter that determines the normalization of the primary electron

flux background. The positron excess is given by

PF (E) =
ΦDM
e+ (E) + Φbkg

e+ (E)

Φtot(E)
. (3.30)

The results of our analysis are presented in Figs. 3.2 and 3.3. In the case where

the dark matter decays only to µ+µ− and µ+µ−h, we find good agreement with the

data for τχ = 1.8 × 1026 s and Mχ = 2.5 TeV. In this case, the branching fraction

to the two-body decay mode is 90.2%. In the case where the decay is to τ+τ− and

τ+τ−h only, our best results are obtained for τχ = 9.0 × 1025 s and Mχ = 5 TeV,

corresponding to a two-body branching fraction of 69.6%. In all these results, the

background electron flux parameter k is set to 0.88, following Ref. [151].

Since the dark matter decays in our model include the production of standard

model Higgs bosons in the final state, it is worthwhile to check that subsequent
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FIG. 3.2: Left panel : The positron excess for dark matter decaying into µ+µ− and
µ+µ−h. The dark matter mass is 2.5 TeV and lifetime 1.8×1026 s; the branching fraction
to the two-body decay mode is 90.2%. The dashed line represents the background and
the solid line represents the background plus dark matter signal. Data from the following
experiments are shown: PAMELA [7] (solid dots), HEAT [11] (◦), AMS-01 [12] (▽), and
CAPRICE [13] (△). Right panel : The corresponding graph for the total electron and
positron flux. Data from the following experiments are shown: Fermi-LAT [8] (solid
dots), HESS [14] (▽), PPB-BETS [15] (⋄), HEAT [16] (△).
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FIG. 3.3: Left panel : The positron excess for dark matter decaying into τ−τ+ and τ−τ−h.
The dark matter mass is 5.0 TeV and lifetime 9.0× 1025 s; the branching fraction to the
two-body decay mode is 69.6% . Right panel : The corresponding graph for the total
electron and positron flux.
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Higgs decays do not lead to an excess of cosmic ray antiprotons, in conflict with

the experimental data. This will not be the case at our two benchmark parameter

choices since the branching fraction to the three-body decay mode is suppressed

compared to the two-body mode. The procedure for computing the cosmic ray

antiproton flux is similar to that of the cosmic ray electrons and positrons. The

transport equation for antiproton propagation within the Milky Way is given by

0 = ∇ ·
[
K(T,~r)∇fp̄ − ~Vc(~r)fp̄

]
+Qp̄(T,~r) (3.31)

where T is the antiproton kinetic energy, ~Vc(~r) is the convection velocity, and the

source term Qp̄ has the same form as Eq. (3.21). As in the case of e± propagation,

the antiproton number density can be expressed in terms of a Green’s function

fp̄(T ) =
1

Mχτχ

∫ Tmax

0

dT ′Gp̄(T, T
′)
dNp̄(T

′)

dT ′ , (3.32)

where Gp̄(T, T
′) can be found in Ref. [151]. The relation between the antiproton

number density and the interstellar flux of antiproton is given by

ΦDM
p̄ (T ) =

v

4π
fp̄(T ) , (3.33)

where v is the antiproton velocity. We also take account the solar modulation effect

on the antiproton flux at the top of atmosphere, ΦTOA
p̄ , which is given by

ΦTOA
p̄ (TTOA) =

(
2mpTTOA + T 2

TOA

2mpTIS + T 2
IS

)
ΦIS
p̄ (TIS), (3.34)

where TIS and TTOA are the antiproton kinetic energies at the heliospheric boundary

and at the top of atmosphere, respectively, with TIS = TTOA + |e|φ. For the proton

and antiproton flux, we adopt the background given in Ref. [152].
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FIG. 3.4: Left panel : The antiproton flux for dark matter decaying into µ+µ− and
µ+µ−h. The dark matter mass is 2.5 TeV and lifetime 1.8×1026 s; the branching fraction
to the two-body decay mode is 90.2%. The dashed line represents the background and
the solid line represents the background plus dark matter signal. Data from the following
experiments are shown: PAMELA [6] (solid dots), WiZard/CAPRICE [17] (⋄), and BESS
[18] (△). Right panel : The corresponding graph for the antiproton to proton ratio. Data
from the following experiments are shown: PAMELA [6] (solid dots), IMAX [19] (⋆),
CAPRICE [17] (⋄) and BESS [18] (△).

Again assuming the MED propagation model Ref. [148], we compute the an-

tiproton flux and the antiproton to proton ratio for dark matter decays to µ−µ+ and

µ−µ+h, shown in Fig. 3.4, and for decays to τ−τ+ and τ−τ−h, shown in Fig. 3.5.

We see that in both cases, the antiproton excess above the predicted background

curves is small and consistent with the data shown from a variety of experiments.

3.4 Relic Density and Direct Detection

In this section, we show that the model we have presented can provide the cor-

rect dark matter relic density while remaining consistent with the direct detections

bounds. The part of the Lagrangian that is relevant for computing the relic density,

as well as the dark matter-nucleon elastic scattering cross section, is the coupling

between χ and standard model Higgs

L ⊃ λχ†χH†H. (3.35)
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FIG. 3.5: Left panel : The antiproton flux for dark matter decaying into τ−τ+ and τ−τ−h.
The dark matter mass is 5.0 TeV and lifetime 9.0× 1025 s; the branching fraction to the
two-body decay mode is 69.6%. Right panel : The corresponding graph for the antiproton
to proton ratio.

In unitary gauge, this can be expanded

L ⊃ λ

2

(
χ†χh2 + 2 vew χ

†χh
)
. (3.36)

As a consequence of Eq. (3.36), χ and χ pairs may annihilate into a variety of

standard model particles. The leading diagrams are shown in Fig. 3.6. The cross

section for annihilations into fermions is given by

σχχ̄→ff̄ =
Nc

8π

λ2m2
f

s (s−m2
h)

2

√√√√
(
s− 4m2

f

)3

s− 4m2
χ

, (3.37)

where Nc is the number of fermion colors (Nc = 1 for leptons and Nc = 3 for

quarks) and mf is the fermion mass. The cross sections for annihilations into W

and Z bosons are given by

σχχ̄→ZZ =
λ2

8π

m4
Z

s (s−m2
h)

2
(3− s

m2
Z

+
s2

4m4
Z

)

√
s− 4m2

Z

s− 4m2
χ

, (3.38)

σχχ̄→W+W− =
λ2

4π

m4
W

s (s−m2
h)

2
(3− s

m2
W

+
s2

4m4
W

)

√
s− 4m2

W

s− 4m2
χ

, (3.39)
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FIG. 3.6: Dark matter annihilation diagrams.
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where mW (mZ) is the mass of W (Z) boson. In the case where the dark matter

annihilates into a pair of standard model Higgs bosons, we can safely ignore the t-

and u-channel diagrams since the typical momenta are much smaller than mχ at

temperatures near freeze out. Hence, the cross section is given by

σχχ̄→hh =
λ2

32π s

√
s− 4m2

h

s− 4m2
χ

(
1 +

6m2
h

s−m2
h

+
9m4

h

(s−m2
h)

2

)
. (3.40)

The evolution of dark matter number density, nχ, is governed by the Boltzmann

equation

dnχ
dt

+ 3H(t)nχ = −〈σv〉[n2
χ − (nEQχ )2], (3.41)

where H(t) is the Hubble parameter as a function of time and nEQχ is the equilibrium

number density. The thermally-averaged annihilation cross section, 〈σv〉, can be

calculated by evaluating the integral [97]

〈σv〉 = 1

8m4
χTK

2
2(mχ/T )

∫ ∞

4m2
χ

(σtot) (s− 4m2
χ)
√
sK1(

√
s/T ) ds , (3.42)

where σtot is the total annihilation cross section and the Ki are modified Bessel

functions of order i. We find the freeze out temperature, Tf , using the freeze-out

condition [3]

Γ

H(tF )
≡
nEQχ 〈σv〉
H(tF )

≈ 1 , (3.43)

where equilibrium number density as a function of temperature is given by

nEQχ =

(
mχT

2π

)3/2

e−mχ/T . (3.44)

The Hubble parameter may be re-expressed as a function of temperature T

H = 1.66 g1/2∗ T 2/mP l . (3.45)
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where g∗ is the number of relativistic degrees of freedom and mP l = 1.22×1019 GeV

is the Planck mass. It is customary to normalize the temperature with the dark

matter mass, x = mχ/T . For the points in parameter space discussed below, we

found that the freeze out happens when xf ≈ 28. The present dark matter density

can be calculated using the relation

1

Y0
=

1

Yf
+

√
π

45
mP l mχ

∫ x0

xf

g
1/2
∗
x2

〈σv〉 dx , (3.46)

where Y is the ratio of number to entropy density and the subscript 0 denotes the

present time. The ratio of the dark matter relic density to the critical density ρc is

given by ΩD = 2Y0s0mχ/ρc, where s0 is the present entropy density, or equivalently

ΩDh
2 ≈ 5.6× 108 GeV−1 Y0mχ . (3.47)

Note that the factor of 2 included in the expression for ΩD takes into account the

contribution from χ particles and χ̄ antiparticles.

In the case mχ = 2.5 TeV, we find numerically that the dark matter-Higgs

coupling λ = 0.9 in order that ΩDh
2 = 0.1. For mχ = 5 TeV, we find λ = 1.8. These

order-one couplings are perturbative. One should keep in mind that the physics

responsible for dark matter annihilations is not directly linked to the mechanism

that we have proposed to account for dark matter decay; other contributions to the

total annihilation cross section can easily be arranged. For example, if the Higgs

sector includes mixing with a gauge singlet scalar S such that there is a scalar mass

eigenstate near 2mχ, then the annihilation through the s-channel exchange of this

state can lead to a resonantly enhanced annihilation channel, as in the model of

Ref. [120]. In this case, the correct relic density could be obtained for smaller λ

than the values quoted above.
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Finally, we confirm that the model does not conflict with bounds from searches

for dark matter-nuclear recoil. In this case, the most relevant contribution comes

from the interaction between the dark matter and quarks mediated by a t-channel

Higgs exchange. The effective Lagrangian is given by

L = −λ mq

m2
h

χ†χq̄q. (3.48)

Following Refs [100, 153], we can write an effective interaction between the nucleons

and dark matter,

L = −(fpχ
†χp p+ fnχ

†χnn) , (3.49)

where fN = mNANλ/m
2
h, for N = p or n. The coefficient AN can be evaluated

using the results of Ref. [100]; numerically, one finds fp ≈ fn ≈ ANmNλ/m
2
h with

AN ≈ 0.35. Given the effective dark matter-nucleon interaction, we find that the

spin-independent cross section is given by

σSI =
λ2A2

N

4π

m4
N

m4
h(mχ +mN)2

. (3.50)

For both of the cases discussed earlier, (mχ = 2.5 TeV, λ = 0.9) and (mχ =

5 TeV, λ = 1.8), we find σSI ∼ O(10−45) cm2. This is two orders of magni-

tude smaller than the strongest bounds, from CDMS [10], which range from ∼

2× 10−43 cm2 at mχ = 1 TeV to 2× 10−42 cm2 at mχ = 10 TeV.

3.5 Conclusions

Models of decaying dark matter require a plausible origin for the higher-dimension

operators that lead to dark matter decays. The data from cosmic ray experiments

like PAMELA and Fermi-LAT require that these operators involve lepton fields pref-
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erentially. We have shown how the desired higher-dimension operators may originate

from Planck-suppressed couplings between a TeV-scale scalar dark matter particle χ

and vector-like states at a mass scale M that is intermediate between the weak and

Planck scales. The vector-like sector has the structure of a Froggatt-Nielsen model:

charged lepton Yukawa couplings arise only after these states are integrated out

and a discrete gauged Abelian flavor symmetry is broken. Couplings between χ and

the standard model gauge-invariant combination L̄LHeR are then also generated,

with coefficients of order 〈φ〉2/(M2
∗ M), where 〈φ〉 is the scale at which the flavor

symmetry is broken. Taking M and 〈φ〉 near the geometric mean of the reduced

Planck scale and the weak scale, O(1010) GeV, leads to the desired dark matter

lifetime. Neutrino masses can be generated via a conventional see-saw mechanism

with the mass scale of right-handed neutrinos also nearM . We pointed out that the

symmetry structure of our model leads to an overall suppression factor multiply-

ing the charged lepton Yukawa matrix, but does not constrain the standard model

Yukawa textures otherwise. Hence, our framework is potentially compatible with a

wide range of possible solutions to the more general problem of quark and lepton

flavor in the standard model.

We presented the necessary PYTHIA simulations to confirm that our model can

account for the anomalies observed in the cosmic ray experiments discussed earlier.

The leading contribution to the primary cosmic ray electron and positron flux in our

model comes from two-body decays, in which the Higgs field is set equal to its vev

in the operator described above; the subleading three body decays, χ → ℓ+ℓ−h0,

are also possible. We have checked that these decay channels do not lead to an

observable excess in the spectrum of cosmic ray antiprotons, since the cosmic ray

antiproton flux is in agreement with astrophysical predictions.

Our model demonstrates that the desired lifetime and decay channels of TeV-

scale scalar dark matter candidate can be the consequence of renormalizable physics
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at an intermediate lepton flavor scale and gravitational physics atM∗. This presents

an alternative scenario to the one in which dark matter decay is a consequence of

physics at a unification scale located somewhere between M and M∗.



CHAPTER 4

On the Cosmic-Ray Spectra of

Three-Body

Lepton-Flavor-Violating Dark

Matter Decays5

4.1 Introduction

Cosmic rays have been studied extensively at various earth-, balloon- and

satellite-based experiments. Recently, the PAMELA satellite has observed an unex-

pected rise in the cosmic-ray positron fraction from approximately 7 to 100 GeV [7].

This feature is not explained by the expected background from the secondary pro-

duction of cosmic-rays positrons. Moreover, observations of the total flux of electrons

and positrons by Fermi-LAT [62] and H.E.S.S. [47] also show an excess over the pre-

dicted background, up to an energy of ∼ 1 TeV. The presence of nearby pulsars

5This chapter was previously published in Phys. Lett. B704 (2011) 541.
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could provide an astrophysical explanation for these observations [52, 64]. Never-

theless, more exotic scenarios remain possible. The annihilation of dark matter in

the galactic halo to electrons and positrons provides one such possibility, though

generic annihilation cross sections must be enhanced by a large boost factor in or-

der to describe the data [65, 154]. Alternatively, the excess could be explained by a

TeV-scale decaying dark matter candidate. (For example, see Ref. [84]; for a recent

review, see Ref. [155].) In this scenario, fits to the cosmic-ray data indicate that the

dark matter must decay primarily to leptons with a lifetime of O(1026) s.

While the thermal freeze-out of weakly-interacting, electroweak-scale dark mat-

ter can naturally lead to the desired relic density, this is not the only possible frame-

work that can account for the present dark matter abundance. Recently proposed

asymmetric dark matter models relate the baryon or lepton number densities to

the dark matter number density, motivated by the fact that these quantities are

not wildly dissimilar [35–38]. TeV-scale asymmetric dark matter models have been

constructed, for example, in Refs. [36–38]. The asymmetry between dark matter

particles and antiparticles can lead to differences in the primary cosmic-ray spec-

tra of electrons and positrons, with potentially measurable consequences [156, 157].

