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Abstract

MINOS is a long-baseline neutrino oscillation experiment. It consists of two
large steel-scintillator tracking calorimeters. The near detector is situated at Fer-
milab, close to the production point of the NuMI muon-neutrino beam. The far
detector is 735 km away, 716m underground in the Soudan mine, Northern Min-
nesota.

The primary purpose of the MINOS experiment is to make precise measure-
ments of the “atmospheric” neutrino oscillation parameters (∆m2

atm and sin2 2θatm).
The oscillation signal consists of an energy-dependent deficit of νµ interactions in
the far detector. The near detector is used to characterize the properties of the
beam before oscillations develop. The two-detector design allows many potential
sources of systematic error in the far detector to be mitigated by the near detector
observations.

This thesis describes the details of the νµ-disappearance analysis, and presents
a new technique to estimate the hadronic energy of neutrino interactions. This
estimator achieves a significant improvement in the energy resolution of the neu-
trino spectrum, and in the sensitivity of the neutrino oscillation fit. The system-
atic uncertainty on the hadronic energy scale was re-evaluated and found to be
comparable to that of the energy estimator previously in use.

The best-fit oscillation parameters of the νµ-disappearance analysis, incorpo-
rating this new estimator were: ∆m2 = 2.32+0.12

−0.08 × 10−3 eV2, sin2 2θ > 0.90 (90%
C.L.). A similar analysis, using data from a period of running where the NuMI
beam was operated in a configuration producing a predominantly ν̄µ beam, yielded
somewhat different best-fit parameters ∆m̄2 =

(

3.36+0.46
−0.40(stat.)± 0.06(syst.)

)

×
10−3eV2, sin2 2θ̄ = 0.86+0.11

−0.12(stat.)±0.01(syst.). The tension between these results
is intriguing, and additional antineutrino data is currently being taken in order to
further investigate this apparent discrepancy.



Declaration

I declare that this thesis and the work presented in it are my own and were
produced by me as the result of my own original research. The work was done
while a candidate for a degree at the University of Oxford, and has not been
submitted for any other qualification. Results and figures from published works
have been clearly attributed.

The energy estimation technique presented in Chapter 5 of this thesis was
my primary original contribution to the MINOS charged-current analysis. The
analysis as a whole was performed by a group within the collaboration, and while
I made significant contributions, the innovations described in Chapter 4 are the
work of others (in many cases the subject of a thesis in their own right).

ii



Acknowledgments

Over the course of 31/2 years I’ve collected quite a number of people without whom
this thesis wouldn’t have been possible (or at least severely delayed). So here goes,
in roughly chronological order:

Thanks to my supervisor, Giles Barr, who never ceases to be optimistic, no
matter how broken the analysis, or close the deadline. I also appreciated his offers
(which I never had to take up) to throw his weight around and leave me to get on
with writing, and his prompt proofreading (by usual advisor standards) that let
me do so at a reasonable rate. Thanks also to my secondary supervisor, Alfons
Weber, who supervised the fourth year project that got me hooked on neutrinos
in the first place.

The generation of Oxford MINOS students above me: Jeff, Justin, Phill and
Tobi, set a good example when I first arrived: working hard laying the foundations
of all the analyses to come, and taking copious coffee breaks. They all then set
another good example by graduating shortly after.

The bulk of my time, the group consisted of Alex, Bob, Gemma, and Phil. I
really appreciated having so much expertise so near at hand. Long coffee breaks
remained a productive way to hammer out physics problems, Friday pub lunch
less so.

Thanks to the CC group for putting up with the disproportionate number of
bugs I was responsible for. Congratulations on surviving the great box opening of
2010. Also, to members of the ν̄µ and miscellaneous other groups for answering
all my questions, and for making collaboration meetings fun.

With the “second generation” group all graduated, and me in the middle of
writing up, the task of keeping my sane fell to: two great societies, the OUS and
OS, who gave me something other than work to do, almost every evening; Abbey
who looked sympathetic at a lot of tedious tribulations, and who I’m confident
will bring some of the spirit of the old MINOS office to the T2K heathens; and
Zeynep, who frequently managed to take my mind off writing via the medium of
perplexing statistics questions.

Last, but not least, thank you to my family for putting up with so many years
of physics (with more to come), and not seeming too incredulous at my claims
that I find this stuff interesting.

iii



Contents

1 Introduction 1

2 History and theory of neutrino physics 4

2.1 Early history of the neutrino and the weak interaction . . . . . . . 5

2.2 The number of neutrino generations . . . . . . . . . . . . . . . . . . 7

2.3 Evidence for neutrino oscillations . . . . . . . . . . . . . . . . . . . 9

2.3.1 The solar neutrino problem . . . . . . . . . . . . . . . . . . 9

2.3.2 The atmospheric neutrino anomaly . . . . . . . . . . . . . . 13

2.4 Neutrino oscillation theory . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Derivation of the oscillation formula . . . . . . . . . . . . . . 15

2.4.2 The two flavour approximation . . . . . . . . . . . . . . . . 19

2.4.3 Three flavour oscillations . . . . . . . . . . . . . . . . . . . . 20

2.4.4 Matter effects . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.5 Neutrino decay and decoherence . . . . . . . . . . . . . . . . 26

2.5 Atmospheric neutrino oscillations . . . . . . . . . . . . . . . . . . . 27

2.5.1 Super-Kamiokande . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Accelerator neutrino experiments . . . . . . . . . . . . . . . 30

2.6 Solar neutrino oscillations . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.1 SNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.2 Interpretation in terms of oscillations . . . . . . . . . . . . . 34

2.6.3 KamLAND . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



Contents v

2.7 The last mixing angle . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7.1 Reactor experiments . . . . . . . . . . . . . . . . . . . . . . 37

2.7.2 MINOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Overview of the neutrino sector . . . . . . . . . . . . . . . . . . . . 39

2.9 The LSND anomaly and MiniBooNE . . . . . . . . . . . . . . . . . 42

2.10 Direct mass searches and neutrinoless double beta decay . . . . . . 45

2.10.1 The β-endpoint . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.10.2 Neutrinoless double-beta decay . . . . . . . . . . . . . . . . 48

2.11 Astrophysical neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.11.1 Supernova 1987A . . . . . . . . . . . . . . . . . . . . . . . . 50

2.11.2 Cosmological limits . . . . . . . . . . . . . . . . . . . . . . . 51

3 The MINOS experiment 53

3.1 Overview and physics goals . . . . . . . . . . . . . . . . . . . . . . 53

3.2 The NuMI beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 The MINOS detectors . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 The near detector . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 The far detector . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 The MINOS Monte Carlo simulation . . . . . . . . . . . . . . . . . 65

3.5 Event reconstruction in MINOS . . . . . . . . . . . . . . . . . . . . 66

4 The charged-current analysis 68

4.1 Fiducial volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Flux reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Particle identification . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Beam matrix extrapolation . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Resolution binning . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Rock and antifiducial events . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Systematics and fitter . . . . . . . . . . . . . . . . . . . . . . . . . . 91



Contents vi

4.7.1 Treatment of systematic errors . . . . . . . . . . . . . . . . . 93

4.7.2 Systematics interpolation and fitter . . . . . . . . . . . . . . 96

5 The kNN energy estimator 99

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 The kNN algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Selection of variables . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Sensitivity improvement . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Energy corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6 Evaluation of the systematic error . . . . . . . . . . . . . . . . . . . 117

5.6.1 Neutrino interactions and the AGKY model . . . . . . . . . 119

5.6.2 Intranuclear rescattering with intranuke . . . . . . . . . . 120

5.6.3 intranuke reweighting . . . . . . . . . . . . . . . . . . . . 121

5.6.4 Special Monte Carlo samples . . . . . . . . . . . . . . . . . . 122

5.6.5 Nuclear modelling systematics considered . . . . . . . . . . . 123

5.6.6 Evaluation of individual error contributions . . . . . . . . . 126

5.6.7 Crosschecks . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.6.8 Calibration and single particle response . . . . . . . . . . . . 129

5.6.9 Gain calibration . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.6.10 Intensity effects . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.6.11 Combination and overall systematic . . . . . . . . . . . . . . 135

5.6.12 An alternative error estimate . . . . . . . . . . . . . . . . . 138

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6 Results of the MINOS νµ and ν̄µ disappearance analyses 142

6.1 νµ disappearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2 ν̄µ disappearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



Contents vii

7 Summary and outlook 158

Bibliography 163



List of Figures

2.1 Beta decay in Fermi theory and the Standard Model . . . . . . . . 5

2.2 Feynman diagrams for neutrino interactions with W± and Z0 . . . 6

2.3 LEP measurement of the number of neutrino generations . . . . . . 8

2.4 SSM prediction of the solar neutrino spectrum . . . . . . . . . . . . 10

2.5 Summary of atmospheric neutrino deficit from various experiments 14

2.6 The history of a MINOS neutrino from production to detection . . 15

2.7 Survival probability for an electron neutrino . . . . . . . . . . . . . 23

2.8 Coherent forward scattering of neutrinos in matter . . . . . . . . . 24

2.9 Super-Kamiokande zenith angle distributions . . . . . . . . . . . . . 28

2.10 Super-Kamiokande L/E analysis oscillation dip . . . . . . . . . . . 29

2.11 Contours from Super-Kamiokande . . . . . . . . . . . . . . . . . . . 30

2.12 Solar neutrino flux measurement from SNO . . . . . . . . . . . . . . 33

2.13 KamLAND oscillation dip . . . . . . . . . . . . . . . . . . . . . . . 35

2.14 Contours from solar experiments and KamLAND . . . . . . . . . . 36

2.15 Summary of reactor neutrino results . . . . . . . . . . . . . . . . . . 37

2.16 MINOS θ13 limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.17 Schematic of neutrino flavour composition and mass ordering . . . . 41

2.18 MiniBooNE neutrino and antineutrino contours . . . . . . . . . . . 44

2.19 Diagrams of double-beta decay and neutrinoless double-beta decay . 48

3.1 Sketch of the path of the NuMI neutrino beam . . . . . . . . . . . . 54

viii



List of Figures ix

3.2 Timing structure of NuMI beam spills . . . . . . . . . . . . . . . . 55

3.3 Schematic view of the NuMI beamline . . . . . . . . . . . . . . . . 56

3.4 Energy spectra from three NuMI configurations . . . . . . . . . . . 57

3.5 Construction of the MINOS scintillator strips . . . . . . . . . . . . 58

3.6 U and V views in the far detector . . . . . . . . . . . . . . . . . . . 59

3.7 Alternation of U and V planes . . . . . . . . . . . . . . . . . . . . . 60

3.8 Variation in detector response as a function of time . . . . . . . . . 61

3.9 Layout of the near detector cavern . . . . . . . . . . . . . . . . . . 62

3.10 Geometry of the near detector . . . . . . . . . . . . . . . . . . . . . 62

3.11 Layout of the far detector cavern . . . . . . . . . . . . . . . . . . . 64

4.1 Near detector data/MC agreement before and after flux reweighting 71

4.2 Effect of flux reweighting for four non-standard configurations . . . 72

4.3 Event display of a charged-current interaction in MINOS . . . . . . 73

4.4 Event display of a neutral-current interaction in MINOS . . . . . . 74

4.5 Input variables to the primary CC selection kNN . . . . . . . . . . 75

4.6 Output of the primary CC selection kNN . . . . . . . . . . . . . . . 76

4.7 Cartoon of the use of a kNN for particle identification . . . . . . . . 77

4.8 Input variables to the auxiliary CC selection kNN . . . . . . . . . . 78

4.9 Output of the auxiliary CC selection kNN . . . . . . . . . . . . . . 79

4.10 Efficiency and contamination of the charged-current selection . . . . 80

4.11 Sketch of pion decay geometry in NuMI . . . . . . . . . . . . . . . . 81

4.12 Energy smearing in the extrapolation from ND to FD . . . . . . . . 82

4.13 Beam matrix for the charged-current analysis . . . . . . . . . . . . 83

4.14 Flowchart of the charged-current extrapolation procedure . . . . . . 84

4.15 Track and shower energy resolution parameterizations . . . . . . . . 85

4.16 Distribution of energy resolutions with quantile boundaries . . . . . 86

4.17 Reconstructed energy against true energy in two resolution bins . . 87



List of Figures x

4.18 Interaction vertices for rock and antifiducial events . . . . . . . . . 88

4.19 Far detector regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.20 Fit bias introduced by various systematic errors . . . . . . . . . . . 94

4.21 Weighting functions used for systematic interpolation . . . . . . . . 98

5.1 Sensitivity gains possible from energy reconstruction improvements 100

5.2 Cartoon of the use of a kNN for energy estimation . . . . . . . . . . 102

5.3 Partition of points by a kd-tree . . . . . . . . . . . . . . . . . . . . 104

5.4 Relative timing of tracks and showers in data and Monte Carlo . . . 108

5.5 Shower kNN figure of merit as a function of number of neighbours . 109

5.6 Reconstructed over true energy for calorimetric and kNN estimators 110

5.7 Shower energy estimation improvement from calorimetric to kNN . 111

5.8 Sensitivity improvement from the kNN energy estimator . . . . . . 112

5.9 Distribution of EkNN/Etrue for the uncorrected estimator . . . . . . 114

5.10 Mean EkNN/Etrue before and after energy corrections . . . . . . . . 115

5.11 Correction function applied to the kNN estimator . . . . . . . . . . 116

5.12 Shower energy estimation improvement after energy corrections . . 117

5.13 Sensitivity improvement from the corrected kNN estimator . . . . . 118

5.14 EkNN/Etrue for an example systematically shifted MC sample . . . . 126

5.15 Systematic shifts from all nuclear interaction effects . . . . . . . . . 128

5.16 Comparison of errors from shifted MC and intranuke reweighting 130

5.17 Uncertainty in the kNN output due to calibration errors . . . . . . 131

5.18 The effect of a ±5% shift in Monte Carlo gains . . . . . . . . . . . . 133

5.19 Systematic shift of the kNN energy in low and high intensity MC . 134

5.20 Variation of mean shower energy with beam intensity in data . . . . 135

5.21 Estimate of the total kNN estimator systematic error . . . . . . . . 136

5.22 Estimate of the total calorimetric estimator systematic error . . . . 137

5.23 Cartoon of methods to distort an MC distribution to match data . 139



List of Figures xi

5.24 kNN error evaluated by matching MC input distributions to data . 140

5.25 MINOS oscillation sensitivity after successive analysis improvements 141

6.1 Near detector charged-current energy spectra . . . . . . . . . . . . . 143

6.2 Far detector charged-current energy spectrum . . . . . . . . . . . . 144

6.3 Far detector energy spectra for each resolution bin . . . . . . . . . . 145

6.4 Far detector rock and antifiducial spectrum . . . . . . . . . . . . . . 146

6.5 ∆m2, sin2 2θ contours for the charged-current analysis . . . . . . . . 148

6.6 Near detector energy spectra from Run IV . . . . . . . . . . . . . . 150

6.7 Far detector antineutrino-selected energy spectrum . . . . . . . . . 151

6.8 Ratio of antineutrino spectrum to the unoscillated prediction . . . . 152

6.9 Near detector charge/momentum ratio for both field configurations 153

6.10 Far detector charge/momentum ratio for the antineutrino analysis . 154

6.11 ∆m̄2, sin2 2θ̄ contours for the antineutrino analysis . . . . . . . . . 156



List of Tables

3.1 Analyzed MINOS run periods . . . . . . . . . . . . . . . . . . . . . 56

4.1 ∆χ2 values for different confidence levels . . . . . . . . . . . . . . . 92

7.1 Unanalyzed and future MINOS run periods . . . . . . . . . . . . . . 159

xii



Chapter 1

Introduction

With the discovery of the top quark at the Tevatron in 1995 [1, 2] the particle con-

tent of the Standard Model was complete (save for the ever-elusive Higgs boson).

In the fifteen years of careful experimentation since then, no convincing evidence

has yet been found for any behaviour outside of the Standard Model, except in

the neutrino sector.

Evidence for deficits in the neutrino rate from the sun, and from the atmo-

sphere, the “solar neutrino problem” and “atmospheric neutrino anomaly”, was

longstanding. However, the confirmation of the interpretation of these in terms

of the phenomenon of neutrino oscillations has only come relatively recently. The

evidence in favour of this interpretation is now very strong, and the existence of

non-zero neutrino masses and of neutrino mixing is now well established. Chap-

ter 2 describes the historical progress of the field of neutrino physics, and the

theoretical basis and derivation of the standard neutrino oscillation formulae.

Much has been learnt about the properties of neutrinos in the last few years.

We now have good measurements of two of the three neutrino mixing angles, and

of the differences in their (squared) masses. Still unknown are: the magnitude of

the final mixing angle; the question of whether neutrino oscillations violate CP

symmetry, and if so the value of the corresponding angle; the absolute, rather

1



2

than relative, values of the neutrino masses; and the correct resolution of the

current remaining ambiguity in the ordering of the mass states. There of course

remains the possibility of surprises, not captured in this orderly programme of

measurements.

The MINOS experiment, consisting of two functionally identical detectors,

1 km and 735 km from the source of the NuMI neutrino beam, was constructed to

make precise measurements of the “atmospheric” neutrino oscillation parameters:

the mass splitting and mixing angle that govern νµ ↔ ντ oscillations in the energy

and distance regime L/E ∼ 500km/GeV. The MINOS detectors, beam, Monte

Carlo simulation and reconstruction software are described in Chapter 3.

Chapter 4 details the components of the primary MINOS analysis. The at-

mospheric mass splitting ∆m2
atm and mixing sin2 2θatm are determined from the

deficit of charged-current νµ interactions observed in the far detector – specifi-

cally, the depth and position of the energy-dependent oscillation dip. This chapter

describes the procedures used to select charged-current events from the neutral-

current background, to use information gained from the near detector to produce

a more accurate far detector prediction, and to find the oscillation parameters that

best fit the observed data spectrum. Two analysis refinements: dividing events

according to their estimated energy resolution, and including a new sample of

events from outside the fiducial volume, are also described.

A significant analysis improvement, developed for this thesis, is described in

detail in Chapter 5. The energy resolution of the hadronic (or “shower”) com-

ponent of neutrino interactions is substantially improved by using a multivariate

estimator based on three variables characterizing the shower activity in an event.

Improved energy resolution leads to a more precise determination of the details of

the oscillation dip, and improved sensitivity to the neutrino oscillation parameters.

Chapter 6 presents the results of the oscillation fit performed using the tech-

niques of Chapters 4 and 5. This analysis provides the world’s most precise mea-
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surement of the mass splitting ∆m2. Also presented in this chapter, are the

results of the similar ν̄µ-disappearance analysis, which provides a measurement of

the same oscillation parameters from an antineutrino beam.

Finally, the conclusion in Chapter 7 summarizes MINOS oscillation results, and

describes the plans for the future running of MINOS. It also gives an overview of

the expected course of the next several years of neutrino oscillation physics, the

reactor and accelerator neutrino experiments that aim to extend our knowledge

of the neutrino sector.



Chapter 2

History and theory of neutrino

physics

This chapter provides an overview of the history of neutrino physics, beginning

with the proposal and discovery of the neutrino and the weak interaction in Section

2.1 and then describing, in Section 2.3, the evidence of anomalies in the rates of

solar and atmospheric neutrinos, now explained by the phenomenon of neutrino

oscillations. Section 2.4 derives the standard neutrino oscillation formula, and

goes on to discuss various useful approximations, and the effect on the oscillatory

behaviour caused by passage through matter. The following Sections 2.5 to 2.9

go on to describe significant oscillation experiments, and the best evidence about

the properties of neutrinos that they have provided us. The chapter concludes by

describing other significant constraints on the properties of neutrinos (particularly

their absolute masses) obtained by non-oscillation experiments (Section 2.10), and

from astrophysical evidence (Section 2.11).

4



2.1 Early history of the neutrino and the weak interaction 5

n

ν̄e

e−

p

W−
n

ν̄e

e−

p

Figure 2.1: Beta decay according to the four-point interaction of Fermi theory
(left) and via exchange of an intermediate W boson as in the Standard Model
(right).

2.1 Early history of the neutrino and the weak

interaction

The neutrino began life named the neutron, and was considered a “desperate

remedy”, the proposal of a (virtually) undetectable particle being deemed the

lesser of two evils compared to the prospect of energy non-conservation. The

problem that caused Pauli to resort to such extreme measures in his famous 1930

letter to the Tübingen conference [3] was the observed continuous energy spectrum

of electrons emitted in beta decay. He proposed a new uncharged, spin-1
2
particle,

existing in the nucleus, and emitted undetected in conjunction with the electron.

