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Abstract

This thesis documents a search for Standard Model (SM) Higgs boson to WW production in the final state

of two charged leptons (e, μ) and two neutrino final state resulting from in pp collisions at
√
s = 1.96 TeV.

The data collected by the CDF II detector at the Tevatron collider at Fermilab, corresponds to an integrated

luminosity of 8.2 fb−1.

This iteration of the analysis incorporated several improvements to increase Higgs sensitivity. We reeval-

uated lepton isolation values to recover signal events in which leptons mutually spoil each other’s isolation

requirements. We additionally incorporated new lepton identification selections, namely likelihood based

forward electrons and a better recovery of electrons passing through detector cracks.

The base analysis searches for opposite-sign dilepton events. We employed three separately trained neural

networks to distinguish signal from background processes for events with 0, one, or two jets. To further

increase sensitivity for 0-jet events, we constructed a likelihood ratio discriminant based on Matrix Element

calculations as an additional input to the neural network. For the base opposite-sign analysis, summing over

all jet multiplicities, we observed 3513 events in data compared with a background expectation of 3409 ± 233

and a signal expectation of 53.6 ± 9.4 for a mass of 165 GeV/c2.

To further increase signal acceptance, we incorporated several separate search regions in addition to the

base analysis. We include subchannels searching for Higgs production in events with low dilepton invariant

mass and in events having final states with either same-sign dileptons or trileptons

With the combination of the separate analyses, we observed a 95% C.L. upper production limit of 0.77

times the SM expectation for a Higgs mass of 165 GeV/c2 to be compared with the value for the median of the

expected limit (0.78). We additionally present results for eighteen Higgs masses ranging from 110 GeV/c2

to 200 GeV/c2. We excluded at the 95% C.L., a SM Higgs boson in the mass range between 156 and

175 GeV/c2.
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Chapter 1

Introduction

The Standard Model of particle physics has proven itself to be a highly successful description of the fun-

damental particles and their interactions. However, the exact mechanism behind which the fundamental

electroweak interaction becomes the electromagnetic and weak interactions remains unknown. One pro-

posal, the Higgs mechanism, introduces a scalar field to break the symmetry between the electromagnetic

and weak interactions. The search for the boson associated with the scalar Higgs field remains a primary

focus of modern high-energy physics. This thesis details a search for the Higgs boson in decays to two W

bosons using the CDF detector at the Tevatron collider.

The thesis gives an introduction to the theory of the Higgs boson in Chapter 2. We describe the process

through which the Higgs field breaks the electroweak symmetry and gives masses to the W and Z bosons

here. A review of the Higgs search at the Large Electron-Positron Collider follows in Chapter 3 along with

an introduction to the search at the Tevatron collider.

A description of the Fermilab accelerator complex and the CDF detector appears in Chapter 4. This

covers the components of the CDF detector relevant for the analysis. We describe the process used to identify

prospective Higgs decay products in Chapter 5. This includes the identification procedure for electrons and

muons. A description of the analysis improvements put into this iteration also appears in Chapter 5. The

improvements are crucial for increasing the sensitivity of the analysis beyond what the addition of data alone

offers.

The selection criteria we used to identify Higgs events and the data modeling procedure appears in

Chapter 6. We describe the limit setting procedure for the primary analysis channels in Chapters 7 and 8.

Finally, the combination of all H → WW channels from CDF appears in Chapter 9. Additionally, the

full Tevatron combination with data from all Higgs channels coming from CDF and D0 also appears. We

lastly present a brief discussion of the future prospects for the Higgs boson search.
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Chapter 2

The Standard Model and Higgs
mechanism

Over the past few decades, the Standard Model (SM) has proven successful in describing the fundamental

particles and their interactions. Despite the success of the SM, the framework remains incomplete. The

exact mechanism for breaking the symmetry between the electromagnetic and the weak interactions in the

SM has thus far eluded detection. One proposal, the Higgs mechanism, is the focus of this thesis. The theory

of the SM and the Higgs mechanism will be described in this chapter.

2.1 The Standard Model

The SM is a quantum field theory incorporating three interactions: the strong, the weak, and the electromag-

netic. To accomplish this, the SM is based on the gauge symmetry group of SU(3)C × SU(2)L ×U(1)Y [4].

The gauge group SU(3)C corresponds to Quantum Chromodynamics or the strong interaction. The gauge

group SU(2)L × U(1)Y comprises the electroweak interaction whose symmetry the proposed Higgs field

breaks.

The SM contains a range of fundamental particles. The quarks and leptons are the two types of fermions

incorporated into the SM. Fermions possess half-integer spin, with the quarks and leptons of the SM having

spins of 1/2. The six quarks undergo the electromagnetic, strong, and weak interactions. Of the leptons,

three interact weakly and electromagnetically. The other three, the neutrinos, interact weakly. The quarks

and leptons are both further divided up into generations. Additionally, each particle possesses an antiparticle

partner, an identical particle with the exception of possessing opposite charge. An overview of the quarks

appears in Table 2.1. An overview of the leptons appears in Table 2.2.

generation charge 2/3 charge −1/3
1st up (u) 1.7 − 3.1 MeV/c2 down (d) 4.1 − 5.7 MeV/c2

2nd charm (c) 1.29 GeV/c2 strange (s) 100 MeV/c2

3rd top (t) 172.9 GeV/c2 bottom (b) 4.19 GeV/c2

Table 2.1: The six quarks in the SM with their masses.
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generation charge −1 charge 0
1st electron (e) 0.5110 MeV/c2 electron neutrino (νe) < 2 eV/c2 (CL = 95%)
2nd muon (μ) 105.7 MeV/c2 muon neutrino (νμ) < 0.19 MeV/c2 (CL = 90%)
3rd tau (τ) 1.777 GeV/c2 tau neutrino (ντ ) < 18.2 MeV/c2 (CL = 90%)

Table 2.2: The six leptons in the SM with their masses. Note, the neutrino masses listed are expectation
values based on taking the square roots of m2

νl
=
∑

i |Uli|2m2
νi

for a neutrino of flavor l. Here, mνi are
the three neutrino mass eigenstates and Uli are the elements of the neutrino mixing matrix relating the
mass eigenstates to the flavor eigenstates. Limits on the sum of the neutrino masses based on comological
measurements are considerably stricter, being as low as mtot < 0.44 eV/c2 (CL = 95%).

2.1.1 The electroweak interaction

As mentioned above, the electroweak interaction lives in the symmetry group SU(2)L × U(1)Y , having

gauge bosons W i
μ (for i = 1, 2, 3) for SU(2)L and Bμ for U(1)Y [4]. We specify the fermions as weak isospin

doublets which are left-handed and singlets which are right-handed. The left-handed weak isospin doublets,

which transform under SU(2)L, take the form

⎛
⎜⎝ νe

e

⎞
⎟⎠

L

,

⎛
⎜⎝ νμ

μ

⎞
⎟⎠

L

,

⎛
⎜⎝ ντ

τ

⎞
⎟⎠

L

and ⎛
⎜⎝ u

d′

⎞
⎟⎠

L

,

⎛
⎜⎝ c

s′

⎞
⎟⎠

L

,

⎛
⎜⎝ t

b′

⎞
⎟⎠

L

.

Here, the primes correspond to mass eigenstates of the weak interaction. These are relatable to the aforemen-

tioned flavor eigenstates (u, s, and b) via the transformation d′ =
∑

j Vijdj , where Vij represents elements

of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The CKM matrix relates the weak quark eigenstates

to the flavor eigenstates. The right-handed SU(2)L singlets take the form of eR, νeR, uR, etc.

The symmetry group SU(2)L has three generators following from the Pauli matrices as T i = σi/2 [5]

and obey the commutation relation of

[T i, T j] = iεijkT
k.

We can relate the particle’s charge Q to its weak isospin (T 3) and weak hypercharge Y using the relation of

Q = T 3 +
Y

2
.

The weak hypercharge Y operates as the generator for U(1)Y [6]. The first generation fermions with their

quantum numbers appear in Table 2.3.
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lepton T T 3 Q Y
νe 1/2 1/2 0 −1

e−L 1/2 −1/2 −1 −1

e−R 0 0 −1 −2

quark T T 3 Q Y
uL 1/2 1/2 2/3 1/3
dL 1/2 −1/2 −1/3 1/3
uR 0 0 2/3 4/3
dR 0 0 −1/3 −2/3

Table 2.3: The six quarks in the SM with their masses.

With the aforementioned gauge bosons of W i
μν (for i = 1, 2, 3) and Bμν , the electroweak Lagrangian’s

kinetic energy terms for the fields are given by

Lgauge = −1
4
W i

μνW
μνi − 1

4
BμνB

μν

for

W i
μν = ∂νW

i
μ − ∂μW

i
ν + gεjklW

j
μW

l
ν ,

Bμν = ∂νBμ − ∂μBν ,

and g being a coupling constant [6]. The interaction of the field with generic fermionic fields is given by

Lfermions = ψ̄Riγ
μ(∂μ + i g′

2 Y Bμ)ψR

+ψ̄Liγ
μ(∂μ + i g′

2 Y Bμ + i g
2
�T · �Wμ)ψL,

where g′ is an additional coupling constant, ψR is a right handed fermionic field, and ψL is a left handed

fermionic field [4]. The two Langrangians form the basic electroweak interaction of

Lewk = Lgauge + Lfermions.

2.2 Electroweak symmetry breaking

In the electroweak Lagrangian above, the boson fields are all massless and the symmetry of SU(2)L ×U(1)Y

is still intact. The physical bosons seen today are given by mixtures of the massless gauge fields of W i
μν and
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Bμν [4]. The physical W± fields are given by

W±
μ =

√
1
2
(W 1

μ ∓ iW 2
μ)

and the physical Z and photon fields are given by

Zμ = W 3
μ cos θW −Bμ sin θW

and

Aμ = Bμ cos θW +W 3
μ sin θW

respectively. Here, θW is the Weinberg angle which can be related to the coupling constants g and g′ by

g sin θW = g′ cos θW = e

where e is the electric charge.

To break the electroweak symmetry of SU(2)L × U(1)Y and produce the observed physical bosons de-

scribed above, we introduce a complex doublet of scalar fields

φ =

⎛
⎜⎝ φ†

φ0

⎞
⎟⎠ ,

which possesses a weak hypercharge of Y = +1 [4]. We introduce this field into the electroweak Lagrangian

with

Lscalar = (Dμφ)†(Dμφ) − V (φ†φ),

where the covariant derivative Dμ is

Dμ = ∂μ + i
g′

2
Y Bμ + i

g

2
�T · �Wμ,

and the potential V (φ†φ) is

V (φ†φ) = μ2(φ†φ) + |λ|(φ†φ)2.

The quantities μ and λ are both constants. If we proceed to minimize the action of the Lagrangian, we
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Figure 2.1: The shape of the scalar field’s potential.

arrive with a vacuum expectation value for the scalar field of

〈φ〉0 =

√
1
2

⎛
⎜⎝ 0

v

⎞
⎟⎠ ,

where v =
√−μ2/|λ|.

The scalar field’s potential is shown in Figure 2.1.

We can examine small oscillations, ξi(x) (for i = 1, 2, 3) and η(x) off of the vacuum expectation value of

〈φ〉0 with

φ = exp
(
iξi(x)T i

2v

)⎛⎜⎝ 0
v+η(x)√

2

⎞
⎟⎠ .

Employing a gauge transformation in SU(2)L eliminates the exponential function containing ξi(x), giving

φ =

⎛
⎜⎝ 0

v+η(x)√
2

⎞
⎟⎠ .

Using this in the electroweak Lagrangian provides mass terms for the W± and Z bosons, MW = 1
2vg and

MZ = 1
2v
√
g2 + g′2 respectively, while the photon field remains massless [4]. Also important is that the

Higgs field η(x) receives a mass term of MH = 2v2λ = −2μ2 for μ2 < 0.
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2.3 Indirect constraints on the Higgs boson mass

The Higgs mechanism leaves the Higgs mass behind as a free parameter which cannot be directly determined

without experimental measurement. It is possible however through SM consistency checks to determine

constraints on the Higgs mass.

In the instance of gauge boson scattering (e.g. WW → WW ), through partial-wave analysis, it can be

shown that the scattering amplitudes are proportional to GFM
2
H , for the Fermi coupling constant GF [4].

If we enforce unitarity for the largest eigenvalue from the partial-wave analysis, |a0| ≤ 1, this results in a

requirement on the Higgs mass of

MH ≤
(

8π
√

2
3GF

)1/2

= 1 TeV/c2

to prevent a quadratic divergence of the scattering amplitude. This provides us with a reasonably solid

upper limit on the mass of a potential Higgs boson.

Additionally, a confidence interval can be determined based on precision electroweak measurements. In

the SM, the mass of the W boson receives corrections dependent on the masses of the top quark and the

Higgs boson. This dependence happens to be quadratic for the top quark mass and logarithmic for the Higgs

boson mass. Combining measurements of the W and top quark masses with other electroweak measurements

gives values the Higgs mass is likely to have.

The result of such a fit appears in Figure 2.2 and shows the dependence of the Higgs boson mass in relation

to current measurements of the W and top quark masses. The limit on the Higgs mass produced by the fit

was MH < 161 GeV/c2 at the 95 % C.L. [1] The central value produced by the fit was MH = 92+34
−26 GeV/c2.
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Figure 2.2: The result of the electroweak fit for the Higgs mass as a function of the W boson and top
quark masses [1]. Values for the Higgs list appear on the bottom axis in purple. The relation of the Higgs
mass to the W boson and top quark masses follow the purple lines. The 68% CL region of the fit based on
direct measurements from LEP-II and the Tevatron appear as the solid blue contour. The 68% CL region of
the fit based on indirect measurements from LEP-I and SLD appear as the dotted red contour. The green
regions are Higgs mass regions not yet excluded by experiment. The 1000 GeV/c2 cut off is applied based
on theoretical arguments from gauge boson scattering.

8



Chapter 3

Searches for the Higgs boson

The goal of observing or excluding a Higgs boson is a strong focus of modern high-energy physics. An

overview of Higgs production, decays, and previous searches follows.

3.1 Searching for the Higgs at LEP

Most recently, the Higgs search in the low mass region has been dominated by the Large Electron-Positron

Collider (LEP), which collided beams of positrons with beams of electrons. The LEP collider featured four

experiments: ALEPH, DELPHI, L3, and OPAL. They collected 2461 pb−1 of total data at center of mass

energies ranging from 189 and 209 GeV/c2 [2].

3.1.1 Higgs production at LEP

The primary production mechanism of interest at LEP was associated production. In associated production,

a Z boson created from e+e− → Z, radiates a Higgs boson [2]. An additional production mechanism at

LEP was through vector boson fusion, in which either two W bosons or two Z bosons, radiated from an

electron-positron pair, fuse to produce a Higgs boson. The Feynman diagrams for these mechanisms appear

in Figure 3.1.

3.1.2 Higgs decays at LEP

In the mass ranges the LEP experiments were sensitive to, the Higgs predominantly decays to bb̄ with

decays to τ+τ−, WW ∗, gg, and cc̄ also contributing. A plot of the Higgs decay branching fractions appears

in Figure 3.2. For associated production, the decays of the Z boson also contribute to the event topology

with decays of Z → qq̄, Z → νν̄, and Z → l+l−. The final states the LEP experiments looked for were the

four jet final state (H → bb̄ and Z → qq̄); missing energy final state (H → bb̄ and Z → νν̄); electron or

muon final state (H → bb̄ and Z → l+l−); and the tau final state consisting of (H → bb̄ and Z → τ+τ−)

and (H → τ+τ− and Z → qq̄) [2]. The predominant backgrounds in these analyses were diphoton processes,
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Figure 3.1: Two Higgs production mechanisms expected at LEP, associated production (left) and vector
boson fusion (right).

e+e− → Zγ, qq̄, and WW/ZZ production.

The LEP experiments did not see any strong evidence for a Higgs boson. They therefore proceeded to set

limits on possible Higgs boson masses. The LEP experiments ruled out Higgs masses below 114.4 GeV/c2 [2]

at the 95% confidence level. The confidence level limits as a function of Higgs masses appears in Figure 3.3.

3.2 Searching for the Higgs at the Tevatron

Over the past few years of the Tevatron’s second running, CDF and D0 have become sensitive to the Higgs

boson. An introduction to Higgs searches follows with descriptions of production and decay mechanisms at

the Tevatron.

3.2.1 Higgs production at the Tevatron

There are three primary modes of Higgs production at the Tevatron: gluon fusion, associated production,

and vector boson fusion. Gluon fusion production is the dominate mode, with a cross-section just below

1 pb−1 [3]. Gluon fusion Higgs production proceeds via the fusion of two gluons into a quark loop which

produces a Higgs boson. The Feynman diagram appears in Figure 3.4.

After gluon fusion, the two other production mechanisms relevant for this analysis are associated pro-

duction and vector boson fusion. They are quite similar to the production mechanisms at LEP previously

discussed. Feynman diagrams depicting both mechanisms appear in Figure 3.5. Associated production and

Vector boson fusion both have cross-sections roughly a factor of 10 smaller than gluon fusion.

A plot of the cross-sections for gluon fusion, associated, vector boson fusion, and other productions

mechanisms at the Tevatron as a function of Higgs mass appears in Figure 3.6.
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Figure 3.3: The limit on SM Higgs production from the four LEP experiments [2]. Here CLs is the confidence
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3.2.2 Low-mass Higgs search at the Tevatron

The preferred Higgs decay below ≈ 135 GeV/c2 is H → bb̄ as shown in Figure 3.2. The bb̄ final state is not

distinct enough to distinguish from the prominent QCD backgrounds that emerge. For example, the pp̄→ bb̄

production cross-section, on the order of 1 µb, is a million times larger than the gg → H cross-section of

approximately 1 pb. As a consequence, we cannot use the dominate gg → H production mechanism since it

leaves no handles to distinguish H → bb̄ from QCD backgrounds. In the case of associated production, the

additional W or Z in the event provide excellent handles to differentiate signal from background.

3.2.3 High mass Higgs search at the Tevatron

For the Tevatron, the high mass search considers primarily the Higgs mass region of 135 GeV/c2 to

200 GeV/c2, where the Higgs boson decays predominantly to pairs of W bosons. As opposed to the bb̄ final

state, the decays of the W bosons provide better handles to differentiate Higgs events from background.

The branching fraction of hadronic W decays is ≈ 68% [5]. There are three leptonic decay modes,

W → lν (for l = e, μ, τ), having a branching fraction of ≈ 10.8% for each.

For a Higgs analysis, the final states of both W bosons decaying is not a distinctive enough of a final

state to distinguish from background. In this analysis, we look for both W bosons to decay leptonically,
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giving us the final state of lνlν.

Out of the leptonic decays, we look only for the electron and muon final states since the CDF detector is

fairly adept at identification of these particles. We therefore restrict ourselves to 4.7% of all the final states

of H →WW .

3.2.4 Increased Higgs sensitivity through analysis improvements

Though the Higgs analyses at CDF increase sensitivity through luminosity additions, a significant amount

of sensitivity increases result from improving the analyses. Figure 3.7 shows the expected sensitivity for a

given iteration of the analysis as a function of luminosity. The plot shows the first iteration of the analysis

done in Summer 2004 for comparison to the result this thesis documents. If the Summer 2004 version of the

analysis had been used with the data available for Summer 2011, CDF would still be unable to exclude a

Higgs boson at a mass of 160 GeV/c2. The improvements over the Summer 2010 CDF H → WW analysis

we put in to reach the sensitivity seen in Figure 3.7 will be a strong focus of this thesis.
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Chapter 4

Tevatron collider and CDF detector

The Fermilab accelerator complex housed the worlds most powerful collider, the Tevatron, until the advent

of the Large Hadron Collider in 2008. The Tevatron supplied beams of protons and antiprotons to two

collider experiments, CDF and D0, from 2001 to 2011, the years of the Tevatron’s Run II.

4.1 The Fermilab accelerator chain and the Tevatron collider

The Tevatron collides protons and antiprotons at a center of mass energy of
√
s = 1.96 GeV. The Tevatron

collider itself is only one part of the long chain of accelerators that bring protons and antiprotons to collisions.