Evidence for such charge asymmetric dark matter decays would disfavor the pulsar

explanation of the e± excess [157]. In addition, charge asymmetric dark matter

decays may allow one to discern whether dark matter decays are lepton-flavor-

violating [158]. For example, the cosmic-ray spectra that one expects if dark matter

decays symmetrically to e+µ− and e−µ+ are indistinguishable from those obtained

by assuming flavor-conserving decays to e+e− and µ+µ− with equal branching frac-

tion; the same is not true if the dark matter decays asymmetrically to e+µ− alone,

100% of the time.

Refs. [157] and [158] study the cosmic-ray e± spectra assuming a number of

two-body charge-asymmetric dark matter decays, with the latter work focusing on
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lepton-flavor-violating modes. In this chapter, we extend this body of work to

charge-asymmetric three-body decays and, in particular, to modes that violate lep-

ton flavor. We assume a spin-1/2 dark matter candidate that decays via four-fermion

contact interactions to two charged leptons and a light, stable neutral particle. For

the present purposes, the latter could either be a standard model neutrino or a

lighter dark matter component. Four-fermion interactions have a long history in the

development of the weak interactions, and one can easily imagine that dark matter

decays could be the consequence of operators of this form, generated by higher-scale

physics. Moreover, the possible presence of a neutrino in the primary decay may

lead to interesting signals at neutrino telescopes [159, 160]. Unlike the two-body

decays already considered in the literature, the precise energy distribution of the

decay products is affected by the Dirac matrix structure of these contact interac-

tions, which is not known (unless a model is specified). By considering the most

general possibilities, we show that different choices for the Dirac structure of the

decay operators defined in Sec. 4.2 can be substantially compensated by different

choices for the dark matter mass mψ and lifetime τψ; while the best fit values of

these parameters change, the predicted spectra are not dramatically altered. On the

other hand, we find that the flavor structure of the decay operator has a more sig-

nificant effect. Assuming various lepton-flavor-conserving and flavor-violating decay

modes, we compute the resulting cosmic-ray spectra, performing χ2 fits to the data

to determine the optimal dark matter masses and lifetimes. Like Refs. [157, 158], we

obtain predictions for these spectra at e± energies that are higher than those than

can be probed accurately now. Future data from experiments like AMS-02 [161]

may provide the opportunity to test these predictions, and evaluate them relative

to other interpretations of the cosmic-ray positron excess.

This chapter is organized as follows. In the next section, we discuss the assumed

form of the dark matter operators. In Sec. 4.3, we present the results of our numerical



60

analysis and in Sec. 4.4, we discuss our results and directions for future work.

4.2 Four-Fermion Operators

We consider a spin-1/2 dark matter candidate ψ that decays to ℓ+i ℓ
−
j ν where i

and j are generation indices and ν represents a light, neutral particle. We assume

that ν is either a standard model neutrino or a secondary dark matter component

that is much lighter than ψ and contributes negligibly to the relic density. In the

present analysis, the exact nature of the light neutral state will be irrelevant since

its effect on our results will come solely from kinematics. We focus on the sim-

plest scenario, in which there are no additional decay channels involving the charge

conjugate of ν, and consider the possible four-fermion operators that contribute to

the decays of interest. We work directly with the operators that may appear af-

ter the standard model electroweak gauge symmetry is spontaneously broken; for

any operator found to have phenomenologically desirable properties, one may eas-

ily construct a gauge-invariant origin after the fact. Note that the production of a

neutrino in the primary decay may have interesting phenomenological consequences

(see, for example, Ref. [159, 160]), which provides a separate motivation for our

three-fermion final state. Once this choice is made, the dark matter spin must be

1/2 if the underlying theory is renormalizable 6.

The problem of parametrizing an unknown decay amplitude of one spin-1/2

particle to three distinct spin-1/2 decay products was encountered in the study of

muon decay, before the standard model was well established. The most general

6For a model with flavor-conserving, three-body decays involving a final-state gravitino, see
Ref. [162].



61

decay amplitude M can be parametrized by [163]

iM = ig
∑

i

[u(p0)Oiuψ]
[
u(p−)Oi(ci + c′iγ

5)v(p+)
]
, (4.1)

where p± and p0 are the momenta of the decay products, labeled according to their

electric charge, and the Oi, i = 1 · · · 5 are elements of the set of linearly independent

matrices

O = {1, γµ, σµν , γµγ5, γ5} . (4.2)

The ci and c′i are complex coefficients. Terms involving the contraction of spinor

indices that link different pairs of spinor wave functions can be recast in the form of

Eq. (4.1) via Fierz transformations. Since the final state particles are much lighter

than the dark matter candidate (which is at the TeV scale), we can safely neglect

their masses.

Since the neutral final state particle is stable, the energy spectra of electrons

and positrons that are observed at cosmic-ray observatories are determined by the

energy spectra of the the charged leptons, ℓ+ and ℓ−, that are produced in the

primary decay; this follows from the differential decay distribution

1

Γ

d2Γ

dE0dE±
=

1

64π3mψ

〈|M|2〉 , (4.3)

where 〈|M|2〉 is the spin-summed/averaged squared amplitude. We evaluate this

quantity exactly from Eq. (4.1) using FeynCalc [164], and compute the ℓ± energy

distribution by integrating over the neutral lepton energy E0. We find that the

result contains terms quadratic and cubic in E±; however, since the distribution

must be normalized to unity, the result has the following simple parametrization:

1

Γ

dΓ

dE±
=

1

mψ

E2
±

m2
ψ

[
ξ± +

(
64− 8

3
ξ±

)
E±
mψ

]
. (4.4)
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The requirement that this expression remains positive over the kinematically acces-

sible range 0 ≤ E± ≤ mψ/2 restricts the parameters ξ+ and ξ− to fall within the

range

0 ≤ ξ± ≤ 96 . (4.5)

The ξ± are generally complicated functions of the operator coefficients ci and c
′
i; we

provide these in the appendix. In the present analysis, however, the exact relations

are not particularly important; by leaving mψ and τψ as fitting parameters, one

obtains very similar predicted spectra, independent of the choice of the ξ±. The

fact that some solution exists for any desired Dirac structure of the underlying four-

fermion operator makes it potentially easier to construct explicit models. Though

we reserve the task of model-building to future work, it is worth noting, for example,

that the operator

ORR
ij ≡ νγµ(1 + γ5)ψℓiγµ(1 + γ5)ℓj , (4.6)

corresponding to ξ+ = 96 and ξ− = 48, is a particularly interesting choice, since it

is already gauge invariant under the standard model gauge group and may provide

a simple starting point for constructing a plausible ultraviolet completion.

We computed the electron and positron spectra using PYTHIA [165], taking

into account the energy distributions of the primary leptons ℓ+ and ℓ−. As a cross

check, we have written code that incorporates Eq. (4.3), computed directly from

a choice of the underlying four-fermion operator, as well as code that incorporates

only the distributions Eq. (4.4), for the corresponding values of ξ+ and ξ−. We have

also compared output from different versions of our code, based on PYTHIA 6.4

and PYTHIA 8.1, respectively7. Results from these different approaches were found

to be agreement.

7Note that PYTHIA 6.4 does not automatically take into account neutron decay, which we
include by modifying the program’s decay table.
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4.3 Cosmic-Ray Spectra

To compute the relevant cosmic-ray fluxes, one must take into account that

electrons and positrons produced in dark matter decays must propagate through the

galaxy before reaching earth. While modeling this propagation is now standard in

the literature on decaying dark matter scenarios, we briefly summarize our approach

so that our discussion is self contained and our assumptions are manifest.

4.3.1 Cosmic-Ray Propagation

Let r be a position with respect to the center of the Milky Way Galaxy. We

assume the spherically symmetric Navarro-Frenk-White dark matter halo density

profile [150]

ρ(r) = ρ0
r3c

r(r + rc)2
, (4.7)

where ρo ≃ 0.26 GeV/cm3 and rc ≃ 20 kpc. The production rate of electrons/positrons

per unit energy and per unit volume is then given by

Q(E, r) =
ρ(r)

mψ

(
1

τψ

dNe±

dE

)
, (4.8)

where mψ and τψ are the dark matter mass and lifetime, respectively, and dNe±/dE

is the energy spectrum of electrons/positrons produced in the dark matter decay.

Let fe±(E, r) be the number density of electrons/positrons per unit energy. Then,

fe±(E, r) satisfies the transport equation [166, 167]

0 = K(E)∇2fe±(E, r) +
∂

∂E
[b(E)fe±(E, r)] +Q(E, r). (4.9)
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We assume the MED propagation model described in Ref. [148, 168] for which

K(E) = 0.0112ǫ0.70 kpc2/Myr (4.10)

and

b(E) = 10−16ǫ2 GeV/s , (4.11)

where ǫ = E/(1GeV). The diffusion zone is approximated as a cylinder with half-

height L = 4 kpc and radius R = 20 kpc. We require fe±(E, r) to vanish at the

boundary of this zone. The solution at the heliospheric boundary is then given

by [151]

fe±(E) =
1

mψτψ

mψ∫

0

dE ′Ge±(E,E
′)
dNe±(E

′)

dE ′ . (4.12)

The Green’s function, Ge±(E,E
′), can be found in Ref. [151]. The interstellar flux

of electrons/positrons created in dark matter decays is then given by

ΦDM
e± (E) =

c

4π
fe±(E) , (4.13)

where c is the speed of light.

For the background fluxes, we assume the Model 0 proposed by the Fermi

collaboration [51, 169]:

Φbkg
e− (E) =

(
82.0ǫ−0.28

1 + 0.224ǫ2.93

)
GeV−1m−2s−1sr−1 (4.14)

and

Φbkg
e+ (E) =

(
38.4ǫ−4.78

1 + 0.0002ǫ5.63
+ 24.0ǫ−3.41

)
GeV−1m−2s−1sr−1 , (4.15)

where, as before, ǫ = E/(1GeV).
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At the top of the Earth’s atmosphere, these fluxes must be corrected to account

for the effects of solar modulation [51]. The flux at the top of the atmosphere (TOA)

is related to the interstellar (IS) flux by

ΦTOA
e± (ETOA) =

E2
TOA

E2
IS

ΦIS
e±(EIS) , (4.16)

where EIS = ETOA + |e|φF and |e|φF = 550MeV.

The total electron-positron flux is given by

Φtot
e = ΦDM

e− (E) + ΦDM
e+ (E) + kΦbkg

e− (E) + Φbkg
e+ (E) , (4.17)

where k is a free parameter which determines the normalization of the background

electron flux. In our numerical analysis, we find that the best fit values of k never

deviate by more that two percent from 0.84 and that fixing k at this value has a

negligible effect on the goodness of fits and our predicted spectra. Therefore, we

set k = 0.84 henceforth to reproduce the cosmic-ray spectra at low energies. The

positron fraction is given by

PF(E) =
ΦDM
e+ (E) + Φbkg

e+ (E)

Φtot
e

. (4.18)

4.3.2 Results

In the propagation model described above, the only remaining undetermined

quantities are mψ, τψ, dNe+/dE and dNe−/dE. The electron and positron energy

spectra, dNe+/dE and dNe−/dE, are determined by mψ and by a set of parameters

which we describe in the following paragraph.

We consider dark matter decays of the form ψ → ℓ+i ℓ
−
j ν where ℓ±i is a charged
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lepton of the ith generation. There are nine such decay channels, and we require

∑

i,j

B(ℓ+i ℓ
−
j ν) = 1 , (4.19)

where the B(ℓ+i ℓ
−
j ν) are branching fractions. For decays involving more than one

channel,

dNe±

dE
=
∑

i,j

B(ℓ+i ℓ
−
j ν)

(
dNe±

dE

)

ij

, (4.20)

where (dNe±/dE)ij is the electron/positron energy spectrum for ψ → ℓ+i ℓ
−
j ν. In

Sec. 4.2, we showed that the energy spectra of the charged leptons in the decay

ψ → ℓ+i ℓ
−
j ν are characterized by the ordered pair (ξ+, ξ−), where 0 ≤ ξ± ≤ 96.

We also showed that (dNe±/dE)ij is entirely determined by mψ and (ξ+, ξ−). For

decays involving more than one decay channel (e.g., ψ → e+µ−ν and ψ → µ+τ−ν),

we assume a constant (ξ+, ξ−). Then, since the branching fractions are subject to

Eq. (4.19), we can determine dNe+/dE and dNe−/dE by specifying mψ, ξ+, ξ− and

eight of the nine branching fractions.

To summarize, when we use the cosmic-ray propagation model described in the

previous subsection, the resulting positron fraction and total electron-positron flux

measured at the top of the Earth’s atmosphere are determined by 12 parameters:

mψ, τψ, ξ+, ξ− and eight of the nine branching fractions.

For each of the decay scenarios considered below, we fixed (ξ+, ξ−) and the

branching fractions and then performed a χ2 fit to the PAMELA, Fermi LAT,

H.E.S.S. 2008 and H.E.S.S. 2009 data with mψ and τψ as fitting parameters. We al-

lowed mψ to vary in increments of 500 GeV, and we allowed τψ to vary in increments

of 0.1× 1026 s. We consider the range E > 10 GeV, where the effects of a TeV-scale

dark matter candidate are relevant. Where the high-energy and low-energy Fermi

data overlap, we have plotted only the high-energy data. (We omit from our figures
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FIG. 4.1: The envelope of possible cosmic-ray spectra for ψ → τ+τ−ν. Ranges of the fit
parameters are given in the text.

the H.E.S.S. bands of systematic uncertainty.)

Leaving mψ and τψ as free variables, we find that our results are relatively

insensitive to the choice of (ξ+, ξ−). This is demonstrated for the pure decay ψ →

τ+τ−ν in Fig. 4.1 where we show the envelope of possible cosmic-ray spectra; that

is, when we sample the (ξ+, ξ−) parameter space, we find that all of the resulting

curves fall between those plotted in Fig. 4.1. For the example shown, mψ varies

between 6.5 and 8.5 TeV while τψ varies between 0.5× 1026 s and 0.7× 1026 s; the

χ2 per degree of freedom (χ2/d.o.f.) remains between 0.5 and 0.6. We performed

the same analysis on the other decay scenarios discussed below and found a similar

behavior. As such, we take (ξ+, ξ−) = (48, 48) for the remaining results that we

present.

As a starting point, we show the cosmic-ray spectra for some charged-lepton-

flavor-conserving decays in Fig. 4.2. We consider the pure decays ψ → µ+µ−ν and

ψ → τ+τ−ν, and we also consider the flavor-democratic decay for which B(ℓ+i ℓ
−
i ν) =

1/3 for all i. For ψ → µ+µ−ν, we have a χ2/d.o.f. of approximately 0.9. For

ψ → τ+τ−ν, we have χ2/d.o.f. ≈ 0.6. And for the flavor-democratic ψ → ℓ+ℓ−ν,

we have χ2/d.o.f. ≈ 0.8. These are to be contrasted with the flavor-violating decays
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FIG. 4.2: Positron fraction and total electron-positron flux for some charged-lepton-
flavor-conserving decays. Best fits are shown, corresponding to the following masses and
lifetimes: for ψ → µ+µ−ν, mψ = 3.5 TeV and τψ = 1.5 × 1026 s; for ψ → τ+τ−ν,
mψ = 7.5 TeV and τψ = 0.6 × 1026 s; for the flavor-democratic decay ψ → ℓ+ℓ−ν,
mψ = 2.5 TeV and τψ = 1.9× 1026 s.

of Fig. 4.3.