The discovery of the neutron proper by Chadwick in 1932 [4] prompted Fermi to

rename Pauli’s particle the neutrino or “little neutral one”.

The theory of beta decay and the weak interaction was soon given some theo-

retical grounding by Fermi [5]. In Fermi theory, beta decay is a four-point inter-

action, as illustrated in the left half of Figure 2.1. Rearrangement of the incoming

and outgoing particles allows the prediction of additional processes, such as elec-

tron capture, and the inverse beta-decay process by which the neutrino was first

detected. Whilst this theory was not without its problems – it was quickly recog-

nized that it violates unitarity at high energies [6] – it was sufficient for the inverse

beta-decay cross-section to be calculated [7], and dismissed as too small to ever



2.1 Early history of the neutrino and the weak interaction 6

W

νl l−

Z0

νl νl

Figure 2.2: Feynman diagrams for the two possible neutrino interactions: a
charged-current interaction via exchange of a W± (left), or a neutral-current in-
teraction via the Z0 boson (right).

observe.

It was indeed 22 years before the neutrino was experimentally detected at

Hanford [8], and then more definitively at Savannah River [9], via the inverse

beta reaction of neutrinos from a nuclear reactor in a scintillator detector. The

measured rate was consistent with theoretical expectations for the cross-section.

In 1956, an assumption that had been made up to that point, that weak

interactions conserve parity, was revealed to be just that: an assumption with no

experimental justification [10]. A year later, parity violation was observed for the

first time. The angular distribution of the electrons emitted in 60Co decay was

observed to be strongly correlated with the direction of the nuclear spin1 [11]. The

neutrino helicity was determined in 1958. The observed polarization of the photon

emitted in the decay of 152Eu requires the neutrino to be a left-handed particle

[12].

The theory of weak interactions was finalized into the form it now takes in the

Standard Model during the 1960s. Based on Yukawa’s concept of an exchange

boson [13], which solves the unitarity violation problem in Fermi theory, the W±

and Z0 bosons were introduced, their masses predicted, and the weak force unified

1The dot product of spin and momentum σ · p is a pseudoscalar quantity, and changes sign
under parity transformations. If parity were conserved there should be no dependence of the
rate on this quantity.



2.2 The number of neutrino generations 7

with electromagnetism [14, 15, 16]. Figure 2.2 shows the two interaction vertices

for neutrinos in this theory. Beta decay is then mediated by the exchange of a W

(right side of Figure 2.1). The V − A form of the interaction predicts maximal

parity violation and left-handed neutrinos. While CP-violation has been observed

in weak interactions, it has not yet been observed in the neutrino sector.

A key prediction of the Glashow-Salam-Weinberg model was the existence

of “neutral-current” (NC) neutrino interactions, mediated by the Z-boson (right

side of Figure 2.2). The Gargamelle bubble-chamber at CERN observed both NC

electron-scattering [17] and hadronic [18] neutrino interactions in 1973. Direct dis-

covery of the exchange bosons themselves, including confirmation of their masses,

came in 1983 from the UA1 and UA2 experiments at CERN’s Spp̄S [19, 20, 21, 22].

2.2 The number of neutrino generations

The concept of a conserved lepton number was introduced in 1953 [23]. A 1962

experiment at Brookhaven [24] demonstrated that the neutrinos produced in pion

decay, when interacting in a detector, produced muons and not electrons. This

indicated the existence of two different types of neutrino, one coupling to the

electron, the other to the muon. Together with the non-observation of the decay

µ → e + γ, this led to the introduction of lepton generation number, conserved

separately for electron- and muon-like leptons.

In 1975, events of the form e++e− → e±+µ∓+[missing energy] were observed

at SLAC [25]. Interpreted as the production of a pair of particles which decay

either to muons or to electrons, plus neutrinos, this was the first evidence for

another generation of leptons. The mystery particle is what we now know as the τ .

The probability of the existence of a corresponding tau neutrino was immediately

raised but, due to the technical difficulties of producing and detecting them, the

first evidence for their existence came via an indirect method, as follows.
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Figure 2.3: Cross section for e++e− → hadrons at centre-of-mass energies around
the Z-mass from LEP. The prediction for three neutrino generations (green) fits
the data much better than two or four (red). Taken from [26].

The Breit-Wigner formula for the cross-section σf of a process around a reso-

nance E0 as a function of energy is

σf (E) = σtot(E0)
Γ2
f/4

(E − E0)2 + Γ2
tot/4

, (2.1)

where Γf is the width to the final state in question, Γtot is the width to all final

states, and E0 is the mass of the virtual particle. The Γtot term in the denominator

means that additional decay modes increase the width of the resonant peak for

all other modes. Extremely accurate measurements of the properties of the Z-

peak were made at LEP [26]. Figure 2.3 shows the cross-section obtained at

different energies around the Z mass, compared to the prediction in the case of
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2, 3, or 4 generations of neutrinos, which contribute to the Z width via the decay

Z0 → ν + ν̄. Leaving the number of neutrino generations free in the fit, a value

of Nν = 2.9840± 0.0082 was obtained, confirming the existence of the third, tau,

neutrino and ruling out further generations beyond the three already known. The

only way in which additional generations of neutrinos could exist is if either they

exceed half the Z-mass (i.e. 45GeV) or if they are of a novel “sterile” type which

does not couple to the Z, and would thus have no Standard Model interactions at

all, interacting with other matter only via gravity.

Direct confirmation of the existence of the ντ was not obtained until 25 years

after the discovery of its counterpart the τ . The DONUT experiment at Fermilab

used a neutrino beam produced by the decay of charmed mesons created by a

800GeV proton beam from the Tevatron, incident on a tungsten target. The ντ

component of the beam came primarily from the decay of DS mesons, and the

detector consisted of interleaved layers of steel and photographic emulsion. At

these energies, the tau lepton formed in a charged-current ντ interaction only

travels about 2mm before it decays, so the signal of a ντ -event is a track with a

sharp kink near the vertex, indicating the decay of the initial τ . In 2000 DONUT

reported the first evidence for ντ events [27]. In their final dataset they observe

9 candidate tau events over an expected background of 1.5 events [28], obtaining

conclusive evidence for ντ interactions and completing the fermion content of the

Standard Model.

2.3 Evidence for neutrino oscillations

2.3.1 The solar neutrino problem

By the 1960s the mechanisms of energy production in the sun were well understood

theoretically, but since the zone of energy production is hidden deep within the
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Figure 2.4: Prediction of the solar neutrino energy spectrum from the Standard
Solar Model. The shaded regions indicate the energy ranges over which various
classes of experiment are sensitive. Taken from [29].

sun at its core, direct confirmation had not been obtained. Neutrinos, with their

ability to reach the earth directly from the solar core, held the potential to provide

this direct evidence of the nuclear reactions occurring there. Attempts to use these

solar neutrinos for astrophysics provided the first evidence for the phenomenon of

neutrino oscillations.

According to the Standard Solar Model (SSM), energy generation in the sun

occurs mainly via two processes: the pp chain, in which Hydrogen nuclei (protons)

fuse together directly to ultimately become 4He; and the CNO cycle, in which

carbon, nitrogen and oxygen nuclei act as catalysts for the transformation 4p →
4He. Both processes contain steps that involve the emission of an electron neutrino.

In our sun the pp chain dominates, and is responsible for the majority of the energy
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production. Figure 2.4 shows a modern prediction of the neutrino flux expected

from the sun. The continuous spectra are due to neutrinos emitted in three-body

decays, the lines from two-body decays.

The first experiment to search for, and successfully detect, these solar neutrinos

was carried out by Ray Davis in the Homestake mine, South Dakota, starting in

1968 [30]. Using a 390,000 litre tank of tetrachloroethylene (C2Cl4), neutrino

interactions occur via a charged-current interaction to form an unstable isotope

of argon, with a neutrino energy threshold of 814 keV:

νe +
37Cl → e− + 37Ar . (2.2)

The argon atoms were flushed from the tank using helium gas, and detected by

their decays back to 37Cl. The data from the Homestake experiment consistently

showed an unexpectedly low rate of neutrino interactions, approximately a third of

the SSM prediction [31]. At the time, this anomaly was put down to either incor-

rect flux predictions from the solar models or to a problem with the experiment,

which is technically challenging, searching for radioactive decays that happen at

a rate on the order of one atom per week.

Further evidence for a deficit of electron neutrinos from the sun had to wait

until 1989 when the Kamiokande-II water-Čerenkov experiment (originally built to

search for proton decay) reported their observations of solar neutrinos [32]. The

signal observed was the neutral-current interaction of a solar neutrino with an

electron in the water, and the resulting Čerenkov light from the outgoing electron:

νe + e− → νe + e− . (2.3)

This reaction is sensitive to the 8B decay step of the pp-III chain in the sun, one
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of the flux components observed by the Homestake experiment:

8B → 8Be + e+ + νe + γ . (2.4)

Compared to radiochemical experiments, Kamiokande had several advantages,

including real-time read-out and the ability to determine the direction of the

recoil electron, and hence obtain evidence that the detected neutrinos were coming

from the direction of the sun. The results confirmed a deficit in the rate of solar

neutrino interactions, finding a rate about half that expected. The deviations of

the Homestake and Kamiokande observations from the SSM predictions became

known as the “solar neutrino problem”.

Independent confirmation of a deficit in solar neutrino rates came from two

more experiments, using a third technique: SAGE [33] in 1991 and GALLEX [34]

in 1992. Both experiments took advantage of the reaction

νe +
71Ga → 71Ge + e− (2.5)

using liquid gallium, extracting the germanium atoms, and observing their decay,

analogously to the Homestake experiment. The advantage of using this reaction

is that the threshold is sufficiently low (233 keV) that it is sensitive to neutrinos

from the first step of the pp chain:

p+ p → 2H+ e+ + νe . (2.6)

The rate of this reaction is directly correlated with the overall rate of energy

production in the sun, and the uncertainties on this flux in the SSM are therefore

low, making the deficits observed by SAGE and GALLEX convincing evidence

that the solar neutrino problem is due in some way to disappearance of electron

neutrinos from the sun before they reach Earth.
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2.3.2 The atmospheric neutrino anomaly

Another, parallel, strand of evidence for disappearance of neutrinos came from

the study of atmospheric neutrinos. These neutrinos are produced by cosmic rays

striking the atmosphere, and the decay of pions and kaons thus produced. The

dominant process is:

π+ → µ+ + νµë e+ + νe + ν̄µ , (2.7)

plus a similar contribution from π− decays, and a smaller one from kaons. The

neutrinos produced range from around the GeV scale up to the TeV scale.

These atmospheric neutrinos were a significant background to experiments in

the 1980s searching for proton decay, and large samples of atmospheric neutrino

interactions were taken as by-products. In 1988 the Kamiokande experiment,

mentioned previously in relation to the solar neutrino problem, reported that,

whilst their observed rate of atmospheric νe interactions was in agreement with

Monte Carlo expectations, they saw a significant deficit of νµ events [35].

This deficit of atmospheric νµ was confirmed by the IMB 8kton water-C̆erenkov

detector in 1992 [36]. Like Kamiokande, they saw the expected rate of νe interac-

tions but only about 2
3
of the expected νµ flux.

Whilst there are large uncertainties in the overall normalization of the expected

atmospheric neutrino flux, the νµ : νe ratio is much better constrained. From (2.7)

one would expect a 2 : 1 ratio2. This is somewhat modified by kaon decays, and

uncertainty in the K/π ratio leads to a few percent uncertainty in the νµ : νe ratio,

insufficient to cover the observed discrepancies. This problem became know as the

“atmospheric neutrino anomaly”.

The situation was somewhat confused by results from the NUSEX and Fréjus

2When integrated over all energies. Coincidentally, the pion and muon masses are such that
this relation also approximately holds at each particular neutrino energy.



2.3 Evidence for neutrino oscillations 14


Sub-GeV
Multi-GeV

Sup
er

K

(F
C)

R

No osc.

R'


'


Figure 2.5: Summary of the deficit in atmospheric muon neutrino rates compared
to electron neutrinos observed in various experiments. Although the NUSEX
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experiments, both iron calorimeter tracking detectors searching for proton decay.

In contrast to Kamiokande and IMB, they reported no significant deviation of

the νµ : νe ratio from expectations [38, 39]. At the time, doubts were cast on

the water-C̆erenkov technique of Kamiokande and IMB, but the observation of a

comparable deficit by the iron calorimeter Soudan 2 experiment [40] eliminated

the possibility that the C̆erenkov experiments were simply suffering from some

unmodelled systematic effect specific to their design. In the light of more recent

measurements, and the large statistical error inherent in all the experiments, all

the results are seen to be consistent with one another, and the claim of a νµ deficit

in atmospheric neutrinos is vindicated (see Figure 2.5).
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Figure 2.6: Feynman diagram showing the full history of a neutrino in a represen-
tative oscillation experiment (in this case MINOS). Here the neutrino is produced,
from the decay of a W boson, in association with an anti-muon. After travelling
some distance, the neutrino interacts via a charged-current interaction, producing
a muon. In this case, the associated leptons at production and absorption are of
the same flavour and we may loosely say that no oscillation has occurred. Note
that the neutrino forms an internal line, and may be treated as a virtual particle.

2.4 Neutrino oscillation theory

2.4.1 Derivation of the oscillation formula

Of the various hypotheses put forward to explain the deficits in neutrino rates

described in Sections 2.3.1 and 2.3.2, only one has stood the test of experiment.

The possibility that neutrinos have non-zero mass and may therefore change

state in flight was first suggested by Pontecorvo in 1958 [41] although the proposal

differs somewhat from our current understanding, advocating transitions between

neutrinos and antineutrinos, rather than between neutrino flavours. The sugges-

tion that electron and muon flavour neutrinos are formed from a mixing of two

independent mass states was made by Maki, Nakagawa, and Sakata in 1962 [42].

The specific problem that we are interested in calculating probabilities for, is

that of a neutrino being created, travelling some distance and later interacting
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and being destroyed again. Figure 2.6 shows a concrete example of such a process.

In the case of massless neutrinos, lepton-generation number is conserved and the

charged leptons associated with the neutrino’s production and absorption must

have the same flavour. The intermediate neutrino would then also be referred to

as being a neutrino of that flavour. In the presence of nonzero neutrino masses,

lepton flavour number conservation may be violated, and it is possible for the two

associated leptons to have differing flavours. The probability for this to occur will

be dependent on the neutrino energy and on the distance travelled.

With the introduction of non-zero neutrino masses, the relative coupling strength

of each mass state to each of the charged leptons via the W must be specified.

The matrix that defines these relative strengths is called the PMNS matrix, after

Pontecorvo, Maki, Nakagawa and Sakata. The matrix element U⋆
αi gives the rela-

tive amplitude for a charged lepton of flavour α to couple to the ith neutrino mass

state. For reasons of self-consistency the matrix U must be unitary, i.e. UU † = I.

The combination of mass states created in association with a lepton of flavour

α

|να〉 =
∑

i

U⋆
αi |νi〉 (2.8)

may be loosely referred to as a neutrino of flavour α.

The overall picture of the oscillation mechanism is straightforward. A lepton

of definite flavour is produced in conjunction with a superposition of different neu-

trino mass states. Due to their differing masses, these propagate at varying speeds

and so accumulate a phase difference between them, which increases with the dis-

tance travelled. After travelling some distance the neutrino interacts again, each

mass state being responsible for creating a superposition of differing associated

leptons. Due to the accumulated phase differences this final state is not identi-

cal to the initial lepton, and upon detection it may be found to be of a different

flavour.
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Several subtleties arise in carrying out the calculation itself however, especially

in the simplest plane-wave version (as reproduced here). Problems of energy-

momentum conservation due to the differing neutrino masses are resolved in prin-

ciple by noting that the neutrino in all cases is only observed via its interaction

products and thus forms a virtual particle where energy and momentum conserva-

tion are not required to strictly hold. In practice, a wave-packet or QFT approach

handles this automatically. The essential issue with plane-wave calculations is

that the plane waves by construction fill all space for all time. There is thus no

concept of the neutrino’s travel from production to detection, which has to be put

in by hand, appealing to some reasonable assumption. This step may fall down,

especially in the usual ultra-relativistic limit, due to failure of Lorentz invariance

or use of unjustified approximations. These and other issues are covered in [43]

for plane waves and [44] in the wave-packet description.

We can write the amplitude Aαβ for an initial flavour α to produce a final

flavour β as a sum over all possible intermediate mass states, with the appropriate

couplings and phase factors. The different intermediate mass states are indis-

tinguishable3, so their contributions are summed coherently in the amplitude.

Natural units ~ = c = 1 are used throughout.

Aαβ =
∑

i

U⋆
αie

−ip̃i·x̃iUβi (2.9)

where p̃i = (Ei, ~pi) is the 4-momentum of mass state i and x̃i its position (relative

to production at the origin) and we will use a +−−− metric. Taking the modulus

squared to find the transition probability:

Pαβ =
∑

ij

U⋆
αiUβiUαjU

⋆
βje

i(p̃j ·x̃j−p̃i·x̃i) . (2.10)

3Attempts to distinguish them via their differing times of flight or by carefully observing the
details of their production are frustrated by the uncertainty principle.



2.4 Neutrino oscillation theory 18

At this point we need to relate the energies, momenta and positions of the

different mass components to each other in order to determine the relative phase

accumulated between the components at the point of observation. This phase is

the argument of the exponent:

∆φij = p̃j · x̃j − p̃i · x̃i . (2.11)

Now we make the approximation that all the mass states are sufficiently close to

having a common energy E. The same result can also be obtained by assuming

equal momenta or equal velocities. Then, calculating the expression at a common

time and distance from production L, we obtain an expression in terms of the

magnitude of the three-momenta p = |~p|:

∆φij = piL− pjL =
p2i − p2j
pi + pj

L =
m2

j −m2
i

2pavg
L , (2.12)

where pavg =
1
2
(pi + pj).

Finally we approximate pavg ≈ E, justified by the high energies involved in

experiments compared to the neutrino masses, and substitute ∆φij into (2.10).

Pαβ =
∑

ij

U⋆
αiUβiUαjU

⋆
βj exp

(

i
∆m2

jiL

2E

)

(2.13)

with the notation ∆m2
ji = m2

j −m2
i . Expanding out the exponential using Euler’s

formula, and using the identity cos 2θ = 1− 2 sin2 θ:

Pαβ =
∑

ij

ℜ(U⋆
αiUβiUαjU

⋆
βj)

(

1− 2 sin2

(

∆m2
jiL

4E

))

−
∑

ij

ℑ(U⋆
αiUβiUαjU

⋆
βj) sin

(

∆m2
jiL

2E

)

. (2.14)

Using the property of unitary matrices that the rows form an orthonormal
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basis
∑

i UαiU
⋆
βi = δαβ we arrive at the final transition probability:

Pαβ = δαβ − 4
∑

i>j

ℜ(U⋆
αiUβiUαjU

⋆
βj) sin

2

(

∆m2
ijL

4E

)

+ 2
∑

i>j

ℑ(U⋆
αiUβiUαjU

⋆
βj) sin

(

∆m2
ijL

2E

)

. (2.15)

If CP symmetry is obeyed in neutrino oscillations then Pᾱβ̄ ≡ Pαβ , where the

bars on the indices represent oscillations between antineutrinos. If CP symmetry

is broken then CPT symmetry still implies Pᾱβ̄ ≡ Pβα and thus Pᾱᾱ ≡ Pαα. That

is, survival probabilities should be identical between neutrinos and antineutrinos.

2.4.2 The two flavour approximation

In a world with only two neutrino generations the oscillation formulae simplify

considerably. The mixing matrix can be expressed in terms of a single angle4:

U =







cos θ sin θ

− sin θ cos θ






. (2.16)

Substituting into equation (2.15), and making the conversion to practical units

yields a much-simplified expression for the survival probability.

Pαα = 1− sin2 2θ sin2

(

1.267
∆m2 [eV2]L [km]

E [GeV]

)

. (2.17)

Alternatively L may be measured in metres and E in MeV. The oscillatory

term is an even function of ∆m2, so investigation of two-flavour oscillations of this

form can only give information about the magnitude of the mass splitting, with

no information about which of the two mass states is the heavier.

