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Abstract

We present a search for physics beyond the standard model (SM) through a measurement of the
violation of the charge-parity (CP ) symmetry in two decays of the B0

s meson using data collected by
the Collider Detector at Fermilab (CDF) in proton-antiproton collisions at the center-of-mass energy
of 1.96TeV. We exploit the decays B0

s → J/ψ(→ µ+µ−)φ(→ K+K−) and B0
s → φ(→ K+K−)φ(→

K+K−), for which the SM accurately predicts very small or vanishing CP violation; both decay modes
are very sensitive to new sources of CP violation expected in a broad class of SM extensions. We analyze
the time-dependent CP asymmetry of the B0

s→J/ψφ decays collected in the full CDF Run II dataset for
providing the final measurement of the B0

s -B̄0
s mixing phase, 2βs, and we present the first measurement

of CP violation in B0
s→φφ decays, through the determination of two time-integrated CP asymmetries,

Av and Au, using an original method developed in this work. We find: −0.06 < βs < 0.30 at the
68% confidence level; Av = (−12.0± 6.4(stat)± 1.6(syst))%; and Au = (−0.7± 6.4(stat)± 1.8(syst))%.
In addition, we provide measurements of the decay width difference between the light and heavy mass
eigenstates of the B0

s meson, ∆Γs = 0.068 ± 0.026(stat) ± 0.009(syst) ps−1; and of their mean lifetime,
τs = 1.528± 0.019(stat)± 0.009(syst) ps. All results are among the most precise determinations from a
single experiment and exhibit an excellent agreement with the SM predictions. They have been published
in two letters in Physical Review [1, 2].
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Introduction

The recent observation of a Higgs-like boson confirms the standard model (SM) as an accurate
and consistent description of the fundamental constituents of matter and their interactions
at the electroweak energy scale and beyond [3, 4]. However, it is well established that the
SM is necessarily invalidated at some energy scale not probed so far, hence, the search for
SM-extensions is a chief goal in today’s particle physics.1 Quark-flavor physics offers a rich
opportunity for this purpose and can probe energy scales higher than directly accessible with
current and foreseen high-energy colliders [6, 7]. A plethora of precise measurements in the
decays of strange and bottom hadrons pursued in the past two decades [8, 9], along with a
mature phenomenology that provides accurate predictions, allows the redundant determination
of quarks-mixing parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [10, 11] that
can be compared for precision tests of the overall picture. All measurements performed so far
are consistently described by few CKM parameters [8], nevertheless, sub-10% effects from new
physics in the quarks dynamic are not ruled out by the current experimental precision [12].

In this dissertation we analyze two decay modes of the bottom-strange mesons,
B0
s→J/ψ(→ µ+µ−)φ(→ K+K−) and B0

s→φ(→ K+K−)φ(→ K+K−). The experimental effort
to investigate the B0

s phenomenology has started only recently, and still limited information on
the violation of the charge-parity (CP ) symmetry in the B0

s -meson physics is available [9].2 In
addition, theoretically-solid predictions are provided for some B0

s -decays now experimentally-
accessible [13]. The expectation of the size of CP violation in B0

s→J/ψφ and B0
s→φφ decay is

one of them; the CKM hierarchy provides vanishing expected-values of CP asymmetries in these
decays, that can be significantly increased in a broad class of SM extensions. These features
makes B0

s→J/ψφ and B0
s→φφ golden channels in the indirect search for new physics [14, 15].

Specifically, the time-dependent CP asymmetry of the decays allows us to probe the phase of the
B0
s -B̄0

s mixing amplitude, i. e. the phase of the amplitude governing flavor oscillations between
B0
s and B̄0

s meson. The mixing phase is approximated by 2βs, where βs is expressed in terms of
the CKM matrix-elements as arg(VtsV ?

tb/(VcsV ?
cb)); the overall constraints of the CKM-matrix

gives βs ≈ 0.02 [13], which is negligible with respect to the current experimental sensitivity.
First determinations of βs by the CDF and D0 experiments, suggested an interesting but

mildly significant deviation from the SM expectation [16, 17]. Even if not conclusive, later
measurements have pointed towards a better consistency with the CKM expectation [18, 19,
20, 21]. This makes the theoretical understanding of some anomalies observed in the B-physics
sector even more puzzling [13]; for instance, the 4σ departure from the SM expectation of
the dimuon asymmetry observed by D0, which is tightly correlated with βs, if generated in the

1An extensive literature is presents. For very recent developments see Ref. [5] and references therein.
2The violation of the CP symmetry in a physics process is its non-invariance for the transformations that

inverts all spatial coordinates and replaces particles with by their antiparticles.
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B0
s -B̄0

s mixing [22]. Providing more precise, even redundant, measurements in the B0
s -B̄0

s mixing
phenomenology is therefore mandatory. Measurements of CP violation in B0

s→φφ decays could
add helpful complementary information. However, the small datasets available for this decay
mode, which suffers a low decay-rate with respect to the B0

s→J/ψφ decay, do not allow yet for
a measurement of the time-dependent CP asymmetry for probing directly the mixing phase.

This document presents the final measurement of βs using B0
s→J/ψφ decays collected in the

full CDF Run II dataset, and the world’s first measurement of CP violation in B0
s→φφ decays,

through the determination of two time-integrated CP -violating asymmetries, the triple-products
asymmetries, originally designed for this work. In addition, it presents measurements of the
decay width difference between the light and heavy mass eigenstates of the B0

s meson, ∆Γs; of
their mean lifetime, τs; and of the angular-momentum composition of B0

s→J/ψφ decays. The
CP violation in B0

s→φφ decays is found to be less than 10%; the measurement of βs is consistent
with zero within about 10% accuracy; and ∆Γs is measured with a resolution comparable with
the SM prediction uncertainty. The results presented in this thesis are among the most precise
determinations available to date from a single experiment and agree with measurements from
other experiments and with the SM expectations [19, 20, 21, 13, 23]. They contribute to establish
that large non-SM contributions to the B0

s mixing phase are unlikely, and provide important
constraining information for phenomenological model building. All results have been published
in two letters to Physical Review [1, 2].

The final measurement of βs supersedes the previously-published CDF result using half
of the current dataset [18], and, in addition to the tuning of the analysis-tools for the larger
dataset, presents a significantly improved understanding of the sample composition, in terms of
the J/ψK+K− signal and the J/ψK+π− background (due to the misidentification of the pion as
a kaon). We demonstrate that the J/ψK+π− contamination gives a background larger than typ-
ically assumed, which mimics a greater S-wave signal than present, if neglected. The measured
S-wave component of the signal has indeed shown discrepancies among experiments. Along the
same line, the development of a new simulation of the B0

s→J/ψK+K− decays, completed with
the whole resonances structure of the K+K− mass spectrum, is used to build confidence in the
determinations by our analysis of the S-wave fraction, of ∆Γs and of βs.

The B0
s→φφ analysis is built upon the first measurement of the polarization amplitudes

of this decay mode [2, 24], and introduces for the first time in literature the two CP -violating
asymmetries in the B0

s→φφ decay. The asymmetries have been devised in collaboration with
phenomenologists, who have consolidated the implications of a possible nonzero asymmetry of
this decay mode [25, 26]. These asymmetries are particularly useful for CP -violation studies of
rare decays at hadron-collider experiments, because the developed method for their measure-
ment does not require flavor-tagging information.
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Introduction

In the following, the organization of the thesis is outlined. The first part of the dissertation
is dedicated to aspects common to both analyses. Chapter 1 briefly summarizes the motivation
behind the measurements presented in the thesis in the general contest of the indirect searches
of new physics. The angular and decay-time distribution of the B0

s→J/ψφ and B0
s→φφ de-

cays which allows the measurement of βs and the triple-product asymmetries are discussed in
Chap. 2 along with a short review of the current experimental situation and an outline of the
analyses. Chapter 3 describes the experimental apparatus, with a brief description of the Teva-
tron accelerator, the CDF II detector, and the data-taking operations. Chapter 4 describes the
algorithms used in CDF to determine the flavor of the B0

s meson at production and the updated
calibration of the opposite-tagging algorithm with the whole dataset.

Then, we move to the specific description of each measurements, starting with the analysis
of the B0

s→J/ψφ decays. The reconstruction and selection of the data set are described in
Chap. 5; the simulated samples used in several part of the analysis are also presented here. The
maximum likelihood estimator for measuring the observables of interest is reported in Chap. 6
along with the tests aimed at evidencing its features. The results of the measurement of the
B0
s lifetime, the widths difference ∆Γs, and the angular-momentum composition of B0

s→J/ψφ

decays are presented in Chap. 7. Finally, Chap. 8 is entirely devoted to the derivation of the
mixing phase results.

The last part of the dissertation deals with the analysis of the B0
s→φφ decays. Chapter 9

outlines the selection of the data and the final sample used in the measurement of the asym-
metries; the simulated samples are also described here. Chapter 10 presents the distributions
of the triple product variables and the maximum likelihood fit employed for the measurement
of their asymmetries; the results are reported along with the estimation of their systematic
uncertainties.

In the end, Chap. 11 is devoted to draw conclusions from this work with a few remarks on
future prospects.

ix





Chapter 1

Search for new physics
in the B0

s-B̄0
s mixing

In this chapter we introduce the physics motivation behind the measurement of the B0
s -B̄0

s mixing phase.
We briefly summarize the basics of the indirect searches for new physics and the current knowledge of
the quarks sector of the SM. In particular, we focus on the role of the B0

s -B̄0
s phenomenology. We finally

explain the features that make B0
s→J/ψφ and B0

s→φφ decays promising to detect sensible deviations
from the expected values of the B0

s -B̄0
s mixing phase.

1.1 Probing the new physics scales with flavor physics

The standard model (SM) of particle physics provides a mathematical description of three
fundamental interactions, namely the strong, weak, and electromagnetic interactions, that act
among the elementary spin-half particles, the quarks and the leptons.1 The structure of the
model stems from symmetries under transformations of a gauge group and implies that the
various interactions are mediated by spin-one force carriers: eight massless gluons for the strong
interaction; two charged massive bosons, W±, and a single neutral massive boson, Z0, for the
weak interaction; and a massless photon, γ, for the electromagnetic interaction. The quarks
and the leptons must reside in representations of the gauge group. Finally, the SM includes
a spin-zero particle, the Higgs boson, to allow for the generation of particles masses from the
spontaneous symmetry breaking of the gauge group of the electroweak interaction. Quarks and
leptons can interact via Higgs-mediated interactions that, unlike gauge interactions, are not
ruled by symmetry principles. These are called Yukawa interactions and are responsible for
flavor physics. The term flavor is used to describe several copies of the quarks and leptons of
the model that have same quantum charges. There are four of them in the SM, each coming
in three flavors: up-type quarks (u, c, t), down-type quarks (d, s, b), charged leptons (e, µ, τ),
and neutrinos (νe, νµ, ντ ).

The Higgs boson has eluded all experimental efforts to discover it, until July 2012 when
the CMS and ATLAS Collaborations announced the discovery of a new resonance produced
in proton-proton collisions of the Large Hadron Collider (LHC) [3, 4]. The new particle has
a mass of approximately 125GeV/c2, and it shows properties compatible with the SM Higgs

1For a general introduction on the SM and high energy physics see Ref. [27].
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Chapter 1. Search for new physics in the B0
s -B̄0

s mixing

interpretation. The discovery of the Higgs boson would complete the validation of the SM,
which has explained very successfully most of the experimental phenomena probed so far [5].
However, it is well known that the SM has to be extended. Classical gravity, well described by
general relativity, should break down at energy scales close to 1019 GeV, the Planck scale, where
quantum effects of gravity may arise [28]. The SM is necessarily invalidated at such energy,
and, above the Planck energy, a theory of quantum gravity must replace the SM.

The calculation of the Higgs mass in the current model is affected by divergences intro-
duced by radiative corrections that invalidates the SM at an energy scale which depends on the
measured mass of the Higgs particle. This energy scale represents the cut-off of the effective
model, i. e., the energy above which the model must be replaced by a more fundamental theory.
Either a fine-tuning of the model parameters that can push the cut-off till the Planck scale, or
new particles generated from a new symmetry principle present below the Planck scale till the
electroweak scale, were argued [29]. Assuming the newly-observed particle at LHC is the SM
Higgs boson, the measured value of its mass consolidates the SM at the electroweak scale, and
allows a cut-off of the theory at larger energy scale[5]. The questions if new particles are present
in the energy range from O(1) TeV till the Plank scale is therefore still open. It is also motivated
from cosmological arguments for overcoming some experimental observations yet unexplained
by currents models [8] (for instance, the observation that the 84% mass of the Universe is made
of non-baryonic and non-luminous matters).

Heavy new particles can be produced directly in high-energy collisions and observed through
their decay products. The key ingredient is the available center-of-mass energy: the higher the
energy is, the heavier the particles that can be produced, the higher the new physics scale
probed. Clearly, others key parameters are the rate of production of the new particles, that
depend on the kind of process employed in the high-energy collisions, and the standard-physics
background that can overwhelm the new signal. Ultimately, such ingredients can be expressed
as functions of the new particles mass. Thus the success of this direct search depends on the
unknown energy scale of the new physics particles. Pushing forward the energy frontier will
require building colliders with ever-higher center-of-mass energies. However, the new physics
scale can be at an energy not reachable with current and foreseen technology.

A complementary way is to infer the presence of new particles indirectly in processes where
they could be virtually exchanged among SM particles, by detecting deviations from expecta-
tions precisely calculated in the SM [6, 7]. For indirect searches the production threshold is not
an issue. Because quantum effects become as smaller as heavier are the virtual particles at play,
higher new physics scales are explored by increasing the precision of the measurements while
controlling the SM contributions with sufficient accuracy to disentangle genuine new effects
from SM uncertainties. Flavor physics is the best candidate for indirect searches. Experimental
access to a plethora of precisely measurable processes, along with a mature phenomenology that
provides accurate predictions, allows the redundant determination of several SM free parame-
ters that can be compared for precision tests of the overall picture [12]. The indirect approach
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1.1 Probing the new physics scales with flavor physics

b!

W+!

c!

(a)

b! s!

u, c, t!

W+!

(b)

Figure 1.1: Two examples of flavor transition of the b quark in terms of Feynman diagrams. In (a), the
tree-level transition b → c, where the b quark changes its flavor and charge (−1/3) becoming a c quark
(with charge +2/3) through a W+ boson; in (b), the loop-mediated transition b→ s, where the b quark
changes its flavor by exchanging an up-type quark (either u, or c, or t) and a W boson with the s quark.
In this case, the charge of the initial quark and the charge of the final quark are the same. Tree-level
transition involves quarks of different type (up-down and down-up), while loop-mediated transitions can
change the flavor of two quarks of the same type (up-up and down-down).

has demonstrated itself very successful in building the current model of particles physics. For
instance, the theoretical explanation [30] of the rare decay rate of quark transitions that change
the strangeness flavor by two unit (such as K0 → µ+µ− decays) was used to put upper limits
on the c-quark mass before its experimental discovery [31, 32]. Another more recent example
is the prediction of the large value of the top quark mass before its observation at the Tevatron
experiments [33, 34], from the constraints imposed by the measurement of the B0-B̄0 mesons
oscillations [35].

The flavor structure of the SM is impressively predictive and peculiar. Flavor violation is
allowed only in the quarks sector. Weak interactions mediated by W± bosons that changes the
flavors of the quarks (flavor-changing charged-currents, FCCC) are universal; flavor transitions
mediated by neutral currents (flavor-changing neutral-currents, FCNC) are highly suppressed.
The latter cannot occur at tree-level, i. e., through the mediation of a weak boson only, but
they do require the intermediate exchange of a quark and a W boson (loop transition). In
Fig. 1.1 we show this features with two examples of Feyman diagrams, i. e., representations of
the two flavor-changing transitions in terms of the elementary particles involved. The FCNC are
further suppressed in the SM by the Glashow-Illiopoulos-Maiani (GIM) mechanism [36], namely
the smallness of the mass differences between second- and first-generation quarks, and by the
hierarchical structure of quark-mixing angles which gives the rotation of the quark flavor basis
with respect to the weak-interaction basis. These special features are crucial in order to explain
the observed pattern of weak decays, and any extension of the SM must account for them.

To describe new physics effects in flavor physics, we can use a generic effective-theory ap-
proach [6]. This strategy is very general and model-independent. Assuming the new physics
scale to be heavier than the electroweak energy scale, we can describe new physics effects by
means of a generalization of the Fermi theory. The SM Lagrangian represents a part of a more

3



Chapter 1. Search for new physics in the B0
s -B̄0

s mixing

Bounds on Λ (TeV) Bounds on ci (Λ = 1 TeV) Mesons mixing
102–105 10−11–10−7 K0-K̄0

103–104 10−7–10−8 D0-D̄0

102–103 10−7–10−6 B0-B̄0

102–103 10−5 B0
s -B̄0

s

Table 1.1: Bounds from experimental constraints on meson-mixing [6]. Mesons-mixing will be discussed
in Sect. 1.3, in particular the case B0

s -B̄0
s .

general local Lagrangian, which includes a series of operators with dimension d > 4, O(d)
i , con-

structed in terms of SM fields, with couplings c(d)
i suppressed by inverse powers of an effective

scale Λ, which represents the cut-off of the effective theory:

Leff = LSM +
∑
i

c
(d)
i

Λ(d−4)O
(d)
i (1.1)

Bounds on Λ can be derived assuming an effective coupling ci ≈ 1; alternatively, the bounds on
the respective couplings can be given assuming that Λ ∼ O(1) TeV. This general approach allows
us to analyze realistic extensions of the SM in terms of few parameters (the coefficients of the
higher-dimensional operators). Consider a generic new physics model, where the suppression
of FCNC processes is due only to the large masses of the particles that mediate them, i. e.
the couplings are of order one. We can find the bounds on the scale Λ in order to satisfy
the measurements of FCNC decay rates. Depending on the flavor process under analysis, this
model-independent approach gives bounds of the order:

Λ & 102 TeV. (1.2)

This implies that any new physics at TeV scale must have a highly-tuned flavor structure, i. e.
the coupling ci should have very suppressed values. As an example of the constraint that can
be set following this method, Tab. 1.1 lists the bounds derived from measurements related to
the mixing of neutral mesons for some operators that change the flavor of the decaying quark
by two unit in Eq. (1.1).2

This gives an overview of the basics of the indirect method in searching for new physics with
flavor constraints. Experimental measurements allow us to test and establish general features
of the new theory (either its energy scale or its flavor structure), which hold independently
of the dynamical details of the model. The phenomenology of the B, D, and K mesons is
extremely useful for this purpose [12]. This thesis presents the analysis of two decay modes
of the B0

s meson, B0
s→J/ψφ and B0

s→φφ, which allows a measurement of the B0
s -B̄0

s mixing
observables. The experimental effort to investigate the B0

s phenomenology has been started only
recently, and still limited information in the B0

s -meson sector of the CKM matrix is available [9],
2We will discuss the phenomenology of neutral-mesons mixing in Sect. 1.3.
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1.2 Flavor constraints of the SM

although theoretically-solid predictions for some B0
s -decays that are experimentally accessible

are provided [13]. Moreover, recent measurements point to anomalies in the B-physics sector
which could be explained by new physics in the B0

s -B̄0
s mixing amplitude [37, 13]; for instance,

the 4σ departure from the SM expectation of the dimuon asymmetry observed by D0, could
be tightly correlated with new physics amplitudes in the B0

s -B̄0
s mixing [22]. Providing further,

more precise, even redundant, experimental information is therefore mandatory.

1.2 Flavor constraints of the SM

The starting point of the indirect approach to probe the new physics scale is that, in several
realistic new physics models, we can neglect non-standard effects in all cases in which the
corresponding effective operator is generated at tree level within the SM [6]. This general
assumption implies that the experimental determination of the quark-mixing couplings via
tree-level processes is free from the contamination of new physics contributions. We now briefly
summarize the current knowledge on the quark flavor structure of the SM model to emphasize
the need to look at loop-mediated process for searching for non-SM effects.

Within the SM the only source of flavor-changing interactions stems from the Yukawa sector
of the quarks and it is originated from a rotation of the quarks flavor basis with respect to the
weak-interaction basis. Such rotation is given by a unitary 3× 3 complex matrix,

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 ,
that is the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix [10, 11]. As a result
of the fact that VCKM is not diagonal, the W± gauge bosons (only them) couple to quark
(mass eigenstates) of different generations. Thus FCCC occurs at tree-level, while FCNC are
mediated only by loops (Fig. 1.1). The current knowledge of the CKM matrix elements moduli,
as obtained from Ref. [12], is the following:

|VCKM| =


0.97426+0.00022

−0.00014 0.22539+0.00062
−0.00095 0.003501+0.000196

−0.000087
0.22526+0.00062

−0.00095 0.97345+0.00022
−0.00018 0.04070+0.00116

−0.00059
0.00846+0.00043

−0.00015 0.03996+0.00114
−0.00062 0.999165+0.000024

−0.000048

 . (1.3)

Using just the observed hierarchy |Vub| � |Vcb| � |Vus|, and |Vcd| � 1, one can expand VCKM

in powers of λ = |Vus|, the sine of the Cabibbo angle [38]. The expansion up to and including
terms O(λ5) is given by [39]:

VCKM =

 1− λ2/2− λ4/8 λ Aλ3(ρ− iη)
−λ+A2λ5[1− 2(ρ+ iη)]/2 1− λ2/2− λ4(1 + 4A2)/8 Aλ2

Aλ3[1− (1− λ2/2)(ρ+ iη)] −Aλ2 +Aλ4[1− 2(ρ+ iη)]/2 1−A2λ4/2

+O(λ6), (1.4)

where A, ρ and η are the remaining real parameters, all of order unity (λ ≈ 0.23, A ≈ 0.80,
ρ ≈ 0.14, η ≈ 0.34 [12]).
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Chapter 1. Search for new physics in the B0
s -B̄0

s mixing

The unitarity of the CKM matrix, VCKMV
†

CKM = 1, leads to a set of 9 equations,∑
k∈{u,c,t}

VkiV
?
kj = δij (i, j ∈ {d, s, b}).

Six of them require the sum of three complex quantities to vanish. They are termed triangular
because they define triangles in the complex plane. Remarkably, the area of all these triangles
is a constant equals to JCP /2. The symbol JCP is the Jarlskog invariant, a combination of the
CKM elements that quantifies the violation of the charge-parity (CP ) symmetry in the SM, i. e.,
the non-invariance of physics processes when all spatial coordinates are inverted and particles
are replaced by their antiparticles. The CP symmetry is violated only if JCP 6= 0, as confirmed
by current measurements [12]: JCP = (2.884+0.253

−0.053) · 10−5. Any CP -violating quantity in the
SM must be proportional to JCP , reflecting the fact that a single complex phase appears in the
3 × 3 CKM matrix. This feature makes the SM implementation of CP violation (in principle)
very predictive and all possible CP asymmetry measurements are correlated by their common
origin from a single parameter of the theory.

One triangular equation of particular phenomenological interest is referred to as the unitarity
triangle (UT):

VudV
?
ub + VcdV

?
cb + VtdV

?
tb = 0; (1.5)

The UT can be rewritten in the normalized form:

Rte
−iβ +Rue

iγ = 1 (1.6)

where

Rt =
∣∣∣∣VtdV ?

tb

VcdV
?
cb

∣∣∣∣, Ru =
∣∣∣∣VudV ?

ub

VcdV
?
cb

∣∣∣∣, β = arg
(
− VcdV

?
cb

VtdV
?
tb

)
, γ = arg

(
− VudV

?
ub

VcdV
?
cb

)
, (1.7)

are, respectively, two sides and two angles of the UT. The third side is the unity vector, and
the third angle is α = π − β − γ = arg(−VtdV ?

tb/(VudV ?
ub)). Given the definition in Eq. (1.6), all

the information related to the UT is encoded in one complex number:

ρ̄+ iη̄ = Rue
iγ (1.8)

which corresponds to the coordinates (ρ̄, η̄) in the complex plane of the only nontrivial apex of
the UT. One can assume that flavor-changing processes are fully described by the SM and can
check the consistency of the various measurements with this assumption. The values of λ and
A are known accurately from, respectively, K → πlν and b→ clν decays [8]:

λ = 0.2257± 0.0010, A = 0.814± 0.022. (1.9)

Then, one can express all the relevant observables as a function of the two remaining parameters,
ρ and η (or equivalently, ρ̄ and η̄), and check whether there is a range in the (ρ, η) plane that
is consistent with all measurements. The resulting constraints in the (ρ̄, η̄) plane are shown in

6
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γ

γ

α

α

dm∆

Kε

Kε

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

e
xc

lu
d
e
d
 a

t C
L
 >

 0
.9

5

α

βγ

ρ

­1.0 ­0.5 0.0 0.5 1.0 1.5 2.0

η

­1.5

­1.0

­0.5

0.0

0.5

1.0

1.5

excluded area has CL > 0.95

Summer 11

CKM
f i t t e r

Figure 1.2: Constraints in the (ρ, η) plane. The red hashed region of the global combination corresponds
to 68% CL.

Fig. 1.2. The consistency of the various constraints is impressive. Specifically, the following
ranges for ρ and η can account for all the measurements [8]:

ρ = +0.135+0.031
−0.016, η = +0.349± 0.017. (1.10)

Given the very good overall consistency of the global fit, it is very likely that flavor violation
and CP violation in flavor-changing processes are dominated by the CKM mechanism. Such re-
markable success of the SM suggests that arbitrary new physics contributions in flavor-changing
processes that occurs at tree-level are highly suppressed with respect to SM contributions [6].
A greater chance for discovering new physics effects might reside in the study of loop-mediated
FCNC transitions, such as the ones that mediates neutral-mesons oscillations described in the
next section.

1.3 B0
s-B̄0

s mixing bounds on new physics

Neutral mesons, with the exception of the pion, are subject to the mixing, i. e., oscillations
from particle to antiparticles through weak transitions that change the meson flavor by two
units, ∆F = 2. For example, the FCNC quark transition that underlies the B0

s -B̄0
s oscillations,

b → b̄ss̄, changes the beauty flavor, ∆B = 2; Feynman diagrams describing these transitions
are shown in Fig. 1.3. We now briefly recall the mixing phenomenology and then discuss the
constraints imposed by measurements of B0

s -B̄0
s mixing observables on new physics using the

effective Lagrangian, Eq. (1.1).
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Figure 1.3: Feynman diagrams of b → b̄s̄s transitions that underlie the B0
s -B̄0

s mixing. These two
diagrams are called box diagrams.

The system involves the meson states M0 and M̄0, and all the states they can decay
into.3 Before the meson decays, the state is a coherent superposition of the two meson states,
|M0(0)〉 + |M̄0(0)〉. The time evolution of the state is determined by a 2 × 2 hamiltonian H,
that can be written in terms of hermitian matrices, M and Γ, as H = M− i

2Γ. The matrices
M and Γ are associated with transitions via off-shell (dispersive) and on-shell (absorptive) in-
termediate states, respectively. Off-diagonal elements M12 and Γ12 (of M and Γ, respectively),
are associated with flavor-changing transitions M0 � M̄0. Since H is not diagonal, the meson
states, M0 and M̄0 are not mass eigenstates, and thus do not have well defined masses and
widths. We denote the eigenvectors of H as the light and heavy eigenstates, ML and MH ,
respectively, with masses mL < mH . Such eigenstates are given by

|ML,H〉 = p|M0〉 ± q|M̄0〉, (1.11)

with the normalization |p|2 + |q|2 = 1. The time evolution of the mass eigenstates is governed by
the two eigenvalues, mH − i

2ΓH and mL− i
2ΓL, of which the real and imaginary parts represent

their masses and decay-widths, respectively. Due to the CPT theorem [41], the mass ofM0 and
M̄0 and their lifetime must be the same, thus, M11 = M22 and Γ11 = Γ22. The average mass
and width are given by

m = mH +mL

2 = M11 = M22,

Γ = ΓH + ΓL
2 = Γ11 = Γ22.

(1.12)

The mass difference ∆m and the width difference ∆Γ are defined as follows:

∆m = mH −mL,

∆Γ = ΓL − ΓH .
(1.13)

Note that ∆m is positive by definition, while the sign of ∆Γ is to be determined experimentally.
We choose the definition that corresponds to a positive decay width difference in the B0

s system,
∆Γs > 0, in the SM. Its sign has been determined very recently by the LHCb Collaboration to
be positive [42].

3The formalism of neutral-mesons mixing described here and in App. A is discussed in details in Ref. [40].
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s mixing bounds on new physics

We define the phases φM = arg(M12) and φΓ = arg(−Γ12), and we introduce the relative
phase between M12 and Γ12:

φ = φM − φΓ, (1.14)

which is the phase of the interference between the mixing amplitude and the amplitude of all
decays of M0 and M̄0 into common final states. Then, one can write ∆m and ∆Γ in terms of
|M12|, |Γ12| and φ. A simplified solution may be derived when ∆m � ∆Γ and |M12| � |Γ12|,
which is the case that empirically holds for B0

s mesons:

∆m = 2|M12| +O(o2), (1.15)
∆Γ = 2|Γ12| cosφ +O(o2), (1.16)

where o = |Γ12/M12| ∼ 10−3. We also need an approximate expression for q/p. It is convenient
to define a small parameter:

a = Im(Γ12M
?
12) =

∣∣∣∣ Γ12
M12

∣∣∣∣ sinφ, (1.17)

and then q/p becomes:
q

p
= −e−iφM

[
1− a

2
]

+O(o2). (1.18)

We can predict meson-antimeson mixing and FCNC amplitudes within the SM and compare
them with the available experimental information on ∆mq, ∆Γq, and φq, thereby constraining
the couplings of the ∆F = 2 operators in Eq. (1.1) and derive bound, as for instance the ones in
Tab. 1.1. The subscript q takes the value d to indicate an observable related to B0-B̄0 mixing,
and the value s for B0

s -B̄0
s mixing. We will focus on the B0

s mesons from now. Deviations from
the SM ∆B = 2 amplitude induced by new physics effects might be conveniently parametrized
in terms of the shift induced in the modulo, |∆s|, and in the CP -violating phase, φNP

s [6]:

∆s ≡
〈B0

s |Leff |B̄0
s 〉

〈B0
s |LSM|B̄0

s 〉
= |∆s|e2iφNP

s , (1.19)

such that M s
12 = M s,SM

12 ∆s. Equation (1.19) is the basic equation for the search of new physics
in the phenomenology of the mesons oscillations in the model independent approach. In B0

s -B̄0
s

mesons oscillations, the magnitude of the SM amplitude is suppressed both by the GIM mech-
anism and by the hierarchical structure of the CKM matrix. The top quark give the dominant
contribution in the box diagrams (Fig. 1.3):

A∆B=2
SM ∝ G2

Fm
2
t

16π2 (V ?
tiVtj)2〈B̄0

s |O|B0
s 〉F

(
M2
W

m2
t

)
, (1.20)

where GF is the Fermi constant of the weak interaction; mt and MW are the mass of the top
and W boson, respectively; 〈B̄0

s |O|B0
s 〉 is the matrix element in terms of the ∆B = 2 operator

of the SM; F is a function of O(1) that gives the dependence on the masses of the top quark
and the W boson, which are the virtual intermediate particles in this amplitude [6].
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s mixing

Calculation of ∆ms are proportional to |A∆B=2
SM |. Comparison of experimental data with

SM expectation of ∆ms tells us that the magnitude of the new physics amplitude cannot be
larger than the SM amplitude, since:

∆ms = 2|M s,SM
12 ||∆s|. (1.21)

The first measurement of ∆ms was published by CDF in 2006: ∆ms = 17.77 ± 0.11(stat) ±
0.07(syst) ps−1 [43]. The current world average is ∆ms = 17.69 ± 0.08 ps−1 [9]. Comparison
of the experimental result with theoretical calculation, ∆ms = 17.3 ± 2.6 ps−1 [13], does not
allow large deviations in modulo with respect to the SM for the B0

s -B̄0
s mixing amplitude.4

The constraint is more stringent if we consider the ratio ∆md/∆ms in which the hadronic
uncertainties cancel out to a large extent [13].

In a similar way, we can compare the prediction of the decay width difference ∆Γs with mea-
surements. The determination of ∆Γs stems from the dispersive part of the B0

s -B̄0
s amplitude,

Γs12, (Eq. (1.16)) and is much more complicated than the calculation of ∆ms, because one can
not integrate out at once all the particles inside the loop of the box diagram. A recent theoreti-
cal determination of ∆Γs yields to 0.087±0.021 ps−1 in the SM [13]. First attempts to measure
∆Γs with the B0

s→J/ψφ decay were pursued at Tevatron by CDF and D0 since 2007, obtain-
ing some hints of a nonzero value [44, 45]. The first nonzero measurement with a significance
greater than 5σ was presented by LHCb in March 2012 [46], with ∆Γs = 0.116 ± 0.019 ps−1.
The most recent result from D0 reads ∆Γs = 0.163±0.065 ps−1 [19]; the latest result from CDF
is presented in this thesis, while the previous CDF measurement is ∆Γs = 0.075 ± 0.036 ps−1

[18]. The current average, including also constrains from other decays, is 0.091± 0.011 ps−1 [9],
in agreement with the SM expectation. We will discuss the new physics bound that might be
obtained from these measurement.

Consider the quark transitions underlying decays common to B0
s and B̄0

s . We can schemati-
cally write each contribution of these decays in term of ai amplitudes and CKM-matrix elements:

VcbV
?
cs︸ ︷︷ ︸

O(λ2)

aTcc̄s + VubV
?
us︸ ︷︷ ︸

O(λ4)

aTuūs + V ?
tbVts︸ ︷︷ ︸
O(λ2)

aPsūu + V ?
tbVts︸ ︷︷ ︸
O(λ2)

aPsc̄c + V ?
tbVts︸ ︷︷ ︸
O(λ2)

aP
sd̄d

+ V ?
tbVts︸ ︷︷ ︸
O(λ2)

aPss̄s + . . . (1.22)

The apex T stands for a tree-mediated amplitude; the apex P stands for a loop-mediated
transition named penguin; they are shown as Feynman diagrams in Fig. 1.4(a) and Fig. 1.4(b),
respectively. The penguin transition is dominated by the t-quark contribution in the loop in
the same way as the top dominates in the box diagram. Loop-mediated contributions with the
exchange of the top quark can enter only in the off-shell part of the mixing amplitude. Being Γ12

the dispersive part of the mixing amplitude, the leading contribution is given by the two first
term in Eq. (1.22), representing b→ cc̄s and b→ uūs tree transition, respectively. The former
is Cabibbo-suppressed, VcbV ?

cs ∼ O(λ2), the latter doubly Cabibbo-suppressed, VubV ?
us ∼ O(λ4).

4The theoretical uncertainty is currently dominated by uncertainties in the hadronic matrix calculation due
to non perturbative-QCD contribution.
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Figure 1.4: Tree-level b → qq̄s transition in (a) and penguin b → sq̄q transition in (b). The symbol g
in the penguin diagram stand for a gluon boson.

Then b→ cc̄s tree transitions dominate Γs12, which are highly CKM constrained and disfavored
for searching for new physics effects. Thus, we reasonably assume no NP effects in Γs12. Some
authors [47] have challenged this assumption by postulating new B0

s decay channels with large
branching fractions, however, any competitive new decay mode will increase the total B0

s width
which is severely constrained by precise measurements of the B0

s lifetime [9, 8, 13]. The only
way for NP to affect ∆Γs is the phase φs, which can only lower ∆Γs compared to its SM value
[13, 14]:

∆Γs = 2|Γs,SM
12 | cos

(
φSM
s + φNP

s

)
. (1.23)

1.3.1 The B0
s -B̄0

s mixing phase

The phase φs is the difference of the phase of φsM = arg(M s
12) and φsΓ = arg(−Γs12) of Eq. (1.14):

φs = φsM − φsΓ. (1.24)

The two phases φsM and φsΓ depend on the convention of the CKM parameterization. However,
the difference φs is phase-independent. In the SM its value is extremely small [13]:

φSM
s = −0.0038± 0.0010. (1.25)

This is caused by two effects [14]. The first stems from the fact discussed above that Γs12 is
dominated by the decay b → cc̄s, and (VcbVcs) is close to mixing phase, φsM = 2 arg(VtbV ?

ts).
Second, the small correction to φsΓ involving VubVus is further suppressed by a a factor m2

u/m
2
b .

In the search for a sizable new physics contributions to φs these doubly-Cabibbo suppressed
transitions can safely be neglected, as we will do in the following. For this reason, it is customary
to refer to new physics contribution to φs as new contribution to the mixing phase φsM . Despite
the strict bounds on |A∆B=2

NP |, new physics operator can participate in the B0
s -B̄0

s transitions,
and enhance the phase φs with respect to the value in Eq. (1.25) [14]:

φs = φSM
s + φNP

s (1.26)
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Figure 1.5: Bounds in the (Re∆s, Im∆s) plane from measurements as of fall 2010 [12]. The orange
circle represents the bounds on |∆s| given by ∆ms and ∆md measurements; the blue bands are the
constraints from φs; the light-grey band are derived from measurements of ∆Γs and of the B0

s lifetime,
τs; the dark-grey band is given by measurements of Absl. The SM point is (1, 0).

When we started the work described in this thesis, the phase φs was very poorly constrained by
experiments [9]. A summary of the situation in fall 2010 is summarized by the plot in Fig. 1.5,
which show the experimental bounds in the (Re∆s, Im∆s) plane [12]. At that time, new physics
in B0

s -B̄0
s mixing could accommodate the different deviations from the SM expectations, such as

the measurement by the D0 Collaboration of the dimuon asymmetry. The dimuon asymmetry
Absl is a linear combination of the semileptonic asymmetries in the B0 and B0

s systems:

Absl = Cdadsl + Csassl. (1.27)

where the coefficients Cd and Cs depend on the mean mixing probabilities and the production
fractions of B0 and B0

s mesons, respectively. The other two parameters in Eq. (1.27) are the
CP asymmetries in charged-current semileptonic decays of neutral B mesons, B0

(s), B̄
0
(s)→`±X:

aqsl =
Γ(B̄0

(s)→`+X)− Γ(B0
(s)→`−X)

Γ(B̄0
(s)→`+X) + Γ(B0

(s)→`−X)
= 1− |q/p|4

1 + |q/p|4 = aq +O((aq)2). (1.28)
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where aq is the parameter of Eq. (1.17). If aq is zero, there is no CP violation in mixing.
In the SM [13]:

Ab,SM
sl = (−0.0228+0.005

−0.006)%, (1.29)

which is negligible compared to present experimental sensitivity. The D0 measurement is largely
deviating from the SM expectation with a significance of about 4σ [22]: Absl = (−0.787 ±
0.172(stat) ± 0.093(syst))%. Single measurements of adsl [48] and assl [49, 50] are also provided
with different methodologies, but the large uncertainties prevent a definitive conclusion. If the
discrepancy is originated from new physics in the B0

s sector, it should be tightly correlated with
φs:

assl = |Γs,SM
12 |

|M s,SM
12 |

sin(φSM
s + φNP

s )
|∆s|

(1.30)

The model independent fit of all flavor data in Fig. 1.5 is consistent with no new physics in B0
s -B̄0

s

mixing within about 2 standard deviation, but there is still some room for sizable deviations
from the SM expectations, being φs very poorly constrained. Adding experimental information
on this phase is therefore mandatory. The mixing phase is accessible via the measurement of a
time-dependent CP asymmetry as we are going to explain in the next section.

1.4 CKM phases from time-dependent CP asymmetries

As far as decays of B mesons are concerned, CP violation appears as a difference between the
rates of a decay and its CP conjugate and is accounted for by the direct CP asymmetry:5

ACP = Γ(B̄ → f̄)− Γ(B → f)
Γ(B̄ → f̄)− Γ(B → f)

=
|Āf̄ |2 − |Af |2

|Āf̄ |2 + |Af |2
(1.31)

where f is the final state and f̄ is its CP -conjugate states, and Af and Āf̄ are the two decay
amplitudes. Charged mesons can violate CP only in the decay. In the case of neutral mesons,
B0

(s), CP violation can also occur in the mixing itself and in the interference between decay
occurring with and without mixing. Those occurrences allow for additional opportunities to
observe CP violation in neutral mesons.

The deviation of |q/p| from one, i. e., a 6= 0, is a measure of CP violation in the mixing, as
shown by the expression of the semileptonic CP asymmetry of Eq. (1.28). In the case of the B0

s

meson, the SM predict that CP violation in mixing can be neglected. Indeed, the SM value is
assl = (0.0019± 0.0003)% [13]. We will assume |q/p| = 1 from now on, which means that q/p is
determined by a pure phase, and focus on the case of the B0

s meson.
A third manifestation of CP violation in neutral meson decays is through the interference

between mixing and decay. The key observable in this case is the time-dependent CP asymmetry
5We point to Ref. [40] for a complete description of CP violation in mesons decays and mixing.
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s mixing

of the decays into a final state f accessible to both B0
s and B̄0

s . We consider final states that
are CP eigenstates:

CP |f〉 = η|f〉, (1.32)

where η can be ±1 depending on the intrinsic CP parity of f . We write the decay amplitude as
Af and Āf , respectively for the decay B0

s → f and B̄0
s → f . Neglecting CP violation in mixing,

the time-dependent CP asymmetry is:

ACP (t) = Γ(B0
s → f̄)− Γ(B̄0

s → f)
Γ(B0

s → f̄) + Γ(B̄0
s → f)

' Cf cos(∆mst)− Sf sin(∆mst)
cosh(∆Γst/2) + S ′f sinh(∆Γst/2) .

(1.33)

where:
Cf = 1− |λf |2

1 + |λf |2
, Sf = 2Im(λf )

1 + |λf |2
, S ′f = 2Re(λf )

1 + |λf |2
, (1.34)

and the key complex parameter that encodes CP violation is:

λf ≡ η
q

p

Āf
Af

. (1.35)

Hence, CP violation happens when λf either carries a nonzero phase or has a non-unitary
modulus and Eq. (1.33) exhibits two different sources of CP violation: direct CP violation
probed by (1−|λf |2) (with Cf ' −ACP ); and interference CP violation, probed by Im(λf ) 6= 0.
The derivation of the time-dependent CP asymmetry is presented in App. A.

There are two types of phases that may appear in the amplitudes Af and Āf .6 Complex
parameters in any Lagrangian term that contributes to the amplitude will appear in complex
conjugate form in the CP conjugate amplitude. Thus, their phases appear in Af and Āf with
opposite signs and these phases are CP -odd. In the SM, this phases are relative phases of the
CKM matrix elements which enter in the quarks flavor-transitions, hence CP -odd phases are
also called weak phases.

A second type of phases can appear in decay amplitudes even when the Lagrangian is real.
They stem from possible contributions of intermediate on-shell states in the decay process.
These phases are the same in Af and Āf̄ and are therefore CP -even. One type of such phases
are given by rescattering due to the strong interactions in the final state (final-state-interaction,
FSI). For this reason these phases are called strong phases. The FSI allows the various final
states of the weak decay to scatter elastically or inelastically via non-weak interaction. For
instance, the total amplitude can include contributions from processes B0

s → f ′→ f , where
the decay B0

s→ f ′ is weak, and the state f ′ subsequently scatters into f via the strong (or
electromagnetic) interaction. Strong phases are hard to calculate since they usually originate
from non-perturbative QCD dynamics.

6There is a third kind of phases: spurious phases due to an arbitrary choice of phase convention, which do
not originate from any dynamics. For simplicity, we set these unphysical phases to zero.
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1.4 CKM phases from time-dependent CP asymmetries

If there are two (or more) contributions to the decay amplitude Af (with modulo ai, weak
phases φi, and strong phases δi), for instance, from two different Feynman diagrams contributing
to the process:

Af = |a1|ei(φ1+δ1) + |a2|ei(φ2+δ2),

Āf = η(|a1|ei(−φ1+δ1) + |a2|ei(−φ2+δ2)),
(1.36)

then:

λf = −ηe−2iΦ1 1 + rei(Φ1−Φ2)ei∆

1 + re−i(Φ1−Φ2)ei∆
(1.37)

where r = a2/a1, Φ1 = φ1 − φsM , and Φ2 = φ1 − φsM . If a2 is much smaller than a1, we obtain:

Cf ' 2r sin(Φ1 − Φ2) sin ∆, (1.38)
Sf ' η[sin 2Φ1 − 2r cos 2Φ1 sin(Φ1 − Φ2) cos ∆] (1.39)
S ′f ' η[cos 2Φ1 + 2r cos 2Φ1 sin(Φ1 − Φ2) cos ∆]. (1.40)

The theoretical estimate of CP violation is then plagued by hadronic uncertainties of the strong
phases and of r and the interference-CPviolation observable does not provide a clean measure-
ment of a single weak phase. For this reason, finding peculiar situations where these problems
can be overcome is crucial. This occurs in decays that are dominated by a single weak phase,
i. e., when there is only one amplitude contributing to Af ,

Af = |a|eiφAeiδ,
Āf = η|a|e−iφAeiδ,

(1.41)

In that case, the calculation of λf is also free of hadronic uncertainties:

λf = −ηe2i(φsM−φA). (1.42)

The crucial point is that both the moduli of the decay amplitudes and the FSI effects that those
amplitudes contain cancel out in λf . This effectively eliminates the hadronic uncertainties from
the computation of the CP -violating parameter λf . Note that |λf |2 = 1, so that direct CP
violation in Eq. (1.33) is canceled out. This is expected, since the decay amplitude has only
one contribution. What really matter is only the phase:

φf ≡ arg(λf ) = 2(φsM − φA). (1.43)

The phase φf can be expressed in term of the CKM matrix element and depending on the meson
decays under analysis, the time-dependent CP asymmetries allow for measuring a specific angle
of one of the unitary triangles. Note that the phase φf of Eq. (1.43) is different from the phase
2φs of Eq. (1.24), because in general φA 6= φsΓ. However, for particular decays the measurement
of φf allow a clean measurement of φs and φsM . For this reason, we analyze the form assumed
by φf in B0

s→J/ψφ and B0
s→φφ decays in the following section.
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Figure 1.6: Leading amplitudes of the B0
s→J/ψφ decay (a) and of the B0

s→φφ decay (b).

1.5 B0
s-B̄0

s mixing phase in B0
s→J/ψφ and B0

s→φφ decays

Neglecting CP violation in B0
s -B̄0

s mixing, we write the pure phase of q/p as follow:

φsM = arg
(
q

p

)
= arg

(
VtsV

?
tb

V ?
tsVtb

)
. (1.44)

The underlying quark transitions of B0
s→J/ψφ decays is the flavor-changing decay b→ cc̄s,

where the s quark of the B0
s meson doesn’t take part in the weak transition, and acts as spectator

(see Fig. 1.6(a)). Such amplitude can be parametrized as the sum of a leading tree contribution
(Fig. 1.4(a) with qq̄ = cc̄) and a second term from the b→ scc̄ penguin contribution, apeiθe±iγ ,
(Fig. 1.4(b) with qq̄ = cc̄):

Acc̄s, Ācc̄s ∝
[
1 +

(
λ2

1− λ2

)
ape

iθe±iγ
]
. (1.45)

Naively, the parameter apeiθ measures the ratio of penguin- to tree-diagram-like amplitude
and is loop-suppressed [14]. The weak phase factor eiγ associated to ap is strongly Cabibbo
suppressed by λ2. Hence, we take only the leading tree contribution to the b → cc̄s. Since
only one amplitude contribute to the decay, there is no direct CP violation. Thus, we set
|Acc̄s| = |Ācc̄s| and we have that

Ācc̄s
Acc̄s

= V ?
csVcb
VcsV ?

cb

(1.46)

is given by a pure phase. Putting together the expression of Ācc̄s/Acc̄s and q/p, we have

φcc̄s ≡ arg(λcc̄s) = arg
(
VtsV

?
tb

V ?
tsVtb

V ?
csVcb
VcsV ?

cb

)
= −2βs (1.47)

The phase βs is the small angle stemming from the following unitarity equation

VusV
?
ub + VcsV

?
cb + VtsV

?
tb = 0, (1.48)
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Re

βs∣∣∣ VtsV ?tbVcsV ?cb

∣∣∣∣∣∣VusV ?ubVcsV ?cb

∣∣∣

Figure 1.7: Graphical representation of the unitary triangle relevant for CP violation in the B0
s sector

given by Eq. (1.48) normalized to VcsV ?cb; the squashed angle is βs. The angles are not to scale.

which represents the squashed triangle of Fig. 1.7, once it is normalized to VcsV ?
cb. In analogy

of the angle β of the UT (Eq. (1.5)), βs is defined as

βs = arg
(
− VtsV

?
tb

VcsV ?
cb

)
(1.49)

and, from the experimental constraints on the CKM-matrix elements, takes the value [13]:

2βSM
s = 0.0363+0.0016

−0.0015. (1.50)

These definitions can be related to φs of Eq. (1.26). Both φs and βs are predicted to be
small in the SM. If new physics is present in B0

s -B̄0
s mixing, it will contribute to both phases,

and they can be written as combinations of the SM and NP contributions. According to the
chosen phase conventions [14]:

φs = φSM
s + φNP

s and 2βs = 2βSM
s − φNP

s . (1.51)

With the current experimental sensitivity, the SM contributions φSM
s and 2βSM

s can be treated
as negligibly small, and the new physics phase would be expected to dominate. In this case,
the measured phases can be related as:

2βs ' −φs. (1.52)

Therefore, we will refer to the measurement of the phase βs as the measurement of new physics
contribution to the mixing phase. We will describe in the next chapter how we can access to βs
through the time-evolution of B0

s→J/ψφ decays.
Additional information on the origin of the new physics contribution to φs can be inferred

in principle by analyzing the time-dependent CP asymmetry of B0
s→φφ decays. In the SM the

amplitude of the B0
s→φφ decay is dominated by the penguin amplitude shown in Fig. 1.6(b).7

7Again, the s quark of the B0
s is a spectator with respect to the weak transition.
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The decay amplitude can be decomposed in three contributions, aq, one for each quark partici-
pating in the loop (q = u, c, t), as follow [15]:

Ass̄s ∝ V ?
tbVtsat + V ?

cbVcsac + V ?
ubVusau

= V ?
tbVts︸ ︷︷ ︸
O(λ2)

atc + V ?
ubVus︸ ︷︷ ︸
O(λ4)

auc, (1.53)

where in the second line, the unitarity of the CKM matrix is used to eliminate the c-quark
contribution, and we have defined atc ≡ at−ac and auc ≡ au−ac. The aac amplitude is doubly-
Cabbibo suppressed, V ?

ubVus ∼ O(λ4), and we will neglect it. Considering only the t-quark
amplitude in Ass̄s, there cannot be CP violation in the decay and Āss̄s/Ass̄s is a pure phase,
being |Ass̄s| = |Āss̄s|. We have:

Āss̄s
Ass̄s

= V ?
tsVtb
VtsV ?

tb

(1.54)

Putting together this expression with q/p in Eq. (1.44):

φss̄s ≡ arg(λss̄s) = arg
(
VtsV

?
tb

V ?
tsVtb

)
︸ ︷︷ ︸

φs,SM
M

+ arg
(
V ?
tsVtb
VtsV ?

tb

)
︸ ︷︷ ︸
−φs,SM

M

= 0 (1.55)

Thus, there is no CP -violation in the B0
s→φφ decays. The presence of subleading transitions

in the decay amplitude with the same CKM coupling but different QCD-topology with respect
to the b→ ss̄s penguin-amplitude doesn’t spoil the conclusion of no CP -violation [51].8

Now, we can have the following scenarios. New physics is present in ∆B = 2 transition but
not in ∆B = 1. In this case, the phase φsM will be altered, φsM = φs,SM

M +φs,NP
M , while the phase

of the decay remains φf = arg(Āss̄s/Ass̄s) = −φs,SM
M , then:

φss̄s = φs,NP
M . (1.56)

If there is new physics for the ∆B = 1 penguin decay, then the interfering amplitudes are the SM
decay amplitude, ASM

ss̄s , and the new physics decay amplitude, ANP
ss̄s: we can have an alteration

of λss̄s through Eq. (1.37), resulting in φss̄s 6= 0 (and additional strong phases), independently
on what happens to the mixing phase. In any case, the crucial point is the following: we have
CP violation in B0

s→φφ only if a new physics amplitude contributing either in the decay or in
the mixing (or both) is present with a different weak phase with respect to the SM amplitudes.