The wide range of accelerators consists of two Cockcroft-Walton accelerators, a linear accelerator, and several

synchrotrons.

4.1.1 Cockcroft-Walton, Linac, and Booster

The accelerator chain begins with the aforementioned Cockcroft-Walton accelerators which produce atoms

of H− at energies up to 750 KeV [7]. The H−1 atoms are then fed through a transfer line and into a linear

accelerator (Linac) that brings them up to 400 MeV. The Linac operates in a series of pulses at 15 Hz.

Once the H− atoms have reached 400 MeV, we strip two electrons off of the atoms leaving behind

protons [7]. The protons then enter a synchrotron called the Booster which accelerates the protons to

8 GeV. The Booster consists of 19 radio frequency cavities to produce a ring with a radius of 75 meters. The

combined accelerator chain consisting of the Linac and Booster, produces the 8 GeV protons in bunches of

roughly 1 × 1011 particles.

4.1.2 Main Injector

The Main Injector (MI) is the next level of acceleration after the Linac and Booster. The MI is a synchrotron

constructed as an upgrade of the accelerator complex for Run II of the Tevatron. The MI takes the 8 GeV

protons from the booster and accelerates them to either 120 GeV or 150 GeV depending on the destination [7].
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We fed the 120 GeV protons into the portion of the complex responsible for antiproton production. We used

the 150 GeV acceleration mode to feed protons and antiprotons into the Tevatron, which accepted particles

with an energy of 150 GeV. The MI carried through an acceleration cycle every 2.2 seconds while the Tevaton

operated. The particle bunches each consisted of roughly 1011 protons.

4.1.3 Antiproton source

To produce antiprotons, we carried the 120 GeV protons from the MI to the antiproton source where we

collided them with a nickel alloy target [7]. The secondary interactions then produced antiprotons with

energies around 8 GeV. We collected the 8 GeV antiprotons using magnets to select particles based on

momentum and charge.

Once produced, we fed the antiprotons into a synchrotron called the Debuncher. The Debuncher captured

the antiprotons and performed stochastic cooling [7] to decrease their high momentum spread. Stochastic

cooling made the bunches more manageable by correcting the highly varied antiproton orbits in the De-

buncher. To accomplish this, we measured a signal for the antiproton bunch on one side of the ring, amplified

it, and applied it to the same bunch on the other side of the ring. The stochastic cooling apparatus applied

corrections in the transverse plane to decrease oscillations in the horizontal and vertical directions, and also

to the momenta of antiprotons.

Once cooled, we fed the antiprotons into another synchrotron housed in the same tunnel as the Debuncher

called the Accumulator. The Accumulator acted as temporary storage for the 8 GeV antiprotons until they

were ready to be transfered to another ring, the Recycler, for longer term storage.

4.1.4 Recycler

The Recycler is another synchrotron housed in the same tunnel as the MI. The Recycler stored antiprotons,

taken from the Accumulator, until a new collider store was ready to begin. The Recycler is composed of

permanent magnets with the intention of storing antiprotons in the event of power loss. The Recycler is

equipped with both stochastic and electron cooling. Electron cooling overlays a beam of electrons with the

antiprotons to transfer momentum to the electrons from antiprotons not in ideal orbits.

4.1.5 Tevatron

The Tevatron, with a 4 mile circumference, was the largest accelerator at the Fermilab complex [7]. The

Tevatron accelerated protons and antiprotons out of the MI from 150 GeV to 980 GeV. Fermilab designed
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Figure 4.1: A diagram of the Fermilab accelerator complex.

the Tevatron to store protons and antiprotons for several hours while the two collider experiments, CDF

and D0, collected data.

The Tevatron made use of niobium/titanium alloy superconducting magnets which required an operating

temperature of around 4 K [7]. To achieve this, we made use of an extensive cryogenic infrastructure to

supply liquid helium to the magnets. We used superconducting magnets since they allow high magnetic

fields to be produced through high currents running through relatively thin wires.

A diagram of the Fermilab accelerator complex appears in Figure 4.1.

When the Tevatron ran in collider mode for Run II, it collided 36 bunches of protons with 36 bunches of

antiprotons with a bunch crossing rate of 396 ns. We further divided the groups of 36 bunches into groups

of 12. Between each group of 12, we left an open space in the accelerator called an abort gap. The abort

gaps provided time to activate the Tevatron’s abort system to dump the beam if it became necessary.

The instantaneous luminosity in the Tevatron is given by:

L =
fBNpNp̄

2π(σ2
p + σ2

p̄)
(4.1)

where B is the number of bunches in each beam, Np (Np̄) is the number of protons (antiprotons) in each

bunch, σp (σp̄) is the proton (antiproton) rms beam size at the interaction point, and f is the frequency

of revolution [8]. The data we used in this analysis came from instantaneous luminosities ranging from

0.1 × 1032 cm−2s−1 to 4 × 1032 cm−2s−1.
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Figure 4.2: The integrated luminosity delivered to CDF and D0.

The delivered integrated luminosity appears in Figure 4.2. The initial instantaneous luminosities appear

in Figure 4.3.

4.2 CDF II detector

The multipurpose CDF detector proved itself useful for a variety of analyses. This analysis made extensive

use of the calorimetry, tracking, and muon systems of the detector. We document the utilized subdetectors

in this section. A diagram of the detector appears in Figure 4.4.

4.2.1 Coordinate system

In the description of the detector geometry, we make extensive use of the azimuthal angle φ and polar angle

θ. We define the polar angle θ with respect to the proton beam axis which moves in the positive z-direction.

We also define an additional quantity called the pseudorapidity

η = − ln(tan
θ

2
). (4.2)

We define a variant on the pseudorapidity in relation to the detector’s center as ηdet.
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Figure 4.3: The initial instantaneous luminosity delivered by the Tevatron.

Figure 4.4: A cutaway of the CDF detector.
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Figure 4.5: The tracking volume of the CDF detector.

4.2.2 Tracking

For tracking we made use of a drift chamber, the Central Outer Tracker (COT), and several silicon detectors.

The detector immersed all the tracking sub-detectors in a 1.4 T magnetic provided by a superconducting

solenoid. The magnetic field ran parallel to the beam axis. A schematic of the CDF tracking volume appears

in Figure 4.5.

Central Outer Tracker

The COT was an open cell drift chamber and contained argon-ethane gas within its volume [9]. It covered

the polar range of |η| ≤ 1.0 and the radii of 44 to 132 cm. We divided the COT into eight superlayers, each

consisting of multiple cells. The cells each have 12 layers of sense wires. The COT alternated the superlayers

between being axial (parallel to the beam axis) and stereo (being off parallel to the beam axis by 2.0◦). A

schematic of a portion of the COT appears in Figure 4.6.
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Figure 4.6: A section of the COT end plate.
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Figure 4.7: The silicon sub-detectors of the CDF detector.

Layer 00

The inner most sub-detector is a single sided silicon detector called Layer 00 (L00) [10]. This detector is

mounted directly on the beam pipe, located 1.6 cm off the beam axis. It provided coverage of |η| ≤ 4.0.

Silicon Vertex Tracker II

Outside of L00, sat the Silicon Vertex Tracker II (SVXII), a silicon microstrip detector [10]. The SVXII

comes in five double sided layers, extending from radii of 2.1 to 17.3 cm. All layers have the inner strips

aligned axially. Layers 1, 2, and 3 have the outer strips rotated by 90◦ to provide stereo information. Layers

4 and 5 have the outer strips rotated by 1.2◦ for additional stereo information.

Intermediate Silicon Layers

Outside of the SVXII sat the Intermediate Silicon Layers (ISL) [10]. The ISL was a collection of three layers

of double sided microstrips, each having an axial side and a stereo side (strips rotated by 1.2◦). One layer

covered the central region of |η| ≤ 1.0 and sat at a radius of 22 cm from the beam axis. The two other layers

covered the forward regions of 1.0 ≤ |η| ≤ 2.0 and sat at radii of 20 and 28 cm.

An end view schematic of the silicon detectors appears in Figure 4.7.
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4.2.3 Calorimetry

The calorimeters sat outside of the tracking volume and held responsibility for measuring the energies and

directions of both neutral and charged particles.

The CDF detector made use of two types of calorimeters, an inner electromagnetic calorimeter and

an outer hadronic calorimeter [11]. The electromagnetic calorimeters registered particles which interact

electromagnetically, primarily electrons and photons. The hadronic calorimeters registered particles which

interact strongly such as mesons and baryons.

The electromagnetic calorimeter consisted of alternating layers of lead and scintillator while the hadronic

calorimeter used alternating layers of iron and scintillator. When particles interacted with the lead or iron

layers, they created showers of charged particles. When the charged particles pass through the scintillator

layers, the scintillators fluoresce. The detect the generated light, we passed it through a wavelength shifter

and further onward to a photomultiplier tube via wave guides.

The CDF detector divided the calorimeter in five components: the Central Electromagnetic (CEM),

the Central Hadronic (CHA), the Wall Hadronic (WHA), the Plug Electromagnetic (PEM), and the Plug

Hadronic (PHA) [11]. A description of these components follows.

Central calorimeter

The CDF detector divided the CEM into towers, each with coverage of 15◦ in φ and 0.11 in η [11]. As a

whole, the CEM covers the range of |η| ≤ 1.1. A schematic of a portion of the CEM appears in Figure 4.8.

Outside of the CEM, the CHA covered the range of |η| ≤ 0.9. To augment the coverage of the CHA, the

WHA covered the range of 0.8 ≤ |η| ≤ 1.2. The towers of the CHA and WHA match the 15◦ in φ and 1.1

in η coverage of the CEM.

The CEM had two additional detectors embedded in it, the Central Electromagnetic ShowerMax chamber

(CES) and the Central Pre-radiate (CPR) chamber [11]. The CES was a strip and wire chamber placed

six radiation lengths into the CEM where the electromagnetic shower from particles is expected to be the

widest. The CES provided additional capabilities for particle identification and linking to particle tracks. A

CES module appears in Figure 4.9.

The CPR was a collection of wire chambers lying on the inner surface of the CEM [11]. The CPR

provided early measurements of showers and useful discrimination of electrons from pions. The CPR also

proved useful for photon identification.
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Figure 4.9: A portion of the CES wire and strip chamber.
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Figure 4.10: A cross-section of the plug calorimeter.

Forward calorimeter

The PEM and PHA sat on the ends of the COT, covering the range of 1.2 ≤ |η| ≤ 3.6 [11]. The calorimeter

divided the towers into 12 groups in η. The innermost four towers grouped in η| have 24 wedges in in φ

(each tower covers 15◦). The outermost eight towers in φ have 48 wedges in η (each tower covers 8.5◦).

Similar to the CEM, the PEM embedded two additional detectors within itself, the Plug Electromagnetic

ShowerMax chamber (PES) and the Plug Pre-radiate (PPR) chamber [11]. The PES, like the CES, sat behind

six radiation lengths into the PEM and performs the same function as the CES in the forward region. A

cross-section of the plug calorimeter appears in Figure 4.10.

4.2.4 Muon sub-detectors

The CDF muon system used in this analysis covered a range of |η| ≤ 1.5. The muon system sat behind

several layers of shielding to prevent non-muons from leaking beyond the calorimeters. The muon system

was an assortment of wire chambers and scintillators. A brief description follows.

The Central Muon Detector (CMU) sat behind ≈ 5.5λ of absorber material (the CHA) and provides

coverage of |η| ≤ 0.6 [11][12]. The CMU is composed of 144 modules, each consisting of 16 wire chambers,

arranged in cylindrical fashion.

The Central Muon Upgrade (CMP) sat behind the CMU and an additional layer of 61 cm of steel [12].

The CMP, also constructed from wire chambers, covered the same range of |η| ≤ 0.6 as the CMU. As opposed

to the CMU, the CMP composed roughly a rectangular box surrounding the rest of the CDF detector.
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Figure 4.11: The CDF detectors muon coverage. The Intermediate Muon Detector (IMU) corresponds to
the CMU in this diagram.

Just on the inside of the CMP, sat the Central Scintillator Upgrade (CSP) [12]. The CSP is a collection

of scintillators that assisted with the timing of muon hits in the muon chambers.

The Central Muon Extension (CMX) covered the region 0.6 ≤ |η| ≤ 1.0 [12]. The CMX consisted of two

portions, a conically shaped upper section covering roughly 270◦, and a lower planar shaped section covering

roughly 90◦ called the “miniskirt”.

On the inside of the CMX (both upper and lower portions), sat the Central Scintillator Extension (CSX)

and the Miniskirt Scintillator (MSX) [12]. Both fulfilled the role of the CSP for the CMX.

In the forward region, sat the Barrel Muon Detector (BMU). The BMU, also built from wire chambers,

covers the region of 1.0 ≤ |η| ≤ 1.5 [12]. The chambers assume a cylindrical shape similar to the CMU.

As with the previous muon chambers, a scintillator sat in front of the BMU called the Barrel Scintillator

Upgrade (BSU) [12].

A diagram of the CDF muon coverage appears in Figure 4.11.

4.2.5 Cerenkov Luminosity Counters

The Cerenkov Luminosity Counters (CLC) consisted of long, gaseous tubes developed to measure the lu-

minosity of the Tevatron at the CDF interaction point [13]. The CLC counters made use of isobutane

gas at atmospheric pressure. The CDF detector divided the CLC into two modules, one for each side of

the detector. Each module had 48 tubes divided into three groups of 16 and cover the region of roughly

3.7 ≤ |η| ≤ 4.7. The tubes pointed back to the interaction point, having photomultiplier tubes on the other
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end to detect Cerenkov radiation generated from particle interacting with the gas.

4.3 The CDF II trigger system

The Tevatron operated with a crossing every 396 ns at a frequency of 2.5 MHz. The CDF detector had the

ability to write to tape at a rate of only 50 Hz. This required a substantial amount of event rejection, a

function performed by CDF’s trigger system.

The CDF detector divided the trigger system into three levels: 1, 2, and 3. Levels 1 and 2 were primarily

hardware based, while level 3 relied on software run on a PC farm. The trigger system sought to perform

the best event reconstruction available at the needed rejection rate.

The CDF trigger system is described in the following section.

4.3.1 Level 1 trigger

The level 1 trigger took information from the calorimeters, the COT, and the muon system to create

primatives. The primatives were prospective physics objects such as muons, electrons, or jets constructed

from tracks, muon stubs, and calorimeter clusters.

The level 1 trigger made use of several pieces of dedicated hardware. Once piece called the eXtremely

Fast Tracker (XFT), took output from the COT to reconstruct tracks. Using the axial superlayers, the XFT

began its reconstruction by looking for hits in the COT. After the XFT found hits, the XFT proceeded to link

up the hits in order to reconstruct tracks. The XFT had the capability to find tracks with PT > 1.5 GeV/c,

placing tracks into 128 bins of pT and into 288 bins of φ with widths of 1.25◦ .

After finding tracks, the XFT fed the tracks into another set of dedicated hardware called the Extrapo-

lation Unit (XTRP). The XTRP extrapolated the tracks found by the XFT to two subdetectors, the muon

system and the calorimeter. The level 1 trigger system could then construct primitives from muon stubs

and calorimeter clusters in combination with the extrapolated tracks from the XTRP. This allowed us to

implement trigger requirements at level 1 based on muons and electrons having tracks produced in the COT.

The electron and muon triggered events we used in the analysis entered in this fashion. The XTRP also

distributed tracks further up the trigger system to level 2 to later be used by the Silicon Vertex Trigger

(SVT). The SVT will be described in the next subsection.

Other than the aforementioned electron primitive based trigger, the level 1 calorimeter trigger also sought

to trigger on jets, photons, missing transverse energy (E/T ), and total event transverse energy (
∑
ET ). We

divided the calorimeter triggers up into two categories: object triggers for finding objects such as photons
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or jets, and global triggers for finding E/T and
∑
ET . The object triggers applied thresholds to calorimeter

towers while the global triggers applied thresholds to energy summations over all towers. The trigger had

the ability to group towers to look for events having two objects such as dijets.

4.3.2 Level 2 trigger

Events that satisfied the requirements at level 1 got passed into level 2 where a more thorough reconstruction

is performed. At level 2, further information became available for processing. In particular, information

from the silicon detector became available for the level 2 triggers. While we designed the level 1 decision

time to be rigid with respect to the bunch crossing rate, the level 2 trigger had a more flexible amount of

time to determine whether or not an event should be rejected.

Upon a level 1 accept, the tracking information from the silicon detectors was read out and sent into

the SVT. The SVT provided the means to trigger on tracks having high impact parameters. With the long

b-hadron lifetime, the tracks produced by a b decay typically have large impact parameters. Many physics

signatures produce b-hadrons naturally, such as Higgs events and tt̄ events. The SVT allows triggers to look

for these signals.

At level 2, data coming from the CES and PES detectors became available. The ShowerMax detectors

provided information on electron and photon candidates in the electromagnetic calorimeters.

A dedicated PC held final responsibility for making the level 2 accept for an event. The level 2 PC ran

Gentoo linux and took input via FILAR PCI optical fiber link interface cards [14]. A total of three spares

had the functionality to replace the main node should it have failed.

4.3.3 Level 3 trigger

Having satisfied the requirements of level 2, the event information moved onward to level 3. The level 3

trigger consisted of a PC farm that performed nearly a complete reconstruction of the events. Objects such

as tracks and jets became available that were identical to their offline reconstruction minus the effect of

calibrations.
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Chapter 5

Object identification

In order to reconstruct decays of H → WW → lνlν, we first needed to construct identification algorithms

to isolate signal events. We started by categorizing leptons based on which sub-detectors they registered in

during the event. We catered the cuts applied to each category to increase the likelihood that the candidate

lepton is of good quality. We divided the leptons into electrons, muons, and a third group called crack

tracks. The crack tracks are lepton candidates which pass through cracks in the calorimeter and leave no

hits in the muon chambers.

As mentioned previously, the analysis we present here is an updated version of the previous result over

7.1 fb−1. In addition to the increase in data to 8.2 fb−1, we made a strong effort to improve the analysis

itself. With the analysis employing multivariate techniques, we implemented improvements with the primary

goal of improving acceptance. The improvements in this version of the analysis focused on improving our

lepton identification in order to increase our signal acceptance. We implemented four primary upgrades.

Firstly, we evaluated new track and calorimeter isolations for electron and muon candidates. Secondly,

we implemented a new category for likelihood based plug electrons. Thirdly, we added a new category

specifically to include electrons which pass through cracks in the calorimeter. Finally, we created a new

category for muons originating from the CMU sub-detector. During the discussion of lepton identification,

the analysis improvements will be introduced.

5.1 Improved isolation

In decays of H → WW → lνlν, as mentioned earlier, we normally expect the lepton to be isolated, in

that there is not a large amount of activity around them in the detector. The isolation, which will be

defined in detail later, quantifies this and is evaluated for both track and calorimeter activity. The isolation

requirements work as a fairly effective veto of several backgrounds such as W+ jets. However, there is a

predisposition for the charged leptons to be in close proximity to each other in H →WW → lνlν decays.

In decays of the spin 0 scalar H to WW , the two spin 1 W bosons must have a net spin of 0. They can
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Figure 5.1: An example of the spin correlation resulting in the two charged leptons heading in the same
direction. The new track and calorimeter isolations capitalize on the correlation to increase acceptance.

either individually have spin 0 or take on spins in opposite directions. Due to the chirality requirements of

the weak interaction, the W− decays only to left handed charged leptons while the W+ decays only to right

handed charged antileptons. This results in a constraint on the direction in which the charged leptons can

move, causing them to prefer the same direction.

For example, if an H decay results in a spin up W+ and a spin down W−, the l+ will move in the same

direction as the spin of the W+ while the l− will move in the opposite direction of the spin of the W−.

This results in the l+ and l− moving in the same direction. In this circumstance, there is a possibility that

the l+ and l− will spoil the other’s or one another’s track or calorimeter isolations. A diagram of the spin

correlation appears in Figure 5.1.

To prevent mutual isolation spoilage, we reevaluated the isolation quantities for electron and muons by

punching out nearby electron or muon candidates in the isolation calculation. A description of the procedure

follows.