We consider three classes of flavor-violating decays:

ψ → e±µ∓ν, ψ → e±τ∓ν, and ψ → µ±τ∓ν. (4.21)

Each class contains two decay channels (e.g., ψ → e+µ−ν and ψ → e−µ+ν). We

consider all six of the pure decays, i.e., decays involving only one channel. We also

consider mixtures of decay channels belonging to the same class; some representative

choices are shown in Fig. 4.3. Note that, for fixed mψ and τψ, the total electron-

positron flux – which does not distinguish between the two electric charges – is the

same for any two decays belonging to the same class. For this reason, we require only

one plot of the total flux in Fig. 4.3. We find that the χ2 is relatively flat as a function

of the branching fraction within each class of decays: over the range of possible

branching fractions, we find that the χ2/d.o.f. varies by no more than±10% from 1.2,

1.1 and 0.6, for ψ → e±µ∓ν, ψ → e±τ∓ν, and ψ → µ±τ∓ν, respectively. Different

choices for the branching fraction within a given class describe the existing data well,
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FIG. 4.3: Positron fraction and total electron-positron flux for some charged-lepton-
flavor-violating decays with various sets of branching fractions. Best fits are shown,
corresponding to the following masses and lifetimes: for ψ → e±µ∓ν, mψ = 2.0 TeV and
τψ = 2.9×1026 s; for ψ → e±τ∓ν, mψ = 2.0 TeV and τψ = 2.4×1026 s; for ψ → µ±τ∓ν,
mψ = 4.5 TeV and τψ = 1.0× 1026 s.
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but provide different predicted spectra that interpolate between the curves shown.

Note that the distinctive dip in the µ+e−ν and τ+e−ν positron fractions around

1 TeV is due to the hard electron produced in the initial decay; this greatly enhances

the electron to positron ratio in the high energy bins, leading to a suppression in

the positron fraction for fixed total flux.

4.4 Discussion

The results presented in the previous section show that a variety of possible

lepton-flavor-violating decay modes for a spin-1/2, charge asymmetric dark matter

candidate can describe existing data well, as quantified by the χ2 per degree of free-

dom for the best fits to the data. Significantly, the results for the predicted positron

fraction differ substantially for energies above ∼ 100 GeV, the maximum for which

the PAMELA experiment is sensitive. In some case, more precise measurement of

the total electron-postron flux around 1 TeV may also provide a means of distin-

guishing these scenarios. Future data from experiments like AMS-02 [161], which

can probe these energy ranges of the predicted spectra, may determine whether the

possibilities discussed in this chapter present viable descriptions of the cosmic-ray

spectrum.

In the meantime, the present work suggests a number of directions for further

study: In the case where the stable, neutral particle in the final state is a standard

model neutrino, one could study whether the decays of asymmetric dark matter that

we have considered could be probed at neutrino observatories like IceCube [159, 160]

. One could also study additional astrophysical bounds on the scenarios described,

for example, from the extragalactic gamma ray flux [157]. One can also attempt

to find preferred forms of the underlying four-fermion operators (whose effects were

parametrized in the present analysis by ξ±) by studying the simplest and best-
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motivated models that provide for their origin. Work in these directions is in progress

and will be described in a longer publication.



CHAPTER 5

The Galactic Center Region

Gamma Ray Excess from A

Supersymmetric Leptophilic Higgs

Model8

5.1 Introduction

Recently, Hooper and Goodenough examined the first two years of Fermi Gamma

Ray Space Telescope (FGST) data from the inner 10◦ around the Galactic Center

[170]. They found that the gamma ray emissions coming from between 1.25◦ and

10◦ of the Galactic Center is consistent with what is expected from known emission

mechanisms such as cosmic rays colliding with gas to produce subsequently decay-

ing pions, inverse Compton scattering of cosmic ray electrons, and known gamma

ray point sources. In order to model the gamma ray background within 2◦ of the

8This chapter was previously published in JHEP 1105 (2011) 026.
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Galactic Center, Hooper and Goodenough model the emission of the Galactic black

hole Sgr A* as a power-law extrapolated from higher energy HESS observations.

Comparing the FGST measurements to this background, Hooper and Goodenough

found that it agrees very well with FGST data between 1.25◦ − 2◦ but found an

excess in the observed gamma ray intensity within 1.25◦. It has been pointed out

by Ref. [171] however, that a simple power-law extrapolation of HESS data may

understate the flux of the central point source Sgr A* as the slope of its spectrum

may deviate from the constant HESS results below an energy of 100 GeV.

The authors of Ref. [170] showed that the increased gamma ray emissions are

well described by annihilating dark matter that has a cusped halo profile (ρ ∝ r−γ ,

with γ = 1.18 to 1.33) provided that the dark matter satisfies three basic conditions.

The conditions required of the dark matter are 1) that it have a mass between 7−10

GeV, 2) that it annihilate into τ -pairs most of the time, but into hadronic channels

15− 40% of the time, and 3) that its total annihilation cross section yield a thermal

average within the range 〈σv〉 = 4.6 × 10−27 − 5.3 × 10−26 cm3/s. It should be

noted that the results of Hooper and Goodenough are controversial, and the Fermi-

LAT collaboration itself has not yet published official results. In addition, other

background related explanations for the gamma ray excess have been proposed such

as the existence of a pulsar near the Galactic Center [172]. In this chapter we proceed

with the assumption that the analysis of Hooper and Goodenough is correct. The

astrophysical and particle physics implications of this finding are discussed in Refs.

[173, 174].

In this chapter we construct a dark matter model satisfying the above conditions

by adding a singlet to the supersymmetric leptophilic Higgs model (SLHM) [175].

In the SLHM the up quarks, down quarks, and leptons, each receive mass from a

separate Higgs doublet. For our purposes, the salient characteristic of the SLHM is

that it endows the leptons with an enhanced coupling to one of the scalars. This
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provides a natural mechanism for dark matter particles to annihilate predominantly

into τ -pairs. This model of dark matter is able to successfully account for the FGST

observations, yields the correct relic density, and evades relevant collider bounds

such as measurements of the Z width and direct production at LEP. The idea of

a leptophilic Higgs has been studied as a possible explanation for the e± excess

observed by PAMELA and ATIC in Ref. [122]. However, this entails a 100 GeV - 1

TeV dark matter particle, while our model requires a light, O(10) GeV dark matter

particle. There also exist some other models that can explain the Galactic Center

gamma ray excess [176].

In addition to explaining the FGST observations, such a model of light dark

matter is also capable of describing observations by the CoGeNT [21] and DAMA

collaborations [22]. CoGeNT has recently reported direct detection signals that hint

at the presence of O(10) GeV dark matter compatible with the light dark matter

interpretation of DAMA’s annual event rate modulation. Ref. [28] showed that

dark matter with a mass between 7 − 8 GeV that has a spin independent cross

section approximately between σSI = 1 × 10−40 − 3 × 10−40 cm2 is consistent with

both CoGeNT and DAMA signals. Although the XENON [177] and CDMS [178]

collaborations challenge this report, Ref. [174] has pointed out that “zero-charge”

background events lie in the signal region. The authors suggest that the bound could

possibly be loosened if a modest uncertainty or systematic error is introduced in the

energy scale calibration near the energy threshold. Although our model is able to

explain the reported observations of the CoGeNT and DAMA collaborations, it is

not dependent upon their validity. By simply moving to another region of parameter

space our model can coexist with the absolute refutation of CoGeNT and DAMA

while continuing to explain the FGST results and avoiding collider bounds.

This chapter is organized as follows. In Section 5.2 we introduce the setup

of the model and calculate the mass matrices for the scalars and the neutralinos.
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In Section 5.3 we describe the process by which the dark matter annihilates into

Standard model particles and calculate the relevant cross sections for a benchmark

point in parameter space. We also show that the resultant relic density is consistent

with current cosmological measurements. In Section 5.4 we discuss possible direct

detection and in Section 5.5 we discuss relevant bounds for this model and show

that it is currently viable. Lastly, we conclude with Section 5.6 and summarize the

results of the chapter.

5.2 The Model

In this model the quark and lepton content is that of the MSSM. To this we add

four Higgs doublets, Ĥu, Ĥd, Ĥ0, and Ĥℓ, with weak hypercharge assignment +1/2,

−1/2, +1/2, and −1/2 respectively. The third Higgs doublet is necessary to achieve

a leptonic structure, while the fourth doublet is required for anomaly cancelation.

In order to avoid problems with the Z decay width, we introduce a singlet Ŝ that

acts as O(10) GeV dark matter. The idea of adding a light singlet to the MSSM

to act as dark matter was also considered in [179], while the use of a singlet for

other purposes such as solving the µ problem was first developed in [180–182]. The

superpotential is given by

W = yuÛQ̂Ĥu − ydD̂Q̂Ĥd − yℓÊL̂Ĥℓ + µqĤuĤd + µℓĤ0Ĥℓ

+ κqŜĤuĤd + κℓŜĤ0Ĥℓ + λ21Ŝ +
1

2
λ2Ŝ

2 +
1

3
κsŜ

3,
(5.1)

where the hats denote superfields. In the superpotential we introduced a Z2 symme-

try under which Ĥ0, Ĥℓ and Ê are odd while all other fields are even. The symmetry

enforces a Yukawa structure in which Ĥu gives mass to up-type quarks, Ĥd to down-

type quarks, and Ĥℓ to leptons, while Ĥ0 does not couple to the quarks or leptons
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and is called the inert doublet. It is introduced to ensure anomaly cancellation. The

Z2 symmetry is broken in Vsoft so that we have: 9

Vsoft = m2
u|Hu|2 +m2

d|Hd|2 +m2
0|H0|2 +m2

ℓ |Hℓ|2 +m2
s|S|2

+
(
µ2
1HuHd + µ2

2H0Hℓ + µ2
3HuHℓ + µ2

4H0Hd

+ µaSHuHd + µbSH0Hℓ + µcSHuHℓ + µdSH0Hd

+m2
u0H

†
uH0 +m2

dℓH
†
dHℓ + t3S + b2sS

2 + asS
3 + h.c.

)
.

(5.2)

The breaking of the Z2 symmetry is discussed in greater detail in Appendix C.

The Higgs sector potential is given by V = VD + VF + Vsoft. Letting σa denote the

Pauli matrices for a = 1, 2, 3, the D-term is simply

VD =
g2

8

∑

a

∣∣∣H†
uσ

aHu +H†
dσ

aHd +H†
0σ

aH0 +H†
ℓσ

aHℓ

∣∣∣
2

+
g′ 2

8

∣∣∣|Hu|2 − |Hd|2 + |H0|2 − |Hℓ|2
∣∣∣
2

,

(5.3)

where g and g′ are the SU(2) and U(1) gauge couplings respectively. The F-term

9In Ref. [175] the soft breaking terms m2
u0H

†
uH0 +m2

dℓH
†
dHℓ + h.c. were omitted.
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and Vsoft combine with the D-term to yield the following potential

V =
(
µ2
q +m2

u

)
|Hu|2 +

(
µ2
q +m2

d

)
|Hd|2 +

(
µ2
ℓ +m2

0

)
|H0|2 +

(
µ2
ℓ +m2

ℓ

)
|Hℓ|2

+
[(
µ2
1 + κqλ

2
1

)
HuHd +

(
µ2
2 + κℓλ

2
1

)
H0Hℓ + µ2

3HuHℓ + µ2
4H0Hd + h.c.

]

+
∣∣∣κqHuHd + κℓH0Hℓ

∣∣∣
2

+
(
m2
u0H

†
uH0 +m2

dℓH
†
dHℓ + h.c.

)
+
(
m2
s + λ22

)
|S|2

+
[(
t3 + λ21λ2

)
S +

(
b2s + κsλ

2
2

)
S2 + asS

3 + h.c.
]
+ κsλ2|S|2

(
S + S∗)+ κ2s|S|4

+
[
µa
(
HuHd

)
S + µb

(
H0Hℓ

)
S + µc

(
HuHℓ

)
S + µd

(
H0Hd

)
S + h.c.

]

+
{
λ2

[
κq
(
HuHd

)
+ κℓ

(
H0Hℓ

)]
S∗ + κs

[
κq
(
HuHd

)
+ κℓ

(
H0Hℓ

)]
(S2)∗ + h.c.

}

+
{
κqµq

(
|Hu|2 + |Hd|2

)
+ κℓµℓ

(
|H0|2 + |Hℓ|2

)}(
S + S∗)

+ κ2q

(
|Hu|2 + |Hd|2

)
|S|2 + κ2ℓ

(
|H0|2 + |Hℓ|2

)
|S|2 + VD.

(5.4)

The singlet S acquires the vev 〈S〉 = vs/
√
2 while the Higgs doublets acquire

the vevs:

〈Hu〉 =
1√
2




0

vu


 , 〈Hd〉 =

1√
2




vd

0


 , 〈H0〉 =

1√
2




0

v0


 , 〈Hℓ〉 =

1√
2




vℓ

0


 .

(5.5)

Letting v2ew = v2u+v
2
d+v

2
0+v

2
ℓ so that v2ew = 4M2

Z/(g
2+g′ 2) ≈ (246 GeV)2, we define

the mixing angles α, β, and βℓ by the relations tan β = vu/vd, tan βℓ = v0/vℓ, and

tan2 α = (v2u+v
2
d)/(v

2
0+v

2
ℓ ). These definitions lead to the following parameterization

of the Higgs vevs:

vu = vew sinα sin β, vd = vew sinα cos β,

v0 = vew cosα sin βℓ, vℓ = vew cosα cos βℓ.

(5.6)

In order to avoid increasing the Z width or violating other known bounds, we
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want the light dark matter to separate from the other neutralinos and be mostly

singlino s̃, the fermionic component of the singlet Ŝ. This is accomplished by taking

the parameters κq and κℓ to be small, which eliminates most of the mixing between

the singlino and the Higgsinos [see Eq. (5.10)]. It can then be easily arranged to have

the singlino be the lightest of the neutralinos. A possible mechanism for explaining

the small size of κq and κℓ is discussed in Appendix C. Small values of κq and κℓ

also leads to reduced mixing between the scalar singlet and the Higgs doublets as

can be seen from Eq. (5.4). A small amount of mixing is of course required since

we desire the lightest scalar, which is mostly singlet, to couple to τ -pairs in order

for the dark matter to annihilate to τ+τ− and other Standard Model particles. This

mixing is generated by the soft supersymmetry-breaking parameters µa, µb, µc, and

µd.

It is sufficient for κq and κℓ to beO(10−2), which is what we use in our numerical

calculations (see Table 5.1 and 5.2). Though the scalar mass matrices are quite

complicated in general, they simplify considerably in the limit of vanishing κq and κℓ.