The small data samples available for this decay mode, which suffer a lower decay rate with
respect to the B0

s→J/ψφ decays, do not allow for a suited analysis for measuring φss̄s. However,
we can infer the presence of new physics through a measurement of CP -violating asymmetries
that are expected to vanish in the SM, given the above arguments. Such CP -violating asymmetry
stems from the rich dynamic of B0

s→φφ decays, which is described in the next chapter.
8Some phenomenological models would demand for sub-leading amplitudes such as the penguin-annihilation

[52, 51] to explain the hierarchy of the polarization amplitudes measured in B0
s→φφ [2] decays and other b→ s

penguin-dominated decays of the B0 and B0
s mesons. Polarization amplitudes are defined in details in Sect. 2.1.
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Chapter 2

Phenomenology of
B0
s→J/ψφ and B0

s→φφ decays

In this chapter we discuss the phenomenology of the B0
s→J/ψφ and B0

s→φφ decays. We present the
angular distributions of the decays and the time-development of the angular amplitudes which provides
the access to the B0

s -B̄0
s mixing phase, and we introduce the two time-integrated asymmetries of B0

s→φφ

decays that allow to measure the CP violation in this decay mode. Finally, we present the experimental
strategy of the measurements presented in this dissertation.

2.1 Angular amplitudes of B→V1V2 decays

The nomenclature B→ V1V2 stands for the class of B-meson decays into two vector mesons,
which are spin-1 particles. Both the B0

s→J/ψφ and the B0
s→φφ decays belong to this category.

The conservation of the angular momentum implies that there are three allowed states of rel-
ative angular momentum for the V1V2 pair, L = 0, 1, 2. Thus, the overall decay amplitude is
decomposed in three independent amplitudes, which can be expressed in terms of three equiv-
alent bases: the basis of partial waves (S, P,D), the transversity basis (A0, A‖, A⊥), and the
helicity basis (H0, H+, H−). Partial waves are directly related to the states of relative angular
momentum: the S-wave is the L = 0 state, the P -wave is the L = 1 state, and the the D-wave
is the L = 2 state. The transversity basis is convenient for identifying the CP parity of the final
state. The transversity is the projection of the spin in the plane orthogonal to the particle’s
momentum; for a massive meson, it corresponds to a linear polarization: A0 is the longitudi-
nal polarization, while A‖ and A⊥ are the transverse polarization with the linear polarization
vectors parallel and perpendicular to each others, respectively. The helicity basis is useful to
express the amplitude in terms of the helicity states, λ = 0,±1. The helicity is the projection
of the spin along the momentum vector of a particle. For a massive meson, it corresponds to a
right/left circular polarization (λ = ±1) and one longitudinal polarization (λ = 0).

Consider the B→ V1V2 decay followed by the decays of the intermediate vector states,
V1→ P+

1 P
−
1 and V2→ P+

2 P
−
2 . In the rest frame of V1(2) we identify two decay angles, ϑ1(2)

and ϕ1(2), as the polar and azimuthal angles of the P+
1(2) momentum vector (see Fig. 2.1).
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The angular distribution of the decay is written as [53]:

d4Γ
dcosϑ1dcosϑ2dϕ1dϕ2

∝
∣∣∣∣∣ ∑
λ=0,±1

HλD
1?
λ,0(ϕ1, ϑ1, 0)D1?

λ,0(ϕ2, ϑ2, 0)
∣∣∣∣∣
2

(2.1)

where λ is the helicity of the Vi particle (the helicity of V1 and V2 is the same because of an-
gular momentum conservation); the D-function is defined in terms of the Wigner d-function,
Dj
mn(α, β, γ) = e−imαdjmn(β)e−inγ [8]. In Eq. (2.1), Hλ are the helicity amplitudes. The helicity

states are not CP eigenstates, being the helicity a pseudoscalar which changes sign under the
parity transformation. Therefore, the λ = ±1 amplitudes do not have definite CP quantum
number, but their combination, such as:

A0 ≡ H0

A‖ ≡
1√
2

(H+ +H−) ,

A⊥ ≡
1√
2

(H+ −H−) ,

(2.2)

have definite CP parity [54]. The amplitudes defined by Eq. (2.2) are the transversity ampli-
tudes. In the case of J/ψ and φ vector mesons, both V1 and V2 have intrinsic quantum numbers
C = −1 and P = −1; then, the A0 and the A‖ amplitudes are CP -even states, while the A⊥ is a
CP -odd state. It can be proved by relating the transversity amplitudes to the partial wave basis:

A0 = −
√

1
3S +

√
2
3D,

A‖ =
√

2
3S +

√
1
3D.

A⊥ = P.

(2.3)

Indeed, the S and D states are CP -even, and the P state is CP -odd, because of the relation:

CP |V1V2〉 = (−1)L|V1V2〉, (2.4)

In particular:
(CP )A0 = Ā0,

(CP )A‖ = Ā‖,

(CP )A⊥ = −Ā⊥.

(2.5)

and |A0| = |Ā0|, |A‖| = |Ā‖|, |A⊥| = |Ā⊥| if CP is conserved in the decay.
Whatever basis is chosen, the disentanglement of the amplitudes along with their interference

are inferred through the analysis of angular distributions of the decay’s product of the two vector
mesons. In the following sections the angular distributions in the different basis are presented.
The angular distributions of a B→ V1V2 decay can be written by using two basis for the
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Figure 2.1: Graphical representation of the helicity angles ϑ1, ϑ2 and ϕ = ϕ1 + ϕ2.

angles’ definition: the helicity angles basis and the transversity angles basis. Despite the same
nomenclature of the amplitudes bases, the angles convention is independent of the choice of the
amplitudes, i. e. one can use the transverse amplitudes to express the polarization of the decay
and the helicity angles to give angular distributions (and viceversa), since there exist trivial
transformations that relate the different bases, such as the one in Eq. (2.3). Since it is customary
to express the measurement of the polarization of a decay by using the transversity amplitudes,
in the following we relate the angular distributions to such amplitudes both in the case of the
helicity and the transversity angles. In particular, it is more convenient to describe the B0

s→φφ

angular distributions by use of the helicity angles, because such decay involves two identical
vector mesons, and the helicity basis is symmetric under the exchange V1 ↔ V2. On the other
hand, the B0

s→J/ψφ angular distributions are traditionally described with transversity angles.

2.1.1 Angles bases

The helicity angles are defined as [2]:

ω ≡ (ϑ1, ϑ2, ϕ), (2.6)

where ϑ1 and ϑ2 were introduced in the previous section, entering Eq. (2.1), as the polar angles
of the P+

i momentum in the Vi→P+
i P

−
i decays. The momenta of the two P+

i P
−
i pairs form

two decay planes intersecting at a straight line given by the momentum vector of Vi. The angle
ϕ is the angle between the decay plane of the P+

i P
−
i pairs, and it is defined as the sum of the

azimuthal angles ϕ ≡ ϕ1 + ϕ2 (Fig. 2.1).
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i
( )
K i h

J/ψ
i (cosϑ1, cosϑ2, ϕ)

1 |
( )
A 0|2 9

32π4 sin2 ϑ1 cos2 ϑ2

2 |
( )
A ‖|2 9

32π sin2 ϑ2(sin2 ϕ+ cos2 ϑ1 cos2 ϕ)
3 |

( )
A ⊥|2 9

32π sin2 ϑ2(cos2 ϕ+ cos2 ϑ1 sin2 ϕ)
4 Im(

( )
A ⊥

( )
A ?
‖) − 9

32π2 sin2 ϑ1 sin2 ϑ2 sin 2ϕ
5 Re(

( )
A ‖

( )
A ?

0) 9
32π
√

2 sin 2ϑ1 sin 2ϑ2 cosϕ
6 Im(

( )
A ⊥

( )
A ?

0) 9
32π sin 2ϑ1 sin 2ϑ2 sinϕ

Table 2.1: Angular functions in terms of helicity angles and corresponding transversity amplitudes for
the B0

s→J/ψφ decay entering Eq. (2.7).

From Eq. (2.1), we can derive the angular dependence with helicity angles and helicity
amplitudes. Then, using Eq. (2.3) we express the decay rate in terms of the transversity
amplitudes. The angular distributions depend on the spins of the final state particles P+

i P
−
i .

Considering the case of the B0
s→J/ψφ decay with J/ψ → µ+µ− and φ → K+K− decays,

we obtain [26]:1

1
( )
Γ

d3 ( )
Γ (

( )
B 0

s→J/ψφ)
dcosϑ1dcosϑ2dϕ

=

∑6
i=1

[
( )
K i h

J/ψ
i (cosϑ1, cosϑ2, ϕ)

]
|

( )
A 0|2 + |

( )
A ‖|2 + |

( )
A ⊥|2

, (2.7)

and the
( )
K i and hJ/ψi (cosϑ1, cosϑ2, ϕ) terms are given in Tab. 2.1. We have considered as ϑ1

the angle corresponding to the µ+, and ϑ2 the angle corresponding to the K+. If there are only
pseudoscalar mesons in the final states particles, as the case of the φ→K+K− decay in the
B0
s→φφ decay, we obtain [26]:

1
( )
Γ

d3 ( )
Γ (

( )
B 0

s→φφ)
dcosϑ1dcosϑ2dϕ

=

∑6
i=1

[
( )
K i hi(cosϑ1, cosϑ2, ϕ)

]
|

( )
A 0|2 + |

( )
A ‖|2 + |

( )
A ⊥|2

, (2.8)

with
( )
K i and hi(cosϑ1, cosϑ2, ϕ) terms given in Tab. 2.2.

1From now on, we use ( ) over a symbol x as a compact notation for indicating both x and its CP -conjugate
x̄.
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2.1 Angular amplitudes of B→V1V2 decays

i
( )
K i hi(cosϑ1, cosϑ2, ϕ)

1 |
( )
A 0|2 9

32π4 cos2 ϑ1 cos2 ϑ2

2 |
( )
A ‖|2 9

32π sin2 ϑ1 sin2 ϑ2(1 + cos 2ϕ)
3 |

( )
A ⊥|2 9

32π sin2 ϑ1 sin2 ϑ2(1− cos 2ϕ)
4 Im(

( )
A ⊥

( )
A ?
‖) − 9

32π2 sin2 ϑ1 sin2 ϑ2 sin 2ϕ
5 Re(

( )
A ‖

( )
A ?

0) 9
32π
√

2 sin 2ϑ1 sin 2ϑ2 cosϕ
6 Im(

( )
A ⊥

( )
A ?

0) 9
32π sin 2ϑ1 sin 2ϑ2 sinϕ

Table 2.2: Angular functions in terms of helicity angles and corresponding transversity amplitudes for
the B0

s→φφ entering Eq. (2.8).

In the transversity basis, illustrated in Fig. 2.2, the angles

Ω ≡ (Θ,Φ,Ψ) (2.9)

are defined in two different frames as follows [18]. Consider the B0
s→J/ψφ decay as example.

The first two angles are calculated in the rest frame of the J/ψ, and the third in the rest frame
of the φ. In the rest frame of the J/ψ, the φ meson direction defines the x-axis. The plane of the
J/ψ and the K+K− pair defines the xy-plane with a positive projection of the K+ momentum
along the y-axis, py(K+) > 0. The z-axis, defined in order to have a right-handed frame, is the
transverse axis which gives the name “transversity” to the basis; indeed, the transversity is the
particle’s spin projection along such axis. Then, we define Θ and Φ, respectively, the azimuthal
and polar angles of the µ+ momentum vector in the J/ψ rest frame; the third angle, Ψ, is the
angle between the K+ momentum vector and the vector opposite to the J/ψ momentum vector
in the φ meson rest frame.

It is possible to relate the transversity angles to the helicity angles. Considering again the
B0
s→J/ψφ as example, we have Ψ = ϑ2, and [54]:

sinϑ1 sinϕ = − cos Θ,
sinϑ1 cosϕ = − sin Θ sin Φ,
cosϑ1 = sin Θ cos Φ.

(2.10)

Then, from Equation (2.7) we can derive the angular distributions of the B0
s→J/ψφ decay in

terms of transversity angles and transversity amplitudes, which reads:

1
( )
Γ

d3 ( )
Γ (

( )
B 0

s→J/ψφ)
dcos ΘdΦdcos Ψ =

∑6
i=1

[
( )
K i fi(cos Θ,Φ, cos Ψ)

]
|

( )
A 0|2 + |

( )
A ‖|2 + |

( )
A ⊥|2

. (2.11)

with the Ki and fi(cos Θ,Φ, cos Ψ) terms reported in Tab. 2.3 [44]. In Fig. 2.3 we show some
examples of transversity angles distribution in the B0

s→J/ψφ decay for three sets of polariza-
tion amplitudes, illustrating how the distribution of these observables strongly depend on the
underlying physics parameters.
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Figure 2.2: Graphical representation of the transversity angles Θ, Φ and Ψ.

i
( )
K i fi(cos Θ,Φ, cos Ψ)

1 |
( )
A 0|2 9

32π2 cos2 Ψ(1− sin2 Θ cos2 Φ)
2 |

( )
A ‖|2 9

32π sin2 Ψ(1− sin2 Θ sin2 Φ)
3 |

( )
A ⊥|2 9

32π sin2 Ψ sin2 Θ
4 Im(

( )
A ⊥

( )
A ?
‖) − 9

32π sin2 Ψ sin 2Θ sin Φ
5 Re(

( )
A ‖

( )
A ?

0) 9
32π

√
2

2 sin 2Ψ sin2 Θ sin 2Φ
6 Im(

( )
A ⊥

( )
A ?

0) 9
32π

√
2

2 sin 2Ψ sin 2Θ cos Φ

Table 2.3: Angular functions in terms of transversity angles and corresponding transversity amplitudes
for the B0

s→J/ψφ decay entering Eq. (2.11).
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2.1 Angular amplitudes of B→V1V2 decays
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Figure 2.3: Example of transversity angles distributions. In (a) the CP -odd amplitude A⊥ is set zero,
while both |A0|2 and |A‖|2 are set to 50%. In (b) the CP -even amplitudes A0 and A⊥ are set to zero.
In (c) the amplitudes and strong phases are set to the value measured in Ref. [18]: |A0|2 = 0.524,
|A‖|2 = 0.231, δ⊥ = 2.95, and we take δ‖ = π. Note that the angle Φ has a non-uniform distribution if
there is an interference between the CP -even and CP -odd amplitudes.
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s→φφ decays

2.2 The B0
s-B̄0

s mixing phase in the amplitudes time-evolution

We now consider the time evolution of the B0
s→J/ψφ and B0

s→φφ decays. We have to account
for the evolution of the B0

s meson that exhibits the B0
s -B̄0

s mixing along with the decay transition
to the final state.

The time evolution is independent of the angular distributions, and it is expressed by a time
dependence of the polarization amplitudes, i. e. the Ki terms of Equations 2.7, 2.8 and 2.11:

Ki → Ki(t),

where t is the decay-time. The transversity basis is particularly useful for expressing the time
evolution, since it has definite CP properties. By using Eq. (A.3) and (A.5) in App. A and
considering the CP parity of each transversity amplitudes, one can derive the time development
for each Ki(t) term. We can write the decay rate of an initially produced

( )
B 0

s meson as a
function of the decay time and transversity angles as derived in Ref. [15]:

1
( )
Γ

d4 ( )
Γ (

( )
B 0

s→V1V2)
dtdcos ΘdΦdcos Ψ =

∑6
i=1

[
( )
K i(t) fi(cos Θ,Φ, cos Ψ)

]
|

( )
A 0|2 + |

( )
A ‖|2 + |

( )
A ⊥|2

. (2.12)

An analogous equation holds in the helicity angles basis, where the fi(cos Θ,Φ, cos Ψ) functions
are replaced by the hi(cosϑ1, cosϑ2, ϕ) functions. In Tab. 2.4, we list the

( )
K i(t), where we have

defined the polarization amplitudes at t = 0 for an initially produced
( )
B 0

s meson as:

A0(t = 0) = A0 = 〈V1V2, 0|B0
s 〉, Ā0(t = 0) = Ā0 = 〈V1V2, 0|B̄0

s 〉,

A‖(t = 0) = A‖ = 〈V1V2, ‖ |B0
s 〉, Ā‖(t = 0) = Ā‖ = 〈V1V2, ‖ |B̄0

s 〉,

A⊥(t = 0) = A⊥ = 〈V1V2,⊥ |B0
s 〉, Ā⊥(t = 0) = Ā⊥ = 〈V1V2,⊥ |B̄0

s 〉.

(2.13)

The expressions in Tab. 2.4 includes the most general case for the time evolution of a B0
s -decay

into a vector-vector and self-conjugate final state. By computing:

Ki(t)− K̄i(t)
Ki(t) + K̄i(t)

. (2.14)

with i = (1, 2, 3, 5), one can obtain the time-dependent CP asymmetry of Eq. (1.33), which
includes both direct and interference CP violation.
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s mixing phase in the amplitudes time-evolution

i
( )
K i

1
1
2 e
−Γt

[
(|A0|2+|Ā0|2) cosh (∆Γst/2)

(−)
+
(
|A0|2−|Ā0|2

)
cos ∆mst

−2Re(A?
0Ā0)

(
cos 2φs

M sinh (∆Γst/2)
(+)
− sin 2φs

M sin ∆mst
)

−2Im(A?
0Ā0)

((−)
+ cos 2φs

M sin ∆mst+sin 2φs
M sinh (∆Γst/2)

)]
2

1
2 e
−Γt

[
(|A‖|2+|Ā‖|2) cosh (∆Γst/2)

(−)
+
(
|A‖|2−|Ā‖|2

)
cos ∆mst

−2Re(A?
‖Ā‖)

(
cos 2φs

M sinh (∆Γst/2)
(+)
− sin 2φs

M sin ∆mst

)
−2Im(A?

‖Ā‖)
((−)

+ cos 2φs
M sin ∆mst+sin 2φs

M sinh (∆Γst/2)
)]

3
1
2 e
−Γt

[
(|A⊥|2+|Ā⊥|2) cosh (∆Γst/2)

(−)
+
(
|A⊥|2−|Ā⊥|2

)
cos ∆mst

+2Re(A?
⊥Ā⊥)

(
cos 2φs

M sinh (∆Γst/2)
(+)
− sin 2φs

M sin ∆mst

)
+2Im(A?

⊥Ā⊥)
((−)

+ cos 2φs
M sin ∆mst+sin 2φs

M sinh (∆Γst/2)
)]

4
1
2 e
−Γt

[
Im(A⊥A?

‖−Ā⊥Ā
?
‖) cosh (∆Γst/2)

(−)
+ Im(A⊥A?

‖+Ā⊥Ā
?
‖) cos ∆mst

+Im(A⊥Ā?
‖−Ā⊥A

?
‖)
(
−sinh (∆Γst/2) cos 2φs

M

(−)
+ sin ∆mst sin 2φs

M

)
+Re(A⊥Ā?

‖+Ā⊥A
?
‖)
(
−sinh (∆Γst/2) sin 2φs

M

(+)
− sin ∆mst cos 2φs

M

)]
5

1
2 e
−Γt

[
Re(A‖A?

0+Ā‖Ā?
0) cosh (∆Γst/2)

(−)
+ Re(A‖A?

0−Ā‖Ā
?
0) cos ∆mst

+Re(A‖Ā?
0+Ā‖A?

0)
(
−sinh (∆Γst/2) cos 2φs

M

(−)
+ sin ∆mst sin 2φs

M

)
+Im(A‖Ā?

0−Ā‖A
?
0)
(

sinh (∆Γst/2) sin 2φs
M

(−)
+ sin ∆mst cos 2φs

M

)]
6

1
2 e
−Γt

[
Im(A⊥A?

0−Ā⊥Ā
?
0) cosh (∆Γst/2)

(−)
+ Im(A⊥A?

0+Ā⊥Ā?
0) cos ∆mst

+Im(A⊥Ā?
0−Ā⊥A

?
0)
(
−sinh (∆Γst/2) cos 2φs

M

(−)
+ sin ∆mst sin 2φs

M

)
+Re(A⊥Ā?

0+Ā⊥A?
0)
(
−sinh (∆Γst/2) sin 2φs

M

(+)
− sin ∆mst cos 2φs

M

)]
Table 2.4: General expressions of Ki(t) (K̄i(t)) terms for B0

s→ V1V2 decays, where both direct and
interference CP violation are allowed.
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In particular, direct CP violation is present when the moduli of the decay amplitudes and
of their CP conjugate are different:

|Ai| 6= |Āi|.

and the polarization amplitudes are written as follows:

A0 = |A0|eiφA0eiδ0 , Ā0 = |Ā0|e−iφA0eiδ0 ,

A‖ = |A‖|e
iφA‖eiδ‖ , Ā‖ = |Ā‖|e

−iφA‖eiδ‖ ,

A⊥ = |A⊥|eiφA⊥eiδ⊥ , Ā⊥ = −|Ā⊥|e−iφA⊥eiδ⊥ ,

(2.15)

with φAi and δi respectively the weak and strong phases of the amplitudes. Thus, Tab. 2.4
represents a compact writings to emphasize the two distinct source of CP violation. The terms
proportional to Re(

( )
Ai

( )
Aj

?) and to Im(
( )
Ai

( )
Aj

?) in the
( )
K i(t) encode the dependence on both

φAi and δi. The dependence on the mixing phase, φsM , is factorized in the expressions, but only
the phase differences φfi = 2(φsM − φAi) (Eq. (1.43)) have physical meaning and are observable.
To see the explicit dependence on the phase φfi , one should expand the terms containing φiA. We
can derive the expressions as functions of φfi for the B0

s→J/ψφ and B0
s→φφ decays, considering

the SM case of a single weak phase for each amplitude, φAj = φA, and no direct CP violation,
|Aj | = |Āj |, as follows. First, the amplitudes become:

Aj = |Aj |eiφAeiδj , Āj = ±|Aj |e−iφAeiδj ,

with the “+” sign for j = (0, ‖) and the “−” for j =⊥. We expand as an example the term
K1(t) in Tab. 2.4. We have:

|A0|2 + |Ā0|2 = 2|A0|2,

|A0|2 − |Ā0|2 = 0,

Re
(
A?0Ā0

)
= |A0|2 cos(2φA),

Im
(
A?0Ā0

)
= −|A0|2 sin(2φA),

then:

K1(t) = |A0|2e−Γt[cosh(∆Γst/2)
− (cos 2φA cos 2φsM + sin 2φA sin 2φsM )︸ ︷︷ ︸

cosφf

sinh(∆Γst/2)

− (cos 2φA sin 2φsM − sin 2φA cos 2φsM )︸ ︷︷ ︸
− sinφf

sin(∆mst)].

In the case of B0
s→J/ψφ decays, φf = φcc̄s of Eq. (1.47); in the case of B0

s→φφ decays,
φf = φss̄s of Eq. (1.55). We focus now on the former decay: the time-evolution functions
Ki(t) are reported in Tab. 2.5, where we use a compact form, which highlights the presence
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s mixing phase in the amplitudes time-evolution

i
( )
K i(t) CP parity

1 |
( )
A 0|2

( )
O +(t) even

2 |
( )
A ‖|2

( )
O +(t) even

3 |
( )
A ⊥|2

( )
O −(t) odd

4 |
( )
A ‖||

( )
A ⊥|

( )
E I(t, δ⊥ − δ‖) mix

5 |
( )
A ‖||

( )
A 0| cos δ‖

( )
O +(t) even

6 |
( )
A ⊥||

( )
A 0|

( )
E I(t, δ⊥) mix

Table 2.5: Expressions of Ki(t) terms of the B0
s→J/ψφ decay rate, where only interference CP violation

is allowed. The third column reports the CP parity of each term. The formulae of O± and EI are given
by Eq. (2.16), while the phases δ‖ and δ⊥ are defined by Eq. (2.19)–2.18.

of the same time dependence for final states with the same CP -parity. We have used the “βs”
convention as per Eq. (1.47) in the expressions, and defined:

( )
O +(t) = e−Γt

(
cosh ∆Γst

2 − cos 2βs sinh ∆Γst
2

(−)+ sin 2βs sin ∆mst

)
, (2.16)

( )
O −(t) = e−Γt

(
cosh ∆Γst

2 + cos 2βs sinh ∆Γst
2

(+)
− sin 2βs sin ∆mst

)
, (2.17)

( )
E I(t, α) = e−Γt

(
(−)+ sinα cos ∆mst

(+)
− cosα cos 2βs sin ∆mst

− cosα sin 2βs sinh ∆Γst
2

)
. (2.18)

The phase α in such equations represents the CP -conserving phase associate to the polarization
amplitudes. Since only phase differences matter, a customary convention is to choose A0 real
and define the strong phases of the transverse amplitudes as:

δ‖ = arg
(
A‖
A0

)
= arg

(
Ā‖

Ā0

)
,

δ⊥ = arg
(
A⊥
A0

)
= arg

(
Ā⊥

Ā0

)
.

(2.19)

2.2.1 Time evolution of the (S + P )-waves system

So far we have consideredK+K− pairs originated from the decay of φ(1020) mesons only, both in
the B0

s→J/ψφ and in the B0
s→φφ decays. However, the reconstructedK+K− spectrum could be

a mixture of two resonances, their interference, and also of a non-resonant production. We now
focus on the decay B0

s→J/ψX, with X→K+K−, which is the case of the B0
s→J/ψφ analysis.2

2Similar arguments can hold for the B0
s→φφ analysis. We can consider the general decay B0

s → X(→
K+K−)X(→K+K−), where X is one of the resonance in the K+K− spectrum described in the text.
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Specifically, it was argued that neglecting a large contamination of a ss̄-quark resonance of
zero spin with mass close to the φ(1020) pole, the f0(980) [8], biases the estimation of the
CP -odd fraction of the signal and alters the measurement of βs [55]. Therefore, in order to
properly disentangle the decay amplitudes in B0

s→J/ψφ decays, one should take into account
the contributions of these different sources.

A nomenclature from partial wave formalism is usually assigned to the two resonances,
according to their spin: the f0(980) is a spin-0 particle and it is called S-wave, while the
φ(1020) is a spin-1 particle and it is denoted as P -wave.3 The partial-wave classification of
the K+K− spectrum, which is based on the spin of the resonance, should not be confused
with the partial-wave basis of the polarization amplitudes, which is based on the value of the
relative angular momentum between two resonances. In what follows, we will use the partial-
waves nomenclature only for referring to the K+K− resonances spectrum, while for polarization
amplitudes we will use only the transversity (or helicity) basis.

The differential decay rates considered so far – e. g. Eq. (2.12) – are parametrized as a func-
tion of decay (helicity or transversity) angles and decay time. However, they also depend on the
invariant mass m of the K+K− resonances, and the amplitudes should be considered as a func-
tion ofm as well [54, 56]. In cases where the amplitudes are dominated by a particular resonance
in a given energy range, one can factorize the mass dependence, usually given by a relativistic
Breit-Wigner distribution, BJ(m), and the polarization dependence, Ai(t) (i = 0, ‖,⊥); hence,
the transversity amplitudes become [54]:

Ai(t)→ A′i(m, t) = BJ(m)Ai(t), (2.20)

where the index J represents the dependence on the spin of the resonance. We describe the
dependence on BJ(m) by analyzing the K+K− spectrum in App. B, and here we present the
B0
s→J/ψ(K+K−)(S+P ) decay rate as a function of the transversity angles, the decay time, and

the K+K− mass. To account for the total S+P contribution in the decay rate we have to sum
the Pwave amplitude and the Swave amplitude; then the total decay rate can be decomposed as
follows [56, 54]:

d5 ( )
Γ (

( )
B 0

s→J/ψK+K−)
dm dt dcos ΘdΦdcos Ψ = |

( )
P wave +

( )
S wave|2

= |
( )
P wave|2 + |

( )
S wave|2 + 2Re

(
( )
P wave

( )
S ?

wave

)
,

(2.21)

The P -wave component is given by:

|
( )
P wave|2 = |Bφ(m)|2 d

4 ( )
Γ (

( )
B 0

s→J/ψφ)
dtdcos ΘdΦdcos Ψ . (2.22)

3There can be also a fraction of B0
s→J/ψK+K− decays with a non-resonant K+K− pair that has a relative

angular momentum L = 1 with respect the J/ψ state. However, it should be much smaller than the resonant
fraction, because its amplitude involves the production of an extra uū-quark pair with respect to the amplitude
for the resonances’ production. Hence, the non-resonant component will not be consider in the following.
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where the term d4Γ(B0
s→J/ψφ)

dtdcos Θ dΦ dcos Ψ is the B0
s→J/ψφ decay rate as a function of the B decay-

time and the transversity angles, Eq. (2.12); the term |Bφ(m)|2 is the relativistic Breit-Wigner
distribution of the φ(1020) resonance, Eq. (B.7).

The B0
s→J/ψf0 decay is a pseudoscalar to vector-scalar decay which has only one allowed

state of relative angular momentum (L = 1); hence, the transition is given by one amplitude,
AS(t) = |AS(t)|eiδS , where δS is its CP -conserving phase:

|
( )
S wave|2 = |Bf0(m)|2|AS(t)|2f7(cos Θ,Φ, cos Ψ). (2.23)

The term |Bf0(m)|2 describes the f0(980) distribution in the K+K− spectrum and its is given
by the asymmetric Flatté distribution of Eq. (B.8).

The interference term Re(
( )
P wave

( )
S ?

wave) is decomposed in three part, since the S-wave
interferes with each polarization state of the B0

s→J/ψφ decay:

Re

(
( )
P wave

( )
S ?

wave

)
=Re

(
(BφB?

f0)(m) (
( )
A ‖

( )
A ?

S)(t)
)
f8(cos Θ,Φ, cos Ψ)

+ Im

(
(BφB?

f0)(m) (
( )
A ⊥

( )
A ?

S)(t)
)
f9(cos Θ,Φ, cos Ψ)

+ Re

(
(BφB?

f0)(m) (
( )
A 0

( )
A ?

S)(t)
)
f10(cos Θ,Φ, cos Ψ).

(2.24)

The angular functions fi(cos Θ,Φ, cos Ψ) (i = 7, 8, 9, 10) are presented in Tab. 2.6 [56, 20].
The J/ψf0 state is a pure CP -odd eigenstate; then the time-evolution of the amplitude AS
follows the same function of the A⊥(t) amplitude in the B0

s→J/ψφ decay. Table 2.6 displays
the time-evolution of the new terms involving the S-wave state: |AS(t)|2; Re(

( )
A ‖(t)

( )
A ?

S(t));
Im(

( )
A ⊥(t)

( )
A ?

S)(t)); and Re(
( )
A 0(t)

( )
A ?

S(t)).
Usually, in analyses of B0

s→J/ψφ decays, the dependence on the mass m is integrated out
and the disentanglement of the polarization amplitude are obtained with the analysis of the
angular distributions only. With

∫
|BJ(m)|2dm = 1, (2.25)∫

(BφB?
f0)(m)dm = Im, (2.26)

we obtain:

1
( )
Γ

d4 ( )
Γ (

( )
B 0

s→J/ψK+K−)
dt dcos ΘdΦdcos Ψ =

∑10
i=1

[
( )
K i(t) fi(cos Θ,Φ, cos Ψ)

]
|

( )
A 0|2 + |

( )
A ‖|2 + |

( )
A ⊥|2 + |

( )
A S |2

, (2.27)
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i
( )
K i(t) fi(cos Θ,Φ, cos Ψ) CP parity

1 |
( )
A 0|2

( )
O +(t) 9

32π2 cos2 Ψ(1− sin2 Θ cos2 Φ) even
2 |

( )
A ‖|2

( )
O +(t) 9

32π sin2 Ψ(1− sin2 Θ sin2 Φ) even
3 |

( )
A ⊥|2

( )
O −(t) 9

32π sin2 Ψ sin2 Θ odd
4 |

( )
A ‖||

( )
A ⊥|

( )
E I(t,δ⊥−δ‖) − 9

32π sin2 Ψ sin 2Θ sin Φ mix
5 |

( )
A ‖||

( )
A 0| cos δ‖

( )
O +(t) 9

32π

√
2

2 sin 2Ψ sin2 Θ sin 2Φ even
6 |

( )
A ⊥||

( )
A 0|

( )
E I(t,δ⊥) 9

32π

√
2

2 sin 2Ψ sin 2Θ cos Φ mix
7 |

( )
A S |2

( )
O −(t) 3

32π2(1− sin2 Θ cos2 Φ) odd
8 Im|

( )
A ‖||

( )
A S |

( )
E R(t,δ‖−δS) 3

32π2 cos Ψ(1− sin2 Θ cos2 Φ) mix
9 Im|

( )
A ⊥||

( )
A S | sin(δ⊥−δS)

( )
O −(t) 3

32π
1√
22 sin Ψ sin2 Θ sin 2Φ odd

10 Im|
( )
A 0||

( )
A S |

( )
E R(t,−δS) 3

32π
1√
22 sin Ψ sin 2Θ cos Φ mix

Table 2.6: Expressions of Ki(t) (K̄i(t)) and fi(cos Θ,Φ, cos Ψ) terms of the B0
s→J/ψK+K− decay rate,

where the dependence on the mass m is integrated out. The last column reports the CP parity of each
term. The formulae of O± and EI are given by Eq. (2.16) and Eq. (2.28). The coefficient Im is the
integral in Eq. (2.26).

with the expressions of
( )
K i(t) and fi(cos Θ,Φ, cos Ψ) given in Tab. 2.6, where we have introduced

the following shorthand in the time-evolution of the interference term between P - and S-wave
with mixed CP -parity:

( )
E R(t, α) = e−Γt

(
(−)+ cosα cos ∆mst

(+)
− sinα cos 2βs sin ∆mst

− sinα sin 2βs sinh ∆Γst
2

)
.

(2.28)

Figure 2.4 sketches the evolution of the amplitude K1 (|A0(t)|2) of the B0
s→J/ψK+K−

decay rate in Eq. (2.27), as a function of the decay-length, separately for the B0
s and the B̄0

s

mesons, at the SM values of βs = 0.02 and ∆Γs = 0.90 ps−1 in (a), and for βs = 0.5 and
∆Γs = 0.09 cos(2βs) = 0.49 ps−1 in (b). In both cases, the value of the oscillation frequency is
fixed to ∆ms = 17.77 ps−1 [?], and polarization amplitudes and strong phases as measured in
Ref. [18]. The plots shows how the time-evolution of the decay-amplitude changes for different
values of βs and ∆Γs. Specifically, the squared moduli of the polarization amplitudes depend on
the terms cos 2βs sinh(∆Γst/2) and sin 2βs sin(∆mst); the former provides sensitivity to βs even
without distinction of the flavor of the B0

s -meson at production, if ∆Γs is different from zero.
The latter explains the reason of the different size of the oscillations amplitude. In App. C,
we show the time-evolution of each term of the decay rate in Eq. (2.27) for the two values of
(βs,∆Γs) reported above.
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2.2 The B0
s -B̄0

s mixing phase in the amplitudes time-evolution

( )
K 1(ct) (SM)

(a)

( )
K 1(ct) (non-SM)

(b)

Figure 2.4: Evolution of the amplitude K1 of the B0
s→J/ψK+K− decay rate in Eq. (2.27), as a function

of ct. Blue line is for B0
s meson and red line is for B̄0

s . In (a) βs = 0.02 and ∆Γs = 0.09 ps−1 (SM point),
while in (b) βs = 0.5 and ∆Γs = 0.09 cos(2βs) = 0.049 ps−1. In both cases, ∆ms = 17.77 ps−1. Plots are
obtained by means of the simulation described in Sect. 5.5.2.

2.2.2 Discrete symmetries

The decay rate in Eq. (2.27) features some discrete symmetries, i. e., transformations of some
of the observables of interest that leave the equations of the decay rate invariant.

We first consider the simpler case, where only the P -wave is present. Suppose we cannot
distinguish the B0

s and the B̄0
s meson at their production and suppose they are produced in the

same amount (untagged sample). Thus, we sum the B0
s→J/ψK+K− and the B̄0

s→J/ψK+K−

decay rates. In such case, each oscillation term proportional to sin ∆mst or cos ∆mst is canceled
out, since they appear with opposite sign in the Ki(t) and K̄i(t) terms, but we are still sensitive
to βs if ∆Γs 6= 0. Then, the untagged decay rate is invariant under [44]:

βs → π/2− βs
∆Γs → −∆Γs
δ‖ → 2π − δ‖
δ⊥ → π − δ⊥

(2.29)

together with the reflection of this transformation with respect to βs = 0:
βs → −βs
∆Γs → ∆Γs
δ‖ → δ‖

δ⊥ → δ⊥

and


π/2− βs → −π/2 + βs

−∆Γs → −∆Γs
2π − δ‖ → 2π − δ‖
π − δ⊥ → π − δ⊥

(2.30)
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βs 

ΔΓs	
  

π/4 
π/2 

-π/2 -π/4 0 


βs

∆Γs
δ‖

δ⊥


−βs
∆Γs
δ‖

δ⊥


π/2− βs
−∆Γs
2π − δ‖
π − δ⊥


−π/2 + βs

−∆Γs
2π − δ‖
π − δ⊥

Figure 2.5: Example in the (βs,∆Γs) plane of the equivalent values of βs, ∆Γs, and strong phases, that
leave the decay rate invariant.

Therefore a four-fold ambiguity is present for the values of the observables in the transforma-
tions. The four equivalent solutions are sketched in the (βs,∆Γs) plane in Fig. 2.5. When the
differences of the B0

s and B̄0
s meson decay-rates are taken into account, the transformations

in Eq. (2.30) are not longer symmetries of the decay rate, and only the transformation of Eq.
(2.29) leaves the decay rate invariant. We have then a two-fold ambiguity (with the cancellation
of the solutions for βs < 0 in Fig. 2.5).

Considering also the contribution of the S-wave state makes the argument more complicated.
We first start by analyzing the decay rate in Eq. (2.21), but considering a simplify model, a
nonrelativistic form of the φ(1020), such as:

|Bφ(m)|2 ∝ mφΓφ
(m2

φ −m2)2 +m2
φΓφ

(2.31)

with a mass-independent width Γφ symmetric around the pole mφ. For the f0(980) resonance,
given its large and slowly-decreasing width, when we restrict to a narrow window around mφ,
we can consider the f0(980) shape as a flat distribution (see Fig. B.1 in App. B). Then, when
considering the (S+P ) decay rate in Eq. (2.27) integrated over a finite interval [m1,m2] in the
K+K− mass spectrum, along with Eq. (2.29), the transformation [56]:

δS → 2δBW − δS (2.32)

leaves the decay rate of the (S + P )-wave system invariant. The phase δBW is:

δBW = arg
[
log

(
m2 −mφ + iΓ/2
m1 −mφ + iΓ/2

)]
, (2.33)

and reduces to 0 in the limit of an infinitesimal interval of integration, and to π/2 in the limit
of a finite interval symmetric around mφ.
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Then, considering a window around mφ of about 20 MeV/c2, the transformation:

βs → π/2− βs
∆Γs → −∆Γs
δ‖ → 2π − δ‖
δ⊥ → π − δ⊥
δS → π − δS

(2.34)

is again a symmetry of the integrated decay rate. We have to remember, however, that the
invariance under tranformation 2.34 requires the symmetry of the K+K− resonances. In the
more general case, when considering the asymmetric shapes of the K+K− resonances described
in App. B, the transformation 2.34 leads to an approximate symmetry, which is as spoiled as
larger is the S-wave fraction in the sample, since the asymmetric shape of the integral Im in
Eq. (2.26) becomes more effective for larger fractions. When considering a S-wave fraction as
the one measured in our data (≈ 1%), we can treat the decay rate as symmetric under the
transformation 2.34.

Since each solution of (βs,∆Γs) corresponds to a different set of strong phases, one may
attempt to experimentally resolve the ambiguity by using a measurement of the variation of the
strong phases as follows. The phase of the P -wave amplitude rises rapidly through the φ(1020)
mass pole. On the other hand, the phase of the S-wave amplitude should vary relatively slowly.
This is shown in Fig. B.1 of App. B. As a result, the phase difference between the S-wave and
P -wave amplitudes, for instance δS − δ⊥, falls rapidly with increasing m. By measuring this
phase difference as a function of m and taking the solution with a decreasing trend around mφ

as the physical solution, the sign of ∆Γs is determined and the ambiguity in βs is resolved. This
analysis was performed by the LHCb Collaboration and led to the determination ∆Γs > 0 [42].

2.3 Time-integrated triple products asymmetries

The current statistics of the B0
s→φφ data sample are not sufficient for a suitable time-dependent

analysis to measure the φss̄s phase of the time-dependent CP -asymmetry. However, an inves-
tigation of time-integrated observables that encode the same information of φss̄s about CP
violation in this decay mode is accessible. Such asymmetries are defined in terms of angular
distributions asymmetries of the functions of the helicity angles that we are going to describe
in this section.

Integrating over ϑ1 and ϑ2 the decay rate of Eq. (2.8) one obtains the following distribu-
tion in ϕ:

d
( )
Γ

dϕ = 1
2π

( )
K 1 + 2

( )
K 2 sin2 ϕ+ 2

( )
K 3 cos2 ϕ− 2

( )
K 4 sin 2ϕ

|
( )
A 0|2 + |

( )
A ‖|2 + |

( )
A ⊥|2

. (2.35)

The last term in this angular distribution provides a triple products (TP):

sin 2ϕ = 2(n̂1 · n̂2)(n̂1 × n̂2) · ẑ1. (2.36)

35



Chapter 2. Phenomenology of B0
s→J/ψφ and B0

s→φφ decays

Considering Fig. 2.1, we have defined zi as the direction of the Vi momentum in the B rest
frame and denote by ẑi a unit vector in this direction. Unit vectors normal to the two decay
planes and to their line of intersection defined by ẑi are denoted as n̂i; and they are defined in
order that φ is the angle from n̂1 to n̂2. A TP asymmetry is defined as an asymmetry between
the number of decays (

( )
N ) involving positive and negative values of sin 2ϕ:

( )
A (2)

TP =
( )
N (sin 2ϕ ≥ 0)−

( )
N (sin 2ϕ < 0)

( )
N (sin 2ϕ ≥ 0) +

( )
N (sin 2ϕ < 0)

=

[∫ π/2
0 +

∫ 3π/2
π

]
d

( )
Γ

dϕ dϕ−
[∫ π
π/2 +

∫ 2π
3π/2

]
d

( )
Γ

dϕ dϕ∫ 2π
0

d
( )
Γ

dϕ dϕ
.

(2.37)

Using Eq. (2.35):
( )
A (2)

TP = (+)
− 4
π

( )
K 4

|
( )
A 0|2 + |

( )
A ‖|2 + |

( )
A ⊥|2

. (2.38)

The dependence of the angular distribution Eq. (2.8) on ϑ1 and ϑ2 allow us to introduce a
second TP:

sinϕ = (n̂1 × n̂2) · ẑ1, (2.39)

The corresponding asymmetry,
( )
A (1)

TP involves
( )
K 6. One defines an asymmetry with respect to

values of sinϕ, the TP in Eq. (2.39), assigning it the sign of cosϑ1 cosϑ2 (a T -even quantity)
and integrating over all angles,

( )
A (1)

TP =
( )
N (sign(cosϑ1 cosϑ2) sinϕ > 0)−

( )
N (sign(cosϑ1 cosϑ2) sinϕ < 0)

( )
N (sign(cosϑ1 cosϑ2) sinϕ > 0) +

( )
N (sign(cosϑ1 cosϑ2) sinϕ < 0)

. (2.40)

By using Eq. (2.8):

( )
A (1)

TP = (
( )
I 1 −

( )
I 2)− (

( )
I 3 −

( )
I 4)

( )
I 1 +

( )
I 2 +

( )
I 3 +

( )
I 4

= (+)
− 2
√

2
π

( )
K 6

|
( )
A 0|2 + |

( )
A ‖|2 + |

( )
A ⊥|2

,

(2.41)

where (with x = cosϑ1 and y = cosϑ2)

( )
I 1 =

(∫ 1

0
dx
∫ 1

0
dy
∫ π

0
dϕ+

∫ 0

−1
dx
∫ 0

−1
dy
∫ π

0
dϕ
) d3 ( )

Γ
dxdydϕ,

( )
I 2 =

(∫ 1

0
dx
∫ 1

0
dy
∫ 2π

π
dϕ+

∫ 0

−1
dx
∫ 0

−1
dy
∫ 2π

π
dϕ
) d3 ( )

Γ
dxdydϕ,

( )
I 3 =

(∫ 1

0
dx
∫ 0

−1
dy
∫ π

0
dϕ+

∫ 0

−1
dx
∫ 1

0
dy
∫ π

0
dϕ
) d3 ( )

Γ
dxdydϕ,

( )
I 4 =

(∫ 1

0
dx
∫ 0

−1
dy
∫ 2π

π
dϕ+

∫ 0

−1
dx
∫ 1

0
dy
∫ 2π

π
dϕ
) d3 ( )

Γ
dxdydϕ.
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2.3 Time-integrated triple products asymmetries

Triple products are interesting because they are odd under time-reversal, T . However, in
particle decays a TP can also stem from FSI, where all interactions conserved T . A genuine
T -violating TP is given by comparing the TP value of a pair of CP -conjugate processes: then,
assuming CPT invariance, a powerful tool for displaying CP violation is the investigation of TP
asymmetries in a process and its CP -conjugate [57, 26, 15]. The TP asymmetries are similar to
the direct CP asymmetries in this respect: they are both obtained by comparing a signal in a
given decay with the corresponding signal in the CP -transformed process, and both are nonzero
only if there are two interfering decay amplitudes. There is an important difference between the
two. Denoting φ and δ as the relative weak and strong phases, respectively, between the two
interfering amplitudes, the signal for direct CP violation given by Eq. (1.31) is proportional to
sinφ sin δ [40], while that for the CP -violating TP asymmetry is

ACPTP ∝ sinφ cos δ (2.42)

and TP asymmetries are maximal when the strong-phase difference vanishes [57].
The two TP asymmetries given in Eq. (2.38) and Eq. (2.41) in terms of transversity am-

plitudes are odd under time-reversal; however, to have a genuine CP -violating asymmetry we
need to sum the TP asymmetry of the B0

s→φφ decay with the one of its CP conjugate, B̄0
s→φφ

[26, 15]:4

ACPTP,1 ≡ A
(1)
TP + Ā(1)

TP

= −2
√

2
π

K6 + K̄6

|A0|2 + |A‖|2 + |A⊥|2 + |Ā0|2 + |Ā‖|2 + |Ā⊥|2
, (2.43)

ACPTP,2 ≡ A
(2)
TP + Ā(2)

TP

= − 4
π

K4 + K̄4

|A0|2 + |A‖|2 + |A⊥|2 + |Ā0|2 + |Ā‖|2 + |Ā⊥|2
. (2.44)

We can infer information about CP -violating phases through these two asymmetries. In Equa-
tion (2.43) and Eq. (2.44) the two time-dependent asymmetries are proportional to the untagged
sums Kj + K̄j of the time-dependent functions in Tab. 2.4 with j = 4, 6; the term “untagged”
means that we do not tag (i. e., distinguish) the flavor of the B0

s meson at its production. We
sum over the decay rates of the B0

s and the B̄0
s mesons, assuming that they are equally produced

(assumption that holds at Tevatron). We find [15]:

ACPTP,N(t) ∝ Kj(t) + K̄j(t)

= e−Γt
[
Im(A⊥A?k − Ā⊥Ā?k) cosh(∆Γst/2)

−
(
Im(A⊥Ā?k − Ā⊥A?k) cos 2φsM + Re(A⊥Ā?k + Ā⊥A

?
k) sin 2φsM

)
sinh(∆Γst/2)

]
,

(2.45)
4We sum the TP of B0

s→φφ and B̄0
s→ φφ instead of doing their difference, because the K4(t) and K6(t)

involve the amplitude A⊥, which changes sign under CP transformation; then Ki(t) + K̄i(t) ∝ Im(A⊥Aj)(t) −
Im(Ā⊥Āj)(t), with i = 4, 6 and j =‖,⊥, respectively.
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We denote with φk and δk respectively the weak and the strong phases of Ak as in Eq. (2.15).
The term proportional to cos(∆Γst/2) involves the decay amplitudes as follows:

aj ≡ Im(A⊥A?k − Ā⊥Ā?k)

=
(
|A⊥||Ak|+ |Ā⊥||Āk|

)
cos(δ⊥ − δk) sin(φ⊥ − φk)

+
(
|A⊥||Ak| − |Ā⊥||Āk|

)
sin(δ⊥ − δk) cos(φ⊥ − φk).

(2.46)

and the term proportional to sin(∆Γst/2) involves the mixing phase as well:

bj ≡ Im(A⊥Ā?k − Ā⊥A?k) cos 2φsM + Re(A⊥Ā?k + Ā⊥A
?
k) sin 2φsM

=
(
|A⊥||Āk|+ |Ā⊥||Ak|

)
cos(δ⊥ − δk) sin(2φsM − (φ⊥ + φk))

+
(
|A⊥||Āk| − |Ā⊥||Ak|

)
sin(δ⊥ − δk) cos(2φsM − (φ⊥ + φk)).

(2.47)

The measurements of TP asymmetries discussed in this thesis are time-integrated:∫ ∞
0

(Kj(t) + K̄j(t))dt (2.48)

then [15]:
ACPTP,N ∝ aj − bjys, (2.49)

where ys = ∆Γs/Γs. It is interesting to note that time-integrated asymmetries for untagged B0
s

decays are not suppressed due to fast B0
s -B̄0

s oscillations by Γ/∆ms ≈ 0.0005, as they would be
for time-dependent terms behaving like cos(∆mst) and sin(∆mst).