5.1.1 Electron and muon candidate lists

We started the isolation reevaluation by creating lists of strong muon and electron candidates in an event

which could be vetoed from a candidate’s isolation. To appear on the list, muons must have met the

requirements of Eem < 2 + Max(0, 0.0115 × p − 100), Ehad < 6 + Max(0, 0.0280 × p − 100), z0 < 60 cm,

pT > 10 GeV/c, d0 < 0.02 cm (if track had SVX hits), and d0 < 0.20 < cm (if track had no SVX hits).
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Electrons needed to have a track, Ehad/Eem < 0.055+0.0045×(Eem+Ehad), z0 < 60 cm, and ET > 10 GeV.

Recalculating isolation values requires knowledge of the calorimeter towers corresponding to the muon

and electron candidates. To differentiate the towers, CDF assigns two indices to each tower called iPhi

and iEta. The index iPhi roughly corresponds to the φ coordinate in the detector while iEta roughly

corresponds to the η coordinate.

The quantities we stored for muons were track number (a unique identification number for the track)

and all calorimeter towers they passed through. For electrons, we stored track number and towers belonging

to the electron’s calorimeter cluster. To construct the electron cluster in the central calorimeter, we stored

two towers, one corresponding to the tower where the electrons track entered the calorimeter and the tower

adjacent in iEta with the highest electromagnetic energy deposit. We took the tower adjacent in iEta

only since shielding prevents leakage into towers adjacent in iPhi. In the forward calorimeter, no shielding

between towers in either iEta or iPhi exists. Because of this, we stored up to three towers for the electron

cluster, allowing towers adjacent in both iPhi and iEta.

5.1.2 Evaluation of the new isolations

With the lists of track numbers and calorimeter towers, we could evaluate the new isolations. To evaluate

the isolations, we used the quantity ΔR =
√

(Δη)2 + (Δφ)2 to measure the spatial separation between two

points in η-φ space. With ΔR, we defined the original calorimeter isolation for electrons as

CalIso =
ET (in cone of ΔR < 0.4) − Ee

T

Ee
T

, (5.1)

where ET (in cone of ΔR < 0.4) is the sum of all energy around the electron cluster’s center within a cone

of ΔR < 0.4 and Ee
T is the transverse energy of the electron candidate.

To evaluate the new calorimeter isolation, if any tower from the muon or electron lists described above

came within the electron’s cone of of ΔR < 0.4, we vetoed that tower’s energy from being added to

ET (in cone of ΔR < 0.4). We conducted the same procedure for the muon calorimeter isolations.

The original electron and muon track isolations are given by

TrkIso =
∑

i p
i
T (in cone of ΔR < 0.4) − pT (e or μ)

pT (e or μ)
(5.2)

For the new track isolation, if any track from the list described above came within the electron’s cone of

of ΔR < 0.4, we vetoed that track’s pT from being added to pT (in cone ofΔR < 0.4). We carried out the

same procedure for the muon track isolations.
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Figure 5.2: A muon candidate’s track isolation cone appears here with a spoiling electron. Using the new
isolation, the electron’s track would be ignored in the track isolation calculation.

An example of a muon candidate’s track isolation cone with a spoiling electron appears in Figure 5.2.

5.1.3 Limits of the new isolations

We implemented the new isolation successfully in all of the central electron and muon categories. A difficulty

emerged in the forward region with duplicate tracks. In the forward region of the detector, tracks pass

through smaller portions of the tracking volume. As a result, charge mismeasurements became frequent.

This resulted in duplicate tracks being stored on the lepton lists, the tracks being nearly identical to each

other with the exception of charge. As a consequence, we abandoned the new isolation for the forward

categories of electrons and muons.

To easily identify the categories which were able to capitalize on the new isolations, we end their names

with an uncapitalized “ni”.
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TCEni
Region central

Track pT > 10 GeV/c (> 5 GeV/c if ET < 20 GeV/c)
Track |z0| < 60 cm

Num. axial SL hits (5 hits) ≥ 3
Num. stereo SL hits (5 hits) ≥ 2

Lshr < 0.2
ET /pT < (2.5 + 0.015 × ET )

EHAD/EEM < 0.055 + 0.00045 × E
signed CES Δx −3 < q × δX < 1.5cm

CES |Δz0| < 3 cm
Fiducial in CES

NewCalIso ≤ 0.1
NewTrkIso ≤ 0.1

Track Beam constrained

Table 5.1: The criteria used to define a TCEni electron.

5.2 Electron identification

We constructed electron candidates by matching a track to a cluster deposited in the electromagnetic

calorimeter. We considered the electron’s mass to be negligible in the determination of the candidate’s

four momenta. Ignoring the mass of the electron produces an effect on the order of 10−8 for the value of the

momentum. We constructed the four momenta from momentum information in the tracking sub-detectors

and energy information in the calorimeters.

We divided the electron candidates into two categories based on whether they are central (fiducial to

the central calorimeter) or forward (fiducial to the forward calorimeter). In both the central and forward

divisions, we employed both cut based and likelihood based selections.

5.2.1 Central electrons

The primary central electron category are TCEni (tight central electron) electrons. Being cut based, we

required TCEni electrons to pass requirements consistent with quality electrons. These included requiring

the electron to be fiducial to the CES detector and implementing cuts on quantities such as Ehad/Eem and

E/p. The selection for the TCEni category are summarized in Table 5.1.

As mentioned earlier, we have an additional likelihood based category employed for central electrons called

LBEni (likelihood based electron). Electron candidates that fail the TCEni selection have an opportunity

to pass into the analysis as an LBEni electron. In building the LBEni category, we needed to first construct

the likelihood function. The variables we chose to incorporate are:

• Ehad/Eem: The ratio of the electron’s energy deposited in the hadronic calorimeter to the electron’s

energy deposited in the electromagnetic calorimeter. For a real electron, this quantity is typically

small.
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• ET /pT : Electron’s transverse energy divided by the electron track’s transverse momentum. For a

quality electron, this is expected to be close to unity.

• Lshr: Electron’s lateral shower profile in the plane transverse to the direction of the electron.

• CalIso: Calorimeter isolation as defined previously.

• TrkIso: Track isolation as defined previously.

• Signed CES Δx: In the r-φplane, the distance between the electron’s reconstructed track and the best

matching CES cluster times the electron’s charge.

• CES Δz: In the r-zplane, the distance between the electron’s reconstructed track and the best matching

CES cluster times the electron’s charge.

• COT χ2: The χ2 generated from the fit of the COT track.

• Num. axial SL hits: The number of hits from the electron’s track in the COT found in axial superlayers.

• Num. stereo SL hits: The number of hits from the electron’s track in the COT found in axial super-

layers.

• Num. SVX hits: The number of hits from the electron’s track SVX sub-detector.

We can then constructed the likelihood as:

L(−→x ) =
Lsig

Lsig + Lbkg
=

∏N
i=1 P

sig
i (xi)∏N

i=1 P
sig
i (xi) +

∏N
i=1 P

bkg
i (xi)

(5.3)

Here, xi is the i-th identification variable, N is the total number of variables, P sig
i (xi) (P bkg

i (xi)) is the

i-th probability to find the value of xi in the given signal (background) likelihood template.

We constructed the signal templates using Z → ee events selected from high pT electron data. We

required the Z candidates to fall in the mass range of 76 < Mll < 106 GeV/c2. We required one decay leg

of the Z to pass the selection for a TCE electron, while requiring the other to be of opposite sign and pass

a probe selection described in Table 6.5. A TCE electron is an older version of the aforementioned TCEni

electron, identical to a TCEni electron with the exception that it used the old isolations in place of the new.

Provided the event passed requirements, the probe electron’s variables created the needed templates. In the

event that both legs are identified as TCE electrons, we used both electrons in the templates’ construction.

Since we did not update the signal templates for the new TCEni category, we fed the new isolation values

into the signal templates for the old isolations.
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Central electron probe
Track pT > 5.0 GeV/c
Track |z0| ≤ 60 cm
Fiducial Track is to CEM

Table 5.2: The criteria used to define a probe for central electrons.

Fake central
Fiducial Track in CES

EHAD/EEM < 0.125 + 0.00045 × E
CalIso ≤ 0.3

Track pT > 10 GeV/c
Track |z0| < 60 cm
Conversion No
Leading jet No

Table 5.3: The criteria used to define denominator objects for electrons.

To build the background templates, we looked for faked electrons in a sample of dijet data coming off

of a trigger requiring a jet to have ET > 20 GeV. With one jet having ET > 20 GeV, we looked for an

additional object which could have faked an electron. We define the “fakeable” object in Table 6.11. We

required the pairing of the jet and fake central electron to meet the following criteria:

• The combined jet-fake electron mass must not be in the Z mass range of 76 < Mll < 106 GeV/c2.

• The leading jet must have |z0| < 60 cm and |Δz0(leading jet, fake electron)| < 4 cm.

The signal templates have a small background of fake central electrons which we subtracted out by

normalizing the background templates to an estimate of the number of fake events entering the signal

templates. In the background templates, an amount of signal from W → lv and Z → ll enters. To subtract

this out, we used a sample of MC for W → lv and Z → ll to estimate the amount that enters and to provide

templates for the subtraction.

With the templates constructed, we list the final requirements for the LBEni category in Table 5.4.

LBEni
Region central

Track pT > 10 GeV/c (> 5 GeV/c if ET < 20 GeV/c)
Track |z0| < 60 cm

EHAD/EEM < 0.125
Fiducial in CES

NewCalIso ≤ 0.3
Track Beam constrained

Likelihood (L) > 0.90

Table 5.4: The criteria used to define a LBEni electron.
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PHX
Region plug

PES 2-D η 1.2 < η < 2.0
EHAD/EEM < 0.05

PEM 3 × 3 fit tower true
PEM χ2 < 10

PES5× 9U > 0.65
PES5× 9V > 0.65

CalIso < 0.1
PESPEM ΔR < 3.0

NSV XHits ≥ 3
Num. SVX hits ≥ 3

Track |z0| < 60 cm

Table 5.5: The criteria used to define a PHX.

5.2.2 Forward electrons

As with the central electrons, the forward electrons have a cut based category and a likelihood based category.

The cut based category, PHX, introduces candidates by matching a forward track from the SVX with a cluster

from the electromagnetic cluster. The cuts used to define the PHX category appear in Table 5.5.

In order to further improve acceptance, we implemented a new category of likelihood based forward

electrons for this analysis. The category was previously used in CDF’s measurement of the Standard Model

ZZ → llll cross-section. The new category called plug likelihood-based electrons (PLBE) was based on the

LBE category previously incorporated into the analysis. This category did not replace the PHX category

used in previous iterations. We implemented the PLBE category to recover forward electrons that failed the

PHX criteria.

We build the PLBE likelihood discriminant based on the following information:

• ET : Electron calorimeter energy projected into the transverse plane.

• Track η: Electron track’s η .

• ET /pT : Electron’s transverse energy divided by the electron track’s transverse momentum. For a

quality electron, this is expected to be close to unity.

• CalIso: Calorimeter isolation as defined previously.

• TrkIso: Track isolation as defined previously.

• pT : Electron track’s momentum projected into the transverse plane.

• Ehad/Eem: The ratio of the electron’s energy deposited in the hadronic calorimeter to the electron’s

energy deposited in the electromagnetic calorimeter. For a real electron, this quantity is typically

small.
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PLBE
Region plug

PES 2-D η 1.2 < η < 2.0
Track |z0| ≤ 60 cm
NSiHits ≥ 3

EHAD/EEM < 0.05
CalIso ≤ 0.3
Track Beam constrained

Likelihood > 0.70
Orthogonality Was not already a PHX

Table 5.6: The criteria used to define a PLBE.

• PES η: Electron’s η as measured by the PES detector.

• PESPEM ΔR: The distance in ΔR between the electron’s cluster reconstruction in the PES and the

electron’s cluster reconstruction in the PEM.

• PES5 × 9U : The ratio of the energy of the five PES U strips in the center of the cluster to the nine

total U strips composing the full cluster.

• PES5 × 9V : The ratio of the energy of the five PES V strips in the center of the cluster to the nine

total V strips composing the full cluster.

• PEM 3 × 3 fit tower: The number of towers used in the comparison of the 3 × 3 PEM energy

distribution compared to the expectation for a real electron.

• PEM χ2: The χ2 generated from the comparison of the 3 × 3 PEM energy distribution compared to

the expectation for a real electron.

• z0: Electron track’s z0 .

• NSVXHits: The number of hits the electron’s track produces in the SVX.

• d0: Electron track’s corrected d0 .

As with the LBEni category, we can then construct the likelihood using Equation 5.3. Once completed,

the likelihood was combined with the cuts shown in Table 5.6 to create the PLBE category. The templates

were built in the same manner as in the case of the LBEni category.

5.3 Muon identification

We divided up the muon candidates based on which specific muon subdetect0rs recorded hits during the

event. We refer to track segments produced in the muon detectors as stubs. Stubbed muons are muons
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CMUPni
Region central

Num. axial SL hits (5 hits) ≥ 3
Num. stereo SL hits (5 hits) ≥ 2

Track d0 < 0.02 cm with > 0 NSiHits or < 0.2 cm with 0 NSiHits
Track |z0| < 60 cm

Track χ2/n.d.f. < 4 for runs < 186598 or < 3 for all else
NewCalIso ≤ 0.1
NewTrkIso ≤ 0.1

EEM < 2.0 + 0.0115 × Max(0, p − 100) GeV
EHad < 6.0 + 0.0280 × Max(0, p − 100) GeV

Fiducial in CMU and CMP
ΔXCMU < 7 cm
ΔXCMP < Max(6, 150.0/pT ) cm

Table 5.7: The criteria used to define a CMUPni.

which produced a stub in a muon subdetector. Additionally, there are a few categories which incorporated

muons which do not produce stubs, referred to as stubless muons.

5.3.1 Stubbed muons

We created six categories to handle the stubbed muons. We composed the primary category, CMUPni, of

muons producing stubs in both the CMU and CMP muon sub-detectors. The criteria used to select CMUPni

muons appear in Table 5.7. We describe candidates registering stubs in the CMP (CMPni) or CMX (CMXni)

in Table 5.8. Finally, we describe candidates registering stubs in the CMXMsKs (CMXMsKsni) or BMU

(BMU) in Table 5.9.

New for this analysis, we added a new category for muons having hits only in the CMU. The trigger for

the CMUni category was only turned on after run 270062. We list the requirements placed on a CMUni

muon in Table 5.6.

5.3.2 Stubless muons

We included muons lacking stubs with the requirement that the tracks be minimally ionizing. They are high

pT tracks with only a small amount of energy deposited in the calorimeters. We define two versions, one for

central muons (CMIOCESni) and another for forward muons (CMIOPES). Detailed descriptions appear in

Table 5.11.

5.4 Crack track identification

We define a third grouping of lepton categories for isolated tracks that pass through cracks in the CES and

leave no stubs in the muon chambers. We refer to these as crack tracks. We established two versions. We
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CMPni
Region central

Num. axial SL hits (5 hits) ≥ 3
Num. stereo SL hits (5 hits) ≥ 2

Track d0 < 0.02 cm with > 0 NSiHits or < 0.2 cm with 0 NSiHits
Track |z0| < 60 cm

Track χ2/n.d.f. < 4 for runs < 186598 or < 3 for all else
NewCalIso ≤ 0.1
NewTrkIso ≤ 0.1

EEM < 2.0 + 0.0115 × Max(0, p − 100) GeV
EHad < 6.0 + 0.0280 × Max(0, p − 100) GeV

Fiducial in CMP
ΔXCMP < Max(6, 150.0/pT ) cm

CMXni
Region central

Num. axial SL hits (5 hits) ≥ 3
Num. stereo SL hits (5 hits) ≥ 2

Track d0 < 0.02 cm with > 0 NSiHits or < 0.2 cm with 0 NSiHits
Track |z0| < 60 cm

Track χ2/n.d.f. < 4 for runs < 186598 or < 3 for all else
NewCalIso ≤ 0.1
NewTrkIso ≤ 0.1

EEM < 2.0 + 0.0115 × Max(0, p − 100) GeV
EHad < 6.0 + 0.0280 × Max(0, p − 100) GeV

Fiducial in CMX
ΔXCMX < Max(6, 125.0/pT ) cm

Table 5.8: The criteria we used to define the CMPni and CMXni categories.

CMXMsKsni
Region central

Num. axial SL hits (5 hits) ≥ 3
Num. stereo SL hits (5 hits) ≥ 2

Track d0 < 0.02 cm with > 0 NSiHits or < 0.2 cm with 0 NSiHits
Track |z0| < 60 cm

Track χ2/n.d.f. < 4 for runs < 186598 or < 3 for all else
NewCalIso ≤ 0.1
NewTrkIso ≤ 0.1

EEM < 2.0 + 0.0115 × Max(0, p − 100) GeV
EHad < 6.0 + 0.0280 × Max(0, p − 100) GeV

Fiducial in CMXMsKs
ΔXCMP < Max(6, 125.0/pT ) cm

Trigger present for runs > 227704

BMU
Region forward

Num. axial SL hits (5 hits) ≥ 3
Num. stereo SL hits (5 hits) ≥ 2

Track d0 < 0.02 cm with > 0 NSiHits or < 0.2 cm with 0 NSiHits
Track |z0| < 60 cm

Track χ2/n.d.f. < 4 for runs < 186598 or < 3 for all else
CalIso ≤ 0.1
TrkIso ≤ 0.1
EEM < 2.0 + 0.0115 × Max(0, p − 100) GeV
EHad < 6.0 + 0.0280 × Max(0, p − 100) GeV

CalEnergy ≥ 0.1
Num. hits in BMU > 2

Num. SVX hits ≥ 3
COT hit fraction > 0.6

Fiducial in BMU
ΔXCMX < Max(6, 125.0/pT ) cm

Valid for runs > 162312

Table 5.9: The criteria we used to define the CMXMsKsni and BMU categories.

40



CMUni
Region central

Num. axial SL hits (5 hits) ≥ 3
Num. stereo SL hits (5 hits) ≥ 2

Track d0 < 0.02 cm with > 0 NSiHits or < 0.2 cm with 0 NSiHits
Track |z0| < 60 cm

Track χ2/n.d.f. < 3
NewCalIso ≤ 0.1
NewTrkIso ≤ 0.1

EEM < 2.0 + 0.0115 × Max(0, p − 100) GeV
EHad < 6.0 + 0.0280 × Max(0, p − 100) GeV

Fiducial Not in CMX or CMP
ΔXCMU < 7 cm

Trigger present for runs > 270062

Table 5.10: The criteria used to define a CMU.

CMIOCESni
Region central

Num. axial SL hits (5 hits) ≥ 3
Num. stereo SL hits (5 hits) ≥ 3

Track d0 < 0.02 cm with > 0 NSiHits or < 0.2 cm with 0 NSiHits
Track |z0| < 60 cm

Track χ2/n.d.f. < 3
NewCalIso ≤ 0.1
NewTrkIso ≤ 0.1

EEM < 2.0 + 0.0115 × Max(0, p − 100) GeV
EHad < 6.0 + 0.0280 × Max(0, p − 100) GeV

EHAD + EEM < 0.1 GeV
Fiducial in CES

CMIOPES
Region central

Track d0 < 0.02 cm with > 0 NSiHits or < 0.2 cm with 0 NSiHits
Track |z0| < 60 cm
NewCalIso ≤ 0.1
NewTrkIso ≤ 0.1

EEM < 2.0 + 0.0115 × Max(0, p − 100) GeV
EHad < 6.0 + 0.0280 × Max(0, p − 100) GeV

EHAD + EEM < 0.1 GeV
COT hit fraction > 0.6

Fiducial in PES

Table 5.11: The criteria we used to define the CMIOCESni and CMIOPES categories.
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CrkTrk
Num. axial SL hits (5 hits) ≥ 3
Num. stereo SL hits (5 hits) ≥ 3

Track d0 < 0.02 cm with > 0 NSiHits or < 0.2 cm with 0 NSiHits
Track |z0| < 60 cm

Track χ2/n.d.f. < 3
CalIso ≤ 0.1
TrkIso ≤ 0.1

Fiducial Not in CES or PES

Table 5.12: The criteria used to define a IsoCrkTrk.