The numerical calculations in the sections that follow have been determined using

the general matrices, but for compactness we present only the simplified matrices

here. In the {hu, hd, h0, hℓ, hs} basis, the neutral scalar mass matrix is given by

M2
N =




M2 −→m2

−→m2 T M2
SS


 , (5.7)

where the matrix M2 is given by M2 = M2
SLHM + ∆M2

1 + ∆M2
2 and the terms −→m2

and MSS are given by

−→m2 T = − 1√
2

(
µavd + µcvℓ, µavu + µdv0, µbvℓ + µdvd, µbv0 + µcvu

)
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and

M2
SS =

3
(
as + κsλ2

)
v2s + 2

√
2κ2sv

3
s − 2t3 − 2λ21λ2 +

(
µavuvd + µbv0vℓ + µcvuvℓ + µdv0vd

)
√
2 vs

.

The matrix M2
SLHM is the neutral scalar mass matrix from the ordinary SLHM,

which can be found in [175], while the matrices ∆M2
1 and ∆M2

2 are given by

∆M2
1 =




−m2
u0

v0
vu

0 m2
u0 0

0 −m2
dℓ
vℓ
vd

0 m2
dℓ

m2
u0 0 −m2

u0
vu
v0

0

0 m2
dℓ 0 −m2

dℓ
vd
vℓ




,

and

∆M2
2 =

1√
2




vs
vu
(µavd + µcvℓ) −vsµa 0 −vsµc
−vsµa vs

vd
(µavu + µdv0) −vsµd 0

0 −vsµd vs
v0
(µbvℓ + µdvd) −vsµb

−vsµc 0 −vsµb vs
vℓ
(µbv0 + µcvu)




.

The pseudoscalar mass matrix, in the {au, ad, a0, aℓ, as} basis, is similarly given by

M2
A =




M̃2 −−→m2

− −→m2 T M̃2
SS


 , (5.8)

where M̃2 = M̃2
SLHM +∆M2

1 +∆M̃2
2 . The matrix M̃2

SLHM is the pseudoscalar mass

matrix from the ordinary SLHM while ∆M̃2
2 is the matrix obtained from ∆M2

2 by
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changing the sign of every off-diagonal entry. Lastly, M̃2
SS is given by

M̃2
SS =

1√
2 vs

[
µavuvd + µbv0vℓ + µcvuvℓ + µdv0vd − 2λ21λ2

− 2t3 −
(
9as + κsλ2

)
v2s − 4

√
2 (b2s + κsλ

2
2)vs

]
.

The chargino mass matrix, on the other hand, is rather simple even with nonvan-

ishing κq and κℓ. Letting h̃u, h̃d, h̃0, and h̃ℓ denote the Higgsino gauge eigenstates,

the chargino mass matrix, in the {W̃+, h̃+u , h̃
+
0 , W̃

−, h̃−d , h̃
−
ℓ } basis, is given by

Mχ± =




0 0 0 M2 gvd gvℓ

0 0 0 gvu µq +
κq√
2
vs 0

0 0 0 gv0 0 µℓ +
κℓ√
2
vs

M2 gvu gv0 0 0 0

gvd µq +
κq√
2
vs 0 0 0 0

gvℓ 0 µℓ +
κℓ√
2
vs 0 0 0




. (5.9)

Like the chargino mass matrix, the neutralino mass matrix is simple. The neutralino

mass matrix, in the {B̃0, W̃ 0, h̃u, h̃d, h̃0, h̃ℓ, s̃} basis, is given by

Mχ =




M1 0 1
2
g′vu −1

2
g′vd

1
2
g′v0 −1

2
g′vℓ 0

0 M2 −1
2
gvu

1
2
gvd −1

2
gv0

1
2
gvℓ 0

1
2
g′vu −1

2
gvu 0 µq +

κq√
2
vs 0 0 κq√

2
vd

−1
2
g′vd

1
2
gvd µq +

κq√
2
vs 0 0 0 κq√

2
vu

1
2
g′v0 −1

2
gv0 0 0 0 µℓ +

κℓ√
2
vs

κℓ√
2
vℓ

−1
2
g′vℓ

1
2
gvℓ 0 0 µℓ +

κℓ√
2
vs 0 κℓ√

2
v0

0 0 κq√
2
vd

κq√
2
vu

κℓ√
2
vℓ

κℓ√
2
v0 λ2 +

√
2κsvs




.

(5.10)

When κq and κℓ are small, the singlino part of the above matrix separates from the
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TABLE 5.1: Benchmark Point A

κq = 0.01 vℓ = 1.2 GeV µ2
2 = (200 GeV)2

κℓ = 0.01 µq = 125 GeV µ2
3 = (200 GeV)2

κs = 0.6 µℓ = 125 GeV µ2
4 = (400 GeV)2

tanα = 20 λ21 = (100 GeV)2 µa = 100 GeV
tan β = 50 λ2 = −35 GeV µb = 200 GeV
tan βl = 10 M1 = 500 GeV µc = 200 GeV
vs = 50 GeV M2 = 500 GeV µd = 200 GeV
vu = 245.6 GeV m2

u0 = −(100 GeV)2 t3 = (60.6 GeV)3

vd = 4.9 GeV m2
dℓ = (100 GeV)2 b2s = (63.4 GeV)2

v0 = 12.2 GeV µ2
1 = (400 GeV)2 as = −42.4 GeV

wino, bino, and higgsinos, and the singlino mass can be well approximated by

mχ1
≈ λ2 +

√
2κsvs. (5.11)

The O(10) GeV LSP can be arranged with some tuning of the parameters in order

to achieve a cancelation between λ2 and the product κsvs in Eq. (5.11). Though the

smallness of κq and κℓ is technically unnatural, we remind the reader that a possible

mechanism to make them small is discussed in Appendix C.

In the following sections, we calculate the relevant cross sections and quantities

of interest using benchmark points A and B, found in Tables 5.1 and 5.2 respec-

tively. While both of these benchmark points can explain the Galactic Central

region gamma ray excess, the spin independent direct detection cross section cor-

responding to benchmark point A lies within the region favored by CoGeNT and

DAMA. In contrast, we will show that benchmark point B satisfies CDMS bounds

that exclude CoGeNT and DAMA. Relevant quantities have been calculated for sev-

eral additional benchmark points as well, and their values are summarized in Table

D.1 of Appendix D.
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TABLE 5.2: Benchmark Point B

κq = 0.01 vℓ = 1.2 GeV µ2
2 = (200 GeV)2

κℓ = 0.01 µq = 125 GeV µ2
3 = (200 GeV)2

κs = 0.6 µℓ = 125 GeV µ2
4 = (400 GeV)2

tanα = 20 λ21 = (100 GeV)2 µa = 100 GeV
tan β = 50 λ2 = −35 GeV µb = 200 GeV
tan βl = 10 M1 = 500 GeV µc = 200 GeV
vs = 50 GeV M2 = 500 GeV µd = 200 GeV
vu = 245.6 GeV m2

u0 = −(100 GeV)2 t3 = (55.0 GeV)3

vd = 4.9 GeV m2
dℓ = (100 GeV)2 b2s = (66.3 GeV)2

v0 = 12.2 GeV µ2
1 = (400 GeV)2 as = −42.2 GeV

5.3 Annihilation to Fermions

In this section, we will show that this model can achieve the conditions needed

to explain the gamma ray excess in the Galactic Center region. In order to calculate

the dark matter cross section, we need the interactions between Higgs and fermions:

L ⊃− κs√
2

[
hs ¯̃ss̃− ias ¯̃sγ

5s̃
]

− κq

2
√
2

[
hu ¯̃sh̃d − iau ¯̃sγ

5h̃d + hd ¯̃sh̃u − iad ¯̃sγ
5h̃u + h.c.

]

− κℓ

2
√
2

[
h0 ¯̃sh̃ℓ − ia0 ¯̃sγ

5h̃ℓ + hℓ ¯̃sh̃0 − iaℓ ¯̃sγ
5h̃0 + h.c.

]

−
∑

f={u,d,ℓ}

∑

j

mfj

vf

(
hf f̄jfj − iaf f̄jγ

5fj
)
,

(5.12)

where mfj is the mass of the fermion fj, vf is the vev of f -type scalars, and j runs

over the fermion generations. In the limit κq, κℓ → 0, the higgs-higgsino-singlino

interactions vanish.

We can expand 〈σv〉 in powers of the dark matter velocity squared v2:

〈σv〉 = a+ bv2 + . . . . (5.13)
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FIG. 5.1: The dominant diagram of dark matter annihilation into fermions. Here a1 is
the lightest pseudoscalar.

Only the s-wave contribution to a is relevant in discussing the gamma ray excess

coming from dark matter annihilation since the velocity of the dark matter in the

Galactic Center region is relatively low. An exception to this is within the sphere

of influence of the Milky Way supermassive black hole, but this region corresponds

to only a fraction of an arc second and is below FGST accuracy. As we see later,

a1 is mostly singlet for benchmark points A and B. Therefore the s-wave contri-

bution to dark matter annihilation to fermions comes mostly from the s-channel

diagram involving an exchange of the lightest pseudoscalar a1 given in Fig. 5.1. It

is approximately given by

a ≈
Ncκ

2
s U

2
1f

4π

m2
f

v2f

m2
χ1

(4m2
χ1

−m2
a1
)2

√
1−

m2
f

m2
χ1

, (5.14)

where Nc is the number of fermion colors, U1f is the (1, f) element of the pseu-

doscalar diagonalizing matrix and ma1 is the mass of the lightest pseudoscalar. The

s-wave contributions from heavier pseudoscalars are suppressed by larger masses

as well as smaller mixings with the singlet. Moreover, s-channel scalar exchange

diagrams are s-wave suppressed, i.e. a (χ1χ1 → hi → f̄f) = 0.

For benchmark point A, the dark matter mass is mχ1
= 7.4 GeV. The physical

dark matter can be expressed in terms of gauge eigenstates as:

χ1 = 0.0017 B̃0−0.0031W̃ 0−0.0141 h̃u−0.0046 h̃d−0.0001 h̃0−0.0008 h̃ℓ+0.9999 s̃.
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We need a light pseudoscalar, O(10) GeV, to get a sizeable annihilation cross section.

This requires 1% tuning in the parameter space in addition to the tuning needed

to make the singlino the LSP. The lightest pseudoscalar in the benchmark point is

mostly singlet with a mixing with other types of pseudoscalar given by

a1 = −0.000002 au − 0.002193 ad − 0.001203 a0 − 0.003679 aℓ + 0.999990 as,

with its mass is ma1 = 18.7 GeV.

Having the masses and mixing, we can calculate the total annihilation cross

section into fermion pairs which gives

〈σv〉 = 4.0× 10−26 cm3/s (5.15)

where the hadronic final states cross section is 23% of the total cross section and

τ pairs final state makes up the rest. For benchmark point B given in Table 5.2,

the mass of dark matter is mχ1
= 7.4 GeV and 〈σv〉 = 3.0 × 10−26 cm3/s, with

the hadronic final states make up 23% of it. The annihillation cross sections given

above are within the range of suggested cross section for explaining the gamma ray

excess in the Galactic Center region given in Ref. [170].

In this model, dark matter annihilation into SM fermions given in Fig. 5.1 is

also responsible for giving the dark matter the correct thermal relic abundance. To

show this, we calculate the relic abundance which is given by [32]

Ωχ1
h2 ≈ 2.82× 108 Y∞(mχ1

/GeV), (5.16)

where

Y −1
∞ = 0.264

√
g∗mPmχ1

{
a/xf + 3(b− 1

4
a)/x2f

}
. (5.17)
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In the equation above, mP is the Planck mass and g∗ is the number of relativistic

degrees of freedom at freeze-out. The freeze-out epoch xf is related to the freeze-out

temperature Tf by xf = mχ1
/Tf , and xf is determined by [32]

xf = ln
[
0.0764mP (a+ 6b/xf )c(2 + c)mχ1

/
√
g∗xf

]
. (5.18)

The value of c is usually taken as c = 1
2
. Approximating g∗ to be a ladder function,

we get that, for both of our benchmark points, the freeze-out epoch is xf = 21 and

the relic abundance is

Ωχ1
h2 ≈ 0.1, (5.19)

which agrees with the cosmologically measured abundance [183]. Since the freeze-

out temperature happens to be around the QCD phase transition temperature, g∗

varies significantly over the change of temperature [97] and the result (5.19) can

change up to O(1). However the relic density is in the correct ballpark, therefore

we do not expect that the correction will invalidate our result. An adjustment of

parameters can be done when taking into account of the variation of g∗ to get the

correct density and annihilation cross section.

The benchmark points A and B serve as examples to show that in principle this

model can explain the gamma ray excess in the Galactic Center region. However,

the excess could also be obtained by some other regions in the parameter space as

shown in the Appendix D. One could do a scan on the parameter space to find the

favored region of the model.

Note that in our relic density calculation, we have neglected possible chargino

and sfermion contributions coming from resonance and coannihilation effects. This

is because the charginos have masses O(100) GeV for all of our benchmark points,

and we assume that the sfermion masses are at least O(100) GeV, which is consistent
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with current LEP bounds.

5.4 Direct Detection

Having shown that this model can account for the gamma ray excess in the

Galactic Center region, we now discuss direct detection of dark matter of this model.

In this section, we will consider constraints from the search for spin independent,

elastic scattering of dark matter off target nuclei. The most relevant contribution

for the cross section is given by the t-channel scalar exchange diagram with the

effective Lagrangian:

Lint =
∑

q

αqχ̄1χ1q̄q. (5.20)

In our benchmark points, the only relevant contribution to dark matter detection

comes from the lightest scalar and αq can be approximated by

αq ≈
κsmqV1q√
2vqm2

h1

, (5.21)

where mq is the mass of quark q, vq is the scalar vev associated with quark flavor q,

V1q is the (1, q) element of the scalar diagonalizing matrix, and mh1 is the mass of

the lightest scalar. Given the partonic interaction between dark matter and quarks,

we can follow Ref. [99] to get the effective interaction with nucleons:

Leff = fp χ̄1χ1 p̄p+ fn χ̄1χ1 n̄n, (5.22)

where fp and fn are related to αq through the relation [99]

fp,n
mp,n

=
∑

q=u,d,s

f
(p,n)
Tq αq

mq

+
2

27
f
(p,n)
Tg

∑

q=c,b,t

αq
mq

, (5.23)
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and 〈n|mq q̄q|n〉 = mnf
n
Tq. Numerically, the f

(p,n)
Tq are given by [100]

f pTu = 0.020± 0.004, f pTd = 0.026± 0.005, f pTs = 0.118± 0.062

fnTu = 0.014± 0.0043, fnTd = 0.036± 0.008, fnTs = 0.118± 0.062,

(5.24)

while f
(p,n)
Tg is defined by

f
(p,n)
Tg = 1−

∑

q=u,d,s

f
(p,n)
Tq . (5.25)

We can approximate fp ≈ fn since fTs is larger than other fTq’s and fTg. For the

purpose of comparing the predicted cross section with existing bounds, we evaluate

the cross section for scattering off a single nucleon. The result can be approximated

as

σSI ≈
4m2

rf
2
p

π
(5.26)

where mr is nucleon-dark matter reduced mass 1/mr = 1/mn + 1/mχ1
.

We are now ready to show that benchmark point A can explain signals reported

by CoGeNT [21] and DAMA [22]. For this benchmark point, the lightest scalar mass

is mh1 = 11.3 GeV. This lightest scalar is mostly singlet and its mixing with other

scalars is given by

h1 = 0.089 hu + 0.004 hd + 0.010 h0 + 0.004 hℓ + 0.996 hs.