In the SM, for B0
s→φφ decays we expect neither direct CP violation (|Ai| = |Āi| for

i = 0, ‖,⊥) nor interference CP violation, and a vanishing mixing phase (φ⊥ − φk = 0 and
2φsM − (φ⊥ + φk) = 0). Suppose first that there is new physics only in the B0

s -B̄0
s mixing am-

plitude, i. e., 2φsM − (φ⊥ + φk) 6= 0. In this case, the first term aj in Eq. (2.49) is zero, but the
second is nonzero. However, the asymmetry is suppressed by ys ∼ 0.1. The second possibility
is that there is new physics in the decay, then both terms aj and bj in Eq. (2.49) are nonzero.
And of course one can have new physics both in mixing and in decay, resulting in a nonzero
asymmetry. However, the asymmetry is more sensitive to aj in both latter cases.

A particular situation reported in Ref. [26] occurs when |Ai| = |Āi|, for i = (0, ‖,⊥), but
φ⊥ − φk 6= 0. Then, the second line in Eq. (2.46) and Eq. (2.47) vanishes, and we have:

ACPTP,N ∝ 2|A⊥||Ak| cos(δ⊥ − δk)
[

sin(φ⊥ − φk) + ys sin(2φsM − (φ⊥ + φk))
]
, (2.50)

Consider the measured polarization amplitudes, |Ai| ≈ 0.33 for each polarization state [2,
23], and the assumption | cos(δ⊥ − δ0)| ≈ | cos(δ⊥ − δ‖)| ≈ 1, which should hold to a good
approximation based on U(3) symmetry and measured value in B0→φK?(890)0 decays; taking
into account the normalization factors, the size of the two asymmetries are about:

|(30÷ 40) sin(φ⊥ − φ0)− (3÷ 4) sin(2φsM − (φ⊥ + φk))|% (2.51)
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and in the SM, we expect ACPTP,1 ≈ ACPTP,2 = 0 within 1% [51]. Then, a measurement of
asymmetries larger than 1% is a clear indication of new physics. An analysis of these time-
integrated triple-product asymmetries was never performed before, and it is presented here for
the first time for the B0

s→φφ decay.

2.4 Measurements’ strategies

In the following we present the strategies to measure the CP violation in B0
s→J/ψφ and B0

s→φφ

decays. For each analyses, we also briefly outline the current experimental situation as of the
writing of this thesis.

2.4.1 B0
s→J/ψφ analysis

The first measurements of the CP -violating phase in B0
s→J/ψφ decays was finalized in 2008 by

the CDF experiment [16]. It showed a mild, 1.5σ discrepancy from the SM. It was intriguing
that the D0 experiment, few months later, found a similar, and consistent effect [17]. Indeed,
the combination yielded a 2.2σ deviation from the SM [58]. This attracted some interest, further
enhanced by the recent dimuon asymmetry results from the D0 collaboration [22], which probe
the same dynamics as B0

s→J/ψφ, and report suggestive, even more significant anomalies (see
Sect. 1.3.1). In 2010, both the CDF and D0 collaborations updated their measurements of
B0
s→J/ψφ time-evolution. CDF used an event sample based on 5.2 fb−1 of integrated luminosity

[18], D0 on 8 fb−1 of integrated luminosity [19]. The results from both experiments, although
consistent with the previous ones, showed an improved agreement with the SM. Also LHCb
began recently to contribute, with a published measurement on only 340 pb−1 of data [20], which
appears already very competititve. A more precise result with 1 fb−1 of data has been presented
in February 2012 [59], but it is still preliminary. LHCb provides also the first experimental
determination of the sign of ∆Γs, by analyzing the P -S wave interference in bins of the K+K−

mass to distinguish among the equivalent for βs and ∆Γs due to the symmetries discussed
in Sect. 2.2.2. The ∆Γs sign turns to be consistent with ΓL > ΓH [42]. Table 2.7 reports
a summary of the current experimental status along with a comparison of key experimental
parameters.

We present the B0
s→J/ψφ analysis updated to the full sample collected by CDF during

its operations, which corresponds to an integrated luminosity of 9.6 fb−1, almost doubling the
statistic of the latest CDF measurement. The measurement of the phase βs relies on an analysis
of the time-evolution of the B0

s→J/ψφ decay in which decays from mesons produced as B0
s or

B̄0
s are studied independently, and the CP -parity of the final state is statistically determined

using angular distributions. The analysis can be dissected in four main steps: selection and
reconstruction of the signal event sample; preparation of the analysis tools; fit to the time-
evolution; statistical procedure to extract results and uncertainties.
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Parameter LHCb (340 pb−1) [20] D0 (8 fb−1) [19] CDF (5.2 fb−1) [18]
βs −0.07± 0.10 0.28+0.18

−0.19 ≈ 0.27± 0.25
∆Γs [ps−1] 0.123± 0.031 0.163+0.065

−0.064 0.075± 0.036
σt(B0

s ) [fs] ≈ 50 ≈ 100 ≈ 90
σm(B0

s ) [MeV/c2] ≈ 7 ≈ 30 ≈ 10
Effective tagging power ≈ 2.1% ≈ 2% ≈ 4.7%
Signal yield 8 300 (t > 0.3 ps) 5 600 6 500
S/B at peak 33/1 (t > 0.3 ps) 1/3 2/1

Table 2.7: Summary of current experimental status and comparison of key experimental parameters.
The D0 analysis uses an additional constraint from a theory assumption in the fit to the phase. The
parameters σt(B0

s ) and σm(B0
s ) are the mean resolutions on the measurement of the B0

s decay time and
mass, respectively. The effective tagging power is the measurement of the capability to distinguish the
production of a B0

s from a B̄0
s meson. The symbol S/B stands for the signal to background ratio.

For this update we follow the general analysis strategy used for earlier CDF publications
[18, 16]. In particular the interesting physical parameters are extracted from an unbinned
likelihood fit to the B0

s candidate mass, the angular variables in the transversity basis, the
proper decay time, and flavor-tagging information. We adopt the same fitting code employed in
the latest CDF measurement [18] with minimal simplifications and updated acceptance maps
and other needed inputs. Signal contributions in the B0

s → J/ψK+K− final state other than
B0
s→J/ψφ signal itself are taken into account assuming an S-wave state for the K+K− system.

Since the the K+K− mass m is not used as a input to the fit, its contribution is integrated
as described in Sect. 2.2.1, assuming a relativistic Breit-Wigner shape with mass dependent
width for the P -wave φ(1020) contribution and a flat shape for the S-wave contribution, given
the small window used in the K+K− spectrum, [1.009, 1.028] GeV/c2. Several improvements
in the analysis are introduced with respect to the previous CDF measurements, such as a
new calibration of a tagging algorithm (Sect. 4.2.1); an original, accurate determination of
previously-neglected physics background that mimic signal (Sect. 7.4); and a test of the fit’s
reliability through a new simulation of the full (S + P )-wave decay (Sect. 5.5.2).

The B0
s→J/ψφ analysis exhibits the well known problem of discrete symmetries in the decay

rate (Sect. 2.2.2) that corresponds to four ambiguities in the extracted physical parameters
βs and ∆Γs, which are only marginally lifted by the (S + P )-wave interference. Half of the
solutions are eliminated using the difference of B0

s ’s and B̄0
s ’s time evolution. Flavor tagging,

furthermore, improves the statistical behaviour of the likelihood for B0
s→J/ψφ decays in the

presence of limited event samples. Two algorithms are used for flavor tagging. In the present
analysis, one of them, the opposite-side-tagging algorithm (Sect. 4.2), has been recalibrated
using data corresponding to the final dataset. On the other hand, it was not possible to reliable
calibrate the second algorithm, the same-side-kaon-tagging (Sect. 4.3), because the available
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statistics of B0
s flavor specific decays from the hadronic trigger for the latest part of the data is

limited. We employ this tagger only for the first part of the data, corresponding to 5.2 fb−1 of
integrated luminosity, where a reliable calibration is availble [18].

The complexity of the fit and the irreducible symmetries of the likelihood make the extraction
of proper confidence intervals challenging from the simple fit results. A thorough work of
simulation is needed to construct correct confidence regions and finally extract the results.

The B0
s→J/ψφ analysis is presented in the second part of this dissertation after the descrip-

tion of the CDF detector in Chap. 3.

2.4.2 B0
s→φφ analysis

First evidence of the B0
s→φφ decay was obtained in 2005 by CDF [60]. In 2010, CDF provides

also the first measurement of its polarization amplitudes [2]. The latter is of particular interest
because it gives insight in the so-called polarization puzzle, related to the amplitudes hierarchy
in b→s penguin processes: the V –A structure of charged weak currents leads to the expectation
of a dominant longitudinal polarization [61, 62, 63], while approximately equal longitudinal
and transverse polarizations have been measured in b→ s penguin-dominated B0 and B+ de-
cay modes [64, 65, 66, 67]. This is explained in the SM by including either nonfactorizable
penguin-annihilation effects [52] or FSI [68]. Recent theoretical predictions [61, 62, 63] indicate
a longitudinal fraction in the 40%–70% range, when phenomenological parameters are adjusted
to accommodate present experimental data. Explanations involving new physics in the b→ s

penguin process have also been proposed [69, 70]. Additional experimental information in B0
s

penguin-dominated decays help distinguishing the various solutions.
Using 3 fb−1 of integrated luminosity, CDF measures the polarization amplitudes reported in

Tab. 2.8 with about 300 B0
s→φφ candidates [2], which are confirmed by a recent measurement

by LHCb [23]; the polarization measurement of another b→ s decay of the B0
s meson, the

B0
s→K0?K̄0? decay, exhibits a similar result [71]. Although the pattern agrees with observations

in the B0 sector, longitudinal polarization is even more suppressed in B0
s penguin decay. Such

amplitudes’ hierarchy motivate the search for new physics through the measurement of CP -
violating asymmetries.

Amplitude B0
s→φφ (CDF) [2] B0

s→φφ (LHCb) [23] B0
s→K0?K̄0? (LHCb) [71]

|A0|2 0.348± 0.041(stat)± 0.021(syst) 0.365± 0.022(stat)± 0.012(syst) 0.31± 0.12(stat)± 0.04(syst)
|A‖|2 0.287± 0.043(stat)± 0.011(syst) 0.344± 0.33(stat)± 0.016(syst) 0.31± 0.16(stat)± 0.06(syst)
|A⊥|2 0.365± 0.044(stat)± 0.027(syst) 0.291± 0.024(stat)± 0.010(syst) 0.38± 0.11(stat)± 0.04(syst)

Table 2.8: Summary of current experimental status of polarization amplitude measurements in the b→s

decays of the B0
s meson.
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s→φφ decays

The CDF statistic of the B0
s→φφ data sample are not sufficient for measuring the time-

dependent CP asymmetry as the case of the B0
s→J/ψφ decay. However, an investigation of the

time-integrated triple product asymmetries is feasible. We provide the world’s first measurement
ot such asymmetries in this decay mode. We employ the same dataset collected by the CDF
hadronic trigger used for the polarization measurement (Chap. 9). The measurement of the
asymmetry is implemented in a fit to the mass distribution of the sample (Chap. 10). We split
the dataset in two samples according to the sign of the triple products of each candidate. We fit
simultaneously the two subsamples to extract the signal yields and compute the TP asymmetry.
In this way, without distinguish the B0

s flavor at production, we measure the true CP -violating
asymmetry, since B0

s and B̄0
s mesons are produced in the same amount at Tevatron.

The B0
s→φφ analysis is presented after the description of the B0

s→J/ψφ analysis.
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Chapter 3

Experimental Apparatus

This chapter briefly describes the Tevatron collider and the CDF II detector. We focus on the subsystems
most important for the analyses presented in this thesis the tracking and the particles identification
systems, and the muon’s detectors.

3.1 The Fermilab’s Tevatron collider

The Tevatron is a circular synchrotron of 1 km in radius, located at the Fermi National Accelera-
tor Laboratory (FNAL or Fermilab), about 50 km West from Chicago (IL), USA, that has ended
its operations on September 30th 2011, after 28 years of activity. It has produced about 1013

collisions between bunches of protons against bunches of antiprotons accelerated in opposite di-
rection, both at energies of 980GeV. The

√
s = 1.96 TeV energy available in the center-of-mass

after the collision was the world’s highest before the beginning of LHC operations.
An important feature of a collider is the instantaneous luminosity, L , that is the coefficient

of proportionality between the rate of a given process and its cross-section σ:

dN

dt
[events/s] = L

[
cm−2s−1

]
· σ
[
cm2

]
.

The time-integral of the luminosity (integrated luminosity) is therefore a measure of the expected
number of events, N , produced in a finite time T :

N(T ) =
∫ T

0
L σ dt.

It is customary to report the amount of data delivered by the collider or collected by detectors
in terms of integrated luminosity, fixing σ = 1. Assuming an ideal head-on pp collision with no
crossing angle between the beams, the instantaneous luminosity at the Tevatron is defined as

L = 10−5 NpNpBfβγ

2πβ?
√

(εp + εp)x(εp + εp)y
F (σz/β?)

[
1030cm−2s−1

]

where Np (Np) is the average number of protons (antiprotons) in each bunch (Np ≈ 8.1 · 1011

and Np ≈ 2.9 · 1011), B (36) is the number of bunches per beam circulating into the ring, f
(47.713 kHz) is the revolution frequency, βγ is the relativistic factor of the Lorentz boost (1045.8
at 980GeV), F is an empiric form factor which depends on the ratio between the longitudinal
width of the bunch (σz ≈ 60 cm) and the “betatron function” calculated at the interaction point
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Figure 3.1: Sketch of the Fermilab’s accelerators system.

(β? ≈ 31 cm), and finally εp (εp) is the 95% normalized emittance of the proton (antiproton)
beam (εp ≈ 18π mmmrad and εp ≈ 13π mmmrad after injection). The luminosity is determined
only through quantities that depend on the acceleration performance: at the Tevatron the most
limiting factor of the luminosity is the availability of antiprotons (Np) since it is difficult to
produce, to compact into bunches and to transfer them efficiently through all the acceleration
stages.

The Tevatron is the final sector of a more complex accelerators system, entirely represented
in Fig. 3.1, which provides beam to different typologies of experiments (pp collisions, fixed-
target, test beam facilities). In the following sections we describe the procedure for obtaining a
continuous period of collider operation, called a store, using the same collection of protons and
antiprotons. Further details can be found in Refs. [72, 73].

3.1.1 The proton beam

The protons production starts with turning hydrogen gas into H− ions. The gas, in the molec-
ular state H2, is placed in a container lined with molybdenum electrodes: a matchbox-sized,
oval-shaped cathode and a surrounding anode, separated by 1mm and held in place by glass
ceramic insulators. A magnetron generates a plasma that forms H− ions near the metal surface.
These are then extracted out of the container by a 750 keV electrostatic field, applied by a com-
mercial Cockcroft-–Walton generator, and injected into a 150m long linear accelerator (Linac)
which increases their energy up to 400MeV. A carbon foil is used to strip the electrons from the
H− before the resulting protons are injected into the Booster. The Booster is a rapid cycling
synchrotron (radius of 75m) which accelerates the protons up to 8GeV and compacts them
into bunches of about 9 × 1012 particles each. The bunches are then transfered into the Main
Injector, a synchrotron which brings their energy up to 150GeV, and finally into the Tevatron
where superconducting magnets keep them on an approximately circular orbit waiting for the
antiproton beam to be injected.

44



3.1 The Fermilab’s Tevatron collider

3.1.2 The antiproton beam

While the energy of the protons bunches circulating in the Main Injector reaches 120GeV,
they are slammed to a rotating 7 cm thick nickel target. Spatially wide-spread antiprotons are
produced and focused into a beam via an appropiate magnetic lens which separates them from
other charged interaction products. The emerging antiprotons have a bunch structure similar
to that of the incident protons and are stored in a Debuncher. This is a storage ring where
the momentum spread of the antiprotons is reduced while maintaining a constant energy of
8GeV, via stochastic cooling stations. Many cycles of Debuncher cause the destruction of the
bunch structure which results in a continuous beam of antiprotons. At the end of the process
the monochromatic antiprotons are transferred into the Accumulator which is a triangle-shaped
storage ring where they are further cooled and stored until the cycles of the Debuncher are
completed. When a current sufficient to create 36 bunches with the required density is available
(≈ 3 × 1012 particles per bunch), the antiprotons are injected into the Main Injector, here
accelerated up to 150GeV and finally transferred into the Tevatron where 36 bunches of protons
are already circulating in opposite direction.

3.1.3 The collisions

When 36 bunches of both protons and antiprotons are circulating in the Tevatron, the energy
of the machine is increased in about 10 s from 150 to 980GeV and the beams collide every
396 ns at the two interaction points, DØ and BØ, where the DØ and the CDF II detectors are
respectively located. Special quadrupole magnets (low-β squeezers) located at both extremi-
ties of the detectors along the beam pipe “squeeze” the beam in the longitudinal direction to
maximize the luminosity inside the detectors. Then the beam transverse profile is shaped to
its optimized configuration by mean of iron plates which act as collimators and sweep away
the transverse beam halo. The interaction region thus achieves a roughly Gaussian distribution
in both transverse (σT ≈ 30µm) and longitudinal (σz ≈ 28 cm) planes with its center in the
nominal interaction point. When the beam profile is narrow enough and the conditions are
safely stable the detectors are powered and the data taking starts.

The number of overlapping inelastic interactions N for each bunch crossing is a Poisson-
distributed variable that depends on the instantaneous luminosity. The observed distribution
of the multiplicity of interaction vertexes yields N̄ ≈ 0.2, 1.0, 2.0, and 6.0 for respectively,
L ≈ 1031, 5 × 1031, 1032, and 3 × 1032 luminosities. In the last years of operations, when
collisions start the peak luminosity is almost regularly above 3.2×1032 cm−2s−1. While collisions
are taking place the luminosity decreases exponentially because of the beam-gas and beam-
halo interactions.1 In the meantime, antiproton production and storage continues. When the
antiproton stack is sufficiently large and the circulating beams are degraded the detector high-
voltages are switched off and the store is dumped. The beam is extracted via a switch-yard and

1The decrease is about a factor of 3 (5) for a store of ≈ 10 (20) hrs.
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Date
√
s [TeV] L [cm−2s−1]

∫
L dt [pb−1]

Mar 1983 End of the construction − − −
Jul 1983 Proton energy: 512GeV − − −
Oct 1983 Fixed-target program − − −
Feb 1984 Proton energy: 800GeV − − −
Oct 1985 First pp collisions 1.6 1024 −
Oct 1986 Proton energy 900GeV − − −

Jun 1988–May 1989 Run 0 1.8 2× 1030 4.5
Aug 1992–Feb 1996 Run I 1.8/0.63 28× 1030 180

Aug 2000 Beam energy: 980GeV − − −
Mar 2001–Sept 2011 Run II 1.96 (5− 440)× 1030 12000

Jun 2011 Best performances 1.96 440× 1030 11350

Table 3.1: Chronological overview of the Tevatron operation and performance. The fourth column
reports the peak luminosity. The fifth column reports the delivered integrated luminosity. The last row
shows the best performances achieved in therm of peak luminosity and the corresponding integrated
luminosity at that time.

sent to an absorption zone. Beam abortion can occur also accidentally when the temperature
of a superconducting magnet shift above the critical value and a magnet quenches destroying
the orbit of the beams. The time between the end of a store and the beginning of collisions of
the next one is typically ≈ 1 hr; during this time calibrations of the sub-detectors and test runs
with cosmics are performed.

3.1.4 Run II performances and achievements

The Tevatron was commissioned in 1983 as the first large-scale superconducting synchrotron
in the world and, since then, various periods of operations occurred. Each period of Tevatron
collider operations is conventionally identified as a Run. Table 3.1 contains a summary of the
Tevatron operations and performance since its construction.

The Tevatron pp collider has been the centerpiece of the world’s high energy physics program
for almost a quarter of century, until it was overtaken by the LHC first in the colliding beam
energy, in November 2009, and then in terms of colliding beam luminosity, in April 2011. In this
section we briefly describe the achievements of such a long history. We focus on the last period
of Tevatron operations, since March 2001 till September 2011, which is commonly referred to
as Run II. Indeed, the analyses reported in this thesis use data collected in Run II.

Figure 3.2 (a) shows the collider performance history in terms of instantaneous luminos-
ity. At the end of the Run II, typical Tevatron luminosities were well constantly above 3.2 ×
1032 cm−2s−1, with record peak above 4.4× 1032 cm−2s−1, thus ultimately exceeding its initial
luminosity design by a factor of 400. The plot also shows the steadily increase occurred during
the years after numerous improvements, some were implemented during operation and oth-
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Figure 3.2: Initial (a) and integrated (b) luminosity as a function of store number/time.

ers were introduced during regular shutdown periods. They took place in all accelerators and
addressed all parameters affecting luminosity, proton and antiproton intensities, emittances,
optics functions, bunch length, losses, reliability and availability, etc. The Tevatron integrated
luminosity has greatly progressed over the years (see Fig. 3.2 (b)) and, at the end of Run II
operations, a total of 12 fb−1 of pp collisions has been delivered to both CDF and DØ.

3.2 The CDF II detector

The CDF II detector is an azimutally and forward-backward symmetric apparatus designed to
study pp collisions at the Tevatron, installed at the BØ interaction point (see Fig. 3.1). It was
designed, built, and operated by a team of physicists, technicians, and engineers that spans
60 institutions of 13 countries. Several upgrades modified the design of the original facility
commissioned in 1985.2 The most extensive upgrade started in 1995 and led to the current
detector whose operation is generally referred to as CDF II.

The CDF II detector was in operation between 2001 and 2011. It is a multi-purpose
cylindrical-shaped detector, about 15m in length and 15m in diameter, composed of several
specialized subsystems, each one designed to perform a different task, as shown in Fig. 3.3. High
resolution three-dimensional charged particle tracking is achieved through an integrated system
consisting of three silicon inner subdetectors and a large outer drift chamber, all contained in a
superconducting solenoid, 1.5m in radius and 4.8m in length, which generates a 1.4T magnetic
field parallel to the beam axis. Outside the magnet a calorimeter system provides electrons
and photons identification and finely segmented sampling of energy flow coming from final state
particles. A system of muon chambers plus scintillators, is instead used to track and identify
muons which pass through the calorimeters interacting as minimum-ionizing-particles.

2Originally, the CDF acronym was meant for Collider Detector Facility.
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Figure 3.3: Elevation view of one half of the CDF II detector.

In the following sections we describe the general features of the most important subsystems
for the analyses reported in this thesis, the tracking system (Sect. 3.2.1), the particle identifi-
cation (Sect. 3.2.2) and the muon’s detectors (Sect. 3.2.3). A comprehensive description of the
entire apparatus is given in Ref. [74]. Before, we need to define few conventions.

CDF II employs a right-handed Cartesian coordinates system with the origin in the BØ
interaction point, assumed coincident with the center of the drift chamber. The positive z
axis lies along the nominal beam-line pointing toward the proton direction. The (x, y) plane
is therefore perpendicular to either beams, with positive y axis pointing vertically upward and
positive x axis in the horizontal plane of the Tevatron, pointing radially outward with respect
to the center of the ring. A cylindrical (r, φ, z) coordinates system is particularly convenient to
describe the detector geometry. Throughout this thesis, longitudinal (or axial) means parallel
to the proton beam direction (i. e. to the z axis) and transverse means perpendicular to the
proton direction (i. e. in the (x, y) or (r, φ) plane).

Since the protons and antiprotons are composite particles, the actual interaction occurs
between their individuals partons (valence or sea quarks and gluons). Each parton c ar-
ries a varying fraction of the (anti)proton momentum, not known on a event-by-event basis.
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As a consequence of the possible imbalance in the longitudinal components of the momenta of
interacting partons, possible large velocities along z for the center-of-mass of the parton-level
interaction may occur. In the hadron collisions environment, it is customary to use a variable
invariant under z boosts as an unit of relativistic phase-space, instead of the polar angle θ. This
variable is the rapidity, defined as

Y = 1
2 ln

(
E + p cos θ
E − p cos θ

)
,

where (E,p) is the energy-momentum four-vector of the particle. Under a ẑ boost to an
inertial frame with velocity β, the rapidity of a particle transforms linearly, according to
Y → Y ′ = Y + tanh−1 β, therefore Y is invariant since dY ≡ dY ′. However, a measurement of
rapidity still requires a detector with accurate identification capabilities because of the mass
term entering E. For practical reasons, it is often preferred to replace Y with its approximate
expression η in the ultra-relativistic limit (usually valid for products of high-energy collisions):

Y
p�m−→ η +O(m2/p2),

where the pseudo-rapidity,
η = − ln tan

(
θ

2

)
,

is only function of the momenta. As the event-by-event longitudinal position of the actual
interaction is distributed around the nominal interaction point with 28 cm r.m.s width, it is
useful to distinguish the detector pseudo-rapidity, ηdet, measured with respect to the (0, 0, 0)
nominal interaction point, from the particle pseudo-rapidity, η, measured with respect to the z
position of the real vertex where the particle originated.

3.2.1 Tracking system

Tracking refers to the measurement of charged particles trajectories within the detector volume.
This allows the determination of the charge and the momentum of a particle, which are essential
for the analyses presented in this thesis, since both vector mesons from the B0

s meson decay
are reconstructed through particle pairs of opposite charge. In particular, the excellent CDF II
tracking performance results in a mass resolution of ≈ 9 MeV/c2 for a B meson and a mass
resolution of ≈ 1 MeV/c2 for the φ(1020) resonance.

Within an uniform axial magnetic field, the trajectory of a charged particle produced with
non-zero initial velocity in the bending plane of the magnet is described by an helix, which can
be uniquely parameterized by the following set of equations:

x = R sin(2Cs+ φ0)− (R+ d0) sinφ0

y = −R cos(2Cs+ φ0) + (R+ d0) cosφ0

z = z0 + sλ

,
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Figure 3.4: Schematic view of a positively charged track in the plane transverse to an axial magnetic
field B = (0, 0,−B).

where, given the projected length along the track, s, one can find the corresponding (x, y, z)
coordinates of the trajectory by means of five parameters (see Fig. 3.4):

C – signed half-curvature of the helix, defined as C = q/2R, where R is the radius of the helix
and q is the charge of the track. This is directly related to the transverse momentum:
pT = cB/(2|C|), where c is the speed of light and B is the magnetic field of the solenoid;

φ0 – φ angle of the particle at the point of closest approach to the z axis;

d0 – signed impact parameter, i. e. the radial distance of closest approach to the z axis, defined
as d0 = q(

√
x2
c + y2

c −R), where (xc, yc) are the coordinates of the center;

λ – the helix pitch, i. e. cot θ, where θ is the polar angle of the helix at the point of its closest
approach to the z axis. This is directly related to the longitudinal component of the
momentum: pz = pT cot θ;

z0 – the z coordinate of the point of closest approach.

Charged particles leave small charge depositions as they pass through the alternative layers
of the tracking system. Using a set of spatial measurements of these depositions (“hits”),
pattern recognition algorithms can reconstruct the particle original trajectory measuring the
five parameters of the helix that best match to the observed path in the tracking detector. At
CDF II this is an integrated system consisting of three silicon inner sub-detectors and a large
outer drift chamber, all contained in a 1.4T magnetic field of a solenoid parallel to the beams and
pointing in the negative z direction. The silicon detectors provide excellent impact parameter,
azimuthal angle and z0 resolution while the drift chamber provides excellent resolution of the
curvature and φ0. Together they provide a very accurate measurements of the helical paths of
charged particles.
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Figure 3.5: View of the CDF II silicon system, including the SVX II cooling bulkheads and ISL support
structure, in the (r, z) (a) and (r, φ) (b) planes. The z scale is highly compressed.

3.2.1.1 The inner silicon tracker

The CDF II silicon tracking system, as shown in Fig. 3.5 in both (r, φ) and (r, z) projections, is
composed of three approximately cilindrical coaxial subsystems: the Layer00 (L00), the Silicon
VerteX detector (SVX II) and the Intermediate Silicon Layer (ISL).

L00 [75] is the innermost subsystem and consists of a one layer of single-sided, AC-coupled,
microstrip silicon sensors installed at radii of 1.35 and 1.62 cm on a mechanical structure in
direct contact with the beam pipe. It provides full azimuthal and |z| . 47 cm longitudinal
coverage. Longitudinally adjacent sensors (0.84− 1.46 cm × 7.84 cm) are ganged in modules of
15.7 cm active-length arranged into twelve partially-overlapping φ sectors, and six longitudinal
barrels. These radiation-tolerant sensors are biased to O(500V), which allows full depletion
after O(5MRad) integrated radiation doses. The strips are parallel to the beam axis allowing
sampling of tracks in the (r, φ) plane. The inter-strip implant pitch of 25µm with floating
alternate strips results in 50µm read-out pitch. The analog signals of the 13 824 channels are
fed via fine-pitch cables, up ∼ 50 cm long, to the front-end electronics outside the tracking
volume.

The SVX II [76] is a fine resolution silicon micro-strip vertex detector which provides five
three-dimensional samplings of tracks at 2.45, 4.1, 6.5, 8.2 and 10.1 cm (or, depending on the
φ sector, at 2.5, 4.6, 7.1, 8.7 and 10.6 cm) of radial distance from the beam with full pseudo-
rapidity coverage in the |ηdet| . 2 region. This corresponds to a length of |z| . 96 cm along the
beam-line, sufficient to cover the σz ≈ 28 cm longitudinal spread of the luminous region. The
SVX II has a cylindrical geometry coaxial with the beam, and its mechanical layout is segmented
in three 32 cm axial sections (“barrels”) times twelve 30◦ azimuthal sectors (“wedges”) times five
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equally-spaced radial layers. A small overlap between the edges of adjacent azimuthal sectors
helps wedge-to-wedge alignment (see Fig. 3.5 (b)). Sensors in a single layer are arranged into
independent longitudinal read-out units, called “ladders”. Each ladder comprises two, double-
sided sensors and a multi-layer electronic board, all glued on a carbon-fiber support. Front-end
electronics, biasing circuits, and fan-out are located on the board that serves the pair of sensors
whose strips are wire-bonded together resulting in a 15 cm active length. At a given radial
layer and azimuth, each barrel contains pairs of ladders stacked length-wise head-to-head to
keep the read-out electronic at the two outside extremities of the barrel. The active surface
consists of double-sided, AC-coupled, 7.5 cm × 1.5 − 5.8 cm silicon sensors with microstrips
implanted on a 300µm thick, high resistivity bulk. Bias is applied through integrated poly-
silicon resistors. On one side, all sensors have axial strips spaced by approximately 60–65µm,
for a precise reconstruction of the φ coordinate. On the reverse side, the following combination
of read-out pitch (strip orientations with respect to the beam) is used: 141µm (90◦), 125.5µm
(90◦), 60µm(−1.2◦), 141µm (90◦), 65µm (1.2◦), from the innermost to the outermost layer for
reconstructing the z coordinate. A total of 405 504 electronics channels are used for SVX II.

The ISL [77] detector is placed at intermediate radial distance between the SVX II and the
drift chamber and has polar coverage up to |ηdet| < 2 and a total length of 174 cm along z.
At |ηdet| . 1 a single layer of silicon sensors is mounted on a cylindrical barrel at radius of
22.6 cm (or 23.1 cm). At 1 . |ηdet| . 2 two layers of silicon sensors are arranged into two pairs
of concentric barrels (inner and outer). In the inner (outer) barrel, staggered ladders alternate
at radii of 19.7 and 20.2 cm (28.6 and 29 cm). One pair of barrels is installed in the forward
region, the other one in the backward region. Each barrel is azimuthally divided into a 30◦

structure matching the SVX II segmentation. The basic read-out unit consists of an electronic
board and three sensors ganged together resulting in a total active length of 25 cm. ISL employs
888 5.7 cm×7.5(6.7) cm double-sided, 300µm thick sensors. Each sensor has axial strips spaced
by 112µm on one side, and 1.2◦ angled strips spaced 112–146µm on the reverse, for a total of
303 104 channels.

All 722 432 channels from the ∼ 7.0 m2 silicon active-surface employ 5 644 radiation-tolerant,
custom integrated read-out chips of the same type. This chip allows independent cycles of
digitization of data and analog processing of subsequent data. The discriminated differential
pulse from each channel is preamplified, digitized and propagated to the downstream data-
acquisition. The ISL and the SVX II, whose mass is approximately 128 kg, share the carbon-fiber
supporting structure.

The total amount of material in the silicon system, averaged over φ and z, varies roughly
as 0.1X0/ sin θ in the |ηdet| . 1 region, and roughly doubles in 1 . |ηdet| . 2 because of
the presence of cables, cooling bulk-heads, and portions of the support frame.3 The average
amount of energy loss for a charged particle is roughly 9MeV. The total heat load of the
silicon system is approximately 4 kW. To prevent thermal expansion, relative detector motion,

3The symbol X0 indicates the radiation length.
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Figure 3.6: Elevation view of one quadrant of the inner portion of the CDF II detector showing the
tracking volume surrounded by the solenoid and the forward calorimeters.

increased leakage-current, and chip failure due to thermal heating, the silicon detectors and the
associated front-end electronics are held at roughly constant temperature ranging from −6◦C
to −10◦C for L00 and SVX II, and around 10◦C for ISL, by an under-pressurized water and
ethylene-glycol coolant flowing in aluminum pipes integrated in the supporting structures.4

The resolution on the hit position for all silicon sensors is about 11µm in the (r, φ) plane,
thus allowing to reach about 20µm resolution on the impact parameter of high-pT tracks which
degrades to about 35µm at 2 GeV/c. This precision provides a powerful help to identify long-
lived hadrons containing heavy-flavored quarks already at trigger level.

3.2.1.2 The central outer tracker

A large multi-wire, open-cell drift chamber called the Central Outer Tracker (COT) [78] extends,
in the central pseudo-rapidity region |ηdet| . 1, the silicon tracking system (see Fig. 3.6).

The COT has an hollow-cylindrical geometry, its active volume spans from 43.4 to 132.3 cm
in radius and |z| . 155 cm in the axial direction. Arranged radially into eight “super-layers”,
it contains 96 planes of wires that run the length of the chamber between two end-plates (see
Fig. 3.7 (a)). Each super-layer is divided into φ cells; within a cell, the trajectory of a charged
particle is sampled at 12 radii (spaced 0.583 cm apart) where sense wires (anodes) are strung.
Four super-layers employ sense-wires parallel to the beam axis, for the measurement of the hit
coordinates in the (r, φ) plane. These are radially interleaved with four stereo super-layers whose
wires are alternately canted at angles of 2◦ and −2◦ with respect to the beam-line. Combined
read-out of stereo and axial super-layers allows the measurement of the (r, z) hit coordinates.
Each super-layer is azimuthally segmented into open drift cells. Figure 3.7 (b) shows the

4The pressure of the cooling fluid is maintained under the atmospheric pressure to prevent leaks in case of
damaged cooling pipes.
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Figure 3.7: A 1/6 section of the COT end-plate (a); for each super-layer the total number of cells,
the wire orientation (axial or stereo), and the average radius in cm are given; the enlargement shows in
details the slot where the wire planes (sense and field) are installed. Sketch of an axial cross-section of
three cells in the super-layer 2 (b); the arrow points into the radial direction.

drift cell layout, which consists of a wire plane closed azimuthally by cathode sheets spaced
approximately 2 cm apart. The wire plane contains sense wires alternating with field-shaping
wires, which control the gain on the sense wires optimizing the electric field intensity. The
cathode is a 6.35µm thick Mylar sheet with vapor-deposited gold shared with the neighboring
cell.5 Innermost and outermost radial extremities of a cell (i. e., the boundaries between super-
layers) are closed both mechanically and electrostatically by Mylar strips with an additional
field-shaping wire attached, the shaper wire.

Both the field sheet and the wire plane have a center (z ≈ 0) support rod that limits motion
due to electrostatic forces. Each wire plane contains 12 sense, 13 field-shaping and 4 shaper
wires, all made of 40µm diameter gold-plated tungsten. Wire planes are not aligned with the
chamber radius: a ζ = 35◦ azimuthal tilt partially compensates for the Lorentz angle of the
drifting electrons in the magnetic field.6 The tilted-cell geometry helps in the drift velocity
calibration, since every high-pT (radial) track samples the full range of drift distances within
each super-layer. Further benefit of the tilt is that the left-right ambiguity is resolved for
particles coming from the z axis since the ghost track in each super-layer appears azimuthally
rotated by arctan[2 tan(ζ)] ≈ 54◦, simplifying the pattern recognition problem. On the other

5Gold, used also for the wires, was chosen because of its good conductivity, high work function, resistance to
etching by positive ions, and low chemical reactivity.

6In the presence of crossed electric (E) and magnetic (B) fields, electrons drifting in a gas move at an angle
ζ with respect to the electric field direction, given by ζ ≈ arctan

(
v(E,B=0)B

kE

)
, where v(E,B = 0) is the drift

velocity without a magnetic field, and k is a O(1) empirical parameter that depends on the gas and on the
electric field. A common solution for this problem consists in using tilted cells (i. e. tilted drift electric field) that
compensate the Lorentz angle linearizing the time-to-distance relation.
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hand this tilt angle causes an unavoidable difference in the reconstruction efficiencies between
positively and negatively charged tracks which cross the sense wires with different incidence
angle. Such difference is particularly enhanced for low-pT tracks and introduces unwanted
spurious asymmetries of the order of few percents.

A 50 : 50 gas admixture of argon and ethane bubbled through isopropyl alcohol (1.7%) flows
in the active volume of the chamber with its pressure being continuously monitored by four
probes. High voltage is applied to the sense and field-shaping wires to generate a 1.9 kV/cm
drift electric field. This value, combined with the drift gas, results in a maximum drift-time of
about 177 ns along a maximum drift-distance of 0.88 cm, allowing for read-out and processing of
the COT data between two consecutive bunch-crossings. The average 180 kV/cm field present
at the surface of the sense wire produces typical gains of 2 × 104. The sense wires are read-
out by the front-end chip, which provides input protection, amplification, shaping, baseline
restoration, discrimination and charge measurement. The input-charge information is encoded
(logarithmically) in the signal width for dE/dx sampling and is fed to a time-to-digital converter
that records leading and trailing-edge times of signal in 1 ns bins.

The COT single-hit resolution is 140µm, including a 75µm contribution from the ∼ 0.5 ns
uncertainty on the measurement of the pp interaction time. Internal alignments of the COT
cells are maintained within 10µm using cosmic rays. Curvatures effects from gravitational and
electrostatic sagging are under control within 0.5% by equalizing the difference of E/p between
electrons and positrons as a function of cot θ.

3.2.1.3 Tracking algorithms and performances

The reconstruction of a charged particle trajectory consists in determining the helix parameters
of Pag. 49 trough a fit of the reconstructed hits in the tracking sub-detectors with two basic steps:
clustering multiple close measurements coming from the same track and pattern-recognition
algorithm to joint the hits along the whole track arc. CDF employs several algorithms for
tracks reconstruction depending on which component of the detector a particle travels through.
The principal one, used to track the particles in the central region (|ηdet| . 1), is the Outside-In
(OI). In this algorithm tracks are first reconstructed in the COT and then extrapolated inward
to the silicon. This approach guarantees fast and efficient tracking with high purity. The greater
radial distance of the COT with respect to the silicon tracker results in a lower track density
and consequent fewer accidental combination of hits in the track reconstruction. Due to the
limited COT coverage and the strict hits requirement (at least 4 out of 8 super-layers must
contain a valid hit), tracking in the forward region requires different algorithms that are not
described here because not used in these analyses. A concise overview of all the algorithms used
at CDF is given in Refs. [79, 80, 81], in the following we briefly summarize how the OI works
and which performances are achieved.
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In the first step of pattern recognition, cells in the axial super-layers are searched for sets of
4 or more hits that can be fit to a straight line. Once these “segments” of hits are found, there
are two approaches that can be followed to reconstruct a track. One approach is to link together
the segments which are consistent with lying tangent to a common circular path7. The other
approach is to constrain its circular fit to the beam-line. Once a circular path is found in the
(r, φ) plane, segments and hits in the stereo super-layers are added depending on their proximity
to the circular fit. This results in a three-dimensional track fit. Typically, if one algorithm fails
to reconstruct a track, the other algorithm will not. Once a track is reconstructed in the COT,
it is extrapolated inward to the silicon system. Based on the estimated errors on the track
parameters, a three-dimensional “road” is formed around the extrapolated track. Starting from
the outermost layer, and working inwards, silicon hits found inside the road are added to the
track. As hits get added, the road gets narrowed, according to the knowledge of the updated
track parameters and their covariance matrix. Reducing the width of the road reduces the
chance of adding a wrong hit to the track, and also reduces the computation time. In the first
pass of this algorithm, only axial hits are considered; while in a second pass, hits with stereo
information are also added to the track. At the end, the track combination with the highest
number of hits and lowest χ2/ndf for the five parameters helix fit is kept.

COT efficiency for tracks with pT larger (smaller) than 1GeV/c is typically 98-99% (95%) de-
pending on the isolation. The typical resolutions on track parameters are: σpT /p2

T ≈ 0.15% (GeV/c)−1,
σφ0 ≈ 0.035◦, σd0 ≈ 250µm, σθ ≈ 0.17◦ and σz0 ≈ 0.3 cm for tracks with no silicon infor-
mation nor beam constrained. The silicon information improves the impact parameter reso-
lution which, depending on the number (and radial distance) of the silicon hits, may reach
σd0 ≈ 20µm (not including the transverse beam size). This value, combined with the ∼ 30µm
transverse beam size, is sufficiently small with respect to the typical transverse decay-lengths
of heavy flavors (a few hundred microns) to allow separation of their decay-vertices from pro-
duction vertices. The silicon tracker improves also the stereo resolutions to σθ ≈ 0.06◦ and
σz0 ≈ 70µm, while the transverse momentum and the azimuthal resolutions remain approxi-
mately the same of COT-only tracks. Transverse momentum resolution can be further improved
to about σpT /p2

T ≈ 0.05% (GeV/c)−1 when tracks are beam constrained.

3.2.2 Particle identification

Particle identification (PID) plays an important role in two aspects of the B0
s→J/ψφ analysis,

as a component in the discriminating variables of the offline selection (Chap. 5), and in selecting
kaon tracks for flavor tagging (Chap. 4). The two quantities used as PID to distinguish pions
from kaons at CDF are the ionization energy loss in the COT and the Time of Flight.

7The helical track, when projected onto the (r, φ) plane, is a circle.
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Figure 3.8: Universal curve showing combination of pions, kaons, protons and muons (a). Momentum
dependence for muons, pions, kaons, protons and electrons at CDF (b).

3.2.2.1 PID with the COT

The ionization energy loss (dE/dx) of a charged particle as it moves through matter is given by
the Bethe-Bloch formula [27]

〈
dE

dx

〉
= 4πNe4

mec2β2 q
2
[

log 2mec
2β2γ2

I2 − β2
]
,

where N is the number density of electrons in the material of interest, e is the electron charge,
me the electron mass, q the particle’s charge, βc the particle’s speed, γ = 1/

√
1− β2, and I is

the mean excitation energy for atoms in the material. For a material with known properties,
such as the gas in the COT, this equation can yield a measurement of the particle’s mass when
combined with a momentum measurement, which can then be compared to known particle
masses in order to estimate the particle type. The Bethe-Bloch formula is empirically modified
to better model the CDF detector, as [82]

〈
dE

dx

〉
= 1
β2

[
c1 log

(
βγ

b+ βγ

)
+ c0

]
+ a1(β − 1) + a2(β − 1)2 + C, (3.1)

where ai, b, cj and C are free parameters which float when fitting the data. From Eq. (3.1), a
universal curve can be plotted against βγ. An example of the CDF universal curve for several
particle types is shown in Fig. 3.8 (a), while Fig. 3.8 (b) plots the momentum dependence of
measured dE/dx for different particles, which demonstrates the ability to separate particle types
using dE/dx and momentum. This separation when dE/dx is plotted against momentum occurs
because the dependence on βγ is an implicit function of mass and momentum.

The amount of ionization charge produced by a charged particle near a COT sense wires
affects the signal strength in the wire. The dE/dx is measured as the amount of charge, above
a threshold value, which is proportional to the width (∆t) of the pulse from the readout chip.
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Thus dE/dx values are given in nanoseconds rather than a unit of energy. While the measured
dE/dx should only depend on the boost, βγ, of a particle the measurement capability of the
COT for dE/dx is not perfect and introduces effects due to both environmental and kinematic
variables. These dependences reduce the power of the dE/dx variable to separate between
particle types, so in order to optimise PID at CDF the measured dE/dx must be calibrated
to remove or minimise these dependences. The calibration taken to correct the detector and
kinematic effects on measured dE/dx in the COT are described in Ref. [83]. To calibrate the
dE/dx pure samples of pions and of kaons are used. These are obtained from D0 decays, from
the decay chain D?→D0π+, D0→K−π+ and its charge conjugate.

The following effects are corrected for:

• time.
The dependence of dE/dx on time is understood to be due to several properties of the
drift chamber which have varied since the start of Run II. One example of this is that
in 2006, the two inner layers of the COT had dE/dx read out switched off in order to
maintain tracking capabilities at high luminosity. The fact that the delivered luminosity
from the Tevatron has increased significantly over the run period also affects measured
dE/dx. Additionally, aging of the COT can affect the amount of charge collected for
dE/dx measurement. This effect exhibits correlations with luminosity, number of COT
hits, and track density; variations in these parameters are calibrated for in a 4-dimensional
simultaneous correction.

• Luminosity.
This interdependence is to be expected given the time dependence of luminosity itself,
and the increase in occupancy of the COT in higher luminosity running will affect the
number of hits, and the density of tracks. Higher occupancy in the COT means a larger
number of tracks which could be in the region of the track of interest, and could contribute
to the measured charge deposit for that track. This causes an artificially raised dE/dx

measurement for higher luminosity events.

• COT hits.
There is a significant dependence on the number of associated COT hits for a track. This
is itself correlated with other occupancy related variables.

• Secance (track density).
A variation dependent on the track density in the vicinity of the candidate, measured as the
number of r–φ intersections of the candidate track with other tracks within the COT (see
Fig. 3.9 (a)). There is no longitudinal segmentation in the wires of the COT, so the charge
deposited by any hit axially in the region of the candidate track can be counted towards
the dE/dx of that track. Secance is a variable which has been constructed to count the
number of tracks intersecting the candidate track, which was found to be a more effective
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show that the variations of dE/dx with the studied parameters is reduced to < 0.5 ns
after calibration. As η is dependent on momentum, there is some residual dE/dx depen-
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Figure 3.3: variations in measured dE/dx with several environmental and kinematic parame-
ters before and after calibration

dence on η after the calibrations have been applied when looking at the full momentum
spectrum as in Figure 3.3. This is expected, and when dE/dx is plotted against η for
slices of momentum the distribution is flat; examples are shown in Figure 3.4 for the
momentum ranges 2 < p < 3 GeV/c and 5 < p < 6 GeV/c. The remaining variations
in these plots are due to the reduced statistics from slicing the dataset into momentum
segments.

(b)

Figure 3.9: Sketch of the secance: the blue track is the candidate, the green tracks are those that
the algorithm selects as intersecting tracks in the COT volume (a); variations in measured dE/dx as a
function of the secance before and after calibration (b).

quantity than a more traditional approach such as track isolation. An assumption has
to be made in correcting this parameter, that the number of reconstructed tracks for an
event is proportional to the total number of tracks, as only the reconstructed tracks are
accessible in the dataset.

• ηdet.
The pseudorapidity is a function of transverse momentum, and therefore there will be some
intrinsic variation in measured dE/dx with ηdet as the momentum dependence is a physical
effect, ηdet is the only variable which exhibits a significant momentum dependence. This
parameter demonstrated independence from the other parameters, so can be corrected for
separately.

• φ0.
This parameter can be corrected for independently as the effect has been shown to factorise
with the other studied variables, modulo a global shift due to the change in mean dE/dx
measured. Variations in the measured dE/dx for particles traversing different sectors of
the COT can be explained by the temperature gradient and the flow of gas within the
chamber. The variable chosen to measure this effect is the track φ0, which gives the
initial azimuthal direction within the COT and therefore is expected to show clearly any
variations which occur due to the effects mentioned.

Figure 3.9 (a) shows the effect of the correction of the dE/dx for the secance; similar effects are
given for the other variables.

The curves for the four studied particle types, positive and negative kaons and pions, can be
compared in Fig. 3.10, showing the separation between the particle species after the calibration.
As is clear from this plot, there is a systematic difference in the average dE/dx response of the
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Figure 3.6: dE/dx dependence on momentum for different particle types after calibration.

looking at the separation between residual dE/dx distributions for pions and kaons,
where perfect separation would mean no overlap in the distributions. The separation
value is traditionally quoted in terms of Gaussian sigma, but for non-perfect Gaussian
distributions this method is not appropriate. Instead, for a sample of N events, where
f is the fraction of pions and 1 − f the fraction of kaons, the statistical error on the
estimate of the pion fraction, σf is used to determine the separation power in terms of
the precision, (1/σf ) using [84]:

σ2
f =

1

N

∑Z
(pπ(x) − pK(x))2

fpπ(x) + (1 − f)pK(x)
dx

∏−1

(3.11)

where x is the dE/dx residual and p{π,K} are the probability distributions of x for pions

and kaons. The upper bound on this quantity is 1/σbest
f =

p
N/(f(1 − f)), correspond-

ing to the ideal case where there is no overlap between the residual distributions for
pions and kaons.The separation power is then quoted as a fraction of the ideal case,
s = σbest

f /σf :

s =

s
f(1 − f)

Z
(pπ(x) − pK(x))2

fpπ(x) + (1 − f)pK(x)
dx. (3.12)

The separation, s can take any value in the range 0-1, where 1 corresponds to the
perfect separation described previously. The probability density functions which enter
Equation 3.12 are constructed from data residual distributions shown in Figure 3.9.
The value of separation for uncalibrated dE/dx is s = 48.8%, which increases after
calibration to s = 56.4%, a 22% improvement.

3.4.2 Time of Flight

Time of Flight is a complementary quantity to dE/dx, as it is most powerful at
separating pions from kaons at low momentum, p < 1.5 GeV/c. Particle identification

Figure 3.10: dE/dx dependence on momentum for different particle types after calibration.
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Figure 3.8: dE/dx dependences before and after calibration
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Figure 3.9: Data distributions for dE/dx residuals before and after calibration

Figure 3.10 shows an example of the TOF distribution for different particles, demon-
strating the separation according to mass, and the separation power for several particle
types compared to the K − π separation power of dE/dx.

Like dE/dx, TOF should be dependent only on the mass and momentum of a par-
ticle, however the detector and event kinematics can also affect this quantity. The
measured TOF therefore must be calibrated in order to obtain optimal separation be-
tween particle species. This is done using pure samples of each particle type separately;
the full calibration method for this variable is described in [87].