The assumption of two neutrino flavours is obviously unrealistic, but the sim-

4Technically there is also a CP-violating Majorana phase, which we will gloss over here.
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plification to only two oscillation parameters (∆m2 and sin2 2θ) and the survival

probability (2.17) does have relevance to the real world. In the case of a neutrino

mass spectrum where one ∆m2 is much larger than the others, and an experiment

whose baseline is chosen such that, for all the small splittings, ∆m2L
E

≪ 1 the

general oscillation formula (2.15) simplifies [45] to give a survival probability:

Pαα = 1− 4

(

∑

i bunch

|Uαi|2
)(

1−
∑

i bunch

|Uαi|2
)

sin2

(

∆m2L

4E

)

, (2.18)

where the sums are over all the states below the large mass splitting, or alterna-

tively all those above. In this case the survival probability can be parameterized

in terms of two quantities: the largest mass splitting, and an effective mixing

angle. The neutrino mass spectrum found in nature does indeed exhibit one dom-

inant mass splitting (see Section 2.8), and the MINOS experiment is tuned to the

relevant L/E, so the simple survival probability (2.17) may be adopted for the

analysis of the observed muon-neutrino deficit.

2.4.3 Three flavour oscillations

Motivated by the simplified oscillation formula obtained in the case of two neutrino

generations, where the mixing is parametrized by a single angle, the full PMNS
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matrix is often expressed in terms of angles5:

U =













1 0 0

0 c23 s23

0 −s23 c23

























c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13

























c12 s12 0

−s12 c12 0

0 0 1













(2.19)

=













c12c13 s12s13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13













, (2.20)

where sij ≡ sin θij and cij ≡ cos θij and the convention for the decomposition is

that adopted by the Review of Particle Physics [46]. For historical reasons the an-

gle θ23 may be referred to as the atmospheric mixing angle, and the corresponding

mass-splitting ∆m2
32 as ∆m2

atm. Similarly, θ12 is known as the solar mixing angle

and the mass splitting ∆m2
12 can be written ∆m2

sol or ∆m2
⊙. θ13 is the only angle

not to have been experimentally verified to be non-zero and is the focus of several

current and future experiments. δ is the CP-violating phase.

The most experimentally relevant channel which exhibits all the features of

three-flavour oscillations is the appearance of electron-neutrinos in a muon-neutrino

beam. The transition probability Pµe can be written:

Pµe =
∣

∣

∣
U⋆
µ1e

−im2
1L/2EUe1 + U⋆

µ2e
−im2

2L/2EUe2 + U⋆
µ3e

−im2
3L/2EUe3

∣

∣

∣

2

. (2.21)

5The two Majorana phases α1 and α2 are not observable in oscillation experiments
and have been omitted in this expression. If they are included an additional matrix
diag(exp(iα1/2), exp(iα2/2), 1) is included in the product.
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Using the orthogonality of the rows of U to eliminate the first term:

Pµe =
∣

∣

∣
U⋆
µ2Ue2

(

e−i
m2L
2E − e−i

m1L
2E

)

+ U⋆
µ3Ue3

(

e−i
m3L
2E − e−i

m1L
2E

)
∣

∣

∣

2

(2.22)

=

∣

∣

∣

∣

2iU⋆
µ2Ue2 sin

(

∆m2
21L

4E

)

e−i
(m1+m2)L

2E

+ 2iU⋆
µ3Ue3 sin

(

∆m2
31L

4E

)

e−i
(m1+m3)L

2E

∣

∣

∣

∣

2

(2.23)

=

∣

∣

∣

∣

2U⋆
µ3Ue3 sin

(

∆m2
31L

4E

)

e−i
∆m2

32L

4E + 2U⋆
µ2Ue2 sin

(

∆m2
21L

4E

)
∣

∣

∣

∣

2

.(2.24)

Inserting the definition of U from (2.19), and approximating θ13 ≪ 1 in the

second term, the probability becomes

Pµe ≈
∣

∣

∣

√

Patme
−i(∆m2

32L/4E±δ) +
√

Psol

∣

∣

∣

2

(2.25)

= Patm + 2
√

PatmPsol cos

(

∆m2
32L

4E
± δ

)

+ Psol , (2.26)

where

√

Patm = sin θ23 sin 2θ13 sin

(

∆m2
31L

4E

)

(2.27)

√

Psol = cos θ23 sin 2θ12 sin

(

∆m2
21L

4E

)

. (2.28)

That is, the oscillation occurs over two different characteristic length scales,

atmospheric and solar. This general behaviour is illustrated in Figure 2.7. The

effect of CP-violation is seen in the cross term. Between them Patm and Psol contain

sines of all the mixing angles, thus the value of δ is only observable if all these

angles are non-zero. θ13 = 0 remains an experimental possibility and so discovery

of a non-zero θ13 is a prerequisite to studying CP-violation in the lepton sector.

This is the reason why δ is grouped with θ13 in (2.19).

Note that if any of the angles are zero then either Patm = 0 or Psol = 0 and

the oscillation reduces to the two flavour form (2.17) (with a suitable definition of
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Figure 2.7: Survival probability for an electron neutrino as a function of L/E.
The oscillation occurs over two distinct baselines. The first minimum at the atmo-
spheric baseline is that probed by reactor neutrino experiments such as CHOOZ,
whereas the first solar minimum has been measured by KAMLAND. Figure taken
from [47].

the angle θ in terms of the two remaining angles). This is a general property of

three-neutrino oscillations. If any angle is small then all oscillation probabilities

can be approximated by a two-flavour form. In practice θ13 plays the role of small

angle, simplifying the analysis of data from many experiments.

2.4.4 Matter effects

Neutrinos traveling through matter undergo a modification of their oscillatory

behaviour as a result of their interactions with it. This phenomenon was first noted

by Wolfenstein [48] and is known as the Mikheev-Smirnov-Wolfenstein (MSW)

effect. It is of practical interest in the analysis of solar neutrino oscillations and

for the future long-baseline experiments NOνA and LBNE.

First we must recast the general treatment of neutrino oscillations given in

Section 2.4.1 into a more suitable form. The general expression for the transition

amplitude Aαβ (Equation (2.15)) can also be expressed in terms of a Schrödinger
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Figure 2.8: Coherent forward scattering of neutrinos from matter. Left: an elec-
tron neutrino scattering from an electron via a charged-current interaction. Right:
a neutrino of any flavour scattering from an electron via a neutral-current inter-
action.

equation:

i
d

dL
Aαβ(L) =

∑

iγ

Uβi
m2

i

2E
U⋆
γiAαγ(L) . (2.29)

For the two-flavour case, choosing the flavours to be e and µ, and beginning

in a νe state, neglecting an overall phase, this becomes

i
d

dL







Aee

Aeµ






=

1

4E







−∆m2 cos 2θ ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ













Aee

Aeµ






. (2.30)

For neutrinos traveling through matter there is a contribution to the Hamilto-

nian from coherent forward scattering from protons, electrons, and neutrons. The

two possible diagrams for scattering from an electron are shown in Figure 2.8.

Only electron neutrinos can interact via the charged-current in this way, while all

flavours of neutrino can undergo neutral-current interactions. The contribution

from neutral-current scattering is the same for all neutrino flavours, contributes

nothing to the phase difference that drives oscillations, and is thus ignored. The

contribution from charged-current interactions is

HCC = ±
√
2GFNe , (2.31)

where Ne is the number density of electrons in the medium and the positive sign
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is for neutrinos, the negative for antineutrinos.

The Schrödinger equation (2.30) then becomes

i
d

dL







Aee

Aeµ






=

1

4E







−∆m2 cos 2θ ± 4
√
2EGFNe ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ













Aee

Aeµ






.

(2.32)

Diagonalizing the Hamiltonian matrix we obtain

H =
1

4E







cos θM − sin θM

sin θM cos θM













−∆m2
M 0

0 ∆m2
M













cos θM sin θM

− sin θM cos θM






,

(2.33)

with

∆m2
M =

√

(∆m2 cos 2θ ∓ 2
√
2EGFNe)2 + (∆m2 sin 2θ)2 (2.34)

tan 2θM =
tan 2θ

1∓ 2
√
2EGFNe

∆m2 cos 2θ

. (2.35)

That is, the effect of the matter potential causes the neutrino oscillations to

occur with effective oscillation parameters ∆m2
M and θM which are formed by

modifying the underlying parameters according to the neutrino energy and the

matter density.

These equations contain an interesting resonance effect, first noted by Mikheev

and Smirnov [49]. Around a certain electron density

N res
e =

∆m2 cos 2θ

2
√
2EGF

(2.36)

the mixing becomes maximal at θM = 45◦, no matter how small the initial θ,

allowing a much greater conversion between neutrino flavours (in this case from

νe to νµ) than would otherwise be possible.
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2.4.5 Neutrino decay and decoherence

In addition to neutrino oscillations driven by mass splittings, the phenomena of

neutrino decay and decoherence have been proposed to explain observed neutrino

deficits, either in whole or in part [50, 51].

In neutrino decay models, one of the neutrino states is taken to have a finite

lifetime τ0. This has the effect of including an additional term exp(−τ/2τ0) in the

phase factor in (2.9). In a two flavour model the survival probability then becomes

Pµµ = sin4 θ + cos4 θ exp(−αL/E)

+ 2 sin2 θ cos2 θ exp(−αL/2E) cos

(

∆m2L

2E

)

, (2.37)

where α = m/τ0 for the decaying state. In the limit of stable neutrinos (τ0 → ∞)

this reduces to the usual two-flavour oscillation formula (2.17), and in the limit of

small or zero mass splitting (∆m2 → 0) to a simpler form describing disappearance

driven purely by neutrino decay:

Pµµ =
(

sin2 θ + cos2 θ exp (−αL/2E)
)2

. (2.38)

In decoherence models, the disappearance of one flavour is taken to be due to

a “foamy” or “fuzzy” spacetime background, which makes path lengths indeter-

minate and so gradually destroys the phase relationship between the mass states.

General arguments lead to a survival probability of the form

Pµµ = 1− 1

2
sin2 2θ

(

1− exp(−µ2L/2E) cos

(

∆m2L

2E

))

. (2.39)

Again, taking the decoherence parameter µ to zero recovers the standard two-
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flavour oscillation form, and ∆m2 → 0 yields pure decoherence:

Pµµ = 1− 1

2
sin2 2θ

(

1− exp(−µ2L/2E)
)

. (2.40)

Initially the pure forms (2.38) and (2.40) seemed to provide good fits to the

atmospheric data, but increased statistics has led to them being ruled out at high

significance. Some sufficiently small admixture of either effect with the usual mass-

driven oscillations will always remain a possibility, although upper limits can be

set on the parameters α and µ2.

2.5 Atmospheric neutrino oscillations

2.5.1 Super-Kamiokande

The Super-Kamiokande experiment is the successor to Kamiokande. It consists

of 50 kton of pure water observed by 11,000 photomultiplier tubes. In 1998 the

collaboration reported strong evidence for neutrino oscillations in the form of an

up-down asymmetry in their observed νµ deficit [52, 53]. A significant deficit is

observed in up-going muon events, where the neutrino has had to cross the entire

diameter of the Earth, whereas no such deficit is observed for down-going muon

events, where the neutrino has travelled only a few kilometres from its production

point. Interpreted in terms of neutrino oscillations, these observations allow limits

to be placed on the parameters governing atmospheric neutrino oscillations, which

are found to occur over a baseline of approximately 500 km/GeV, and with near-

maximal mixing. The absence of any deviation from expectations for electron-like

events indicates that the oscillations must be νµ ↔ ντ . Updated results with a

larger period of data taking are reported in [54] and the zenith angle distributions

for different event classes shown in Figure 2.9.

An alternate analysis [55] of the Super-Kamiokande data bins the observed
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Figure 2.10: Ratio of muon-like events to expectation in Super-Kamiokande as
a function of L/E. The red line indicates the best fit to two-flavour νµ ↔ ντ
oscillations. Taken from [55].

events by their estimated L/E value, having first selected only those events whose

L/E is expected to be well estimated. This method allows the characteristic

oscillation dip to be made out (Figure 2.10). The confidence limits obtained on the

oscillation parameters are complementary to the standard zenith angle analysis,

obtaining somewhat tighter limits in ∆m2
atm but a weaker limit on sin2 2θatm, as

shown in Figure 2.11. The best fit parameters obtained are (at 90% confidence

level):

1.9× 10−3 eV2 < |∆m2
atm| < 3.0× 10−3 eV2 (2.41)

sin2 2θatm > 0.90 . (2.42)
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Figure 2.11: 68%, 90% and 99% (red, black and blue respectively) confidence
contours for the atmospheric neutrino parameters from Super-Kamiokande. Solid
lines indicate the zenith-angle analysis, dotted lines the L/E analysis. Taken from
[54].

The rate of atmospheric neutrinos as a function of zenith angle has also been

analyzed by Soudan 2 [56], MACRO [57], and MINOS [58, 59]. All favour νµ ↔ ντ

oscillations with parameters consistent with those found by Super-Kamiokande,

though with significantly less sensitivity.

2.5.2 Accelerator neutrino experiments

Confirmation of neutrino oscillations with the atmospheric parameters, indepen-

dent of detailed knowledge of the atmospheric neutrino flux, was provided by the
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K2K experiment [60]. A beam of muon neutrinos was produced at KEK from

a 12GeV proton beam striking an aluminium target. This beam was directed

towards the Super-Kamiokande detector 250 km away. Additional detectors, in-

cluding a 1 kton water-Čerenkov detector, were placed 300m downstream of the

target in order to measure the beam properties before oscillations had occurred.

Accelerator experiments have the advantage of knowing the baseline over which

oscillations occur precisely, whilst atmospheric experiments must estimate this for

each event based on the reconstructed neutrino direction. Results of the oscil-

lation analysis were once again consistent with Super-Kamiokande’s atmospheric

fits, but with lower sensitivity.

The MINOS experiment uses the same technique of a man-made neutrino

beam from an accelerator, and widely separated “near” and “far” detectors to

reduce systematic uncertainties, to study νµ ↔ ντ oscillations at the atmospheric

baseline. The extraction of the neutrino oscillation parameters from MINOS data

is the focus of later chapters in this thesis.

One other long-baseline accelerator neutrino experiment has thus far reported

results. The OPERA detector was built specifically to test the hypothesis that

the disappearing muon neutrinos oscillate to ντ . While the lack of a νe excess

in atmospheric data rules out νµ ↔ νe, in principle the possibility of decay or

oscillation to an invisible particle is left open. A muon neutrino beam is sent from

CNGS at CERN 730 km to the Gran Sasso laboratory where OPERA is located.

The detector consists of 1300 tons of bricks, each containing a sandwich of lead

plates and photographic emulsion. The extremely high spatial resolution allows

detection of the “kink” in a track as a tau lepton decays to a muon, confirming

that the incident particle was indeed a ντ . In 2010 OPERA reported the first

tau-candidate event [61].
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2.6 Solar neutrino oscillations

2.6.1 SNO

Confirmation that the flux prediction of the Standard Solar Model is correct,

and that the solar neutrino problem is indeed also caused by oscillations between

neutrino flavours, eventually came from the Sudbury Neutrino Observatory (SNO).

The experiment consists of 1000 tons of heavy water (D2O) in a spherical vessel,

observed by photomultiplier tubes. The feature of SNO that allows it to make a

definitive statement about the origin of the solar neutrino deficit is its sensitivity

to solar neutrinos via three separate processes:

• Charged-current: νe + d → p + p + e−. This reaction is sensitive only to

electron neutrinos.

• Elastic scattering: νx+e− → νx+e−. This reaction is sensitive to all flavours,

but predominantly νe due to the additional s-channel diagram available to

them.

• Neutral-current: νx+d → p+n+νx. This reaction is sensitive to all neutrino

flavours equally.

Sensitivity to all neutrino flavours via neutral-current interactions means that

SNO is able to make a measurement of the total solar neutrino flux independent

of any oscillations that may have occurred.

In the “salt phase” from 2001 to 2003, 2 tons of NaCl were added to the heavy

water. This provides three advantages in the detection of the critical neutral-

current interactions. The neutron capture cross-section is larger on chlorine, in-

creasing the event rate; the photons emitted in neutron capture on chlorine are

more energetic than those from deuterium, raising them well above the low energy

backgrounds; and the isotropy of the several photons emitted contrasts well with
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Figure 2.12: Measurement of the solar neutrino flux by SNO [62]. The x-axis
represents the flux of electron flavour neutrinos and the y-axis the combined flux
of µ and τ flavour neutrinos. The coloured bands indicate the constraints placed
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elastic scattering by Super-Kamiokande. The best fit flux is marked along with
68%, 95% and 99% confidence levels. The best fit is consistent with the SSM
expectation (dotted lines) and requires a non-zero flux of non-electron neutrinos.

the single electron of the other two reactions, allowing for better separation of the

NC signal.

Results from the SNO salt phase showed the same deficit of νe events as ob-

served in previous experiments, but crucially the rate of NC interactions was

consistent with the overall neutrino flux predicted by the SSM [62]. A combined

fit to the rates of the three processes yields a non-zero flux of non-electron-flavour

neutrinos and an overall rate consistent with the SSM prediction (Figure 2.12).

The only conclusion is that the overall νe yield predicted by solar models is correct,

but that approximately 2
3
of these convert into νµ, ντ , or both, before reaching

Earth.
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2.6.2 Interpretation in terms of oscillations

Analysis of solar neutrino results is complicated by the possibility of matter ef-

fects in the sun, but the data now favour the “LMA” (large mixing angle) solution,

where the oscillations are driven by an adiabatic passage through the MSW reso-

nance within the sun. Oscillations in vacuum between the sun and the Earth are

disfavoured due to the absence of a seasonal variation in the solar neutrino flux

(as would be expected from the varying baseline caused by the eccentricity of the

Earth’s orbit) beyond simple 1
r2

scaling. The absence of any observable day-night

variations (caused by matter effects as neutrinos pass through the Earth at night)

rules out a region around ∆m2
⊙ cos 2θ⊙ ∼ 10−6 eV2.

In the LMA solution the density at the centre of the sun is far above the critical

density (Ne ≫ N res
e ) and so from Equation (2.35) θM is nearly 90◦. This means

that at their production point the solar νe are almost entirely ν2. The density in

the sun varies smoothly over a long scale so the resonance is passed adiabatically

and the neutrinos remain in the ν2 state throughout. Exiting the sun into vacuum

the state is a mixture of electron and other flavours |ν2〉 = sin θ⊙ |νe〉+cos θ⊙ |νx〉,

and so the fraction of the expected νe detected on earth is sin2 θ⊙ (i.e. SNO

measures sin2 θ⊙ ∼ 1
3
or tan2 θ⊙ ∼ 1

2
). The constraints placed on ∆m2

⊙ are not

so tight, requiring only that the resonance effect happens gradually somewhere

between the core and surface of the sun. Note however that this solution only

works if sgn(∆m2
⊙) = +1 since we take the negative sign in (2.35) as both the sun

and the neutrinos are matter, and cos 2θ⊙ ∼ 1
3
. By convention the heavier mass

state is labelled ν2, and the lighter ν1.

2.6.3 KamLAND

The solar neutrino oscillation parameters have also been probed by one terres-

trial experiment. KamLAND was a liquid scintillator detector observing electron-
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antineutrinos produced by Japan’s 53 nearby nuclear power stations. The aver-

age baseline is 180 km and KamLAND’s energy threshold is 1.8MeV making it

sensitive to oscillations driven by the LMA mass splitting favoured by the solar

experiments. In terms of the three-flavour oscillation probabilities (Figure 2.7)

KamLAND sits at the bottom of the “solar L/E” dip and the smaller magnitude

and rapidly oscillating behaviour of the atmospheric L/E term make it neglectable

in the analysis. Plotting the ratio of observed ν̄e events to that expected as a func-

tion of their energy (Figure 2.13), a clear oscillatory pattern is observed [63]. A

fit to the position and depth of this characteristic oscillation dip provides a mea-

surement of the solar oscillation parameters.

Due to its observation of the detailed shape of the oscillation dip as a function
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of energy, KamLAND achieves much higher precision in its measurement of the

mass splitting than the solar experiments which see only an overall rate. However,

KamLAND does suffer from an ambiguity in the quadrant of θ⊙ which is not shared

by solar experiments. The complementarity of these experiments is illustrated by

the contours in Figure 2.14 and a combined fit to all experiments [63] gives:

∆m2
⊙ = 7.59+0.21

−0.21 × 10−5eV2 (2.43)

tan2 θ⊙ = 0.47+0.06
−0.05 . (2.44)
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2.7 The last mixing angle

2.7.1 Reactor experiments

An alternate source of man-made neutrinos, utilized in experiments much earlier

than accelerator neutrinos, comes from nuclear reactors. A large number of experi-

ments have been performed, at varying distances from the reactor core, measuring

the flux of electron antineutrinos. As shown in Figure 2.15 none of them have

observed any significant deviation from expectations.