As in the case of pseudoscalar, contributions from higher mass scalars are suppressed

by their masses and their mixings with the singlet. The spin independent cross

section for the benchmark point now can be calculated and is given by

σSI = 1.7× 10−40 cm2, (5.27)

which is inside the CoGeNT and DAMA favored region [28].
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Similarly, we can show that benchmark point B given in Table 5.2 has the

lightest scalar mass mh1 = 41.5 GeV and spin independent cross section σSI =

1.2 × 10−42 cm2. This cross section is two orders of magnitude lower than the

present CDMS and XENON bound [177, 178].

5.5 Bounds on the Model

In this section we discuss various collider bounds that apply to the model. We

will spend most of the discussions in this section for the benchmark point A given

in Table 5.1. The bounds for benchmark point B as well as the summary of the

bounds for benchmark point A are given in Table 5.3.

In this model, the decays Z → χ1χ1 and Z → h1a1 are allowed kinematically.

The Z decay width has been measured precisely and is given by Γ = 2.4952±0.0023

GeV [5]. Corrections to the decay width can be used as a bound on the mixing

between the singlet and the Higgs sector. The partial decay width of Z → χ1χ1 is

given by

ΓZ→χ1χ1
=

GF θ
2
χ

48
√
2π
m3
Z

(
1−

4m2
χ1

m2
Z

)3
2

, (5.28)

where GF is the Fermi constant, mZ is Z mass, and θχ is given by

θχ = |Wu1|2 − |Wd1|2 + |W01|2 − |Wℓ1|2 . (5.29)

In the equation above, Wf1 is the (f, 1) element of the neutralino diagonalizing

matrix. The decay width of Z → h1a1 is given by

ΓZ→h1a1 =
GF |θha|2
3
√
2π

p3, (5.30)
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TABLE 5.3: Mass spectrum and bounds for benchmark points A and B. The variable k
is given by k = σhZ/σ

SM
hZ and Smodel = σhiaj/σref , where σhiaj is the hiaj production

cross section and σref is the reference cross section defined in Ref. [1].

Benchmark point A B
mχ1

(GeV) 7.4 7.4
mχ±

1
(GeV) 118 118

mh1 (GeV) 11.3 41.5
ma1 (GeV) 18.7 19.3

ΓZ→χ1χ1
(GeV) 1.4× 10−9 1.4× 10−9

ΓZ→h1a1 (GeV) 1.1× 10−11 4.9× 10−12

k 8.0× 10−3 1.3× 10−2

Smodel(e
+e− → h1a1) 1× 10−10 1× 10−10

Smodel(e
+e− → h2a1) 1× 10−12 2× 10−12

σe+e−→χ1χ2
(pb) 1× 10−5 1× 10−5

where

θha = Uu1Vu1 − Ud1Vd1 + U01V01 − Uℓ1Vℓ1, (5.31)

and

p2 =
1

4m2
Z

[(
m2
Z − (mh1 +ma1)

2) (m2
Z − (mh1 −ma1)

2)] . (5.32)

For the benchmark point, the partial decay widths in both cases are given by

ΓZ→χ1χ1
= 1.4× 10−9 GeV,

ΓZ→h1a1 = 1.1× 10−11 GeV,

(5.33)

which is well within the measurement error.

Another bound on the model comes from scalar and pseudoscalar direct pro-

duction at LEP. At LEP a light scalar can be produced by Higgsstrahlung process

e+e− → Z → Zh1. Ref. [184] gives a bound on the coupling strength of Z pairs to

scalars regardless of the scalar’s decay mode. The bound is given in terms of the

quantity

k(mh) =
σhZ
σSMhZ

. (5.34)



90

In our model, k(mh) is given by

k(mhi) =
1

v2ew
|vuVui + vdVdi + v0V0i + vℓVℓi|2 , (5.35)

and its value for the lightest scalar at our benchmark point is

k(mh1) = 8.0× 10−3. (5.36)

The bound on k(mh) for the benchmark point h1 mass is given by

k(11.3 GeV) ≤ 0.09. (5.37)

Therefore k(mh1) does not exceed the bound from Higgsstrahlung process in our

benchmark point. The pseudoscalar can also be produced at LEP by the process

e+e− → Z → ha. In the benchmark point, both h1a1 and h2a1 production are kine-

matically allowed. LEP bounds on scalar and pseudoscalar production for various

final states are given in Ref. [1]. The bound is given in term of S95 = σmax/σref

where σmax is the largest cross section compatible with data and σref is the standard

model hZ production cross section multiplied by a kinematic scaling factor. Defin-

ing Smodel = σhiaj/σref , where σhiaj is the model’s hiaj production cross section, the

bound on the model is given by Smodel < S95. For our benchmark point, Smodel is

given by

Smodel(e
+e− → h1a1) = 1× 10−10,

Smodel(e
+e− → h2a1) = 1× 10−12,

(5.38)

which is lower than the bound, S95 ∼ O(10−2), in both cases.

We note that the lightest chargino mass is 118 GeV for the benchmark point,
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which exceeds the PDG bound of 94 GeV [5]. In the case of a long lived chargino

however, the bound can be made much stronger and is currently at 171 GeV. We

have calculated the lifetime of the chargino in our model assuming a stau mass of 110

GeV and have found that it is short lived, thus this latter bound is not of concern.

We should point out however, that our analysis has been done at tree level. Loop

corrections could change these results but are beyond the scope of this dissertation.

Finally, we need to calculate the bound on neutralino productions. Ref. [185]

discusses the bound on production of the lightest and second to lightest neutralinos

at LEP, e+e− → χ1χ2, where χ2 decays into χ1ff̄ . Assuming that the selectron is

much heavier than the Z, the main contribution comes from s-channel Z exchange.

For our benchmark point, we calculate the cross section to be

σe+e−→χ1χ2
= 1× 10−5 pb, (5.39)

while the bound is O(0.1) pb. A summary of all these bounds is given in Table 5.3.

The light particles are mostly singlet and have very little mixing with the Higgs

sector. This make the particles unlikely to be produced at near future experiments.

However the heavier sector has a richer phenomenology. For example, heavier scalars

are mostly hu, hd, h0, and hℓ therefore they have a better chance of being detected

in future colliders [175].

5.6 Conclusions

In this chapter, we have presented a supersymmetric model of 7 − 10 GeV

dark matter, which is capable of describing the FGST observations. In a recent

analysis of FGST data, Hooper and Goodenough found an excess in gamma ray

emission from within 1.25◦ of the Galactic Center. They showed that this can be
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explained by annihilating dark matter if the dark matter has a mass between 7− 10

GeV, annihilates into τ -pairs most of the time, but into hadronic channels the other

15−40% of the time, and 〈σv〉 falls within the range 4.6×10−27−5.3×10−26 cm3/s

[170]. Our model achieves these requirements by minimally extending the SLHM

to include a scalar singlet whose superpartner is the dark matter particle. Due to

the Yukawa structure of the SLHM the scalar particles mediating the dark matter

annihilation have an enhanced coupling to leptons. This provides a natural means

for satisfying the second requirement put forward by Hooper and Goodenough.

We have shown that this model produces the correct dark matter thermal relic

density and is consistent with current collider bounds. In addition, we have shown

that this model is consistent with the direct detection signals reported by both

CoGeNT and DAMA for certain regions of parameter space, while for other regions

of parameter space, the model yields a spin independent cross section far below the

present CDMS bound, but maintains the right relic density and continues to explain

the FGST observations. Thus our model is fully able to accommodate the results

reported by CoGeNT and DAMA in the case of their vindication, but it is in no

way contingent upon their validity.



CHAPTER 6

Taking a Razor to Dark Matter

Parameter Space at the LHC10

6.1 Introduction

Through precision cosmological measurements, we have uncovered many of the

general properties of dark matter (DM) in the cosmos. However, further determi-

nations of the properties of DM and its distribution throughout the universe will

require probing beyond its gravitational interactions. Although there is considerable

effort underway to indirectly observe DM through the signatures of DM annihila-

tions in places of high expected density, such as the centers of our galaxy, galaxy

clusters and dwarf galaxies, there is no substitute for detection of DM in a controlled

lab setting. To this end, there are many experiments presently searching for direct

observation of DM scattering off nuclei in underground labs. Intriguingly, both in-

direct and direct searches are finding interesting anomalies that are consistent with

what is expected from DM. Unfortunately, there is also considerable confusion since

10Preprint arXiv:1203.1662, submitted to Physical Review D.
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many of these excesses could also be consistent with backgrounds or systematic ef-

fects. Furthermore, both the indirect and direct search techniques rely on inputs

from astrophysics, such as the spatial and velocity distribution of the DM in our

galaxy, or the spectrum and morphology of high energy gamma and cosmic rays,

which are notoriously difficult to estimate.

High energy colliders provide an alternative [53], complementary way to search

for DM that is independent of assumptions about astrophysical quantities. If DM is

to be found in direct detection experiments then it must couple to quarks or gluons,

and thus it is possible to directly produce DM in high energy hadron colliders. Since

DM carries no SM charge, it will leave the detector without further interactions,

resulting in a missing (transverse) energy signature ( /ET ). Thus, the observation of

an excess of events in channels involving missing energy could provide tantalizing

evidence of the production of DM, and from these channels, DM properties such as

its mass could be determined. Similarly, if there are no observed excesses, one can

place limits on the size of putative DM-quark/gluon couplings. These collider limits

can be re-expressed as a limit on DM-nucleon couplings and compared to the limits

that come from the absence of events in dedicated direct detection experiments such

as CDMS [10] and XENON100 [23].

Many models of beyond the standard model (BSM) physics contain a viable DM

candidate, and thus predict events involving /ET . Many ingenious search strategies

have been developed within the context of particular models, but these strategies

often rely on other unique and unrelated features specific to the model. Furthermore,

without independent evidence for any of these models, and armed only with the

knowledge that DM exists, it is worthwhile to consider more model independent

search strategies. The simplest final state that could involve the production of DM

and serve as a limit on its couplings is a monojet/monophoton in association with

missing energy. At the Tevatron, a search for j + /ET that was originally designed
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to search for large extra dimensions [186, 187] has been recast as a constraint on

DM production, both through contact interactions of DM and the SM [54–56], and

through the presence of a light mediator particle [55, 188, 189]. These analyses were

based on ∼ 1 fb−1 of data and a simple cut-and-count approach. Recently, CDF

has carried out a dedicated search for DM in the monojet channel, using 6.7 fb−1

and the full shape information contained in the monojet spectrum [190]. For heavy

DM, these bounds can be improved upon by going to the LHC, and analyses of

monojets [20, 57, 189] and monophotons [20] have been carried out on ∼ 1 fb−1 of

data. Very recently CMS has released a DM search in the monophoton channel [59].

Constraints from LEP monophoton and missing energy searches have also been

calculated [60, 61].

Although the monojet/monophoton is certainly the simplest final state one can

expect to find DM, it does not necessarily result in the strongest limits11. At the

high collision energies typical of the LHC, one expects a hard process to be accom-

panied by several high pT jets, and the veto required to fit into the one jet topology

may restrict the signal efficiency. In addition, events with multiple jets contain more

information, such as inter-jet angles. As we shall see, optimizing searches with re-

spect to these variables may improve the ratio of signal to background efficiencies.

There are approaches such as the CMS “monojet” search [192] which allow a second

hard jet as long as the topology is sufficiently far from back-to-back that QCD back-

grounds are suppressed. We take this philosophy one step further and investigate

a more inclusive search approach that allows an arbitrary number of hard jets, as

long as there is also considerable missing energy, see also [193]. We base our strat-

egy around that used by the CMS “razor” analysis [194, 195], which was originally

employed to search for supersymmetry, and was based on approximately 800 pb−1

11As has recently been discussed [191], if there is a light mediator coupling the SM to DM,
searches for the mediator in the dijet channel are a complementary way to constrain the DM and
its couplings.
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of data.

This chapter is outlined as follows. In Sec. 6.2, we introduce both the effective

theory of DM coupling to quarks through contact operators, and some simplified

models which UV complete these by introducing a mediator light enough to be

accessible at the LHC. We describe the razor analysis in Sec. 6.3, beginning with

a description of the analysis in Sec. 6.3.1. In Sec. 6.3.3, we outline our results for

the case of contact operators and in Sec. 6.3.5, we compare the collider bounds

with direct detection bounds. Finally, we address the issues that arise with light

mediators and the validity of using an effective theory in Sec. 6.4.

6.2 A Simplified Model of Dark Matter Interac-

tions

As mentioned above, searches for DM in many models of BSM physics utilize

additional features of the model, such as production of colored states that ultimately

decay to DM. Here, we wish to follow an approach that is more model independent

and we introduce simplified models [196] that couple DM to the SM. In addition to

the SM, these models contain the DM, χ, which we assume to be a Dirac fermion 12,

and a mediator particle that couples to the DM and states in the SM. The nature of

the mediator will determine the form of the SM-DM coupling and whether the non-

relativistic limit is spin-independent (SI) or spin-dependent (SD). We will consider

vector, axial-vector, and scalar mediators, which give a representative sample of the

different behaviors possible at colliders and direct detection experiments; for a more

complete list of possibilities see for example [56, 197].

We start by considering the limit of the simplified model where only the DM

12This choice has little effect on our results, although the vector coupling would not be allowed
for the case of Majorana DM.



97

is accessible at colliders [193], and the mediator is integrated out. In this limit,

with very heavy mediators (& few TeV), we can use the framework of effective field

theory. The resulting effective operators for each choice of mediator are:

OV =
(χ̄γµχ)(q̄γ

µq)

Λ2
, (6.1)

OA =
(χ̄γµγ5χ)(q̄γ

µγ5q)

Λ2
, (6.2)

OG = αs
(χ̄χ)(Ga

µνG
aµν)

Λ3
, (6.3)

where q is a SM quark field and Ga
µν is the gluon field strength tensor. Note that in

the case of OG the coupling between gluons and the scalar mediator comes about

at one-loop and involves an additional heavy colored state. In Sec. 6.4, we will

discuss whether this effective theory approach is valid and the effects of keeping the

mediator in the simplified model. We calculate the bounds for the up and down

quarks separately, but the bound for any linear combination of quark flavors can be

derived from these bounds [20].

We ultimately want to compare collider bounds to direct detection bounds.

Here, the effective theory in equations (6.1)-(6.3) is always valid. In order to match

the quark-level operators to nucleon-level operators, the coupling between the SM

and DM must be of the form OSMOχ, where OSM contains only SM fields and Oχ

involves only DM such that we can extract the matrix element 〈N |OSM |N〉 [198].

At colliders, for a Dirac fermion χ, both OV and OA contribute to χ production with

roughly equal rates. However, in direct detection experiments, the spin-independent

OV dominates over the spin-dependent OA. OV vanishes if we change our assump-

tion to Majorana DM.
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6.3 Razor

In this section, we derive bounds on DM operators with the razor analysis. We

begin with a description of the general razor analysis as used by CMS [199]. We

then compare the shape of signal and background events in the razor variables, MR

and R2, and identify cuts which are optimal for searching for dark matter. To test

the sensitivity of this search we compare the results of such a razor analysis with

800 pb−1 to a mono-jet analysis which uses 1 fb−1 [20], and show how the bounds

from these two complementary analyses can be combined13.