3.5 Preselection

Loose selection requirements are applied to reduce the sample size before running
the neural network and ensure reasonable candidates are included. These preselection
cuts are:

• 5.1 < J/ψφ invariant mass < 5.6 GeV/c2, this window is set to be 100 MeV
around the world average B0

s mass, a range large enough to avoid throwing away
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Figure 3.10 shows an example of the TOF distribution for different particles, demon-
strating the separation according to mass, and the separation power for several particle
types compared to the K − π separation power of dE/dx.

Like dE/dx, TOF should be dependent only on the mass and momentum of a par-
ticle, however the detector and event kinematics can also affect this quantity. The
measured TOF therefore must be calibrated in order to obtain optimal separation be-
tween particle species. This is done using pure samples of each particle type separately;
the full calibration method for this variable is described in [87].

3.5 Preselection

Loose selection requirements are applied to reduce the sample size before running
the neural network and ensure reasonable candidates are included. These preselection
cuts are:

• 5.1 < J/ψφ invariant mass < 5.6 GeV/c2, this window is set to be 100 MeV
around the world average B0

s mass, a range large enough to avoid throwing away

(b)

Figure 3.11: Data distributions for dE/dx residuals before (a) and after (b) calibration.

COT for positively and negatively charged particles, and this difference is momentum dependent.
The change in separation of the curves shown causes a drop off in performance with momentum
for dE/dx as a PID tool, but for the momentum ranges used in the B0

s→J/ψφ analysis described
in this thesis.

Using the predicted dE/dx curves, it is possible to construct dE/dx residuals, (〈dE/dx〉measured−
〈dE/dx〉predict). To assess the effect of calibrating the dE/dx on the PID performance of this
variable, the main figure of merit used is the pion-kaon separation power. This is studied by
looking at the separation between residual dE/dx distributions for pions and kaons. Separation
power ranges from 0% (no separation) to 100% (perfect separation), where perfect separation
would mean no overlap in the distributions. The value of separation power between K and π
for uncalibrated dE/dx is 48.8%, which increases after calibration to 56.4%, a 22% improvement
(see Fig. 3.11).
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3.2 The CDF II detector

3.2.2.2 Time of flight detector

The Time Of Flight (TOF) is a complementary quantity to dE/dx, as it is most powerful at
separating pions from kaons at low momentum, pT < 1.5 GeV/c. Particle identification with
TOF is based on the relation

m = p

c

√
(ctf)2 − 1

L

where m is the predicted mass (which can be used to identify a particle by comparison with
known particle masses), c is the speed of light, L is the track length, p is the particle momentum,
and tf is the time of flight.

The TOF detector [84] is a cylindrical array made of 216 scintillating bars and it is located
between the external surface of the COT and the cryostat containing the superconducting
solenoid. Bars are 280 cm long and oriented along the beam axis all around the inner cryostat
surface at an average radial distance of 138 cm. Both longitudinal sides of the bars collect the
light pulse into photomultiplier and measure accurately the timing of the two pulses. The time
between the bunch crossing and the scintillation signal in these bars defines the β of the charged
particle while the momentum is provided by the tracking system. The measured mean time
resolution is now 110 ps. This guarantees a separation between charged pions and kaons with
pT . 1.6 GeV/c equivalent to 2σ, assuming Gaussian distributions. Unfortunately, also in the
usual luminosity conditions (L & 5×1031 cm−2s−1) the occupancy of the single bars determines
a degradation in efficiency, which is about 60% per track.

Like dE/dx, TOF should be dependent only on the mass and momentum of a particle,
however the detector and event kinematics can also affect this quantity. The measured TOF
therefore must be calibrated in order to obtain optimal separation between particle species.
This is done using pure samples of each particle type separately; the full calibration method
for this variable is described in [85]. Figure 3.12 shows an example of the TOF distribution for
different particles, demonstrating the separation according to mass, and the separation power
for several particle types compared to the K–π separation power of dE/dx.

3.2.3 Muons system

Muon identification is crucial for the B0
s→J/ψφ analysis; the online selection based on the

reconstruction of a muons pair is used to select J/ψ→µ+µ− events, which make up half of the
final state particles of the B0

s→J/ψφ decay. The system devoted to muon identification is the
furthest detector component from the beam pipe. Muons pass through the rest of the detector
losing little energy, and if they have sufficient momentum they reach the muon drift chambers.
A particle entering the muon chambers leaves a track which is registered as a muon stub. As
they are charged, muons leave tracks in the COT; if a COT track is matched to a muon stub
these can be combined to make up a muon candidate.
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Figure 3.12: TOF distribution of different particles (a) and separation power for TOF compared to
that of dE/dx (b).

The design of the detector is such that other types of particle than muons should be absorbed
by the material between the beam pipe and the first of the muon detectors. The CDF muon
system [86, 87] consists of several subcomponents, the main part is the Central MUon detector
(CMU), which was the initial muon system of the Run I detector. During Run I, the muon
system was upgraded by adding the Central Muon eXtension (CMX) and Central Muon Upgrade
(CMU) components. These components were improved and finalized for Run II. An additional
section, the Intermediate MUon detector (IMU), extends the coverage in ηdet to the forward
region. The ηdet–φ coverage of the different muon detector components is shown in Fig. 3.13.
Features and properties of the muon detectors are summarised in Tab. 3.2. The CMU, CMP,
CMX and IMU are drift chambers, there are also three scintillators, the CSP, CSX and BSU,
which are close to each drift chamber. These serve two main purposes, they are used for
triggering and deliver timing information to reduce background by identifying which beam
crossing produced a specific muon.

CMU CMP CMX IMU
ηdet range |ηdet| < 0.6 |ηdet| < 0.6 0.6 < |ηdet| < 1.0 1.0 < |ηdet| < 1.5
Drift tube cross section [cm2] 2.68× 6.35 2.5× 15 2.5× 15 2.5× 8.4
Drift tube length [cm] 226 640 180 363
Minimum muon pT [GeV/c] 1.4 2.2 1.4 1.4–2.0
pion interaction lengths 5.5 7.8 6.2 6.2–20

Table 3.2: Some important design parameters of the CDF II muon detectors.

The CMU is made up of 144 modules each with 16 cells filled with the same mixture of
gases as the COT. In the centre of each cell there is a 50µm stainless steel sense hambers,
these are referred to as punch-throughs which result in fake muons. The first upgraded muon
detector, the CMP, is behind an additional 60 cm of steel, further reducing the chance of fake
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Figure 2.10: Layout of the CDF muon detector components in azimuth and pseudorapidity

CMU CMP CMX IMU
Pseudo-rapidity range |η| < 0.6 |η| < 0.6 0.6 < |η| < 1.0 1.0 < |η| < 1.5
Drift tube cross section 2.68 x 6.35 cm 2.5 x 15 cm 2.5 x 15 cm 2.5 x 8.4 cm
Drift tube length 226 cm 640 cm 180 cm 363 cm
Minimum muon pT 1.4 GeV/c 2.2 GeV/c 1.4 GeV/c 1.4-2.0GeV/c
Pion interaction lengths 5.5 7.8 6.2 6.2-20

Table 2.1: Some important design parameters of the CDF II muon detectors [73]

wire. The signal from these wires is read out in pairs which are slightly offset in φ,
providing timing and amplitude measurements which give the z and φ position of the
muon. The CMU is shielded by the CHA, which is 5.5 pion interaction lengths of
absorbing material, to minimise the non-muon particles which reach this component.
However, it is possible for some non-muon particles, such as high momentum pions, to
reach the muon chambers, these are referred to as punch-throughs which result in fake
muons.

The first upgraded muon detector, the CMP, is behind an additional 60 cm of steel,
further reducing the chance of fake muon events being recorded. CMP measurements
therefore improve the muon identification, and a muon candidate with hits in both
the CMU and CMP (called a CMUP muon) has higher precision than one with CMU
information only. The CMP is rectangular in design, therefore has variable η coverage
with respect to φ, as shown in Figure 2.2.5. Sense wires in the CMP are read out
individually, and groups of hits in nearby wires can be combined with CMU information
for triggering.

The CMX is made up of conical sections with four layers of twelve drift tubes, and

Figure 3.13: Layout of the CDF II muon detector components in the ηdet–φ plane.

muon events being recorded. CMP measurements therefore improve the muon identification,
and a muon candidate with hits in both the CMU and CMP (called a CMUP muon) has higher
precision than one with CMU information only. The CMP is rectangular in design, therefore has
variable ηdet coverage with respect to φ, as shown in Fig. 3.13. Sense wires in the CMP are read
out individually, and groups of hits in nearby wires can be combined with CMU information
for triggering. The CMX is made up of conical sections with four layers of twelve drift tubes,
and is associated with the CSX set of scintillation counters. These detectors extend the ηdet

coverage of the muon system, lying at either end of the central detector components. There
is no additional shielding for the CMX, but the large angle from the interaction point means
that to leave a stub in the CMX, particles travel through significantly more material than those
which reach the CMU. The furthest reaching muon detector in ηdet is the IMU, which has
trigger capability for muons with |ηdet| < 1.5 and can be used in offline reconstruction of up
to |ηdet| < 2.0 muons. The drift chambers of the IMU of the same type as in the CMP, and
are arranged in barrel structures. The readout from the IMU is linked with scintillator timing
information for the trigger and muon identification.

3.2.4 Other detectors

In this section we briefly describe the CDF II sub-detectors not used or less important for our
analyses.

3.2.4.1 Calorimeters

Outside the solenoid, scintillator-based calorimeters cover the region |ηdet| 6 3.6, and are de-
voted to the measurement of the energy deposition of photons, electrons and hadrons using the
shower sampling technique. Muons, which are minimally ionising and therefore deposit only
a small fraction of energy passing through the calorimeter material, leave little trace in the
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calorimeters and pass through to the muon detectors which are described in the next section.
Calorimeters are particularly important in identifying neutral particles, which do not leave
tracks in the inner detectors. They are also essential in deducing the likelihood of the presence
of a neutrino in an event, as neutrinos do not interact with the detector but can be observed
by the absence of energy that should be present due to energy-momentum conservation, called
missing energy.

The basic structure of the calorimeters consists of alternating layers of passive absorber
and plastic scintillator. Neutral particles and charged particles with pT & 350 MeV/c are likely
to escape the solenoid’s magnetic field and penetrate into the calorimeters. These are finely
segmented in solid angle around the nominal collision point and coarsely segmented radially
outward from the collision point (in-depth segmentation). Angular segmentation is organized
in projective towers. Each tower has a truncated-pyramidal architecture having the imaginary
vertex pointing to the nominal interaction point and the base is a rectangular cell in the (ηdet, φ)
space. Radial segmentation of each tower instead consists of two compartments, the inner
(closer to the beam) devoted to the measure of the electromagnetic (EM) component of the
shower, and the outer devoted to the measure of the hadronic (HA) fraction of energy. These
two compartments are read independently through separated electronics channels. A different
fraction of energy release in the two compartments distinguishes photons and electrons from
hadronic particles.

CDF calorimeters are divided in several independent subsystems: the Central EM and
HA calorimeters, the CEM and CHA, surround the tracking system radially, and cover the
pseudorapidity range |ηdet| < 1.1 [88, 89]; coverage in ηdet is extended by the Plug calorimeters,
PEM and PHA, to |ηdet| < 3.6, and the region between the central and plug areas is bridged
by the end-Wall HA (WHA) calorimeters [90, 91, 92]. The EM calorimeters are enhanced
by showermax detectors, which are gas filled wire and strip chambers. These give position
measurements which can be matched to tracks, and a transverse profile of the shower, to separate
photons from neutral pions. Additionally, preshower scintillator tile chambers are positioned
on the front of the central calorimeter wedges and the first layer of the PEM. These improve
soft (low momentum) photon and electron identification.

3.2.4.2 Cherenkov luminosity counters

CDF has two dedicated luminosity detectors, the Cherenkov Luminosity Counters (CLC), which
are innovative devices for making precision measurements in the high luminosity regime. Prior
to CDF II, luminosity measurement at hadron machines was usually carried out with scintil-
lating counters which recorded the number of bunch crossings with no interactions. For high
luminosities this technique is not practical as the number of bunch crossings with no interactions
is minimal, so it is necessary to directly measure the number of interactions. High precision
luminosity measurements are essential for analyses, such as cross-section measurements, which
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require knowledge of the total integrated luminosity in a dataset. From the CLCs, the average
number of particles per bunch crossing is measured by the amount of Cherenkov light collected,
and this can be used to estimate the number of inelastic pp interactions in each bunch crossing.
The CLCs are placed at either end of the CDF detector, in the end plug calorimeters, cover-
ing the pseudo-rapidity range 3.7 < |ηdet| < 4.7 [93, 94]. They are each made up of 48 long
conical Cherenkov counters, filled with isobutane gas, arranged in 3 concentric layers about the
beampipe. Small, fast PMT are used to collect the Cherenkov light, and backgrounds such as
secondary particles are excluded by setting suitable light thresholds.

3.2.5 Trigger and data acquisition systems

The CDF II trigger system is a key element that makes the presented measurements possible.
Identification of decays of heavy-flavored mesons is challenging in the Tevatron collider environ-
ment due to the large inelastic pp cross section and high particle multiplicities at 1.96TeV. In
order to collect these events the trigger system must reject more than 99.99% of the collisions
while retaining good efficiency for signal. In this section, we describe the CDF II trigger struc-
ture and the algorithms used in collecting samples enriched in J/ψ→µ+µ− for the B0

s→J/ψφ

analysis and samples enriched in hadronic B decays for the B0
s→φφ analysis.

At the typical Tevatron instantaneous luminosity, approximately 2.6×106 inelastic collisions
per second occur, corresponding to one interaction per bunch-crossing on average. Since the
read-out of the entire detector needs about 2ms on average, after the acquisition of one event,
another approximately 5 000 interactions would remain unrecorded. When an event recording
is prevented because the system is busy with a different event or a different task, this is called
deadtime. Expressing the same concept in terms of information units, the average size of
information associated to each event is 140 kB. Even in case of deadtime-less read-out of the
detector, in order to record all events, an approximate throughput and storage rate of 350GB/s
would be needed, largely beyond the possibility of currently available technology. The read-
out system has to reduce the 2.3MHz interaction-rate to the 100Hz storage rate attainable at
CDF II. The challenge for the whole system is to be smart enough to cut-off events that do not
have the minimal requirements to be reconstructed or seem to contain well-known processes,
that do not need further study, focusing the acquisition system on the interesting processes.
Figure 3.14 shows a scheme to explain how the information flows trough the different parts.
To suppress unwanted events, the CDF II Data AcQuisition system (DAQ) is segmented in
three levels, each level receiving the accepted event from the previous one, and, provided with
detector information with increasing complexity and with more time for processing, determines
if one of a set of existing criteria is verified by the event.

Prior to any trigger level, the bunched structure of the beam is exploited to reject cosmic-ray
events by gating the front-end electronics of all sub-detectors in correspondence of the bunch-
crossing. The front-end electronics of each sub-detector, packaged in Vesa Module Eurocard
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Figure 3.14: Functional block diagram of the CDF II trigger and data acquisition systems.

(VME) modules hosted in about 120 crates, has a 42-cells deep pipeline synchronized with
the Tevatron clock-cycle set to 132 ns. The Tevatron clock picks up a timing marker from the
synchrotron RF and forwards this bunch-crossing signal to the trigger and to the front-end
electronics. Since the inter-bunch time is 396 ns, three times the Tevatron clock-cycle, the
pipeline can collect data corresponding to a maximum of 14 bunch-crossings. The pipeline
depth gives the amount of time that Level 1 (L1) trigger has to decide to accept or reject an
event otherwise the buffer content is overwritten: 14 × 396 ns = 5.5µs. An event accepted by
the L1 is passed to the Level 2 (L2) buffer, where the number of buffers in the pipeline is 4,
that gives 4×5.5µs = 22µs. This means that if an event is accepted by the L1 and the L2 does
not have a free buffer, deadtime will incur. L2 output rate is low enough to avoid in general
deadtime problem in the connection between L2 and Level 3 (L3).

At L1, a synchronous system of custom-designed hardware processes a simplified subset of
data in three parallel streams to reconstruct coarse information from the calorimeters (total
energy and presence of single towers over threshold), the COT (two-dimensional tracks in the
transverse plane), and the muon system (muon stubs in the CMU, CMX and CMP chambers).
A decision stage combines the information from these low-resolution physics objects, called
primitives, into more sophisticated objects, e. g. track primitives are matched with muon stubs,
or tower primitives, to form muon, electron, or jet objects, which then undergo some basic
selections.8

8A jet is a flow of observable secondary particles produced in a spatially collimated form.
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At L2, an asynchronous system of custom-designed hardware processes the time-ordered
events accepted by the L1. Additional information from the shower-maximum strip chambers
in the central calorimeter and from the axial layers of the SVX II detector is combined with
L1 primitives to produce L2 primitives. A crude energy-clustering is done in the calorimeters
by merging the energies in adjacent towers to the energy of a seed tower above threshold.
L1 track primitives matched with consistent shower-maximum clusters provide refined electron
candidates whose azimuthal position is known with 2◦ accuracy. Information from the (r, φ)
sides of the SVX II is combined with L1 tracks primitives to form two-dimensional tracks
with resolution similar to the offline one. Finally, an array of programmable processors makes
the trigger decision, while the L2 objects relative to the following event accepted at L1 are
already being reconstructed. Samples enriched with heavy-flavor particles are selected at L2 by
the displaced-track trigger, based on the Silicon Vertex Trigger (SVT) [95, 96]. It provides a
precise measurement of the track impact parameter, defined as the distance of closest approach
to the beam axis in the transverse plane. Decays of heavy-flavor particles, such as the B0

s→φφ,
are identified by requiring two tracks with 120µm < d0 < 1.0 mm and applying a requirement
on the two-dimensional decay length, Lxy > 200µm. The SVT trigger is used to select on-line
the B0

s→φφ sample and it will be described in details in Sect. 9.1.
The digitized output relative to the L2-accepted event reaches L3 via optical fibers and it

is fragmented in all sub-detectors. It is collected by a custom hardware switch that arranges
it in the proper order and transfers it to commercial computers, organized in a modular and
parallelized structure of 16 subsystems. The ordered fragments are assembled in the event
record, a block of data that univocally corresponds to a bunch-crossing and is ready for the
analysis of the L3 software. The event reconstruction benefits from full detector information
and improved resolution with respect to the preceding trigger levels, including three-dimensional
track reconstruction, tight matching between tracks and calorimeter or muon information, and
calibration information. If an event satisfies the L3 requirements, the corresponding event
record is transferred to mass storage at a maximum rate of 20MB/s. A fraction of the output is
monitored in real time to search for detector malfunctions, to derive calibrations constants and
to graphically display events. The L3 decision is made after the full reconstruction of the event
is completed and the integrity of its data is checked, a process that takes a few milliseconds.

3.2.6 Operations and data quality

The data-taking efficiency is plotted in Fig. 3.15 as a function of time. The average over
the whole Run II is about 85%. The inefficiency is approximately equally shared in a 5%
arising at the beginning of the store, when the detector is not powered while waiting for stable
beam conditions, a 5% due to trigger deadtime, and a 5% due to unexpected detector or DAQ
problems.

Each time that at least one of the trigger paths fires, an event is labeled with a progressive
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Figure 3.15: Data-taking efficiency as a function of store number/time.

number. Events are grouped into runs, i. e. periods of continuous data-taking in constant
configurations of trigger table, set of active sub-detectors and so forth.9 Several parameters of
the operations (e. g. beam-line position and slope, set of calibrations, etc.) are stored in the
database on a run-averaged format.

All data manipulations occurring some time after the data are written to permanent mem-
ories are referred to as offline processes, as opposed to the online operations that take place in
real time, during the data-taking. The most important offline operation is the processing with
a centralized production analysis that generates collections of high-level physics objects suitable
for analysis, such as tracks, vertexes, muons, electrons, jets, etc. from low-level information
such as hits in the tracking sub-detectors, muon stubs, fired calorimeter towers, etc. Dur-
ing the production, more precise information about the detector conditions (e. g. calibrations,
beam-line positions, alignment constants, masks of malfunctioning detector-channels, etc.) and
more sophisticated algorithms are used than those ones available at the L3 of the trigger. The
production may be repeated when improved detector information or reconstruction algorithms
become available.

To ensure homogeneous data-taking conditions, each run undergoes a quality inspection.
online shift operators, offline production operators, and sub-detector experts certify in what
fraction of data the running conditions for all relevant sub-detectors are compliant to physics-
quality standards. When detectable problems of the detector occur, the data-taking is quickly
stopped, so very short runs are likely to contain corrupted data. Runs with fewer than 108 live
Tevatron clock-cycles, or fewer than 104 (103) L1 (L2) accepts, or containing data corresponding
to an integrated luminosity

∫
L dt < 1 nb are excluded from physics analysis. Online shift

9The data acquisition might need to be interrupted and recovered for several motivations, including the need
for enabling or disabling a sub-detector, the need for a change in the trigger table, a problem in the DAQ chain
and so forth.
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Figure 3.16: Examples of online plots to monitor the data-taking, the J/ψ → µ+µ− (a) and D0 →
K−π+ (b) yields.

operators further exclude the runs in which temporary or test trigger tables were used.10 Runs
whose data underwent problems or software crashes during the production are excluded offline.

Accurate integrated luminosity measurements are ensured in physics-quality data by requir-
ing the CLC to be operative during the data-taking and by verifying that a set of luminosity and
beam-monitor probe quantities are within the expected ranges. Shift operators ensure that L1
and L2 triggers operate correctly and that the rate of SVX II data corruption errors is smaller
than 1%.11 SVT experts verify that the online fit and subtraction of the beam position is done
correctly and that the SVT occupancy is within the expected limits. In addition, higher level
quantities, such as event yields of J/ψ → µ+µ− and D0 → K−π+ decays are monitored online
and are required to be within the expected ranges (see Fig. 3.16). For analyses using COT in-
formation, the minimum integrated luminosity required is 10 nb and the fraction of noisy COT
channels is required to be smaller than 1%.

3.2.7 Offline data processing

After data has been selected by triggers and written out, it is subjected to an offline production
process. This includes refitting tracks, fitting vertices, reconstructing decay chains, and pack-
aging the information necessary to allow for physics measurements in a user-friendly format.

3.2.7.1 Tracks refitting

Tracks are refit offline with the most accurate available detector information and calibration.
Energy loss corrections are applied depending on a track’s particle type. If L00 hit information

10It is sometimes necessary to test new configurations of the trigger selections in a real data-taking condition
to monitor trigger rates, performance and so on.

11The read-out of the silicon detector and the proper integration of the information in the online infrastructure
is a complex operation which, occasionally, leads to a certain fraction of data to be improperly processed.
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is available, it is added to the track refitting. Requirements on matching between muon stubs
and COT tracks are made more stringent. Trigger confirmation is required for muons: the
muons coming from the B decay of interest must pass the dimuon trigger requirement. In
other words, the event must have been selected by the dimuon trigger based on the final state
muons from a B decay, not from random muons in the event that happened to meet the trigger
requirements.

3.2.7.2 Vertex fitting

Vertex fitting is central to reconstructing a decay chain. Tracks observed in the detector are
matched together as coming from a common origin, where the parent particle decayed. The
parent particle may itself be a decay product of a heavier particle. The decay chain is traced
backwards from the stable tracks as a series of intermediate decay vertices, leading to the
primary vertex at the interaction point. Momenta can be assigned to the decay particles, based
on the measured momenta of the final state tracks.

The decays used in this thesis were reconstructed using the Ctvmft vertex fitting program
[97]. Vertices can be fit either in 3D or in 2D, providing the user with a handle on the goodness
of fit for the vertices in the form of a χ2 probability. Knowledge of the primary vertex is critical
to the measurement of the B meson lifetime. Multiple methods of determining the primary
vertex exist. For our analyses, the primary vertex location is recalculated for each event, using
tracks in the event that were not related to the B meson decay of interest. This is referred
to as the event-by-event primary vertex method, and it provides an accurate assessment of the
primary vertex position, with a resolution of ≈ 20µm.

3.2.7.3 Final data format

The data used in this thesis was stored in the BStntuple framework [98]. The framework
is based on the standard Stntuple framework [99]. It stores information about stable and
decaying particle objects, together with information for flavor tagging and particle identification.
It allows the user the flexibility to access different decay modes for B- and D-physics analyses,
without requiring excessive CPU or storage space.

3.2.8 Monte Carlo simulation

Estimation of the fraction of events of a certain type that escape the detector acceptance, or
detailed studies of the expected response of the detector to the passage of particles is a com-
mon need in many analyses. Usually, complex detector geometries and the numerous effects
that need to be accounted for in predicting their response make it the analytical derivation
of the relevant distributions impractical or impossible. The alternative method is to use nu-
merical simulation to carry out these tasks. The algorithms used all involve some type of ran-
dom sampling to simulate processes, and are collectively called Monte Carlo (MC) simulation.
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3.2 The CDF II detector

The simulation is divided into several steps, which reproduce in order the main physical pro-
cesses and processing steps involved in collecting data from real pp interactions. We provide
here a short overview of the standard CDF II simulation used in B-physics analyses. Further
details can be found in Ref. [100].

The first step in simulation is the treatment of the pp hard scattering, and the outgoing
quark and gluon collision products, followed by simulation of the fragmentation and hadroniza-
tion processes which yield hadrons and associated jets. We used the BGenerator package
[101]: it concentrates on producing only one B meson per event, which yields a great advantage
in computational speed. On the other hand, by design it does not mimic the full collision envi-
ronment, as the Pythia package could perform. For our purposes, BGenerator is sufficient
since we wish to model single B decay samples.

The second step is the simulation of the full decay chain of the B mesons under study. For
this task, we use the EvtGen package [102]. EvtGen is specialized for heavy flavor decays
and accounts correctly for quantum mechanical interference effects.

The third step in simulation incorporates the interaction of the decay products with the
detector material. For this task we use the CdfSim package [100], which is a CDF-specific full
detector simulation. In the standard CDF II simulation, the detector geometry and material are
modelled using the version 3 of the Geant package [103] tuned to test-beam and collision data.
Geant receives in input the positions, the four-momenta, and the identities of all particles
produced by the simulated collisions that have long enough lifetimes to exit the beam pipe.
It simulates their paths in the detector, modelling their interactions (bremsstrahlung, multiple
scattering, nuclear interactions, photon conversions, etc.) and the consequent generation of
signals on a single channel basis. Specific packages substitute Geant for some sub-detectors:
the calorimeter response is simulated with Gflash, a faster parametric shower-simulator [104]
tuned for single-particle response and shower-shape using test-beam data (8–230GeV electrons
and charged pions) and collision data (0.5–40GeV/c single isolated tracks); the drift-time within
the COT is simulated using the Garfield standard package [105] further tuned on data; the
charge-deposition model in the silicon uses a parametric model, tuned on data, which accounts
for restricted Landau distributions, production of δ-rays, capacitive charge-sharing between
neighboring strips, and noise [106].12 Furthermore, the actual trigger logic is simulated. The
output of the simulated data mimics the structure of collision data, allowing their analysis with
the same reconstruction programs used for collision data.

The detector and trigger configuration undergo variations during data-taking. Minor varia-
tions may occur between runs, while larger variations occur, for instance, after major hardware
improvements, or Tevatron shut-down periods. For a more detailed simulation of the actual ex-
perimental conditions, the simulation has been interfaced with the online database that reports,
on a run-by-run basis, all known changes in configuration (position and slope of the beam line,

12The δ-rays are knock-on electrons emitted from atoms when the passage of charged particles through matter
results in transmitted energies of more than a few keV in a single collision.
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relative mis-alignments between sub-detectors, trigger-table used, set of SVT parameters) and
local or temporary inefficiencies in the silicon tracker (active coverage, noisy channels, etc.).
This allows us to simulate the detailed configuration of any set of real runs and to use it, after
proper luminosity reweighing, for modeling the realistic detector response in any given subset
of data. Finally, the output of the MC simulation is then processed with the software package
which reconstructs B decays and writes the output events in the BStntuple format.
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Chapter 4

Flavor tagging

This chapter outlines the methods to infer the flavor of the B0
s meson at production, known as flavor

tagging. We briefly describes the algorithms used in CDF on such purpose along with the procedure to
calibrate their performances. Finally,we discuss the impact of the tagging in the βs measurement.

4.1 Flavor tagging principles

The knowledge of the Bs meson flavor at the production is an important ingredient in the
measurement of the B0

s -B̄0
s mixing phase. Indeed, the distinction of the B0

s -meson flavor at
production eliminates two of the four symmetries of the decay rate in Eq. (2.27) (see Sect. 2.2.2)
and enhances the sensitivity to βs through the access to the terms proportional to the oscillation
frequency. Measuring if a B meson was produced as a B0

s or B̄0
s is called flavor tagging. The

properties of the pp→bb̄ production process (see Fig. 4.1), and of the b quark hadronization and
fragmentation (see Fig. 4.2), are used in two CDF flavor tagging algorithms, the Same Side Kaon
Tagger (SSKT) and the Opposite Side Tagger (OST). They have been developed for the CDF
B0
s -B̄0

s mixing measurement [43], and many references exist for both the OST[107, 108, 109]
and the SSKT [110, 111, 112]. A complete description of the algorithm is beyond the scope of
this thesis; only a brief overview of the methods is given.

Before proceeding with the description of the two algorithms, it is useful to introduce some
quantities commonly used to characterize flavor taggers:

• the tag decision ξ. It is a discrete variable, that can take the value -1, 0, or 1. The tag
decision id ξ = −1 if that the meson at the production has been tagged as B̄0

s ; ξ = 1 if the
initial meson has been tagged as B̄0

s ; and ξ = 0 if the tagger could not make a decision.

• the tagging efficiency ε. It is the fraction of events for which a tag decision can be made.
It is defined as follows:

ε = Ntag
Nunt +Ntag

(4.1)

where Ntag is the number of tagged events and Nunt is the number of events for which a
tagging decision has not been taken.

• the dilution D, a quantity defined in order to characterize the rate of mis-tagging for a
particular algorithm. It is defined as:

D = 1− 2PW = NR −NW

NR +NW
(4.2)
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Figure 4.1: Feynman diagrams for bb̄ pair production at lowest order. The top graphs are the lowest
order contributions of the so called flavor creation, where only a quarks and an antiquark or two gluons
interact. Bottom-left is the flavor excitation; bottom-right is the gluon splitting. In the flavor excitation
a b from the sea quark of one of the interacting particles is scattered out in the strong interaction with
a parton of the other hadron. The gluon splitting takes place when a gluon produced in the hadron
collision results in a bb̄ pair in the fragmentation process.

where NR is the number of right-tagged events, NW is the number of wrong-tagged events,
and PW is the probability for an event to be wrongly tagged. With this definition, when
the tagger does not work properly, and it assigns randomly the tag decision, PW = 0.5,
so D = 0. In the case of an algorithm that makes no mistakes in the tag decision
assignment, the dilution is D = 1. Moreover PW is parametrized as a function of the
calibration parameters, so that the dilution ca be predicted event by event.

• the effective tagging efficiency defined as εD2, where D in this case represents the average
dilution over the whole sample, is usually used as the figure of merit to measure the
performance of a flavor tagger.
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Figure 4.2: Sketch of the production and decay of a B0
s meson. The event’s features exploited by the

SSKT and the OST are shown.

4.2 Opposite Side Tagger

The OST exploits the incoherent production of bb̄ at Tevatron, Fig. 4.1, and uses the information
from the hadronization and decay of the other b-quark produced in the pp collision along with
the b-quark belonging to the B meson of interest. The b or b̄ quark on the opposite side of the
B candidate hadronizes into a b-hadron. The b-hadron can be tagged by its decay products,
although the situation is somewhat complicated if it is a B0 meson, which can mix before
decaying. If the opposite side quark is tagged as a b, the B candidate must contain a b̄, and
if the opposite side quark is tagged as a b̄, the B candidate must contain a b. The opposite
side flavor tagger is a combination of several algorithms: the soft muon tagger (SMT), the soft
electron tagger (SET), and the jet charge tagger (JQT). The names refer to the charged object
used to determine the flavor of the opposite side b quark.

The lepton taggers SMT and SET utilize the charge of a muon or of an electron, respectively,
to determine the production flavor of their parent B meson. As they are the products of semi-
leptonic decays b→ c `−ν̄`X and b̄→ c̄ `+ν`X, one can infer that a positive muon or positron
comes from a b̄ at production, and a negative muon or electron from a b. The efficiency of these
taggers is rather low, of order 20%, and is defined by the branching fraction of B to semileptonic
decays [8]. Furthermore, detector and tracking inefficiencies lower the lepton-tagging algorithms
efficiency. The mis-tag rate is increased by the possibility of mixing, if the lepton came from a
B0 decay. Mis-tags are also caused by the presence of b→c→`X, which can be misidentified as
b→`X decays. In this case, the lepton will have the opposite sign as if it came directly from a
b transition, and the tag decision will be the opposite of the correct decision.
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The predicted tagging dilution for the lepton taggers is a function of pT and of the lepton
likelihood (the confidence in the lepton identification derived from calorimeter and dE/dx data).
Well identified leptons with high pT lead to a good dilution. The improvement of tagging
performances with higher-pT leptons is due to the fact that leptons from b decays are likely to
have higher momentum in the transverse plane than those from lighter quarks, due to a larger
available phase space.

The JQT infers the flavour of the candidate B0
s from the charge of the opposite-side b-jet.

The jet charge is calculated as the momentum weighted sum of all the jet particles charge.
Tracks are requested to be isolated from the candidate B meson, as it is important to look at
jets only in the opposite side. Neural network algorithms are then used to find the jet most
likely to come from a b quark. If the net charge is approximately −1/3, the jet is presumed to
have come from a b quark, if it is +1/3, the jet is presumed to have come from a b̄ quark. The
dilution for this tagger is parametrized as a linear function of the jet charge and the probability
that the jet contains a b (or b̄ quark).

These three OST are not independent, since they can share tracks, and this effect needs to
be accounted for when using the three taggers together. They are combined to give a single
opposite side tagging decision by means of a neural network procedure. All OST processes are
independent from the B candidate hadronization, so it is possible to use the same opposite side
tagging algorithm for sample of different B meson types. This means that the algorithms can
be developed or calibrated with the high statistics of B-light mesons samples, and then applied
in the B0

s -decays analysis.

4.2.1 Calibration of OST in the full Run II sample

The combined OST algorithm is calibrated on the dimuon samples,1 for determining a global
scale factor SD, which will be applied to the event by event dilution to account for the mismatch
between the predicted dilution and the actual dilution of the data. This is achieved by applying
the OST algorithms to the full Run II data sample of fully reconstructed B+→J/ψ(→ µ+µ−)K+

decays (charge conjugates implied everywhere). The tagging decision and associated dilution
of the algorithm is compared to the actual b quark content of the meson at decay time, which
is known from the charge of the kaon. This is also the flavor at production since charged B

do not oscillate. Two scale factors are estimates, for B+ and B− separately, to account for any
charge related asymmetry in the tagging algorithms.

1the dimuon sample is a sample enriched of J/ψ → µ+µ− decays, collected online by means of the dimuon
trigger that will be discussed in Sect. 5.1.
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4.2.1.1 Data sample

We reconstruct exclusive B+→J/ψK+ using the dimuon trigger. We use data collected through-
out the whole Run II and corresponding to an integrated luminosity of L ≈ 10 fb−1. The offline
selection is applied in two stages. After event reconstruction the events are subject to a loose
preselection, aimed at speeding up the downstream processing, which comprises the following
requirements:

• 5.16 < M(J/ψK+) < 5.40 GeV/c2;

• ≥ 3 axial hits per track in the silicon detector for muons;

• ≥ 3 axial hits per track in the silicon detector for the kaon;

• successful XFT-muons match;

• 0.0 ≤ σct ≤ 0.1µm.

Then the preselected data are fed into an artificial Neural Network (NN) [113], an artificial
classifier that combines the event variables into a single output variable and classifies whether
an event is signal-like or background-like, to achieve an improved background suppression.2 We
reused the NN training and optimization discussed in [18], selecting events with a NN output
≥ 0.8 which had been shown to maximize the S/

√
S +B figure of merit, where S is the number

of signal events, and B is the number of background events. In addition to the NN requirement,
we impose also a threshold on the decay length at 60µm. This rejects a large part of the
combinatorial background while preserving about 85% of the signal. The scale factors that will
be obtained with this additional requirement exhibit an increased consistency between B+ and
B− sample, allowing the use of a single, common scale factor.

The resulting B+→J/ψK+ sample is shown in Fig. 4.3. A simple gaussian fit over a linear
background finds approximately 40 000 B− decays and 41 000 B+ decays. The signal yield is
consistent with what we expected from the previous iteration (see Fig. 4.4). Central mass values
and widths are consistent as well.

4.2.1.2 Calibration procedure and results

For each B±→J/ψK± decay, we compare the true flavor (as indicated by the kaon charge) with
the flavor identified by the OST algorithm. Indeed, for each event the tagging algorithm provides
a tag (b or b̄) and a predicted dilution that quantifies the reliability of the tag. The algorithms to
compute the dilution were designed and developed at the beginning of Run II using semileptonic
B decays, where the charge of the lepton identified the flavor of the parent B hadron. However
the lepton could come from a mixed B0 meson or from a sequential b→ c→ ` decay. These
and other subtler effects yield mistags. Hence, the performance of the algorithm in the current

2The basics of the NN will be described in Sect. 5.3.1.
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Figure 4.3: The J/ψK+ mass distribution (a) and the J/ψK− mass distribution (b) for the full Run II
data sample.

B+ sample could slightly deviate from the performance as predicted using semileptonic decays.
Such deviations are modeled through a scale factor correction, which should be extracted from
data. This is done by comparing the known dilution (since we know the B+ flavor exactly) with
the dilution predicted by the algorithm.

We divide the sample in independent subsamples according to their predicted dilution. For
each bin of predicted dilution we count the number of right (wrong) tags to extract the actual
dilution. Then we graph the actual dilution as a function of the predicted one (Fig. 4.5) to
determine the scale factor. All dilutions distributions are background-subtracted. The scale
factor is determined as the slope of the straight line fits of Fig. 4.5. For the entire dataset,
we use two scale factors for the opposite side tagger, one for the B+ and one for the B−,
in order to allow for any asymmetry in the tagging algorithms. We find S+

D = 1.09 ± 0.05
and S−D = 1.08 ± 0.05 respectively with a total average dilution of D = 6.88 ± 0.03%. Since
the calibrated values of the scale factor for the B+ and B− are approximately equal we use
the average of the two in the fit and the error to compute the measurement as a systematic
uncertainty. The measured scale factor in ≈ 10 fb−1 of data is SD = 1.085±0.05, with a tagging
efficiency of 92.8 ± 0.1% and a mean predicted dilution of 11.30 ± 0.06%. The total effective
tagging power is ε(SDD)2 = 1.39± 0.05%.

As a check, we determine separately the scale factors for the first 5.2 fb−1 of data, and for
last 4.8 fb−1 of data, in Fig. 4.6. No major drift in performance are identified In addition,
we determine OST tagging efficiency and dilution for different periods of data and summarize
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Figure 4.4: Mass distributions of J/ψK+ for the first 5.2 fb−1 (a) and for the second 4.8 fb−1 (b) of
data. Mass distributions of J/ψK− for the first 5.2 fb−1 (c) and for the second 4.8 fb−1 (d) of data.
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Scale Factor previous calibration [18] 0–5.2 fb−1 5.2–10 fb−1 0–10 fb−1

SD
+ 0.93± 0.09 1.09± 0.06 1.08± 0.08 1.09± 0.05

SD
− 1.12± 0.10 1.06± 0.07 1.10± 0.08 1.08± 0.05

ε 94.3± 0.3% 93.8± 0.1% 91.2± 0.2% 92.8± 0.1%√
D2 11.5± 0.02% 11.26± 0.08% 11.36± 0.10% 11.30± 0.06%

Table 4.1: OST performance for B+ and B− in different parts of the data, compared with the 5.2 fb−1

analysis.
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Figure 4.5: Measured dilution as a function of predicted dilution for B+ (a) and B− (b) for the final
Run II sample.

the results in Tab. 4.1. We derive the scale factors and efficiencies in periods of data with
approximately similar statistics (∼ 1.7 fb−1 each), to ensure stability and consistence throughout
all parts of the data. Figure 4.7 shows as the scale factors are fairly stable through data but a
tendency towards a decreased tagging efficiency as a function of time (data-taking periods) is
observed. The decrease in average efficiency does not exceed 3% by comparing earlier data with
later data. This is consistent with a luminosity-dependent effect, as shown in Fig. 4.7, where
data are shown as a function of time (integrated luminosity) and as a function of instantaneous
luminosity. Such a reduction in efficiency impacts only (very marginally) the resolution on the
extracted physical parameters but is not expected to bias them.
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Figure 4.6: Measured dilution as a function of predicted dilution for B+ (a) and B− (b) for the first
5.2 fb−1 of data. Measured dilution as a function of predicted dilution for B+ (c) and B− (b) for the
last 4.8 fb−1 of data.
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Figure 4.7: Top four plots: OST dilution scale factors for B+ (top, left), B− (top, right) and an average
of the two (bottom, left) and efficiency (bottom, right) as a function of time (integrated luminosity).
Each point in the x-axis correspond to approximately 1.7 fb−1 of data. Bottom four plots: OST dilution
scale factors for B+ (top, left), B− (top, right), average them (bottom, left) and tagging efficiency
(bottom, right) as a function of instantaneous luminosity.
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Figure 4.8: Sketch of the fragmentation of a B0
s and of a B̄0

s meson.

4.3 Same Side Kaon Tagger

The SSKT uses the fragmentation tracks of the B mesons candidate (meaning the B meson of
interest) to determine its flavor. The tagger is supposed to identify the flavor of the s-quark
(i. e. s or s̄) of the B0

s meson candidate in a kaon produced alongside the B0
s (or B̄0

s ). In the
case of a B0

s meson (b̄s) at the production, the strange quark of the kaon, that is the produced
partner of the s of the B0

s , should be a s̄. If we have a B̄0
s at the production, the kaon should

be formed by an s quark. In other words if a K+ is identified, the meson at the production was
a B0

s , instead in the case of a K− identification the initial meson was a B̄s. The principle is
sketched in Fig. 4.8. The SSKT power benefits from the use of PID to identify the associated
track as a kaon. This decreases the mistag rate, which occurs if a pion is mistakenly identified
as an associated kaon. Particle identification, as well as information about track momentum, is
used to decide which track to choose as the tagging track, if there are multiple possible tagging
tracks in an event.

Obviously, the SSKT is specific to B0
s decays, eliminating the possibility of a calibration in

a high statistics samples of B-light meson decays, as in the case of OST. Its last calibration
was done using 5.2 fb−1 of data by repeating the measurement of the B0

s -B̄0
s mixing frequency

and extracting the dilution [18]. The probability for observing the B0
s in a flavor eigenstate as

a function of time is:
P (t)B0

s (B̄0
s ) ∝ |1± cos ∆mst| (4.3)

Adding in the effect of the measured dilution, our measurement probability becomes:

P (t)B0
s (B̄0

s ) ∝ |1±D cos ∆mst| (4.4)

This can be re-expressed introducing an amplitude, A, such that:

P (t)B0
s (B̄0

s ) ∝ |1±ADp cos ∆mst| (4.5)

where Dp is the predicted dilution. The likelihood that uses this probability is normalized such
that at the correct value of the mixing frequency ∆ms the amplitude A is one. The mixing
frequency can be measured by what is called an amplitude scan: the amplitude is measured
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Chapter 4. Flavor tagging

for each value of ∆ms in a given range. For the true value of ∆ms, the amplitude should be
one, while it is zero when ∆ms is far from the true value. In the calibration, the amplitude
range values are interpreted in the following way: an amplitude consistent with one means that
the tagger assesses its decisions and thus its performance correctly. A value smaller than one
indicates that it overestimates itself. According to that a value greater than one implies an
underestimation of the decision power. After the mixing amplitude is determined, it serves as
a scale factor for the dilution. The mixing frequency is determined simultaneously together
with the amplitude; the main reason for doing this is providing a cross-checks, by comparing
the mixing frequency with previous measurement [43], and thus to inspire confidence into the
calibration.

The calibration of the SSKT with the ∆ms measurement was made on 5.2 fb−1of data [114].
Four channels collected using the displaced vertex trigger were employed:3

• B0
s→D−s π

+, D−s→φπ−, φ→K+K−;

• B0
s→D−s π

+, D−s→K∗K−,K∗→K+π−;

• B0
s→D−s π

+, D−s→π+π+π−;

• B0
s→D−s π

+π+π−, D−s→φπ−, φ→K+K−.

where about half of the signal events come from the first channel. The ∆ms amplitude scan
on 5.2 fb−1 of data is shown in Fig. 4.9. The maximum amplitude in ∆ms occurs at ∆ms =
17.79±0.07 ps−1, a value consistent with the CDF measurement [43]. The size of the amplitude
at maximum and the measured dilution scale factor for the SSKT is SD = 0.94 ± 0.2. We
measure a tagging efficiency of 52.2 ± 0.7, and an average predicted dilution on B0

s signal of
25.9± 5.4%. The SSKT tagging power is 3.5± 1.4%.

We have not yet extended the calibration of the SSKT to the full 10 fb−1 data sample. This is
due to the marginal increase in calibration sample statistics with respect to the 5.2 fb−1 analysis.
Figure 4.10(a) compares the mass distribution of the B0

s → D−s π
+, D−s → φπ−, φ→ K+K−

signal for samples corresponding to 5.2 fb−1 and 7.2 fb−1 datasets. The 10% increase in sample
statistics against a 40% increase in nominal integrated luminosity is due to the displaced-tracks
trigger being severely suppressed in the latest period of the data-taking operations (see Sect. 9.1).
We therefore use the calibration obtained with 5.2 fb−1 of data [18] and, accordingly, use this
tagger only in the first half of our sample. This conservative choice prevents potential problems
arising from variations of the tagger performances as a function of time. The impact of the
missing SSKT in the latest data is limited. We check the impact on the resolution of βs by
means of pseudo-experiments. We generate a large set of simulated B0

s→J/ψφ samples with the
same statistic as in data (signal + background) and we perform the analysis to measure βs for
each sample, in two configurations; in the first one, the SSKT is used in all the data sample; in

3The displaced vertex trigger will be described in Sect. 9.1.
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Figure 4.9: Amplitude scan as function of ∆ms using 5.2 fb−1 of data to determine the SSKT dilution
scale [114].

the second one, the SSKT is exploited in a fraction of data only, corresponding to the size of
the first 5.2 fb−1 of data. In both cases, in the analysis and in the generation of the samples we
employ the SSKT performances measured in the calibration. This investigation shows that the
average worsening in the βs resolution when restricting the SSKT to half of the sample is only
12%, as shown in Fig. 4.10(b). Considering that the new data will suffer from a considerably
larger uncertainty on SSKT dilution that gain will probably be even smaller.
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Figure 4.10: In (a), B0
s → D−s π

+, D−s → φπ−, φ→ K+K− mass distribution in 5.2 fb−1 (red) and
7.2 fb−1(black) of data. In (a), comparison between distributions of the βs uncertainty from the analysis
of simulated samples with SSKT used in the whole data sample (black points) and up to 54% of the
sample only (blue points).
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experiment OST (%) SSKT (%)
CDF 1.39± 0.05 3.5± 1.4
D0 2.48± 0.21 –

LHCb 2.1± 0.1 1.3± 0.4

Table 4.2: Summary of the tagging power at different experiment, for the OST and SSKT, in the
B0
s→J/ψφ analysis.

4.4 Effect of the tagging in the βs measurements

The total tagging power is quite low at hadron colliders, O(4%), compared to the tagging
power at the B factories, O(30%). We summarize the tagging power performances for different
experiments in Tab. 4.2. The main effect of the tagging in this analysis is to break the βs→−βs
symmetry discussed in Sect. 2.2.2, that exists in the untagged decay rate, removing half of the
allowed region in the (βs,∆Γs) space.

However, the tagging power is not large enough to substantially reduce the errors on the
remaining solutions, and each of the four untagged solutions has comparable errors to those
on the tagged solutions, as shown in Fig. 4.11, where we compare the results in the (βs,∆Γs)
plane for tagged and untagged analysis of one simulated samples of B0

s→J/ψφ decays. If the
tagging power were greater, we would expect our sensitivity to βs to be substantially better in
the tagged case, and the errors on βs to be smaller; the tagging allows to access to the following
terms of the decay rate:

sin 2βs sin(∆mst) and cos 2βs sin(∆mst), (4.6)

that are not present in the untagged rate. Greater the tagging power εD2, greater is the
equivalent fraction of the total sample εD2N (where N is the total number of events), that
provides the two additional terms for measuring βs. Nevertheless, the sensitivity provided by
these terms depends on the experimental resolution on the B0

s decay-time; since ∆ms is quite
large (≈ 18 ps−1), better the sensitivity, better the resolution of the fast B0

s -B̄0
s oscillation.

Then, effectively, the different sensitivity between the tagged and untagged analysis is due by
the combined effect of the tagging power and the decay-time resolution. The latter will be
discussed in Sect. 6.2.2.
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Chapter 7. Results for CP violating parameter βs 147
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Figure 7.10: Likelihood contours plotted for 5 pseudo experiments generated with input values
taken from Table 7.1 and fitted using tagged (solid lines) and untagged (dashed lines) fit
configurations.

Simulation

Figure 4.11: Confidence regions at 68% C.L. (blue) and 95% C.L. (red) for the analysis of a pseudo-
experiment with (bold lines) and without (light lines) using the tagging information.
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Chapter 5

B0
s→J/ψφ Data Set

This chapter describes the data samples for the analysis of B0
s→J/ψφ decays. We present the selection of

the data. We outline the system used to trigger on events with two muons for collecting the candidates
of interest. An offline selection, based on a neural network discriminator, is then applied to optimize the
measurement of B0

s mixing phase. The final optimized sample for the measurement is presented. Finally,
the MC simulated data samples used in several parts of the analysis are described.

5.1 The dimuon trigger

The data sample used in the analysis of B0
s→J/ψφ decays was collected by CDF over the entire

period of the Tevatron operations in the Run II, since March 2001 till September 2011. It
corresponds to an integrated luminosity of approximately 9.6 fb−1, after discarding all data
taking periods during which a detector subsystem critical for the analysis was malfunctioning
or turned off. A sample enriched of B0

s→J/ψφ decay’s candidates is selected online by means
of a trigger system based on the reconstruction of two muon candidates with opposite charge
originating by the same vertex; this is the dimuon trigger [115].

The dimuon trigger relies on a clear signature of two muons coming from J/ψ→µ+µ− decays.
In order to make trigger decisions, it uses the XFT tracking and muon system information
available at L1. The L2 and L3 play a small role in the event selection decision. L2 is used to
tighten any existing requirements of L1, e. g., on the transverse momentum, and L3 uses more
precise determination of several event variables, such as the transverse momentum of tracks,
better track-stub matching, dimuon mass, etc. The dimuon trigger data is an ideal sample to
develop time-dependent analysis, because the trigger does make any requirement on the impact
parameter of the XFT tracks. An impact parameter cut would distort the B0

s proper decay
time distribution and complicate the time-dependent portion of the measurement.