IsoCrkTrk
NAxL (5 hits) ≥ 3
NStL (5 hits) ≥ 3

Track d0 < 0.02 cm with > 0 NSiHits or < 0.2 cm with 0 NSiHits
Track |z0| < 60 cm

Track χ2/n.d.f. < 3
CalIso (optimized for IsoCrkTrk) ≤ 0.1

TrkIso ≤ 0.1
Fiducial Not in CES or PES

Table 5.13: The criteria used to define a IsoCrkTrk.

used one, CrkTrk, for more muon like crack tracks. The description of CrkTrk appears in Table 5.12. We

used another, IsoCrkTrk, which is new to the analysis and attempted to recover electrons passing through

calorimeter tracks. We present a more detailed description of IsoCrkTrk below.

5.4.1 IsoCrkTrk category

As described above, the CrkTrk category placed a requirement on calorimeter isolation. This calorimeter

isolation requirement has the potential to spoil quality electrons however. If an electron passed through a

calorimeter crack and produced a shower in the electromagnetic calorimeter, the shower would result in the

electron failing the calorimeter isolation. Additionally, an electron could radiate a photon before passing

through a calorimeter crack, also resulting in the electron failing the calorimeter isolation criteria.

To reincorporate these electrons, we created the new IsoCrkTrk category. If an electron were to pass

through a crack, either the electron’s shower or the shower produced by the radiated photon would likely

create energy deposits in the four nearest calorimeter towers. In order to recover these candidates during the

isolation calculation, we left out the nearest four towers’ electromagnetic energy in the ET (in cone ΔR < 0.4)

sum. We show an example of an electron entering a crack and depositing energy in the calorimeter in

Figure 5.3.

As with the PLBE category, IsoCrkTrk does not replace the CrkTrk category. Only candidates that fail

the CrkTrk criteria qualify to be reclassified as IsoCrkTrk’s. We list the requirements placed on IsoCrkTrk

leptons in Table 5.13.
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The track entering the calorimeter

Calorimeter crack

Calorimeter tower

ET deposited, amount relative to size

Figure 5.3: An example of an electron entering a crack and depositing energy into the calorimeter. The size
of the orange boxes correspond to the amount of ET deposited in the respective tower. The four towers with
energy deposites would not enter the calorimeter isolation calculated specifically for the IsoCrkTrk catergory.

5.5 Jet identification

5.5.1 Jet clustering algorithm

We reconstruct jets using a clustering algorithm described in Reference [15]. The algorithm creates a list

of seed towers having ETi = Ei sin(θi) > 1 GeV, where Ei is the energy deposited in the i-th tower and

θi is the azimuthal angle of the center of the i-th tower. The algorithm then ranks them in order of ETi.

Starting with the tower having the highest ET , the algorithm builds a precluster around the center of the

seed towers using neighboring towers whose centers lie within ΔR < 0.4 of the seed. Note that once the

algorithm includes a seed tower in one jet cluster, we do not assign it to another.

Once the algorithm forms preclusters, it loops over them to create clusters. Using the towers in the

preclusters, the algorithm finds new centers in η and φ by using the weighted tower transverse energies. The

algorithm then examines all towers in the new ΔR cone around the new cluster center. The algorithm now

adds in all towers in the cone with ET > 100 MeV into the cone. The algorithm keeps any towers that were

previously in the precluster, even if they fall out of the new ΔR cone. The algorithm repeatedly runs over

the clusters, determining their new centers and adding towers, until the clusters stabilize.

There are several instances of overlap which can cause difficulties. For instance, the towers of a cluster

can be contained entirely within another cluster. In this event, the algorithm drops the cluster with the

lowest ET . In another instance, the clusters can partially overlap. To correct this, the algorithm evaluates
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an overlap fraction defined as the sum of the ET of the overlapping towers divided by the total ET of the

smaller cluster. If the overlap fraction is above 0.75, the two clusters get merged into one. If it is less than

0.75, the algorithm assigns overlapping towers to the cluster having the closest center.

5.5.2 Jet energy correction

The calorimeter is not uniform in its ability to measure jet energies as a function of pseudorapidity. This

arises from separations in the calorimeter that occur at η = 0 and again where the central and plug meet

at roughly an |η| of 1.1. Additionally, further η dependencies arise from the central and plug calorimeters

displaying different responses from each other. To correct for this effect, we scaled the response of the

calorimeter outside of the region of 0.2 < |η| < 0.6 to be consistent with the response in the region of

0.2 < |η| < 0.6 [15]. We chose the region of 0.2 < |η| < 0.6 since it lies far from cracks and is well covered

by instrumentation. We determined the correction by using dijet events and balancing them against each

other in ET .

We needed a further jet energy correction to cover nonlinear response and uninstrumented regions of the

calorimeter. To produce this correction, we used a finely tuned set of PYTHIA MC samples to determine

the needed scaling based on the measured jet energy in the calorimeter versus the energy of the hadron level

jet [15]. We took great care to make sure that the simulation accurately modeled calorimeter response to

single particles such as pions or kaons. We incorporated systematic uncertainties, taking into account the

MC’s ability to model single particle response and fragmentation resulting from hadronization.

As the luminosity in the CDF detector increases, the average number of pp̄ interactions per bunch

crossing, 〈N〉, also increases. At a luminosity of L = 40×1030 cm−2s−1, the average number of pp̄ is around

one. When the luminosity increases to L = 100 × 1030 cm−2s−1, 〈N〉 increases to three and goes up to

eight when L = 300 × 1030 cm−2s−1. The multiple interactions have the effect of increasing the jet energy

by introducing background hadrons into the jet’s cone in the calorimeter. To correct for this, we use the

number of reconstructed z-vertices, Nvtx, as an estimate of the number of interactions. We determined the

correction itself using minimum bias data and randomly selecting seed towers to construct a cluster within

a ΔR cone of 0.4. We then averaged the energy within the cone over many events as a function of 〈Nvtx〉.
We applied the correction as determined by the event’s Nvtx.
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5.6 Missing transverse energy

Missing transverse energy (E/T ) is the final object necessary for the analysis. Missing transverse energy

enters from the neutrinos resulting from the leptonically decaying W bosons. Normally, if all products of a

collision are detected, we expect the vector sum of the transverse energy ET to be zero. The CDF detector

lacks the ability to register neutrinos. As a result, a nonzero vector sum of ET is typically found in the

presence of neutrinos.

In this analysis, we define E/T as follows:

E/T = |
∑

i

ET,in̂T,i|, (5.4)

where n̂T,i is the transverse component on the unit vector pointing from the interaction point to the i-th

calorimeter tower. We apply a correction to E/T to account for muons which do not dump all of their energy

into the calorimeter and for tracks which pass through regions of the calorimeter without instrumentation.
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Chapter 6

Base event selection, backgrounds,
and modeling

6.1 Base event selection

The decays of the Higgs in H → WW → lνlν provides us with several handles for event selection, namely

the two charged leptons and the two neutrinos. To identify these events, we looked for two opposite sign high

pT leptons and missing energy (E/T ) corresponding to neutrinos the CDF detector does not measure. On

triggered leptons, we required electron candidates to have ET > 20 GeV and muons to have pT > 20 GeV/c.

For the nontriggered leptons, we required electron candidates to have ET > 10 GeV and muons to have

pT > 10 GeV/c. Additionally, we required the z-positions of the leptons at closest approach to the beam

line to be within 4 cm of each other.

As for the dilepton pairs taken, we selected e-e, e-μ, μ-μ, e-track, and μ-track. Here, “e” and “μ”

represent the electron and muon categories established in the last chapter; “track” refers to leptons in the

CrkTrk and IsoCrkTrk categories of whose flavor we are not able to identify.

Drell-Yan (DY) backgrounds consisting of pp̄ → Z → ll are not expected to exhibit E/T in significant

quantities. However, the detector’s energy resolution is not perfect. As a result, E/T can appear in DY

events from the mismeasurement of jet or lepton energy. To suppress the Drell-Yan background, we defined

a variable called E/T spec, expressed as follows:

E/T spec =

⎧⎪⎪⎨
⎪⎪⎩
E/T if Δφ(E/T , nearest lepton or jet) > π/2

E/T sin(Δφ(E/T , nearest lepton or jet)) if Δφ(E/T , nearest lepton or jet) < π/2
. (6.1)

We required E/T spec > 25 GeV for electron-electron and muon-muon pairs. For electron-muon pairs, since

they do not originate from DY, we loosened the requirement to E/T spec > 15 GeV. Since the DY background

enters primarily from the mismeasurement of lepton or jet energy, the E/T spec cut places an increasingly

stricter requirement on E/T the more collinear �E/T gets to a jet or lepton. This significantly lowers the

efficiency of DY events entering the analysis.
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silicon good muon chambers good CMX/CMXMsKs good luminosity (pb−1

no no no 8,250
yes no no 7,960
no yes no 8,178
no yes yes 8,013
yes yes no 7,896
yes yes yes 7,737

Table 6.1: The luminosity of the sample for each required component.

To suppress a background from Wγ as well as heavy flavor decays such as Υ resonances, we required

an invariant dilepton mass of Mll > 16 GeV/c2. There is a subanalysis that looks specifically in the

Mll < 16 GeV/c2 region. That analysis will be described briefly later on. To suppress a background from

WZ production, we required the two selected leptons to have opposite sign. As with the Mll cut, there is

a subanalysis that looks explicitly for two same sign leptons resulting from WH(H → WW ) → lνlνlν and

ZH(H → WW ) → lllνlν. That analysis will also be described briefly later on.

We divided the events in the analysis into three bins based on jet content: 0 jets, 1 jet, and 2 or more

jets. For jets, we require ET > 15 GeV and |η| < 2.5.

With the CDF detector being comprised of several sub-detectors, it is not always possible to keep all

components operational at all times. If one component is malfunctioning, data can still be taken with

the remaining functional components. Running in a compromised state though has an impact on which

components of the detector can safely be included in an analysis. For example, if the CMU muon chamber is

nonoperational, no muons making use of the CMU should be included. To guarantee that analyses use the

correct components, CDF has lists of runs (good run lists) for which different combinations of components

were in operational order. We required events to appear on a good runs list that had the relevant detector

components operations. We list the luminosities for different combinations of active components in Table 6.1.

The cuts applied in the analysis are summarized as:

• Require two high pT , opposite sign leptons, with pT > 20 GeV/c for the triggered lepton and a

pT > 10 GeV/c for the nontriggered lepton

• Require the z-positions of the leptons at closest approach to the beam line to be within 4 cm of each

other

• Select e-e, e-μ, μ-μ, e-track, and μ-track combinations

• Require E/T spec > 25 GeV for ee and μμ and E/T spec > 15 GeV for eμ

• Require the dilepton mass Mll > 16 GeV/c2
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• For jets in the analysis, require them to have ET > 15 GeV and |η| < 2.5

• The event must also appear on the relevant good runs list for the needed detector components

6.2 Backgrounds and modeling

Several backgrounds emerge in the dilepton plus E/T final state. We list below how each background enters

and rough estimates of their expected contributions:

• WW : The production of a WW pair from pp̄→WW represents the largest background in the analysis

with an expected contribution of 40 percent. It is very similar to the signal with the W bosons decaying

to lv.

• WZ and ZZ: Additional diboson production also enters with an expectation of roughly 3 percent each

for WZ and ZZ.

• W+ jets: A background of W+ jets emerges when the W boson decays leptonically and a jet ends up

faking a lepton. The expected contribution of this background is around 15 percent. The modeling of

this background is driven by data.

• W + γ: This background comes into the analysis when the W boson decays leptonically and the γ

undergoes a conversion, accounting for about 10 percent. In a photon conversion, the process γ → e+e−

occurs and one of the electrons is lost.

• tt̄: The tt̄ background enters in the portion of the analysis using two or more jets and accounts for

roughly 13 percent.

• DY: The Drell-Yan background enters when accompanied by E/T and constitutes roughly 16 percent

of the background.

6.3 Monte Carlo simulations

Ideally, we would be able to provide clean, data driven models for all the backgrounds listed above. Unfortu-

nately, with the exception of the W+ jets background, it’s not feasible. This forced us to rely on simulations

(Monte Carlo or MC) designed to model the backgrounds as accurately as possible. We go through great

lengths to check modeling out as thoroughly as possible. We employ several control regions to cross-check

our modeling.

The MC simulation pass through three phases of simulation:
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• Generator

• Detector simulation

• Trigger efficiency and incorporation

Each of these will be described briefly below.

6.3.1 Generator level simulation

The generator level MC lies at the very heart of the MC used in the analysis. The generator level MC

models the pp̄ collision and the particles produced in the immediate physics process. For example in case of

the WW background, the generator handles the underlying process consisting of pp̄→WW → lvlv.

We modeled the WZ, ZZ, tt̄, and DY MC samples with the PYTHIA generator [16]. The PYTHIA

generator models the parton distributions of the proton-antiproton pairs to leading order. The parton

distribution functions model the probability of finding a parton with a certain momentum after a hard

scatter. The PYTHIA generator is also responsible for modeling initial state radiation, final state radiation,

and hadronization. We modeled any other physics processes that result from the pp̄ collision with PYTHIA.

We modeled the W + γ background with the Baur generator [17]. We found the Baur generator demon-

strated better modeling of the QED radiation associated with these events. We then fed the results of the

Baur MC generation into the PYTHIA generator to complete the samples.

To produce the most dominate backgroundWW , we used the next-to-leading order generator MC@NLO [18].

To generate the samples used, the output from the MC@NLO generation was fed into the HERWIG gener-

ator [19] to handle parton showers.

The production of the MC samples is rather computationally intensive. In order to make the production

more reasonable, we applied cuts to the generated samples to veto the full generation of events which would

not normally be expected to appear in the analysis. For the DY samples (qq̄ → Z → ll), we placed cuts

on the dilepton mass of Mll > 20 GeV/c2. We generated additional DY samples to fill gaps created by

the cut, generating for 10 < Mll < 20 GeV/c2. The W + γ samples required pT (γ) > 5 GeV/c and

ΔR(lepton, γ) > 0.2. We accounted for the effects of these cuts through efficiency corrections applied to the

samples.

For signal MC, we incorporated Higgs production from three mechanisms: gluon fusion, associated pro-

duction, and vector boson fusion. Gluon fusion is by far the dominate mode of production used in the anlaysis.

The gluon fusion cross-section (σgg→H ) we used has been calculated to next-to-next-to-leading log [20][21].

We incorporated corrections for electroweak effects from [22][23]. For associated Higgs production (σqq̄′→WH
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sample period σ × B(pb) filter efficiency

Wγ → lvγ 0-32 32.38× 0.5 1.0
WW 0-32 11.66× 0.1027 1.0
WZ 0-32 3.46× 0.101 0.754
ZZ 0-32 1.511 0.233
tt̄ 0-11 7.04× 0.1027 1.0
Z → ll (Mll > 20 GeV/c2) 0-27 355 1.0
Z → ee (10 < Mll < 20 GeV/c2 ) 0-11 920 0.0156
Z → μμ(10 < Mll < 20 GeV/c2 ) 0-11 920 0.0156
Z → ττ (10 < Mll < 20 GeV/c2 ) 0-11 1272 0.00713
gg → H → WW 0-32 0.397 1.0
qq̄′ → WH → WWW 0-32 0.046 0.7108
qq̄ → ZH → ZWW 0-32 0.030 0.7172
qq̄(′) → qq̄(′)H → qq̄(′)WW 0-32 0.035 1.0

Table 6.2: A description of the samples used in the analysis for the background and signal. The filter
efficiency refers to the efficiency of the cuts applied at generator level. The values given for Higgs production
all assume a Higgs mass of 160 GeV/c2.

and σqq̄→ZH), we used cross-sections as determined from [24], which begin with a next-to-leading order cal-

culation and incorporates next-to-next-to-leading order QCD corrections from [25]. as well as electroweak

corrections from [26]. In the case of vector boson fusion (σqq̄(′)→qq̄(′)H), we determined the production

cross-section also from [27]. We caculated electroweak corrections to the vector boson cross-section using

the HAWK program [28]. To determine the Higgs branching ratios, we used the HDECAY program [29].

To maximize sensitivity at each Higgs mass, we generated MC samples for 19 Higgs masses running from

110-200 GeV/c2, in increments of 5 GeV/c2.

A description of the background and signal samples used in the analysis appear in Table 6.2.

6.3.2 Detector simulation

Once the generator level MC has been run, we fed the results consisting of particle positions and four-

momenta into another level of simulation. The detector simulation models the physics processes as they

would occur in the physical detector. Many of the aspects of the detector are simulated at this level. These

include luminosity, beam position, particle-detector interactions and sub-detector condition. As an example,

the photon produced in a simulated W + γ event might convert to an electron-antielectron pair. This is an

effect that would be modeled at this stage of the MC sample creation.

The CDF detector simulation is based on the GEANT MC program [30].
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6.3.3 Trigger efficiency and incorporation

In order to incorporate the generated samples into the anlaysis, we give the MC samples a per event weight

of

weight =
σ × B × εfilter × εtrigger

i × slepton
i × εvertex × Li

Ngenerator
i (|z0| < 60 cm)

, (6.2)

for

• σ: The cross-section for the MC process being modeled

• B: The braching ratio for the MC process being modeled

• εfilter: The filter efficiency originating from cuts applied at generator level

• εtrgger
i : The relative trigger efficiency for the i-th lepton cetegory, described in more detail below

• slepton
i : The scale factor for the i-th lepton category, described in more detail in the next section

• εvertex: The efficiency of the |Z|-vertex position requirement which depends on run number

• Li: The luminosity for the i-th lepton category as determined from the necessary good runs list

• Ngenerator
i (|z0| < 60 cm): The number of generated events which meet the requirement of (|z0| <

60 cm)

We measured the needed trigger efficiency from data using a tag and probe method was used. The

exercise took a Z → ll data sample in the range of 76 < M(ll) < 106 GeV/c2, requiring electrons (muons) to

have an ET (PT ) > 20 GeV/c. To measure the efficiency, we identfified a trigger confirmed muon or electron.

Trigger confirmed refers to a lepton which was confirmed as having fired the trigger to accept the event. We

then sought a second muon or electron, which either did or did not fire the trigger in the process of decaying

from the Z to check trigger efficiency.

6.4 Efficiencies and DY cross-sections

One difficulty in modeling the data with MC simulations arises from differences in the lepton identification

efficiency between data and MC samples. To account for this, we measured efficiencies for each lepton type,

for both data and MC samples. We then took efficiency ratios and applied them to the MC samples, to

properly account for the efficiency differences. We refer to this correction as slepton
i .
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6.4.1 Measurement of efficiencies and scale factors

To evaluate the lepton efficiencies, we used a tag and probe method using electrons and muons from Z

candidates. We selected Z decays in which one of the legs passes a full selection (referred to as a tag-leg)

and the other a base selection (referred to as a probe-leg). This then allows a determination of the efficiency

for a final lepton selection (referred to as a tight-leg). Depending on the lepton type, the tag- and tight-legs

may or may not be the same lepton selection.

With the following notation:

• V: corresponds to the tag-leg

• T: corresponds to tight-legs which are not already a tag-leg, this is the selection being measured

• F: corresponds to the probe-leg

we can then define the efficiency as:

ε =
2 ×NV V +NV T

2 ×NV V +NV T +NV F
. (6.3)

Here, NV V is the number of candidates with two tag-legs; NV T is the number of candidates with one

tag-leg and one tight-leg; and NV F is the number of candidates with one tag-leg and one probe-leg.

In the instance that the tag-leg is the selection whose efficiency is being measured, the efficiency becomes

ε =
2 ×NV V

2 ×NV V +NV F
. (6.4)

As an example, for an LBEni, we required the tag-leg to be a TCEni while requiring the tight-leg to be

an LBEni. In this instance, we used equation 6.7. Alternatively, for a TCEni, the tag-leg is a subset of the

tight-leg, and we made use of equation 6.4.