6.3.1 The Razor Variables

The objective of the razor analysis is to discriminate the kinematics of heavy

pair production from those of the SM backgrounds, without making any strong

assumptions about the /ET spectrum or the details of the subsequent decay chains.

Furthermore, background events follow very clean exponential distributions in the

razor variables which allow for data-driven analyses to be carried out, without heavy

use of Monte-Carlo simulations to predict backgrounds.

The baseline selection requires at least two reconstructed objects in the final

state, i.e. calorimetric jets or electrons and muons that satisfy lepton selection

criteria. These objects are combined into two “megajets”. In our analysis most

events contain only two jets in which case each jet is promoted to a megajet, but

in the most general case the megajets are created using a “hemisphere” algorithm

described below [200]. The hemispheres are defined by Pi(i = 1, 2) which is the

sum of the momenta of high pT objects in the hemisphere. The high pT objects k in

hemisphere i satisfy d(pk, Pi) < d(pk, Pj) where d(pk, Pi) ≡ (Ei−|~Pi| cos θik) Ei
(Ei+Ek)2

,

13We use 800 pb−1 of data to match the most recent razor search, but our techniques can easily
adapted to upcoming updates to this analysis.
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and θik is the angle between ~Pi and ~pk. The hemisphere axes, Pi, are defined by the

following algorithm.

1. Assign P1 to the object (jet, lepton, photon) with the highest pT and P2 to the

object that gives the largest invariant mass as a pair with P1. The four-momenta

P1, P2 are the seeds for the hemisphere axes.

2. Go through the rest of the objects in the event, ordered by pT , and assign pk to

hemisphere 1 if d(pk, P1) < d(pk, P2), or 2 otherwise.

3. Redefine Pi as the sum of the momenta in the ith hemisphere.

4. Repeat 2-3 until all objects are assigned to a hemisphere.

The two megajet four-momenta are taken to be the two hemisphere axes, P1 and

P2.

In addition to this hemisphere algorithm for defining the megajets we also

considered a simple approach where the n objects in an event are partitioned into

two groups in all possible (2n−1− 1) ways and the partition that minimizes the sum

of the megajet invariant mass-squared is chosen. The two hemisphere algorithms

give similar results.

The razor frame is the frame in which the two megajets are equal and opposite

in the ẑ− (beam) direction. In this frame, the four-momenta of the megajets are

pj1 =

(
1

2

[
MR − (~pj1T − ~pj2T ) · ~/ET

MR

]
, pj1T , pz

)
, (6.4)

pj2 =

(
1

2

[
MR +

(~pj1T − ~pj2T ) · ~/ET

MR

]
, pj2T ,−pz

)
, (6.5)

where MR is the longitudinal boost invariant quantity, defined by

MR =

√
(Ej1 + Ej2)

2 − (pj1z + pj2z )2 . (6.6)
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The other longitudinally invariant razor observables are

MT
R =

√
/ET (p

j1
T + pj2T )− ~/ET · (~pj1T + ~pj2T )

2
, (6.7)

R =
MT

R

MR

, (6.8)

here pT = |~pT |. Note that the missing transverse energy, ~/ET is calculated from all

activity in the calorimeters whereas ~p
j1,2
T involve just the jets above our cuts.

MR provides an estimate of the underlying scale of the event. MT
R is the trans-

verse observable that also estimates event-by-event the value of the underlying scale.

The “razor” variable R2 is designed to reduce QCD multijet background to man-

ageable levels. R is correlated with the angle between the megajets. Events where

the two mega-jets are roughly co-linear have R2 ∼ 1 while events with back-to-back

megajets have small R2. In general R2 has a maximum value of approximately 1,

and the QCD multijet background peaks at R2 = 0. Thus, by imposing a cut on

R2, one can essentially eliminate the QCD multijet background.

6.3.2 Analysis

The razor analysis uses a set of dedicated triggers which allow one to apply

low thresholds on MR and R2. The events that pass the triggers are then classified

into six disjoint boxes which correspond to different lepton selection criteria [201].

For our purposes, we consider only the HAD box which contains all the events

that fail lepton requirements, described below. After QCD is removed using a

strong R2 cut, the dominant backgrounds to our process are (Z → ν̄ν)+jets, (W →

ℓinvν)+jets, (W → τhν)+jets, and tt̄, where ℓinv denotes a lepton that is missed in

the reconstruction, and τh is a hadronically decaying tau-lepton. We have simulated

the dominant SM backgrounds using MadGraph5 [202] at the matrix element level,
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TABLE 6.1: Background and signal (formχ = 100 GeV and Λ = 644 GeV) cross sections
(in pb) before and after analysis cuts. The matching scale is taken to be 60 GeV, see
text for details.

nj = 0 nj = 1 nj = 2 nj = 3 After cuts
(Z → ν̄ν)+jets 3960 470 150 33.7 18× 10−2

(W → ℓinvν)+jets 10585 836 317 96.5 2.0× 10−2

(W → τhν)+jets 5245 676 160 48.8 6.8× 10−2

tt̄ 12.4 – – – 1.5× 10−3

χ̄χ 5.46 2.31 0.77 0.33 4.3× 10−2

Pythia 6.4 [165] for parton showering and hadronization, and PGS [203] as a fast

detector simulation. We generateW/Z+n jets, where n = 1, 2, 3 for the background,

and use MLM matching 14 [204] with a matching scale of 60 GeV. We generate both

matched and unmatched samples for our signal, and find that the matched sample

gives approximately a 15% increase in the number of events passing our analysis

cuts, as compared to the unmatched sample. In what follows, we use unmatched

samples for the signal events; using a matched sample will increase our bounds by a

few GeV but does not change our conclusions. The cross sections for the dominant

backgrounds, and an example signal point, are shown in Table 6.1.

Following [199], in every event we require jets to have pT > 60 GeV, |η| <

3.0. Electrons(muons) are required to have pT > 20(10) GeV and |η| < 2.5(2.1),

and we include τ -leptons, which decay hadronically, in our definition of jets. Only

events in which ∆φ between the two megajets is less than 2.8 are kept. With

these requirements the events will pass the dedicated razor triggers, although they

would often fail those for other analyses e.g. αT , HT . One advantage of the razor

analysis lies in the simple shape of the SM background distributions; theMR and R2

distributions are simple exponentials for a large portion of the R2 −MR plane. By

fitting the distributions of the razor variablesMR and R2 to an exponential function,

14M.L. Mangano matching scheme.
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one can utilize a data-driven description of the background without having to rely

on Monte Carlo (MC) estimates. Since we do not have access to the data, we must

carry out a MC based analysis. As a check of the validity of our MC analysis we

compare our results to the yields found by CMS in different bins of R2 and MR.

We find that our MC simulations for the background in the HAD box fall within

the expected 68% range expected by CMS, and thus are consistent with the CMS

simulations (see Fig. 9 of Ref. [199]), which in turn agree well with data.

6.3.3 Signal and Background Shapes

The shape of the MR and R2 distributions for the dominant backgrounds and

a sample signal are shown in Fig. 6.1. The dependence of the signal shape on dark

matter mass is shown in Fig. 6.2. The signal shapes when dark matter couples to

sea quarks or to gluons are shown in Fig. 6.3. The shapes depend on the scale

and the kinematics of the production process. The location of the MR distribution

peak is determined by the event scale and kinematic cuts. The MR distributions of

(Z → ν̄ν)+jets, W+jets, and χ̄χ+jets all peak at approximately the same value of

MR ≈ 200 GeV, whereas the MR peak for tt̄ is higher due to the inclusion of tops

in the megajets.

The shape of R2 distribution is affected by the kinematics of the process and

is somewhat different for signal and background. Background events are highly

peaked at low R2, where the megajets are more back-to-back, whereas signal events

are more evenly distributed in R2, with a significant population at high R2. The

difference in event shapes, signal events being more likely to produce collinear mega-

jets, originated from different diagrams which dominate production.

The SM backgrounds are dominated by invisible decays of a Z boson, see Ta-

ble 6.1, for which the dominant production mechanism at the LHC is through quark-
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(a) (Z → ν̄ν)+jets.
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(b) W+jets.
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(c) tt̄.
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(d) Signal (Mχ = 100 GeV, Λ = 644
GeV).

FIG. 6.1: R2 vs. MR distribution for SM backgrounds (a) (Z → ν̄ν)+jets, (b) W+jets
(including decays to both ℓinv and τh, (c) tt̄, and (d) DM signal withMχ = 100 GeV and
Λ = 644 GeV. In all cases the number of events are what is expected after an integrated
luminosity of 800 pb−1. The cuts applied in MR and R2 are shown by the dashed lines
and the “signal” region is the upper right rectangle.
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(a) Mχ = 0.01 GeV.
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(b) Mχ = 100 GeV.
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(c) Mχ = 800 GeV.
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(d) Mχ = 1000 GeV.

FIG. 6.2: R2 vs. MR for various DM masses with u-only vectorial couplings with arbi-
trary normalization.
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(a) Sea quark couplings.
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(b) Gluon couplings.

FIG. 6.3: R2 vs. MR for DM coupling to (a) sea quarks (in this case the s-quark) and
(b) gluons with arbitrary normalization.

gluon collisions with qq̄ collisions giving a much smaller contribution. In quark-gluon

collisions the Z tends to be emitted in the backward direction (close to the beam

from which the gluon came). This tends to give the Z a lower pT compared to events

which originate in qq̄. Due to the high pT cuts on the individual jets their transverse

momenta must largely cancel to balance the Z. Thus, the ∆φ distribution is peaked

near π for background.

On the other hand, signal events are dominantly produced from the qq̄ initial

state. This is because qq̄ and qg initiated cross sections scale differently with the

invariant mass of the dark matter pair. This is reminiscent of the scaling of Z+ j at

LHC, where the gq-initiated cross section is proportional tom2
Z while the qq̄-initiated

one scales like m4
Z . If the Z mass were higher, Z + j would have been dominantly

qq̄-initiated. Similarly in our case DM production is dominatly qq̄-initiated because

the χχ̄ invariant mass (analogous to the Z mass above) is typically far above the

weak scale, see Figure 6.8. This difference in production mechanisms results in

a more isotropic distribution of the jets and consequently a different distribution
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in R2, tending more towards high values. This difference increases as DM mass

increases, as the peak in R2 also moves higher as DM mass increases (Fig. 6.2) while

the MR distribution remains approximately the same. The difference in production

mechanisms remains at NLO, which we have checked using MCFM 15 [205, 206].

We also find that the MR and R2 distributions for DM coupling to sea quarks,

shown in Fig. 6.3, are similar to those of background. This is because for sea quarks

the dominant production is qg (as well as q̄g) because of their smaller PDF’s, which is

similar to the dominant background production mechanism. For coupling to gluons,

where the gg initial state dominates, the distribution gives a more even coverage of

the MR −R2 plane, as seen in Fig. 6.3.

6.3.4 Results

Based on the distributions shown in Figs. 6.1, 6.2, and 6.3, we find that our

optimal signal region is MR ≥ 250 GeV and R2 ≥ 0.81. We use the number of

events in the signal region, the upper right rectangle in Fig. 6.1, to place constraints

on the cutoff scale Λ. At 90% exclusion, we require

χ2 ≡ NDM(mχ,Λ)
2

NDM(mχ,Λ) +NSM + σ2
SM

≤ 2.71 , (6.9)

where NDM is the expected number of signal events for a given DM mass mχ

and scale Λ, NSM is the expected number of background events, and σSM is the

uncertainty in the predicted number of background events. Through our Monte

Carlo simulations, we estimate that the number of background events is 144.0 for

(Z → ν̄ν)+jets, 70.4 for W+jets, and 1.2 for tt̄, giving a total of NSM = 215.6 for a

luminosity of 800 pb−1, the approximate amount used in the Razor analysis [199].

The tt̄ background does not give a large contribution since the majority of events

15Monte Carlo for FeMtobarn processes.
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with significant /ET are vetoed by the presence of leptons in the events and do not

pass our cuts. We did not attempt to calculate the QCD background since we ex-

pect a negligible number of events from this channel in our signal region. The error

σSM in the razor analysis is statistics dominated which implies σSM ∼
√
NSM . We

adopt this value as our default value for the standard model uncertainty, but to be

conservative we will also present the limit in the case where there is an additional

and equal source of systematic error. The calculated bound for vector and axial

couplings of DM to valence quarks is given in Fig. 6.4, where we see that the exist-

ing razor analysis gives bounds that are competitive with the monojet results. We

present the limit as a band extending between the two assumptions for the uncer-

tainty σSM =
√
NSM and σSM = 2

√
NSM . In the rest of the chapter we use the

√
NSM limit which we expect to be realistic. Note that, there is no significant differ-

ence between the bounds for vector or axial couplings. This implies that as opposed

to direct detection, spin dependent limits will be just as strong as spin independent

ones.

The razor analysis requires at least two jets in the final state, so the data set is

complementary to that used in the monojet search. Since the bounds are slightly,

but not hugely, stronger than those from monojet there is utility in combining the

bounds from the razor and monojet analyses. We do this by solving

χ2
monojet(mχ,Λ) + χ2

razor(mχ,Λ) = 2.71 , (6.10)

where the χ2 are defined in Eq. 6.9. We find that the combined bound is a few

percent higher than the razor bound alone (Fig. 6.5).
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FIG. 6.4: Cutoff scale Λ bounds for vector, axial, and gluon couplings. The error band
is determined by varying σSM between

√
NSM and σSM = 2

√
NSM . The dashed line is

the bound determined by the monojet analysis [20].
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FIG. 6.5: Combined razor and monojet Λ bounds. The solid lines are the razor bounds
and the dashed lines are the combined bounds.
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6.3.5 Comparison with Direct Detection and Annihilation

Cross Section

We now translate the collider bounds found above into constraints on direct

detection scattering rates by following the approach of Ref. [20]. This allows us to

show the collider limits in the standard σ − mχ plane. We use the values found

in [55] to calculate the coefficients required to translate the quark level matrix

elements 〈N |q̄γµq|N〉 and 〈N |q̄γµγ5q|N〉 into the nucleon level matrix elements. For

the matrix element of the gluon field strength in the nucleon, 〈N |αsGa
µνG

aµν |N〉 =

−8π
9

(
mN −

∑
q=u,d,s〈N |mqq̄q|N〉

)
, we follow the approach of [207] using an updated

value of the pion-nucleon sigma term ΣπN = 55 MeV [208].

We make the simplifying assumption that the effective DM-SM couplings are

universal in quark flavor. However, we can account for different u and d couplings

(i.e. cu 6= cd, where the couplings to DM are of the form cu(d)/Λ
2) by rescaling the

collider limits on the DM-nucleon cross-section by a factor of (Λ4
u+Λ4

d)/(c
2
uΛ

4
u+c

2
dΛ

4
d).