Although we refer to it as a single entity, the dimuon trigger is in fact a combination of
two triggers: CMU-CMU, where both muons are found in the most central muon chambers,
and CMU-CMX, where one muons is found in the CMU and one in CMX. We describe the
CMU-CMU trigger, and then comment on the differences in the CMU-CMX one. The following
terminology is specific to triggering on CMU muons. A stack is a set of four drift cells stacked
on top of each other. The CMU has 288 stacks in each of the East and West sides of the
detector. A L1 stub is a track segment in a stack such that cells 1 and 3 or cells 2 and 4 have
hits separated by no more than 396 ns. A tower is a set of two neighboring stacks. A tower has
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Level 1 Level 2 Level 3
2 XFT tracks with opposite charge |z0(µ1)− z0(µ2)| < 5 cm. 2.7 < M(µ+µ−) < 4 GeV/c2

2 muon stubs for each track
pT (µ) > 1.5(2.2) GeV/c for CMU (CMX)

∆φ6(CMU,CMU) < 135◦

Table 5.1: Basic dimuon trigger requirements.

fired when one or both stacks have a L1 stub, and is empty otherwise. A muon tower is a fired
tower matched with an XFT track. In order to keep the L1 decision time within the L1 latency,
only the information about which towers have fired is used in triggering, rather than detailed
hit positions and direction. The XFT reports the pT and φ6, as well as the charge of the track
to the XTRP. The XTRP extrapolates this track to the CMU radius and creates a footprint,
a 3σ window in φ (wide enough to account for multiple Coulomb scattering). If a tower is
found within that footprint, it is a muon tower. The CMU-CMU trigger requires that at least
two muon towers are found such that they are either on opposite sides of the detector or are
separated by at least two other towers. The CMU-CMX trigger uses a very similar algorithm.
The changes to the decision algorithm arise from the differences between the CMU and CMX
detectors. In the CMU-CMX case, only XFT tracks with pT > 2.2 GeV/c are used as the extra
material that muons pass through to reach the CMX limits further the momentum requirements
on the muon, and no azimuthal separation is required because the muons are by definition in
different subdetector volumes.

Trigger algorithms are among the few elements of the experimental apparatus which are
continuously improved and optimized, as this process does not require performing expensive
and time-consuming hardware upgrades to the detector. The dimuon trigger has undergone
constant revision in order to carry out such optimization. While the core logic outlined above
is more or less constant, other parameters have been changed often to improve the trigger.
Such parameters include requirements on the pT of the XFT tracks, the difference in φ between
the two muons (∆φ), and their transverse mass (MT ). In addition, some of the triggers are
prescaled, which means that only one every N events are kept. This is done in order to deal with
periods of high luminosity when triggering on every event that passes the nominal requirements
would overwhelm the DAQ system. An improved implementation of prescaling is the dynamic
prescaling, where the trigger automatically adjusts its prescale over the data taking period as
luminosity decreases, in order to accept a larger fraction of the fewer number of events that
satisfy the nominal trigger conditions as the luminosity drops. The various combinations of
these requirements result in slightly different trigger requirements. The basic dimuon trigger
requirements are summarized in Tab. 5.1. The data collected by the trigger go through the
offline data process described in Sect. 3.2.7. The final BStntuple output is then used for the
reconstruction of the decays candidates and the offline selection.
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5.2 Reconstruction and kinematic variables

The decay modes are fully reconstructed offline, meaning that all final state muon and kaon
tracks have been identified to reconstruct the B0

s meson. The muon pairs are analysed and fitted
to a common vertex to obtain an estimated vertex position and vertex-constrained tracks. Im-
portant quantities such as the J/ψ invariant mass and transverse momentum are then estimated
from the refitted tracks. Then to find φ candidates, oppositely charged pairs of non-muon tracks
coming from a displaced vertex determined by a kinematic fitting algorithm are examined. The
two tracks are initially assumed to be kaons. At a later stage, a probability to actually be kaons
is assigned based on dE/dx and TOF information. The kaons and muons tracks are used to
locate the secondary vertex, i. e. the decay point, in a kinematic fit to a common vertex. After
the 4-track vertex fit is performed, the best fit values of the B0

s momenta and its daughter
particles are obtained. A dimuon mass constraint to the known J/ψ mass [8] improves the B0

s

mass resolution. A B0
s→J/ψφ decay candidate is then formed.

The most important variable in the study of the time-evolution of the B0
s decay is the B-

meson transverse decay-length (Lxy): the displacement of the secondary vertex with respect to
the primary one, projected onto the transverse momentum vector of the decaying particle:

Lxy = pT · V
pT

, (5.1)

where V is the 2-dimensional vector from the primary to the secondary vertex in the transverse
plane, and pT is the B transverse momentum vector. From this, the proper decay length,
i. e. the time to decay in the hadron’s rest frame times the speed of light, is:

ct = MLxy
pT

, (5.2)

where M is the world average B0
s meson mass [8]. Associated with the proper decay length

is its event by event uncertainty σct which is obtained from the error on Lxy, the components
from the other parameters being treated as negligible.

The momenta of the daughter particles are used to calculate the transversity angles defined
in Sect. 2.1.1. They can be calculated by first boosting the four-momenta of the decay particles
into the B0

s meson rest frame. The world average B0
s mass [8] and the reconstructed momentum

of the B0
s are used to calculate the boost vector. To then boost into the J/ψ frame the world

average J/ψ mass [8] is used, together with the reconstructed J/ψ momentum, and to calculate
the boost vector into the φ meson rest frame the reconstructed K+K− mass and momentum
are used. The use of the world average or the reconstructed mass for each particle type is
motivated by the natural width of the particle. For φ meson, its natural width is greater than
the resolution of the CDF detector, so the reconstructed mass is used, but the B0

s and J/ψ have
widths much smaller than the resolution so it is more accurate to use the world average mass.
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The transversity angle Ψ of the K+ is defined as:

cos Ψ = −
pφK+ · pφJ/ψ
pφK+p

φ
J/ψ

, (5.3)

where pBA is the three momentum of particle A in the rest frame of particle B. A coordinate
system with versors (x̂, ŷ, ẑ) is defined in order to calculate the other two angles:

x̂ = p
J/ψ
φ

p
J/ψ
φ

,

ŷ =
p
J/ψ

K+−
(
p
J/ψ

K+ ·x̂
)
x̂

|pJ/ψ
K+−

(
p
J/ψ

K+ ·x̂
)
x̂|
,

ẑ = x̂× ŷ.

(5.4)

Then, the angles Φ and cos Θ are:

Φ = arctan

pJ/ψµ+

p
J/ψ
µ+

· ŷ

/pJ/ψµ+

p
J/ψ
µ+

· x̂

 , (5.5)

cos Θ =
p
J/ψ
µ+

p
J/ψ
µ+

· ẑ. (5.6)

The signs of pJ/ψµ+ · x̂ and pJ/ψµ+ · ŷ are used to resolve the ambiguity of the angle Φ.

5.3 Offline selection

To get the maximal useful information from the data, we need to reduce the number of the
uninteresting events (referred to as background) which degrade the sensitivity on the observables
of interest. An optimized selection with respect to the measurement of the βs is applied offline for
that purpose. The offline selection is implemented in two steps. A set of basic and loose selection
requirements (rectangular cuts) reduces the volume of downstream processing. Rectangular
cuts veto any event which does not fall into an accepted range for any given variable. We then
apply the final selection using a multivariate classifier, implemented through an artificial Neural
Network (NN), which takes information from all input variables and combines it into a single
decision variable. It is described in the next section.

The requirements applied in the first stage of the offline selection are:

• > 9 axial and stereo hits in the COT and > 3 hits in the silicon detector, for each track;

• 5.1 < m(J/ψK+K−) < 5.6 GeV/c2;

• 3.04 < m(µ+µ−) < 3.14 GeV/c2;

• 1.009 < m(KK) < 1.028 GeV/c2;
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• pT (B) > 4 GeV/c;

• pT (φ) > 1 GeV/c;

• pT (K) > 0.4 GeV/c;

• χ2
rϕ < 50,

where χ2
rϕ is the χ2 of the 2-dimensional vertex fit in the (rϕ) plane. The resulting J/ψK+K−

mass distribution is shown in Fig. 5.1 (a). A distinct signal enhancement is visible atop a
significant background. In the following, we will use the sidebands of the reconstructed B0

s

mass (mB) distribution to study and model the background features. Sidebands are defined
as: (5.291 < mB < 5.315) ∪ (5.417 < mB < 5.442) GeV/c2. The signal region is defined as the
range 5.34 < mB < 5.39 GeV/c2, corresponding roughly to a ±2.5σ window around the known
B0
s mass, with mass resolution of σ ≈ 10 MeV/c2.
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Figure 5.1: Mass distribution ofB0
s candidates after event preselection only (a), and after the rectangular

cuts described in Sect. 5.3.1 for the data validation of variables in input to the NN (b). The blue dotted
lines represent the bounds of the sidebands regions, while the red dotted lines represent the bounds of
the signal region.

5.3.1 Neural Network Selection

The artificial NN classifier adopted in the optimization of the data sample is the NeuroBayes
tool applied in the previous CDF analysis [113, 18]. The network was trained to recognize the
signal properties using 0.35 million simulated signal events, and for the background using 0.3
million data events from the B0

s mass sidebands. The simulated signal data is described in
detail in Sect. 5.5.1. The NN combines the information from all the inputs into a single output
variable, that classifies whether an event is signal-like or background-like on a continuous scale
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(a) (b)

Figure 5.2: NN output distribution for training sample (a), red line is signal, black is background.
Signal purity as a function of NN output (b).

between -1 (background) and 1 (signal) (see Fig. 5.2 (a)). The following variables are used as
input to the NN:

• χ2
rφ, χ2 of the 2-dimensional (r, ϕ) vertex fit;

• P (χ2, p), χ2 probability for the 3-dimensional vertex fit;

• pT (p), momentum component transverse to the beam direction for particle p;

• LLµ(p), value for a likelihood based quantity used for muon identification;

• LLK(p), value of a likelihood based discriminant for kaon identification.

The muon and kaon likelihoods are quantities used for particle identification. The algorithm de-
termining the muon likelihood is described in Ref. [116]. The kaon likelihood [117] is a combined
discriminant constructed from the kaon track specific ionization energy loss, dE/dx, and its TOF
information. The variables are ranked in order of decreasing discriminating power as follows:
the transverse momentum pT of the φ meson, the kaon likelihood, the muon likelihood for the
J/ψ muon daughters, χ2

rφ for the B0
s decay vertex reconstruction, the transverse momentum pT

of the B0
s meson, and the vertex probabilities associated to the B0

s , φ, and J/ψ candidates. The
output of the NN for signal and background using the training samples is shown in Fig. 5.2 (a).
In Fig. 5.2 (b) the signal purity as a function of NN output is shown, where the gradient shows
the expected correlation between the network output and the signal purity.

The NN was retrained in the last iteration of this analysis as described in Ref. [18]. Because
the data quality is known to be very similar between data added in this update and previous
data, we expect the performance of the NN discriminator in our sample to be to a good ap-
proximation comparable with the performance on the 5.2 fb−1 sample of the latest analysis.
Hence, we do not explore the possibility to include new variables nor retraining the NN. Indeed,
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it is very unlikely that any selection bias would be induced in the results, although the final
selection could be a little suboptimal. However, we compared the distributions of all network
input variables in the first 5.2 fb−1 of data and the second 4.4 fb−1. We expect this comparison
to be sensitive to effects such like large changes in the trigger-path composition of our sample,
since kinematic thresholds may differ in each path. The data were required to satisfy the follow-
ing requirements pT (µ) > 1.5 GeV/c, pt(K) > 0.6 GeV/c, four-track vertex probability > 0.001,
and pT (B) > 5 GeV/c. The B0

s mass distribution after such selection is shown in Fig. 5.1 (b).
Sideband-subtracted distributions have been compared at this stage, where the nomenclature
sideband subtraction stands for an operation performed on real data to extract the shape of
the signal distributions. It is done by subtracting to a given distribution of the events in the
signal region of the B0

s mass distribution the distribution of those events which are located in
the sidebands, properly normalized to the background fraction expected in the signal region.
Figure 5.3 and Fig. 5.4 show the comparison. No large discrepancy is observed, as shown by the
Kolmogorov probability [118] displayed on top of each plot. We also compared the distribution
of the NN output between old and new data (see Fig. 5.4 (c) and (d)), independently for the
sideband subtracted sample, and for the sidebands.

It is necessary to select the best NN output value to cut on in order to achieve a high degree
of signal purity as well as a good signal yield. Selecting a high NN output value as a cutoff
will produce a very pure signal, but will restrict the number of signal events available therefore
reducing the statistical power of the sample. A threshold which is too low will increase the
statistics, but the separation between signal and background will be inefficient. As in Ref. [18],
we choose the threshold on the NN output that minimizes the expected average variance on
the mixing phase as determined in large samples of statistical trials generated with different
choices of true values for βs and ∆Γs. The procedure is briefly outlined. Pseudo experiments
are generated corresponding to different NN cut values by choosing the associated signal and
background numbers for each cut value. The fast Monte Carlo simulation used to generate
these pseudo experiments is described in Sect. 5.5. Studies are carried out for three potential
true values of βs; 0.3, 0.5, and the SM value 0.02. For each βs value, the decay width difference
∆Γs is calculated according to Eq. (2.27), and all other variables are taken according to their
best fit values from [18]. About 700 pseudo experiments are generated and fit for each case, and
the βs statistical uncertainty is checked at each NN cut value. The error distribution is fitted
with a Landau function to determine the most probable value of the statistical error for βs at
each NN cut value for the three input values of βs, these fitted values are plotted against the
NN cut level and shown in Fig. 5.5 (a) for βs = 0.02. From this study, it was determined that
the optimal NN cut value is 0.2, which minimizes βs errors by increasing as much as possible
the signal yield. It is a looser cut than would be selected by a commonly used optimization
procedure that maximize the figure of merit S/

√
S +B (where S and B are the number of

signal and background events, respectively) as represented in Fig. 5.5 (b).
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Figure 5.3: Comparison between the distributions of NN input variables between the first 5.2 fb−1

(red) and the last 4.4 fb−1 (blue) of data. Top to bottom, left to right pT (φ) (a), χ2
rϕ (b), pT (B) (c),

χ2 probability of the B0
s vertex fit (d), χ2 probability of the φ vertex fit (e), χ2 probability of the J/ψ

vertex fit (f).
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Figure 5.4: Comparison between the distributions of NN input variables between the the first 5.2 fb−1

(red) and the last 4.4 fb−1 (blue) of data: LLK(K) (a), LLµ(µ) (b). Comparison between the NN output
distributions in the first 5.2 fb−1 of data (blue) and the full data set (red). The NN output variable for
(sideband-subtracted) signal events only (c) and for sidebands events only (d).
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Figure 5.5: Fitted βs statistical errors versus NN cut value for a true value of βs = 0.02 in pseudo
experiments, from which a value of 0.2 is chosen for the final sample selection (a). Figure of merit
S/
√
S +B versus NN cut value (b).
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5.4 Final sample

The resulting J/ψK+K− mass distribution is shown in Fig. 5.6 (a), along with sidebands-
subtracted distributions of m(K+K−) (a) and of m(J/ψ) (b). A prominent signal structure
emerges from a smooth background approximately constant in mass in the m(J/ψK+K−) spec-
trum. This may include contributions from B0

s→J/ψφ as well as B0
s→J/ψf0 decays. The signal

can be satisfactorily approximated by a single Gaussian distribution centered at the nominal B0
s

mass, 8.9MeV/c2–wide, containing 10 950± 110 events. The background is nearly saturated by
the combinatorial component. This is mainly promptly-produced and dominated by accidental
combinations of two charged tracks with a real J/ψ decay. Indeed, Fig. 5.7 (b) shows the large
suppression of the background when the requirement ct > 60µm is applied, preserving more
than 85% of the signal.

Given the limited PID of the CDF detector, a contribution from B0→J/ψK+π− decays,
where the pion is mis-identified as a kaon (B0 cross-feed) is known to contribute predominantly
in the higher-mass side of the signal. In particular, in the limited window of the K+K− mass
used in the preselection of the data, the main contribution is due to a K?(890)0→K+π− decay
mis-recontructed as a φ→K+K− decay. This contribution is extensively studied in a separate
simultaneous fit of the J/ψK+K− and K+K− mass distributions described in Sect. 7.4 and
found to be approximately 8% of the signal candidates. A systematic uncertainty on the final
measurement will be associated to such physics background (see Sect. 7.2).
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Figure 5.6: Sidebands-subtracted distributions of m(K+K−) (a) and of m(J/ψ) (b) and distribu-
tion of m(J/ψK+K−) (a) for the final B0

s→J/ψφ data sample after the NN selection. Distribution
of m(J/ψK+K−) adding the cut ct(B) > 60µm (b).
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Figure 5.7: Sidebands-subtracted distributions of m(K+K−) (a) and of m(J/ψ) (b) and distribu-
tion of m(J/ψK+K−) (a) for the final B0

s→J/ψφ data sample after the NN selection. Distribution
of m(J/ψK+K−) adding the cut ct(B) > 60µm (b).
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5.5 Monte Carlo samples

Simulation of the B0
s→J/ψφ decay and other relevant decays is employed at several points of

the analysis, when an analytic or data-based approach is not feasible. We can distinguish three
main techniques, described in the following sections, that provide us with several samples used
for different purposes:

• full realistic MC simulation of the B0
s production and decay, and of the subsequent detector

response. It is used to determine the detector efficiency in the 3-dimensional space of
the transversity angles due to the non-hermeticity of the detector. This is described in
Sect. 5.5.1.

• Simulation of B0
s→J/ψK+K− samples that includes the full (P +S)-waves decay rate and

its dependence on the K+K− mass, as described Sect. 2.2.1. Such samples are employed
to built confidence in the determination of the S-wave fraction as computed by the fit to
the transversity angles distributions. It is described in Sect. 5.5.2.

• Generation of samples of B0→J/ψK+π− decays that simulate (P + S)-wave K+π− res-
onances as they are reconstructed in the K+K− spectrum with the mis-identification of
the pion as a kaon. This simulation are used to extract the templates for the auxiliary
fit of the J/ψK+K− and K+K− mass distributions for the precise determination of the
sample composition. It is described in Sect. 5.5.3.

There is a fourth MC technique used: simplified generation of the B0
s→J/ψφ decay’s vari-

ables called toys or pseudo-experiments. They are particularly used for studies where a full
realistic MC simulation is not necessary, and a simplified simulation of the data is all that
is required to test the fit behaviors, such as biases in the estimation of the parameters. The
pseudo-experiment events are created by randomly sampling the probability density functions
of the maximum likelihood (see Sect. 6.2). The events are generated according to a set of in-
puts defined by the user for each parameter in the likelihood. The sample of pseudo-experiment
events can then be fit in the same way as a sample of data events. When generating pseudo-
experiments, we can include background events, parameterized in the same manner as the data.
Also, simplified versions of the likelihood can be used to generate pseudo-experiments. For
instance, signal-only toys may be used, or toys that do not account for detector efficiencies for
some studies of systematic uncertainties.

5.5.1 Phase-space model

In order to study the detector sculpting of the transversity angles distributions, a simulated
event sample of B0

s→J/ψφ decays obtained through a phase-space model from EvtGen has
been used [102]. Because all spins of the final-state particles are averaged in this model, the
angular distributions at generator level are flat and allow one to account for the deviations
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Figure 5.8: Simulation weights. Discrete weights associated to the trigger classes (a). Continuous
weight function, as resulting from a fit to the ratio of the pT (B) distributions of MC and data (b).

from a uniform acceptance due to instrumental effects only. The simulation follows the three
steps described in Sect. 3.2.8, then the events are selected using the same preselection and NN
selection as data.

The angular acceptance model depends on the agreement between data and the generated
MC in variables that affect the angular decay features of the J/ψ and the φ. The MC sample
of 100 million events is modelled using input parameters from the first 1 fb−1 of CDF data, and
result in some inconsistencies with the current dataset which need to be corrected for. A known
mismodeling [18] in the pT (B) spectrum between simulation and data is observed and shown in
Fig. 5.9 (a). Because this may affect the distributions of the transversity angles, data-versus-MC
compatibility has been investigated in several other variables. Since trigger prescales modify
the trigger composition of the sample, and different trigger paths have different pT thresholds,
a prescale-dependent reweighing has been applied. In the following, we compare sideband-
subtracted data distributions with simulation distributions, which are reweighed to match data
whenever necessary.

The procedure involves three steps: the first takes into account the different triggers mix
of our dataset; the second enforces the agreement in the pT (B) spectrum; and the third step
accounts for the combination of both effects.

Trigger path mixture: the candidates are split into two groups, depending on whether a
CMU-CMU or a CMU-CMX muon pair has fired the trigger. Then, each of the two classes
is split in the following three classes:

• both muons have pT > 3 GeV/c;

• both muons have pT > 2 GeV/c and at least one muon has pT > 3 GeV/c;

• all events left.
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(a) (b)

Figure 5.9: Comparison between the data and phase space MC distributions of the trigger classes. The
red histograms are MC data, the black points sideband-subtracted data. The MC distribution on the
left is not reweighed; the plot on the rights is obtained after the MC reweighing.

We reweigh the simulation to reproduce the fraction of candidates belonging to each
of these six classes observed in data. The classes are, as a first approximation, mutually
exclusive and such that their union comprises the whole data sample. Figure 5.8 (a) shows
the distribution of the resulting weights. The heights of the first three bins represent the
weights for the three CMU-CMU trigger classes, the other bins refer to the CMU-CMX
triggers.

The pT (B) distributions in data and simulation is compared after the previous step in the
4–24GeV/c range. The reweighing function is extracted from the results of a second order
polynomial fit to the ratio of the distributions (see Figure 5.8 (b)).

Combined effect of trigger path admixture and pT (B) distribution: the weight associated to
each simulated event is the product of the weight associated to the trigger class and the
weight associated to the pT (B) distribution (see Fig. 5.9 and 5.10).

A third weight is used for the comparison of simulated events to data and takes into ac-
count the appropriate angular dependence of the decay, which purposely was not simulated by
EvtGen. To obtain the weight for the angular decay distributions, we take the untagged decay
rate of Eq. (2.27) and integrate it over decay time. We use the SM expectation of βs and ∆Γs,
and the value measured in Ref. [18] for the polarization amplitudes, strong phases and mean
B0
s lifetime. In App. D, Fig. D.1 – Fig. D.3 show the good agreement between the data and the

simulation for other relevant variables.
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Figure 5.10: Comparison between the data and phase space MC distributions of pT (B). The red
histograms are MC data, the black points sideband-subtracted data. The MC distribution on the left is
not reweighed; the plot on the rights is obtained after the MC reweighing.

5.5.2 Simulated B0
s→J/ψK+K− data

We validate the robustness of the analysis by using high-statistics samples generated by a re-
alistic MC that fully simulates the (P + S)-waves interference independently of the probability
density functions used in the fit. This is a new consistency test aimed at further understanding
potential biases in the estimation of the physical parameters of interest and at shedding some
light on the inconsistency between the size of the S-wave contributions observed between ex-
periments. Based on angular-information only (no K+K− mass is ever used in fits) D0 claims
a 17% fraction [19], in contrast to the findings from CDF, LHCb, and ATLAS in the 1–2%
range [18, 20, 21]. An improperly-modeled component of misidentified S-wave B0→J/ψK+π−

decays could mimic a KK S-wave and potentially explain the discrepancies, as will be discussd
in Sect. 7.4

Since EvtGen does not provide a model that simulates B0
s→J/ψK+K− decays with all

the resonances substructure, we wrote an independent MC generator that fully simulates the
B0
s→J/ψK+K− decay amplitude as a function of the transversity angles, the B0

s proper decay–
time and the K+K− mass. The generation proceeds in two steps:

1. we simultaneously draw samplings of the transversity angles, the B0
s proper decay–time,

and the K+K− mass distributions, from the theoretical decay rate of B0
s→J/ψK+K−

decays of Eq. (2.21), which comprises both φ(1020)→ K+K− and f0(980)→ K+K−

components, along with their interference. We generate an equal amount of initially
produced B0

s and B̄0
s mesons.
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2. We introduce detector effects by simulating the smearing of ct, using as a model the sum
of two gaussians whose parameter are taken from the fit to data (see Sect. 6.2.3). The
effect of the detector angular acceptance is simulated using the sampling-rejection method
[118] with a 3-dimensional histogram of the angular efficiency derived with the phase-space
MC described above. The experimental tagging is simulated at this stage with realistic
performances as measured in data (see Chap. 4).

We use the relativistic Breit-Wigner distribution for the φ(1020) and the Flatté shape for the
f0(980), as described in App. B. The Breit-Wigner parameters are fixed to the world averaged
values [8]. The parameters of the Flatté, from a BES measurement [119], are the f0 mass
(965 ± 10 MeV/c2) and the coupling constants to π and to K decays (gπ = 165 ± 18 and
gK/gπ = 4.21 ± 0.33). Figure 5.5.2 shows the generated K+K− spectra for several S-wave
fractions from threshold up to 1.1GeV/c2. Examples of the generated transversity angles, ct(B)
and K+K− distributions are shown in Fig. 5.12. They compare well to sidebands-subtracted
data when the generation parameters match the values found in data.
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Figure 5.11: Example of K+K− spectrum from B0
s→J/ψK+K− simulation for different fractions of

S-wave in [0.988,1.100]GeV/c2.
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Figure 5.12: Comparison between the data and the B0
s→J/ψK+K− decays simulation. The blue

histograms are simulated data, the black points sideband-subtracted data. The simulated data are
generated with value of polarization amplitudes, strong phases, ∆Γs, βs and ∆ms as measured in
Ref. [18]; Top to bottom, left to right: the K+K− spectrum generated with 1% of S-wave fraction
in [1.009, 1.028] GeV/c2 (a); the ct(B) (b); the transversity angles cos Θ (c), Φ (d), and cos Ψ (e).
Example of K+K− spectrum from B0

s→J/ψK+K− simulation for different fractions of S-wave in
[0.988,1.100]GeV/c2.
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5.5.3 Simulated B0→J/ψK+π− data

A fraction of B0→J/ψK+π− is entering our sample because of decays candidates where the pion
is misreconstructed as a kaon. We need a simulation of B0→J/ψK+π− decays reconstructed
as B0

s→J/ψK+K− decays for extracting the templates to use in the fit for a precise estimation
of the sample composition.

The EvtGen package [102] provides a model for the generation of the K+π− P -wave
resonance, theB0→J/ψK?(890)0 decay, and theK+π− phase space model of theB0→J/ψK+π−

decay, which reasonable reproduces the S-wave shape in the low K+π− spectrum, but it cannot
simulate the full resonance structures with their interference. Therefore, the Kπ component is
modeled from a custom simulation, where the S- and P -wave are simulated along with their
interference as measured by BABAR [120]. Using the decay rate reported in Ref. [120], we generate
a sample of B0→J/ψK+π− decays with a K+π− fraction fixed to 7.3% in [0.8, 1.0] GeV/c2

Ref. [120]. We then reassign momenta and masses of the generated K+π− particles as they
were reconstructed like a K+K− pair. We show the resulting distributions of m(J/ψK+K−)
andm(K+K−) in Fig. 5.13. The P -wave and S-wave simulations have been compared separately
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Figure 5.13: Distributions of m(J/ψK+K−) (a) and m(K+K−) (b) for simulated B0→J/ψK+π− decay
reconstructed as B0

s→J/ψK+K−.

with the CDF simulation, which is based on EvtGen generator of the B0→J/ψK?(890)0 and
B0→J/ψK+π− phase-space decays, respectively, reconstructed as B0

s→J/ψK+K− decays. The
EvtGen-based simulation comprises the simulation of the CDF detector, reconstruction and
NN selection. The comparison is reported in Fig. 5.14 and shows good agreement.
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Figure 5.14: Comparison of the custom simulation of B0→J/ψK+π− decays reconstructed as
B0
s→J/ψK+K− (red) and the EvtGen-based simulation (blue) separately for the S-wave (a) and the

P -wave (b).

The S- and P - interference cancels out when integrating in the transversity angles for a
symmetric detector acceptance over the transversity angles space, because the angular functions
of the interference terms of the decay rate are anti-symmetric with respect to the origin of the
transversity angles space. Given the form of the acceptance for B0→J/ψK+π− decays, the
sculpting of the angular distributions is asymmetric as displayed in Fig. 5.15, the mass spectrum
is altered, giving an enhancement in the low-mass region and a suppression in the high-mass
range, as shown in Fig. 5.16 (a). The B0→J/ψK+π− simulation of the full S + P decay rate
has been validated with CDF data by comparing the efficiency-unfolded angular distributions
of simulated events and data and finding good agreement (Fig. 5.16 (b)). The only external
constraint introduced is the ratio between S- and P -wave Kπ contributions.
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Figure 5.15: Transversity angles distribution for simulated B0→J/ψK+π− decays. The red histograms
represent distributions where the data are simulated without the effect of angular acceptance. The blue
histograms includes the effect of the angular acceptance.
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Chapter 6

Maximum Likelihood Fit
of the B0

s→J/ψφ analysis

This chapter describes the multivariate likelihood function used to extract the physical parameters of
interest, in particular βs and ∆Γs. Properly normalized probability density functions for signal and
background are constructed in each of the observed variables. These are combined to make one multi-
variate probability density function from which a likelihood is constructed. The likelihood has degenerate
minima corresponding to symmetries in its parameterization which must be interpreted appropriately;
the investigation of its principal features along with its validation is reported.

6.1 Maximum Likelihood method

An unbinned maximum likelihood (ML) fit is used to extract the values of the interesting physics
parameters describing B0

s→J/ψφ decays. In what follows we briefly remind the ML method.
The parameters estimation is obtained through the maximization of the likelihood function
with respect to a set of parameters which are assumed to describe the data. Suppose we have
a set of n measured quantities x̄ = (x̄1, . . . , x̄n) of the event-variables’ vector x = (x1, . . . , xN )
described by a joint probability density function (PDF) P (x|ζ), where ζ = (ζ1, . . . , ζk) is a
set of k parameters whose values are unknown. The likelihood function is given by the PDF
evaluated with x̄, but expressed as a function of the k parameters, i. e. L(ζ) = P (x̄|ζ). If the
measurements x̄i are statistically independent and each follow the PDF P (x|ζ), then the joint
PDF for x factorizes and the likelihood function is

L(ζ) =
n∏
i=1

P (x̄i|ζ). (6.1)

The ML method takes the estimators ζ̂ to be those values of ζ that maximize L(ζ). It is
usually easier to work with lnL; both L and lnL are maximized for the same parameter values
ζ̂. The ML estimators can be found by solving the likelihood equations:

∂ lnL
∂ζi

= 0, i = 1, . . . , k. (6.2)

ML estimators are approximately unbiased and efficient for large data samples [8], under quite
general conditions, and the method has a wide range of applicability. The inverse V −1 of the

109



Chapter 6. Maximum Likelihood Fit of the B0
s→J/ψφ analysis

covariance matrix Vij = cov[ζ̂i, ζ̂j] for a set of ML estimators can be estimated by using

V̂ −1
ij = −∂

2 lnL
∂ζi∂ζj

∣∣∣∣∣
ξ̂

. (6.3)

For most of the fits the solution of Eq. (6.2) is analytically impossible to find. Thus, a numerical
method must be used. The software package Minuit is used on that purpose, through the
minimization of the function −2 logL [121].

Once a fit is performed, i. e. once the estimators ζ̂ are found, we would quantify the goodness
of the results obtained. There is no direct method for testing the goodness-of-fit of an unbinned
ML fit. Different approaches have been proposed, none of them rigorously correct. A practical
method is comparing the distributions of data with the joint PDF evaluated with the set of
parameters ζ = ζ̂. We can define the fit projection onto the variable xi of the variables vector
x as the following one-dimensional function:

P(xi|ζ̂) =
∫
P (x|ζ̂) dx1 . . . dxi−1dxi+1 . . . dxN (6.4)

which is the predicted distribution for xi under the assumed values for the fit parameters, and
it can be overlaid to the experimental data. This allows us to detect possible discrepancies
between the observed distributions and our model. Then, we perform the comparison of the fit
projection onto xi with its data distribution making a χ2 test [118]. The test returns a rough
evaluation of the goodness-of-fit, since it doesn’t take into account the correlations among the
variables: it has to be considered only as a qualitative indicator.

6.2 The Probability Distribution Function

In Sect. 5.4 we have distinguished two main components of the B0
s→J/ψφ data sample: the

events which come from the decay under study, the signal, and the events which are not related
to it, the background. Accordingly, the PDF of an event is the sum of two components, Ps and
Pb, which describes the signal and the background distributions respectively:

P (x|ζ) = fsPs(x|ζs) + (1− fs)Pb(x|ζb), (6.5)

where fs is the fraction of signal events (0 ≤ fs ≤ 1), and we have distinguished the parameters
of the signal, ζs, and the ones of the background, ζb. Each PDF is normalized to unit integral
and it is decomposed in the products of PDFs when it is appropriate to treat event variables as
independent.

We consider the following event variables: the mass of B candidates and its uncertainty
(m and σm); the B decay-length and its uncertainty (ct and σct); the flavor tag with its pre-
dicted dilution (ξi and Di) for each tagging algorithm (i = OST, SSKT); and finally the three
transversity angles Ω = (cos Θ,Φ, cos Ψ). The resolution of the transversity angles have been
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proven to be negligible in previous analyses and will not be considered [18]. Since definitions of
the decay-length and transversity angles as well as the tagging responses do not depend on the
J/ψK+K− mass m and resolution σm, the signal PDF for an event factorizes as:1

Ps(x) = Ps(m,σm)P (ct,Ω, σct, ξ,D), (6.6)

where we have defined the PDF of the J/ψK+K− mass and its uncertainty, Ps(m,σm), that
will be written as Ps(m|σm)Ps(σm). The PDF for the other variables is decomposed using the
condition-probability definition as follows:

P (ct,Ω, σct, ξ,D) = P (ct,Ω|σct, ξ,D)Ps(σct)Ps(ξ)Ps(D), (6.7)

given the fact that the decay-length error is independent from the tagging responses. We have
introduced: the PDF of the B decay-length uncertainty Ps(σct); the PDF of the flavor tagging
variables Ps(ξ) and Ps(D), which combines the OST and SSKT responses; and the condition
probability P (ct,Ω|σct, ξ,D). The latter is given by the differential decay rate of Eq. (2.27) for
B0
s→J/ψK+K− decays, which differs for an initially produced B0

s or B̄0
s meson, hence, we need

the dependence on the tagging decisions (ξ,D) in the PDF; the experimental resolution on the
decay-length spoils the fast B0

s -B̄0
s oscillation, and must be taken into account for considering

the actual sensitivity on the mixing terms of the decay rate.
Since the combinatorial background is given by random tracks accidentally satisfying the

selection criteria, its PDF fully factorizes as follows:

Pb(x) = Pb(m|σm)Ps(σm)Pb(ct|σct)Pb(σct)Pb(Ω)Pb(ξ)Pb(D), (6.8)

with obvious notations for the PDF of each variables. The other source of background, the
B0→J/ψK+π− decays described in Sect. 5.4, is not modeled in the PDF and it will be accounted
for in the systematic uncertainties and studied in greater details in Sect. 7.4.

When PDFs have the same dependence on a given variable for the signal and the back-
ground, and there is no interest in the determination of its parameters, they can be considered
as an overall factor of the total (signal plus background) PDF that can be neglected in the
maximization of the likelihood. This is assumed for the mass-resolution PDFs, that are treated
as equivalent, Ps(σm) = Pb(σm) (we will consider the effects of this assumption in Sect. 7.2).
Therefore, the total PDF does not contain them and it finally reads as follows:

P (x) =fsPs(m|σm)P (ct,Ω|σct, ξ,D)Ps(σct)Ps(ξ)Ps(D)+
(1− fs)Pb(m|σm)Pb(ct|σct)Pb(σct)Pb(Ω)Pb(ξ)Pb(D).

(6.9)

In the following sections we describes the PDF of each variables.

1We will omit in the notations the dependence on the parameters ζ for simplicity from now on
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Figure 6.1: Distribution of the J/ψK+K−mass with the fit projection overlaid.

6.2.1 PDF of the B mass

Since the B0
s peak is well defined in the J/ψK+K− spectrum with a narrow width of about

9MeV/c2 atop a flat background distribution, the J/ψK+K− mass of the events is primary
useful in order to statistically separate signal candidates from background. The signal mass
distribution Ps(m|σm) is modeled by a single Gaussian function with central value M , fixed to
the B0

s world average value [8], and a event-by-event width given by the mass resolution (σm),
scaled using a global scale factor (sm) to account for a general mis-estimation on the mass
uncertainties. The PDF is then constructed by normalizing the Gaussian over the mass window
determined in the selection, mmin = 5.27 GeV/c2 and mmax = 5.46 GeV/c2; it reads:

Ps(m) = 1
N
e−

1
2

(
m−M
smσ

)2

, (6.10)

where N is the normalization factor.
The background mass model is a straight-line function that doesn’t depend on the mass

resolution:

Pb(m) = p1m+
1− p1

2 (m2
max −m2

min)
mmax −mmin

(6.11)

where p1 is the slope of the line. Figure 6.1 shows the J/ψK+K− spectrum with the fit projection
overlaid.
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6.2 The Probability Distribution Function

6.2.2 PDF of transversity angles and ct for the signal

The PDF of the signal describing the multidimensional distributions of transversity angles and
decay-length of B candidates is not separable, since it is modeled by the differential decay rate
in Eq. (2.27),

d4 ( )
Γ (

( )
B 0

s→J/ψK+K−)
dt dcos ΘdΦdcos Ψ , (6.12)

properly normalized. The decay rate is different for the decay of a B0
s or a B̄0

s meson and
we have to rely on the tagging response to assign the correct PDF. Sculpting of the angular
distributions caused by non-hermeticity of the detector and selection criteria must be taken
into account as well as the resolution on the measured ct of the event and the limited tagging
capability. In Fig. 6.2, we show how the combined effect of the decay-length resolution, of
the tagging efficiencies and of the tagging dilutions, spoils the tracing of the theoretical time-
evolution of one of the decay amplitude of Eq. (2.27).

The angular acceptance is assumed independent of ct and is modeled by a multiplicative
term A(Ω) representing the angular acceptance, which is parametrized in three dimensions
using a set of real spherical harmonics, Ylm(Θ,Φ), and Legendre polynomials, Pk(cos Ψ), as
basis functions with ranges 0 < Θ < π, 0 < Ψ < π, and 0 < Φ < 2π:2

aklmPk(cos Ψ)Ylm(Θ,Φ). (6.13)

The real spherical harmonics are expanded according to the Laplace series:

Ylm(Θ,Φ) =
∑
l,m

[Clm cos(mΦ) + Slm sin(mΦ)]Pml (cos Θ), (6.14)

where each term is expanded as a function of the Legendre polynomial used to fit cos Ψ:

Slm =
∑
k

Sklm

√
(2k + 1)

2 ,

Clm =
∑
k

Cklm

√
(2k + 1)

2 .

(6.15)

The parameters aklm are obtained from a fit of 100 million simulated events of B0
s→J/ψφ decays

of the MC described in Sect. 5.5.1, where all transversity angles are generated flat. These MC
events, which have been passed through the full CDF detector simulation, enable us to examine
how the initially flat distributions are sculpted by the detector acceptance, thus allowing us to
determine the angle-dependent efficiencies of the reconstructed particle candidates. The MC
distributions of cos Θ, Φ, and cos Ψ are filled into a 3-dimensional histogram with 20 bins in
each variable; these distributions are shown in Fig. 6.3. The largest effect is an approximate
15% (peak-to-valley) excursion in the angle Φ. Figure 6.4 shows the 2-dimensional projection
in (Θ,Φ) of the fit to the 3-dimensional acceptance distribution.
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Figure 6.2: Evolution of the amplitude K1(ct) of the decay rate Eq. (2.27) as a function of the B
decay-length: comparison between the ideal case for a perfect tagging and decay-length measurement
(left column), and the experimental case when efficiencies, dilutions, and resolutions are introduced as
measured in data (right column). In (a) and (b), βs = 0.02 and ∆Γs = 0.09 ps−1 (SM point). In (c)
and (d), βs = 0.5 and ∆Γs = 0.049 ps−1. We can distinguish three main effects: the smearing of the
oscillatory curves due to the decay-length resolution; the loss of the distinction between the B0

s and B̄0
s

curves due to the limited tagging power; the reduction of the amplitude of the oscillations due to the
dilution D (the terms sin(∆mst) and cos(∆mst) become respectively D sin(∆mst) and D cos(∆mst)).
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Figure 6.3: Observed distribution of the transversity angles cos Θ (a), Φ (b), and cos Ψ (c) for simulated
data generated flat in the angular variable space.

The ct resolution caused a smearing of the time-evolution functions in Eq. (2.27). There-
fore, the exponential functions describing the decay, e−Γt sinh(∆Γst/2) and e−Γt cosh(∆Γst/2),
as well as the oscillating functions for the B0

s -B̄0
s mixing probability, e−Γt cos(∆mst) and

e−Γt sin(∆mst), must be convoluted with the experimental resolution function, R(ct|σct). The
latter is empirically parameterized with a sum of two Gaussians:

R(ct|σct) = fR
e
− 1

2

(
ct

sct1σct

)2

√
2πsct1σct

+ (1− fR)e
− 1

2

(
ct

sct2σct

)2

√
2πsct2σct

. (6.16)

whose parameters are floating in the fit and are determined mainly by the prompt ct-background
described in Sect. 6.2.3. They are the relative fraction among the Gaussians, fR, and two scale
factors, sct1 and sct2 , to account for general mis-estimation of the decay-length error. From the
distribution of decay-length uncertainties, we find the average of the decay-length resolution
function at σct ≈ 30µm, with a root-mean-square deviation of about 12µm. Once the analytical
form of the resolution function is given, the smeared terms properly normalized replace the time
evolution functions in the decay rate. Therefore, the PDF becomes:

( )
P (ct,Ω|σct) = A(Ω)d

4 ( )
Γ (

( )
B 0

s→J/ψK+K−)
dtdcos ΘdΦdcos Ψ ⊗R(ct|σct). (6.17)

A compact formalism for the implementation of Eq. (6.17), specifically useful to calculate
and incorporate the normalization of the PDF including the experimental effects, was developed
in Ref. [56] and it is still adopted here. In such formalism, the polarization amplitudes at t = 0
are derived from the estimation of the time-integrated rate, |ai|2, to each of the polarization

2The number of basis functions needed to model the acceptance is determined by the size of the data sample;
in our case we take the first 72 coefficients of the expansion.
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states. To translate between the |ai|2 and the |Ai|2 one can use the following transformations:

|A0|2 = |a0|2

1 + (y − 1)|a⊥|2
,

|A‖|2 =
|a‖|2

1 + (y − 1)|a⊥|2
,

|A⊥|2 = y|a⊥|2

1 + (y − 1)|a⊥|2
.

(6.18)

where y ≡ (1 − z)/(1 + z) and z ≡ (∆Γs/(2Γ)) cos 2βs. Given the unitarity constraint |a0|2 +
|a‖|2 + |a⊥|2 = 1, we can fit the polarization rates by using the fraction:

α⊥ ≡ |a⊥|2,

α‖ ≡
|a‖|2

1− |a⊥|2
.

(6.19)

and then we automatically have |a0|2 = (1−α⊥)(1−α‖). The inclusion of the potential S-wave
contamination from decays of the scalar f0(980) resonance was also worked out and included in
Ref. [56]. We retain the choice of using the likelihood incorporating this S-wave component as
the central analysis fit, although the fraction of S-wave is found to be about 1% only (see [18]).
The mixing frequency ∆ms entering the decay rate has been Gaussian-constrained in the fit to
the measured value [43] and its uncertainty is taken as standard deviation of the Gaussian.
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The decay rate for a initially produced B̄0
s meson is different because of the sign-flip in front

of the cos(∆mst) and sin(∆mst) functions in the decay rate. Therefore, we introduce the flavor
tag decision ξ to chose between the two probabilities P (ct,Ω|σct) and P̄ (ct,Ω|σct). We need to
include the responses of the two tagging algorithms, indicated with index 1 for the OST and
with index 2 for the SSKT. Each dilution Di of the tagging decision is multiplied by a scale
factor si to account for some mis-estimation of the algorithm. These scale factors are separately
extracted from the dedicated calibration of both taggers described in Chap. 4. Then, in the
likelihood each scale factor is free to float within a Gaussian-constraint which has the results of
the calibration and its uncertainty as central value and standard deviation respectively. We use
a single scale factor of OST dilutions for both tagging decisions (B or B̄) instead of using two
separate scale factors. This choice is motived by the result of the updated calibration of the
OST which gives the same scale factor for the B+ → J/ψK+ and B− → J/ψK− decays. We
used the OST in the whole dataset, while the SSKT is used for the first 5.2 fb−1 only because
of the lack of its calibration in the second part of data (see Sect. 4.3). Finally the PDF that
includes all the terms described in this section is:

P (ct,Ω|σct, D, ξ) = 1 + ξ1s1D1
1 + |ξ1|

1 + ξ2s2D2
1 + |ξ2|

P (ct,Ω|σct)

+ 1− ξ1s1D1
1 + |ξ1|

1− ξ2s2D2
1 + |ξ2|

P̄ (ct,Ω|σct).
(6.20)

Since the two taggers search for tagging information (tracks, jets) in complementary regions
in space, we treat them as independent tags. It was verified that the tagging decisions and
predicted dilutions are indeed independent during their development.

6.2.3 PDF of the decay-length of the background

The background decay-length model is inherited from several CDF measurements of B hadron
lifetimes in similar final states [122]. It consists of three main components:

• a prompt peak which accounts for most of the combinatorial background events that are
expected to have no significant lifetime. It is modeled by a δ function at ct = 0, convoluted
with the same resolution function as the signal decay time dependence;

• two exponential functions with positive lifetime (defined for ct > 0) used to describe
events with misreconstructed vertex and events of the longer lived background, such as
other b-hadron decays;

• an exponential with negative lifetime (defined for ct < 0) is needed to account for those
background events that present a negative decay-length because of a mis-reconstructed
secondary vertex.
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Figure 6.5: Decay-length distribution of sidebands events along with the fit projection overlaid. The
χ2/d.o.f. of the fit is 91/63.

The prompt peak component has a relevant role since allows us to determine the resolution
function in ct, Eq. (6.16). The total background decay-length PDF reads:

Pb(ct|σct) =(1− fpr)
[
fΛ1

e−Λ1(ct)

Λ1
+ (1− fΛ1)

(
fΛn

eΛn(ct)

Λn
+ (1− fΛn)e

−Λ2(ct)

Λ2

)]

+ fpr

[
δ(ct)⊗R(ct|σct)

]
,

(6.21)

where fpr is the fraction of the prompt background; Λ1, Λ2, and Λn are the inverse of the
effective lifetimes of the background events distributed according to the long and short-lived
positive exponential as well as the negative exponential, respectively, while fΛ1 and fΛn are
their corresponding fractions. In Fig. 6.5 we report the ct distribution of background along
with fit projection overlaid.

6.2.4 PDF of transversity angles for the background

The background PDF of the transversity angles is parametrized empirically from data of the
sidebands of J/ψK+K− mass distribution. Each transversity angle distribution is verified to be
largely uncorrelated to the other two angles (see Fig. 6.6). For this reason each angle distribution
is modeled separately, and P (Ω) = P (cos Θ)P (Φ)P (cos Ψ). Moreover, the background angular
distributions are assumed independent from ct. We check that it is a fairly good approximation
as shown in Fig. 6.6. We consider f(cos Θ) ∝ 1− a cos2(Θ) and f(Φ) ∝ 1 + b cos(2Φ) (where a
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Figure 6.6: Scatter plots of cos Θ versus cos Ψ (a), cos Θ versus Φ (b), and cos Ψ versus Φ (c). Angular
distribution of cos Θ (d), Φ (e), and cos Ψ (f), in slice of ct.

and b are fit parameters), while we adopt a flat distribution for cos(Ψ). Such functions follow
closely the shapes of the angular efficiencies, which suggests that the underlying transversity
angle distributions of the background events are flat. In Fig. 6.7 the projection of fit to the
sidebands events is shown.

6.2.5 PDF of the decay-length uncertainty

As we are using candidate-by-candidate expected decay-time uncertainties, which are not dis-
tributed identically for the signal and background events, it is necessary to include a PDF for
the separate uncertainty distributions. The PDF has been built using Gamma functions as
follows:

P (σct) = fP
(σct)a1e

σct
b1

ba1+1
1 Γ(a1 + 1)

+ (1− fP ) (σct)a2e
σct
b2

ba2+1
2 Γ(a2 + 1)

, (6.22)

where a1, b1, a2, b2 define the mean and the width of respectively the first and the second distri-
bution, and fP define the fraction of the first distribution. Both the background and the signal
PDF has the same form of eq. 6.22 with two different set of parameters. These parameters are
found with a preliminary fit to mass and lifetime distributions on the data, and they are then
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Figure 6.7: Angular distributions of background events with fit projections overlaid. The χ2/d.o.f. of
the fits are 27/19 (cos Ψ), 28/19 (cos Θ), and 21/19 (Φ).
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Figure 6.8: Distribution of σct in background (a) and signal (b) regions with the fit projections overlaid.

fixed in the full likelihood used for the complete analysis. The choice of fixing these parameter
in the full fit, based mainly on the technical reason of simplifying the likelihood and reducing the
minimization time, has been checked to have limited impact in the extraction of the observables
of interest, as it will be discussed in Sect. 7.2. Distributions of decay time uncertainties with fit
projections overlaid are shown in fig. 6.8.

120



6.2 The Probability Distribution Function

6.2.6 PDF of flavor tagging variables

The probability of a particular combined tag decision for the signal is dependent on the efficiency,
εi, of each of the taggers:

Ps(ξ) =



(1− ε1)(1− ε2), for ξ1 = 0 and ξ2 = 0,

ε1(1− ε2), for ξ1 = ±1 and ξ2 = 0,

(1− ε1)ε2, for ξ1 = 0 and ξ2 = ±1,

ε1ε2, for ξ1 = ±1 and ξ2 = ±1,

(6.23)

Tagging information for background events is essentially without physical meaning, as they are
mostly combinations of unrelated tracks which pass the signal selection criteria. Knowledge of
the fractions of positively and negatively charged events is sufficient to describe any tagging
asymmetry present in the background. Therefore, the PDF Pb(ξ) contains a term to correct for
any charge asymmetry in the taggers, a disparity in the fraction of background events tagged
as B0

s over B̄0
s .

The PDFs of the dilution, Pi(Dj), is modeled with a template that consists of an histogram,
taken from the data itself. As the predicted dilution distributions are different for signal and
background events, separate histograms are produced for the signal and the background. Dif-
ferent histograms are produced for different taggers. The signal histograms are produced by
using background subtracted data; the background dilution histograms are complementary pro-
duced with sidebands data. These distributions are reported in Fig. 6.9 and for OST (a) and
SSKT (b).