For the probe-legs, we defined four selections for electrons and two for muons. The central electron

selection is listed in Table 6.5. For forward electrons, we divided up the efficiency into two components, one

for forward tracking (PHXTrk) and another for electromagnetic calorimeter identification (PHXPEM). The

criteria for the two froward electron probes are listed in Table 6.6. For central muons and forward muons,

the criteria are listed in Table 6.7.

The list of lepton selections and their probe and tag legs are listed in Table 6.3 for electrons and Table 6.4.

For CrkTrk and IsoCrkTrk, we evaluated efficiencies for muons and electrons separately and then com-

bined them.
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lepton selection tag leg probe leg

LBEni TCEni central electron probe
TCEni TCEni central electron probe

PHXTrk TCEni probe PHXTrk
PHXPEM TCEni probe PHXPEM
PLBEPEM TCEni probe PHXPEM
CrkTrk e TCEni probe CMIOCentral

IsoCrkTrk e TCEni probe CMIOCentral

Table 6.3: The efficiencies and resulting scale factors averaged over the full data set.

lepton selection tag leg probe leg

CMUPni CMUPni probe CMIOCentral
CMUni CMUPni probe CMIOCentral
CMPni CMUPni probe CMIOCentral
CMXni CMUPni probe CMIOCentral

CMXMsKsni CMUPni probe CMIOCentral
BMU CMUPni probe CMIOForward

CMIOCESni CMUPni probe CMIOCentral
CMIOPES CMUPni probe CMIOForward
CrkTrk μ CMUPni probe CMIOCentral

IsoCrkTrk μ CMUPni probe CMIOCentral

Table 6.4: The efficiencies and resulting scale factors averaged over the full data set.

Central electron probe
Track pT > 5.0 GeV/c
Track |z0| ≤ 60 cm
Fiducial Track is to CEM

Table 6.5: The criteria used to define a probe for central electrons.

PHXPEM
EHAD/EEM < 0.125

|PES η| > 1.2 and < 2.0
Track |z0| ≤ 60 cm
NSvxHits ≥ 3

PHXTrk
EHAD/EEM < 0.125

|PES η| > 1.2 and < 2.0
Track |z0| ≤ 60 cm
NSvxHits ≥ 3

CalIso ≤ 0.1
PESPEM ΔR < 3.0

PES5× 9U > 0.65
PES5× 9V > 0.65

PEM 3 × 3 fit tower > 1.0
PEM χ2 < 10

Table 6.6: The criteria used to define probes for PHX and PLBE electrons.

CMIOCentral
NAxL (5 hits) ≥ 2
NStL (5 hits) ≥ 2

Track |z0| ≤ 60 cm
Fiducial Not in PES

CMIOForward
Track |z0| ≤ 60 cm
Fiducial in PES

COT hit fraction > 0.6

Table 6.7: The criteria used to define a probe for central (CMIOCentral) and forward (CMIOForward)
muons.
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Average over full run range

data efficiency MC efficiency Scale Fac

LBEni 0.117 ± 0.001 0.098 ± 0.000 1.162 ± 0.007
TCEni 0.773 ± 0.001 0.804 ± 0.000 0.971 ± 0.001
PHXTrk 0.872 ± 0.001 0.857 ± 0.000 1.021 ± 0.001
PHXPEM 0.804 ± 0.001 0.874 ± 0.000 0.932 ± 0.001
PLBEPEM 0.121 ± 0.001 0.084 ± 0.000 1.343 ± 0.011
CrkTrk e 0.599 ± 0.003 0.719 ± 0.001 0.851 ± 0.004
IsoCrkTrk e 0.231 ± 0.002 0.166 ± 0.001 1.314 ± 0.015
CMUPni 0.777 ± 0.002 0.887 ± 0.000 0.883 ± 0.002
CMUni 0.765 ± 0.006 0.878 ± 0.003 0.872 ± 0.007
CMPni 0.771 ± 0.005 0.904 ± 0.001 0.855 ± 0.005
CMXni 0.870 ± 0.003 0.905 ± 0.001 0.966 ± 0.003
CMXMsKsni 0.771 ± 0.006 0.896 ± 0.001 0.864 ± 0.007
BMU 0.728 ± 0.005 0.710 ± 0.001 1.035 ± 0.007
CMIOCESni 0.253 ± 0.001 0.259 ± 0.000 1.160 ± 0.007
CMIOPES 0.551 ± 0.003 0.594 ± 0.001 0.943 ± 0.006
CrkTrk μ 0.589 ± 0.002 0.679 ± 0.001 0.956 ± 0.004
IsoCrkTrk μ 0.010 ± 0.001 0.007 ± 0.000 1.232 ± 0.082

Table 6.8: The efficiencies and resulting scale factors averaged over the full data set.

In evaluating the values of NV V , NV T , and NV F from reconstructed Z → ll, we employed sideband

subtraction. We take the signal region as 76 < M(ll) < 106 and the background region as 61 < M(ll) <

76 GeV/c2 ∪ 106 < M(ll) < 121 GeV/c2.

With the efficiencies finished, we evaluated the scale factors to be applied to the MC samples as:

slepton
i =

εdata
i

εMC
i

. (6.5)

We divided the total dataset into nine sections (run periods) based on run number and the efficiencies

and scale factors were evaluated in each section. This allowed the MC sample representing a specific run

period to be multiplied by a more accurate scale factor. The efficiencies and scale factors averaged over the

full data set appear in Table 6.8.

6.4.2 DY cross-section measurement

One of the strongest crosschecks of the analysis is the DY control region. This control region provides

a strong indication that we correctly implemented the new lepton categories and the new isolation. It

additionally can indicate we performed our background modeling correctly. The control region aims to

reconstruct pp̄→ Z → l+l− for l being either an electron or muon. We required 76 < m(ll) < 106 GeV/c2,

E/T < 15 GeV for eμ events, and E/T < 25 GeV for all others. We also required the event to appear on a

good runs list, Δz0(ll) < 4 cm, passed cosmic ray veto, and a trigger confirmed lepton.

Using the modeling described above, the expected and observed yields for the DY control region appear
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Category WW WZ ZZ tt̄ DY Wγ W+jets Total Data

e e 21.0 135.5 122.0 5.6 371364.8 5.1 1154.1 372808.2 345852.0
e μ 18.4 0.4 0.2 4.0 334.1 1.5 75.2 433.9 356.0
μ μ 17.2 91.5 85.8 4.3 245931.8 0.0 1043.9 247174.5 242994.0
e trk 15.9 39.7 36.8 4.1 106188.1 1.0 5142.2 111427.8 99665.0
μ trk 9.7 26.0 23.9 2.5 70191.5 0.1 4186.3 74440.0 66644.0

Total: 82.2 293.1 268.7 20.5 794010.3 7.8 11601.6 806284.2 755511.0

Table 6.9: Predicted and observed yields in the Drell-Yan Region.

Category DY MC Data Data/MC DY x-sec (pb) ± stat. Residual [σ]
TCEni 537551.7 506198 0.94 236.65 ± 0.35 -11.7
LBEni 88021.2 84849 0.96 242.25 ± 0.89 1.7
PHX 169682.5 158101 0.93 234.15 ± 0.61 -10.9
PLBE 31026.7 28276 0.91 229.03 ± 1.44 -8.1
CMUPni 231953.7 227949 0.98 246.97 ± 0.54 11.5
CMUni 24608.1 23933 0.97 244.41 ± 1.82 2.0
CMPni 35349.8 35667 1.01 253.56 ± 1.42 9.0
CMXni 118983.4 114080 0.96 240.95 ± 0.75 0.3
CMXMsKsni 22738.2 23125 1.02 255.58 ± 1.78 8.3
BMU 18458.4 17899 0.97 243.69 ± 1.90 1.5
CMIOCESni 72806.8 74145 1.02 255.92 ± 0.99 15.4
CMIOPES 37490.8 36190 0.97 242.59 ± 1.33 1.4
CrkTrk 129226.7 120993 0.94 235.29 ± 0.70 -7.8
IsoCrkTrk 32690.9 34011 1.04 261.45 ± 1.50 13.8

Table 6.10: Predicted and observed Drell-Yan cross-sections for lepton pairings with at least one of the
categories listed.

in Table 6.9. Stacked kinematic plots for the region appear in Figures 6.1 and 6.2. Stacked plots compare

the contribution of the various backgrounds to data. The different background contributions are stacked

on top of each other to produce the total background expectation. For example, in the DY stacked plots

appearing in Figures 6.1 and 6.2, the yellow contribution representing DY-ee is stacked on top of the grey

contribution representing DY-μμ.

To evaluate the DY cross-sections, we use the formula

σdata =
Nobserved

L × ε
=
Nobserved

Nexpected
× σtheory, (6.6)

where L is the sample’s luminosity, ε is an efficiency for lepton selection, and Nobserved is the number of

observed events. Additionally, Nexpected is the number of events expected and is given by the formula

L × ε× σtheory. The cross-section used in the MC sample is then given by σtheory here as 251.3 pb.

We evaluated the cross-sections for each possible lepton type combination. We included the predicted and

observed Drell-Yan cross-sections for lepton pairings with at least one of the lepton categories in Table 6.10.

The uncertainties listed in the table only include statistical errors and not systematics.
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Figure 6.1: Drell-Yan (Z → l+l−) control region.
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Figure 6.2: Drell-Yan (Z → l+l−) control region.
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Denominator central
Fiducial Track in CES

EHAD/EEM < 0.125 + 0.00045 × E
CalIso ≤ 0.3

Conversion No

Denominator forward
Fiducial Track in PES
|PES η| > 1.2 and < 2.0

EHAD/EEM < 0.125
CalIso ≤ 0.3
NSiHits ≥ 3

Track |z0| ≤ 60 cm
PHX electron No

Table 6.11: The criteria used to define denominator objects for electrons.

6.5 Fake rates and W+ jets background modeling

6.5.1 Fake rate measurement

In order to incorporate the data driven W+jets background, we must evaluate the probability of a jet faking

a lepton (fake rate). To do this, we defined a loose set of lepton selection cuts called denominator objects

or “fakeable objects”. When run over a sample of jet data, the goal of the denominator object or “fakeable

object” selection is to pick out jets that have the potential to fake a lepton under the right circumstances.

For example, in the jet data we specifically look for electromagnetic showers having tracks fiducial to the

CES or PES in order to construct the denominator object or “fakeable object” for an electron. For muons,

the denominator objects or “fakeable objects” are contructed to be fiducial to the already described muon

categories. Incorporating the denominator objects with the standard lepton selections, we can define the

fake rate fi for a lepton category i as:

fi =
Ni(leptons passing ID) −∑j∈EWK Nij(leptons passing ID)

Ni(denominator objects) −∑j∈EWK Nij(denominator objects)
. (6.7)

Here, Ni is the number of leptons identified passing either the standard lepton selection (leptons passing

ID) or the criteria to become a denominator object. For Nij , summed over j ∈ EWK, these correspond to

the expected number that result from electroweak processes such as Z → ll and W → lν.

The denominator object definitions for central and forward electrons are listed in Table 6.11. The

denominator object definitions for central and forward muons are listed in Table 6.12.

The goal of evaluating the fake rate is to create a weight which can be applied to events having one

identified lepton and one identified denominator object corresponding to the W+ jets background.

To evaluate the fake rate, we ran over data samples corresponding to four jet triggers to select identified

leptons and denominator objects. The triggers used required jets with ET > 20 GeV, 50 GeV, 70 GeV,

100 GeV. We then measured the fake rates as functions of the jet ET and averaged together over the four

triggers. The four trigger samples each have different contributions of quark and gluon jets. Averaging over
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Denominator central
NAxL (5 hits) ≥ 2
NStL (5 hits) ≥ 2

Track |z0| ≤ 60 cm
Track d0 < 0.02 cm with > 0 NSiHits or < 0.2 cm with 0 NSiHits

Track χ2/n.d.f. < 4 for run number > 186598, < 3 for others
CalIso ≤ 0.3

Fiducial Not in PES

Denominator forward
COT hit fraction > 0.6

Track |z0| ≤ 60 cm
Track d0 < 0.02 cm with > 0 NSiHits or < 0.2 cm with 0 NSiHits

Track χ2/n.d.f. < 4 for run number > 186598, < 3 for others
CalIso ≤ 0.3

Fiducial Not in PES

Table 6.12: The criteria used to define denominator objects for muons.

the four samples provided us with a better model for quark and gluon jets.

The fake rates measured for electrons appear in Figure 6.3, for central muons in Figure 6.4, and for

forward muons in Figure 6.5. In the figures, the dark grey area corresponds to statistical errors resulting

from the averaging of the measured rates. We applied a systematic uncertainty based on the scatter of the

values measured among the jet samples. We did this by taking the combined systematic and statistical

error as being
√
σ2

stat + α2 where α quantifies the systematic error and is scaled until each jet sample’s

measurement is consistent with being 1σ off of the mean.

The CMIOCESni category does demonstrate a negative fake rate in the higher jet pT bins as seen

in Figure 6.4. For simplification, we do not verify the MC for the electroweak backgrounds used in the

subtraction as meticulously as those used for backgrounds in the final limit setting of the analysis. In

the instance of CMIOCESni, muons previously categorized as CMIOCESni were picked up as CMUni and

CMUPni muons. The fake rate for CMIOCESni is small and the effect of the application of the negative fake

rate is small compared to the large 40% uncertainty applied to the normalization of the QCD background.

6.5.2 W+ jets background modeling

To construct the W+ jets background samples used in the analysis, we took a sample of events with one

identified lepton and one identified denominator object. We filtered the denominator object through the

analysis cuts just as if it were a normal lepton. We took only the denominator object with the highest ET .

It is possible for a denominator object to fake more than one lepton type. We included these separately.

Once composed, we weighted the events with their corresponding fake rate as described above to the sample.

There are a sample of W+ jets events that will not make it into the W+ jets background model. These

are events when the identified lepton is not a triggerable category such as CrkTrk. To correct for the absence
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Figure 6.3: Fake rates for electrons.

of these events, we measured a non-triggerable fake rate using a MC sample of W → lν. In the W → lν MC,

we again looked for a real lepton and a denominator object. We then constructed a ratio of the number of

events where the l from W → lv is not triggerable to the number of events where the l is triggerable. This

then makes the total number of events in the W+ jets backgound

Ndata
total = Ndata

triggerable +Ndata
triggerable ×

NMC
nontriggerable

NMC
triggerable

. (6.8)

6.6 Control regions

6.6.1 W+ jets and W + γ control region

To check that the W+ jets and W + γ backgrounds are modeled accurately, we defined a control region

comprised primarily of the W+ jets and W+γ contributions. The events that make it into this sample follow

the normal analysis cuts with the exception that we require same-charge lepton candidates. The number of

expected and observed events appear in Table 6.13. Kinematic plots for the region appear in Figures 6.6

and 6.7.
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Figure 6.4: Fake rates for central muons.

Category WW WZ ZZ tt̄ DY Wγ W+jets Total Data

e e 14.4 9.1 2.4 6.5 29.3 118.2 131.0 310.8 346.0
e μ 15.7 15.0 1.2 6.8 93.1 97.6 158.4 387.8 363.0
μ μ 0.0 4.8 0.5 0.0 0.4 0.0 13.5 19.2 22.0
e trk 5.2 4.7 0.6 2.1 8.0 23.7 140.0 184.4 187.0
μ trk 0.0 2.6 0.2 0.0 2.1 3.5 61.2 69.6 52.0

Total: 35.3 36.2 4.9 15.5 132.9 242.9 504.1 971.9 970.0

Table 6.13: Predicted and observed yields in the W+ jets and W + γ control region.
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Figure 6.5: Fake rates for forward muons.
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Figure 6.6: The W+ jets and W + γ control region.
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Figure 6.7: The W+ jets and W + γ control region.
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Category WW WZ ZZ tt̄ DY Wγ W+jets Total Data

e e 0.1 0.2 0.0 0.0 1.5 74.3 9.1 85.2 114.0
e μ 0.1 0.4 0.0 0.0 5.7 44.7 6.4 57.3 61.0
μ μ 0.0 0.2 0.0 0.0 0.0 0.0 0.9 1.2 3.0
e trk 0.0 0.1 0.0 0.0 0.9 10.9 16.3 28.1 18.0
μ trk 0.0 0.0 0.0 0.0 0.2 2.8 8.2 11.2 5.0

Total: 0.2 0.8 0.1 0.0 8.4 132.7 40.9 183.0 201.0

Table 6.14: Predicted and observed yields in the additional W + γ control region.

6.6.2 Additional W + γ control region

To examine the W +γ control region, we applied the normal analysis cuts with the exception of reversing the

cut on the dilepton mass (taking Mll > 16 GeV/c2 to Mll < 16 GeV/c2) and requiring the charged leptons

to now have the same charge instead of opposite. The number of expected and observed events appear in

Table 6.14. Kinematic plots for the region appear in Figures 6.8 and 6.9.
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Figure 6.8: The additional W + γ control region.
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Figure 6.9: The additional W + γ control region.
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Chapter 7

Analysis of events with no jet activity

This analysis incorporated events with 0, one, and two or more jets. The background and signal samples vary

widely based on the number of jets in the event. For example, in events with 0 jets, the WW background is

dominant. In events with 2 or more jets, the tt̄ is by far the dominant background. In addition to the differing

backgrounds, the signal contributions change was well. In events with 0 jets, gluon fusions dominates while

associated production dominates in events with jets.

In order to capitalize on the varying background contributions based on the number of jets, we divided

the events into bins consisting of 0, one, and two or more jets. This allowed us to cater the analysis to

counter the dominate background inherent to the specific jet bin. This chapter will describe events without

jets.

Several lepton types have a large contamination from jets faking leptons. We further divide the data

sample up into two categories based on the rate at which jets fake leptons, either low S/B (high fake rate)

or high S/B (low fake rate). We grouped all dilepton pairings having either a forward electron (PHX or

PLBE) or an IsoCrkTrk in the low S/B grouping. We also include muon categories that have also have a

high fake rate such as CMPni, CMUni, and CMIOPES.

We isolate the events in the high S/B sample to prevent dilution in sensitivity from events that appear

in the low S/B sample. Despite the low S/B having little sensitivity compared to the high S/B sample, we

are not penalized by incorporating it into the analysis, even if it contributes only a few percent in sensitivity.

The expected signal and background contributions compared to data appear in Tables 7.1 and 7.2 for

high and low S/B and assuming a Higgs mass of 165 GeV/c2. In Table 7.3, the combination of high and low

S/B appears.

7.1 Matrix Element calculation

The Matrix Element (ME) technique allowed us to determine a probability, based on kinematics, that an

event is consistent with the expectation of being either signal or background. We based this probability on a
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CDF Run II Preliminary
R L = 8.2 fb−1

MH = 165 GeV/c2

tt̄ 2.48 ± 0.76
DY 198 ± 54
WW 573 ± 57
WZ 24.6 ± 3.7
ZZ 36.0 ± 5.1
W+jets 112 ± 27
Wγ 56.4 ± 8.2

Total Background 1000 ± 100

gg → H 18.3 ± 5.4
WH 0.452 ± 0.076
ZH 0.472 ± 0.067
V BF 0.164 ± 0.034

Total Signal 19.3 ± 5.5

Data 957

HighSB-0J

Table 7.1: The expected signal and background contributions compared with data for the high S/B grouping
for events having no jets.