The bounds on the DM-nucleon cross-sections for various operators can be found

in Fig. 6.6. From the figure, we can see that collider experiments can probe DM

mass regions below direct detection experiment thresholds. In the case of spin-

independent scattering, the cross section bound obtained from OG is 2-3 orders

of magnitude below the cross-sections required to fit the excesses seen at DAMA,

CoGeNT and CRESST. Moreover, the bound for OG is competitive with the cross-

section bounds obtained from CDMS and XENON experiments. The DM-nucleon

spin-dependent scattering is not coherent over the whole nucleus, therefore the cross

section bounds from spin-dependent experiments are lower then the bounds from

spin-independent experiments. In this case, the collider experiments provide the

strongest bound up to DM masses of ∼ 1 TeV. The collider bounds weaken rapidly

for higher DM mass since the center-of-mass energy required to create a pair of DM
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is higher.
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FIG. 6.6: Razor limits on spin-independent (LH plot) and spin-dependent (RH plot)
DM-nucleon scattering compared to limits from the direct detection experiments. We
also include the monojet limits and the combined razor/monojet limits. We show the
constraints on spin-independent scattering from CDMS [10], CoGeNT [21], CRESST [4],
DAMA [22], and XENON-100 [23], and the constraints on spin-dependent scattering from
COUPP [24], DAMA [22], PICASSO [25], SIMPLE [26], and XENON-10 [27]. We have
assumed large systematic uncertainties on the DAMA quenching factors: qNa = 0.3±0.1
for sodium and qI = 0.09± 0.03 for iodine [28], which gives rise to an enlargement of the
DAMA allowed regions. All limits are shown at the 90% confidence level. For DAMA and
CoGeNT, we show the 90% and 3σ contours based on the fits of [29], and for CRESST,
we show the 1σ and 2σ contours.

In addition to the direct detection bounds, we can also convert the collider

bounds into a DM annihilation cross-section, which is relevant to DM relic density

calculations and indirect detection experiments. The annihilation rate is propor-

tional to the quantity 〈σvrel〉, where σ is the DM annihilation cross section, vrel

is the relative velocity of the annihilating DM and 〈.〉 is the average over the DM

velocity distribution. The quantity σvrel for OV and OA operators is

σV vrel =
1

16πΛ4

∑

q

√
1−

m2
q

m2
χ

×
(
24(2m2

χ +m2
q) +

8m4
χ − 4m2

χm
2
q + 5m4

q

m2
χ −m2

q

v2rel

)
(6.11)

σAvrel =
1

16πΛ4

∑

q

√
1−

m2
q

m2
χ

(
24m2

q +
8m4

χ − 22m2
χm

2
q + 17m4

q

m2
χ −m2

q

v2rel

)
(6.12)

As in the case of direct detection, we assume universal DM couplings in quark flavor.

In Fig. 6.7, we show 〈σvrel〉 as functions of the DM mass, taking 〈v2rel〉 = 0.24,
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which corresponds to the average DM velocity during the freeze-out epoch. A much

smaller average 〈v2rel〉, e.g. in the galactic environment, would lead to stronger

bounds. If the DM has additional annihilation modes, the bounds weaken by a

factor of 1/BR(χ̄χ → q̄q). Assuming that the effective operator description is still

valid during the freeze-out epoch, the thermal relic density cross-section is ruled out

at 90 % C.L. for mχ . 20 GeV for OV , and mχ . 100 GeV for OA.

Thermal relic

Yvrel
2 ] = 0.24 (freeze-out)
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FIG. 6.7: Razor constraints on DM annihilation for flavor-universal vector or axial cou-
plings of DM to quarks. We set 〈v2rel〉 = 0.24 which corresponds to the epoch when
thermal relic DM freezes out in the early universe. However, 〈v2rel〉 is much smaller in
present-day environments (i.e. galaxies) which results in improved collider bounds on the
annihilation rate. The horizontal black line indicates the value of 〈v2rel〉 required for DM
to be a thermal relic.

6.4 Beyond Effective Theory

So far we have made the assumption that the effective theory valid at direct

detection experiments, where the typical momentum transfer is of order 100 MeV,

is also valid for calculating cross sections at the LHC, where the relevant scales are

of order hundreds of GeV to a TeV. Given the large hierarchy between the scales

probed at the two classes of experiments it is important to consider the possibility
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that this assumption is violated. In particular, the presence of new particles at or

below the LHC scale can modify the bounds. In fact, the disparity between these

scales is so large that it has been argued that due to unitarity limits, new physics

beyond the DM particle must lie within the LHC’s kinematic reach in order to

generate direct detection cross sections as large as those discussed in the previous

sections [189]. In this section, we will investigate these issues. We shall see that

even if a new mediator must be within the LHC’s reach, for DM masses below a

couple of hundred GeV the mediator can easily be sufficiently heavy that it does

not significantly affect the search in question. We will also find that when the new

mediator is sufficiently light to modify the bounds the limits derived so far may be

either strengthened or weakened, depending on the mass of the mediator relative

to the LHC scale and relative to the mass of the DM particle. The issue of light

mediators and how they affect mono-jet and mono-photon bounds on DM has also

been discussed in [20, 55, 60, 188, 191, 209]. Furthermore, if the mediator is light it

can also be searched for directly by looking for a dijet resonance or the dijet angular

distribution [191].

6.4.1 Unitarity

In [189], it was shown that unitarity of qq̄ forward scattering with a center

of mass energy of
√
ŝ places a limit on the production of DM at that energy. In

particular, this argument places a lower bound on the cutoff scale Λ

Λ & 0.4
√
β(ŝ)ŝ (6.13)

where β is the DM velocity which is always of order one and will hence be ignored.

In [189], it was argued that an approximate requirement for the effective theory to

be valid at the LHC is that this bound be satisfied at
√
ŝ =

√
s∗ which was set to 5
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TeV. However, this requirement is not directly related to the search in question, as

both our razor analysis and the monojet searches in [20, 57], do not probe scales of

5 TeV.

We wish to make direct contact between the unitarity limit in Eq. 6.13 and

an actual collider search for DM. The first difficulty is that the unitarity argument

places a limit on DM pair production at
√
ŝ as opposed to DM plus any number of

jets. The former does not yield observable signals at the collider. In order to make

contact with more inclusive searches it is useful to interpret the limit in Eq. 6.13

as a limit, not on the energy of the incoming quarks, but on the center of mass

energy of the DM system, mχχ. For the exclusive process, qq̄ → χχ̄, these two

scales are obviously the same, but in an inclusive process, qq̄ → χχ̄ +X, it is not.

This amounts to replacing the
√
ŝ by the invariant mass of the DM system mχχ, or

mχχ <
Λ

0.4
. (6.14)

This substitution allows us to make contact with any DM production process being

probed at the collider.

We can now ask the following question. Assuming a contact interaction of

quarks with DM with a cutoff scale Λ right at where we have set our limits, what

fraction of the signal events violate Eq. 6.14 ? In Fig. 6.8 we show the invariant

mass distribution of events passing our analysis cuts for a few DM masses. We

show the unitarity limit of Λ/0.4 as a dashed vertical line. Events that violate the

bound are guaranteed to be sensitive to the physics that mediates the interaction of

quarks and DM, and thus are not reliably described by the effective theory. Events

that are to the left of the vertical line may be described by the effective theory,

(unless the mediator is light, see below). For DM masses of 1 and 100 GeV, the

fraction of events that violate the unitarity limit is 8% and 11% respectively. Thus,
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FIG. 6.8: mχχ distribution for signal events with u-quark vector couplings with R2 > 0.81
and MR > 250 GeV. The red dashed line corresponds to the unitarity bound mχχ =
Λ/0.4. The three panels show the distribution for DM masses of (a) 1 GeV, (b) 100 GeV,
and (c) 500 GeV. The fractions of events which lie beyond the bound are 8%, 11% and
80% respectively.
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the bound derived with the full effective theory may be accurate to within this

precision, which we consider acceptable. The situation is different for heavier DM,

e.g. 500 GeV. Here, the fraction of “unitarity violating” events is high at 80%. This

is due to two effects. First, the scale Λ which the analysis constrains (see Figs. 6.4

and 6.5), and hence the unitarity limit, is lower. In addition, the invariant mass

distribution is pushed to higher values of mχχ due to the higher threshold.

We thus conclude that the effective theory can be valid for DM masses below a

few hundred GeV, where the limit on Λ is still flat. This conclusion is in qualitative

agreement with previous analyses [20, 193] which used arguments of perturbativity

rather than unitarity. We emphasize that, as we shall see in the next subsection,

the cross section can deviate from that derived via effective theory if the mediator

is light, within the reach of the analysis. As the mass of the DM becomes heavy

enough so that its production is kinematically suppressed by parton distribution

functions (PDFs), the effective theory description breaks down and the UV physics

must be accounted for in order to get an accurate description of the limits. In the

next subsection we will consider a simplified model which includes the mediating

particles explicitly and investigate how the bounds are modified. We will also see

that requiring perturbative simplified models gives qualitatively similar results to

the requirements of unitarity.

6.4.2 Light Mediators

We now replace the effective theory analyzed above for a renormalizable “sim-

plified” model. Consider a neutral vector particle of mass M which couples to DM

pairs with a coupling of gχ and to up-quarks with a coupling of gq. At low energies,

say those relevant for direct detection, this model is described well by an effective

theory with a vector operator suppressed by the scale Λ ≡M/
√
gχgq.
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If the mediator is sufficiently light, but still heavier than 2mχ the mediator

may be produced on-shell, and subsequently decay to a pair of Dm particles. This

leads to an enhanced production rate proportional to g2qg
2
χ/(MΓ) where Γ is the

total width of the mediator particle. If the mediator is much lighter than twice

the DM mass, the DM production is proportional to g2qg
2
χ/mχ̄χ and is significantly

suppressed.

The presence of a light mediator can also affect the kinematic distribution of

the signal. In particular, in the case of on-shell production of a mediator which

decays to DM, one would expect the signal to be quite similar to the background

of on-shell production of a Z which decays invisibly. Indeed, in Fig. 6.9 we show

the distribution of MR and R2 for a mediator masses of 100 GeV and 300 GeV,

and a DM mass of 50 GeV. One can see that the congregation of events around

R2 ∼ 1 is absent and the distribution is similar to that of the Z+ jets background

(see Fig. 6.1(a)). As a result, the cut efficiency for this case will be lower, which will

partially counter the gain in overall rate when calculating the ultimate bounds.
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FIG. 6.9: R2 vs. MR for light mediators, with arbitrary normalization. The LH plot
corresponds to the case of mχ = 50 GeV, MZ′ = 100 GeV, ΓZ′ = MZ′/3 and the RH
plot to mχ = 50 GeV, MZ′ = 300 GeV, ΓZ′ =MZ′/3.

In Fig. 6.10, we show the limits we achieve on Λ ≡ M/
√
gqgχ as a function of

the mediator mass M for two fixed DM masses, 50 and 500 GeV. For each case, we
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consider a range of widths for the mediator between M/3 and M/8π. We consider

these two values as extremes of what is possible in general, although the narrow

width may not be physically realizable for the DM couplings we consider here. We

see that as the mediator mass is lowered the bound improves because DM production

proceeds through the production of an on-shell mediator which later decays. The

improvement can be substantial, as much as a factor of 5 in the limit on the cross

section in the narrow mediator case. As the mediator mass is lowered further and

its mass drops below threshold for DM production the limit weakens significantly,

as expected.
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FIG. 6.10: Cutoff scale Λ ≡ M/g bounds as a function of mediator mass M , where
g ≡ √

gχgq. We assume s-channel vector-type interactions and consider DM masses of
mχ = 50 GeV (blue) and mχ = 500 GeV (red). We vary the width Γ of the mediator
between M/3 (solid line) and M/8π (dashed line).

We conclude that while it is easy for physics beyond the DM effective theory to

modify the bounds derived within the effective theory, this modification can either

cause bounds to improve in the intermediate mediator mass region or to weaken in

the light mediator region.
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6.5 Discussion and Future Prospects

In this chapter, we expand on previous work done on DM limits at colliders using

monojets by utilizing the razor analysis of CMS. At the LHC, one expects events

that contain several high pT jets, and the monojet requirement may restrict the

signal efficiency. By allowing for an arbitrary number of hard jets, we can improve

upon the signal efficiency. Furthermore, the razor analysis uses a complementary

data set to that of the monojet search, thus allowing one to combine the bounds

from the two methods.

Using only the ∼ 800 pb−1 of data analyzed by CMS for their razor analysis

we find that the razor bounds are slightly better than those of the monojet search,

which uses ∼ 1 fb−1 (by about 40% in the direct detection cross-section). The

combined limit from the razor and monojet searches is a few percent stronger than

the razor bound alone. Since the uncertainties of the razor analysis are dominantly

statistical in nature we expect this bound to improve with further updates of the

razor analysis employing larger data sets.

We also address the validity of using an effective theory. We find that for light

DM masses (below a few hundred GeV), the bound derived using an effective theory

is accurate to about 10%. However, the effective theory breaks down at DM masses

that are heavy enough such that the DM production is kinematically suppressed by

PDFs, and we must take into account the UV physics.

Although originally conceived of as a search tool for squarks/gluinos in super-

symmetry we have demonstrated that razor analysis is a powerful technique to also

look for production of non-colored states that lead to missing energy in the detec-

tor. The ease with which it discriminates between signal and background makes us

optimistic for future, dedicated analyses, to search for DM that use this technique.

Furthermore, should an excess be observed, the existence of additional observables
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beyond those available in monojet/monophoton searches may prove beneficial in its

interpretation.



APPENDIX A

Mass Mixing Example

In Sec. 2.2, we presented a diagrammatic representation of the mixing that takes

the χ states to standard model leptons. Here we study the numerical diagonalization

of the corresponding fermion mass matrices, to demonstrate that mixing angles of

the size assumed in our analysis are easily obtained. To simplify the discussion,

we focus on mixing with standard model leptons of a single generation, which we

denote by e and ν. We include (1) Dirac masses for the χ fields:

L ⊃
∑

i

[
ai χ

(i)
L 〈HD〉χ(i)

uR + bi χ
(i)
L 〈HD〉χ(i)

dR + ci χ
(i)
L 〈H̃D〉χ(i)

uR + di χ
(i)
L 〈H̃D〉χ(i)

dR

]
+h.c. ,

(A.1)

where H̃D ≡ iσ2H∗
D. These terms generate a completely general two-by-two Dirac

mass matrix for the χ fermions. (2) Mixing between the χ fields and standard model

leptons:

L ⊃ g1〈η〉χ(1)
dRe

c
R + g2〈η〉χ(1)

uRe
c
R + λeL〈H〉eR

+ g3〈η〉χ(2)
dRν

c
R + g4〈η〉χ(2)

uRν
c
R + λνL〈H̃〉νR + h.c. (A.2)
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(3) Mixing involving the vector-like leptons EL and ER:

L ⊃ g5〈η〉χ(3)
dREL + g6〈η〉χ(3)

uREL +ME ELER + g7 L〈H〉ER + h.c. (A.3)

We now write down the mass matrices which follow from Eqs. (A.1,A.2,A.3). For

the neutral states, we work in the basis f 0
L = (χ

(2)
uL, χ

(2)
dL , ν

c
R) and f

0
R = (χ

(2)
uR, χ

(2)
dR, ν

c
L).