Because the SSKT is used only in the first 5.2 fb−1 of data, we factorize the likelihood as
follows:

L = LOST+SSKT × LOST (6.24)

where LOST+SSKT refers to the likelihood of the first part of the sample and its PDF’s contains
both OST and SSKT observables and parameters, while LOST refers to the second part of the
sample where only the OST information are exploited. In particular, LOST has four less fitting
parameters with respect to LOST+SSKT: the SSKT tagging efficiency for signal and background
(εs(SSKT) and εb(SSKT)), the SSKT background tag asymmetry (A(SSKT)) and the SSKT
dilution scale factor SD(SSKT). Moreover, the SSKT dilution PDFs are not present in LOST,
while the tag decision PDF Eq. (6.23) and the tagged PDF Eq. (6.20) have only the index for
the OST case.

6.2.7 Summary of the PDF parameters

Table 6.1 lists all of the fit parameters along with a very short description. The parameters of
the lifetime-uncertainty PDF are excluded since they are not floating in the fit, but determined
with a preliminary mass and lifetime fit.
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Parameter Description
βs CP -violating phase of B0

s -B̄0
s mixing amplitude

∆Γs lifetime difference ΓL − ΓH
α⊥ fraction |a⊥|2

α‖ fraction |a‖|2/(1− |a⊥|2)

δ⊥ arg(A⊥A?0)

δ‖ arg(A‖A?0)

cτ B0
s mean lifetime

|AS |2 fraction of S-wave K+K− component in the signal

δS strong phase of S-wave amplitude

∆ms B0
s -B̄0

s mixing frequency

fs Signal fraction

sm Mass uncertainty scale factor

p1 mass background slope

sct1 lifetime uncertainty scale factor 1

sct2 lifetime uncertainty scale factor 2

fR relative fraction of Gaussians of the decay-length resolution

fpr fraction of prompt background

fΛn fraction of background with Λn lifetime

fΛ1 fraction of background with Λ1 lifetime

Λn Inverse of lifetime of a background component

Λ1 Inverse of lifetime of a background component

Λ2 Inverse of lifetime of a background component

a parameter in background fit to Φ

b parameter in background fit to cos Θ

SD(OST) OST dilution scale factor

SD(SSKT) SSKT dilution scale factor

εb(OST) OST tagging efficiency for background

εb(SSKT) SSKT tagging efficiency for background

A(OST) OST background tag asymmetry

A(SSKT) SSKT background tag asymmetry

εs(OST) OST tagging efficiency for signal

εs(SSKT) SSKT tagging efficiency for signal

Table 6.1: Summary of the fitting parameters for: the decay-length and transversity angles PDF of the
signal (green); the mass PDF (red); decay-length PDF of the signal (blue); decay-length PDF of the
background (orange); angular PDF of the background (yellow); tagging parameters (gray).
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Figure 6.9: Dilution histograms for OST (a) and for SSKT (b). Comparison between sidebands and
sidebands-subtracted data.

6.3 Investigation of the ML fit’s features

The ML estimators show significant biases that depend on the true values of the parameters,
challenging any attempt at bias corrections. This has been tracked to originate from a combi-
nation of the complications due to likelihood symmetries, which introduce multiple, equivalent
solutions; to the sensitivity to some parameters depending on the estimated values of others;
and to the current data size being still insufficient to approximate the asymptotic regime.

A complication is originated by the symmetry of the untagged decay rate discussed in
Sect. 2.2.2, when there is no distinction on the flavor of the B meson at production. In that
case, transformations of strong phases are independent on the transformations on βs and ∆Γs,
as they do not need to be simultaneous for the symmetry to hold, with the result of a four-
fold ambiguity in the (βs,∆Γs) space. Moreover, an additional complication is due to the fact
that the strong phase δ⊥ appears always and only in a product with sin 2βs in the untagged
likelihood. As a result, in case of small CP violation there is no sensitivity to δ⊥, and the fit
tends to bias the result as by increasing the value of βs to gain sensitivity on δ⊥ as an additional
parameter available to describe the statistical fluctuations. For this reason, we choose to neither
give results by using the untagged likelihood nor to rely on it for a control check of the fit
with flavor tagging. In Figure 6.10 we report some comparisons of the tagged and untagged
likelihood for the estimation of the mixing phase in simulated data samples as confidence regions
in the (βs,∆Γs) plane. The systematic bias towards larger value of the mixing phase when its
generation value is close to zero is visible for the untagged likelihood (along with the four
fold ambiguity). The figures show also the irregular shapes of both the tagged and untagged
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iso-likelihood contours which largely fluctuate sample by sample.
Given the limited experimental tagging power, a sort of residual four-fold ambiguity still

affects the likelihood when using the likelihood with the tagging. Because of such approximate
symmetries, Minuit can occasionally find a local minimum in the minimization process. The
local minimum is a point of the multidimensional space of (βs,∆Γs, δ‖, δ⊥, δS) with a value of
the likelihood function being larger than the value of the likelihood estimated in the quasi-
symmetric point (βs,∆Γs, 2π− δ‖, π− δ⊥, π− δS). Furthermore, the PDF in eq. 6.9 is invariant
under the simultaneous transformations of all the four parameter (βs,∆Γs, δ‖, δ⊥, δS) in (π −
βs,−∆Γs, 2π − δ‖, π − δ⊥, π − δS), as described in Sect. 2.2.2. Such a symmetry can be lifted
for large values of the fraction of S-wave in the sample, due to the asymmetric shape of the
integral I of the relativistic Breit Wigner function in Eq. (2.27) around the φ pole. We have
numerically checked the discrete symmetries of our likelihood by sampling some points of the
space parameters. When dealing with an S-wave fraction like the one expected in data (≈ 1%),
with the current event sample size, we can consider the likelihood completely symmetric under
the above transformations, since the difference in the likelihood value is not significant when it
is evaluated in exactly symmetric points of the parameters space.

The exact symmetry is broken when a parameter affected by the transformation is fixed to
a given value. In that case, estimation on remaining parameters are more reliable since the
biases are considerably reduced. Therefore, we choose to perform two type of analysis. The
first analysis aims at measuring precisely the width difference ∆Γs, the mean lifetime and the
polarization amplitude of B0

s→J/ψφ decay, when the mixing phase is set at its SM expectation.
Such measurements are done with the maximum likelihood fit described above in which the
mixing phase value is fixed at the SM prediction and it is no longer a fit parameter. We
refer to this analysis as the βs-fixed fit. The approximate symmetry still may give problem in
the minimization process because of the strong phases. We actually found a minimum of the
likelihood at the boundary of the symmetry point for δ‖ which prevent us to give a point estimate
for such parameter. We check numerically in the fit to data that the minimum found in the
likelihood minimization is the global minimum by comparing this value with the likelihood value
calculated in its quasi-symmetric point with respect to the strong phases (constraining the value
of ∆Γs to be positive, as expected in the SM solution of βs), as per the approximate-symmetry
transformation.

The second analysis aims at the estimation of the mixing phase. We call it the βs-floating
fit, in which we use the likelihood employed in the βs-fixed fit and we treat the mixing phase as
a fit parameters to be determined in the minimization process. Given the problems presented
above, the estimated uncertainties are unlikely to represent actual confidence regions with the
desired level of confidence. Thus, we do no use the point estimates (i. e., a central value with
uncertainties) to quote results of the parameters of interest. We instead provide confidence
intervals for the mixing phase and confidence regions in the (βs,∆Γs) subspace, using the
Neyman construction of confidence region, which will be described in Sect. 8.1.
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Figure 7.10: Likelihood contours plotted for 5 pseudo experiments generated with input values
taken from Table 7.1 and fitted using tagged (solid lines) and untagged (dashed lines) fit
configurations.
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Figure 7.10: Likelihood contours plotted for 5 pseudo experiments generated with input values
taken from Table 7.1 and fitted using tagged (solid lines) and untagged (dashed lines) fit
configurations.
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Figure 7.10: Likelihood contours plotted for 5 pseudo experiments generated with input values
taken from Table 7.1 and fitted using tagged (solid lines) and untagged (dashed lines) fit
configurations.
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Figure 7.10: Likelihood contours plotted for 5 pseudo experiments generated with input values
taken from Table 7.1 and fitted using tagged (solid lines) and untagged (dashed lines) fit
configurations.
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Figure 7.10: Likelihood contours plotted for 5 pseudo experiments generated with input values
taken from Table 7.1 and fitted using tagged (solid lines) and untagged (dashed lines) fit
configurations.
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Conclusion

In this thesis, the analysis of B0
s → J/ψ φ decays to measure β

J/ψφ
s using the CDF

detector at Fermilab has been presented. For the first time, the contribution of B0
s →

J/ψKK(f0) decays to the B0
s → J/ψ φ signal sample has been assessed and included

in the likelihood fit function, where the non-resonant KK, or f 0 is an S-wave state.
The resulting measured values for β

J/ψφ
s and ∆Γ using the full flavour tagged fit are

displayed as confidence regions, shown in Figure 7.14, and the 1-dimensional confidence
intervals for β

J/ψφ
s in Figure 7.16.

 (rad)     sβ
-1 0 1

)  
   

-1
 (p

s
Γ

Δ

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6 S-wave not included
S-wave included

5.99
2.30

-1CDF Run II Preliminary        L = 5.2 fb

 (rad)                 sβ
-1.5 -1 -0.5 0 0.5 1 1.5

)  
   

   
   

   
   

 
-1

 (p
s

Γ
Δ

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1CDF Run II Preliminary   L = 5.2 fb

Tagged fit
Untagged fit

Figure 7.17: [left] Comparison of unadjusted β
J/ψφ
s -∆Γ likelihood profile for flavour tagged

fit with and without the S-wave KK component included in the likelihood function. [right]
Overlay of fully adjusted confidence regions from the fit with and without flavour tagging of
the initial B0

s meson state.

To cross check the behaviour of the fit, which uses flavour tagging of the initial
B0

s meson state, the fully coverage adjusted confidence regions were also constructed for
the likelihood fit without flavour tagging information. This fit has less sensitivity to the
value of β

J/ψφ
s , but shows no disagreement with the flavour tagged case, as can be seen in

the right hand plot of Figure 7.17 where the two versions are overlaid. To check the effect
of adding in the B0

s → J/ψKK component, the unadjusted likelihood profiles from the
fit with and without this additional part are shown in the left hand plot of Figure 7.17.
The upper limit on the S-wave KK fraction of the signal B0

s → J/ψ φ sample was
measured as 6.2% at the 95% confidence level, and the small effect seen in the difference
between these two likelihood profiles reflects this small contribution. In addition to this
modification of the likelihood function, other improvements to the analysis include re-

156

Data 5.2 fb−1

(f)

Figure 6.10: Confidence regions for the 68% C.L.(blue, internal curves) and 95% C.L. (red, external
curves) in the (βs,∆Γs) plane for 5 pseudo-experiments (a)–(e) [123]. The last plot (f) is done on
real data with 5.2 fb−1 as published in Ref. [18]. Solid curves are iso-likelihood contours for analyses
with flavor-tagging; dashed curves are for analysis without flavor-tagging. In the generation of pseudo
experiments, βs = 0.22 and ∆Γs = 0.1 ps−1.
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In the following sections, we investigate the features and biases in the parameters estimation
given the above problems, both for the βs-fixed and the βs-floating fits.

6.3.1 Pull studies

We check the behavior of the likelihood estimator in pseudo-experiments by looking at the
distribution of normalized deviations (pulls) from the generated value of each parameter. For
a variable x which has a Gaussian distribution with mean µ and width σ, the pull

g = x− µ
σ

(6.25)

is expected to be Gaussian by definition. The central limit theorem shows that this principle can
in fact be extended to non-Gaussian parameters, such as a lifetime, which would be expected
to have a Gaussian distribution of measured values if suitably large datasets are analyzed. In
this case, the pull

g = ζm − ζg
σζ

(6.26)

is expected to be a Gaussian of zero mean and unit standard deviation, where ζm and ζg are
the measured and generated (true) values of the parameter being studied, and σζ is the error on
the measurement. A deviation from the Gaussian distribution in this case can indicate either a
bias in the fitting technique, or a mis-calculation of the errors which enter in the denominator.

We investigate the pulls of the fitted parameters by studying 1000 pseudo-experiments each
with the same statistics as in data, i. e., ∼56 000 events (signal plus background) generated by
sampling the PDF function as described in Sect. 5.5. In the generation of the samples, we use
the value estimated in the fit to real data for all parameters of the PDF.

6.3.1.1 βs-fixed fit

We first inspect the pull distribution of the parameters of physics interest ∆Γs, cτ , α‖, α⊥, and
the strong phases δ⊥ and δ‖ in the βs-fixed fit (see Fig. E.1 in App. E). The pulls are regular for
all quantities but δ‖ and |AS |2. The pull of α⊥ presents a bias of the order of ≈ 0.2 standard
deviations; being Gaussian-distributed, we will add this bias in the systematic uncertainty of
this parameter, as well as for α‖, which has a smaller bias, ≈ 0.1 standard deviations. The δ‖
pull shows a non-Gaussian behavior, which makes challenging to quote a reliable point estimate.
For estimated values close to the symmetric point π, the minimization process cannot always
unambiguously tell apart the two symmetric and close minima, and tends to return the boundary
value, π, as estimate (Fig. 6.11).

It is useful to look also at the pull distribution for the S-wave amplitude |AS |2. The S-wave
amplitude parameter |AS |2 is floating in the minimization within the interval [0,1] to prevent it
from assuming negative, unphysical values. The value obtained for the |AS |2 by the fit to data
is previous CDF measurement is (1.8± 2.3)% [18], i. e. very close to the boundary. Being also
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Fit without flavour tagging, with fixed β
J/ψφ
s =0.0

The untagged fit pull distributions here are included as a cross check. Figures 5.16
to 5.17 show the untagged fit pull distributions, Table 5.7 lists the fitted mean and stan-
dard deviations for these pulls, the pulls for all fit parameters are given in Appendix F.

Parameter Pull mean Pull σ Residual mean Residual sigma
cτ -0.02 ± 0.03 1 ± 0.02 -3e-06 ± 4e-05 0.001 ± 4e-05
∆Γ 0.06 ± 0.03 1 ± 0.02 0.002 ± 0.002 0.05 ± 0.002
αcpo -0.1 ± 0.03 1 ± 0.03 -0.003 ± 0.0005 0.02 ± 0.0004
α� 0.1 ± 0.03 1 ± 0.02 0.001 ± 0.0007 0.02 ± 0.0008
φ� non-Gaussian non-Gaussian

Table 5.7: Pull study fit results for main parameters of interest from untagged fit with fixed

β
J/ψφ
s =0.0 . Full details of the pulls for all fit parameters are given in Appendix F

δ‖ [rad]

−
2∆
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Figure 6.11: Likelihood-ratio profile of δ‖ in one pseudo-experiments. The two likelihood minima are
close being in proximity of the symmetry point δ‖ = π (red dotted line). The fit can converge either in
a minimum or in the other, and this spreads the error on the parameter.

the value used in the generation of the pseudo-experiments, this explains the odd behavior of
the pull distribution for |AS |2 (Fig. E.1 (h)). Figure 6.12 (a) shows that more than half of the
times the fit finds a value for |AS |2 that is either zero or in the interval between 0.0 and 0.02.
The residual plot in Figure 6.12 (b) shows how the boundary at |AS |2 = 0 is responsible of the
values found for |AS |2 and therefore the pull distribution behavior (Figure 6.12 (c)). In addition,
sometimes the fit shows convergence problems, because the Minuit minimizer gets stuck at the
limit for |AS |2 (see Ref. [121]). We fix those cases by restarting the minimization from the
local minimum of the likelihood, moving the starting point of |AS |2. To support the hypothesis
that the boundary was causing the bad behavior of the |AS |2 pull distribution, another set of
pseudo-experiments has been generated, with the generation value of |AS |2 = 25% far away
from the boundary. We expect a gaussian distribution centered on 0.25 for the values of |AS |2

fitted on the pseudo-experiment, and a Normal distribution for the pulls. Figure 6.12 (d)–(f)
show the obtained distribution which is in agreement with the expectations.

We verified whether the mean fit uncertainty for physics parameters in the toy studies is
comparable with the uncertainty observed in data. This comparison is reported in Tab. 6.2,
together with the parameters describing the pull distributions (mean and width). The maximum
likelihood values are reliable, and the observed uncertainties agree with what expected from
pseudo-experiments with the exception of δ‖, where the r.m.s. of the fit value is much larger
than the one estimated in data. We observed that out of a large number of pseudo-experiments,
it happen that the fit may converge to a minimum different than the generation value for δ‖,
due to the proximity of the two minima (Fig. 6.11).
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Figure 6.12: Value, residual and pull distributions for the S-wave amplitude |AS |2; pseudo-experiments
generated with the |AS |2 value of 1.8% correspond to plots (a)–(c), pseudo-experiments generated with
the |AS |2 value of 25% correspond to plots (d)–(f)

6.3.1.2 βs-floating fit

We performed studies with pseudo-experiments generated at βs = 0.11 (the central value found
in our data fit on the whole data sample). Figure E.2 in App. E shows the pull distribution for
the main physics parameters. When βs is allowed to float a bias is present on ∆Γs, and those of
α⊥ and α‖, although still limited, become larger. Figure E.2 (c) shows that no significant bias is
affecting βs, probably owing to the larger data sample size compared to previous iterations. For
δ‖, |AS |2 and δS , similar considerations as for the βs-fixed case hold. In general, the mean error
of the parameters in pseudo-experiments are considerably larger than the errors found by the
fit in data. Following the same scheme adopted in describing the βs-fixed fit, in table Tab. 6.3
we report a comparison between the mean error on a given parameter in the toy and the error
obtained by fitting the data. In Fig. 6.13 we show mean and width of the pull distributions for
all the parameters appearing in the full likelihood function.

6.3.1.3 Pulls studies with random input values of parameters

We repeat the pulls study of the βs-fixed fit by generating about 2000 pseudo-experiments
with input values of the PDF parameters randomly taken from a flat distributions. Those
distributions are centered at the values of the parameters found in the fit to data, and have a

128



6.3 Investigation of the ML fit’s features

τc

Γ Δ

CP Oddα

||α

1φ

||
φ

SWA

sδ

1p

pf

-f

++f

mS

m

+λ

-λ

++λ

2τcs

1sff

1τcs

1
)Ψcos(

1
)θcos(

sf

φ ψJ/
sβ

(OST)s∈

(OST)b∈

(OST)b
+A

(SST)s∈

(SST)b∈

(SST)b
+A

+
DS

-
DS

(SST)DS

s mΔ

perpφ

-1.5 -1

-0.5 0 0.5 1 1.5 2
 RMS
± µ
σ ±

 µline drawn as reference

Pulls Result

cτ 
ΔΓ 
αperp 
αpara 
δperp 
δpara 
|AS|2 

δS 
p1 
fpr 

fΛn 
fΛ1 
sm 

 
Λ1 
Λn 
Λ2

 

Sct1 
fR 

sct1 
 a 
b 
fs 
βs 

εs(OST) 
εb(OST) 

Ab(OST) 
εs(SST) 
εb(SST) 

Ab(SST) 
 SD(OST) 
 

SD(SST) 
Δms 

 

Pulls

Figure 6.13: Summary of the pull distributions for all parameters of the likelihood function for the βs-
floating fit. The red markers and the black lines are the means and the widths of the pulls, respectively.
The blue line is drawn as reference. The scale factors of the tagging dilutions along with ∆ms present a
smaller pull-width because they are gaussian-constrained in the fit.

129



Chapter 6. Maximum Likelihood Fit of the B0
s→J/ψφ analysis

Parameter Pull mean Pull σ Mean Error Fit Error
cτ −0.043± 0.036 1.049± 0.028 0.00061 0.00062

∆Γs 0.016± 0.034 0.998± 0.028 0.028 0.029
α⊥ −0.180± 0.032 0.942± 0.028 0.012 0.012
α‖ 0.072± 0.032 0.957± 0.027 0.013 0.012
δ⊥ −0.049± 0.027 0.802± 0.030 0.58 0.61

Table 6.2: Mean and σ of the pull distribution of the βs-fixed fit; variable mean error and in the last
column the fitted parameter error.

Parameter Pull mean Pull σ Mean Error Fit Error
βs 0.046± 0.033 0.984± 0.032 0.197 0.123
cτ −0.086± 0.030 0.914± 0.025 0.00059 0.00058

∆Γs 0.260± 0.032 0.965± 0.028 0.038 0.028
α⊥ −0.197± 0.032 0.949± 0.028 0.012 0.011
α‖ 0.170± 0.032 0.963± 0.027 0.013 0.011
δ⊥ −0.020± 0.019 0.537± 0.026 0.67 0.74

Table 6.3: Mean and σ of the βs-floating fit pull distribution; variable mean error and in the last column
the fitted parameter error.

width 5 times larger than the estimated errors, avoiding unphysical regions of the parameters
space. The parameters are randomized all together for each pseudo-experiments. The test has
the purpose to check possible biases against different true values of the fitting parameters. If the
likelihood fit present biases for particular true values of a given parameter, the corresponding
pull would show a deformation of the Normal distribution. In such a case, a dedicated study
can be performed for that parameter.

We already know and discussed the critical points in the parameter space for strong phases
(the symmetry points) and the S-wave fraction (the boundary at zero). We want to span all
other regions of the parameters space. The results of the test is presented Fig. E.3 in App. E,
and a summary in Fig. 6.14, while we report the result of the test in Tab. 6.4 for the main
physics parameters. The pulls are regular for all quantities. In particular, we see that the pulls
for δ‖ and |AS |2 are now regular, since their generated values are mostly populating regions far
from the problematic points (respectively, δ‖ = π and |AS |2 = 0).

6.3.2 Fit of realistic simulated data samples

We validate the robustness of the analysis by using high-statistics samples generated by the MC
simulation of B0

s→J/ψK+K− decays described in Sect. 5.5.2, that fully simulates the P - and S-
waves interference. This is a new consistency test with respect to the previous analyses aimed at
further understanding potential biases in the estimation of physical parameters of interest and
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Chapter 6. Maximum Likelihood Fit of the B0
s→J/ψφ analysis

Parameter Pull mean Pull σ
cτ −0.013± 0.024 0.983± 0.018

∆Γs −0.038± 0.024 0.976± 0.019
α⊥ −0.058± 0.023 0.9621± 0.018
α‖ 0.2837± 0.023 0.9838± 0.019
δ⊥ −0.051± 0.031 1.211± 0.030
δ‖ −0.037± 0.025 0.994± 0.024
|AS |2 −0.161± 0.019 0.950± 0.020

Table 6.4: Mean and σ of the βs-fixed fit pull distribution with random values of PDF parameters in
the generation of the pseudo-experiments.

testing the implementation of the complicated decay-rate expressions of the likelihood, since the
simulation is written with a different formalism. Specifically, we want to prove the reliability
of the estimation of the S-wave fraction by the angular analysis. Indeed, based on angular-
information only (the KK-mass variable is never used in fits) D0 claims a (17.3±3.6)% fraction
in contrast to findings from CDF, LHCb, and ATLAS in the 0–4% range. An improperly-
modeled component of misidentified S-wave from B0 → J/ψKπ decays could mimic the KK
S-wave and potentially explain the D0 discrepancy, as we discuss in Sect. 7.4.

We generate 8 samples of 50 000 signal events only (no background is simulated), which
corresponds to 5 times the statistics of signal events in real data. Table 6.5–6.8 summarize the
results of the interesting parameters for the fit of those samples. Point estimates are generally
very close to the generated values except for the strong phase δS , even when the sample is
generated with a large S-wave fraction. However, we consider the results satisfactory, since we
do not quote δS in our measurement given the small fraction of S-wave seen in data which spoils
the sensitivity on that parameter, and the simplified model used in the PDF parametrization
of the S-wave component that can alter the estimation of the S-wave phase (see Sect. 2.2.2).
The test shows that the fit can actually estimates the proper S-wave fraction and there are no
macroscopic biases in the ∆Γs estimates. Estimates of βs seems to be systematically smaller
than the generated value, but the effect is generally less than a standard deviation. Figure 6.15
summaries the pull for |AS |2, ∆Γs, and βs, observed in the fits to the 8 simulated samples.
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Input Fitted Pull
cτ 0.049 0.04870± 0.00023 -1.3
|A0|2 0.1610 0.1589± 0.0048 -0.4
|A⊥|2 0.4633 0.4572± 0.0061 -1.0
δ‖ 3.9 3.84± 0.048 -1.4
δ⊥ 0.8 −0.46± 0.41 -3.0
δS 1.22 3± 10 0.2
|AS |2 0 0± 0.00025 0.0
∆Γs 0.09 0.087± 0.012 -0.3
βs 0.02 −0.068± 0.054 -1.6

Input Fitted Pull
cτ 0.0458 0.04570± 0.00025 -0.4
|A0|2 0.5167 0.5123± 0.0053 -0.8
|A⊥|2 0.2521 0.2484± 0.0069 -0.5
δ‖ 3.04 3.06± 0.23 0.1
δ⊥ 2.73 2.34± 0.66 -0.6
δS 1.22 2.64± 0.90 1.6
|AS |2 0.01 0.0100± 0.0045 0.0
∆Γs 0.09 0.0914± 0.011 0.1
βs 0.02 −0.022± 0.064 -0.7

Table 6.5: Fit to B0
s→J/ψK+K− simulated data: sample 1 (left) and 2 (right).

Input Fitted Pull
cτ 0.0458 0.04579± 0.00021 0.0
|A0|2 0.4982 0.4958± 0.0053 -0.5
|A⊥|2 0.2790 0.2740± 0.0068 -0.7
δ‖ 3.04 3.00± 0.14 -0.3
δ⊥ 2.73 2.28± 0.48 -0.9
δS 1.22 0.62± 0.23 -2.7
|AS |2 0 0± 0.0023 0.0
∆Γs 0 0.0075± 0.0092 0.8
βs 0.02 −0.086± 0.090 -1.2

Input Fitted Pull
cτ 0.0458 0.04600± 0.00029 0.7
|A0|2 0.4977 0.4937± 0.0051 -0.8
|A⊥|2 0.2798 0.2754± 0.0067 -0.7
δ‖ 3.04 3.19± 0.18 0.9
δ⊥ 2.73 2.77± 0.33 0.1
δS 1.22 3.38± 0.71 3.0
|AS |2 0.01 0.0099± 0.0080 0.0
∆Γs 0.09 0.076± 0.015 -1.0
βs -0.8 −0.807± 0.069 -0.1

Table 6.6: Fit to B0
s→J/ψK+K− simulated data: sample 3 (left) and 4 (right).

Input Fitted Pull
cτ 0.0458 0.04574± 0.00024 -0.2
|A0|2 0.5230 0.5170± 0.0052 -1.2
|A⊥|2 0.2431 0.2443± 0.0068 0.2
δ‖ 3.25 3.15± 0.14 -0.7
δ⊥ 2.95 2.27± 0.44 -1.6
δS 2.98 0.17± 0.43 -6.5
|AS |2 0.042 0.034± 0.0086 -0.9
∆Γs 0.123 0.122± 0.011 -0.1
βs -0.075 −0.090± 0.052 -0.3

Input Fitted Pull
cτ 0.0458 0.04577± 0.00025 -0.1
|A0|2 0.5280 0.5170± 0.0053 -0.8
|A⊥|2 0.2358 0.2349± 0.0066 -0.1
δ‖ 3.15 3.11± 0.24 -0.2
δ⊥ 2.73 2.71± 0.32 -0.1
δS 2.98 2.20± 0.33 -2.4
|AS |2 0.17 0.1611± 0.0082 -1.1
∆Γs 0.163 0.155± 0.013 -0.6
βs 0.22 0.206± 0.052 -0.3

Table 6.7: Fit to B0
s→J/ψK+K− simulated data: sample 5 (left) and 6 (right).
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Input Fitted Pull
cτ 0.0458 0.045813± 0.00031 0.0
|A0|2 0.5424 0.5363± 0.0052 -1.2
|A⊥|2 0.2251 0.2301± 0.0068 0.7
δ‖ 3.15 3.02± 0.32 -0.4
δ⊥ 2.8 2.31± 0.36 -1.4
δS 3.5 −0.81± 0.30 -14.4
|AS |2 0.5 0.5003± 0.0081 0.0
∆Γs 0.09 0.087± 0.017 -0.2
βs 0.02 0.023± 0.070 0.0

Input Fitted Pull
cτ 0.0458 0.04539± 0.0011 -0.4
|A0|2 0.5424 0.5550± 0.011 1.1
|A⊥|2 0.2251 0.2107± 0.012 -1.2
δ‖ 3.15 3.22± 0.48 0.1
δ⊥ 2.8 3.65± 0.69 1.2
δS 0.5 3.67± 0.69 4.6
|AS |2 0.8 0.8020± 0.0075 0.3
∆Γs 0.09 0.155± 0.039 1.7
βs 0.02 0.109± 0.069 1.3

Table 6.8: Fit to B0
s→J/ψK+K− simulated data: sample 7 (left) and 8 (right).
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Figure 6.15: Summary of the pulls of |AS |2 (a), ∆Γs (b) and βs (c) measured in the 8 fits to
B0
s→J/ψK+K− simulated data.
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Chapter 7

Measurements of B0
s lifetime, ∆Γs,

and B0
s→J/ψK+K− amplitudes.

In this chapter the results of the measurement of the B0
s lifetime, the width difference ∆Γs, the polariza-

tion amplitudes |A0(0)|2 and |A‖(0)|2, and the strong phase δ⊥, when βs is fixed to its SM expectation
are presented. A full study of the effects of systematic uncertainties on each parameter is presented.
Projections of the fit results onto individual event variables in data are shown. Finally, we present a
dedicated study for estimating the fraction of the S-wave component along with the B0→J/ψK+π−

background.

7.1 Fit results for βs fixed at the SM expectation

As was demonstrated in Sect. 6.3, the ML fit produces no or minimally biased measurements
of key physics parameters with βs fixed to its expected value in the SM (0.02). Aside from
constraining βs, the likelihood fit used to produce these measurements is identical to that used
in the final measurement of βs. Thus, in addition to giving the precise measurements of cτ ,
∆Γs and the angular amplitudes, comparing these values to theoretical predictions and other
measurements provides a good cross check of the full analysis technique.

The fit parameters for which point estimates can be quoted are the proper decay length,
cτ (from which the B0

s lifetime, τs, can be calculated), the decay width difference, ∆Γs, the
polarization fractions α⊥ and α‖, and the strong phase δ⊥. The fit results for the physics
observables in the case where the phase βs is fixed to its SM value are reported in the rightmost
column of Tab. 7.1 along with the parameters correlations in Tab. 7.2. We also report the results
of the fit performed only to the new data added in this final measurement with respect to the
previous CDF measurement [18]. They show good consistency with past results. In Fig. 7.1 we
shows the scan of the likelihood for ∆Γs, δ⊥ and δ‖, which present a regular parabolic shape
for the former two parameters, but a non-parabolic one for the latter.

We also cross-check the results with two alternative fits, of which results are reported in
Tab. 7.3. The first check uses the untagged likelihood in the fit. Indeed, the untagged likelihood
provide reliable estimates when βs is set to the SM value for all physical parameters [123], except
for δ⊥ which does not enter the untagged likelihood, and δ‖, which is affected by the problems
due to the symmetry transformation. The second check exploits the fit in which the likelihood
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Figure 7.1: Scan of the likelihood for ct (a), ∆Γs (b), δ‖ (c), and δ⊥ (d). The scan is obtained by
calculating the value of the likelihood in different points of a given parameter with all other parameters
fixed at the values obtained in the global minimum of the likelihood. The scan is not a profile-likelihood
(re-minimization of all parameters for each point), and gives only a qualitative test of the shape of the
likelihood around the minimum of the parameter.

contains only the P -wave parameterization in the PDF of the signal; since the default fit found
a negligible value of the S-wave, (0.8 ± 1.8)%, the alternative fit is expected to give results of
the others physical parameters very close to the default fit’s ones. Indeed, the cross checks are
very satisfactory.

The strong phase, δ‖, was shown to demonstrate non-Gaussian behavior even with βs fixed
to zero (Sect. 6.3.1), therefore we do not quote a point estimate for such parameter. The S-wave
fraction measured in data doesn’t allow us to quote reliable estimation of the phase δS , being the
fraction measured compatible with zero. A dedicated, alternative fit is considered in Sect. 7.4
for a precise measurement of the S-wave fraction |AS |2 and cross-check the obtained results.
The mixing frequency ∆ms is not reported, since this parameter is Gaussian-constrained in the
fit to the value measured by CDF [43]. As a control check, we perform a fit in which we release
the Gaussian-constraint and we treat ∆ms as a floating fit’s parameter. The likelihood of the
βs-fixed fit is sensitive to ∆ms, mainly though the time-evolution of the interference between
the polarization amplitudes, which contains terms as:

cosα cos 2βs sin(∆mst) (7.1)
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Parameter Previous result (5.2 fb−1) New data only (4.4 fb−1) All sample
∆Γs [ps−1] 0.075± 0.035 0.029± 0.033 0.068± 0.026
α⊥ 0.266± 0.014 0.296± 0.017 0.279± 0.010
α‖ 0.306± 0.015 0.309± 0.019 0.309± 0.012
δ⊥ 2.95± 0.64 3.45± 0.84 2.79± 0.53
δ‖ 3.08± 0.63 3.11± 0.40 3.09± 0.36
cτ [µm] 458.6± 7.5 457.2± 9.3 458.2± 5.8
|AS |2 0.019± 0.027 0.00± 0.03 0.008± 0.018
δS 1.37± 0.77 2± 2 1.26± 0.75

Table 7.1: Summary of the results of the main physical parameters in the fit to data with βs fixed
to its SM value (rightmost column). We report also the results of previous CDF measurement (second
column) compared with the results of the fit to new data only (third column).

∆Γs α⊥ α‖ δ⊥

cτ 0.52 -0.16 0.07 0.03
∆Γs -0.17 0.06 -0.01
α⊥ -0.53 -0.01
α‖ 0.05

Table 7.2: Matrix of correlation coefficients among main parameters of the βs-fixed fit.

where α is the strong phases between the amplitudes. In the amplitudes interference, there are
also terms that evolves with sinα cos(∆mst), which are suppressed by the fact that α takes value
close to π. The oscillatory terms in the time-evolution of the squared moduli of the amplitudes,
sin 2βs sin(∆mst), are instead suppressed by βs = 0.02. The results of such test is reported in
Tab. 7.3 and show good agreement with respect to the default fit. The found value of ∆ms is
very close to the CDF measured value, and build confidence on the sensitivity of the oscillatory
terms in the likelihood parametrization and on the decay-length resolution model. However,
the sensitivity on ∆ms is limited, as the likelihood-ratio profile in Fig. 7.2 shows. Hence, we
retain the choice to constrain the parameter in the fit.

In Tab. 7.4, we report the result of all parameter from the fit. Few comments are in or-
der. The large fraction of the prompt background (with null lifetime), about 88% of the total
background, allows for a good modeling of the resolution function in ct, with a precise deter-
mination of the scale factors for the decay-length uncertainty. The ct resolution is dominated
(≈ 85%) by the Gaussian with the smaller scale factor (1.308 ± 0.012). The background at
ct < 0, which is due to badly reconstructed events, have similar lifetime as the background at
ct > 0 with short lifetime, in agreement with the expectation that such mis-reconstruction effect
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Parameter Untagged fit Fit w/o S-wave ∆ms floating Default fit
∆Γs [ps−1] 0.068± 0.027 0.069± 0.026 0.069± 0.026 0.068± 0.026
α⊥ 0.279± 0.011 0.277± 0.010 0.279± 0.011 0.279± 0.010
α‖ 0.310± 0.012 0.310± 0.012 0.309± 0.012 0.309± 0.012
δ⊥ – 2.66± 0.49 2.64± 0.67 2.79± 0.53
δ‖ – – 3.09± 0.36 3.09± 0.36
cτ [µm] 458.5± 5.8 458.3± 5.8 458.3± 5.8 458.2± 5.8
|AS |2 0.008± 0.022 – 0.008± 0.018 0.008± 0.018
δS 1.22± 0.80 – 1.26± 0.80 1.26± 0.80
∆ms [ps−1] – 17.74± 0.11 17.65± 0.24 17.74± 0.11

Table 7.3: Comparison of the results of the the physics parameters for the default fit (rightmost
column) with alternative fits (central columns). In the second column, the alternative fit exploit the
untagged likelihood. In the third column, the likelihood of the alternative fit doesn’t have the S-wave
component in its parametrization. In the fourth column, the results of the fit with ∆ms treated as a
floating parameter.

is symmetric with respect to ct = 0. The efficiency of both OST and SSKT are in agreement
with expectations from the dedicated calibrations (Chap. 4). The dilution scale factors were
Gaussian-constrained in the fit, therefore, their estimations are naturally consistent with the
values determined in the taggers calibrations. Fit projections are in Fig. 7.3, showing overall
data model agreement. Specifically, we find good agreement between fit projections for sideband
subtracted-data and the signal model.
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Figure 7.2: Likelihood-ratio profile for ∆ms. The profile is obtained by minimizing the likelihood
at a fixed point of ∆ms with respect to all others parameters. The minimum of the likelihood is at
∆ms = 17.65 ps−1, in agreement with the measured value ∆ms = (17.77 ± 0.11) ps−1 [43], but the
irregular shape and the presence of local minima spoils the sensitivity on ∆ms.
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Parameter Description
βs CP -violating phase of B0

s -B̄0
s mixing amplitude fixed to 0.02

∆Γs lifetime difference ΓL − ΓH 0.068± 0.026 ps−1

α⊥ fraction |a⊥|2 0.279± 0.010
α‖ fraction |a‖|2/(1− |a⊥|2) 0.309± 0.012
δ⊥ arg(A⊥A?0) 2.79± 0.53
δ‖ arg(A‖A?0) 3.09± 0.36
cτ B0

s mean lifetime 458.2± 5.8µm
|AS |2 fraction of S-wave K+K− component in the signal 0.008± 0.018
δS strong phase of S-wave amplitude 1.26± 0.75
∆ms B0

s -B̄0
s mixing frequency 17.74± 0.11 ps−1

fs Signal fraction 0.1721± 0.0018
sm Mass uncertainty scale factor 1.727± 0.017
p1 mass background slope −1.89± 0.42 (GeV/c2)−1

sct1 lifetime uncertainty scale factor 1 1.308± 0.012
sct2 lifetime uncertainty scale factor 2 3.34± 0.13
fR relative fraction of Gaussians of the decay-length resolution 0.852± 0.010
fpr fraction of prompt background 0.8839± 0.0039
fΛn fraction of background with Λn lifetime 0.210± 0.038
fΛ1 fraction of background with Λ1 lifetime 0.718± 0.039
Λn Inverse of lifetime of a background component 0.040± 0.032µm−1

Λ1 Inverse of lifetime of a background component 0.0439± 0.0038µm−1

Λ2 Inverse of lifetime of a background component 0.0134± 0.0010µm−1

a parameter in background fit to Φ 0.1441± 0.0062
b parameter in background fit to cos Θ 0.169± 0.013
SD(OST) OST dilution scale factor 1.089± 0.049
SD(SSKT) SSKT dilution scale factor 0.85± 0.18
εb(OST) OST tagging efficiency for background 0.7592± 0.0019
εb(SSKT) SSKT tagging efficiency for background 0.7266± 0.0026
A(OST) OST background tag asymmetry 0.4975± 0.0025
A(SSKT) SSKT background tag asymmetry 0.4956± 0.0033
εs(OST) OST tagging efficiency for signal 0.9280± 0.0030
εs(SSKT) SSKT tagging efficiency for signal 0.5222± 0.0067

Table 7.4: Results of the fitting parameters for the βs-fixed fit to the entire data set.
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Figure 7.3: Projections onto ct distribution for the βs-fixed fit in the complete fit range (χ2/d.o.f. =
138/108) (a) and for sideband subtracted data (χ2/d.o.f. = 97/97) (b); projections onto transversity
angles distributions for the βs-fixed fit in the complete fit range (χ2/d.o.f. = 18/19 for cos Ψ, χ2/d.o.f. =
10/19 for cos Θ, and χ2/d.o.f. = 29/19 for Φ) (c) and for sideband subtracted data (χ2/d.o.f. = 17/19
for cos Ψ, χ2/d.o.f. = 23/19 for cos Θ, and χ2/d.o.f. = 13/19 for Φ) (d).
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7.2 Systematic Uncertainties

7.2 Systematic Uncertainties

Systematics uncertainties are assigned to account for potential mis-modelings of the fit. For each
systematic effect, we estimate the uncertainty using two ensembles of a few hundred pseudo-
experiments each, one generated according to the default fit model, the other using a model
modified in order to introduce the individual effect under study. The same randomization seeds
are used to minimize the statistical fluctuations. For each observable, the systematic uncertainty
is the mean of the distribution of the difference between the results of the fit on the default
pseudo-experiments and the results on the modified pseudo-experiments:

σsyst = |〈∆syst −∆ref〉|, (7.2)

with ∆i = ζfit
i − ζ

gen
i and ζfit

i is the value of the parameter fitted in the pseudo-experiment,
ζgen
i is the value used in the generation of the pseudo-experiments, and the index i stands
for the pseudo-experiment generated according to the modified (syst) or default (ref) models.
Being the value ζgen the same for the modified and default pseudo-experiments, the systematic
uncertainty is simply:

σsyst = |〈ζfit
syst − ζfit

ref〉|. (7.3)

When the statistical uncertainty on the mean value of the systematic shift is larger than the
systematic shift itself, we use the statistical uncertainty rather than the central value for the
systematic uncertainty. Results are reported in Tab. 7.5.

In the following we list the considered systematic effects.

Signal Angular Efficiency
The angular acceptance of the detector (Sect. 6.2.2) is modeled with a linear combination
of Legendre polynomials and spherical harmonics with expansion coefficients determined
from fitting a three-dimensional histogram in reweighed simulated events (Sect. 5.5.1).
Inaccurate modeling or inaccuracies in the reweighing may introduce a systematic un-
certainty. Because the reweighing procedure has the dominant impact in modifying the
acceptance, an alternative fit on data has been performed by using non-reweighed simu-
lation for the acceptance (Fig. 7.4). The difference between the values obtained for the
observables of interest with this fit and the values obtained with the default fit has been
taken as systematics uncertainty for the signal angular efficiency modeling effect. In ad-
dition, pseudo-experiments are generated with a modified model using an histogram for
the angular distributions of the non-reweighed MC sample, such that both the effect of
the mis-parametrization and the effect of the MC re-weighting are accounted for. This
effect dominates the systematic uncertainty on the polarization amplitudes (Tab. 7.5).

Signal mass model
Mismodelings of the signal mass can impact the final results. The default model for the
B0
s mass is a single Gaussian. An alternative model using two Gaussian, with common
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Source of systematic effect cτ [µm] ∆Γs [ ps−1] |A‖(0)|2 |A0(0)|2 δ⊥

Signal Angular Efficiency 0.29 0.0014 0.0134 0.0162 0.076
Mass Signal Model 0.17 0.0007 0.0006 0.0020 0.018
Mass Bkg Model 0.14 0.0006 0.0003 0.0002 0.034
ct Resolution 0.52 0.0010 0.0004 0.0002 0.066

ct Bkg 1.31 0.0057 0.0006 0.0012 0.064
Angular Bkg 0.46 0.0037 0.0011 0.0022 0.009
Sigma mass 0.85 0.0006 0.0003 0.0002 0.036
Sigma ct 0.63 0.0006 0.0003 0.0002 0.038

Bd → J/ψK∗ cross-feed 0.42 0.0055 0.0009 0.0058 0.039
SVX alignment 2.0 0.0004 0.0002 0.0001 0.034

Pull bias 0.2 0.0012 0.0021 0.0008 0.02
TOT 2.8 0.009 0.014 0.018 0.15

Table 7.5: Systematic uncertainties of the SM fit.

Θcos
­1.0 ­0.5 0.0 0.5 1.0

a
rb

it
ra

ry
 u

n
it
s

0.00

0.02

0.04

Kolmogorov prob = 0.00 

not reweighted MC

reweighted MC

Φ

0 2 4 6

a
rb

it
ra

ry
 u

n
it
s

0.00

0.02

0.04

0.06
Kolmogorov prob = 0.00 

not reweighted MC

reweighted MC

Ψcos
­1.0 ­0.5 0.0 0.5 1.0

a
rb

it
ra

ry
 u

n
it
s

0.00

0.02

0.04

Kolmogorov prob = 1.00 

not reweighted MC

reweighted MC

Figure 7.4: Comparison between the reweighed and non-reweighed MC simulation used for the angular
acceptance.
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means and independent and floating widths and relative fractions has been fit to data
to extract parameters used to generate modified pseudo-experiments. The impact on the
systematic uncertainties is moderate.

Background mass model
Similarly, if the chosen linear background mass model is inadequate it could contribute to
the systematic uncertainty. An alternative model consisting in a decreasing exponential is
applied on data to extract parameters to be used in the generation of pseudo-experiments.
The impact of this source on systematic uncertainties is limited.

Lifetime resolution model
Mismodelings of the lifetime resolution can strongly impact the lifetime-related observ-
ables. The default model assumes a two-Gaussian resolution function. An alternative
three-Gaussian resolution model, of which parameters have been extracted from a lifetime-
fit to sideband data, has been used to generate the pseudo-experiments that are then fit
with the default model.

Background lifetime model
Inadequate modeling of the lifetimes of various background components can systematically
affect the B0

s lifetime measurement. We used an alternative model using the histogram
of the proper time of the events populating the signal mass sidebands (with ct resolution
parameters fixed at the results of the default fit) to generate pseudo-experiments to be fit
with the default model. This has a relevant impact on several observables.

Angular background model and correlations
Effects from mismodeling of the angular background distribution are assessed with an al-
ternative fit on pseudo-experiments generated using the histograms of the three transver-
sity angles of the events populating the mass sidebands. Also, two-dimensional histograms
of the angles versus σct are used to probe potential effects from correlations among these
quantities.

Mass uncertainty distribution
The mass resolution is assumed to be the same for signal and background events. We
tested any residual effects through an alternative fit where mass uncertainty distributions
are modeled by histograms of B0

s sideband data for background events and sideband
subtracted signal region data for signal events separately (Fig. 7.5). To generate the
pseudo-experiments, we have sampled the background uncertainties from separate upper
and lower sideband histograms according to the generated B0

s mass thus accounting also
for effects caused by neglecting small correlations between σm and mass.

ct uncertainty distribution
To account for a possible mis-parametrization of the ct error distributions effect, we per-
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Figure 7.5: Comparison of distributions of σm for sideband and sideband-subtracted data.

form an alternative fit exploiting the ct uncertainty distributions taken from data his-
tograms rather than from the model described in Sect. 6.2.5. The PDFs used in the
alternative fits are simply the σct histograms of B0

s sideband data for background events
and sideband subtracted data for signal events, while to generate the pseudo-experiments,
we have sampled the background uncertainties from separate upper and lower sideband
histograms according to the generated Bs mass. This has been done in order to account
for any effect caused by small correlations between σct and the B0

s invariant mass.

B0→J/ψK+π− contribution
The B0→J/ψK+π− events misreconstructed as B0

s→J/ψK+K− decays are not included
in the default fit, though a fraction of these leaks into the B0

s signal region. We estimate
the size of this contribution from data to be (7.99±0.20)% of the B0

s signal (see Sect. 7.4).
We generate pseudo-experiments according to this fraction and fit with the default model
which does not account for this component. The B0

s lifetime, width and transversity
amplitudes of the generated events are taken from a previous CDF measurement [124].
The effect from this contribution has some limited impact on the final results.

SVX alignment
A systematic uncertainty is associated to the assumption that the silicon detector is per-
fectly aligned. The effects of plausible misalignments in lifetime-related observables have
been addressed in detail in early Run II analyses, estimating a systematic uncertainty on
the decay-length cτ in lifetime measurements of 2µm. This value is assumed for our life-
time determination, and also to assess secondary effects propagating through correlations
to the other parameters of interest. Pseudo-experiments in which the decay time in each
event is randomly shifted ±2µm have been generated and fitted with the default fit and
the mean of the differences between fit results used as systematic uncertainty.
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Pull bias
We assign a systematic uncertainty to the parameters that present a bias, as studied in
Sect. 6.3.1, which consists in the the mean shift ∆i = |ζfit

i − ζ
gen
i | where ζfit

i is the value of
the parameter fitted in the pseudo-experiments, ζgen

i is the value used in the generation of
the pseudo-experiments, which is fixed to the values found in the fit to the data (Tab. 7.4).

7.3 Final results

The relevant results for the SM fit using the full data set are

cτ = 458.2± 5.8(stat)± 2.8(syst) µm,
∆Γs = 0.068± 0.026(stat)± 0.009(syst) ps−1,

|A‖|2 = 0.229± 0.010(stat)± 0.014(syst),
|A0|2 = 0.512± 0.012(stat)± 0.018(syst),
δ⊥ = 2.79± 0.53(stat)± 0.15(syst).

The results are in good agreement with results from other experiments and with theoretical
predictions. From the measurements of lifetime and decay width difference and their correlations
we derive ∆Γs/Γs = 0.1045 ± 0.048(stat) ± 0.027(syst), while from the world average value of
the B0 lifetime we derive τs/τd = 1.006± 0.015 (stat+syst).

The fraction of S-wave found by the fit in the KK mass range (1.009, 1.028) GeV/c2 is
(0.8 ± 1.8)%, consistent with zero. Hence, we want to set an upper limit on this fraction. We
use the profile-likelihood ratio statistic as a function of the S-wave fraction (Fig. 7.6). The
method of the profile-likelihood ratio will be explained in details in Sect. 8.1, since it is used
to extract the main results of this analysis, the bounds on the mixing phase. The extraction of
the confidence interval must take into account the bound imposed in the likelihood to prevent
negative S-wave fraction. We generate a large number of pseudo-experiments according to
the likelihood. The pseudo-experiment are generated using the values determined by the fit
on data for all the nuisance parameters and for the S-wave fraction. We perform two fits for
each pseudo-experiments to calculate the likelihood ratio: one with the S-wave fraction fixed
to the generation value, and the other with the S-wave fraction floating in the fit together
with all nuisance parameters. We then plot the cumulative histogram of the likelihood ratios
from pseudo-experiments. In Fig. 7.6 (a) we report the obtained map that provide us with
the likelihood ratio needed to obtain the desired p-value. We then perform the likelihood-ratio
profile in the |AS |2 space in Fig. 7.6 (b). Using the likelihood-ratio’s map, we set an upper limit
on the fraction of S-wave in our data of 5.6% at 95% C.L., and 3.5% at 68% C.L., in agreement
with previous CDF results, and LHCb and ATLAS determination, but in contrast to findings
by the D0 Collaboration in a similar mass window, (17.3± 3.6)%.
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Figure 7.6: Mapping of p-value (1−C.L.) as a function of 2∆ logL as evaluated in pseudo-experiments
(a). The green curve represents the cumulative distribution for a χ2 statistic, to show the deviation
from the ideal case of the distribution obtained in pseudo-experiments. The map is used to draw the
intervals for the fraction of S-wave. In (b), the likelihood-ratio profile for |AS |2. The profile is obtained
by minimizing the likelihood at a fixed point of |AS |2 with respect to all others parameters. Setting the
obtained likelihood ratios in the map (a), we derive the upper limit on the fraction of S-wave in our data
of 5.6% at 95% C.L. (red dashed line), and 3.5% at 68% C.L (blue dotted line).