With reactor neutrinos around 3MeV and the previously determined atmo-

spheric mass splitting (2.41), the first maximum of the oscillation function (corre-

sponding to maximal ν̄e disappearance) is expected to happen around 1 km. The
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solar oscillations observed by KamLAND occur over a much longer baseline and

are not significant here.

The absence of any large deficit at this baseline means that the value of the

remaining mixing angle θ13, which governs the magnitude of the atmospheric os-

cillation component in Pēē, must be small.

The best limit on θ13 from a reactor experiment comes from CHOOZ [65],

being at the correct baseline to observe any oscillation signal, and obtaining a

better sensitivity than Palo Verde [66], which suffered a significantly larger cosmic

muon flux due to its shallower depth.

The CHOOZ detector consisted of a cylindrical vessel containing 5 tons of

gadolinium-doped liquid scintillator surrounded by photomultiplier tubes. The

signal of a neutrino interaction, via inverse beta decay, was prompt photons from

the annihilation of the positron, followed by gamma rays from capture of the

neutron onto gadolinium. This detector was located 1 km from the Chooz nuclear

power station shielded by a 300m.w.e. rock overburden. Data was taken over 450

days in 1997 and 1998.

The error on the final result comes equally from statistical and systematic

error, and the limit on the mixing angle depends on the mass splitting, but for

realistic values (∆m2
atm & 2 × 10−3 eV2) CHOOZ limits sin2 2θ13 . 0.1 at 90%

confidence level.

The small value of this mixing angle provides additional evidence that the large

νµ deficit seen in atmospheric neutrinos cannot be due to νµ ↔ νe oscillations,

leaving νµ ↔ ντ as the only alternative within the standard theory of oscillations.

An upgraded experiment, Double Chooz [67], with a new far detector, and the

addition of a near detector to reduce uncertainties in the reactor flux, will be able

to set tighter limits on θ13, or potentially obtain evidence for a nonzero value.
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2.7.2 MINOS

Whilst by no means designed for the identification of νe interactions, the MINOS

experiment also has sensitivity to θ13 and has searched for νµ ↔ νe oscillations

in the NuMI beam over the atmospheric baseline. The analysis observes a small

excess of five νe-like events over the expectation of 49 [68]. Unlike CHOOZ, the

oscillation probability in MINOS is dependent on δ and the neutrino mass hierar-

chy. The oscillations follow the form of Equation 2.26, plus a small contribution

from matter effects, which is responsible for the dependence on the sign of ∆m2
atm.

Due to the observed excess, the best-fit θ13 is non-zero for all values of δ or the

hierarchy, although a value of zero is not excluded. Despite this excess the MINOS

limits, shown in Figure 2.16, are competitive with those of CHOOZ and, assuming

normal hierarchy, are superior for most values of δ.

2.8 Overview of the neutrino sector

All the experimental evidence presented so far is consistent with the sole process

involved in neutrino disappearance being neutrino oscillations, as described in

Section 2.4.1, between three flavours. A particularly simple form of the mixing

matrix is known as tri-bimaximal mixing [70]

U =


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, (2.45)

and is so far compatible with all observations. These matrix elements imply the

following mixing angles:

θ12 = 35.3◦ θ23 = 45◦ θ13 = 0 δ = 0 . (2.46)
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Each state is shown with its approximate flavour composition, assuming small but
non-zero θ13.

θ13 is set to zero here, but many theorists predict the true value to be not far

below the current experimental limits, and global fits of neutrino data tend to

yield non-zero θ13 near the present limits, but not at particularly high significance

levels [71, 72].

In the absence of a definitive observation of non-zero θ13, the effect of δ is also

unobservable, as described in Section 2.4.3, and we have essentially no information

about this phase6.

The two mass splittings are fairly well-determined:

∆m2
⊙ ∼ 8× 10−5 eV2 |∆m2

atm| ∼ 2.5× 10−3 eV2 . (2.47)

The large difference in scales, along with the small value of θ13, is the reason all

individual experimental results so far are well described by a two-flavour formal-

ism.

The sign of ∆m2
⊙ and hence the ordering of the ν1 and ν2 mass states is

determined by the necessity of invoking matter effects in the sun for the description

6Global fits tend to find large values of δ, again at low significance.
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of solar neutrino data (Section 2.6.1). On the other hand, no current experiment

which probes atmospheric oscillations expects a large contribution from matter

effects. The sign of ∆m2
atm is thus still undetermined. The scenario in which

ν3 is heavier than ν1 and ν2 is known as “normal hierarchy”, and the scenario

where it is lighter is referred to as “inverted hierarchy”. These two possibilities

are indicated schematically in Figure 2.17, which also indicates the approximate

flavour composition (|Uαi|2) of the three states, assuming a small but non-zero

value for θ13.

2.9 The LSND anomaly and MiniBooNE

A single discrepancy threatens this picture of the neutrino sector, and holds out

the possibility of new physics. The LSND experiment at Los Alamos [73] consisted

of a roughly cylindrical vessel containing 167 tons of doped mineral oil scintillator.

The 1220 photomultiplier tubes observing this volume detected both scintillation

and Čerenkov light. This detector was sited 30m downstream of the neutrino

production, where an 800MeV proton beam was incident on a water (later high-Z

metal) target. π+ coming to rest in the target and decaying produced νµ, νe and

ν̄µ, but no ν̄e. Any oscillation of ν̄µ to ν̄e could thus be detected via the reaction

ν̄e + p → e+ + n, by detecting both the positron and the photon from neutron

capture n+ p → d+ γ, with very little background from ν̄e contamination in the

beam.

An excess of 88 ν̄e events was observed [74], at a significance of 3.8σ, implying

a transition probability for ν̄µ → ν̄e of around 0.3%. Interpreting this result in

terms of neutrino oscillations, and given neutrino energies up to about 50MeV,

requires a mass-splitting O(1 eV2). The allowed parameter space is shown by the

blue regions in Figure 2.18. If the mass splitting is & 1 eV2 then the mixing angle

must be very small to explain the low oscillation probability. Alternatively the
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mixing may be large, and the mass splitting lower, indicating that the oscillations

have not yet fully developed by the LSND baseline. In any case ∆m2 is required

to be larger than 10−2 eV2.

This mass splitting is incompatible with the previously determined solar and

atmospheric oscillation L/E regimes. In a three-neutrino scheme there are only

two independent mass splittings. The LSND result could therefore possibly point

to the existence of a fourth neutrino state, which would be required to be sterile

in order to be consistent with the Z-width measurements from LEP (Figure 2.3).

Even adding a sterile neutrino, global analyses still find significant tension fitting

all known results; adding a second or third additional neutrino allows all of the

data to be fitted, at the expense of a large number of free parameters. The LSND

observations and their incompatibility with the standard oscillation theory are

known as the “LSND anomaly”.

The Bugey [75] and KARMEN [76] experiments were able to exclude parts of

the LSND parameter space, but significant regions remained allowed.

The MiniBooNE experiment at Fermilab was constructed specifically to con-

firm or reject the LSND anomaly. The MiniBooNE detector consists of a spherical

tank holding 800 tons of pure mineral oil, observed by 1520 PMTs. It is situated

541m downstream of the muon neutrino beam produced by 8GeV protons from

Fermilab’s Booster striking a beryllium target inside a magnetic focusing horn.

The neutrino spectrum peaks at 700MeV, which means MiniBooNE is sensitive

to the same L/E range as LSND, but with different experimental characteristics,

hopefully shielding it from any possible systematic problems with the LSND result.

Initially MiniBooNE ran with a muon neutrino beam, to take advantage of the

larger cross-sections compared to antineutrinos, testing the LSND result under the

assumption that Pµe = Pµ̄ē. This running successfully ruled out the whole of the

LSND 90% allowed region [77] (left half of Figure 2.18). There was however an

unexplained 3.0σ excess of electron-like events below 475MeV [79], which cannot
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Figure 2.18: MiniBooNE confidence limits for νµ → νe oscillations (left) and
ν̄µ → ν̄e oscillations (right) using events in the range 475–3000MeV. Figures from
[77] and [78]. In each case the contours are overlayed on the LSND ν̄µ → ν̄e result
[74] (blue). Regions to the right of black lines are excluded, regions within the
red, blue and purple contours are allowed.

be explained by a two-neutrino oscillation model. Due to concerns about possible

poorly modelled backgrounds, this region was excluded from the analysis before

the dataset was unblinded.

MiniBooNE then ran in antineutrino mode, in order to make a more direct test

of LSND. In this mode MiniBooNE observe an excess of ν̄e-like events, consistent

with LSND oscillations, and no evidence of a low-energy excess as seen in neu-

trino mode [78]. Interpreting this ν̄e excess as an oscillation signal produces the

contours shown in the right half of Figure 2.18, consistent with the LSND allowed

region, and excluding null oscillations at high probability. Additional running in

antineutrino mode is expected to approximately double the available statistics.

The correct explanation for the LSND and MiniBooNE observations, particu-

larly the difference between neutrinos and antineutrinos, is as yet unknown. Pos-

sibilities include CP-violating oscillations involving new sterile neutrino states,

unexpectedly high ν̄e cross-sections, or unanticipated systematic effects (no sys-

tematic in MiniBooNE can explain the observed excess with less than a 3σ shift).
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We can only hope that time and additional data clarify the situation, although

the origin of the LSND anomaly has now remained unexplained for 14 years.

2.10 Direct mass searches and neutrinoless dou-

ble beta decay

2.10.1 The β-endpoint

Whilst neutrino oscillation experiments can measure the (squared) mass differ-

ences between the neutrino states, they are not sensitive to the absolute masses.

Although, of course, the measured splittings mean that at least one neutrino must

be more massive than
√

∆m2
⊙ ∼ 9 × 10−3 eV2 and another more massive than

√

∆m2
atm ∼ 5× 10−2 eV2. One method of investigating the absolute mass scale is

via the study of β decays.

Traditionally, assuming the neutrino to be massless, the Q-value of a decay

Qβ = Mi −Mf −me (2.48)

is the maximum kinetic energy that can be imparted to the decay electron. Intro-

ducing a neutrino mass (and disregarding for the moment the effects of neutrino

mixing, so that the electron neutrino can be taken to have a definite mass) the

maximum electron energy is now

Tmax = Qβ −mνe . (2.49)

In principle, this shift in the end-point of the β spectrum from expectations

allows the neutrino mass to be measured. In practice, due to the low rate of decays

near the end-point and uncertainties in its expected position, experiments instead

look at the departure from the expected behaviour which occurs just before the
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end-point. The phase space factor in Fermi’s Golden Rule gives a differential rate

dΓ

dT
∝ EepeEνpν . (2.50)

Substituting for the neutrino momentum

pν =
√

E2
ν −m2

νe =
√

(Qβ − T )2 −m2
νe (2.51)

the differential decay rate becomes

dΓ

dT
∝ Eepe(Qβ − T )

√

(Qβ − T )2 −m2
νe . (2.52)

When the neutrino mass is non-zero, the rate falls off faster than would be oth-

erwise expected, in order to reach zero early at T = Qβ − mνe . The data is

traditionally interpreted in terms of the Kurie function, where all the matrix ele-

ments, and the electron part of the phase-space factor, are divided out:

K(T ) ∝
√

dΓ/dT

Eepe

=

√

(Qβ − T )
√

(Qβ − T )2 −m2
νe . (2.53)

In the absence of neutrino mass this function forms a straight line K(T ) = Qβ−T

and departures from linearity in this curve can be interpreted in terms of the

neutrino mass.

The Mainz [80] and Troitzk [81] experiments have observed the beta spectrum

of tritium ( 3H) decay with sensitive spectrometers and used this technique to
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extract upper bounds on the neutrino mass

mνe < 2.3 eV (95% C.L.) (2.54)

mνe < 2.5 eV (95% C.L.) (2.55)

respectively. These limits are more than five orders of magnitude lower than the

next lightest known particle, the electron at 511 keV.

The discussion so far has assumed the existence of a well-defined electron

neutrino mass mνe. Insofar as such a treatment is valid, what is actually measured

is an incoherent sum over all the neutrino mass states that couple to the electron,

an effective “beta-decay mass”:

m2
β =

∑

i

|Uei|2m2
i . (2.56)

Combined with ∆m2 and mixing-angle measurements from oscillation exper-

iments, in certain circumstances a measurement of mβ can even determine the

hierarchy. Because Ue3 is small, mβ is primarily determined by m1 and m2. If mβ

is found to be lower than about 5 × 10−2 eV2 then the inverted hierarchy would

be ruled out, since the mass m3 would then need to be negative to match the

observed atmospheric splitting.

In principle, the definition (2.56) is only an approximation, and with sufficiently

high experimental resolution individual features should be observed in the Kurie

plot for each neutrino state individually, thus determining their masses directly. In

practice, the required experimental resolution seems unlikely ever to be achieved.
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Figure 2.19: Left: Feynman diagram for double-beta decay, leading to a final
state which includes two electron antineutrinos. Right: Neutrinoless double-beta
decay, the Majorana neutrino forms an internal line. This diagram violates lepton
number conservation and is thus not allowed by the Standard Model.

2.10.2 Neutrinoless double-beta decay

In addition to the usual beta decay of nuclei

N (A,Z) → N (A,Z + 1) + e− + ν̄e , (2.57)

a double-beta process

N (A,Z) → N (A,Z + 2) + 2e− + 2ν̄e (2.58)

is also possible via a second-order diagram (left side of Figure 2.19). When single-

beta decay is energetically possible then double-beta decay is unobservable due

to its much lower rate. However, for some even-even nuclei single beta decay is

energetically impossible, whilst double-beta decay is allowed, due to the pairing

force between identical nucleons. The four-body final state of double-beta decay

means that the energy distribution of the outgoing electrons form a continuous
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spectrum.

An alternate decay method “neutrinoless double-beta decay” is

N (A,Z) → N (A,Z + 2) + 2e− , (2.59)

as illustrated in the right half of Figure 2.19. Here, the final-state neutrinos are

joined together as an internal line and only the electrons remain as final-state

leptons. Of course this process is not allowed in the Standard Model since it

violates lepton number conservation by two units. It is possible, however, that

neutrinos are Majorana fermions, that is the neutrino and antineutrino are merely

the left- and right-handed states of the same particle. In this case, lepton number

is not conserved, and the process (2.59) is allowed. The difficulty remains that

the internal neutrino needs opposite helicity at each vertex and so for massless

neutrinos this process would again be disallowed. Fortunately, we know that

neutrinos do indeed have mass, and the probability of the necessary helicity change

is proportional to the mass. Taking into account neutrino mixing, the rate of

neutrinoless double-beta decay depends on an effective neutrino mass

m2β =
∑

i

U2
eimi . (2.60)

Although the presence or absence of the final state neutrinos is not directly

detectable, in the neutrinoless process the two electrons carry away the full Q-

value of the decay which should appear as a peak in the energy spectrum against

the continuous background from conventional double-beta decay.

Several experiments have searched for the neutrinoless double-beta decay of

various elements, the detection of which would confirm the Majorana nature of the

neutrino. The current best limit comes from the Heidelberg-Moscow experiment

[82], which sets a limit on the half-life of 76Ge via neutrinoless double-beta decay
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of

τ 0ν1/2(
76Ge) > 1.9× 1025 years (90% C.L.) . (2.61)

This may be converted to a limit of m2β < 0.35 eV (90% C.L.), although there

are large uncertainties on the nuclear matrix elements required to perform this

conversion.

A claim exists [83], based on data from the same experiment, of a discovery

of τ 0ν1/2(
76Ge) = 1.19+1.00

−0.17 years. However, the analysis has been widely criticized

[84, 85, 86] and the result is not commonly accepted.

For similar reasons as in beta-endpoint experiments, discovery of a sufficiently

small m2β would be able to rule out the inverted hierarchy scenario.

2.11 Astrophysical neutrinos

2.11.1 Supernova 1987A

In 1987 a type II supernova was observed in the Large Magellanic Cloud, the

first supernova visible to the naked eye since 1604. This supernova is known as

SN1987A, being the first discovered that year. Supernova explosions are expected

to produce very large fluxes of electron neutrinos, with energies around 10MeV.

Three neutrino detectors operating at the time did indeed see an excess of events

a few hours before the optical discovery of SN1987A. These events constitute the

only conclusive observations of neutrinos originating outside of the solar system.

The Kamiokande-II collaboration, upon examining their data, found 11 likely

signal events around 10MeV within a 12 s window of each other [87]. The IMB

detector recorded eight events with energies between 20 and 40MeV within a 6 s

time interval [88]. Finally, the Baksan liquid scintillator detector found a cluster

of five events between 10 and 25MeV within a 10 s time window7 [89].

7The background rate is quite high, but in joint analyses with the Kamiokande and IMB data
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Unfortunately, accurate timing information was not considered a priority and

there thus exists a one minute uncertainty in the absolute time of the Kamiokande

and Baksan events. Within this range the timings are consistent with all three

detectors observing the same ∼ 10 s burst of neutrinos simultaneously.

A joint analysis of all the experimental signals [90] finds them to be consistent

with standard models of supernova explosions. The emitted neutrinos are expected

to cover a range of energies, and so travel at different speeds. The initial short

neutrino pulse will reach the Earth spread out in time, with a greater divergence

indicating larger neutrino masses. Using the best knowledge of the duration of

the neutrino-production phase of the supernova, the analysis in [90] finds a limit

on the electron neutrino mass8

mSN < 5.7 eV (95% C.L.) . (2.62)

The expected rate of supernovae within the Milky Way is a few per century

and neutrino detectors have advanced considerably since 1987. The next galactic

supernova is expected to yield O(104) events and is eagerly awaited.

2.11.2 Cosmological limits

The observed matter density of the universe can be used to set a direct limit on

absolute neutrino masses [91, 92]. From the measured temperature of the cosmic

microwave background, and requiring equilibrium conditions in the early universe,

the relic neutrino background is found to be at about 2K and to have a number

density ∼ 100 cm−3. The WMAP measurement of the matter component of the

universe is around 14% of the critical density required for a flat universe [93]. The

these events are found to be consistent with the supernova expectations.
8Due to neutrino mixing this is again an effective mass, like mβ and m2β .
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contribution from all the neutrino masses is thus limited:

∑

i

mi . 13 eV . (2.63)

This limit assumes the neutrinos are relativistic at decoupling, and thus does not

include any contribution from possible heavy sterile neutrino states.

Fits to the details of structure formation in the early universe obtain much more

stringent bounds on the neutrino masses, competitive with the beta-endpoint and

neutrinoless double-beta decay limits. There is, however, quite a large degree of

uncertainty based on the exact technique and data-sets included. Most analyses

[93, 94, 95] obtain limits:
∑

i

mi . 0.5− 1 eV . (2.64)



Chapter 3

The MINOS experiment

This chapter gives an overview of the MINOS (Main Injector Neutrino Oscillation

Search) experiment. The NuMI neutrino beam is described in Section 3.2 and the

MINOS detectors in Section 3.3. Sections 3.4 and 3.5 describe the Monte Carlo

simulation and reconstruction software used in data analysis. Full descriptions of

the NuMI beamline are given in [96, 97] and of the detectors in [98].

3.1 Overview and physics goals

MINOS, in common with other long-baseline accelerator neutrino experiments

(K2K before it, OPERA, and T2K and NOνA currently under construction), is

based on a two-detector paradigm. The “near detector” (ND) measures the prop-

erties of the neutrino beam approximately 1 km downstream of its production, al-

lowing comparison with the spectrum observed in the “far detector” (FD), 735 km

from the origin of the beam. The layout is indicated schematically in Figure 3.1.

This approach allows for cancellation of systematic uncertainties in the beam flux

and in cross-sections and reconstruction effects in the detectors. For this reason,

the detectors are designed to be as similar as possible within cost considerations.

The primary measurement of the MINOS experiment, and the one presented

53



3.2 The NuMI beam 54
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Figure 3.1: Sketch of the path of the NuMI neutrino beam from its production at
Fermilab, and measurement by the near detector there, to the far detector at the
Soudan mine, 735 km away.

in this thesis, is of the atmospheric oscillation parameters ∆m2
atm and sin2 2θatm.