CDF Run II Preliminary
R L = 8.2 fb−1

MH = 165 GeV/c2

tt̄ 0.84 ± 0.26
DY 185 ± 50
WW 250 ± 25
WZ 13.3 ± 2.0
ZZ 18.2 ± 2.6
W+jets 377 ± 57
Wγ 150 ± 22

Total Background 994 ± 93

gg → H 6.4 ± 1.9
WH 0.161 ± 0.027
ZH 0.128 ± 0.018
V BF 0.052 ± 0.011

Total Signal 6.7 ± 1.9

Data 1187

LowSB-0J

Table 7.2: The expected signal and background contributions compared with data for the low S/B grouping
for events having no jets.
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CDF Run II Preliminary
R L = 8.2 fb−1

MH = 165 GeV/c2

tt̄ 3.3 ± 1.0
DY 380 ± 100
WW 823 ± 82
WZ 37.9 ± 5.7
ZZ 54.2 ± 7.7
W+jets 489 ± 83
Wγ 206 ± 30

Total Background 2000 ± 190

gg → H 24.6 ± 7.3
WH 0.61 ± 0.10
ZH 0.599 ± 0.085
V BF 0.215 ± 0.044

Total Signal 26.1 ± 7.4

Data 2144

All

Table 7.3: The expected signal and background contributions compared with data for the combination of
the high and low S/B groupings for events having no jets.

leading-order matrix element calculation. The technique accounts for effects such as acceptances, efficiencies,

and detector resolution. Once calculated, we used the outputted probability values as one of many inputs

into a neural network which we used to further discriminate signal from background. The neural network

will be described in the next section.

The ability to evaluate the probability depends on quantities the CDF detector is capable of measuring.

We made use of eight kinematic quantities to perform the calculation: momentum for the charged leptons

and missing transverse energy, E/T x and E/T y. With these observables, the event probability for a given

contribution m, is given by

Pm(xobs) =
1

〈σm〉
∫
dσth

m (y)
dy

ε(y)G(xobs, y)dy, (7.1)

where dσth
m/dy is the leading-order differential cross-section for contribution m; xobs are the observable

variables (charged lepton momenta and �E/T ); y are the true lepton four-momenta (for electrons, muons,

and neutrinos); ε(y) is the product of efficiencies and acceptances; and G(xobs, y) is the transfer function

handling the effects of detector resolution. We evaluate the normalization, 〈σm〉, by using the requirement

that ∫
Pm(xobs)dxobs = 1. (7.2)

We used WW , WZ, W + γ, W+ jets, and H → WW for the contribution m. We evaluated the efficiency

ε(y) by using a combination of MC and data for W + γ and W+ jets. For all other contributions, we used
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a GEANT based MC to determine the efficiency as described previously.

We evaluated the leading-order differential cross-sections, dσth
m/dy, at parton level using the MCFM

program [31]. With the presence of two neutrinos in the final state, we have missing information in dσth
m/dy

that must be taken into account. We did this by integrating over the possible neutrino momenta given the

constraints provided by E/T x and E/T y. Additionally, the ME incorporates information concerning the W

and Z resonances. This implicitly incorporates constraints on the W and Z masses into the calculation. For

the signal contribution PHWW , we evaluated the probability for all 19 Higgs mass hypotheses for each event.

In order to construct a discriminant to be used as a neural network input, we defined a likelihood ratio

(LR) as:

LRS(xobs) =
Ps(xobs)

Ps(xobs) + ΣikiPi(xobs)
, (7.3)

where S is either direct WW production or H →WW and ki is the expected fractional contribution for the

i-th background (constraining Σiki = 1).

Figure 7.1 shows the output of the likelihood ratio calculation assuming a Higgs mass of 160 GeV/c2 for

using either H →WW or WW as the signal contribution. Figure 7.2 shows the output of the likelihood ratio

for the high and low cases for S/B. As visible in Figures 7.1 and 7.2, The H → WW signal demonstrates

a peak in the lowest likelihood ratio bin. This results from components of the H → WW sample looking

more kinematically similar to the WW background than to the H →WW signal.

The ME technique is very powerful for signal discrimination since all processes included are very well

modeled and understood. In events with jets however, the technique is significantly less useful since jets are

not predicted at leading-order and QCD uncertainties are large.

7.2 Neural Network

We employed a neural network (NN) to further increase our sensitivity to the Higgs signal. A NN is effectively

a function which maps several inputs to a single output (score), in this case between −1 and 1. For inputs,

we selected kinematic variables from the events. We then fit the distribution of NN scores to perform the

final limit setting.

To cross-check the improvement we see by using a NN, we recently bypassed the NN and performed the

full analysis using a set of analysis cuts to optimize Higgs signal using S/
√
S +B. Through the comparison

of a cut-based version of the analysis to the NN analysis, we estimated that the use of the NN multivariate

technique increases our sensitivity by 10-20%.
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Figure 7.1: Output of the LR calculation assuming a Higgs mass of 160 GeV/c2 for the assumption of either
H →WW (top) or WW (bottom) as the signal contribution.
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Figure 7.2: Divided into high and low S/B, the output of the LR calculation, assuming a Higgs mass of
160 GeV/c2 for the assumption of either H →WW (top) or WW (bottom) as the signal contribution.

7.2.1 Neural network introduction

Artificial NNs model a biological network of neurons seen in nature [32]. The artificial neurons are fairly

simple, being activated when a weighted sum of inputs becomes larger than a threshold. For a neuron i, the

activation function zi is simply

zi =
∑

j

wijxj − si (7.4)

for inputs xj , weights wij , and threshold si. Once activated, the neuron calculates an output, via a transfer

function, to be relayed to other neurons. The transfer function can be a simple, differentiable, smoothed

version of the step function such as:

σ(zi) =
2

1 + e−zi
− 1. (7.5)

We employed a feed-forward neural network in which the neurons form a layered structure consisting of

an input layer, a hidden layer, and an output layer. In this NN variant, the signal always gets conveyed to

the next layer. Figure 7.3 shows a simple diagram of a feed-forward neural network.

In order to be used, the NN must undergo training, which is a procedure that adjusts the NN’s weights to

optimally distinguish signal from background. We ideally want more signal like events to have a high score
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Variable input

Input layer

Hidden layer

Output

Figure 7.3: A diagram of a feed-forward NN.

(near 1), while more background like events receive a lower score (near −1). We performed the training by

adjusting the weights to minimize an error function defined as the squared distance between outputs the

NN nodes produce against values expected for the input type (signal or background). We performed the

minimization itself through a gradient descent method.

We made use of the backpropagation algorithm to perform the error function minimization to train the

NN. It is a recursive algorithm that begins with the output and climbs the network to the input, performing

the error function minimization along the way.

7.2.2 Neural network application

In our application of NNs, we make ude of the NN software package Neurobayes R© [33]. The kinematic

variables we select as inputs are:

• HT : The sum of the lepton pT and event E/T

• LW (HWW ): The output of the ME likelihood ratio for a signal of H →WW

• LW (WW ): The output of the ME likelihood ratio for a signal of WW

• Δφ(ll): The difference in φ between the two leptons

74



 R(ll)Δ
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
ve

n
ts

 / 
0.

5

0

50

100

150

200

250

300

 R(ll)Δ
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
ve

n
ts

 / 
0.

5

0

50

100

150

200

250

300 W+jets
γW

tt
WZ

ZZ
DY
WW

 10×HWW 
Data

CDF Run II Preliminary

OS 0 Jets
2 = 160 GeV/cHM

-1 L = 8.2 fb∫

Figure 7.4: The ΔRll input to the NN for a Higgs mass of 160 GeV/c2.

• ΔR(ll): The ΔR between the two leptons

• M(ll): The combined mass of the leptons

• pT (l1): The transverse momentum of the leading lepton

• pT (l2): The transverse momentum of the subleading lepton

• MT (llE/T ): The transverse mass of the two leptons and E/T

We chose the kinematic variables above to maximize Higgs signal sensitivity. With the exception of the

likelihood ratios, the neural network inputs appear in Figures 7.4 and 7.5.

We trained the neural network over 19 Higgs masses, ranging from 110 to 200 GeV/c2, one every increment

of 5 GeV/c2. Additionally, the background samples described in the last chapter were included in training

as well. We weighted the training background samples based on their expected contribution to the data

sample. To check the process, we randomly divided the each sample into two groups. We used one group

for training while the other was used as a check against the NN being sensitive to statistical fluctuations.

The NN output distributions, high and low S/B, for a Higgs mass of 165 GeV/c2 appear in Figure 7.6.

The NN output for the other Higgs masses appear in Figures 7.7-7.11. We can then use these NN output

distributions to set the final Higgs production limits.
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Figure 7.5: The other inputs to the NN for a Higgs mass of 160 GeV/c2.
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Figure 7.6: Output of the NN for a Higgs mass of 165 GeV/c2.
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Figure 7.7: Output of the NN for Higgs masses of 110, 115, 120, and 125 GeV/c2.
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Figure 7.8: Output of the NN for Higgs masses of 130, 135, 140, and 145 GeV/c2.
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Figure 7.9: Output of the NN for Higgs masses of 150, 155, 160, and 170 GeV/c2.
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Figure 7.10: Output of the NN for Higgs masses of 175, 180, 185, and 190 GeV/c2.
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Figure 7.11: Output of the NN for Higgs masses of 195 and 200 GeV/c2.

7.3 Systematic uncertainties

In the evaluation of systematic uncertainties, we attempted to take a conservative approach to provide the

utmost confidence that the final Higgs exclusion limits are accurate. It is worth noting that the sensitivity

of the analysis is statistically limited.

The systematic uncertainties we applied in this analysis fall into two categories, rate and shape. We used

rate systematics to cover uncertainties in the normalizations applied to our various signal and background

samples. Shape systematics cover uncertainties in the shape the signal and background contributions take

in the score distributions output by the NNs.

To evaluate the individual systematic uncertainties, we varied parameters that would potentially have

an impact on contributions (e.g. varying the jet energy scale by its associated uncertainty). We then

determined, where applicable, the effect the parameter variation had on the overall size of a contribution to

create a rate uncertainty, or the effect the contribution had on a bin by bin basis in the NN output to create

a shape uncertainty.

For our rate systematics, there are three primary contributions. Cross-section uncertainties covered

our lack of knowledge concerning the theoretical cross-sections used to normalize signal and background
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contributions. We assigned acceptance uncertainties for variances in signal and background contributions

based on efficiencies concerning selection cuts and detector geometry. We assigned an uncertainty for the

amount of luminosity which was delivered to the CDF detector.

A summary of the systematic uncertainties applied in the 0 jets analysis appear in Table 7.4. Each row

in the table shows a source of a systematic and the columns show the effect on a certain contribution by

percent. The percentages in italic lying in the same row are considered to be 100% correlated. Negative

values correspond to uncertainties which are negatively correlated among the various analysis channels.

7.3.1 Cross-section uncertainties

For the tt̄ cross-section, which is known to next-to-next-to-leading order, we assign an uncertainty of 7%

based on several theoretical calculations for the quantity [34][35][36]. For the diboson production cross-

sections of WW/WZ/ZZ, we assign an uncertainty of 6% based on the theoretical calculation from [37].

For the purpose of setting a limit, this analysis requires knowledge of the Higgs cross-section uncertainty

since we look for four production mechanisms simultaneously. The four production mechanisms each have

different cross-sections, meaning we must account for each of their differing contributions.

The cross-section uncertainties for the Higgs signal vary among the production methods. The gluon fusion

process dominating in this subsample, is known to next-to-next-to-leading order. However, gluon fusion is

a QCD process so the uncertainty is significant. We utilized studies with the HNNLO program [38][39][40].

The HNNLO program evaluates the theoretical gluon fusion cross-section based on a next-to-next-to-leading

order QCD calculation. The HNNLO program allows the user to vary the renormalization and factorization

scales in the calculation and the PDF model. For the PDF models, we used the eigenfunctions from MSTW

2008 NNLO PDF [41]. These take into account uncertainties in the strong coupling constant αs(q2). We

evaluated the scale uncertainty to be 7.0% and the PDF model uncertainty to be 7.7%.

For associated Higgs production, we know the production cross-section to next-to-next-to-leading order.

The theoretical uncertainty is fairly small as a result. We applied an uncertainty of 5% based on results

from [3]. The vector boson fusion cross-section is only known to next-to-leading order. As a result, the

uncertainty is larger. We assign a systematic uncertainty of 10% [3].

7.3.2 Acceptance uncertainties

We assigned several acceptance systematics for effects such as trigger efficiency, higher order diagrams, and

Drell-Yan modeling.

83



U
n
ce

rt
a
in

ty
S
o
u
rc

e
W

W
W

Z
Z

Z
tt̄

D
Y

W
γ

W
+

je
t

g
g
→

H
W

H
Z

H
V

B
F

C
ro

ss
S
e
c
ti

o
n

S
ca

le
In

cl
u
si
v
e

1
3
.4

%

S
ca

le
1
+

J
et

s
−2

3
%

S
ca

le
2
+

J
et

s
0
%

P
D

F
M

o
d
el

7
.6

%

T
o
ta

l
6
.0

%
6
.0

%
6
.0

%
7
.0

%
5
.0

%
5
.0

%
1
0
.0

%

A
c
c
e
p
ta

n
c
e

S
ca

le
(j

et
s)

0
.3

%

P
D

F
M

o
d
el

(l
ep

to
n
s)

2
.7

%

P
D

F
M

o
d
el

(j
et

s)
1
.1

%
5
.5

%

H
ig

h
er

-o
rd

er
D

ia
g
ra

m
s

1
0
.0

%
1
0
.0

%
1
0
.0

%
1
0
.0

%
1
0
.0

%
1
0
.0

%
1
0
.0

%

E/
T

M
o
d
el

in
g

1
9
.5

%

C
o
n
v
er

si
o
n

M
o
d
el

in
g

1
0
.0

%

J
et

F
a
k
e

R
a
te

s
(L

ow
S
/
B

)
2
2
.0

%
(H

ig
h

S
/
B

)
2
6
.0

%

J
et

E
n
er

g
y

S
ca

le
2
.6

%
6
.1

%
3
.4

%
2
6
.0

%
1
7
.5

%
3
.1

%
5
.0

%
1
0
.5

%
5
.0

%
1
1
.5

%

L
ep

to
n

ID
E

ffi
ci

en
ci

es
3
.8

%
3
.8

%
3
.8

%
3
.8

%
3
.8

%
3
.8

%
3
.8

%
3
.8

%
3
.8

%

T
ri

g
g
er

E
ffi

ci
en

ci
es

2
.0

%
2
.0

%
2
.0

%
2
.0

%
2
.0

%
2
.0

%
2
.0

%
2
.0

%
2
.0

%

L
u
m

in
o
si

ty
5
.9

%
5
.9

%
5
.9

%
5
.9

%
5
.9

%
5
.9

%
5
.9

%
5
.9

%
5
.9

%

T
ab

le
7.

4:
T

he
sy

st
em

at
ic

s
ap

pl
ie

d
fo

r
th

e
0

je
t

an
al

ys
is

.

84



For lepton and trigger efficiency, we propagated the uncertainties from the measurements of each through

the analysis. We assigned an uncertainty of 4.3% to the background and signal contributions to cover this.

The WW background contribution is particularly susceptible to uncertainties due to higher order effects.

To examine the effect, we again employed the MC@NLO generator [18] and varied the choices for the scales

and PDF input model using results from the calculations done in [41]. We took the uncertainty based

on changes in the observed acceptance. For other backgrounds known only to leading order, we used the

difference in the WW acceptance observed from a leading order calculation with PYTHIA [16] versus the

next-to-leading order calculation with MC@NLO. We found this difference to be 10%.

A large systematic from Drell-Yan enters through the modeling of fake E/T . We tuned the model for

Drell-Yan using events with an intermediate E/T . The tuning selects events just below the normal E/T

cutoff. We varied the tuning parameters and assigned a 20% systematic uncertainty based on the observed

variations.

In order to account for uncertainties related to the jet energy scale, we varied the scale up and down by

one standard deviation to determine its effect. The systematic uncertainties between analysis samples are

highly correlated, a change in the jet energy scale can make a 1-jet event into 2-jet event.

We assigned a 10% uncertainty to the W + γ background contribution which arises from the description

of the detector material and conversion veto efficiency. Additionally, the W +γ contribution received a scale

factor from a same-sign, low Mll control region. We assigned a systematic based on the sample’s statistics

as well as uncertainty from non-W + γ events appearing in the sample. We propagated this uncertainty

through into the signal samples.

For the uncertainty on the W+ jets contribution, we used the differences in the probability of a jet

faking a lepton (fake rate) between the four trigger samples, each having a different requirement on ET .

The variations corresponded to uncertainties with the jet parton composition and contamination from real

leptons.

7.3.3 Luminosity uncertainty

The uncertainty on the luminosity arises from primarily two sources, uncertainty in the inelastic pp̄ cross-

section and measurement acceptance based on detector geometry. We assigned a systematic of 5.9%, making

it 100% correlated between the subsamples.
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7.3.4 Shape uncertainties

To examine possible shape systematics in the gluon fusion Higgs shape, we varied the Higgs pT spectrum

originally obtained from the HqT program [42][43] in our simulated events. The choices for the re-weighting

functions used in the variations come from the ResBos program [44][45][46]. The re-weighting functions come

from the difference between the ResBos Higgs pT spectrum using our default scale and the pT spectrum

determined by raising and lowering the scale choices by a factor of two. To implement the modified pT spectra,

we re-weighted our signal samples so that their generator level spectra matched the modified spectra. We

then examine the effect on the shape of the NN output distribution.

Another shape systematic arises from uncertainties related to the pT spectra of the WW system. We

made use of the PYTHIA 8 MC generator to create reweightings for the pT spectrum that we could then

apply to our MC@NLO sample. With the reweighted WW sample, we were able to evaluate the effect that

it had on the shape of the WW background in the NN output distribution.

We further examined the effect JES uncertainties would have on NN shape. To determine any effects,

we varied the JES by ±1 σ. The variations we saw were minimal, so we considered any effect the JES

uncertainty had on the NN shape to be negligible.

7.4 Confidence level limit on Higgs production

With the NN output showing no signal from H → WW , we set 95% confidence level limits on Higgs

production in the 0-jet sample. We took a Bayesian approach in setting the limits, evaluating the limits at

19 Higgs masses between 110-200 GeV/c2, in increments of 5 GeV/c2. We present the ratio of the measured

limit on the cross-section to the expectation from the Standard Model.

We construct a likelihood L

L(R|�θ, �n) =
∏

i

μni

i e
−μi

ni!
×
∏
k

e−
θ2

k
2 , (7.6)

for each of the nineteen Higgs masses. The likelihood is just the product of Poisson probabilities to observe

in the i-th bin of the NN distribution, a quantity of ni events for the expectation of μi events. The expected

number of events can also be written in terms of the expected signal si and the expected background bi as

μi = R × si(�θ) + bi(�θ). (7.7)

Here, R is a multiplicative factor used to scale the signal contribution during limit setting. We assume a
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flat prior for R. The amount of signal can be expressed as si = L × ε × σSM
H , where L is the integrated

luminosity, ε is the detection efficiency, and σSM
H is the cross-section for the Standard Model Higgs. The

signal and background contributions depend on systematic uncertainties through

si(�θ) = si ×
∏
k

(1 + uk
i × θk) (7.8)

and

bi(�θ) = bi ×
∏
k

(1 + uk
i × θk). (7.9)

Here, the index k corresponds to systematic uncertainties which have an effect on the count of events. The

error associated with the systematic is ui
k. The amount of variation for a systematic k is expressed in the

nuisance parameter θk, for which we assume a Gaussian prior.

We proceed to integrate the likelihood over the nuisance parameters θk, leaving the posterior probability

L(R). We can then produce the 95% confidence level limit from

0.95 =

∫ RCL

0 L(R)dR∫∞
0

L(R)dR
, (7.10)

where RCL is the limit determined.

In order to estimate our sensitivity, we created a set of pseudo-experiments assuming a background only

hypothesis. We generated the pseudo-experiments following a Poisson distribution for each bin i, for an

expected number of events bi. We account for systematic variables by varying bi by its error. For each

pseudo-experiment, we reevaluated the limit. When displaying the limit for a given channel, we display

bands for deviations of 1 and 2σ off of the expected limit.

7.5 Results on the confidence level limit on Higgs production in

the 0 jets subsample

With the method described in the previous section, we determined the expected and observed limits. We

made use of 10,000 pseudo-experiments in determining the expected limits. We present the results as the

ratio of the observed limit to the Standard Model expectation. The expected and observed limits appear

in Table 7.5. A plot of the results appear in Figure 7.12. The green and yellow error bands present in

Figure 7.12 incorporate both statistical and systematic uncertainties.