7.4 Estimation of the S-wave fraction

A simpler, alternative fit has been used to check the determination of the size of the S-wave
component and of the B0→J/ψK+π− background. A simultaneous likelihood fit of the unbinned
J/ψK+K− and K+K− mass distributions is used to extract the fractions of interest, which are
compared with the corresponding values obtained in the default fit from the angular analysis.
Some key modifications of the analysis are introduced in order to better describe the details of
the sample composition. We refine the templates of the Kπ background by including its full
resonance structure, both the P - and S- K+π− waves along with their interference as described
in Sect. 5.5.3. The relative size of the K+π− background is determined by the fit, we only fix
its S-wave to P -wave ratio to the value measured by BABAR [120].

The sample is enlarged by accepting events populating an extended K+K− mass window,
which offers a longer lever arm to fit the details of the threshold region of the K+K− mass. A
slightly different selection with respect to the default analysis provides a greater sensitivity to
the small S-wave component; we introduced the following changes:

• the K+K− mass window ranges from threshold to 1.2GeV/c2 (was 1.009–1.028 GeV/c2)
providing access to the S-wave-enriched low-mass region and high-mass data to properly
model the K?(890)0→K+π− background.
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7.4 Estimation of the S-wave fraction

• the ct(B) > 60µm requirement suppresses combinatorial background by preserving roughly
85% of the signal.

The usual threshold on the NN output (NN>0.2) is applied.
The J/ψK+K− mass distribution features three components (Fig. 7.7 (a)): a smooth, nearly-

constant combinatorial background, which is modeled with a linear function, Bc(mB); the B0
s

signal component, which comprises both the P -wave (J/ψφ) and the S-wave (J/ψK+K−); the B0

broad peak for B0→J/ψK+π− decays where the pion is misreconstructed as a kaon. The signal
is modeled with a sum of three Gaussian functions, G(mB), whose parameters are extracted
from a fit of a large sample of simulated decays and fixed in all subsequent steps of this check
(Fig. 7.7 (b)). The B0 line shape, BB0(mB), is determined from the simulation described in
Sect. 5.5.3.

The K+K− mass distribution features five distinct components (Fig. 7.7 (c)): the narrow
signal from φ(1020) mesons associated to a B0

s decay; the S-wave component; the K+π− back-
ground due to misidentification of the pion as a kaon; the combinatorial background; a peaking
background presumably due to a real φ(1020) associated to a pair of random tracks or muons.
The φ(1020) resonance is modeled with a relativistic Breit-Wigner distribution, W (mKK),
whose parameters are fixed to those reported by the Particle Data Group [8] (Sect. 2.2.1),
convoluted with a Gaussian resolution function whose width, σKK , is a free fit parameter. The
S-wave component is modeled using a Flatté distribution, F (mKK), whose parameters are those
measured by BES [119] (Sect. 2.2.1). The combinatorial background is empirically modeled from
an histogram, Bc(mKK), of the mass distribution of events populating the low-mass sideband of
the B0

s peak, depleted in actual B0 decays; this sample is selected by requiring ct(B) < 60µm,
an orthogonal sample with respect to the fitted one (Fig. 7.7 (d)). To adjust the normaliza-
tion of the peaking background present in Bc(mKK), an additional Breit Wigner component is
assigned in the background PDF, Wp(mKK), and the fraction of such background, fp is free
to float, to take into account the possible dependence of the size of this component on the
J/ψK+K− mass. The Kπ component, BKπ(mKK), is modeled from the dedicated simulation
described in Sect. 5.5.3, where the S- and P -wave are simulated along with their interference as
measured by BABAR (Fig. 7.7 (c)). The only external constraint introduced for this component
is the ratio between the S- and the P -wave Kπ contributions. It is (7.3± 1.8)% of a K?(890)0

signal in the range [0.8, 1.0] GeV/c2 of the K+π− spectrum [120].
The total PDF reads:

P (mB,mKK) =fsG(mB)
[
(1− fSw)W (mKK) + fSwF (mKK)

]
+

+ fdBB0(mB)BKπ(mKK)+

+ (1− fs − fd)Bc(mB)
[
(1− fp)Bc(mKK) + fpWp(mKK)

]
.

(7.4)

The floating parameters of the fit are the overall fractions of B0
s and B0 events, respectively

fs and fd; the fraction of S-wave events relative to the total B0
s events, fSw; the B0

s mass and
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s→J/ψK+K− amplitudes.
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Figure 7.7: Templates used to model the J/ψK+K− spectrum (a). Distribution of J/ψK+K− of
simulated events with fit-projection overlaid to extract the B0

s signal template (b). Templates used to
model the K+K− spectrum (c). Distribution of K+K− for events in the low-mass sideband of the B0

s

peak with ct(B) < 60µm.
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7.4 Estimation of the S-wave fraction

width, respectivelyMB and σB; theK+K− mass resolution, σKK ; the slope of the combinatorial
background in the J/ψK+K− mass, λ; the fraction of peaking K+K− background, fp. No
fraction is constrained to be in [0, 1]. We have assumed that the PDF is separable for the
J/ψK+K− and the K+K− variables by neglecting correlations among the masses, and checked
that the biases on the estimated fractions introduced by this assumption are small with respect
to the statistical errors, by using pseudo-experiments as explained in App. F.

The data distributions with fit projections are shown in Fig. 7.8, showing good agreement
between data and model. The determinations of the S-wave fraction and the B0 fractions show
some sensitivity to the arbitrary choice made for the modeling of the combinatorial background
at the level of one statistical standard deviation. The results of the fit are reported in Tab. 7.6.

Parameter Fitted value
fs 0.0828± 0.0013
MB[GeV/c2] 5.36626± 0.00011
σB[GeV/c2] 0.007033± 0.000088
λ[(GeV/c2)−1] −1.96± 0.40
fd 0.2148± 0.0031
fSw 0.050± 0.014
σKK 0.001074± 0.000047
fp −0.0056± 0.0011

Table 7.6: Results of the simultaneous fit to the J/ψK+K− and K+K− mass distributions.

We scale the fraction of K+K− S-wave and K+π− background to the selection window used
in the main angular fit. With the current model, the S-wave contribution to the B0

s signal in the
K+K− window (1.009, 1.028) GeV/c2, is determined to be (0.79±0.21)%, confirming the default
fit result from the angular analysis and the previous CDF, LHCb and ATLAS determinations.
The contribution of misreconstructed B0 decays in the same K+K− window is found to be
(7.99 ± 0.20)% of the B0

s signal. This last determination is significantly larger than the 2%
values typically derived with simulation by assuming only P -wave B0 decays [18]. If neglected,
this additional B0 component could mimic a larger K+K− S-wave than present, specially if
limited PID performance are available to discriminate kaon tracks from pion tracks. We check
the assumption by fitting the K+K− spectrum removing the K+π− S-wave model from the
PDF. In this case we found a double fraction of K+K− S-wave, 1.5%, and half of the K+π−

background, 3.9%.
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s→J/ψK+K− amplitudes.
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Figure 7.8: Distribution of J/ψK+K− (a) and K+K− (b) masses with fit projections overlaid. The
χ2/d.o.f. are 251/200 and 336/194, respectively.
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Chapter 8

Mixing phase bounds

This chapeter present the main results of the analysis of the time-evolution of B0
s→J/ψφ decays. We

provide confidence intervals that bound the mixing phase βs and confidence regions in the (βs,∆Γs)
space. We use a profile-likelihood ratio ordering with frequentist inclusion of systematic uncertainties to
treat the uncertainties in a rigorous way that ensures the desired level of confidence and the robustness
of our intervals. The experimental precision on the mixing phase is only second to the best published
determination by LHCb, and in conjunction with it, establishes that large non-SM contributions to the
B0
s -B̄0

s mixing phase are unlikely.

8.1 Measurement method

We chose not to use the results of the βs-floating fit to quote point estimates (i.e. central
value ± uncertainty) for the parameters of interest, specifically the mixing phase and ∆Γs. The
maximum likelihood estimators show significant biases that depend on the true values of the
parameters as detailed in Sect. 6.3. In addition, the estimated uncertainties are unlikely to
represent actual confidence regions with the desired level of confidence, as we will prove in the
following. We abandon the point estimates by resorting to the Neyman construction of a fully
frequentist confidence region [125].

Constructing correct and informative confidence regions from highly multi-dimensional like-
lihoods is challenging. In our case, determining the full 32-dimensional confidence space is
computationally prohibitive. More importantly, the choice of the ordering algorithm, i. e., the
procedure chosen to cover regions of the parameters space until the desired confidence level is
attained, is non-trivial. An arbitrariness is associated to the choice of the ordering algorithm,
but one needs to avoid that the projection of the region onto the (βs,∆Γs) subspace of interest
includes most, if not all, of the allowed values, thus yielding a useless result.

We choose to replace the likelihood, L(βs,∆Γs, ζ) with the profile likelihood, Lp(βs,∆Γs, ζ̂).
For every point in the (βs,∆Γs) plane, ζ̂ are the values of nuisance parameters that maximize
the likelihood in that point. The profile-likelihood ratio (PLR),

− 2∆ lnLp = −2 lnLp(βs,∆Γs, ζ̂)− 2 lnL(β̂s, ∆̂Γs, ζ̂), (8.1)

where L(β̂s, ∆̂Γs, ζ̂) is the value at the global minimum floating βs and ∆Γs along with the
nuisance parameters, can be used in principle as a χ2 statistic with two degree of freedom (χ2

2)
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Chapter 8. Mixing phase bounds

to derive confidence regions in the two-dimensional space (βs,∆Γs). The procedure to calculate
the PLR is the following. We first fit the data with all parameters floating. Then, we define a
32× 48 grid on the (βs,∆Γs) plane in the range −π/2 < βs < π/2 and −0.3 < ∆Γs < 0.3 ps−1,
and for each grid element we fit the data by floating all parameters but βs and ∆Γs, which are
fixed to the values corresponding to the point to probe. The value of the likelihood in each of
the two steps provide a PLR value for each point in the (βs,∆Γs) plane.

Simulations show that the observed distribution of PLR deviates from the χ2 one. Specifi-
cally, the resulting confidence regions contain true values of the parameters with lower proba-
bility than the nominal confidence level (CL) because the observed PLR distribution has longer
tails than a χ2 (see for instance, Fig. 8.7(a)). In addition, the PLR distribution appears to
depend on the true values of the nuisance parameters, which are unknown. We use therefore
the simulation of a large number of pseudo-experiments to derive the actual distribution of
PLR. The effect of systematic uncertainties is accounted for by randomly sampling a limited
number of points in the space of all nuisance parameters and using the most conservative of the
resulting PLR distributions to calculate the final confidence level. We obtain these distributions
by generating 16 ensembles of 1000 pseudo-experiments each. In each ensemble, the true values
of βs and ∆Γs correspond to the probed point, while the true values of the nuisance parameters
are a random sampling from an hypercube centered at their best fit values in data, with side
corresponding to 10 standard deviations. We ensure coverage over a wide range of possible
values, but always within their physically allowed range, in order to guarantee the desired CL
of the final regions against systematic fluctuations of the parameters. Profile-likelihood ratios
are determined for each of these pseudoexperiment exactly as for data. The ensemble giving
the broadest PLR distribution is chosen to construct the final regions. For each point in the
(βs,∆Γs) grid, we calculate the p-value as the fraction of pseudo-experiments from this ensemble
in which a PLR value as large or larger than in data is observed. The (βs,∆Γs) region where
the p-value is larger than 1− x forms the x% CL region.

In practice we observe that the PLR distributions is fairly independent of the probed value
of (βs,∆Γs), so we don’t need to generate pseudo-experiments for each (βs,∆Γs) point. It
suffices to compare the PLR observed in data for each point to the PLR distributions generated
in a single point. Because the main goal of this analysis is to quantify compatibility of our data
with the SM expectations, we choose the SM value (βs = 0.02,∆Γs = 0.090 ps−1) to generate
the reference PLR distribution. An idea of the deviation of the observed PLR distribution from
the expected χ2

2 distribution is shown in Fig. 8.7 (a). Including the coverage adjustment and
the effect of systematic uncertainties we need to change the value of PLR by approximately 2
units in order that projections on the (βs,∆Γs) plan contains the true values with 95% CL,
compared with the nominal value of 5.99 for the ideal χ2

2 statistic.
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8.2 Results of the βs-floating fit

8.2 Results of the βs-floating fit

Before proceeding with the extraction of the confidence regions and intervals, we present the
results of the βs-floating fit, which are reported in Tab. 8.1. They are perfectly consistent with
the results of the βs-fixed fit (Tab. 7.4), as expected. The minimum of the likelihood is found
to be at βs = (0.11 ± 0.12), in agreement with the SM expectation. The decay difference,
∆Γs = (0.068 ± 0.027) ps−1, is also found consistent with the SM prediction. The projections
of the βs-floating fit are shown in Fig. 8.1 and Fig. 8.2.
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Figure 8.1: Projections onto ct distribution for the βs-floating fit in the complete fit range
(χ2/d.o.f.=141/107) (a) and for sideband subtracted data (χ2/d.o.f.=98/97) (b).
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Parameter Description
βs CP -violating phase of B0

s -B̄0
s mixing amplitude 0.11± 0.12

∆Γs lifetime difference ΓL − ΓH 0.068± 0.027 ps−1

α⊥ fraction |a⊥|2 0.279± 0.011
α‖ fraction |a‖|2/(1− |a⊥|2) 0.309± 0.012
δ⊥ arg(A⊥A?0) 2.73± 0.53
δ‖ arg(A‖A?0) 3.04± 0.36
cτ B0

s mean lifetime 457.9± 5.8µm
|AS |2 fraction of S-wave K+K− component in the signal 0.008± 0.016
δS strong phase of S-wave amplitude 1.21± 0.65
∆ms B0

s -B̄0
s mixing frequency 17.72± 0.11 ps−1

fs Signal fraction 0.1721± 0.0018
sm Mass uncertainty scale factor 1.727± 0.017
p1 mass background slope −1.89± 0.42 (GeV/c2)−1

sct1 lifetime uncertainty scale factor 1 1.308± 0.012
sct2 lifetime uncertainty scale factor 2 3.34± 0.13
fR relative fraction of Gaussians of the decay-length resolution 0.852± 0.010
fpr fraction of prompt background 0.8839± 0.0039
fΛn fraction of background with Λn lifetime 0.210± 0.038
fΛ1 fraction of background with Λ1 lifetime 0.718± 0.039
Λn Inverse of lifetime of a background component 0.040± 0.032µm−1

Λ1 Inverse of lifetime of a background component 0.0439± 0.0038µm−1

Λ2 Inverse of lifetime of a background component 0.0134± 0.0010µm−1

a parameter in background fit to Φ 0.1441± 0.0062
b parameter in background fit to cos Θ 0.169± 0.013
SD(OST) OST dilution scale factor 1.085± 0.049
SD(SSKT) SSKT dilution scale factor 0.87± 0.17
εb(OST) OST tagging efficiency for background 0.7592± 0.0019
εb(SSKT) SSKT tagging efficiency for background 0.7266± 0.0026
A(OST) OST background tag asymmetry 0.4975± 0.0025
A(SSKT) SSKT background tag asymmetry 0.4956± 0.0033
εs(OST) OST tagging efficiency for signal 0.9280± 0.0030
εs(SSKT) SSKT tagging efficiency for signal 0.5222± 0.0067

Table 8.1: Results of the fitting parameters for the βs-floating fit to the entire data set.

154



8.3 Confidence regions

scos
-1 -0.5 0 0.5 1

Ev
en

ts
 p

er
 0

.0
1 

ra
d

0

500

1000

1500

2000

2500

3000

3500

4000

4500
-1CDF Run II Preliminary L = 9.6 fb

ecos
-1 -0.5 0 0.5 1

Ev
en

ts
 p

er
 0

.0
1 

ra
d

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Data

Fit projections

 [rad]\

0 2 4 6

Ev
en

ts
 p

er
 0

.0
3 

ra
d

0

500

1000

1500

2000

2500

3000

3500

4000

4500

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

m
(d

at
a-

fit
)/

-5

0

5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
m

(d
at

a-
fit

)/
-5

0

5

0 1 2 3 4 5 6

m
(d

at
a-

fit
)/

-5

0

5

(a)

scos
-1 -0.5 0 0.5 1

Ev
en

ts
 p

er
 0

.0
1 

ra
d

0

100

200

300

400

500

600

700

800

900
-1CDF Run II Preliminary L = 9.6 fb

ecos
-1 -0.5 0 0.5 1

Ev
en

ts
 p

er
 0

.0
1 

ra
d

0

100

200

300

400

500

600

700

800

900

Sideband subtracted data

Fit projection

 [rad]\

0 2 4 6
Ev

en
ts

 p
er

 0
.0

3 
ra

d
0

100

200

300

400

500

600

700

800

900

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

m
(d

at
a-

fit
)/

-5

0

5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

m
(d

at
a-

fit
)/

-5

0

5

0 1 2 3 4 5 6

m
(d

at
a-

fit
)/

-5

0

5

(b)

Figure 8.2: Projections onto transversity angles distributions for the βs-floating fit in the complete fit
range (χ2/d.o.f. = 18/19 for cos Ψ, χ2/d.o.f. = 10/19 for cos Θ, and χ2/d.o.f. = 29/19 for Φ) (a) and for
sideband subtracted data (χ2/d.o.f. = 18/19 for cos Ψ, χ2/d.o.f. = 23/19 for cos Θ, and χ2/d.o.f. = 14/19
for Φ) (b)

8.3 Confidence regions

We now present the confidence regions as profile-likelihood ratio in the (βs,∆Γs) plane. Because
of the approximate symmetries of the likelihood, MINUIT can occasionally find a local minimum
(see Sect. 6.3). Therefore, we compute two PLR values for each point of the plane. One is
computed starting the minimization in the ∆Γ > 0 and δ‖ < π (0 and π are symmetry points
for those parameters) subplane, the other is computed starting the minimization in ∆Γ < 0
and δ‖ > π. We proved in simulation that this procedure allows the identification of the
global minimum by comparing the value of the likelihood from the two minimizations, without
imposing any constraint on the domain of fit parameters. Thus, for each point of the plane,
the minimum of the values found in the two minimization procedures is chosen to construct
the PLR distribution. The latter is shown in Fig. 8.3. If the PLR is considered as an ideal χ2
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Chapter 8. Mixing phase bounds

statistic with 2 degrees of freedom, we set the confidence regions displayed in Fig. 8.4, which
must be corrected to ensure the proper coverage. Before doing the correction, we perform some
checks.

We first analyze only the first 5.2 fb−1 of data and check the compatibility with the previous
published CDF results to validate the fitting technique. Figure 8.4 (b) shows the comparison
of the confidence regions obtained compared with the curves of the published analysis, before
any coverage-corrections. The iso-PLR curves in the (βs,∆Γs) plan overlap and the fit gives
the same minimum for βs = 0.23 and ∆Γs = 0.97 ps−1, as expected.

Figure 8.5 (a) shows the confidence region for the fit to only the newly added data since the
published analysis using only OST, while in Fig. 8.5 (b) also the SSKT is applied (assuming
same performances as in the first 5.2 fb−1). The regions in Fig. 8.5 (a) are wider than the ones
in Fig. 8.5 (b) because of the limited tagging power of the OST with respect to the SSKT,
which doesn’t suffice to completely brake the symmetry of the untagged likelihood, yielding the
4 equivalent minima to enlarge and spread the confidence regions. The results of the βs-floating
fit are in agreement with the estimations previously found in the first 5.2 fb−1 of data [18]. The
main physical parameter are reported in Tab. 8.2 for comparison. We see that the mixing phase
in later part of data is consistent with the SM expectation and the minimum of the likelihood
in the βs subspace is very close to zero.

Parameter Previous result (5.2 fb−1) New data only (4.4 fb−1)
βs 0.24± 0.13 0.09± 0.25
∆Γs [ps−1] 0.097± 0.035 0.029± 0.033
α⊥ 0.264± 0.014 0.297± 0.013
α‖ 0.307± 0.015 0.309± 0.014
δ⊥ 3.03± 0.52 3.50± 0.84
δ‖ 3.02± 0.47 3.11± 0.40
cτ [µm] 459.0± 7.3 456.4± 6.7

Table 8.2: Summary of the results of the main physical parameters in the βs-floating fit to newly data
added (rightmost column). We report also results of previous CDF measurement (center column).

Figure 8.6(a) shows the comparison between the PLR distribution for the default fit and
the fit where the SSKT is used in all the data, assuming that the performances of the tagger
do not change in the second part of the data. The resulting confidence regions are very similar,
confirming that our choice of not using an uncalibrated version of SSKT in the second half of
data (Sect. 4.3) does not significantly compromise the quality of the result.

As a further control check, we compute the PLR using two different OST scale factors, one
for B0

s and the other for B̄0
s , to allow for a tagging asymmetry. This was the used procedure

in the previous iteration of the analysis, since in the past calibration of the OST, the scale
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Figure 8.3: Contours of iso-PLR (a) and two-dimensional distribution (b) in the (βs,∆Γs) plane.
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Figure 8.4: Confidence regions in the (βs,∆Γs) plane before any coverage adjustement for the analysis
of the full data set (a). Comparison of the iso-PLR curves before corrections between the previous CDF
analysis (light contours) and the new analysis run in the first 5.2 fb−1 of the data (bold contours) (b).

factors for the B+ and the B− mesons were found to be different by 2 standard deviations, in
contrast to the more precise calibration with the whole data set reported in Sect. 4.2.1. The
two scale factors are Gaussian-constrained in the fit by the values measured in the calibration:
S+ = 1.09 ± 0.05 and S− = 1.08 ± 0.05. The results of the fits are in perfect agreement
with respect to the fit with a single scale factor. Moreover, the two scale factors are found to
be consistent, giving an a posteriori check of our choice. They are: S+ = 1.086 ± 0.048 and
S− = 1.083±0.048. The PLR obtained is shown in Fig. 8.6(b) in comparison with the likelihood
profile of the default fit. The confidence regions present a perfect overlap.

The map between the PLR and the p-value obtained with simulation is shown in Fig. 8.7(a).
The solid black line represents PLR for pseudo-experiment generated with the nuisance param-
eters set to the values measured in data. The colored dotted lines are PLR distributions for
pseudo-experiments introducing variation of nuisance parameters for systematics. The worst
case is chosen to obtain the final confidence regions. A PLR of 3.56 must be set to guarantee
the correct coverage for a 68% CL, while a PLR of 8.13 corresponds to 95% CL. The adjusted
confidence regions are reported in Fig. 8.7(b). The SM point has a p-value of 0.59 indicating
full agreement of CDF data with the SM hypothesis.
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central fit and a fit in which SSKT is used in all data, assuming constant performances of the tagger in
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Figure 8.7: The p-value (1−CL) as a function of PLR for the coverage adjustment of (βs,∆Γs) confidence
regions (a). The green curve is the cumulative of the χ2 statistic corresponding to the ideal case. The
solid black line represents PLR for pseudo-experiment generated with the nuisance parameters set to
the values measured in data. The colored dotted lines are PLR distributions for pseudo-experiments
introducing variation of nuisance parameters for systematics. The worst case is chosen to draw coverage-
adjusted confidence regions in (b) for the 68% CL and 95% CL.
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8.4 Confidence intervals

8.4 Confidence intervals

The PLR distributions is evaluated also as a function of βs only by the same method previously
described and treating ∆Γs as a nuisance parameter. We divide the interval −π/2 < βs < π/2
in 100 equally-spaced bins, and we fit the data by floating all parameters but βs, which are fixed
to the values corresponding to the point to probe. In order to calculate the PLR, we subtract
to the value of the −2 lnL(βs, ζ̂) found in each point of the interval the value −2 lnL(β̂s, ζ̂) at
the global minimum with all parameters floating.

Following a procedure analogous to the two-dimensional case, we extracted the correspon-
dence between the PLR cumulative distribution and p-values, and used it to ensure right cover-
age properties to our intervals (see Fig. 8.8(a)). After the adjustment, the PLR corresponding
to a 68% CL interval and to a 95% CL interval are respectively 2.12 and 6.62, instead of 1 and
4 of the ideal χ2

1 statistic. This broadens the intervals of about 40%. They are reported in
Fig. 8.8(b). We found:

βs ∈ [−π/2,−1.51] ∪ [−0.06, 0.30] ∪ [1.26, π/2] at 68% CL,
βs ∈ [−π/2,−1.36] ∪ [−0.21, 0.53] ∪ [1.04, π/2] at 95% CL.

(8.2)

Using the recent determination of the sign of ∆Γs [42] which resolve the ambiguity of the
solutions, we choose the intervals which include the SM expectation: βs ∈ [−0.06, 0.30] at
68% CL, and βs ∈ [−0.21, 0.53] at 95% CL. The SM point has a p-value of 0.54 indicating
full agreement of CDF data with SM hypothesis. Table 8.3 compare the new and the previous
intervals: the updated analysis has a 35% improvement of the 68% CL interval.

CL 5.2 fb−1 9.6 fb−1

68% [0.02, 0.52] [−0.06, 0.30]
95% [−0.11, 0.65] [−0.21, 0.53]
SM p-value 0.30 0.54

Table 8.3: Comparison of the new and previous intervals of βs for the solution closest to the SM
expectation.
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Figure 8.8: The p-value (1− CL) as a function of PLR for the coverage adjustment of βs intervals (a).
The green curve is the cumulative of the χ2 statistic corresponding to the ideal case. The solid black
line represents PLR for pseudo-experiment generated with the nuisance parameters set to the values
measured in data. The colored dotted lines are PLR distributions for pseudo-experiments introducing
variation of nuisance parameters for systematics. The worst case is chosen to set coverage-adjusted
confidence intervals displayed in (b) as the intersection of the PLR of data with the blue line for the 68%
CL, and with the red line for the 95% CL.
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Chapter 9

B0
s→φφ Data Set

This chapter describes the data samples for the analysis of B0
s→φφ decays. We first present the selection

of the CDF data sample, outlining the system used to trigger on events with a displaced vertex from
the pp interaction point. An offline selection is applied to reduce the background in the final sample for
measuring the CP -violating asymmetries. Finally, we describe the MC simulated data samples used in
the analysis.

9.1 Trigger on displaced tracks

In this section we describe that part of the CDF II trigger system which provides the ability
to recognize tracks consistent with decay of long-lived hadrons, decaying in displaced vertexes
with respect to the primary pp interaction point.1 Such trigger is crucial to collect samples of
hadronic B decays, such as B0

s→φ(→ K+K−)φ(→ K+K−) decays.
When a long-lived particle decays after traveling some distance from the point where it

was created, the trajectories of the decay products generally do not point back to the collision
point. The distance of closest approach of the extrapolated trajectory to the collision point,
the impact parameter d, is the key quantity for the detection of secondary vertices. A typical
situation is sketched in Fig. 9.1. When a long-lived particle is created in the primary collision,
it travels some distance L before decaying, and will generate secondary tracks originating from
a secondary vertex. Then, the impact parameter is d = L sin θ, where θ is the angle between
the direction of the secondary track and the direction of the parent particle, and L = βγct,
where β and γ are the usual parameters of the Lorentz transformation from the rest frame of
the parent particle to the laboratory, t is the proper decay time, and c is the speed of light. If
the particles involved in the process are all relativistic, then on average, θ is of the order of 1/γ,
and for γ � 1, the impact parameter is

〈d〉 ' βγcτ(1/γ) = βcτ ' cτ, (9.1)

where τ is the lifetime of the parent particle. For particles containing the b quark, cτ ≈ 450µm,
and for particles containing the c quark, cτ can be as small as 125µm. These values set the
scale for the precision of the impact-parameter measurement needed to detect secondary vertices
from heavy-flavor decay to the order of a few tens of micrometers. We describe now how this is
achieve in the CDF II detector.

1For a detailed description we point to Ref. [96].
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NS60CH23-Ristori ARI 21 September 2010 21:57

Primary vertex

Secondary vertex 

Impact parameter (d)

d

Decay path (L)

Secondary track

θ

Figure 1
When a long-lived particle decays after traveling some distance, the trajectories of the decay products do not
point back to the collision point. The distance of closest approach of the extrapolated trajectory to the
collision point is known as the impact parameter.

where β and γ are the usual parameters of the Lorentz transformation from the rest frame of the
parent particle to the laboratory, t is the proper decay time, and c is the speed of light.

If the particles involved in the process are all relativistic, then on average, θ is of the order of
1/γ , and for γ ! 1, the impact parameter is

〈d 〉 $ βγ c τ (1/γ ) = βc τ $ c τ,

where τ is the lifetime of the parent particle. Note that, with these approximations, the average
size of the impact parameter is independent from the Lorentz boost γ .

For particles containing the b quark, c τ is of the order of 450 µm, and for particles containing
the c quark, c τ can be as small as 123 µm. These values set the scale for the precision of the
impact-parameter measurement needed to detect secondary vertices from heavy-flavor decay to
the order of a few tens of micrometers.

The first experiment that attempted to exploit the presence of secondary vertices to trigger on
heavy-flavor decays for a real measurement was probably WE82 at CERN (7). This experiment
searched for b and c production in pion-nucleon collisions at an energy of 350 GeV in the laboratory
frame. WE82 used six planes of detectors to reconstruct tracks in real time, scanning for secondary
vertices in a total time of 35 µs. It selected b and c quarks with a rejection factor of order 10 against
lighter quarks by requiring three primary tracks accompanied by two nonprimary tracks. This
device probably achieved the maximum possible performance with the technology available at
that time; however, given the ∼1-MHz interaction rate and the initial signal-to-background ratio
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Figure 9.1: When a long-lived particle decays after traveling some distance, the trajectories of the decay
products do not point back to the collision point. The distance of closest approach of the extrapolated
trajectory to the collision point is the impact parameter.

Using information from the COT, at L1, the eXtremely Fast Tracker (XFT) [126, 127]
reconstructs trajectories of charged particles in the (r, φ) plane for each proton-antiproton bunch
crossing. The XFT is a custom processor that uses pattern matching to first identify short
segments of tracks and then to link them into full-length tracks. After classifying the hits of
the four axial super-layers in prompt (0–66 ns) or delayed hits (67–220 ns), depending upon the
observed drift-time within the cell, track segments are reconstructed in each axial super-layer.
A pattern-matching algorithm searches for coincidences between the observed combinations of
hits in each super-layer (a minimum of 11 out of 12 hits is required) and a set of predetermined
patterns. If a coincidence between segments crossing four super-layers is found, two-dimensional
XFT-tracks are reconstructed by linking the segments. The segments are compared with a set of
about 2 400 predetermined patterns corresponding to all tracks with pT & 1.5 GeV/c originating
from the beam-line. The comparison proceeds in parallel in each of the 288 azimuthal 1.25◦

sectors in which XFT logically divides the chamber. If no track is found using all four super-
layers, then the best track found in the innermost three super-layers is output. The track-finding
efficiency and the fake-rate with respect to the offline tracks depend on the instantaneous
luminosity and were measured to be about 96% and 3%, respectively, at L ' 1031 cm−2s−1.
The observed momentum resolution is σpT /p2

T ≈ 1.7% (GeV/c)−1, and the azimuthal resolution
is σφ6 ≈ 0.3◦, where φ6 is the azimuthal angle of the track measured at the sixth COT super-
layer, located at 106 cm radius from the beam-line. Events are selected for further processing
when two XFT-tracks satisfying trigger criteria on basic variables are found. The variables are
the product of any combination of two particles’ charges (opposite or same sign), the opening
angle of the two tracks in the transverse plane (∆φ6), the two particles’ transverse momenta
and their scalar sum.
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Figure 2
An ideal detector with five sensitive layers, each of which is divided into a number of segments. A charged
track crossing the five layers fires one and only one segment per layer, producing a pattern of hits. If we let
the track parameters span a certain volume of the phase space, a corresponding finite set of distinct patterns
is generated.

chip and implement pattern recognition as a massively parallel algorithm. These ideas led to the
invention of a special VLSI system: the associative memory device (16).

We use a simple example to illustrate the principle of operation of the associative memory
device. Figure 2 shows an ideal detector with five sensitive layers, each of which is divided into
a number of segments. These segments could be, for example, five parallel layers of microstrip
silicon detectors, as seen from along the strip direction. For the sake of simplicity, we assume that
a charged track crossing these five layers fires one and only one strip per layer, thereby producing
a pattern of hits. If we assume that each strip is uniquely identified by a coordinate, then each
pattern consists of five coordinates (one per layer). If we change the track parameters enough,
the resulting pattern changes. If we let the track span a certain volume of the parameter space,
a corresponding, finite set of distinct patterns is generated. We term such sets pattern banks.
Figure 2 shows several tracks, each of which contributes a different pattern to the pattern bank.

Figure 3 shows a typical pattern-recognition problem consisting of so-called noise hits mixed
together with hits from a real track. We need to implement an algorithm that is able to tell the
difference between the scenarios shown in the two panels: In Figure 3a there is a combination
of hits, one per detector layer, that corresponds to a pattern stored in the pattern bank and could
therefore have been produced by a track; in Figure 3b no such combination exists. As discussed
above, we usually solve this problem by trial and error by sifting through all possible combinations
of hits, one per layer, until we find a combination that is compatible with having been generated
by a single track. However, we can also proceed in the opposite way by scanning the pattern
bank until we find a pattern whose coordinates correspond to a hit present in the detector. The
advantage of the second approach is that, as we discuss in the following section, it lends itself easily
to a massively parallel implementation.

Imagine that we have generated a pattern bank as described above. Now imagine that instead
of storing all the patterns in normal random-access memory (RAM) (17–19), we store them in
a device that is similar to a RAM but for which each storage element has additional intelligence
built in: In addition to storing information, it can ascertain whether all of its coordinates (one per
layer) correspond to a detector segment that was actually fired. If this method is used, the process
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y. Figure 9.2: Schematic illustration of combinations of super-bins (in the transverse plane) corresponding
to the passage of charged particles in five radial silicon layers.

At L2 the information from the SVX II detector is incorporated into the trigger track
reconstruction by the Silicon Vertex Trigger (SVT) [95, 96]. Charge clusters in the silicon,
which SVT finds by converting a list of channel numbers and pulse heights into charge-weighed
hit centroids, are used by a pattern recognition algorithm, which is formed of two subsequent
stages. First, a low-resolution stage is implemented by grouping together adjacent detector
channels into super-bins. Their width in the azimuthal direction is programmable, with 250µm
typical values. A set containing about 95% of all super-bin combinations compatible with the
trajectory of a charged particle with pT & 2 GeV/c originated from the beam-line (patterns) is
calculated in advance from simulation and stored in a special design memories called Associative
Memories (AMs). For each of 12(φ)× 6(z) = 72 wedges in SVX II, the ≈ 5 500 most probable
patterns are stored. Online, an algorithm detects low-resolution candidate tracks, called roads,
by matching super-bins containing hits with the stored patterns. A road is a combination of
five super-bins in different SVX II layers plus the XFT track parameters, which are logically
treated as additional hits (see Fig. 9.2).

In the AMs system, maximum parallelism is exploited to speed-up the processing, using a
working principle similar to the one of the bingo game: while the silicon hits are being read
out, each player marks the matching super-bins on his score-card; each bingo corresponds to a
road and is retained for further processing. A maximum of 64 roads per event, each one having
a maximum of 8 hits per super-bin, is output. At this stage, pattern recognition is done during
detector read-out with no additional processing time. The resolution is coarse enough to reduce
the fraction of accidental combinations, but fine enough to separate most tracks. Once a track
is confined to a road, most of the pattern recognition is done, leaving the remaining ambiguities,
as multiple hits in the same super-bin, to the stage of track fitting.
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Figure 8
The distribution of the impact parameters of a sample of tracks as reconstructed by the silicon vertex trigger
(SVT). A Gaussian with σ ≈ 50 µm fits the core of the distribution very well. The width of the distribution
is interpreted as the convolution of the actual transverse size of the beam spot (≈25 µm) with the
impact-parameter resolution of the SVT (≈43 µm).

greater than 100 µm, but the exact value of these cuts is optimized as a function of instantaneous
luminosity and can range up to 2.5 GeV/c and 120 µm, respectively. A number of distinct trigger
paths, with slightly different cuts, are provided in parallel and are enabled, disabled, or prescaled2

according to the evolution of the instantaneous luminosity in the duration of a Tevatron store.
In this way, we strive to optimize the number of signal events that are permanently recorded and
available for physics analyses (38).

6. PHYSICS RESULTS
The SVT was designed and built by CDF between 1990 and 2000. It was installed in the CDF
control room in the summer of 2000 and began operation in October of the same year. The first
publication of the Tevatron Run II results (a measurement of the mass of the Ds) was based on
data collected by the SVT (39).

The SVT has been operating without interruption since 2000, and it has allowed CDF to
perform important measurements that would otherwise have been impossible. Examples of such
measurements are those of the Bs oscillation frequency (40) and the direct CP asymmetry in the
charmless decay of Bd , Bs, and "b (41–43). The SVT has also provided CDF with the world’s
largest sample of D0 mesons, paving the way to precision measurements of D0 oscillations and

2Prescaling is the action of sampling only a fraction of the events selected by a specific trigger path.
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Figure 9.3: Impact parameter distribution as measured by the SVT. The width of the distribution
is interpreted as the convolution of the actual transverse size of the beam spot (≈ 25µm) with the
impact-parameter resolution of the SVT (≈ 43µm).

In principle, no exact linear relation exists between the transverse parameters of a track in
a solenoidal field, and the coordinates at which the track intersects a radial set of flat detector
planes. But for pT & 2 GeV/c and |d| . 1 mm a linear fit biases the reconstructed d by at
most a few percent. The track-fitting process exploits this feature by expanding the non-linear
constraints and the parameters of the real track to first order with respect to the reference track
associated to each road. A linear expansion in the hit positions of both the track parameters
and the χ2 is used. The fit process is thus reduced to computing a few scalar products, which
is done within 250 ns or less than 10 clock cycles. The needed constants, which depend on
detector geometry and alignments, are evaluated in advance and stored in an internal memory.
The output of the SVT are the reconstructed parameters of the two-dimensional track in the
transverse plane: φ0, pT and d. The list of parameters for all found tracks is sent to L2 for
trigger decision.

The SVT measures the impact parameter with a r.m.s. width σdSVT ≈ 43µm, with an
average latency of 24µs, 9µs of which being spent waiting for the start of the read-out of
silicon data. This resolution is comparable with the offline one, for tracks not using L00 hits,
and yields a distribution of impact parameter of prompt tracks with respect to the z axis
with σdSVT ≈ 50µm when combined with the transverse beam-spot size, as shown in Fig. 9.3.
The SVT efficiency is higher than 85%.2 The impact parameter is a quantity measured with
respect to the beam. If the actual beam position in the transverse plane is shifted by an amount

2This efficiency is defined as the ratio between the number of tracks reconstructed by SVT and all XFT-
matched offline silicon tracks that are of physics analysis quality.
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9.1 Trigger on displaced tracks

dbeam with respect to the origin of the SVT reference frame, all prompt tracks appear to SVT as
having O(dbeam) impact parameters. This is relevant since the beam is usually displaced from its
nominal (0, 0, z) position. Between Tevatron stores, O(500µm) displacements in the transverse
plane and O(100µrad) slopes with respect to the detector axis may occur. In addition, the beam
can drift by O(30µm) in the transverse plane even during a single store. However, a simple
geometric relation prescribes that the impact parameter of a track, calculated with respect to a
point displaced from its production vertex, is a sinusoidal function of its azimuthal coordinate:

d = y0 cosφ0 − x0 sinφ0, (9.2)

where (x0, y0) are the coordinates of the production vertex. Using Eq. (9.2), SVT measures
the actual coordinates of the beam position with respect to the detector system and subtracts
them from the measured impact parameters, in order to provide physical impact parameters.
Using about 105 tracks every 30 seconds, six transverse beam positions (one for each SVX II
semi-barrel) are determined online. The six samplings (one for each SVX II barrel) along the z
direction provide a measurement of the slope of the beam with respect to the nominal z axis.
For the proper measurement of impact parameters, the beam slope is more harmful than the
transverse drift, because it breaks the cylindrical symmetry of the system. The SVT does not
have access to the z0 coordinate of tracks. For each track, only the longitudinal coordinate of
the SVX II half-barrel that detected the track is known. But half-barrels are too long (16 cm)
to allow for a reliable correction of the beam slope. When significant slopes are observed, the
Tevatron beam division is alerted and they apply a corrective action on the magnets.

The L2 trigger selections used in this analysis typically requires two SVT-tracks with impact
parameter greater than 100µm and smaller than 1mm. In addition, the L2 trigger requires the
transverse decay length, Lxy, to exceed 200µm, where Lxy is calculated as the projection of the
vector from the primary vertex to the two track vertex in the transverse plane along the vectorial
sum of the transverse momenta of the tracks. The trigger based on SVT collects large quantities
of long-lived B hadrons, rejecting most part of the prompt background. However, through its
impact-parameter-based selection, the SVT trigger also biases the observed proper decay time
distribution. This has important consequences on time-dependent analysis of hadronicB decays.

The L3 trigger uses a full reconstruction of the event with all detector information, but uses
a simpler tracking algorithm and preliminary calibrations relative to the ones used offline and
retests the criteria imposed by L2. In addition, the difference in z of the two tracks at the point
of minimum distance from the primary vertex, ∆z0, is required not to exceed 5 cm, removing
events where the pair of tracks originate from different collisions within the same crossing of p
and p bunches.

Over the course of a Tevatron store, the available trigger bandwidth varies because trigger
rates fall as instantaneous luminosity falls. Higher trigger rates at high luminosity arise from
both a larger rate for real physics processes as well as a larger fake trigger rate due to multiple
pp interactions. To fully exploit the available trigger bandwidth, we employ three main variants
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Version Level 1 Level 2 Level 3
High-pT pT > 2.5 GeV/c pT > 2.5 GeV/c pT > 2.5 GeV/c

Opposite charge Opposite charge Opposite charge
∆φ6 < 90◦ 2◦ < ∆φ0 < 90◦ 2◦ < ∆φ0 < 90◦∑
pT > 6.5 GeV/c ∑

pT > 6.5 GeV/c ∑
pT > 6.5 GeV/c

0.1 < d < 1mm 0.1 < d < 1mm
Lxy > 200µm Lxy > 200µm

|∆z0| < 5 cm
|η| < 1.2

Medium-pT pT > 2 GeV/c pT > 2 GeV/c pT > 2 GeV/c
(or scenario A) Opposite charge Opposite charge Opposite charge

∆φ6 < 90◦ 2◦ < ∆φ0 < 90◦ 2◦ < ∆φ0 < 90◦∑
pT > 5.5 GeV/c ∑

pT > 5.5 GeV/c ∑
pT > 5.5 GeV/c

0.1 < d < 1mm 0.1 < d < 1mm
Lxy > 200µm Lxy > 200µm

|∆z0| < 5 cm
|η| < 1.2

Low-pT pT > 2 GeV/c pT > 2 GeV/c pT > 2 GeV/c
∆φ6 < 90◦ 2◦ < ∆φ0 < 90◦ 2◦ < ∆φ0 < 90◦∑
pT > 4 GeV/c ∑

pT > 4 GeV/c ∑
pT > 4 GeV/c

0.1 < d < 1mm 0.1 < d < 1mm
Lxy > 200µm Lxy > 200µm

|∆z0| < 5 cm
|η| < 1.2

Table 9.1: Selections for the three versions of the displaced-tracks trigger used in this analysis. The
criteria refer to track-pairs. The pT , d and η requirements are applied to both tracks. The

∑
pT refers

to the scalar sum of the pT of the two tracks.
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of the displaced-tracks trigger. The three selections are summarized in Tab. 9.1 and are referred
to as the low-pT , medium-pT (called also scenario A in CDF jargon) and high-pT selections,
according to their requirements on minimum transverse momentum. At high luminosity, the
higher purity, but less efficient, high-pT selection is employed. As the luminosity decreases over
the course of a store, trigger bandwidth becomes available and the other selections are utilized
to fill the available trigger bandwidth and maximize the B yield. The rates are controlled by the
application of prescaling, which rejects a predefined fraction of events accepted by each trigger
selection dependent on the instantaneous luminosity.

9.2 Offline selection

We use the data collected by the displaced-tracks trigger in a period starting from March 2001
till April 2008, which corresponds to an integrated luminosity of 2.9 fb−1. Such data sample was
selected for the update of the measurement of the branching ratio of the B0

s→φφ decay in 2009
and for the first measurement of its polarization amplitudes in 2010 [2]. Given the marginal
increase in the sample size due to the severe suppression of the displaced-tracks trigger in the
latest part of the data taking, we choose to not add new data, of which handling and validation
would have slowed the release of the results.

We reconstruct B0
s mesons from BStntuple (Sect. 3.2.7) by first forming φ(1020)→K+K−

candidates decays from opposite-sign track pairs and with mass within 15MeV/c2 of the known
φ(1020) mass. We form B0

s→φφ candidates by fitting to a single vertex the φφ candidates pairs.
At least one pair of tracks in the B0

s candidate must satisfy the trigger requirements. In the
reconstruction of the decay we refine the calculation of the variables of the events, sketched in
Fig. 9.4, such as the momenta of the particle, the decay-length in the transverse plane, Lxy, and
the impact parameter corresponding to each particle. We require at this stage two basic loose
cuts to reduce the downstream: Lxy > 200µm and that the transverse momentum pT > 5 GeV/c,
for each B0

s candidate.
The momenta of the daughter particles are used to calculate the helicity angles defined in

Sect. 2.1.1. Starting from four-momenta of the kaons, we derive four-momenta of the φ particles
and boost all particles in the B0

s rest frame, where the direction of the momenta of φ1(2) defines
the unit vector ẑ1(2). We boost each kaon pairs in the corresponding φ rest frame, where we
calculate the polar angle of the K+

1(2) particle with respect to the ẑ1(2) vector of its mother
particle, cosϑ1 and cosϑ2. The vector product of the momentum of the charged kaon, p(K+

1(2)),
with ẑ1(2) gives the unit vector n̂1(2) orthogonal to each φ decay plane:

n̂1(2) =
p(K+

1(2))× ẑ1(2)

|p(K+
1(2))× ẑ1(2)|

. (9.3)

The angle between n̂1 and n̂2 is the angle between the two decay planes, i. e., the third helicity
angle ϕ.
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Figure 9.4: Sketch of a B0
s→φφ decay in the transverse plane. Ellipses indicate vertexes, arrows indicate

the transverse momenta (i. e. the direction) of charged particles. Nothing is to scale.

Figure 9.5 shows the distribution of the K+K−K+K− invariant mass after the trigger selec-
tion only. No evident signal peak is recognizable in the B mass window and a dedicated offline
selection to suppress the background is in order. A fast and reliable method to evaluate the
resolution expected from a measurement is provided by the Minimum Variance Bound (MVB)
[128, 129]. Given the data, the MVB provides an upper bound to the precision that can be
achieved on a parameter, whatever the estimation procedure used. In the simplified case of a
counting experiment to determine the number S of signal events within a total number of S+B

events (where B is the number of background events), the expected statistical resolution σ on
the signal yield, estimated with the MVB, is given by:

1
σ
∝ S√

S +B
(9.4)

The optimal selection would be one that maximizes Eq. (9.4): this expression, which is rigor-
ously valid for a counting experiment, is still sufficiently accurate in the case of a likelihood
fit of a continuous distribution, as we will do to extract the signal yields for computing the
asymmetries in our analysis. The maximization depends on the selection requirements for a
set of variables which are the most representative of a signal candidate. In our case the event
variables exploited are:
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Figure 9.5: The K+K−K+K− spectrum after the trigger selection with the requirements Lxy(B0
s ) >

200µm and pT (B0
s ) > 5 GeV/c only. The red dotted lines represent bounds of the region around the B0

s

mass.

• Lxy(B), the transverse decay-length of the reconstructed B0
s ;

• d(B), the impact parameter of the reconstructed B0
s ;

• d(φmax), the impact parameter of the φ with higher momentum;

• pmin
T (K), the transverse momentum of the softer kaon;

• χ2
xy, the χ2 of the fit used in the reconstruction of the secondary vertex.

The distributions of these variables are shown in Fig. 9.6. The optimization of the selection
requirements was developed in the context of our previous work on the measurement of the
B0
s→φφ decays branching ration [130]. An optimized selection has been studied using signal

MC events (described later in Sect. 9.4) and a model for background obtained from mass side-
bands, 5.02–5.22GeV/c2 and 5.52–5.72GeV/c2, in order not to introduce bias from using events
in the signal region. The optimized requirements for the extraction of the signal that maximize
Eq. (9.4) are reported in Tab. 9.2.

variable requirement
Lxy(B) > 330µm
pmin
T (K) > 0.7 GeV/c
χ2
xy < 17

d(B) < 65µm
d(φmax) > 85µm

Table 9.2: Requirements used in the optimized selection of the B0
s→φφ dataset.
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(a) (b)

(c) (d)

(e)

Figure 9.6: Variables used in the B0
s→φφ selection: Lxy(B) (a), d(B) (b), χ2

xy (c), pmin
T (K) (d), and

d(φmax) (e). The black points are side-bands subtracted data; the red histograms are simulated events;
the blue histograms are sidebands data distribution.
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9.3 Final sample

After applying the optimized cuts, we obtain the K+K−K+K− invariant mass spectrum in
Fig. 9.7. We distinguish three main component of the candidate mass distribution: a Gaussian-
like signal peak with a width of about 20MeV/c2, which comprises about 300 events; a smooth
constant distribution given by random combinations of charged tracks accidentally satisfying
the selection requirements, which is the dominant background in the analysis; other B decays
due to incorrect mass assignment of their decay-products. The latter is expected to peak
under the signal, and we have considered two B0-meson decays, the B0→φK?(890)0 and the
B0→K?(890)0K?(890)0, when respectively one or two pions are reconstructed as kaons. We
have estimated with simulation the number of these decay modes that pass the selection and
enter the sample; we expect 3% of the signal yield for B0→φK?(890)0 decays, and 0.01% of
the signal yield for B0→K?(890)0K̄?(890)0 decays. In the following, we consider the sidebands
regions as the intervals 5.244–5.294GeV/c2 and 5.444–5.494GeV/c2, and the signal region is in
5.32–5.42GeV/c2.
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Figure 9.7: Distribution of the K+K−K+K− mass after the optimized selection with the fit projec-
tions for the sample components overlaid. The signal is parametrized with the sum of two Gaussian
distributions; the combinatorial background is modeled with a decreasing exponential; the shape of the
B0→φK?(890)0 peak is extracted from simulations and its fraction is fixed in the fit.
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(a) (b)

Figure 9.8: Distributions of K+K− mass of the φ with higher (a) and lower (b) momentum. Black
points are sidebands-subtracted data; blue histograms are sidebands data.