The baseline and the energy of the beam are optimized so that upon reaching the

far detector the primarily νµ beam is at the peak of its first oscillation into ντ .

The oscillation signal is an energy-dependent deficit of νµ at the far detector1. The

values of the oscillation parameters can be found by comparing the position and

depth of the dip against the unoscillated prediction based on the near detector

data and the Monte Carlo simulation.

The NuMI beam can also be run in antineutrino mode, allowing the same mea-

surement to be made with muon-antineutrinos. Although not optimized to dis-

tinguish νe events, MINOS has obtained a competitive limit on the sub-dominant

νµ ↔ νe oscillations (see Section 2.7.2). MINOS has also searched for sterile neu-

trinos via the neutral-current event rate [99], is sensitive to atmospheric neutrinos

[58, 59] and cosmic rays [100, 101, 102], has measured neutrino cross-sections using

the near detector [103], and has set limits on Lorentz violation [104, 105].

3.2 The NuMI beam

The neutrino beam for MINOS is provided by the Neutrinos at the Main Injector

(NuMI) beamline at Fermilab. 120GeV protons are extracted from the Main

1Very few ντ undergo charged-current interactions in MINOS. Due to the mass of the tau
lepton, the incident neutrino needs more than mτ +m2

τ/2mn ≈ 3.5GeV to be above threshold,
and even then the phase-space factor is small.
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Figure 3.2: Timing structure of NuMI beam spills, in mixed mode (top) and
NuMI-only mode (bottom). In mixed mode, the first batch of each spill is taken
to produce antiprotons for the Tevatron, except during the transfer of antiprotons
from the accumulator to the recycler. All but the last batch are formed from a
combination of two Booster batches via a process known as slipstacking [106].

Injector and strike a 940mm long graphite target. These “spills” occur every

2.2 s, last for 10µs, and vary in intensity, containing between about 1013 and

3.5 × 1013 protons. Protons-on-target, or POT, are the unit in which MINOS

beam exposure is measured. Each spill contains timing substructure, consisting

of five or six batches (see Figure 3.2). The highest NuMI intensities are obtained

when the Tevatron is not running.

The protons striking the target produce primarily pions and kaons. Positively

charged pions and kaons are focused by two magnetic horns, separated from each

other by 10m. These hadrons then enter a 675m decay pipe where most decay

to νµ, with a small fraction to νe. Just before the aluminium and steel beam

dump, the beam is observed by a hadron monitor. The remaining muons are



3.2 The NuMI beam 56

Figure 3.3: Schematic view of the NuMI beamline. Protons from the main injector
form pions (red) upon striking the target. These are focused and decay to muons
(blue), which are absorbed by the rock, and neutrinos (green) directed towards
the MINOS detectors.

Name Start End FD exposure Comments
Run I May 2005 Feb 2006 1.27× 1020 POT
pHE Jun 2006 Aug 2006 1.53× 1019 POT High energy beam configuration
Run II Sep 2006 Jul 2007 1.94× 1020 POT
Run III Oct 2007 Jun 2009 3.88× 1020 POT Helium added to decay pipe
Run IV Sep 2009 Mar 2010 1.71× 1020 POT Antineutrino beam configuration

Table 3.1: MINOS run periods used in this thesis. See text for details.

then absorbed by 300m of rock, instrumented with three muon monitors at the

upstream end. A schematic view of the neutrino beam production is shown in

Figure 3.3. In the near detector Monte Carlo, interactions from beam neutrinos

have relative rates: 92.9% νµ, 5.8% ν̄µ and 1.3% νe + ν̄e.

The majority of MINOS running has been in the “low energy” beam config-

uration, as this maximizes the neutrino flux at energies around the atmospheric

oscillation dip. In this mode the target is fully inserted into the first horn, and

the current in the horns is 185 kA. Alternative neutrino fluxes can be obtained

by altering the target position and horn current. These runs, and runs with the

horns off entirely, are primarily useful for investigating the accuracy of the beam

simulation and tuning the Monte Carlo to match (see Section 4.2). The neutrino

fluxes produced by three different beam configurations are shown in Figure 3.4.

Table 3.1 shows the various MINOS run periods of significance to this thesis.

Runs I and II were taken under very similar conditions, although using a different
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Figure 3.4: The true energy distribution of near detector events from three dif-
ferent NuMI configurations. The target position (distance upstream of a nominal
position) and horn current of each configuration are shown in the caption. “0.1m,
185 kA” is the “low-energy” configuration in which most MINOS data has been
taken. “2.5m, 200 kA” is the “pseudo-high-energy” configuration.

target and slightly different target positions. In between these runs (using the

Run I target) a fairly large quantity of data was taken in the “pseudo-high-energy”

(pHE) configuration. The higher peak energy of this running is primarily useful

for testing alternative models of neutrino disappearance, which predict deviations

from the standard oscillation form at high energies as well as low. Before Run III,

safety concerns about a corroded and radiation-damaged inspection window led

the previously evacuated decay pipe to be filled with helium at∼1 atm. This causes

a slight attenuation of the neutrino flux, especially in the beam peak. Finally, for

Run IV, the current in the focusing horns was flipped from the usual “forward

horn current” configuration to “reverse horn current”. This configuration focuses
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Figure 3.5: Construction of the MINOS scintillator strips. Each strip is covered
in a TiO2 coating that ensures the scintillation light is collected by the embedded
wavelength-shifting fibre (inset).

negative pions and kaons, and thus produces an antineutrino-enriched beam.

3.3 The MINOS detectors

The MINOS near and far detectors are as similar as possible in order to allow

cancellation of systematic errors between them. The general design is presented

here, with information specific to the individual detectors in the following sections.

Both detectors are steel-scintillator tracking calorimeters. The design is opti-

mized for neutrino interactions in the few GeV range. The bulk of each detector

consists of 2.54 cm (one inch) thick steel planes. Plastic scintillator strips, with

cross-section 4.1 × 1 cm, are affixed to each steel plane. The planes are sepa-

rated by an air gap leading to a total pitch of 5.94 cm. The scintillator strips are

formed from extruded polystyrene doped with the organic scintillators PPO and
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Figure 3.6: Arrangement of the scintillator modules in the far detector. The left-
hand diagram shows an odd-numbered or U-plane and the right-hand diagram an
even-numbered or V-plane. The A and B modules comprise 28 scintillator strips,
the others have 20.

POPOP at a concentration of 1%. The strips have a diffusely reflective titanium

dioxide (TiO2) coating, ensuring that scintillation light is collected by the embed-

ded wavelength-shifting fibre. The fibre carries the light out of the detector to

one pixel of a multi-anode photomultiplier tube (PMT). The construction of the

MINOS scintillator strips is illustrated in Figure 3.5.

The strips are assembled into modules and mounted to the steel planes at a

45◦ angle. The planes are thus read out from their diagonal edges. Alternate

planes have their strips mounted at right-angles to each other, allowing events to

be observed in “U” and “V” views. Figure 3.6 shows the construction of U and

V planes in the far detector, and Figure 3.7 illustrates the alternation of the two

views with the steel planes and air gap.

Both detectors are toroidally magnetized to around 1T by a coil running longi-

tudinally through them, with the return leg outside of the detector. The curvature

of particles in this magnetic field allows their charge to be determined and provides

an estimate of their energy, which is necessary when a particle exits the detector
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Figure 3.7: Illustration of the alternation of steel plane, scintillator and air gap in
MINOS. Alternate scintillator planes are U-type or V-type and thus viewed end-
or side-on in this diagram.

so that the more accurate estimate from range cannot be used. The magnetic field

also helps to contain muons in the detector, focusing negative particles (or positive

particles during the Run IV antineutrino running) towards the coil. During Runs

III and IV the near detector field was periodically reversed in order to study the

wrong-sign component of the beam.

Calibration of the detectors, to ensure uniformity both across the volume of

the detector and across time, is achieved using cosmic ray muons, which provide

a flux of particles with known energies and well-understood energy deposition.

The calibration is observed to be correlated with the cavern temperature, and the

scintillator material has degraded over time. This effect is shown in Figure 3.8.

The detectors are also equipped with a light injection system. Ultraviolet LEDs

periodically illuminate the fibres, allowing calibration of the response of each PMT

pixel to a known light level.

The absolute calibration of the detectors was determined using a special cali-

bration detector exposed to test beams at CERN [107, 108]. This was a small-scale
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Figure 3.8: Median response of the far detector to cosmic rays as a function of
time over several years. The fractional change in response is plotted compared to
an arbitrary reference point. The light yield is seen to degrade by around 2% per
year, due to aging of the detector components. The short-term variations are well
correlated with temperature variations in the cavern. The discontinuous step in
2006 is due to a retuning of the PMT high voltage supplies.

prototype of the MINOS detector technology, consisting of 60 1×1m unmagnetized

planes, equipped with both near-detector and far-detector electronics. Beams of

known energy and particle composition allowed the response of the scintillator and

PMTs as a function of energy to be accurately determined.

3.3.1 The near detector

The MINOS near detector is located at Fermilab, 1040m downstream of the NuMI

target, in a cavern 100m underground which provides 225 metres-water-equivalent

(m.w.e.) of cosmic ray shielding. The layout of the cavern and a photograph of

the near detector are shown in Figure 3.9. The detector consists of 282 planes and

weighs 980 tons. The planes are approximately 4m× 3m in a shape described as

a “squashed octagon”.

At the near detector the NuMI beam is still very intense, providing a high rate

of interactions in the detector, and is concentrated on the beam spot (point A

in Figure 3.9). It is therefore only necessary to partially instrument the near de-
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Figure 3.9: Layout of the near detector cavern. The schematic and photograph are
both looking towards Soudan (downstream). The NuMI beam strikes the detector
around the A label. B indicates the magnetic coil and C an electronics rack.
Since this photograph was taken, the MINERνA detector has been constructed
upstream of MINOS, obscuring much of this view.

Figure 3.10: Geometry of the near detector. The diamond shape is the coil hole,
and the circles indicate the beam centre. The “ears” are used to suspend the
planes. In partially instrumented planes only the shaded region is covered by
scintillator.
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tector. In the upstream 120 planes of the detector, the “calorimeter”, the region

around the beam spot is fully instrumented, but the remainder of the detector

cross-section is only covered by scintillator in every fifth plane. The geometry

of the fully-instrumented region is illustrated in Figure 3.10. In the remaining

downstream region of the detector, the “spectrometer”, every fifth plane is fully

instrumented and the remaining planes are uninstrumented. These partially in-

strumented regions allow muons that escape the fully instrumented region to con-

tinue to be tracked.

The strips in the near detector are read out at the western end (the side away

from the magnet coil-return), being silvered at the other end. Each fibre is directed

to one of the 64 pixels of a Hamamatsu R5900-00-M64 PMT [109]. The electronics

digitize the PMT signals continuously at a frequency of 53MHz. The buffers are

large enough to hold the output from an entire beam spill. All activity during the

18.8µs spill gate is read out. Additional activity-based triggers allow readout of

out-of-spill events such as cosmic ray muons or atmospheric neutrinos.

3.3.2 The far detector

The MINOS far detector is located in a disused iron mine in Soudan, northern

Minnesota, 735 km from the beam production point. The specially excavated

cavern is 705m underground, providing 2070 m.w.e. of shielding. The layout of

the cavern and a photograph of the far detector are shown in Figure 3.11. The

detector consists of 486 octagonal planes, 8m across, and weighs 5,400 tons. It is

divided into two “supermodules” of 249 and 237 planes, independently magnetized,

separated by a 1.15m gap.

Due to the divergence of the NuMI beam, the event rate in the far detector

is much lower than in the near detector, leading to different decisions and cost

optimizations in the design.
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Figure 3.11: Layout of the far detector cavern. The schematic and photograph are
both looking back towards Fermilab (upstream). A labels the most downstream
steel plane, B the cosmic ray veto shield, C the magnetic coil and D an electronics
rack.

Due to the greater attenuation along the length of the strips, some of which are

8m long, they are read out at both ends. The outputs are attached to one of the 16

pixels of a Hamamatsu R5900-00-M16 PMT [110]. The much lower event rate, and

dual-ended readout, allow an eightfold reduction in PMTs by multiplexing eight

fibres onto each individual pixel. The eight fibres come from strips separated

by about 1m and the multiplexing pattern is different at each end, allowing the

introduced ambiguity to be resolved at reconstruction-time [111]. PMT signals

are digitized whenever the output exceeds 1
3
of that expected from a single photo-

electron. Due to noise in the WLS fibres [112], an additional requirement is made

for two such signals to be detected within 400 ns in a group of 36 PMTs. The

spill trigger is received at the far detector from Fermilab over the internet. Data

is buffered sufficiently long to allow the spill timestamps to arrive. Activity-based

triggers, as in the near detector, allow recording of out-of-spill events and of beam

events in the case of an internet outage. Additionally, fake spill triggers are also

used at the far detector to provide an estimate of the cosmic ray and detector
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noise backgrounds expected in true spills.

3.4 The MINOS Monte Carlo simulation

The MINOS Monte Carlo simulation begins with a simulation of the neutrino

beam from NuMI. The flugg package combines fluka [113] for simulation of

the proton interactions in the target, and the propagation and re-interaction of

the produced particles, with a detailed description of the target and decay pipe

geometry using geant4 [114]. The output of this step is a collection of neutrinos

at the point of the decay of their parent particle labelled with their flavour, energy

and momentum. The neutrino flux is simulated separately for each run period,

taking into account the known shifts in the target position, and the effect of the

decay pipe helium from Run III onward.

The interactions of these neutrinos in each detector are simulated using neu-

gen3 [115] for the interaction and geant3 [116] to propagate the resulting parti-

cles. The development of hadronic showers is modelled using the gcalor package

[117], which was selected because it displayed the best agreement with data from

the calibration detector. The MINOS PhotonTransport package is then used to

convert the simulated energy deposits to the expected PMT signals. The calibra-

tion constants used at this step are chosen randomly from the date range of the

run period being simulated.

In the near detector, the effects of multiple interactions from the same beam

spill are taken into account by overlaying the individually simulated events. The

Monte Carlo for each run period is simulated at ten different beam intensities,

chosen by dividing the intensity distribution in the MINOS data from that period

into ten equal quantiles and finding the mean intensities [118]. “Rock muon”

events from the interactions of neutrinos in the rock of the cavern walls, whose

products then penetrate the detector, are also overlayed at this stage.
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The greatly decreased event rate in the far detector means that the probability

of two neutrino interactions occurring in one spill is completely negligible, and

there is no need to perform the overlays. The effect of neutrino oscillations is

taken into account at analysis-time by reweighting the Monte Carlo events, and

by the use of special “tau-files”, in which the composition of the beam is altered

by interchanging νµ and ντ . These files model a transition probability Pµτ = 1,

and linear combination with the usual Monte Carlo with Pµµ = 1 allows the

construction of a spectrum for any νµ ↔ ντ oscillation probability which includes

the small contribution from ντ that do interact in the far detector.

3.5 Event reconstruction in MINOS

The first step of the MINOS reconstruction is designed to deal with the high

interaction rate in the near detector. Recorded hits are divided by timing and

topology cuts into “slices”, each of which is intended to contain activity from only

one event.

The next step is to identify the muon tracks that characterize charged-current

events. First, hits in each view that appear to lie on a straight line are collected

into “clusters”. These clusters are then joined up to form candidate tracks. The

candidate tracks in the U- and V-views are then compared and the best matches

taken to form 3D tracks. The algorithm is described in detail in [119]. The track

finder is fairly aggressive, and frequently identifies tracks within hadronic showers.

Some of these may be real muon tracks, some are tracks from other particles in

the shower, and many are simply “drawn on” to unrelated hits by the algorithm.

The focus of the particle identification step of the analysis is predominantly to

distinguish these tracks from true muon tracks.

Once a track candidate is identified, a Kalman filter [120] algorithm is used

to estimate the true path of the muon, as it follows a helical trajectory in the
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magnetic field. At this stage, additional hits that were not located by the original

track finding step, but which are close to the reconstructed muon trajectory, are

added to the track. For each track, the track fitter outputs an estimate of the

muon energy, both from the amount of material it traverses before stopping, and

from its curvature in the magnetic field. It also outputs the reconstructed charge

of the particle from its curvature2.

The remaining hits in the slice are then also formed into clusters, and the

clusters grouped into showers. Only hits with an energy deposit above two pho-

toelectrons are considered, due to poorly understood data/MC disagreements at

low pulse-heights, likely caused by fibre noise and crosstalk between PMT pixels.

The energy of the shower is estimated by a calorimetric approach, summing the

calibrated energy deposits of all the included hits.

The “event builder” stage then takes the collection of tracks and showers and

associates them into events, using a long series of cuts tuned to avoid various

observed reconstruction pathologies [121]. An event may have any number of

tracks and showers but, where appropriate, one of each may be defined as the

primary track and shower. The interaction vertex is also estimated at this stage,

usually assigned to the first hit in the primary track.

2Technically the momentum and charge from curvature are combined in a single q/p number.
The analysis assumes particles with unit charge.



Chapter 4

The charged-current analysis

The three components necessary to perform an analysis of νµ disappearance are:

a method to obtain a pure sample of νµ charged-current events, a prediction of the

expected far detector spectrum taking into account information gained from the

near detector, and the ability to find the oscillation parameters which best describe

the data, taking into account systematic uncertainties. These are described in

Sections 4.3, 4.4 and 4.7 respectively.

Two additional components of the analysis, division of the far detector spec-

trum into bins of energy resolution, and inclusion of an additional sample of events

from outside the fiducial volume, both improve the statistical power of the result

and are described in Sections 4.5 and 4.6.

4.1 Fiducial volume

The primary analysis dataset consists of events whose primary vertex is contained

within the fiducial volume. The cuts were chosen with the aim that all selected

events should have their hadronic shower fully contained within the detector. In

the far detector, the fiducial volume needs to be as large as possible, to maximize

the number of selected events and thus the statistical power of the analysis. In

68
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the near detector, events are not at such a premium and the fiducial volume can

be more conservative.

In the far detector, the vertex of an event must be within
√
14m ≈ 3.74m of

the detector centre-line, but outside of 40 cm. These cuts remove events too close

to the detector edge1 or to the magnetic coil. The vertex must also not lie in the

first three planes of either supermodule – vetoing events that originate outside

the detector and enter through the front face – or the last ten planes of the first

supermodule or the last 22 planes of the second supermodule – vetoing events

where hadronic activity is likely to be lost out of the back of the detector. The

far detector fiducial volume is marked in Figure 4.19.

In the near detector the radial cuts follow the axis of the beam, which, due

to the curvature of the earth, must be angled 3◦ downwards to direct it towards

Soudan. The event vertex is required to be within 80 cm of the neutrino beam

centre-line. Events with their vertex before the 14th plane or beyond the 68th

are vetoed. This volume ends 3m upstream of the spectrometer region, ensuring

shower containment within the calorimeter.

4.2 Flux reweighting

Comparisons of near detector data with the Monte Carlo energy spectra show

fairly significant disagreements, especially on the falling edge of the peak. An ef-

fect due to neutrino cross-section uncertainties, or a feature of the reconstruction

or detector calibration, would be expected to manifest in a similar energy range

in different beam configurations. Instead, while similarly-sized discrepancies are

observed in these spectra, the energy dependence varies with the beam configura-

tion. This indicates that the disagreements are due primarily to a mismodelling

of the beam flux.

1The distance of this cylinder from the detector edge is never less than 35 cm.
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A reweighting procedure is thus adopted for simulated neutrino events, based

on a reweighting of the momentum distribution of the parent hadrons, with pa-

rameters based on a fit to near detector data. The fit procedure is described in

detail in [122]. This reweighting is not technically necessary for the analysis, since

the extrapolation procedure described in Section 4.4 successfully corrects the far

detector prediction for beam mismodelling2, but the consistent use of these weights

improves data/MC agreement for other studies and simulates the effect of the full

extrapolation when developing analysis components.

The fit proceeds by parameterizing the (pz, pT ) distribution of hadrons pro-

duced from the NuMI target in the beam simulation and allowing the parameters

to vary. The best parameters are obtained from a fit to the observed near detec-

tor spectra. Spectra from runs taken in different beam configurations are used,

since these each probe different regions of (pz, pT ) space. Additional fit param-

eters account for focusing uncertainties in the magnetic horns (the horn current

and distribution) and for the effects of radiation damage to the target observed

in Runs II and III. Parameters are also included to account for detector effects:

the absolute energy scale, antineutrino cross-sections, and the fraction of neutral-

current background. These are necessary to prevent the beam being incorrectly

reweighted in an attempt to account for Monte Carlo disagreements due to un-

known detector response and neutrino cross-sections. Penalty terms are included

in the fit to keep the parameters within their known error ranges, including a

constraint on the π+/π− ratio from the NA49 experiment [123].