The neutral mass terms can be written as f 0
LM0f

0
R + h.c., where

M0 =
1√
2




c2vD d2vD 0

a2vD b2vD 0

g4vη g3vη
√
2mν




, (A.4)

assuming, for simplicity, that the vevs and couplings are real. Similarly, the mass

terms for the charged states may be written f−
LMcf

−
R + h.c., where we assume the

basis f−
L = (χ

(1)c
uR , χ

(1)c
dR , χ

(3)
uL, χ

(3)
dL , EL, eL) and f

−
R = (χ

(1)c
uL , χ

(1)c
dL , χ

(3)
uR, χ

(3)
dR, ER, eR). In

this case,

Mc =
1√
2




c1vD a1vD 0 0 0 g2vη

d1vD b1vD 0 0 0 g1vη

0 0 c3vD d3vD 0 0

0 0 a3vD b3vD 0 0

0 0 g6vη g5vη
√
2ME 0

0 0 0 0 g7v
√
2me




. (A.5)

Given a choice of parameters, it is now a simple matter to compute the relevant

mixing angles numerically. As an example, let us work in units of the dark scale

vD, which we will assume is 4 TeV. In addition we take vη = vD, ME = 1.5 vD

and set the standard model lepton masses to zero (the conclusions do not change
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if we require realistic standard model lepton masses). If one assumes that only the

following parameters are nonzero:

{b1, c1, b2, c2, b3, c3, g1, g2, g3, g4, g5, g6, g7} =

{1.9, 1.8, 1.8, 1.7, 2.1, 2.0, 0.02, 0.02, 0.02, 0.02, 0.7, 0.6, 1.0} , (A.6)

then one finds

χ
(1)
uL = 0.011 ecR0 + · · · χ

(1)
dL = 0.011 ecR0 + · · ·

χ
(2)
uL = 0.012 νcR0 + · · · χ

(2)
dL = 0.011 νcR0 + · · ·

χ
(3)
uL = 0.009 eL0 + · · · χ

(3)
dL = 0.010 eL0 + · · ·

where the fields on the right represent mass eigenstates. In addition, the non-zero

mass eigenvalues are all larger than the ψ mass if mψ < 1.2 vD, so that only decays

to standard model leptons via the instanton vertex are kinematically allowed. Given

the number of free parameters involved, one sees that the mixing angles are highly

model dependent and can be easily set to the values assumed in Sec. 2.2.



APPENDIX B

The Parameters ξ±

The parameters ξ± may be expressed in terms of the operator coefficients ci

and c′i defined in Eq. (4.1),

ξ± = 48
c†N± c+ c′†N± c′

c†D c+ c′†D c′
, (B.1)

where c = [c1, c2, c3, c4, c5]
T and c′ = [c′1, c

′
2, c

′
3, c

′
4, c

′
5]
T . The five-by-five matrices N±

and D are given by

N± =




1 0 ∓2 0 0

0 6 0 ±2 0

∓2 0 40 0 ∓2

0 ±2 0 6 0

0 0 ∓2 0 1




and D =




1 0 0 0 0

0 4 0 0 0

0 0 24 0 0

0 0 0 4 0

0 0 0 0 1




. (B.2)
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APPENDIX C

Breaking Terms

In this appendix, we discuss a possible source of the terms in Vsoft that break

the Z2 symmetry of the superpotential. Generally, one can imagine such breaking

terms arising from the F -term of some hidden sector superfield receiving a vacuum

expectation value. To be more specific, we consider a possible scenario that results

in such breaking terms and also explains the smallness of κq and κℓ. In this scenario

there is a hidden sector, which contains the six fields X̂01, X̂02, X̂q1, X̂q2, X̂ℓ1 and

TABLE C.1: Transformation rule for the Z3q × Z3ℓ symmetry. Each field transforms as
φ→ Xφ, where X is the corresponding factor shown in the table. For each case, ω3 = 1.
Other fields not shown in the table are neutral under Z3q × Z3ℓ.

Field Z3q Z3ℓ Field Z3q Z3ℓ

Ĥu ω 1 X̂01 1 1

Ĥd ω 1 X̂02 ω2 ω2

Ĥ0 1 ω X̂q1 ω 1

Ĥℓ 1 ω X̂q2 ω2 1

Ê 1 ω2 X̂ℓ1 1 ω

Q̂ ω2 1 X̂ℓ2 1 ω2
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X̂ℓ2. The F -terms of the fields receive vevs

〈FXi〉 ∼ O(1011GeV)2, (C.1)

so that

MSUSY ∼ 〈FXi〉
MP

(C.2)

is at the TeV scale. The index i denotes 01, 02, q1, q2, ℓ1, and ℓ2. A Z3q × Z3ℓ

symmetry is imposed, under which the fields transform according to Table C.1. The

hidden sector fields X̂i couple to visible sector fields in a high energy, fundamental

theory, and are Planck suppressed in the low energy effective theory. Consequen-

tially, the lagrangian contains terms such as

∆L =
f ′

M2
P

∫
d4θX̂ †

01X̂02ĤuĤℓ +
m′

MP

∫
d2θX̂02ŜĤuĤℓ + h.c., (C.3)

where d2θ = d(θθ) and d4θ = d(θθ)d(θ̄θ̄) represent integration over Grassmann

variables and f ′ and m′ are coupling constants. When the F -terms of X̂01 and X̂02

receive vevs, the terms in Eq. (C.3) give rise to

∆L =
f ′〈F01〉〈F02〉

M2
P

∫
d4θ(θ̄θ̄)(θθ)ĤuĤℓ +

m′〈F02〉
MP

∫
d2θ(θθ)ŜĤuĤℓ + h.c.

=
f ′〈F01〉〈F02〉

M2
P

HuHℓ +
m′〈F02〉
MP

SHuHℓ + h.c.

→ µ2
3HuHℓ + µcSHuHℓ + h.c..

(C.4)
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TABLE C.2: A complete list of superpotential and Vsoft terms generated by the Xi in this example.

a′

MP

∫
d4θX̂ †

q2ĤuĤd + h.c.
∫
d2θµqĤuĤd + h.c.

b′

MP

∫
d4θX̂ †

ℓ2Ĥ0Ĥl + h.c.
∫
d2θµℓĤ0Ĥℓ + h.c.

c′

MP

∫
d4θX̂ †

01Ŝ
2 + h.c.

∫
d2θλ2Ŝ

2 + h.c.
1
M2
P

∫
d4θ
(
d′X̂ †

01X̂q1 + d′′X̂ †
q2X̂01 + d′′′X̂ †

02X̂ℓ2 + d′′′′X̂ †
q1X̂q2

)
ĤuĤd + h.c. µ2

1HuHd + h.c.

1
M2
P

∫
d4θ
(
e′X̂ †

01X̂ℓ1 + e′′X̂ †
ℓ2X̂01 + e′′′X̂ †

02X̂q2 + e′′′′X̂ †
ℓ1X̂ℓ2

)
Ĥ0Ĥℓ + h.c. µ2

2H0Hℓ + h.c.

1
M2
P

∫
d4θ
(
f ′X̂ †

01X̂02 + f ′′X̂ †
q1X̂ℓ2 + f ′′′X̂ †

ℓ1X̂q2

)
ĤuĤℓ + h.c. µ2

3HuHℓ + h.c.

1
M2
P

∫
d4θ
(
g′X̂ †

01X̂02 + g′′X̂ †
q1X̂ℓ2 + g′′′X̂ †

ℓ1X̂q2

)
Ĥ0Ĥd + h.c. µ2

4H0Hd + h.c.

1
M2
P

∫
d4θ
(
h′X̂ †

02X̂ℓ1 + h′′X̂ †
q1X̂02 + h′′′X̂ †

q2X̂ℓ2 + h′′′′X̂ †
ℓ1X̂q1

)
Ĥ †
u Ĥ0 + h.c. m2

u0H
†
uH0 + h.c.

1
M2
P

∫
d4θ
(
i′X̂ †

02X̂ℓ1 + i′′X̂ †
q1X̂02 + i′′′X̂ †

q2X̂ℓ2 + i′′′′X̂ †
ℓ1X̂q1

)
Ĥ †
d Ĥℓ + h.c. m2

dℓH
†
dHℓ + h.c.

1
M2
P

∫
d4θ
∑

i j
iX̂ †

i X̂iĤ
†
f Ĥf + h.c. m2

f |Hf |2 + h.c.
k′

MP

∫
d2θX̂q1ŜĤuĤd + h.c. µaSHuHd + h.c.

l′

MP

∫
d2θX̂ℓ1ŜĤ0Ĥℓ + h.c. µbSH0Hℓ + h.c.

m′

MP

∫
d2θX̂02ŜĤuĤℓ + h.c. µcSHuHℓ + h.c.

n′

MP

∫
d2θX̂02ŜĤ0Ĥd + h.c. µdSH0Hd + h.c.

1
M2
P

∫
d4θ
∑

i o
iX̂ †

i X̂iŜ
2 + h.c. b2sS

2 + h.c.
p′

MP

∫
d2θX̂0Ŝ

3 + h.c. asS
3 + h.c.
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Similarly, the breaking parameters µ2
4 and µd arise from the Planck suppressed

terms

∆L =
g′

M2
P

∫
d4θX̂ †

01X̂02Ĥ0Ĥd +
n′

MP

∫
d2θX̂02ŜĤ0Ĥd + h.c.

→ g′〈F01〉〈F02〉
M2

P

H0Hd +
n′〈F02〉
MP

SH0Hd + h.c.

→ µ2
4H0Hd + µdSH0Hd + h.c.,

(C.5)

while the parameters m2
u0 and m2

dℓ arise from

∆L =
h′

M2
P

∫
d4θX̂ †

02X̂ℓ1Ĥ
†
u Ĥ0 +

i′

M2
P

∫
d4θX̂ †

02X̂ℓ1Ĥ
†
d Ĥℓ + h.c.

→ h′〈F02〉〈Fℓ1〉
M2

P

H†
uH0 +

i′〈F02〉〈Fℓ1〉
M2

P

H†
dHℓ + h.c.

→ m2
u0H

†
uH0 +m2

dℓH
†
dHℓ + h.c..

(C.6)

In this way, all of the Z2 breaking terms are generated. At this point it should

be noted that the Z3q×Z3ℓ symmetry actually prohibits the terms µqĤuĤd, µℓĤ0Ĥℓ,

κqŜĤuĤd, and κℓŜĤ0Ĥℓ from appearing in the superpotential [see Eq. (5.1)]. As far

as the µq and µℓ terms are concerned, this is not a problem since they are generated

by the vevs of the X̂q2 and X̂ℓ2 fields in the same manner:

∆L =
a′

MP

∫
d4θX̂ †

q2ĤuĤd +
b′

MP

∫
d4θX̂ †

ℓ2Ĥ0Ĥℓ

→ a′〈Fq2〉
MP

∫
d2θd2θ̄ (θ̄θ̄)ĤuĤd +

b′〈Fℓ2〉
MP

∫
d2θd2θ̄ (θ̄θ̄)Ĥ0Ĥℓ

=
a′〈Fq2〉
MP

∫
d2θĤuĤd +

b′〈Fℓ2〉
MP

∫
d2θĤ0Ĥℓ

→ µq

∫
d2θĤuĤd + µℓ

∫
d2θĤ0Ĥℓ.

(C.7)

In this UV completion scenario, the terms corresponding to κq, κℓ, λ1 and t are not

generated in this way. Because of the Z3q × Z3ℓ symmetry, they are entirely absent

at tree level. Benchmark points II and V in Table D.1 satisfy κq = κℓ = λ1 = t = 0
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and yield results consistent with our goals. Since we are not committing to this

particular UV completion scheme, we consider several other benchmark points that

include nonzero values for these parameters. A list of the soft breaking terms relevant

to this paper, which are generated by the fields Xi, is given in Table C.2.



APPENDIX D

List of Benchmark Points

In this Appendix, we show several benchmark points given in Table D.1. Bench-

marks point I-III lie in the suggested CoGeNT and DAMA range, while benchmarks

point IV-V satisfy CDMS bound. Benchmark point I is identical with benchmark

point A discussed in the text. Benchmark point IV is identical with benchmark point

B. Benchmark points II and V are motivated by mechanism described in Appendix

C.
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TABLE D.1: Additional benchmark points

Benchmark point I II III IV V
κq 0.01 0 0.01 0.01 0
κl 0.01 0 0.01 0.01 0
κs 0.6 0.6 0.5 0.6 0.6

tanα 20 15 30 20 30
tan β 50 30 30 50 25
tan βℓ 10 10 5 10 5

vs (GeV) 50 50 100 50 50
vu (GeV) 245.6 245.3 245.7 245.6 245.7
vd (GeV) 4.9 8.2 8.2 4.9 9.8
v0 (GeV) 12.2 16.2 8.0 12.2 8.0
vℓ (GeV) 1.2 1.6 1.6 1.2 1.6
µq (GeV) 125 125 200 125 125
µℓ (GeV) 125 125 150 125 150
λ21 (GeV2) 1002 0 1502 1002 0
λ2 (GeV) −35 −35 −63 −35 −35
M1 (GeV) 500 500 250 500 250
M2 (GeV) 500 500 500 500 500
m2
u0 (GeV2) −1002 −1502 −1502 −1002 −1502

m2
dℓ (GeV2) 1002 2002 1002 1002 2002

µ2
1 (GeV2) 4002 3002 3002 4002 4002

µ2
2 (GeV2) 2002 3002 2502 2002 2002

µ2
3 (GeV2) 2002 2002 2502 2002 2502

µ2
4 (GeV2) 4002 2002 2002 4002 4002

µa (GeV) 100 75 75 100 100
µb (GeV) 200 150 300 200 250
µc (GeV) 200 200 400 200 300
µd (GeV) 200 100 100 200 250

Continued on the next page
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Benchmark point I II III IV V
t3 (GeV3) 60.63 0 83.93 55.03 0
b2s (GeV2) 63.42 43.62 98.22 66.32 47.12

as (GeV) −42.4 −21.7 −50.2 −42.2 −20.0
mχ1

(GeV) 7.4 7.4 7.7 7.4 7.4
mχ±

1
(GeV) 118 117 151 118 117

mh1 (GeV) 11.3 19.2 12.8 41.5 41.4
ma1 (GeV) 18.7 16.1 18.8 19.3 19.2

〈σv〉 ( cm3

s
) 4.0× 10−26 3.4× 10−26 4.6× 10−26 3.0× 10−26 3.1× 10−26

〈σv (χ1χ1→hadrons)〉
〈σv〉 23% 38% 32% 23% 24%

σSI( cm
2) 1.7× 10−40 1.2×10−40 1.5× 10−40 1.2× 10−42 6.1× 10−42

ΓZ→χ1χ1
(GeV) 1.4× 10−9 0 2.1× 10−10 1.4× 10−9 0

ΓZ→h1a1 (GeV) 1.1× 10−11 1.2× 10−10 1.4× 10−10 4.9× 10−12 4.2× 10−11

k 8.0× 10−3 3.5× 10−2 2.2× 10−2 1.3× 10−2 0.12
Smodel(e

+e− → h1a1) 1× 10−10 2× 10−9 2× 10−9 1× 10−10 1× 10−9

Smodel(e
+e− → h2a1) 1× 10−12 5× 10−11 3× 10−11 2× 10−12 1× 10−10

σe+e−→χ1χ2
(pb) 1× 10−5 0 5× 10−9 1× 10−5 0
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