Figure 9.8 shows the K+K− mass distributions after the selection, for the φ mesons with
higher and lower momentum. In Fig. 9.9 the two distributions are summed and a fit is per-
formed using the convolution of a Breit-Wigner distribution and a Gaussian function for the
experimental resolution. The width of the Breit-Wigner function is fixed to the world average
value [8], while the mass resolution is about 1MeV/c2.

Figure 9.9: Sum of the K+K− spectum of the two φ candidates. The black points are sidebands-
subtracted data; the red line is the fit performed with the convolution of a Breit-Wigner function (reso-
nance) and a Gaussian function (experimental resolution).
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9.4 Monte Carlo sample

The simulation of B0
s→φφ decays follows the techniques described in Sect. 3.2.8. Simulations

are exploited in the analysis to model the detector and selection acceptance, and to test the
measurement methods and tools.

In order to study the detector sculpting on the triple products distributions of which we
want to measure the asymmetries, a simulated sample of B0

s→φφ decays obtained through a
phase-space model from EvtGen has been used [102]. As for the phase-space model adopted
in the B0

s→J/ψφ analysis, all spins of the final-state particles are averaged and the angular
distributions at generator level are flat. Then, we fully simulated the detector response and the
reconstruction of the events. We apply to the simulated sample the same selection as for data
and store the information in the same format.

The reliability of the model depends on the agreement between data and the generated MC
in variables that affect the angular distributions. Some inconsistencies are expected due to the
inability of fully simulating the experimental conditions of the data acquisition, such as the
instantaneous luminosity variations and the evolution of the trigger paths with their prescales.
Similarly to the B0

s→J/ψφ analysis, a mismodeling in the pT (B) spectrum between simulation
and data is observed. We extract the weights for reweighing the simulated B0

s→φφ distribution
from the results of a linear fit to the ratio of the distributions of the pT (B) spectrum of simulated
events and data, in Fig. 9.10. The data distribution is obtained from a control sample of about
1 800 B0

s→J/ψφ decays collected with the displaced-tracks trigger in the same condition of the
B0
s→φφ decays, and the MC distribution is obtained from simulated B0

s→J/ψφ decays passing
the same trigger conditions as in data and the same offline selection. Figure 9.6 shows the
comparison between sideband-subtracted data distributions and simulated distributions, which
are reweighed to match data. Further distributions are shown in Fig. 9.11.12 3 MONTECARLO DATA AND ITS VALIDATION
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Figure 6: Ratio of B0
s pT in Data and MC for the sideband subtracted B0

s ! J/ �
events.

We observe in general a better data-MC agreement after the pt reweight for both
B0

s!J/ � and B0
s!�� candidates for all the pT related quantities.

Overall, from this study we conclude that a reasonably accurate selection of ex-
clusive triggers in Data and Monte Carlo has been implemented, that correcting the
important e↵ect of trigger mixture produce a decent simulation of typical discriminant
variables and that re-wheighting the B0

s pT spectrum lead to a satisfactory overall
Monte Carlo simulation.

Figure 9.10: Continuous weights, as resulting from a fit to the ratio of the distributions of the pT (B)
of simulated and collected B0

s→J/ψφ decays by the displaced-tracks trigger.
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(a)

(b)

Figure 9.11: Comparison of data and MC after the reweighing: pT spectra of the B0
s (a) and the φ (b)

candidates.
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Chapter 10

Measurement of
triple products asymmetries

In this chapter we present the measurement of the triple products asymmetries of B0
s→φφ decays. We

first investigate the triple products distributions and we develop a maximum likelihood fit to measure
the asymmetries. Some checks of the fitting technique are presented along with the results and their
systematic uncertainties.

10.1 Maximum likelihood fit

In Sect. 2.3 we have introduced two functions of the helicity angles that define the triple products
in the B0

s→φφ decays, here reported again for convenience:

v ≡ (n̂1 × n̂2) · ẑ1 = sinϕ, (10.1)
u ≡ 2(n̂1 · n̂2)(n̂1 × n̂2) · ẑ1 = sin 2ϕ. (10.2)

For sake of simplicity in notations, we have called v the first TP and u the second TP. Given
the CP symmetric initial state, a Tevatron collision can yield a b quark only in association
with a b̄ quark (see Fig. 4.1 in Chap. 4). This ensures an equal amount of B0

s and B̄0
s mesons

at production, because the probability to produce an s and an s̄ quark is the same and is
independent from the flavor of the b quark. Thus, the signal sample collected is an equal
mixture of B0

s→φφ and B̄0
s→φφ decays. Such condition guarantees that the measurement of

triple products asymmetries, Av and Au, results in actual CP -violating asymmetries, Eq. (2.43)
and Eq. (2.44). In fact, without the distinction of the production flavor of the B0

s meson, what
we actually see is the sum of the triple products asymmetries in B0

s→φφ and B̄0
s→φφ decays:

Av ≡ A(1)
TP + Ā(1)

TP = ACPTP,1, (10.3)

Au ≡ A(2)
TP + Ā(2)

TP = ACPTP,2. (10.4)

The v and the u distributions of B0
s→φφ candidates in the signal region are shown in Fig. 10.1.

We can have a first raw estimate of the asymmetries in these distributions by calculating the
difference of the number of events with v > 0 (M+) and v < 0 (M−), normalized to the entire
sample size:

Araw
v = M+ −M−

M+ +M−
, (10.5)
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Figure 10.1: Distribution of v (a) and u (b) for B0
s→φφ candidates in the signal region.

and with similar notation,

Araw
u = N+ −N−

N+ +N−
. (10.6)

With M+ = 153 and M− = 185; N+ = 169 and N− = 169; the raw asymmetries are:

Araw
v = (−9.5± 5.4)%
Araw
u = (0.0± 5.4)%.

(10.7)

These asymmetries must be corrected for the asymmetries introduced by the background, and
for spurious asymmetries due to experimental effects (detector acceptance and selection require-
ments). We now develop a maximum likelihood (ML) fit to the unbinned K+K−K+K− mass
distribution to refine the calculation of the asymmetries by accounting for the signal events
only. In the following, we describe the fit referring to the triple product u for the measurement
of Au, but exactly the same technique is applied for measuring the asymmetry Av of the triple
product v.

We consider all candidates in the range 5.2–5.6GeV/c2, and we split this sample into two
subsets, made of N+ and N− events, according to the sign of u. The splitting depends on
the asymmetry of the signal, i. e., the TP asymmetry; on the asymmetry of the background;
and on instrumental spurious asymmetries. The latter are estimated in a sample of about 400
thousand B0

s→φφ events, simulated with the phase space MC presented in Sect. 9.4. The v
and u distributions of the simulated decays are shown in Fig. 10.2, and the calculation of their
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Figure 10.2: Distributions of v (a) and u (b) for B0
s→φφ events of phase space MC.

asymmetries gives:

Aacc
u = (−0.14± 0.15)%,
Aacc
v = (−0.08± 0.15)%

(10.8)

There is no statistically significant spurious asymmetry at the per mill level and thus this effect
can be safely neglected. Additional detector charge-asymmetries due to different detection
efficiency of K+ and K− in the COT, or different interaction cross section of the positive and
negative kaon, are automatically canceled since the K+K−K+K− final state is completely
symmetric and thus common to B0

s and B̄0
s .

We now perform a simultaneous ML fit to the mass distribution of the subsamples, N+ and
N−, to extract the number of signal events, N+

s and N−s , which gives the asymmetry of the
signal, Au:

Au = N+
s −N−s

N+
s +N−s

= N+
s −N−s
Ns

, (10.9)

where Ns = N+
s +N−s is the number of all signal events in the entire sample. Considering the

fractions of signal events in each subsample, f is (where i = +,−), and the fraction of signal in
the entire sample, fs, we can write:

Au = f+
s N

+ − f−s N−

fsN
, (10.10)

being fsN = f+
s N

+ + f−s N
−. We must consider fluctuations of N+ and N− with the constrain

N = N+ +N−. Thus, we treat N+ and N− as binomially distributed, with a probability p to
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have N+ events given N total. The asymmetry takes the following form:

Au = f+
s p− f−s (1− p)

fs
, (10.11)

and the dependence on the total number of events cancels out. Neglecting spurious instrumental
asymmetries, the splitting probability p is a combination of the total signal fraction fs, the signal
asymmetry Au, and a background asymmetry Ab:

p = 1
2(1 + fsAu + (1− fs)Ab). (10.12)

We can write each f is in terms of Au, Ab, and fs:

f+
s = fs

p

1 +Au
2

f−s = fs
(1− p)

1−Au
2

(10.13)

where p is given by Eq. (10.12).
Following the same parameterization that we have used in the measurement of the B0

s→φφ

branching ratio and polarization amplitudes [2], the PDF for each subsample is:

P i(mi|ζi) = f isG(mi|M,σ) + (1− f is)B(mi|λ), (10.14)

where ζi is the parameters vector, mi is the K+K−K+K− mass of a B0
s→φφ candidate in the

subsample of N i events, and:

• G(mi|M,σ) is the sum of two Gaussian distributions with same mean valueM but different
resolutions, σ and kσ, which describes the signal component:

G(mi|M,σ) = h
1√
2πσ

e−
(mi−M)2

2σ2 + (1− h) 1√
2πkσ

e−
(mi−M)2

2k2σ2 , (10.15)

where h is the fraction of a Gaussian distribution with respect to the other one. This choice
is commonly used to describe mass distribution in the CDF tracker and takes into account
detector effects introducing tails in the mass distributions. In the fit the multiplicative
factor k and the fraction h are fixed from a fit to large MC data sample, M is fixed to the
world average value of the B0

s mass [8], while σ is floating in the fit.

• B(mi|λ) describes the combinatorial background:

B(mi|λ) = λe−λm
i

e−λmmin − e−λmmax
, (10.16)

where λ is the slope of the exponential function floating in the fit, mmin = 5.2 GeV/c2 and
mmax = 5.6 GeV/c2.
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10.2 Validation of the ML fit

We are neglecting the 3% contribution of B0→φK?(890)0 decays present in our sample (which is
expected to not have triple-products asymmetries anyway [26]), and we will assign a systematic
uncertainty instead.

The likelihood for each subsample is simply:

Li(mi|ζi) =
N i∏
j=1

P i(mi
j |ζi), (10.17)

wheremi = {mi
1, . . . ,m

i
N i} is the vector of the masses of the events in the subsample N i. Since

the two subsamples are independent, we can perform a simultaneous fit taking the product of
the two likelihoods, and considering the binomial PDF for N+ and N−, f(N+, N−|p). Thus,
the total likelihood reads:

L(m|ζ) = L+(m+|ζ+)L−(m−|ζ−)f(N+, N−|p) =

=
N+∏
j=1

P+(m+
j |ζ)

N−∏
i=1

P−(m−j |ζ)
(
pN

+(1− p)N−
) (10.18)

Using the same parameter σ and λ in the parametrization of the N+ and N− events, the total
floating parameters in the final fit are the following five:

ξ = {Au,Ab, fs, σ, λ}. (10.19)

The same likelihood is used in the estimation of Av, with the following replacements:

u→ v,

N+ →M+,

N− →M−,

Au → Av.

(10.20)

10.2 Validation of the ML fit

We check the implementation of the ML fit and its performances by making the test of the pulls
distributions and by fitting simulated samples.

10.2.1 Pulls distribution

We generate 1000 pseudo-experiments with the statistic of the data, where:

• N+ is generated from a binomial distribution given the splitting probability p (Eq. (10.12))
and the total number of events N , while N− is simply N −N+;

• N+ and N− mass values are randomly polled from the corresponding PDF, i. e. from
P+(m|ζ) and P−(m|ζ), respectively.
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Parameter generation value Mean fitted value Mean fitted error Pull mean Pull variance
Au -0.007 -0.009 0.064 −0.02± 0.03 1.02± 0.02
Ab -0.042 0.044 0.086 −0.02± 0.03 1.05± 0.02
fs 0.616 0.617 0.029 0.03± 0.03 0.99± 0.02
σ 0.0174 0.0175 0.0011 −0.03± 0.03 0.98± 0.02
λ 2.68 2.68 0.67 −0.01± 0.03 1.00± 0.02

Table 10.1: Pulls study results for 1000 pseudo-experiments: set A.

Parameter generation value Mean fitted value Mean fitted error Pull mean Pull variance
Av -0.120 -0.121 0.064 −0.02± 0.03 1.00± 0.02
Ab 0.009 0.007 0.086 −0.04± 0.03 1.07± 0.02
fs 0.615 0.616 0.029 0.04± 0.03 1.03± 0.02
σ 0.0174 0.0174 0.0011 −0.01± 0.03 1.03± 0.02
λ 2.68 2.68 0.67 −0.01± 0.03 1.01± 0.02

Table 10.2: Pulls study results for 1000 pseudo-experiments: set B.

The pseudo-experiments are fitted using the likelihood defined in Eq. (10.18). For each pa-
rameter ζi, the corresponding pull gi is defined by Eq. (6.26). We generate the events using
two different sets (A and B) of input parameters and apply the described procedure for each
of them. The results of the test are very satisfactory and are summarized in Tab. 10.1 and
Tab. 10.2. The pull distributions for the sets A e B are reported in Fig. 10.3 and Fig. 10.4,
respectively, and shows normally distributed pulls for all parameters.

10.2.2 Fit to Monte Carlo data samples

We fit two MC samples that differ from each others for the decay model used in the generation
of the events. One sample is a subset of the phase-space MC used to extract the spurious
asymmetries induced by the detector and the selection. The second MC sample is generated
with a decay model of EvtGen that simulates the polarization of the decay. In the generation
of the sample we set the polarization amplitudes measured in our precedent analysis of B0

s→φφ

decays [2]. We don’t expect any TP asymmetry in both MC samples, since no CP violation is
applied in the simulation. The results of the fit to the two samples are summarized in Tab. 10.3,
and in both cases, we measure a zero asymmetry within at most 0.5% uncertainty given by the
limited MC event sample statistics. Therefore, we do not need a systematic uncertainty for
residual asymmetries that are not modeled in the signal component of the likelihood.

MC sample Av Au
phase-space MC (−0.08± 0.16)% (−0.14± 0.16)%
polarized MC (−0.30± 0.54)% (0.31± 0.54)%

Table 10.3: Fit results for Au and Av for two MC datasets. No asymmetry is expected.
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Figure 10.3: Pulls distributions for 1000 pseudo-experiments: set A.

183



Chapter 10. Measurement of triple products asymmetries

ATP2
Entries  1000

Mean   ­0.02334

RMS    0.9965

­4 ­2 0 2 4
0

50

100

150

200
Ab

Entries  1000

Mean   ­0.03079

RMS     1.071

­4 ­2 0 2 4
0

50

100

150

200

fs

Entries  1000

Mean    0.041

RMS     1.017

­4 ­2 0 2 4
0

50

100

150

sigma

Entries  1000

Mean   ­0.0346
RMS     1.007

­4 ­2 0 2 4
0

50

100

150

200

lambda
Entries  1000

Mean   ­0.008344

RMS    0.9956

­4 ­2 0 2 40

50

100

150

200

Au pull Ab pull

fs pull σ pull

λ pull

Figure 10.4: Pulls distributions for 1000 pseudo-experiments: set B.

184



10.3 Data sample fit

10.3 Data sample fit

The results of the data fit are reported in Tab. 10.4 for both asymmetries, while in Tab. 10.5
the correlation coefficients of the parameters are shown. Both triple-product asymmetries are
statistically consistent with zero as well as the background asymmetries. As expected, the two
fit gives the same value of the signal fraction fs, the width of the signal peak σ, and the slope
of the background λ. The fit projection on the two subsamples are shown in Fig. 10.5 and
Fig. 10.6 for the fit to measure Au and Av, respectively, showing good agreement with data
distributions.

Parameter Fitted value
Av -0.120 ± 0.064
Ab 0.010 ± 0.086
fs 0.615 ± 0.030
σ 0.0174 ± 0.0012
λ 2.68 ± 0.66

Parameter Fitted value
Au -0.007 ± 0.064
Ab -0.042 ± 0.087
fs 0.616 ± 0.030
σ 0.0174 ± 0.0011
λ 2.68 ± 0.66

Table 10.4: Fit results of the fits to measure the Av (left) and Au (right) asymmetries.

Av Ab fs σ λ

Av 1.00 -0.23 0.03 0.02 0.00
Ab 1.00 0.02 0.02 0.00
fs 1.00 0.35 -0.02
σ 1.00 -0.02
λ 1.00

Au Ab fs σ λ

Au 1.00 -0.23 0.04 0.06 0.00
Ab 1.00 -0.06 -0.09 -0.00
fs 1.00 0.36 -0.02
σ 1.00 -0.02
λ 1.00

Table 10.5: Correlation coefficients of the parameters in the fit to measure the Av (left) and Au (right)
asymmetries.

We check the results of the fit by computing the asymmetries of the distributions in Fig. 10.1,
subtracting the background contribution. We estimate the symmetries of the background by
looking at the v and u distributions for those background events populating the sidebands of
the mass distribution, normalized to the fraction of combinatorial background that lies in the
signal region (see Fig. 10.7). The asymmetries of the events in the sidebands are consistent with
zero, respectively Abkg

v = (5± 6)% and Abkg
u = (1± 6)%. Then, we subtract the triple-products

distributions of the sidebands to the distributions in Fig. 10.1, and we found:

Asub
v = (−11.8± 5.9)%,
Asub
u = (−0.2± 5.9)%,

(10.21)

in agreement we the estimations of the fits to the mass distributions.
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Figure 10.5: Fit projections for Av : M+ (left) and M− (right) samples. The curves are the fitting
functions and represent: in red the B0

s→φφ signal, in blue the combinatorial background, and in black
the total projection.
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Figure 10.6: Fit projections for Au: N+ (left) and N− (right) samples. The curves are the fitting
functions and represent: in red the B0

s→φφ signal, in blue the combinatorial background, and in black
the total projection.
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Figure 10.7: Comparison of distributions of v (a) and u (b) for sideband-subtracted data and MC
events.

We compare the sidebands-subtracted distributions with distribution of the MC events sim-
ulated with the same polarization as measured in data [2] and without CP violation. The
comparison is shown in Fig. 10.7 and reported in Tab. 10.6.

Au Av
data (-0.7 ± 6.4)% (-12.0 ± 6.4)%
MC (-0.31 ± 0.54)% (-0.30 ± 0.54)%

Table 10.6: Data-MC comparison for the Au and Av asymmetries.

10.4 Systematic uncertainties

The resolution on the measurement of the triple products asymmetries is limited by the statistic
of the data sample. Thus, the estimation of the systematic uncertainties requires a reasonable
assessment of the main sources of systematic uncertainties only. We have considered the fol-
lowing effects.

Physics background
Due to the small contribution of the B0→φK?(890)0 component (3%, see Sect. 9.3), it has
been neglected in the fit and we compute its contribution as a systematic error. We generate a
set of 1000 pseudo-experiments where the expected fraction of background events are all added
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either to the N+ (M+) or to the N− (M−) sample. In this way we maximize their effect on the
asymmetry measurement. The results are summarized in Tab. 10.7. The biggest shift between
the input parameter and the mean fitted value is taken as the systematic uncertainty. It is
about 1% for both Au and Av.

Mean Au Mean Av
Input (fixed) -0.007 -0.120
Fitted with B0→φK?(890)0 in N+ (M+) -0.002 -0.110
Fitted with B0→φK?(890)0 in N− (M−) -0.019 -0.130

Table 10.7: Results obtained adding the B0→φK?(890)0 component as explained in text.

B0→φφ decays
In the measurement of the polarization amplitude of B0

s→φφ decays, a systematic was assigned
to account for the fluctuation in theK+K−K+K− spectrum on the left of the B0

s peak (Fig. 9.7)
which might be interpreted as a signal of B0→φφ decays. Another component was added in
the background model, parametrized as a double Gaussian function with the same width used
for the B0

s peak and with a mean value fixed to the mass of the B0 mesons [8]. The B0→φφ

decay is not yet observed, and only a limit of its branching ratio is given by BABAR, < 2× 10−7

at 90% CL [8]. Given this limit, assuming the same detection efficiency of B0
s→φφ decays, and

considering that the fragmentation probability of the s quark ≈ 1/4 of the probability of the d
quark, we can expect at most ten signal events in our sample.1

We retain the choice of assigning a systematic, and we add a Gaussian-like component in
the background model centered at the B0 mass. We introduce two more floating parameters
in the likelihood, f+

B0 and f−B0 , which are the fraction of this background in the N+ (M+) and
N− (M−) subsets, respectively. In Fig. 10.8 and 10.9 we show the fit projections for the Av
and Au estimations, respectively. The results of these fits are reported in Tab. 10.8. For Au we
obtain a shift of 0.9% and for Av of 0.5% with respect to the default likelihood. These are the
systematic uncertainties we assigned to this background effect.

Combinatorial background
We change the parameterization of the combinatorial background. We perform a linear fit on
the B0

s→φφ sidebands to estimate the parameter values that describe our background contribu-
tion. We then use these values as input to the generation of the pseudo-experiments where the
linear background is simulated. The simulated data are then fitted with our standard model; a
shift of 0.2% and 0.4% are seen respectively on Au and Av.

1A very preliminary study done later shows that our data are compatible with the hypothesis of a background
fluctuation.
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Parameter Fitted value
Au 0.001 ± 0.060
Ab -0.058 ± 0.083
fs 0.633 ± 0.031
σ 0.0177 ± 0.0012
λ 1.71 ± 0.81
f+
B0 0.060 ± 0.027
f−B0 0.027 ± 0.029

Parameter Fitted value
Av -0.114 ± 0.063
Ab 0.006 ± 0.084
fs 0.632 ± 0.030
σ 0.0177 ± 0.0012
λ 1.69 ± 0.80
f+
B0 0.054 ± 0.031
f−B0 0.036 ± 0.022

Table 10.8: Fit results for the fit to measure the Au (left) and Av (right) asymmetries when B0→φφ

decays background contribution is added.

S-wave contributions
We considered the effects of a scalar contamination given by two decays potentially present in
our sample: the B0

s→φf0(980) and the non-resonant B0
s→φK+K−. We estimated with simula-

tions a fraction of 4.6% and of 0.9% of the signal yield, respectively (for details, see Ref. [131]).
We generate pseudo-experiments where these contributions are added in the above proportions
to the standard signal+background pseudo-experiments and fitted with the default likelihood.
The events of the background decays are randomly taken from mass histograms generated with
MC simulation and we add all of them either to the N+ (M+) or to the N− (M−) sample, in
order to maximize their effect on the asymmetry measurement. The results of the fit to pseudo-
experiments are reported in Tab. 10.9 for the effect of B0

s→φK+K− decays and in Tab. 10.10
for the B0

s→φf0(980). We assign as uncertainty the biggest shifts in each case, and we add in
quadrature them to quote the full systematic for the S-wave contributions: it is 1.1% for Au
and 1.0% for Av.

Mean Au Mean Av
Input (fixed) -0.007 -0.120
Fitted with B0

s→φK+K− in N+ (M+) -0.007 -0.120
Fitted with B0

s→φK+K− in N− (M−) -0.010 -0.122

Table 10.9: Results obtained adding the B0
s→φK+K− component in pseudo-experiments.

Signal model
In the default likelihood we used a double gaussian to model the signal, and we fixed the pa-
rameters of one of them fitting a large sample of MC data. We account for the effect of this
specific choice, by using pseudo-experiments, where a single gaussian PDF parameterizes the
signal component as an alternative model. The found systematic uncertainty is 0.1% for both

189



Chapter 10. Measurement of triple products asymmetries

Mean Au Mean Av
Input (fixed) -0.007 -0.120
Fitted with B0

s→φf0(980) in N+ (M+) 0.000 -0.110
Fitted with B0

s→φf0(980) in N− (M−) -0.018 -0.129

Table 10.10: Results obtained adding the B0
s→φf0(980) component in pseudo-experiments.

the asymmetries.

Adding in quadrature the different systematic uncertainties we obtain a total systematic un-
certainty of 1.8% for Au and of 1.6% for Av; both systematic uncertainties are less than 1/3
smaller with respect to the statistical errors.

Finally, the results of the measurement of the triple-product asymmetries, including statis-
tical and systematic uncertainties, are:

Av = (−12.0± 6.4(stat)± 1.6(syst))%,
Au = (−0.7± 6.4(stat)± 1.8(syst))%.

The two measured asymmetries are statistically consistent with the no CP violation hypothesis,
although Av is 1.8 standard deviations different from zero, adding in quadrature the systematic
and statistical uncertainties. This result represents the first search of CP violation performed
in B0

s→φφ decays. We discuss further on it in the next chapter, which is devoted to draw the
conclusions of the dissertation.
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Figure 10.8: Fit to data for Au with the B0→φφ component added. Subsamples with u > 0 (a) and
u < 0 (b). The curves represent: in red the B0

s→φφ signal, in blue the combinatorial background, in
green the B0→φφ component, and in black the sum of the three.
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Figure 10.9: Fit to data for Av with the B0→φφ component added. Subsamples with v > 0 (a) and
v < 0 (b). The curves represent: in red the B0

s→φφ signal, in blue the combinatorial background, in
green the B0→φφ component, and in black the sum of the three.
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Chapter 11

Conclusions

In this thesis we have reported on a search for non-SM physics in two decays modes of the
B0
s meson through the measurement of the time-dependent CP asymmetry of the B0

s→J/ψφ

decays, and of two time-integrated CP asymmetries of the B0
s→φφ decays. The former al-

lows to determine the value of the angles βs of the unitarity triangle relevant for B0
s physics,

which is expected to be ≈ 0.02 by the overall constraints of the CKM-matrix with O(0.1)%
accuracy. The angle 2βs is the phase of the B0

s -B̄0
s mixing amplitude to a very good approxi-

mation, and a larger measured value than expected would indicate new physics in the b→ b̄ss̄

quark-transitions. The time-integrated CP asymmetries of B0
s→φφ decays, Av and Au, are

given by asymmetries of helicity-angles functions, equivalent to the triple-product asymmetries
discussed in literature. For B0

s→φφ decays, they are predicted to vanish within 1% in the SM
and a measurement of larger values with respect to expectations indicates new physics either
in the b→ ss̄s or in the b→ b̄ss̄ quark-transitions (or both).

We have performed a new measurement of βs using B0
s→J/ψ(→ µ+µ−)φ(→ K+K−) decays

collected in the final CDF Run II dataset, and we have obtained:

− 0.06 < βs < 0.30 at the 68% confidence level.

In addition, we have provided precise measurements of the decay width difference ∆Γs; of the
mean B0

s lifetime, τs; of the B0
s→J/ψφ polarization amplitudes, |A0|2 and |A‖|2, and of the

CP -conserving phase δ⊥; as follows:

τs = 1.528± 0.019(stat)± 0.009(syst) ps,
∆Γs = 0.068± 0.026(stat)± 0.009(syst) ps−1,

|A‖|2 = 0.229± 0.010(stat)± 0.014(syst),
|A0|2 = 0.512± 0.012(stat)± 0.018(syst),
δ⊥ = 2.79± 0.53(stat)± 0.15(syst).

We have analyzed what was the largest sample of B0
s→ φ(→ K+K−)φ(→ K+K−) decays to

perform the world’s first measurement of the asymmetries Av and Au, and we have found:

Av = (−12.0± 6.4(stat)± 1.6(syst))%,
Au = (−0.7± 6.4(stat)± 1.8(syst))%.
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decay mode observable CDF D0 LHCb ATLAS SM

B0
s→J/ψφ

N events 11 000 6 600 21 200 22 700
βs [−0.06, 0.30] @68% CL 0.28+0.18

−0.19 0.001± 0.052 −0.11± 0.21 0.0184± 0.0009
∆Γs [ps−1] 0.068± 0.027 0.163+0.065

−0.064 0.116± 0.019 0.053± 0.023 0.087± 0.021
τs [ps] 1.528± 0.021 1.443+0.038

−0.035 1.521± 0.020 1.477± 0.017 1.489± 0.031
|A0|2 0.512± 0.022 0.558+0.017

−0.019 0.523± 0.025 0.528± 0.011 0.531± 0.022
|A‖|2 0.229± 0.017 0.231+0.024

−0.030 0.255± 0.020 0.220± 0.011 0.230± 0.028
δ⊥ 2.79± 0.55 −− 2.90± 0.37 −− 2.97± 0.18

B0
s→φφ

N events 300 −− 800 −−
Av[%] −12.0± 6.6 −− 1.0± 4.0 −− < ±1
Au[%] −0.7± 6.6 −− −5.5± 4.0 −− < ±1

Table 11.1: Comparison of the results obtained in this thesis (green column) with most recent results of
other experiments (results of LHCb and ATLAS are preliminary) [19, 59, 23, 21], and the SM expectations
in the rightmost column [13, 15]. The SM expectation of τs is given considering τs = (0.98±0.02)τd [13],
where τd is the world average value of the B0 lifetime [8]. The theoretical predictions on the polarization
amplitudes and δ⊥ are based on [132] and polarization measured in B0→J/ψK?(890)0 decays [8]. In all
experimental values, the uncertainties reported in the table includes in quadrature the statistical and
the systematic uncertainty. The values of βs from D0 and ATLAS are obtained with constraints on the
strong phases; in addition ATLAS uses the constraint ∆Γs > 0. The values of ∆Γs, τs, |A0|2, and |A‖|2,
from D0, LHCb and ATLAS are obtained in the analysis with βs not constrained to its SM value.

All results are among the most precise determinations from a single experiment and exhibit an
excellent agreement with the SM predictions and with measurements from other experiments
(see Tab. 11.1). They have been published in two letters to Physical Review [1, 2].

Figure 11.1, Fig. 11.2(a) and Fig. 11.2(b), show the comparison between the most recent re-
sults from experiments in the (βs,∆Γs) plane, for ∆Γs alone, and for τs, respectively. The results
in Tab. 11.1 are obtained with very different sample statistics, thus, in Tab. 11.2 we scale the sta-
tistical resolutions on βs and ∆Γs of other experiments to the CDF signal yield for comparing the
experimental sensitivity of the analyses.1 The sensitivity to the mixing phase is mainly driven
by two parameters: the B0

s decay-time resolution, σt, and the flavor-tagging power, εD2. The
higher boost of the B0

s mesons produced in the forward direction as in the LHCb, significantly
helps in improving the decay-time resolution in this experiment, resulting in a better resolution
on βs with respect to other detectors. The lack of the flavor-tagging in the current ATLAS analy-
sis explains the poorer sensitivity on βs of this experiment. Conversely, the measurement of ∆Γs
benefits from a better sample purity and it is almost independent from the tagging power and
the decay-time resolution; indeed, the sensitivity on ∆Γs stems from the statistical separation
through the angular analysis of the CP -even and CP -odd amplitudes, which evolves with differ-
ent lifetimes, and requires neither flavor-tagging nor a highly-tuned decay-time resolution for the
fit of the exponential decays. This comparison shows how the very good mass resolution, tagging

1For CDF we consider the gaussian-uncertainty on βs as provided by the fit in Tab. 8.1 of Sect. 8.3, before
the coverage-correction of the confidence interval.
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experiment σt [fs] εD2 [%] σm(B0
s ) [MeV/c2] S/B at peak σ(βs) σ(∆Γs) [ps−1]

CDF 100 ≈ 4% ≈ 10 2/1 0.12 0.026
D0 100 ≈ 2% ≈ 30 1/3 0.15 0.050

LHCb 50 ≈ 2% ≈ 7 30/1 0.07 0.024
ATLAS 100 −− ≈ 12 3/1 0.30 0.030

Table 11.2: Comparison of the experiments performances in the measurement of βs and ∆Γs. We
consider the statistical uncertainty only, scaled to the same signal yield (11 000 events). The parameter
in the table are the decay-time resolution, σt; the tagging power, εD2; the B0

s mass resolution, σm(B0
s );

and the signal-to-background ratio (S/B) in the J/ψK+K− mass distribution at the B0
s mass peak.

capability, and decay-time resolution of the CDF II detector, made it a competitive experiment
in the flavor-physics sector, although it was not originally optimized for this kind of physics.

The measurements of βs and ∆Γs are still limited by statistics. Larger datasets can be
analyzed only at the LHC experiments in the next years: the Tevatron experiments have shut
down in September 2011, and the super-B-factory at KEK in Japan, of which commissioning
should start in 2015, will have limited samples of B0

s -meson decays. The LHCb experiments
has now approximately 3 fb−1 of data available, three times more data than currently used
in the analysis; ATLAS has on tape about 27 fb−1 of data, more than 5 times the statistic
analyzed so far for B0

s→J/ψφ decays (assuming constant data-taking configurations). Besides
the better statistical resolution due to larger datasets, improvements in the analyses techniques
are expected; LHCb has already provided an additional measurement of βs with another decay
mode, B0

s → J/ψ(→ µ+µ−)f0(→ π+π−) [133], resulting in about 18% improvement on the
resolution of βs when combined with the B0

s→J/ψφ analysis.
In addition, a larger dataset of B0

s→φφ decays at LHCb (about 2 500 in 3 fb−1) should allow
to perform the analysis of the time-dependent CP asymmetry with similar techniques of the
B0
s→J/ψφ analysis, to probe directly the mixing phase and ∆Γs in this decay mode. Assuming

similar sensitivity to βs with B0
s→J/ψφ decays, we can expect ≈ 0.3 resolution on φss̄s and

≈ 0.05 ps−1 resolution on ∆Γs.
Figure 11.1 presents also the combination as computed by HFAG [9] of all measurements

in the (βs,∆Γs) plane, which is consistent with the SM prediction. Combining all data till
summer 2012 and allowing only for new physics inM s

12, the bounds shown in Fig. 11.3(a) in the
(Re∆s, Im∆s) plane are derived by the CKMfitter group [12]. While in 2010 new physics in the
B0
s -B̄0

s mixing could very well accommodate the different deviations from the SM expectations
seen at that time (see Fig. 1.5 in Chap. 1), this is not the case anymore in 2012. The model
independent fit of all flavor data is consistent with no new physics in B0

s -B̄0
s mixing so far,

although there is still some room for sizable deviations from the SM expectations. The overall
constraint to arg(∆s) is consistent with zero within ≈ 5%, almost a factor two worse than the
corresponding constraint in the B0 sector, arg(∆d), derived from the measurements of sin 2β.
Anyway, it’s already evident a tension between the direct determination of βs and the dimuon
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Figure 11.1: The 68% confidence level contours in the (φcc̄s,∆Γs) plane (where φcc̄s = −2βs) from
CDF (this thesis), D0 [19] and LHCb [59], ATLAS [21], and their combined contour (solid line and
shaded area), as well as the SM predictions (black marker) from global fit of the CKM matrix [13]. The
combined result is consistent with the CKM predictions at the level of 0.14 standard deviations.

asymmetry, Asl, measured by D0 [22], as shown by Fig. 11.3(b). Assuming that new physics
in the B0

s -B̄0
s mixing is causing the anomaly, the large central value of the dimuon asymmetry

is still an unsolved problem, because it can not be explained by new physics contributions to
M s

12 alone; in addition, an enhancement of Γs12 compared to its SM value by a factor of 3 up to
34 would be required [13], which is not confirmed by latest measurements of ∆Γs and τs. To
investigate these issues further, a better control over hadronic uncertainties from the theoretical
side as well as more precise experimental inputs are mandatory.
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Figure 11.2: Comparisons of the most recent determinations of ∆Γs and of τs. Red bars represent the
statistical uncertainties, while black bars include statistical and systematic uncertainties in quadrature.
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Appendix A

Derivation of the
time-dependent CP asymmetry

In what follow we analyze the time-evolution of neutral mesons and derive the time-dependent
CP asymmetry of Eq. (1.33).

After solving the eigenvalue problem of the mixing hamiltonian the mass eigenstates are

|PL,H〉 = p|P 0〉 ± q|P̄ 0〉, (A.1)

with the normalization |p|2 + |q|2 = 1. The time evolution of the mass eigenstates is governed
by the two eigenvalues, mH − i

2ΓH and mL − i
2ΓL:

|PH,L(t)〉 = e−i(mH,L+iΓH,L/2)t|PH,L(0)〉 (A.2)

Then, we can write the time evolution of P 0 and P̄ 0 from Eq. (A.2) and their definition in Eq.
(A.1):

|P 0(t)〉 = g+(t)|P 0〉+ q

p
g−(t)|P̄ 0〉,

|P̄ 0(t)〉 = g+(t)|P̄ 0〉+ p

q
g−(t)|P 0〉,

(A.3)

where

g+(t) = e−imt−Γ/2t
[

cosh ∆Γt
4 cos ∆mt

2 − i sinh ∆Γt
4 sin ∆mt

2

]
,

g−(t) = e−imt−Γ/2t
[
− sinh ∆Γt

4 cos ∆mt
2 + i cosh ∆Γt

4 sin ∆mt
2

]
.

(A.4)

The following formulae are very useful:

|g±(t)|2 = e−Γt

2

[
cosh ∆Γt

2 ± cos(∆mt)
]
,

g?+(t)g−(t) = −e
−Γt

2

[
sinh ∆Γt

2 + i sin(∆mt)
]
.

(A.5)

199



Appendix A. Derivation of the time-dependent CP asymmetry

The probabilities of having a P 0 at any time t if it was either a P 0 or a P̄ 0 at t = 0 are:

P(P 0→P 0) = |〈P 0(t)|P 0(0)〉|2

= |g+(t)|2 = e−Γt

2

[
cosh ∆Γt

2 + cos(∆mt)
]
,

P(P̄ 0→P 0) = |〈P 0(t)|P̄ 0(0)〉|2

=
∣∣∣∣pq
∣∣∣∣2|g−(t)|2 =

∣∣∣∣pq
∣∣∣∣2 e−Γt

2

[
cosh ∆Γt

2 − cos(∆mt)
]
.

(A.6)

The mixing parameters ∆m and ∆Γ, or the corresponding dimensionless variables x = ∆m/Γ
and y = ∆Γ/(2Γ), characterize the mixing, but are not related to CP violation. Just for
completeness, we briefly comment on the values of x and y in neutral mesons. We can distinguish
the following cases: |y| � 1 and y � x for the B0 meson; y ≈ x with y � 1 for the D0 meson,
with y ≈ 1 and for the K0 meson; |y| ≈ 1 and y � x for the B0

s meson, where y ≈ 0.1. We show
the unmixed and mixed intensities as a function of the dimensionless variable, Γt, for initially
pure states of K0, D0, B0, and B0

s , in Fig. A.1.
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Figure A.1: The unmixed (blue) and mixed (red) intensities for an initially pure K0 (a), D0 (b), B0

(c), and B0
s (d) state. The vertical scale in (b) is logarithmic, the others linear. The figures are taken

from Ref. [134].

The time-dependent decay rates into the final state f for an initially produced P 0 and P̄ 0

are calculated by using Eq. (A.3) and Eq. (A.5); they reads:

Γ(P 0→f) = |Af |2
e−Γt

2 (H + I), (A.7)

Γ(P̄ 0→f) = |Af |2
∣∣∣∣qp
∣∣∣∣2 e−Γt

2 (H − I), (A.8)
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with:
H ≡

(
1 + |λf |2

)
cosh ∆Γt

2 − 2Re(λf ) sinh ∆Γt
2

I ≡
(

1− |λf |2
)

cos(∆mt) + 2Im(λf ) sin(∆mt).
(A.9)

where Af = 〈f |P 0〉, and λf is given in Eq. (1.35). These expression gives us the probability,
divided by dt, that the state which initially was P 0 (or P̄ 0) decays into the final state f during
the time interval [t, t+ dt]. The difference of Eq. (A.7) and Eq. (A.8) dived by their sum gives
the time-dependent CP asymmetry of Eq. (1.33); it can be expressed in the compact form with
the I and H functions as follows:

ACP (t) = I

H
(A.10)
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Appendix B

Resonances in the
K+K− mass spectrum

In what follows, we describe the relativistic Breit-Wigner distribution, BJ(m), that enters Eq.
(2.20) of Sect. 2.2.1 by analyzing the K+K− spectrum.

In general, a relativistic spin-J Breit-Wigner complex amplitude RJ describes a resonance
masses with spin J [54]:

RJ(m) = mJΓJ(m)
(m2

J −m2)− imJΓJ(m) = eiδJ (m) sin δJ(m), (B.1)

where we use the following convention:

cot δJ(m) = m2
J −m2

mJΓJ(m) . (B.2)

with ΓJ(m) and mJ the resonance width and mass, respectively. If the resonance can decay
into several final states, the total width is the sum of the partial widths for any open channel:

ΓJ(m) =
∑
i

Γ(i)
J (m). (B.3)

The form of the mass-dependent width is a function of the Blatt-Weisskopf factors [8], which
weight the amplitudes to account for the spin-dependent effect. In the case of J = 1, we have:

Γ(i)
J (m) = Γ(i)

J

mJ

m

1 + r2q2
J

1 + r2q2

(
q

qJ

)3
, (B.4)

with q the momentum of the daughter particles in the resonance system after its two-body decay
(qJ is evaluated at m = mJ). The mass-independent width Γ(i)

J depends on the final state i;
r is the interaction radius, an empirical parameter of order of 1 fm (or few GeV−1). For the
φ(1020) resonance we consider r = 3 GeV−1 and the partial widths of the decays: φ→K+K−

(48.8± 0.5)%, φ→K0
LK

0
S (34.2± 0.4)%, and φ→ρπ plus φ→π+π−π0 (15.32± 0.32)% [8].

The parametrization of the scalar f0(980) mass distribution requires more attention. Studies
of K+K− spectrum were performed by the BES experiment [119]. It was found that the f0(980)
resonance is described by an asymmetric shape called Flatté distribution [135]. The f0(980)
can decay either into a pair of pions or into a pair of kaons. However, the threshold for the
K+K− production is above the f0(980) pole, thus the decay width is asymmetric across the
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Appendix B. Resonances in the K+K− mass spectrum

pole. The mass dependence is described by means of a parametrization of a form similar to Eq.
(B.2), with a decay width:

Γf0(m) =

gπ
√
m2/4−m2

π + gK
√
m2/4−m2

K , if m2 > m2
K

gπ
√
m2/4−m2

π + igK
√
m2
K −m2/4, if m2 < m2

K ,
(B.5)

where mK and mπ are the mass of the charged kaon and the charged pion, respectively. The
gK(π) parameter may be considered as the coupling-constant-squared for the resonance coupling
to the K+K−(π+π−) channel.

The invariant amplitude, BJ(m), is proportional to RJ(m):

BJ(m) ∝ m

q
RJ(m) (B.6)

and its squared modulus gives the form of the mass distribution describing the resonance in the
K+K− spectrum; the latter reads:

|Bφ(m)|2 = qm

qφmφ

mΓ(KK)
φ (m)

(m2
φ −m2)2 +m2

φΓ2
φ(m) (B.7)

for the φ(1020) state, while it is:

|Bf0(m)|2 =
mf0Γ(KK)

f0
(m)

(m2
f0
−m2)2 +m2

f0
Γf0(m) (B.8)

for the f0(980) resonance. Finally, given the above expressions Eq. (B.7), Eq. (B.8) and Eq.
(B.2) the mass amplitudes are easily parametrized as:

BJ(m) =
√
|BJ(m)|2eiδJ (m). (B.9)

In Fig. B.1 (a) we show the distributions |Bφ(m)|2 and |Bf0(m)|2, and in Fig. B.1 (b) the phases
δφ(m) and δf0(m).
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Figure B.1: Shape of the φ(1020) and f0(980) resonances in the K+K− spectrum (a) and their phases
δJ(m) as a function of the K+K− mass (b).
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Appendix C

Time-evolution of
the B0

s→J/ψφ amplitudes

In the following pages, we report figures that sketch the time-evolution of the ten amplitudes
of the B0

s→J/ψK+K− decay rate described by Eq. (2.27) in Sect. 2.2.1, as a function of the B0
s

decay-length, separately for the B0
s and the B̄0

s mesons. Figure C.1 and Fig. C.2 are obtained
with the SM values of βs = 0.02 and ∆Γs = 0.90 ps−1. Figure C.3 and Fig. C.4 are for βs = 0.5
and ∆Γs = 0.09 cos(2βs) = 0.049 ps−1. In all plots, the value of the oscillation frequency is
fixed to ∆ms = 17.77 ps−1, as measured by CDF [43]; and polarization amplitudes and strong
phases as measured in Ref. [18].
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Appendix C. Time-evolution of the B0
s→J/ψφ amplitudes
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Figure C.1: Evolution of the six P -wave amplitudes of the B0
s→J/ψK+K− decay rate, as a function

of ct. Blue line is for B0
s meson and red line is for B̄0

s . From left to right, top to bottom: K1(ct) (a),
K2(ct) (b), K3(ct) (c), K4(ct) (d), K5(ct) (e), K6(ct) (f). Here βs = 0.02 and ∆Γs = 0.09 ps−1 (SM
point), ∆ms = 17.77 ps−1. Plots are obtained by means of the simulation described in Sect. 5.5.2.
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Figure C.2: Evolution of the S-wave and (P +S)-interference amplitudes of the B0
s→J/ψK+K− decay

rate, as a function of ct. Blue line is for B0
s meson and red line is for B̄0

s . From left to right, top to
bottom: K7(ct) (a), K8(ct) (b), K9(ct) (c), K10(ct) (d). Here βs = 0.02 and ∆Γs = 0.09 ps−1 (SM point),
∆ms = 17.77 ps−1. The interference terms depend on the resonances’ phases δφ(m) − δf0(m) that give
the smearing of the points. Plots are obtained by means of the simulation described in Sect. 5.5.2
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Appendix C. Time-evolution of the B0
s→J/ψφ amplitudes
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Figure C.3: Evolution of the six P -wave amplitudes of theB0
s→J/ψK+K− decay rate, as a function of ct.

Blue line is for B0
s meson and red line is for B̄0

s . From left to right, top to bottom: K1(ct) (a), K2(ct) (b),
K3(ct) (c), K4(ct) (d), K5(ct) (e), K6(ct) (f). Here βs = 0.5 and ∆Γs = 0.09 cos(2βs) = 0.049 ps−1,
∆ms = 17.77 ps−1. Plots are obtained by means of the simulation described in Sect. 5.5.2
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Figure C.4: Evolution of the S-wave and (P +S)-interference amplitudes of the B0
s→J/ψK+K− decay

rate, as a function of ct. Blue line is for B0
s meson and red line is for B̄0

s . From left to right, top to bottom:
K7(ct) (a), K8(ct) (b), K9(ct) (c), K10(ct) (d). Here βs = 0.5 and ∆Γs = 0.09 cos(2βs) = 0.049 ps−1,
∆ms = 17.77 ps−1. The interference terms depend on the resonances’ phases δφ(m) − δf0(m) that give
the smearing of the points. Plots are obtained by means of the simulation described in Sect. 5.5.2
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Appendix D

Validation plots of phase space
B0
s→J/ψφ Monte Carlo

In this appendix we report the comparison plots between sidebands-subtracted data and phase
space MC of the B0

s→J/ψφ decays, before and after the reweighing procedure describe in
Sect. 5.5.1.
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Figure D.1: Comparison between the data and phase space MC. The red histograms are MC data, the
black points sideband-subtracted data. The MC distributions on the left column are not reweighed; the
plot on rights are after the MC reweighing. Top to bottom, pT (B), pT (φ), pT (J/ψ).
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Figure D.2: Comparison between the data and phase space MC. The red histograms are MC data, the
black points sideband-subtracted data. The MC distributions on the left column are not reweighed; the
plot on rights are after the MC reweighing. Top to bottom, pT (K+) and pT (µ+).
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Figure D.3: Comparison between the data and phase space MC. The red histograms are MC data, the
black points sideband-subtracted data. The MC distributions on the left column are not reweighed; the
plot on rights are after the MC reweighing. Top to bottom, the transversity angles cos Θ, Φ and cos Ψ.
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Appendix E

Pulls distribution of the B0
s→J/ψφ fit

In the following, we report the plots of the pulls distribution of the ML fit for the B0
s→J/ψφ

analysis discussed in Sect. 6.3.
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Figure E.1: Pull distributions for the main physics parameters of the βs-fixed fit.
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Appendix E. Pulls distribution of the B0
s→J/ψφ fit
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Figure E.2: Pull distributions for the main physics parameters of the βs-floating fit.
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Figure E.3: Pull distributions for the main physics parameters of the βs-fixed fit with random values
of PDF parameters in the generation of the pseudo-experiments.
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Appendix F

Variables correlation in the fit to the
J/ψK+K− and K+K− masses.

In the simultaneous fit to the J/ψK+K− andK+K− mass distributions described in Sect. 7.4, we
have assumed that the PDF in Eq. (7.4) is separable for the J/ψK+K− and the K+K− variables
by neglecting correlations among the masses. We indeed expect a negligible correlation between
the B0

s , the φ(1020) and f0(980) signal, given the good resolution of the mass measurements
(Fig. F.1). The combinatorial background have small correlations among the two variables
(Fig. F.1), while a visible effect is expected for theB0→J/ψK+π− component (Fig. F.1). Indeed,
the shape of the B0 spectrum reconstructed as the B0

s signal strongly depend on the momentum
of pion in the mis-assignment of the mass hypothesis. Therefore, we check with simulation the
impact of our approximation in the PDF.

We generate a set of pseudo-experiments according to the PDF, i. e., with the factorization
hypothesis. We fit the pseudo-experiments to have a reference value for each parameter of the
residuals between generated and fitted values. Such references show unbiased estimates of the
fit’s parameters. Then, we generate a set of pseudo-experiments according to 2-dimensional
histograms of the J/ψK+K− and K+K− masses, with the desired fraction for each component.
Hence, the events are generated with the correlations among variables. We fit such pseudo-
experiments with the usual PDF and compare the mean value of the residuals of each parameter
with the corresponding residuals found in the reference (Fig. F.2). We observe deviations smaller
than the fit uncertainties for the fitted fractions. Thus, given our cross-check purpose of this
fit, we retain the simplified model of PDF.
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Appendix F. Variables correlation in the fit to the J/ψK+K− and K+K− masses.
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Figure F.1: Checks of the correlations between J/ψK+K− and K+K− masses for the different com-
ponent of the data sample with simulated events. Scatter plot in J/ψK+K− and K+K− for the B0

s–
φ(1020)signal (correlation factor 2%) (a), B0–K+π−component (correlation 20%) (d), and the combi-
natorial background (correlation -3%) (g). Distribution of J/ψK+K− in slices of K+K− for B0

s (b),
B0 (e), and combinatorial background (h). Distribution of K+K− in slices of J/ψK+K− for φ(1020) (c),
K+π− (f), and combinatorial background (i).
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Figure F.2: Pull distributions for 240 pseudo-experiments generated according to the PDF Eq. (7.4)
(top row) and according to 2-dimensional histograms as described in the text (bottom row).
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