Figure 4.1 shows the improvement in near detector data/Monte Carlo agree-

ment obtained by applying the best fit beam weights. The fit makes a correction

to the shape of the focusing peak, and a large increase to the flux in the high

energy tail.

2Predictions made with and without the flux weights applied are found to be virtually iden-
tical.
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Figure 4.1: Comparison of the simulated Run III near detector charged-current
energy spectrum with data (points), before (blue) and after (red) the flux tuning
described in Section 4.2 is applied. The bottom panel shows the data/MC ratio
before and after tuning.
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Figure 4.2: Comparison of untuned (blue) and tuned (red) simulated spectra with
near detector data (points) for four non-standard beam configurations. In the
top-left panel: the target is in the usual low-energy position, but the current in
the focusing horns is off. The other three panels show horn-on running with the
target 1, 1.5, and 2.5m back from the first horn. In each case the flux tuning
improves agreement with the observed data.
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Figure 4.3: An illustrative Monte Carlo charged-current νµ event. The circles mark
hit strips, the colour scheme indicates the energy deposited in photoelectrons as
shown in the legend. The true interaction point and the momenta and identity
of the initially produced particles are marked by lines. Hits reconstructed into
a track are marked in red, and into a shower in yellow. The reconstruction has
correctly identified the long muon track characteristic of charged-current events.
A large amount of hadronic activity is also visible.

The agreement with data is similarly improved for other beam configurations

(Figure 4.2). The reweighting procedure also provides an estimate of the error

envelope on the Monte Carlo energy spectra, reflecting the remaining freedom in

the fit parameters.

4.3 Particle identification

Since the couplings of all neutrino flavours with the Z0 are identical, neutral-

current events carry no information about νµ ↔ ντ oscillations. It is therefore

necessary for a study of νµ disappearance to identify a pure sample of charged-

current events, without sacrificing efficiency.

Figures 4.3 and 4.4 illustrate the important properties of charged- and neutral-

current events in MINOS3. The unique feature of a charged-current event is the

charged muon track. In Figure 4.3 this track is very obvious, in events with a lower

3The rate of νe-CC events is sufficiently low that they are ignored in this discussion, they are
similar in appearance to NC events.
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Figure 4.4: An illustrative Monte Carlo neutral-current event. Details of the event
display are as in Figure 4.3. The hits marked in red are believed, incorrectly, by
the reconstruction to constitute a muon track.

neutrino energy or a larger inelasticity (y-value) the track may be much shorter.

The PID described here requires all selected events to have a reconstructed track.

However, as Figure 4.4 illustrates, not all events with reconstructed tracks are due

to charged-current interactions. The goal of the PID algorithm in MINOS is to

evaluate candidate tracks and evaluate the likelihood that they are left by a muon

or that they are due to some other particle or to no one individual particle.

The primary CC selector used is unchanged from that used for the previous

charged-current analysis [69]. A full description can be found in [124]. A prese-

lection requires a candidate event to have a reconstructed track of 10 planes or

more. The four input variables that provide separation between neutral-current

and charged-current events are shown in Figure 4.5. They are:

• Number of muon scintillator planes – Muons leave long tracks as they smoothly

lose energy. In general, hadronic particles interact strongly in the detector

and travel a shorter distance.

• Mean energy deposited per strip – Muons deposit a near-constant amount of

charge (one MIP) in each plane. The multiple particles of hadronic showers

give a higher mean energy deposition. The first 30% of planes after the track



4.3 Particle identification 75

Muon scintillator planes

0 50 100

 P
O

T
16

E
ve

nt
s 

/ 1
0

0

2

4

6

8
Low Energy Beam

Data

MC expectation

NC background

Mean energy deposited per strip (MIPs)

0 0.5 1 1.5 2 2.5

 P
O

T
16

E
ve

nt
s 

/ 1
0

0

5

10

15 Low Energy Beam

Data

MC expectation

NC background

 Signal fluctuation parameter 

0 0.2 0.4 0.6 0.8 1

 P
O

T
16

E
ve

nt
s 

/ 1
0

0

5

10

15

20 Low Energy Beam

Data

MC expectation

NC background

 Transverse profile parameter 

0 0.2 0.4 0.6 0.8 1

 P
O

T
16

E
ve

nt
s 

/ 1
0

0

5

10

15

20
Low Energy Beam

Data

MC expectation

NC background

Figure 4.5: Distributions of the four input variables to the primary CC selection.
The red histograms show the Monte Carlo prediction, with the systematic error
associated with the beam flux indicated by shading. The expected distribution
of the neutral-current background is shown in blue. Each variable shows strong
identifying power. The black points show the distributions in near detector data.
Deviations from the Monte Carlo predictions are within expectation.

vertex are excluded in the calculation of the mean.

• Signal fluctuation parameter – Tracks due to hadronic activity have larger

fluctuations in their energy deposits than muons. All hits within 4 strips of

the reconstructed track, after the first 30% of planes, are sorted by pulse-

height. The variable is calculated as the mean of the lowest pulse-height

strips divided by the mean of the highest strips. A larger value indicates

more uniform energy deposits.

• Transverse profile parameter – Typical muon tracks deposit energy in only

one strip per plane, whereas showers are wider. The variable is formed as



4.3 Particle identification 76

 CC/NC separation parameter 

0 0.2 0.4 0.6 0.8 1

 P
O

T
16

E
ve

nt
s 

/ 1
0

-210

-110

1

10

Low Energy Beam

Data

MC expectation

NC background

Figure 4.6: Output of the kNN constructed from the variables shown in Figure 4.5.
The majority of NC events are found at low PID values. The data/MC agreement
of the kNN output is good.

the fraction of energy within a 4 strip window of the track that is assigned

to the reconstructed track. The 50% of track planes closest to the vertex are

excluded.

Each individual variable exhibits a strong separation between signal and back-

ground. The information provided by all four variables is combined by means of

a k-Nearest-Neighbours (kNN) technique. A training sample of events is formed

from Monte Carlo and for each event to be classified the k (in this case 80) training

events nearest in the parameter space are found. The PID output is then simply

the fraction of these events that were due to a νµ-CC interaction. See Figure 4.7

for an illustration. kNNs are discussed further in Section 5.2. The distribution of

the kNN output (R) is shown in Figure 4.6. Optimizing for the best combination

of efficiency and purity ǫ× p [125] the best cut position is found to be R > 0.3.
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Figure 4.7: Cartoon of the use of a kNN for particle identification. In this two-
dimensional space, the red signal events correlate with larger values of the variables
than blue background events. The identity of the event marked by the star is
estimated by examining its nearest neighbours, marked by more intense colouring.
In this case k = 12 and the value of the PID output variable is 2

3
.

For the present analysis, an additional PID was developed to improve selection

efficiency at low energies. This PID is constructed in a similar fashion to the

primary selector, using a four-dimensional kNN. A full description can be found

in [126] and [127]. As this selector focuses on low energy events the requirement

for a minimum number of track planes is lifted. The input variables are shown in

Figure 4.8.

• Number of muon scintillator planes – Defined as for the equivalent variable

in R.

• End pulse height – A hadronic track that terminates in a nuclear interaction

may lead to a large energy deposit at the end of the track, which does not

occur for muons. This variable consists of the total energy deposit in the
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Figure 4.8: Distributions of the input variables to the auxiliary CC selection kNN.
Conventions are as in Figure 4.5.

last five planes of the track.

• Degree of scattering – Muon tracks are relatively smooth and straight, whereas

a hadronic track may undergo more scattering. A track constructed incor-

rectly from unrelated hits is also likely to be less straight. The variable is

calculated from a combination of the Pearson (correlation) coefficients of the

track in each view. The coefficients calculated in the U and V views are used

as independent input variables.

Figure 4.9 shows the the distribution of the kNN output (J) for these variables.

The final PID is constructed as a logical-OR between these two selectors. That

is, an event that passes either is considered selected. With the addition of this new

selector, the cut positions of both R and J need to be re-optimized. In addition

to oscillation sensitivity, the discriminatory power against neutrino decay and
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Figure 4.9: Output of the kNN constructed from the variables shown in Figure
4.8.

decoherence scenarios was also considered in the optimization [126]. The final

selection criterion obtained was somewhat looser than the optimal selection with

R alone:

(R > 0.25) ∨ (J > 0.5) . (4.1)

The selection efficiency and level of contamination achieved by this overall

selector in far detector Monte Carlo is shown in Figure 4.10 as a function of

reconstructed energy. Above 1GeV the selection performs very strongly.

4.4 Beam matrix extrapolation

In order to take advantage of the two-detector design of MINOS, it is necessary

to have some method of adjusting the far detector prediction based on informa-

tion from the near detector (referred to as “extrapolation”). The “beam matrix”
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Figure 4.10: Efficiency (blue) and contamination (red) achieved by the overall
charged-current selection at the far detector as a function of reconstructed energy.
Above 1GeV the selection achieves high efficiency and low contamination.

method adopted is identical to that used in the previous charged-current analysis4,

and is described in [128].

The neutrino flux seen by the two detectors is not identical, purely for geomet-

ric reasons. As illustrated by Figure 4.11, due to its proximity, the near detector

subtends a much greater angle than the far detector at the point of pion decay.

The effect is that neutrinos from lower energy pions, decaying at larger angles,

can still give rise to interactions in the near detector but will likely miss the far

detector entirely. Figure 4.12 shows this same effect in terms of neutrino energy

spectra. The range of pions that give rise to neutrinos of certain energies in the

near detector contribute a somewhat different spectrum of neutrinos which are

destined to intersect the far detector.

4Except for the minor complication introduced by resolution binning, described in Section
4.5.
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Figure 4.11: Sketch of the geometry of pion decay in the NuMI decay pipe. Due to
its proximity to the decay pipe the near detector subtends a much larger angle than
the far detector. Neutrinos emitted at large angles may miss the far detector while
still intersecting the near detector. Relatively “softer” (lower energy) pions thus
contribute a larger fraction of the observed near detector neutrino interactions.

The core of the extrapolation is a near to far transfer matrix, or “beam matrix”.

This encodes the necessary geometric and kinematic information to transform an

observed near detector flux into a predicted far detector flux. For each parent

decay in the beam simulation, a random interaction vertex is picked in the near

detector. The decay kinematics then determine the neutrino energy this geometry

corresponds to. The same procedure is carried out for the far detector, although

picking an interaction point is unnecessary since all points in the far detector are

virtually straight down the z-axis. This procedure associates a neutrino energy

at the near detector to one in the far detector via their shared parent. Repeating

this procedure for all the simulated parents, and taking into account the angular

dependence of the decay cross-sections, produces a beammatrix as shown in Figure

4.13. This procedure is carried out separately for each run period to take into

account differences in the beam properties, and independently for neutrinos and

antineutrinos to account for the differing parent particles. There is, of course, a

strong correlation between neutrino energies in the two detectors, meaning the

matrix is nearly diagonal, but each near detector energy does correspond to a

distribution of far detector energies.

The near detector does not directly measure neutrino flux. Likewise the far

detector prediction is not required in the form of a flux, but as a visible energy
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Figure 4.12: Comparison of simulated near and far detector energy spectra in true
neutrino energy. The shaded regions in each histogram correspond to the same
set of parent meson decay positions and momenta. The difference in geometrical
acceptance between the two detectors leads to the observed smearing and differ-
ence between the shapes of the two spectra. The neutrino energy in the beam
peak is slightly higher in the far detector, since neutrinos from the decay of high
energy parents are emitted in a more forward direction and thus more likely to be
directed towards the near detector. The difference in the y-axis scales by a factor
of approximately 106 reflects the divergence of the neutrino beam between the two
sites.

distribution. A further series of steps are thus required to complete the extrap-

olation procedure. Additional matrices, derived from Monte Carlo simulations,

remove neutral-current contamination from the observed near detector spectrum,

convert it to true neutrino energy, and correct for reconstruction efficiency. The

near detector flux thus obtained is then extrapolated to the far detector via the

beam matrix and the equivalent matrices are applied in reverse to generate a far

detector prediction in reconstructed energy. While the far detector prediction is

expressed in neutrino energy the neutrino oscillation probabilities may be applied.

The full procedure is illustrated in Figure 4.14.

This extrapolation procedure is designed to use the near detector spectrum

as a measurement of the neutrino flux, and thus correct systematic errors due

to uncertainty in the beam simulation. Due to the nearly direct transfer of the

near detector observation to the far detector prediction (the beam matrix is near-
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Figure 4.13: The beam matrix calculated from Run III Monte Carlo. Applica-
tion of this matrix converts a neutrino flux at the near detector into a predicted
neutrino flux at the far detector. This is essentially a two-dimensional version of
Figure 4.12. See main text for more details.

diagonal) it also serves to propagate reconstruction or cross-section effects from

one detector to the other, thus serving to, at least partially, account for these

factors in its prediction as well.

4.5 Resolution binning

The better the energy resolution of the far detector spectrum to be fitted for

oscillations, the more clearly the oscillation dip will be defined. A more sharply

defined dip allows less freedom for the fit to vary oscillation parameters and thus

leads to tighter constraints on the ∆m2 and sin2 2θ.

The topic of directly improving the resolution of reconstructed events is covered

in Chapter 5. This section describes the complementary procedure of dividing
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Figure 4.14: Flowchart of the near detector to far detector extrapolation proce-
dure. The observed near detector energy spectrum is background-subtracted based
on the Monte Carlo background expectation. The spectrum is then converted to
a true energy distribution, and selection and reconstruction efficiencies taken into
account, again using Monte Carlo. Dividing out cross-sections and the near de-
tector mass provides an estimate of the true νµ flux at the near detector. This is
then transformed into a far detector flux prediction using the beam matrix, and
the corresponding corrections all applied in reverse to finally produce a prediction
of the energy spectrum observed in the far detector.

reconstructed events according to an estimate of their energy resolution.

The reconstructed energy of an event is formed by taking the sum of the re-

constructed track and shower energies. The resolution estimate is likewise formed

from a combination of the track and shower resolution estimates. The Monte Carlo

sample of selected truly-CC events was used to construct Ereco−Etrue distributions

for the track and shower energies. A gaussian fit was made to each distribution

and the fitted standard deviation used as the resolution estimate. For showers,

and tracks whose energy is measured from range, this procedure was repeated for

each bin of reconstructed energy, and the results parametrized with a functional

form consisting of the sum in quadrature of terms linear in the energy and in the

square-root of the energy, and for showers an additional constant term. For the
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Figure 4.15: Track and shower energy resolution functions as described by equa-
tions (4.2).

case of tracks whose energy is measured from curvature, the independent variable

was the product p2curvσq/p, where pcurv is the momentum estimate from the tracker,

and σq/p is its estimate of the error on the charge : momentum ratio. This fitting

procedure is described in more detail in [129]. The resolution functions determined

by this procedure are:

σrange
trk = 6.9% Erange ⊕ 5.1%

√

Erange

σcurv
trk = p2curvσq/p ⊕ 134%

√

p2curvσq/p

σshw = 8.6% Eshw ⊕ 40.4%
√
Eshw ⊕ 275MeV ,

(4.2)

where the units of energy are GeV. Figure 4.15 shows the form of the shower

and range-measured track functions. The overall resolution estimate for an event

is then formed from the sum in quadrature of the track and shower resolution
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Figure 4.16: The distribution of energy resolution σtot as a function of recon-
structed energy. The black lines mark the quantile boundaries. At each energy
20% of simulated events fall in each quantile.

components:

σtot = σtrk ⊕ σshw (4.3)

Using this parametrization, it is possible to divide the energy spectrum of far

detector events into bins of differing resolution. The choice of binning made is

to have five resolution quantiles, each with equal statistics in the unoscillated

case. Figure 4.16 shows the distribution of estimated energy resolution against

total reconstructed energy for unoscillated far detector Monte Carlo. The black

lines represent the cuts used to separate the events. The cut positions vary as a

function of reconstructed energy, and are defined so as to divide the event sample

into five equal components at each value of reconstructed energy. The unoscillated

far detector predictions for each resolution bin are thus identical by construction.

Separate cuts are constructed for each individual run period. This procedure is

described in [130] and [131].
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Figure 4.17: Distribution of reconstructed energy versus true energy for the best
20% of events (left) and the worst 20% (right).

Events in which the muon track is reconstructed to have positive charge are

excluded from the resolution binning scheme and allocated to a separate spectrum

– making six in all. Many of these events are indeed from antineutrino interac-

tions, but at low energies charge misidentification is common, and this sample also

includes a large fraction of neutrino events.

The near detector spectrum is divided according to reconstructed muon charge,

but not by estimated event resolution. The extrapolation procedure described in

Section 4.4 is carried out independently for each of the six subsamples, starting

from either the positive or negative near detector spectrum as appropriate, re-

flecting the different characteristics of the events making up each, producing six

far detector predictions for comparison with far detector data for each run period.

Figure 4.17 shows the reconstructed-versus-true energy matrices employed in the

extrapolation procedure for the highest and lowest resolution quantiles. The large

difference in the accuracy of energy reconstruction between the samples is clear.

Dividing the far detector energy spectrum in this way leads to superior oscil-

lation parameter sensitivity. The highest resolution events most clearly define the

oscillation dip, and are allowed to do so uncontaminated by events with poorer

energy resolution, which would tend to smear out the oscillation signal. By main-

taining the poorer events in their own spectra, the information they provide about
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Figure 4.18: Distribution of true interaction vertices of Monte Carlo events se-
lected into the rock and antifiducial sample. The structure of the far detector
supermodules and the cavern are clearly visible. The majority of interactions
occur in the rock of the upstream cavern wall.

the oscillation parameters is also fully utilized. A side-effect of the resolution bin-

ning is that neutral-current background events are mostly relegated to the two

worst resolution bins. The higher resolution spectra thus also draw from a purer

sample of charged-current events, again allowing a more precise determination of

the oscillation parameters.

4.6 Rock and antifiducial events

In addition to neutrino interactions within the fiducial volume, the MINOS far

detector also records events originating from neutrino interactions in the outer

regions of the detector or in the rock of the surrounding cavern walls. Figure 4.18

shows the distribution of true interaction vertices for these events. The largest con-

tribution comes from interactions in the upstream wall of the far detector cavern.

In previous analyses, these events have been excluded from the sample. Events

originating in the detector but outside the fiducial volume (“antifiducial events”)

were excluded because shower containment is not guaranteed, and because they

are difficult to distinguish from events originating in the surrounding rock. Events

originating in the cavern walls (“rock events”) were rejected because the shower

almost certainly does not reach the detector, and some unknown portion of the
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track energy is also dissipated in the rock. For this analysis events from these

classes were included. Whilst the energy resolution of these events is poor, they

comprise a sample with comparable statistics to the fiducial sample, and provide

a valuable additional contribution to the oscillation measurement. Full details of

the treatment of these events are given in [132] and summarized below.

Due to the uncertain or nonexistent containment of hadronic showers in the

sample of rock and antifiducial (RAF) events, the energy estimator used, and the

variable in which the energy spectra are binned, is chosen as simply the visible

track energy (from range or curvature as in the fiducial analysis). As well as

neglecting the energy in the hadronic shower, this variable is also unable to account

for any energy lost by the muon as it travels through the rock of the cavern walls.

However, the visible muon energy is the maximum amount of information available

about the true neutrino energy, and some correlation remains. In case of particles

from a hadronic shower penetrating the detector, the selection of muon-like tracks

is made using the same PID variables, R and J , described in Section 4.3.

While both classes of event are hampered by the absence of shower information,

those from interactions within the antifiducial volume have much better energy

resolution than events whose true vertex is in the surrounding rock. In a rock

event the muon has lost an unknown fraction of its energy in transit to the de-

tector. Splitting the RAF sample according to energy resolution is advantageous

for the same reasons as presented in Section 4.5. The RAF sample is therefore

divided into six spectra based on the detector region in which the first track hit

is recorded. These regions are illustrated in Figure 4.19. The types of events

recorded in each region are determined by geometrical considerations. The rate of

rock muons depends on the surface area exposed by each region to events originat-

ing in the rock, whilst the detector mass contained in each region governs the rate

of neutrino interactions within them. Events detected in the region of the detector

front face are predominantly rock events, those in the gap and back regions are
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Figure 4.19: Scale diagram of the various far detector regions as considered in the
analysis. Events with reconstructed vertices in the coloured regions are placed
in the corresponding rock and antifiducial spectrum. Events with vertices in the
fiducial volume go into the main sample, divided according to charge and resolu-
tion.

predominantly antifiducial interactions. The detector edge regions have both a

large mass and a large surface area exposed to the rock, they thus collect a mix-

ture of events. The coil hole region is not used in this analysis. Edge events are

further separated into rock-like and detector-like samples based on consideration

of the precise sequence of hits at the start of the track and of the geometry of the

scintillator strips at the detector edge.