Overall, we see good agreement between the observed and expected limits. We end up seeing the most
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OS 0 Jets 110 115 120 125 130 135 140 145 150 155
−2σ/σSM 15.30 8.44 5.16 3.58 2.84 2.09 1.79 1.59 1.40 1.15
−1σ/σSM 21.57 11.74 7.34 5.05 3.97 2.94 2.57 2.29 2.01 1.62
Median/σSM 31.12 16.94 10.64 7.26 5.70 4.28 3.70 3.32 2.94 2.35
+1σ/σSM 45.68 24.71 15.56 10.61 8.40 6.29 5.45 4.91 4.36 3.46
+2σ/σSM 66.98 36.07 22.57 15.32 12.09 9.13 7.96 7.19 6.32 5.02
Observed/σSM 15.52 12.10 6.89 4.75 4.57 4.23 3.30 2.62 2.49 2.75

OS 0 Jets 160 165 170 175 180 185 190 195 200
−2σ/σSM 0.81 0.82 0.89 1.13 1.39 1.81 2.18 2.69 3.09
−1σ/σSM 1.14 1.14 1.24 1.59 1.93 2.49 3.06 3.78 4.30
Median/σSM 1.64 1.65 1.78 2.28 2.77 3.60 4.37 5.49 6.17
+1σ/σSM 2.41 2.39 2.60 3.36 4.05 5.25 6.43 8.06 9.10
+2σ/σSM 3.46 3.51 3.76 4.89 5.86 7.46 9.46 11.77 13.24
Observed/σSM 1.93 1.92 1.67 2.28 2.82 3.68 6.12 8.51 8.17

Table 7.5: The expected and observed limits over the mass range of 110-200 GeV/c2.

110 120 130 140 150 160 170 180 190 200110 120 130 140 150 160 170 180 190 200
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Figure 7.12: A plot of the expected and observed limits over the mass range of 110-200 GeV/c2.
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sensitivity at a mass of 170 GeV/c2, with a ratio of limit to Standard Model expectation of 1.67.
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Chapter 8

Analysis of events with jet activity

As mentioned in the last chapter, we split the data into subsamples to capitalize on the differences between

signal and background contributions based on the number of jets. This chapter presents results concerning

events with one jet and events with two or more jets. In these two subsamples, contributions from associated

and vector boson fusion become more substantial.

8.1 Analysis of events with one jet

In the analysis of events with one jet, we divided up the sample into high and low S/B as done in the 0 jets

analysis. The expected signal and background contributions compared to data appear in Tables 8.1 and 8.2

for high and low S/B and assuming a Higgs mass of 165 GeV/c2. In Table 8.3, the combination of high and

low S/B appears.

8.1.1 Multivariate techniques

The matrix element technique is not used since it is expected to not be as powerful as it was in the 0 jets

category. We still make use of a NN however. We again trained the network for 19 Higgs masses between

110-200 GeV/c2, one every increment of 5 GeV/c2. The kinematic variables we selected as inputs are:

• HT : The sum of the lepton pT , jet ET , and event E/T

• Δφ(ll): The difference in φ between the two leptons

• ΔR(ll): The difference in ΔR between the two leptons

• M(ll): The combined mass of the leptons

• pT (l1): The transverse momentum of the leading lepton

• pT (l2): The transverse momentum of the subleading lepton

• E(l1): The energy of the leading lepton
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CDF Run II Preliminary
R L = 8.2 fb−1

MH = 165 GeV/c2

tt̄ 64 ± 12
DY 190 ± 44
WW 156 ± 19
WZ 22.5 ± 3.1
ZZ 9.8 ± 1.4
W+jets 43 ± 12
Wγ 8.2 ± 1.4

Total Background 493 ± 63

gg → H 9.3 ± 3.9
WH 1.25 ± 0.20
ZH 0.481 ± 0.074
V BF 0.89 ± 0.15

Total Signal 11.9 ± 4.0

Data 457

HighSB-1J

Table 8.1: The expected signal and background contributions compared with data for the high S/B grouping
in events having one jet.

CDF Run II Preliminary
R L = 8.2 fb−1

MH = 165 GeV/c2

tt̄ 20.7 ± 3.9
DY 146 ± 34
WW 66.0 ± 8.0
WZ 13.7 ± 1.9
ZZ 4.85 ± 0.70
W+jets 134 ± 21
Wγ 25.9 ± 4.4

Total Background 411 ± 46

gg → H 3.0 ± 1.3
WH 0.394 ± 0.063
ZH 0.147 ± 0.023
V BF 0.254 ± 0.044

Total Signal 3.8 ± 1.3

Data 418

LowSB-1J

Table 8.2: The expected signal and background contributions compared with data for the low S/B grouping
in events having one jet.

91



CDF Run II Preliminary
R L = 8.2 fb−1

MH = 165 GeV/c2

tt̄ 85 ± 16
DY 336 ± 78
WW 222 ± 27
WZ 36.1 ± 5.0
ZZ 14.6 ± 2.1
W+jets 177 ± 33
Wγ 34.0 ± 5.8

Total Background 900 ± 110

gg → H 12.2 ± 5.2
WH 1.64 ± 0.26
ZH 0.629 ± 0.097
V BF 1.14 ± 0.20

Total Signal 15.6 ± 5.3

Data 875

All

Table 8.3: The expected signal and background contributions compared with data for the combination of
the high and low S/B groupings in events having one jet.

• MT (llE/T ): The transverse mass of the two leptons and E/T

• E/T spec: A variation on E/T implemented to separate DY defined in Equation 6.1

As with the 0 jet events, we chose the kinematic variables above to maximize Higgs signal sensitivity. Note,

we have redefined the variable HT from the 0 jets portion of the analysis. The HT variable provides useful

discrimination against the more prevalent tt̄ background seen in the one jet case. Once again, Δφ(ll) and

ΔR(ll) are potent discriminants since the spin correlation still results in the leptons preferentially heading

in the same direction. The kinematic plots of the NN inputs appear in Figures 8.1 and 8.2. The outputs

of the NN for a Higgs mass of 165 GeV/c2 appear in Figure 8.3. The outputs for the other Higgs masses

appear in Figures 8.4-8.8.

8.1.2 Systematic uncertainties

We described the systematic uncertainties in the previous chapter. The size of the systematics in percentages

appear in Table 8.4.

8.1.3 Results in the one jet analysis

As with the 0 jets subsample, we saw no evidence for Higgs production in events with one jet. We proceeded

to set a limit using the same technique described in the previous chapter. The expected and observed limits

appear in Table 8.5. A plot of the results appear in Figure 8.9.
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Figure 8.1: Inputs to the NN in the one jet category, for a Higgs mass of 160 GeV/c2.
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Figure 8.2: Inputs to the NN in the one jet category, for a Higgs mass of 160 GeV/c2.

OS 1 Jet 110 115 120 125 130 135 140 145 150 155
−2σ/σSM 22.48 12.42 7.40 4.94 3.61 2.86 2.36 2.05 1.67 1.43
−1σ/σSM 31.77 17.63 10.64 7.09 5.13 4.08 3.38 2.94 2.40 2.03
Median/σSM 47.15 25.99 15.68 10.52 7.53 6.00 4.98 4.33 3.54 2.97
+1σ/σSM 71.72 39.45 23.53 15.85 11.45 8.95 7.56 6.44 5.30 4.53
+2σ/σSM 110.54 60.62 36.29 24.13 16.94 13.34 11.49 10.00 8.14 6.82
Observed/σSM 82.54 34.19 18.23 12.24 9.13 6.95 7.10 5.76 5.38 3.78

OS 1 Jet 160 165 170 175 180 185 190 195 200
−2σ/σSM 1.11 1.05 1.23 1.50 1.74 2.26 2.80 3.22 3.82
−1σ/σSM 1.54 1.47 1.75 2.14 2.49 3.22 4.01 4.71 5.64
Median/σSM 2.27 2.17 2.57 3.16 3.66 4.78 5.89 7.09 8.42
+1σ/σSM 3.45 3.28 3.89 4.76 5.54 7.18 8.94 10.80 12.79
+2σ/σSM 5.29 4.95 5.93 7.22 8.38 10.89 13.96 16.48 19.28
Observed/σSM 2.45 2.51 4.48 4.84 6.64 8.04 13.13 14.79 19.60

Table 8.5: The expected and observed limits in the one jet category, over the mass range of 110-200 GeV/c2.
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Figure 8.3: Output of the NN in the one jet category, for a Higgs mass of 165 GeV/c2.
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Figure 8.4: Output of the NN in the one jet category, for Higgs masses of 110, 115, 120, and 125 GeV/c2.
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Figure 8.5: Output of the NN in the one jet category, for Higgs masses of 130, 135, 140, and 145 GeV/c2.
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Figure 8.6: Output of the NN in the one jet category, for Higgs masses of 150, 155, 160, and 170 GeV/c2.

99



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50

60

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50

60
Wj

γW
tt

WZ
ZZ
DY
WW

 10×HWW 
Data

NN Output

CDF Run II Preliminary

OS 1 Jet, High S/B
2 = 175 GeV/cHM

-1 L = 8.2 fb∫

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50

60

70

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50

60

70 Wj
γW

tt
WZ
ZZ
DY
WW

 10×HWW 
Data

NN Output

CDF Run II Preliminary

OS 1 Jet, High S/B
2 = 180 GeV/cHM

-1 L = 8.2 fb∫

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50

Wj
γW

tt
WZ
ZZ
DY
WW

 10×HWW 
Data

NN Output

CDF Run II Preliminary

OS 1 Jet, High S/B
2 = 185 GeV/cHM

-1 L = 8.2 fb∫

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50

60

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50

60
Wj

γW
tt

WZ
ZZ
DY
WW

 10×HWW 
Data

NN Output

CDF Run II Preliminary

OS 1 Jet, High S/B
2 = 190 GeV/cHM

-1 L = 8.2 fb∫

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50

60

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50

60
Wj

γW
tt

WZ
ZZ
DY
WW

 10×HWW 
Data

NN Output

CDF Run II Preliminary

OS 1 Jet, Low S/B
2 = 175 GeV/cHM

-1 L = 8.2 fb∫

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50
Wj

γW
tt

WZ
ZZ
DY
WW

 10×HWW 
Data

NN Output

CDF Run II Preliminary

OS 1 Jet, Low S/B
2 = 180 GeV/cHM

-1 L = 8.2 fb∫

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50 Wj
γW

tt
WZ
ZZ
DY
WW

 10×HWW 
Data

NN Output

CDF Run II Preliminary

OS 1 Jet, Low S/B
2 = 185 GeV/cHM

-1 L = 8.2 fb∫

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
ve

n
ts

 / 
0.

05

0

10

20

30

40

50

Wj
γW

tt
WZ
ZZ
DY
WW

 10×HWW 
Data

NN Output

CDF Run II Preliminary

OS 1 Jet, Low S/B
2 = 190 GeV/cHM

-1 L = 8.2 fb∫

Figure 8.7: Output of the NN in the one jet category, for Higgs masses of 175, 180, 185, and 190 GeV/c2.
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Figure 8.8: Output of the NN in the one jet category, for Higgs masses of 195 and 200 GeV/c2.

Overall, we observed good agreement between the observed and expected limits. We end up with the

most sensitivity at a mass of 160 GeV/c2, with a ratio of limit to Standard Model expectation of 2.45.

8.2 Analysis of events with two or more jets

In the analysis of events with two or more jets, the dominate background is tt̄. The top decays of t →
W (W → lν)b produce both high pT leptons and E/T , looking very similar to our signal’s signature. To

suppress this background, we made use of the b-tagging algorithm SECVTX [47]. The SECVTX algorithm

identifies b-jets by looking for secondary vertices consistent with a b decay. The long lifetime of bottom

quarks gives us tracks with large impact parameters which the SECVTX algorithm looks for.

To be accepted into the analysis, events with two or more jets must not have any jets tagged by the

SECVTX algorithm. We estimated that rejecting SECVTX tags eliminates 59% of the tt̄ background from the

sample with a negligible loss of signal events. Our expected number of background and signal contributions

as compared to data appear in Table 8.6.
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Figure 8.9: A plot of the expected and observed limits in the one jet category, over the mass range of
110-200 GeV/c2.

CDF Run II Preliminary
R L = 8.2 fb−1

MH = 165 GeV/c2

tt̄ 244 ± 36
DY 132 ± 53
WW 49.7 ± 9.7
WZ 9.9 ± 1.9
ZZ 4.47 ± 0.86
W+jets 62 ± 12
Wγ 6.2 ± 1.6

Total Background 509 ± 79

gg → H 4.3 ± 2.1
WH 3.69 ± 0.51
ZH 1.84 ± 0.25
V BF 2.13 ± 0.35

Total Signal 11.9 ± 2.5

Data 494

AllSB-2JOS

Table 8.6: The expected signal and background contributions compared with data for events having two or
more jets.
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8.2.1 The tt̄ control region

The SECVTX algorithm allowed us to define a control region to closely examine our tt̄ modeling. We defined

the region as being the events in the 2 or more jets category which posses a SECVTX b-tag. We show several

kinematic variables in Figure 8.10. Overall, we see good agreement between data and our tt̄ background

model.

8.2.2 Multivariate techniques

As with the 1 jets events, we do not use the matrix element technique for 2 ore more jets events. We

again use a NN, training the network for 19 Higgs masses between 110-200 GeV/c2, one every increment of

5 GeV/c2. The kinematic variables we selected as inputs are:

• HT : The sum of the lepton pT , jet ET , and event E/T

• pT (j1, j2): The transverse momentum of the two leading jets

• Δφ(ll): The difference in φ between the two leptons

• ΔR(ll): The difference in ΔR between the two leptons

• Δφ(ll, E/T ): The difference in φ between the combined pT of the two leptons and E/T

• M(ll): The combined mass of the leptons

• pT (l1): The transverse momentum of the leading lepton

• pT (l2): The transverse momentum of the subleading lepton

As in events with 1 jets, the HT variable provided useful discrimination against the still dominate tt̄

background. The pT (j1, j2) variable also helped discriminate Higgs signal from the tt̄ background. Once

again, Δφ(ll) and ΔR(ll) provide potent discrimination due to the Higgs spin correlation. The kinematic

plots of the NN inputs appear in Figure 8.11. The outputs of the NN for a Higgs mass of 165 GeV/c2 appear

in Figure 8.12. The outputs for the other Higgs masses appear in Figures 8.13-8.15.

8.2.3 Systematic uncertainties

With the systematic uncertainties described in the previous chapter. The size of the systematics in percent-

ages appear in Table 8.7.
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Figure 8.10: Kinematic distributions in the tt̄ control region for a Higgs mass of 160 GeV/c2.
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Figure 8.11: Inputs to the NN in the two or more jets category, for a Higgs mass of 160 GeV/c2.
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Figure 8.12: Output of the NN in the two or more jets category, for a Higgs mass of 165 GeV/c2.

8.2.4 Results in the 2 or more jet analysis

We saw no evidence for Higgs production in events with 2 or more jets. We proceeded to set a limit using

the same technique described in the previous chapter. The expected and observed limits appear in Table 8.8.

A plot of the results appear in Figure 8.16.

Overall, we saw good agreement between the observed and expected limits. We end up with the most

sensitivity at a mass of 165 GeV/c2, with a ratio of limit to Standard Model expectation of 2.51.
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Figure 8.13: Output of the NN in the two or more jets category, for Higgs masses of 110-145 GeV/c2.
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Figure 8.14: Output of the NN in the two or more jets category, for Higgs masses of 150-190 GeV/c2.
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Figure 8.15: Output of the NN in the two or more jets category, for Higgs masses of 195 and 200 GeV/c2.

OS 2+ Jets 110 115 120 125 130 135 140 145 150 155
−2σ/σSM 21.26 11.81 7.60 5.29 3.87 2.98 2.52 2.14 1.85 1.63
−1σ/σSM 28.55 16.31 10.46 7.22 5.30 4.11 3.47 2.96 2.58 2.23
Median/σSM 40.18 23.15 14.74 10.26 7.51 5.85 4.96 4.27 3.70 3.22
+1σ/σSM 57.89 33.28 21.05 14.59 10.83 8.42 7.09 6.23 5.36 4.67
+2σ/σSM 81.64 46.22 29.61 20.55 15.14 12.03 10.02 8.88 7.70 6.60
Observed/σSM 80.83 39.72 24.69 21.49 12.53 10.34 8.99 7.89 6.02 5.18

OS 2+ Jets 160 165 170 175 180 185 190 195 200
−2σ/σSM 1.34 1.28 1.45 1.69 2.06 2.76 3.48 3.97 4.76
−1σ/σSM 1.80 1.75 2.00 2.34 2.92 3.86 4.92 5.69 6.87
Median/σSM 2.60 2.51 2.85 3.33 4.19 5.60 7.12 8.32 9.98
+1σ/σSM 3.77 3.61 4.11 4.91 6.11 8.17 10.44 12.27 14.84
+2σ/σSM 5.42 5.24 5.90 6.93 8.77 11.87 14.99 17.72 21.31
Observed/σSM 3.70 2.88 3.09 3.76 4.69 6.35 9.13 12.04 14.43

Table 8.8: The expected and observed limits in the two or more jets category, over the mass range of
110-200 GeV/c2.
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Figure 8.16: A plot of the expected and observed limits in the two or more jets category, over the mass
range of 110-200 GeV/c2.
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Chapter 9

Additional channels and final
combination

As alluded to earlier in the thesis, we incorporated several additional channels to increase Higgs sensitivity

beyond those discussed already. The additional channels we included are the low dilepton mass channel (low

Mll channel), same-sign channel, and trilepton channels. With data from all channels, we proceeded to set

a limit on Higgs production using the combination of all channels discussed.

This chapter will briefly describe the additional channels used as well as the final combined limit across

all channels.

9.1 Additional channels

9.1.1 Low Mll analysis

In the dilepton analysis discussed previously, we applied a cut on the dilepton mass, requiring Mll >

16 GeV/c2. For the low Mll channel, we reversed the cut to examine events specifically with Mll <

16 GeV/c2. Additionally, we vetoed events having leptons with energies larger than 400 GeV. We included

events with only zero and one jets.

The largest background in this channel is W + γ. The requirement placed on E/T spec effectively removes

a potential contribution from heavy flavour decays such as those originating from J/ψ and Υ particles. The

E/T spec variable is defined in Equation 6.1. The expected contributions for signal and background appear in

Table 9.1.

As with the previously described channels, we employed NNs over 19 Higgs masses to better separate

signal from background. The NN output distribution for a Higgs mass of 165 GeV/c2 appears in Figure 9.1.

We saw no excesses consistent with a Higgs signal in the NN distributions and proceeded to set limits on

Higgs production.

The systematic uncertainties table used for limit setting appears in the appendix. A table containing the

limits produced for this channel also appears in the appendix. A plot of the limits appear in Figure 9.2.
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CDF Run II Preliminary
R L = 8.2 fb−1

MH = 165 GeV/c2

tt̄ 1.47 ± 0.28
DY 10.5 ± 1.6
WW 29.9 ± 2.9
WZ 0.79 ± 0.11
ZZ 0.244 ± 0.034
W+jets 48.5 ± 6.5
Wγ 132 ± 13
BosRad 39 ± 9.5

Total Background 262 ± 21

gg → H 3.12 ± 0.51
WH 0.105 ± 0.017
ZH 0.079 ± 0.012
V BF 0.113 ± 0.020

Total Signal 3.42 ± 0.52

Data 260

AllSB-lowMll

Table 9.1: The expected signal and background contributions compared with data for the low Mll channel.
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Figure 9.1: Output of the NN in the low Mll channel for a Higgs mass of 165 GeV/c2.
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Figure 9.2: A plot of the expected and observed limits in the low Mll channel, over the mass range of
110-200 GeV/c2.
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CDF Run II Preliminary
R L = 8.2 fb−1

MH = 165 GeV/c2

tt̄ 2.08 ± 0.30
DY 79 ± 34
WW 0.169 ± 0.075
WZ 14.8 ± 2.0
ZZ 2.80 ± 0.39
W+jets 92 ± 35
Wγ 6.7 ± 1.1

Total Background 198 ± 49

WH 2.73 ± 0.36
ZH 0.404 ± 0.054

Total Signal 3.13 ± 0.42

Data 224

AllSB-SS

Table 9.2: The expected signal and background contributions compared with data for the same-sign channel.