With an event selection and binning scheme tuned to give maximum oscillation

sensitivity, the final necessary component of the RAF analysis is an extrapolation

technique in order to take advantage of the information provided by the near

detector. Attempting to use rock and antifiducial events from the near detector

is technically complex, and is not in general an effective source of information

about the corresponding far detector spectra. The geometry of the near detector

and its cavern differ from the far detector, as does the geometrical relationship

to the beam. The near detector cavern and the mass distribution within it are

also not well modelled in the Monte Carlo. The composition and thus density of

the rock also differs at the two sites. For these reasons, the near detector fiducial
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spectrum is used as the basis of the extrapolation procedure. The simulated

near detector spectrum, and that actually observed in data, are put through the

extrapolation procedure described in Section 4.4 and illustrated in Figure 4.14.

The procedure is halted when the far detector flux prediction is obtained, and

the ratio between the flux predicted from data and that from Monte Carlo is

applied as a correction factor to the far detector RAF Monte Carlo as a function

of true neutrino energy. Whilst different in conception to the extrapolation of

the fiducial sample this procedure is effectively equivalent, the various correction

factors are simply handled implicitly by the Monte Carlo instead of being broken

out explicitly into separate histograms.

The RAF analysis obtains good sensitivity to ∆m2, comparable to the fiducial

analysis, but very poor sensitivity to sin2 2θ. Considering that ∆m2 governs the

position of the oscillation dip and sin2 2θ its magnitude, it may seem counter-

intuitive that an analysis with poor energy resolution and good statistics behaves

in this way. However, due to the position of the oscillation dip on the rising edge

of the NuMI beam peak, variations in ∆m2 affect the expected event rate con-

siderably. Determination of the depth of the oscillation dip, meanwhile, requires

good energy resolution to probe the oscillation maximum clearly.

4.7 Systematics and fitter

Comparison of the far detector prediction with the observed energy spectrum in

data is performed using a binned maximum likelihood method. Specifically, the

best fit oscillation parameters are found at the minimum of the log-likelihood ratio

for Poisson-distributed data [46]:

χ2 = 2
∑

i

ei − oi + oi ln

(

oi
ei

)

(4.4)

ei = ei(sin
2 2θ,∆m2) ,
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C.L. 1D 2D
68% 1.00 2.30
90% 2.71 4.61

Table 4.1: ∆χ2 values denoting the 68% and 90% confidence levels in one- and
two-dimensional parameter spaces. Excerpted from [46].

where the summation over i includes each bin of energy for every spectrum under

consideration (six fiducial and six antifiducial for each of the four run periods5).

oi represents the number of data events observed in each bin and ei the extrap-

olated prediction. The expectation in each bin is a function of ∆m2 and sin2 2θ,

calculated by reweighting each truly charged-current event as a function of true en-

ergy, according to Equation (2.17). The small effect of ντ appearance is taken into

account by adding a spectrum of similarly reweighted tau events to the prediction.

Confidence levels may be drawn in the two-dimensional (sin2 2θ,∆m2) space

based on the ∆χ2 from the best fit point, also known as the “up-value”. The

∆χ2 values required to cover the true oscillation parameters with 68% or 90%

probability are given in Table 4.1. The two-dimensional likelihood surface and its

resulting contours may be converted into a one-dimensional ∆χ2 projection and

corresponding single parameter error via the technique of marginalization. For

example, at each value of ∆m2 all possible values of sin2 2θ are scanned, and the

lowest χ2 found represents that value of ∆m2 in the one-dimensional projection.

The best fit ∆m2 is found at the minimum of this curve and will correspond, by

construction, with the ∆m2 value of the best-fit point. The errors on ∆m2 are

found by inspecting the ∆χ2 from the minimum, this time using the tabulated

one-dimensional up-values.

Sensitivity contours and predictions of the one-dimensional parameter errors

can be constructed with the use of “fake data”. The full Monte Carlo sample is

taken, and reweighted according to some input values of the oscillation parameters,

5The positively-charged spectrum for the pHE run period is omitted due to the very low
predicted event count.
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before being scaled down to an exposure equivalent to the data sample. The correct

operation of the fitting procedure is confirmed by using this spectrum in place of

data and ensuring that the best-fit point obtained matches the input values. The

contours and single-parameter errors obtained from this procedure represent the

sensitivity of the experiment at the given input parameters.

4.7.1 Treatment of systematic errors

The magnitudes of a large number of possible sources of systematic bias have been

estimated and their impact on the oscillation fit calculated. For each systematic

studied, a method was developed to simulate the effect of a ±1σ shift in Monte

Carlo. The full list of parameters and the details of how the shifts were input is

given in [133].

The impact of each systematic shift on the oscillation fit is evaluated as the

fit bias that would be introduced to each oscillation parameter if the data were

to have an unmodelled ±1σ shift. For each systematic, Monte Carlo events were

modified to reflect the effect, producing fake data samples. These were input

to the extrapolation and fit procedure in place of data, to be compared with an

unshifted Monte Carlo sample. For systematics affecting both the near and far

detectors, both were shifted correspondingly. The output best-fit point was then

compared to the input oscillation values, the result reflecting the bias introduced

by the systematic even in the presence of the near to far extrapolation. Figure

4.20 shows a “star plot” summarizing the impact of the various sources of error

considered. The centre of the plot represents the input oscillation parameters, and

each arm the deviation from these true values introduced by a ±1σ shift in a single

systematic. The four systematics with the greatest impact on the oscillation fit

are:

• Absolute hadronic energy scale – uncertainty in the energy scale of hadronic
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Figure 4.20: Shifts induced in an oscillation fit to Monte Carlo by the major
categories of systematic error. The centre-point represents the oscillations input
into the fake data. Each arm of the star indicates the difference to the best fit
value obtained by a statistics-only fit to fake data based on the same oscillation
parameters but including a ±1σ shift in one systematic. The top four systematics
in the list, representing the largest shifts in ∆m2 and sin2 2θ, are included as
nuisance parameters in the final fit.

showers due to factors common to both detectors. The derivation of the

magnitude of this uncertainty is presented in Section 5.6.

• Absolute track energy scale – uncertainty in the energy scale of muon tracks

due to factors common to both detectors. A 2% adjustment is made to en-

ergies measured by range, with a fully correlated 3% shift for tracks whose

energies are measured from curvature. The range-based error is calculated

from the combination of known uncertainties in the detector simulation and

particle propagation, with the curvature error including an additional com-

ponent from observed differences in the range and curvature measurements

for individual tracks [134].

• Relative normalization – uncertainty in the expected number of neutrino

events from factors not shared between the two detectors. A 1.54% scale
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factor is applied to the far detector spectrum. The uncertainty arises from a

combination of relative uncertainties on fiducial mass, live-time and recon-

struction efficiency between the two detectors [135].

• Neutral-current background – uncertainty in the efficiency of the charged-

current selection due to mismodelling of hadronic showers and neutral-current

cross-sections. A 20% scale factor is applied to the level of misidentified

neutral-current events in both detectors. This value comes from a compari-

son of the near detector PID distribution (R) between data and Monte Carlo,

and of data and Monte Carlo charged-current events re-reconstructed with

the muon track removed [136, 127].

The other systematic shifts that were investigated, and found to have a smaller

effect on the fit were [133]:

• Cross sections – variations of the various neutrino and antineutrino charged-

current cross-sections. The contributions of the different contributing sys-

tematics are summed in quadrature for display on the star plot.

• Relative hadronic energy – uncorrelated error in the shower energy scale

between the detectors. A 1.9% shift in the near detector, or a 1.1% shift in

the far detector.

• Beam – the bin-by-bin error on the flux prediction, as determined by the

beam reweighting procedure.

• Charge mis-ID – a 40% scale on the amount of ν̄µ charged-current back-

ground selected into the negatively-charged event samples.

• Rock and anti-fiducial – a 0.9% normalization scale on events originating in

the far detector rock, a 1% scale on the non-DIS cross-sections of events in

the rock, and the uncertainty in the separation of rock-like and detector-like
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events along the detector edges. These effects are summed in quadrature for

the star plot.

The effect of each of these four major sources of systematic uncertainty is

included in the fit, and in the calculation of the confidence limits, by allowing the

fit freedom to adjust the parameters in question. The log-likelihood formula in

(4.4) becomes:

χ2 = 2
∑

i

ei − oi + oi ln

(

oi
ei

)

+
∑

j

s2j
σ2
j

(4.5)

ei = ei(sin
2 2θ,∆m2, ~s) ,

where the expectation in each bin ei is now also a function of the four system-

atic shifts sj. The final term in the χ2 formula acts to constrain the systematic

terms within about their estimated range of variation. The σj are the 1σ error

ranges described above. In the absence of any preference from the data, the sys-

tematic parameters will fit best at their nominal values. In the case of evidence

of a systematic shift in the data, the best-fit shift is a trade-off against our prior

knowledge of the parameter. Fitting for the systematic parameters leads to a bet-

ter fit to the data. The χ2 value is marginalized over the systematic parameters ~s

independently at all points in the (∆m2, sin2 2θ) plane, thus reducing the height of

the ∆χ2 surface, and increasing the size of the confidence contours. This captures

the increased uncertainty in the estimation of the oscillation parameters which is

introduced by these sources of systematic error.

4.7.2 Systematics interpolation and fitter

Performing the oscillation fit exactly as described above would be very compu-

tationally intensive. A straightforward implementation of the track and shower

energy systematics entails adjusting the energies of all Monte Carlo events in both
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detectors, rebuilding the histograms required for the extrapolation and recalculat-

ing the far detector predictions. This must happen many hundreds of times for

each point in (∆m2, sin2 2θ) space as the systematic parameters are searched over.

The approach adopted instead involves interpolation between representative

templates. The inputs to the fitter are reconstructed-versus-true spectra as pro-

duced by the extrapolation, one for each event class (charged-current νµ, ν̄µ, ντ and

ν̄τ , and neutral-current) for each resolution bin or detector region, and for each run

period. These templates are produced at the nominal point, with no systematic

shifts applied, and at ±1σ and ±2σ shifts of each parameter, yielding 4n+1 = 17

systematic configurations in total. Spectra with multiple shifts applied and at

intermediate values are obtained by interpolation. The minuit package [137] is

used for the minimization over the systematic parameters and avoids the necessity

of a brute-force search over a four-dimensional space, but requires the input χ2

function to be doubly-differentiable in order to reliably form the covariance ma-

trix the algorithm depends on. A simple linear interpolation scheme between the

templates would not achieve that property, exhibiting unwanted behaviour at the

boundaries between each segment. The interpolation scheme used is constructed

as a weighted average of the different linear interpolations between neighbouring

templates. It may be described in terms of the weight given in the prediction

to any one template, as a function of the input systematic shift. Figure 4.21 il-

lustrates these weighting functions. At each integer value of the systematic shift

the exact spectrum known from that template is reproduced, with intermediate

values being influenced more heavily by the nearby templates. The interpolation

scheme and fitter in general are described in [129]. Spectra with multiple shifted

parameters were generated both by this method and by the full event-by-event

procedure and the discrepancies shown to be small.

The oscillation fit and construction of contours proceeds as follows. A scan

is made over a grid in (∆m2, sin2 2θ) space. At each point, every template is
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Figure 4.21: Weight assigned to each of the five template histograms, representing
0,±1,±2σ shifts in one systematic parameter in order to interpolate between them
as a function of the input shift. At the central value for each template the weights
for all other templates are zero, thus reproducing the known shifted spectra.

reweighted according to the two-flavour survival probability (2.17) at these param-

eters6. The templates are then reduced down to reconstructed energy. minuit is

allowed to search over the four systematic parameters, with the prediction at each

shifted point generated by interpolation between the oscillated templates. The

minimum χ2 found is taken as the value for these oscillation parameters, and the

procedure repeats at the next point on the grid. The grid point with the lowest

χ2 is taken as the best-fit point and confidence levels are drawn according to the

up values in Table 4.1.

6The fitter makes use of the linearity of the probability in sin2 2θ to more quickly generate
predictions at the same ∆m2. The oscillations are precalculated at sin2 2θ = {0, 1}. In each bin
the weight is taken as the average of the weights for all Monte Carlo events populating this bin in
the nominal sample. This procedure produces a more accurate representation of the oscillations
than simply using the formula evaluated at the bin centre.



Chapter 5

The kNN energy estimator

This chapter presents a new technique, developed for this thesis, for the estimation

of the energy content of hadronic showers in MINOS. The energy resolution of low-

energy showers is significantly improved by using this new estimator in place of

the usual calorimetric estimator.

The sensitivity of the MINOS charged-current analysis to the oscillation pa-

rameters ∆m2 and sin2 2θ is dependent on the ability to pick out the features of the

characteristic oscillation dip. A more sharply resolved dip allows the oscillation

fit less freedom in matching its depth (sin2 2θ) and position (∆m2), and results in

a smaller allowed region of the parameter space. The technique of dividing events

by their estimated energy resolution was discussed in Section 4.5; this chapter

focuses on directly improving the resolution of the individual events. Resolution

binning can of course then be applied to the result, yielding further improvements.

Sections 5.2 to 5.5 describe the details of the kNN algorithm and the procedure

followed to construct an optimized estimator for use in the MINOS charged-current

analysis. Section 5.6 then describes the evaluation and combination of the various

systematic uncertainties that affect the hadronic energy estimate.

99
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Figure 5.1: Comparison of the oscillation sensitivity obtained using the standard
energy reconstruction (black), or the true neutrino energy (red). The blue and
green contours show the sensitivity gains achieved by hypothetical 10% and 50%
improvements in energy reconstruction, as described in the main text.

5.1 Motivation

Except where noted, all sensitivities in this chapter are based on 7× 1020 POT of

data1 taken in the low energy, forward horn current, beam configuration. Only

fiducial events are included, and resolution binning is not performed. The input

oscillation parameters are ∆m2
atm = 2.43 × 10−3 eV2, sin2 2θatm = 1, the best

fit from the 2008 charged-current analysis [69]. Contours are drawn at the 90%

confidence level.

Figure 5.1 illustrates the scale of the possible sensitivity gains. For the red

contour, the usual reconstructed energy of each event has been replaced by the true

neutrino energy from the Monte Carlo. Access to this “perfect” energy estimator

1The kNN energy estimator was developed in part before the final POT count for the analysis
was determined. This exposure approximately reflects the quantity of data that was taken in
the low energy beam configuration.
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gives a very substantial improvement in oscillation sensitivity. This sensitivity

is, of course, unobtainable in practice. Much of the necessary information is

irretrievably lost, for example in the uncertain quantity of energy deposited in the

detector steel. Figure 5.1 also includes two other scenarios, which show that even

a more realistic improvement in energy resolution can have a significant impact on

oscillation sensitivity. In each case, the reconstructed energy of simulated events

has been adjusted so that the difference from the true neutrino energy is reduced2:

Eadjust = Etrue +
Ereco −Etrue

f
. (5.1)

The “10%” and “50%” contours in Figure 5.1 are generated with f = 1.1 and

f = 1.5 respectively.

The resolution functions (4.2), plotted in Figure 4.15, show that, at any given

energy, the energy resolution of showers is much worse than that of tracks. Since,

for an average event, the energy is split roughly equally between track and shower,

the energy resolution is dominated by the shower contribution. Improvements

in track energy resolution will therefore have very little effect on the oscillation

sensitivity, whilst improvements in shower resolution will be reflected directly.

5.2 The kNN algorithm

The approach taken here to attempt to improve the energy resolution of MINOS

showers is to adopt a multivariate technique, making use of a broader range of

information about the shower, and the event as a whole. The suggestion to use a

kNN was inspired by work on the charged-current PID, and the technique showed

promise in initial investigations [138].

The algorithm begins by taking a training sample of Monte Carlo events. These

2Here, E stands for the full neutrino energy, not just the shower component.
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Figure 5.2: Cartoon of the use of a kNN for energy estimation. In this two-
dimensional space, higher energy training events (represented by larger circles)
correlate with larger values of the variables. The energy of the event marked by
the star is estimated by examining its k (here 20) nearest neighbours, highlighted
in red. The energy estimate is the mean of the true energies of these neighbouring
events.

events are distributed across the run periods in the correct proportions, so they

accurately reflect the properties of the data, and they are required to pass the

charged-current selection. Separate samples are used for the near and far detectors,

drawn from the respective Monte Carlo, to allow for any inter-detector differences.

For a D-dimensional kNN, D variables characterizing the properties of an

event, and correlating with true shower energy, are stored for each training point,

along with the true shower energy that was simulated by the Monte Carlo. In order

to estimate the shower energy of a candidate event, the k closest training events,

in the D-dimensional space formed by the input variables, are found. The output

energy estimate is then the mean of the true shower energies of these training

events. Figure 5.2 illustrates this procedure.
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The distance measure, or metric, used to define which are the most nearby

events is simply the D-dimensional Euclidean metric. The squared distance ∆s2

between a trial point ~y and a training point ~x is

∆s2 =

D
∑

i=1

(yi − xi)
2

σ2
i

. (5.2)

Because the input variables are not guaranteed to be in compatible units, they

must be normalized in the distance calculation. Otherwise, the variable with

the largest numerical range would dominate over the others. The values of the

input variables are thus compared in terms of their standard deviations (σi) in the

training sample.

Other choices are possible for the construction of the metric, including a form

varying throughout the training space. Similarly, the energy estimate could be

constructed in some way other than a simple mean, perhaps weighting more dis-

tant training events less heavily. These, however, are the simplest choices, and

have no adjustable parameters, yielding the smallest search space in which to find

an optimal kNN. Note that in the limit of large training sample statistics, the pre-

cise definition of the metric becomes irrelevant as all chosen points will be “very

nearby”. The only choices remaining are in the set of variables to use as inputs,

including their total number, and in the number of neighbours, k, to include in

the energy calculation.

A näıve implementation of the kNN algorithm requires O(n) time to find the

closest events from an n-element training set. Using a training set of over a

million events to estimate the energies for a similarly sized set of test points would

be very resource-intensive. Substantially faster neighbour searches are achieved by

storing the training points in a kd-tree structure [139]. This is a multi-dimensional

analogue of a balanced binary tree. Figure 5.3 illustrates the space partition

construction. The structure consists of a set of nested axis-aligned boxes. Each box



5.2 The kNN algorithm 104

x
0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

x
0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

x
0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

x
0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

Figure 5.3: Partition of two-dimensional points by a kd-tree. The points are first
divided along the horizontal axis (marked in blue) and then subdivided along
the vertical axis (marked in red). This procedure repeats until no points share
the same region. Each boundary passes through exactly one point, dividing the
remaining points as equally as possible (i.e. the median for an odd number of
points).

is associated with one training point and, except at the leaf level, two child boxes

containing those points “left” and “right” of this point. The dimension along which

the boxes are subdivided advances at each layer of the tree. The point at which

each box is split is the median point along this dimension, dividing the remaining

points equally between each child. The nearest neighbour search proceeds as a

breadth-first traversal of the tree. There is no need for the search to descend

into boxes whose entire volume is further from the test point than the worst of
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the k candidate neighbours so far identified. For randomly distributed data, the

neighbour search takes O(log n) time, a significant improvement in performance

and scalability.

5.3 Selection of variables

With N candidate input variables, there are

NCD =
N !

D!(N −D)!
(5.3)

possible choices of D-dimensional kNN. Seven input variables were considered as

potential components of the new estimator. With this number of candidates, a

brute-force search over all combinations remains tractable (there are 127 possibil-

ities to test3). The variables considered were:

1. The calorimetric energy in the primary shower.

2. The sum of the calorimetric energy in the primary and secondary showers.

3. The “deweighted” energy of the primary shower.

4. The sum of the deweighted energies of all showers within 1m of the track

vertex.

5. The number of hit strips in the primary shower.

6. The number of detector planes with activity from the primary shower.

7. The number of planes between the start of the shower and the plane with

the maximum energy deposition.