9.1.2 Same-sign analysis

To increase the breadth of potential Higgs signals, we also included events having same-sign dileptons with

the intention of picking up Higgs bosons produced through associated production (WH → WWW and

ZH → ZWW ). Same-sign dileptons occur quite naturally when the vector boson created in association

with the Higgs and one of the W bosons from the Higgs decay both decay leptonically.

The primary backgrounds result from charge mismeasurements. To mitigate this, we veto events con-

taining forward electrons which posses a high rate of charge mismeasurement. Furthermore, we only allow in

TCEni electrons in the central region, vetoing LBEni electrons. We also increase the pT requirement on the

second electron from 10 GeV/c2 to 20 GeV/c2 to reduce the rate of photons or jets being misidentified as

leptons. We also require one or more jets in the event, allowing the W boson that does not decay leptonically

to instead decay hadronically. The expected signal and background contributions appear in Table 9.2.

We again use NNs to separate signal from background. The NN output distribution for a Higgs mass of

165 GeV/c2 appears in Figure 9.3. With no excess seen, we again set an upper limit on Higgs production

with this channel.

The systematic uncertainties used for limit setting appears in the appendix. A table containing the limits

produced for this channel appear also appears in the appendix. A plot of the limits appears in Figure 9.4.

9.1.3 Trilepton analyses

Trilepton events appear very naturally with the production mechanisms of WH → WWW (when all W

bosons decay leptoncially) and ZH → ZWW (when the Z boson and one of the W bosons decays leptoni-

cally). We incorporated trilepton events to further increase Higgs sensitivity.
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Figure 9.3: Output of the NN in the same-sign channel for a Higgs mass of 165 GeV/c2.

To be considered for the trilepton channels, an event needed to have a trigger confirmed electron (muon)

with ET > 20 GeV (pT > 20 GeV/c). We loosened this requirement for the second and third leptons in the

event to ET > 10 GeV and pT > 10 GeV/c for electrons and muons respectively.

We made use of three trilepton channels, sorted by the number of jets in the event and if there are two

same-flavor opposite-sign leptons (e.g. e+e− and μ+μ−) that have an invariant mass in the range of the Z

boson mass. We defined the Z mass range as ±10 GeV/c2 around the Z mass of 91 GeV/c2.

Events having two same-flavor opposite-sign leptons falling in the Z boson mass window should result

from primarily associated production via ZH . With one of the W bosons from the Higgs decaying lep-

toncially, we expected E/T from the presence of the neutrino. We therefore required the event to have

E/T > 10 GeV. With the expectation that the other W boson decays hadronically, we require one jet in the

event. The expected and background contributions compared to data appears in Table 9.3.

We also incorporated a trilepton channel with two or more jets, maintaining the requirement of two same-

flavor opposite-sign leptons falling in the Z mass window. The expected signal and background contributions

compared to data appear in Table 9.4.

For trilepton events that do not have same-flavor opposite-sign dileptons having an invariant mass falling

in the Z mass window, we included these as an additional channel to pick up primarily associated production

through WH . These events have all three W bosons decaying leptoncially and therefore have large values
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Figure 9.4: A plot of the expected and observed limits in the same-sign channel, over the mass range of
110-200 GeV/c2.

CDF Run II Preliminary
R L = 8.2 fb−1

MH = 165 GeV/c2

tt̄ 0.105 ± 0.047
WZ 12.1 ± 2.0
ZZ 4.98 ± 0.71
Z+jets 7.9 ± 1.9
Zγ 6.5 ± 1.4

Total Background 31.6 ± 3.8

WH 0.0380 ± 0.0058
ZH 0.270 ± 0.042

Total Signal 0.308 ± 0.046

Data 35

AllSB-trilepZ1j

Table 9.3: The expected signal and background contributions compared with data for the trilepton channel
having same-flavor opposite-sign dileptons falling in the Z mass window and one reconstructed jet.

117



CDF Run II Preliminary
R L = 8.2 fb−1

MH = 165 GeV/c2

tt̄ 0.141 ± 0.038
WZ 3.65 ± 0.84
ZZ 1.91 ± 0.38
Z+jets 6.4 ± 1.6
Zγ 2.55 ± 0.66

Total Background 14.6 ± 2.4

WH 0.0133 ± 0.0034
ZH 0.72 ± 0.11

Total Signal 0.74 ± 0.11

Data 21

AllSB-trilepZ2j

Table 9.4: The expected signal and background contributions compared with data for the trilepton channel
having same-flavor opposite-sign dileptons falling in the Z mass window and two or more reconstructed jets.

CDF Run II Preliminary
R L = 8.2 fb−1

MH = 165 GeV/c2

tt̄ 0.64 ± 0.20
WZ 7.1 ± 1.0
ZZ 1.61 ± 0.23
Z+jets 3.84 ± 0.89
Zγ 4.21 ± 0.84

Total Background 17.4 ± 1.9

WH 0.89 ± 0.12
ZH 0.203 ± 0.028

Total Signal 1.09 ± 0.15

Data 15

AllSB-trilepNoZ

Table 9.5: The expected signal and background contributions compared with data for the trilepton channel
not having same-flavor opposite-sign dileptons falling in the Z mass window.

of E/T . We therein required the events in this channel to have E/T > 20 GeV. Since these events have no jets

at leading order, we place no requirements for the number of events appearing in the channel. The expected

signal and background contributions compared to data appear in Table 9.5

The trilepton channels demonstrated no excesses consistent with a SM Higgs boson. We proceeded to

set limits in each of the trilepton channels. The systematics associated with the channels and the limits

produced appear in the appendix.
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9.2 Combination of Higgs limits

9.2.1 CDF H → WW

With the results from the aforementioned channels, we sought to combine them into a final limit for the

H →WW . As a review, the H →WW channels used in the combination are:

• Opposite-sign dileptons, 0 jets, high S/B

• Opposite-sign dileptons, 0 jets, low S/B

• Opposite-sign dileptons, 1 jet, high S/B

• Opposite-sign dileptons, 1 jet, low S/B

• Opposite-sign dileptons, 2 or more jets

• Opposite-sign dileptons, Mll < 16 GeV/c2, 0 or 1 jets

• Same-sign dileptons, 1 or more jets

• Trileptons, two same-flavor opposite-sign leptons in the Z mass region, 1 jet

• Trileptons, two same-flavor opposite-sign leptons in the Z mass region, 2 or more jets

• Trileptons, no same-flavor opposite-sign lepton pairs in the Z mass region, any number of jets

To create the combined limit, we used the procedure described in Section 7.4. We combined the NN

templates generated from the above channels into the likelihood constructed out of the Poisson probabilities

for each bin in each channel’s template for a given Higgs mass. We again evaluated the limit at 19 Higgs

masses between 110-200 GeV/c2, in increments of 5 GeV/c2. The result of the combination for the CDF

H → WW analysis appears in Table 9.6. A plot of the expected and observed limits for the combination

appears in Figure 9.5.

We exclude at the 95% confidence level, a SM Higgs boson in the mass range of 156 to 175 GeV/c2 based

on the CDF H →WW analysis alone.

9.2.2 CDF and D0 combination

The best result produced from the Higgs search at the Tevatron comes from the combination of all search

channels at both CDF and D0. The additional production and decay mechanisms used in this two experiment
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High Mass 110 115 120 125 130 135 140 145 150 155
−2σ/σSM 6.15 3.39 2.12 1.41 1.05 0.84 0.71 0.61 0.54 0.46
−1σ/σSM 8.96 5.03 3.13 2.14 1.61 1.27 1.07 0.93 0.81 0.69
Median/σSM 14.03 7.86 4.86 3.38 2.57 2.01 1.69 1.48 1.27 1.07
+1σ/σSM 21.81 12.11 7.63 5.31 4.02 3.12 2.68 2.33 2.02 1.66
+2σ/σSM 32.42 17.85 11.08 7.68 6.00 4.64 3.97 3.40 3.02 2.48
Observed/σSM 15.07 8.82 5.12 3.28 3.29 2.28 1.85 1.59 1.45 1.09

High Mass 160 165 170 175 180 185 190 195 200
−2σ/σSM 0.36 0.35 0.40 0.47 0.56 0.71 0.86 0.99 1.14
−1σ/σSM 0.52 0.51 0.58 0.71 0.85 1.07 1.31 1.54 1.75
Median/σSM 0.80 0.78 0.89 1.09 1.33 1.70 2.09 2.49 2.81
+1σ/σSM 1.24 1.19 1.38 1.70 2.08 2.71 3.34 4.01 4.59
+2σ/σSM 1.82 1.77 2.04 2.56 3.11 4.08 5.04 5.99 7.09
Observed/σSM 0.75 0.77 0.84 1.04 1.57 1.75 3.08 4.34 5.26

Table 9.6: The expected and observed limits for all H → WW channels, over the mass range of 110-
200 GeV/c2.

110 120 130 140 150 160 170 180 190 200110 120 130 140 150 160 170 180 190 200

1

10

210

Higgs Mass (GeV)

S
M

σ
95

%
 C

.L
./

CDF Run II Preliminary -1
 L = 8.2 fb∫

Standard Model

110 120 130 140 150 160 170 180 190 200

High Mass Expected

σ 1±High Mass 

σ 2±High Mass 

High Mass Observed

Figure 9.5: A plot of the expected and observed limits for all H → WW channels, over the mass range of
110-200 GeV/c2.
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Figure 9.6: The result of combining and sorting the bins in all templates based on S/B and performing
subtraction of expected background from data. The appearance of an expected Higgs signal also appears.

combination includes low mass sensitive search channels such as WH → lνbb̄. The procedure for the

combination follows the aforementioned technique described above for the CDF H →WW combination.

To get a better understanding of whether or not any signal like excesses exist in the data, we sorted the

bins across all the input templates according to expected ratios of S/B. We then subtracted the expected

number of background events from the data. We can then visually check how consistent the data is with

being background only. The result of the procedure appears as Figure 9.6, with what a possible Higgs signal

would look like. The data appears consistent with the background expectation.

The combined Tevatron limits appear in Figure 9.7. We exclude at the 95% confidence level, a SM Higgs

in the ranges of 100 to 108 GeV/c2 and 156 to 177 GeV/c2.
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Figure 9.7: The CDF and D0 SM Higgs combined limits.
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9.2.3 Conclusions and future prospects

Through the efforts of a great many, CDF and D0 have reached sensitivity in the search for the SM Higgs

boson. The CDF H →WW search finds a 95% confidence level exclusion of 156 to 175 GeV/c2. When we

combined all channels from both CDF and D0, we find a 95% confidence level exclusion of 100 to 108 GeV/c2

and 156 to 177 GeV/c2.

As mentioned in a prior chapter, a lot of the sensitivity increases at CDF and D0 resulted not from

additions of luminosity alone, but from improvements of the analyses themselves. To reiterate this, the plot

demonstrating analysis sensitivity as a function of luminosity reappears in Figure 9.8. As the plot shows,

the improvements put into the iteration of the analysis for Summer 2011 allowed CDF to exclude a Higgs

boson at a mass of 160 GeV/c2.

Over the past year, the LHC experiments of ATLAS and CMS both achieved significant sensitivity to

the Higgs boson. The search at CDF and D0 is focused on adding the last amount of data accumulated

before the Tevatron shut down and implementing improvements that will push the sensitivity curve from

Figure 9.8 even lower.

We should hopefully be able to demonstrate or exclude the existence of the Higgs boson within the year.
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Figure 9.8: The expected sensitivity to the Higgs boson as a function of luminosity for a Higgs mass of
160 GeV/c2. We plot several curves for different iteration of the analysis. Improving the CDF Higgs
analyses significantly increases sensitivity.
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Appendix A

Systematic uncertainties and limit
tables for the additional channels
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low M(ll) 110 115 120 125 130 135 140 145 150 155
−2σ/σSM 26.24 15.24 9.39 7.07 5.47 4.63 3.82 3.25 2.90 2.50
−1σ/σSM 35.31 20.50 12.76 9.39 7.33 6.15 5.16 4.33 3.86 3.33
Median/σSM 48.99 28.72 17.89 13.15 10.21 8.60 7.18 6.06 5.40 4.61
+1σ/σSM 69.68 40.78 25.20 18.68 14.53 12.23 10.28 8.65 7.69 6.57
+2σ/σSM 97.26 56.43 34.58 25.97 20.10 16.85 14.24 11.90 10.70 9.24
Observed/σSM 67.65 28.78 23.26 13.56 10.97 8.56 6.43 5.01 4.63 3.04

low M(ll) 160 165 170 175 180 185 190 195 200
−2σ/σSM 2.00 2.09 2.55 3.39 4.68 6.76 9.20 12.28 16.45
−1σ/σSM 2.63 2.75 3.35 4.55 6.24 9.02 12.17 16.28 21.59
Median/σSM 3.65 3.81 4.64 6.30 8.65 12.55 16.99 22.70 29.90
+1σ/σSM 5.16 5.38 6.53 8.96 12.20 17.85 23.92 32.00 42.58
+2σ/σSM 7.13 7.55 9.13 12.35 17.19 24.78 32.86 45.06 59.17
Observed/σSM 2.43 2.84 3.15 4.27 7.37 9.40 13.66 18.11 25.51

Table A.2: The expected and observed limits in the low Mll channel, over the mass range of 110-200 GeV/c2.
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SS 1+ Jets 110 115 120 125 130 135 140 145 150 155
−2σ/σSM 25.41 14.83 8.86 6.22 4.62 3.65 3.25 2.77 2.56 2.39
−1σ/σSM 34.93 20.72 12.14 8.61 6.31 5.01 4.49 3.80 3.52 3.24
Median/σSM 49.60 29.82 17.30 12.31 9.01 7.11 6.34 5.39 5.02 4.60
+1σ/σSM 71.97 43.22 24.82 17.91 13.05 10.26 9.15 7.75 7.34 6.56
+2σ/σSM 101.39 61.36 34.99 25.44 18.26 14.55 12.91 11.01 10.31 9.18
Observed/σSM 59.04 45.02 22.26 11.53 10.85 9.05 5.37 6.22 5.24 5.05

SS 1+ Jets 160 165 170 175 180 185 190 195 200
−2σ/σSM 2.21 2.24 2.34 2.61 2.80 3.47 3.80 4.22 4.63
−1σ/σSM 2.99 3.04 3.16 3.52 3.75 4.60 5.09 5.61 6.17
Median/σSM 4.24 4.34 4.50 4.95 5.29 6.47 7.18 7.96 8.71
+1σ/σSM 6.10 6.25 6.50 7.04 7.59 9.33 10.30 11.43 12.48
+2σ/σSM 8.58 8.82 9.19 9.91 10.70 13.15 14.65 15.99 17.56
Observed/σSM 4.44 3.69 3.93 5.45 5.35 6.39 8.32 8.73 9.21

Table A.4: The expected and observed limits in the same-sign channel, over the mass range of 110-
200 GeV/c2.
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Trilepton in Z 1 Jet 110 115 120 125 130 135 140 145 150 155
−2σ/σSM 79.50 50.61 33.69 25.13 19.96 17.16 15.51 14.30 14.02 14.11
−1σ/σSM 105.36 67.08 44.87 33.50 26.36 22.63 20.30 19.04 18.36 18.60
Median/σSM 148.57 94.09 63.08 46.81 36.78 31.76 28.13 26.74 25.75 25.71
+1σ/σSM 210.56 136.45 89.92 67.77 53.12 45.07 40.45 38.42 36.87 36.81
+2σ/σSM 296.93 192.76 128.04 95.07 74.61 63.37 56.58 54.03 51.70 52.03
Observed/σSM 151.55 100.00 75.18 55.83 42.76 37.66 33.45 33.11 28.07 29.83

Trilepton in Z 1 Jet 160 165 170 175 180 185 190 195 200
−2σ/σSM 14.29 15.20 16.66 17.95 20.50 24.64 27.83 31.63 34.27
−1σ/σSM 18.60 19.50 21.60 23.19 26.14 31.70 35.62 40.67 44.13
Median/σSM 25.79 27.02 29.79 31.81 35.85 43.95 49.39 55.57 60.69
+1σ/σSM 36.94 38.44 42.82 45.70 50.97 62.60 71.10 79.71 86.63
+2σ/σSM 50.81 54.73 59.75 63.96 72.59 89.93 99.37 112.68 123.80
Observed/σSM 28.05 30.29 32.16 33.44 36.66 45.56 51.43 54.86 69.75

Table A.6: The expected and observed limits in the trilepton channel having same-flavor opposite-sign
dileptons falling in the Z mass window and one reconstructed jet, over the mass range of 110-200 GeV/c2.
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Trilepton in Z 2+ Jets 110 115 120 125 130 135 140 145 150 155
−2σ/σSM 73.74 40.49 24.58 16.73 11.80 9.02 7.52 6.43 5.89 5.41
−1σ/σSM 95.12 51.89 31.50 20.74 14.89 11.49 9.36 7.99 7.26 6.58
Median/σSM 129.96 70.12 42.29 28.13 20.28 15.62 12.53 10.67 9.61 8.78
+1σ/σSM 182.71 98.82 59.55 39.53 28.48 21.80 17.28 14.86 13.35 12.32
+2σ/σSM 251.82 137.96 83.61 54.61 39.44 30.13 24.47 20.56 18.67 16.90
Observed/σSM 144.85 72.22 45.28 29.58 21.53 15.71 12.53 10.06 9.78 8.46

Trilepton in Z 2+ Jets 160 165 170 175 180 185 190 195 200
−2σ/σSM 4.98 4.90 5.33 5.87 6.64 7.88 9.08 10.19 11.25
−1σ/σSM 5.91 5.76 6.37 7.04 7.93 9.43 11.06 12.43 13.58
Median/σSM 7.65 7.53 8.37 9.26 10.48 12.48 14.63 16.48 17.92
+1σ/σSM 10.56 10.31 11.67 12.84 14.56 17.26 20.58 22.80 24.92
+2σ/σSM 14.82 14.14 16.06 17.92 20.16 24.11 28.41 31.31 34.40
Observed/σSM 7.03 6.44 7.77 8.57 9.70 12.57 14.08 15.87 18.19

Table A.8: The expected and observed limits in the trilepton channel having same-flavor opposite-sign
dileptons falling in the Z mass window and two or more reconstructed jets, over the mass range of 110-
200 GeV/c2.
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Trilepton NoZ 110 115 120 125 130 135 140 145 150 155
−2σ/σSM 30.38 18.10 11.73 8.31 6.43 5.23 4.62 4.10 3.92 3.71
−1σ/σSM 37.76 22.81 14.64 10.38 8.07 6.60 5.84 5.18 4.83 4.54
Median/σSM 51.32 31.15 19.82 14.09 10.93 8.93 7.89 7.03 6.54 6.03
+1σ/σSM 72.24 43.56 28.08 19.80 15.50 12.58 11.17 9.94 9.28 8.51
+2σ/σSM 100.24 60.45 38.99 28.00 21.39 17.78 15.62 13.80 12.77 11.96
Observed/σSM 48.41 33.70 19.35 14.71 11.55 8.74 7.51 7.78 7.81 6.29

Trilepton NoZ 160 165 170 175 180 185 190 195 200
−2σ/σSM 3.40 3.49 3.91 4.48 5.24 6.41 7.84 9.11 10.35
−1σ/σSM 4.13 4.20 4.71 5.42 6.44 7.84 9.61 11.07 12.91
Median/σSM 5.49 5.46 6.22 7.18 8.59 10.44 12.85 14.84 17.34
+1σ/σSM 7.60 7.63 8.72 9.99 11.99 14.51 18.05 20.80 24.30
+2σ/σSM 10.48 10.74 11.92 13.98 16.77 20.32 25.33 29.35 34.41
Observed/σSM 5.83 6.31 6.95 7.92 10.34 13.48 15.57 20.77 23.73

Table A.10: The expected and observed limits in the trilepton channel not having same-flavor opposite-sign
dileptons falling in the Z mass window, over the mass range of 110-200 GeV/c2.
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