3Including or not including each variable, requiring at least one variable to be included:
27 − 1 = 127.
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The width of the shower, defined in terms of the variance of the strip U-V

positions σ2
U + σ2

V , was considered as a variable and found to have little power.

For each of the variables which is defined as an energy, this is the fully cal-

ibrated energy. That is, the values are those produced at a late stage of recon-

struction, after variations between channels, and over the life of the experiment,

have been calibrated away.

“Deweighted” energy refers to an energy estimator [119] in which the energy

deposited in each strip is raised to a power between zero and one before they are

summed. The power used varies with the size of the shower, so that for large

showers the estimate approaches the calorimetric energy, and for small showers

the estimator tends towards counting strips. The estimator is described in detail

in [119], but the large improvements reported there appear to have been negated

by the two-photoelectron cut since introduced into the reconstruction.

For each combination of variables, the shower energies for the full far detector

Monte Carlo set were calculated using the corresponding kNN. In the case of ana-

lyzing Monte Carlo using a training file derived from the same Monte Carlo sample,

it is necessary to discard the very nearest neighbour found - this corresponds to

the trial event itself4. From this data, it is possible to calculate an oscillation

sensitivity assuming the conditions stated at the start of this chapter. This sen-

sitivity then needs to be converted into a single figure of merit, for the purposes

of comparing different kNN choices. The figure of merit chosen was the 1σ error

achieved on ∆m2, assuming maximal mixing. This definition allows a shortcut to

be taken. Instead of calculating the full ∆χ2 curve, and locating ∆χ2 = 1, it is

sufficient to sample a single ∆m2 value and use the parabolic shape of the ∆χ2

curve, and the fact that the minimum χ2 is zero by construction, to derive the 1σ

∆m2 error. The actual figure used is the ∆χ2 between one spectrum constructed

4In production, this selection is implemented as a requirement that the true energy of neigh-
bours differs by more than 10 keV from the trial event.
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at ∆m2 = 2.43 × 10−3 eV2, sin2 2θ = 1 and another at ∆m2 = 2.70 × 10−3 eV2.

This value is monotonically related to the error on ∆m2.

The kNN with the best figure of merit was three-dimensional, consisting of:

• The calorimetric energy in the first two showers.

• The deweighted energy within 1m of the track vertex5.

• The number of planes in the primary shower.

Using a larger number of input variables might be expected to improve the energy

reconstruction due to the availability of additional information. However, a higher-

dimensional training space also leads to a sparser distribution of training points. A

variable that provides only a small amount of extra information may only serve to

“confuse” the algorithm, causing the resulting neighbour selection to be somewhat

randomized.

In order to avoid possible problems in the kd-tree algorithm caused by the

discrete nature of the number of planes variable, a deterministically seeded pseudo-

random gaussian jitter of magnitude 10−5 is added to this variable in the training

set.

In response to concerns that the second variable might pick up showers from

unrelated events, a timing cut is applied in the near detector. Figure 5.4 shows the

time difference between shower hits and the reconstructed track vertex. Showers

associated with tracks leave a peak at small time difference, independent activity

gives a flat background. On the basis of this plot the timing cut is set at −25 ns <

∆t < +75 ns, a window 1% of the length of the beam spill.

The same set of three variables is used for energy estimation in both the near

and far detectors, although based on training samples drawn from the respective

Monte Carlos.

5Attempting to replace this variable with calorimetric energy near the track vertex yielded a
decrease in sensitivity.
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Figure 5.4: Distribution of 〈tshw〉 − ttrk in data (black) and Monte Carlo (red).
This distribution is formed from all pairs of reconstructed tracks and shower in
a single spill. 〈tshw〉 is the median time of all hits in the shower, ttrk is the time
assigned to the track vertex by the track fitter. The peak is due to tracks and
showers from the same neutrino interaction, whilst the flat background is due to
coincidences between independent events. The dashed lines show the timing cut
applied to ensure that only showers associated with the same event as the track
are included.

Having selected the input variables to the kNN, the final remaining step is to

optimize the number of neighbours used. Increasing the number of neighbours

examined provides more information to the energy estimation and decreases the

effect of statistical fluctuations. However, with increasing number of neighbours

the algorithm begins to sample parts of phase space which bear less similarity to

the input event under consideration. The optimum number of neighbours to use

is a trade-off between these two considerations, and a function of the size and

properties of the training sample in use. Figure 5.5 shows the figure of merit,

as defined above, for the kNN with the three selected variables, obtained as a

function of the number of neighbours. The expected behaviour is observed, with a
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Figure 5.5: Figure of merit for the shower energy kNN as a function of the number
of neighbours used (k). The figure of merit is defined in the main text. Perfor-
mance of the kNN improves rapidly, before levelling off around 300-500 neighbours,
and then gradually declining. The finalized kNN uses 400 neighbours.

rapid rise, followed by a gradual decline. On the basis of this plot, the number of

neighbours to use was chosen to be 400 in each detector. Of course, the optimum

number of neighbours is also a function of the size of the training sample. The

training sample in use, consisting of the full charged-current selected Monte Carlo

sample available, contains around 1, 200, 000 events.

The kNN energy estimation algorithm also allows an estimate of the shower

energy resolution of individual events to be calculated, by taking the standard de-

viation of the true energies of the neighbours used in the mean. This estimate could

be used for the resolution binning described in Section 4.5. However, investigation

of this variable showed that it performed no better than the parameterization of

Equation (4.2), and so the simpler approach was retained.
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ranges of true shower energy (indicated in the corner of each panel). The calori-
metric estimator is shown in black, and the kNN estimator in red. In each panel,
the dashed line indicates the position of Ereco/Etrue = 1.

5.4 Sensitivity improvement

Figure 5.6 shows the distribution of reconstructed over true shower energy for

the standard calorimetric estimator, and for the kNN estimator, constructed as

described above. The behaviour of the peak in each case is displayed as a function

of the true shower energy. At high shower energies, the kNN and calorimetric

energies behave similarly. However, at lower shower energies, as the resolution of

both estimators falls, the kNN energy becomes noticeably superior, displaying a

much sharper peak, indicating better energy resolution for individual events.

One way of quantifying the improvement in each event is via the adjustment

factor it corresponds to in the artificially improved Monte Carlo of Section 5.1

(Figure 5.1 and Equation (5.1)). That is, the amount closer the kNN energy

estimate is to the truth, as a fraction of the true energy. This can be expressed in
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Figure 5.7: Improvement of kNN shower energy over calorimetric energy as defined
in Equation (5.4). In the top-left is the improvement as a function of the true
shower energy. In the other panels, this value is displayed as a function of the
input variables.

two equivalent forms:

R =
|Ecalo −Etrue| − |EkNN − Etrue|

Etrue

≡
∣

∣

∣

∣

Ecalo

Etrue
− 1

∣

∣

∣

∣

−
∣

∣

∣

∣

EkNN

Etrue
− 1

∣

∣

∣

∣

. (5.4)

The second form makes clear the relationship of this measure to the widths of

the distributions in Figure 5.6. In this equation, and onwards, the variable E

represents the hadronic, or shower, component of the full neutrino energy, unless

otherwise noted. The average value of R gives the overall improvement in a col-

lection of events of interest. The top-left panel of Figure 5.7 shows this average

improvement as a function of the true shower energy. The improvement is small

at high energies, but rises as high as 25% at the lowest energies. The other panels
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Figure 5.8: Improvement in oscillation sensitivity achieved by the kNN energy es-
timator (blue), compared to the calorimetric estimator (black), plus the sensitivity
from perfect reconstruction (red) for scale. On the left, 90% confidence contours
in (sin2 2θ,∆m2). On the right, the projection onto the ∆m2 axis. The dashed
line at ∆χ2 = 1 indicates the 68% confidence level.

show how the improvement varies as a function of the input variables. That is,

what type of event gain the greatest improvement. For all types of event (except

3- and 4-plane events) R is positive, so on average the kNN estimator makes a

better estimate than the calorimetric estimator. In general, low energy events

benefit the most.

Of course, the ultimate test of the performance of the estimator is in the im-

provement in oscillation sensitivity that it achieves. Figure 5.8 shows sensitivity

contours equivalent to those in Figure 5.1, with the addition of the contour ob-

tained when using the kNN energy estimator. The projection onto the ∆m2 axis

is also shown. One way to quantify this improvement is in terms of the amount of

data taking that would be required to achieve it from increased statistics alone.

Using the 1σ errors derived from the ∆m2 projection, and taking sensitivity to

improve proportionally to
√
POT, the improvement expected from calorimetric en-

ergy to kNN energy is found to be equivalent to 1020 additional protons-on-target,

i.e. around five months of data taking.
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5.5 Energy corrections

Ideally, an energy estimator is unbiased. That is, the mean value of Ereco/Etrue

is unity. For the neutrino energy estimate as a whole, a biased estimate is not

actually harmful. Information about the nature of the bias is reflected in the

Monte Carlo simulation. In the analysis, a biased estimator is equivalent simply

to a remapping of the energy axis, and has no systematic effect on the quality of

the result6. However, when estimates are summed, as is the case with track and

shower energy in MINOS, a bias in one estimator can lead to an overall sensitivity

degradation. The track energy estimator has been tuned to be essentially unbiased.

Summing this with a biased shower estimate, in a proportion depending on the

inelasticity of the event, leads to a smearing of the overall estimate, a decrease in

energy resolution, and a consequent decrease in overall sensitivity.

Figure 5.9 shows the distribution of EkNN/Etrue for showers using the kNN

estimator, as a function of true shower energy. At high energies the distribution is

narrow, and the mean is one. Below about 5GeV, however, there are deviations

in the mean, up to 15%. The existence and qualitative form of this feature can

easily be explained in terms of the properties of the training sample. The training

events are drawn directly from the standard Monte Carlo, including the features

of the simulated neutrino energy spectrum. There are thus more training events in

the beam peak, around 3GeV, than elsewhere. This provides a prior expectation

to the kNN, biasing nearby energy estimates, such that events below the beam

peak tend to be reconstructed with higher energies, and vice versa.

Bias in the standard calorimetric estimator is dealt with by the application

of an energy correction function to map the biased raw output to an unbiased

final estimate [140, 141]. A similar approach is followed here. The top plot in

Figure 5.10 shows the means from Figure 5.9, on a logarithmic scale to highlight

6So long as the mapping is monotonic.
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Figure 5.9: Distribution of EkNN/Etrue in far detector Monte Carlo, as a function
of Etrue. The red points are placed at the mean of the distribution for each value
of Etrue. Below around 5GeV the estimator displays a bias of up to 15%.

the structure at low energy. The aim of the energy corrections is to flatten this

distribution so that
〈

EkNN

Etrue

〉

= 1 for all values of Etrue
7. The plot also shows a 5th

order polynomial in log(Etrue) fit to the points. This serves as a first approximation

to the desired correction function. The function does not successfully capture the

full detail of the variation. More seriously, the correction has been determined as

a function of Etrue, whereas what is required is a function in EkNN. Since EkNN

is already a reasonable estimate of Etrue, the polynomial correction is applied

as a function of log(EkNN) as an approximation. After this first approximate

correction, the new means are found, and the procedure iterated. In all, three

correction functions are applied sequentially. The result is shown in the bottom

plot of Figure 5.10. In the crucial region 500MeV < E < 4GeV the deviations

7An alternative aim would be to flatten the distribution of
〈

EkNN

Etrue

〉

as a function of EkNN.

Doing this is found not to lead to the same sensitivity improvement.
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Figure 5.10: Mean value of EkNN/Etrue as a function of Etrue. In the top plot, the
black points are the means from Figure 5.9. Note the logarithmic x-scale. The
red curve is a polynomial fit to the points, the first step of the energy correction
procedure described in the text. The bottom plot shows the means, calculated by
the same procedure, after the full energy correction has been applied.
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Figure 5.11: The correction factor applied to the kNN energy. In black, the
correction calculated as a compounding of three sequential corrections. In red,
the 7th order polynomial which is actually used. The black line lies underneath
the red line for almost all values of EkNN.

have been reduced to the sub-percent level.

This iterative correction procedure seems somewhat inelegant, corresponding

in principle to a 125th order polynomial correction. The correction applied in

practice is in fact a 7th order polynomial, which successfully reproduces all the

features of the full correction. Figure 5.11 shows the final correction function

f(EkNN). To guard against divergence of the function at high energies, the value

of the correction factor is held constant at all energies above 40GeV. A similar

mechanism at low energies proved unnecessary. The correction procedure is thus:

EkNN 7→ f(max[EkNN, 40GeV])EkNN . (5.5)

The same procedure of fitting the
〈

EkNN

Etrue

〉

distribution is followed to obtain a
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Figure 5.12: Improvement of kNN shower energy over calorimetric energy as de-
fined in Equation (5.4), after energy corrections have been applied.

similar correction function for use in the near detector.

With the energy correction function applied, the improvement over calorimetric

energy, as measured by the R variable (Equation (5.4)), is significantly increased

at the lowest energies, reaching nearly 50%, as shown in Figure 5.12. As expected,

this leads to a further small improvement in oscillation sensitivity, as shown in

Figure 5.13.

5.6 Evaluation of the systematic error

For this new shower energy estimator to be safely used in an oscillation analysis, it

is necessary to evaluate the degree of systematic error introduced into the hadronic

energy measurement, and the impact on the overall oscillation fit. There is some

concern that the kNN estimator may be more sensitive to mismodelling, as it uses

more detailed information about the pattern of hit strips in an event.
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Figure 5.13: Improvement in oscillation sensitivity achieved by the corrected kNN
estimator. Black, blue and red lines are as in Figure 5.8, the green lines show the
small additional improvement from applying energy corrections.

The evaluation of the systematic error on the kNN shower energy follows a

similar approach to that used for the evaluation of the systematic error on the

calorimetric energy for previous charged-current [142, 143] and νe [144] analyses.

The uncertainty in the calibration of the response of the MINOS detectors to

hadronic showers originating from single particles has been well determined by

test beam measurements at CalDet and by studies of cosmic ray events in the

two detectors. A significant source of error also arises from the unknown hadronic

particle content from the initial neutrino interaction. In the MINOS Monte Carlo

simulation, there is uncertainty both in the modelling of the hadronization process

in the initial interaction (described in Section 5.6.1) and in the subsequent rescat-

tering of these particles inside the target nucleus (described in Section 5.6.2). The

approach taken to evaluate this systematic is to consider the effect of adjusting

each uncertain aspect of the simulation. These areas of uncertainty may be simple

tunable parameters, or assumptions built into the models themselves.

Sections 5.6.3 and 5.6.4 describe the two different approaches that are em-

ployed to evaluate the various effects arising from modelling of the initial shower

content. Section 5.6.5 presents the full list of the effects considered. The following

sections describe additional systematic effects, notably the uncertainty in single

particle response in Section 5.6.8. The overall systematic uncertainty obtained by
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combining all effects is presented in Section 5.6.11.

5.6.1 Neutrino interactions and the AGKY model

Neutrinos interact with the MINOS detectors in one of three ways. Quasielas-

tic interactions do not give rise to a hadronic shower (the outgoing proton is

essentially undetectable) and so create no uncertainty in the energy scale of the

hadronic reconstruction. Resonance interactions make a substantial contribution

to the interaction cross-section in the O(1GeV) energy regime relevant to MINOS

oscillation analyses. They are simulated according to the Rein-Sehgal model [145].

Although the rates of these interactions suffer from some uncertainty (which is in-

cluded as a component the cross-section systematic in analyses), the final state

particles from the initial interaction are well known. For example, in the case of

the dominant ∆(1232) resonance, the branching ratio for the decay ∆ → Nπ is

greater than 99% [46].

Deep inelastic scattering also makes a major contribution to the cross-section.

In this case, the particle content of the final state is not so easy to determine.

The initial hadronization is performed by the “AGKY model”, transitioning to

pythia/jetset [146] at higher energies. This model is described in [147] and

[148]. The algorithm is, briefly:

• Compute the average charged hadron and total hadron multiplicities.

• Generate the actual hadron multiplicity.

• Generate a single final state baryon on the basis of quark model arguments.

• Generate mesons to make up the correct multiplicity, taking into account

charge conservation and the available invariant mass.

• Generate the baryon four-momentum.
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• Generate a phase-space decay of the remaining hadronic system.

The various probabilities and distributions required: for the multiplicities, meson

production probabilities, and distribution of the baryon momentum, are formed

using data from bubble chamber experiments.

5.6.2 Intranuclear rescattering with intranuke

The majority of the detector mass in MINOS is in the form of steel. This means

that in most neutrino interactions, the hadrons produced have to escape from

an iron nucleus, with a significant chance of re-interaction, before they can be

seen in the detector. This re-scattering process is simulated by a semi-classical

intranuclear cascade model, intranuke [149].

There are four processes by which a hadronic particle may re-interact:

• Elastic scattering – The particle is deflected by in an interaction, but retains

its identity.

• Inelastic scattering – The particle is scattered, losing energy but retaining

its identity.

• Charge exchange – The hadron is transformed from charged to neutral or

vice versa during an inelastic scattering process.

• Absorption – The hadron does not escape the nucleus, transferring its energy

to the constituent nucleons.

Initially the particles from the hadronization process are in the form of quarks,

not yet bound into hadrons, which travel relatively freely through the nucleus.

This phenomenon is implemented in intranuke by allowing particles to travel

freely for a “formation time” τ = 0.342 fm/c before becoming candidates for in-

teraction.
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The probability for a particle, travelling along a trajectory s, through nuclear

matter of density ρ(r), with total interaction cross-section σ(E) to interact is given

by:

P = 1− exp

(

−
∫

s

ρ(r)σ(E)

∣

∣

∣

∣

d~r

ds

∣

∣

∣

∣

ds

)

. (5.6)

This is approximated as a sequence of ∆s = 0.1 fm steps:

P ≈ 1− exp

(

−σ
∑

i

ρ(ri)∆s

)

. (5.7)

Once an interaction is deemed to have occurred, the exact nature is determined

from energy-dependent branching ratios to the various “fates”. Additional par-

ticles are created as required by the form of the interaction. These secondary

particles are not themselves subject to reinteraction in the nucleus, since the cross-

sections used were determined from data on π + 56Fe and p + 56Fe collisions, so

these additional interactions have already been taken into account.

5.6.3 intranuke reweighting

Sufficient information is contained in the Monte Carlo output events to enable the

effect of varying intranuke parameters to be studied using a reweighting scheme

[150]. The identity and reinteraction type, if any, of all the initial hadronization

products is stored. The probability for an event to have been simulated as it was

is the product of the probabilities of all the initial hadrons to have reinteracted as

they did, a function of the cross-sections and branching ratios. This probability can

be calculated from the Monte Carlo record, as can the probability with differing

constants. To imitate the effect that a change in intranuke parameters would

have, each simulated event is reweighted by the ratio of these two probabilities.

When adjusting the branching ratio to one fate, the branching ratios to the other

fates are automatically adjusted to maintain the unitarity condition that the sum
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of the probabilities of all fates is unity.

The formation time variable causes a unique problem for the reweighting

scheme. Above a certain energy, 2.8GeV for a pion with the default parameters,

the free step is sufficiently long that it will always take the particle clear of the

nucleus, leaving no chance for reinteraction. Attempting to simulate a decreased

formation time via reweighting, some of these particles should now have a chance

to reinteract. However, since no such reinteracting events have been simulated,

there are no suitable events available to reweight. When this occurs, the weight

is left set to 1.

5.6.4 Special Monte Carlo samples

Other possible systematic effects, either in the initial hadronization, or model

uncertainties in rescattering which are not expressible as simple changes of pa-

rameters, cannot be studied via a reweighting scheme. To evaluate these effects,

as well as two of the largest intranuke effects, special Monte Carlo samples

were generated and reconstructed. In all, thirteen such samples were generated,

some representing a discrete model change, others, in pairs, reflecting ±1σ shifts

in model input parameters. The samples were generated simulating the near de-

tector, with the Run III beam flux (this being the configuration that the largest

quantity of data was taken in). To save generation and reconstruction time, only

events with their vertex in the fiducial volume were generated, and overlaying was

not performed, so each “spill” consists of a single event. An additional, unshifted,

nominal sample was produced under the same conditions for comparison. After

application of the charged-current selection, the nominal sample consisted of about

217,000 events.
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5.6.5 Nuclear modelling systematics considered

The full set of hadronization, and intranuclear rescattering systematics considered

are listed below, grouped according to the technique by which their contribution

was evaluated.

Evaluated from special Monte Carlo samples:

• Pion/nucleon absorption – The probability for absorption of pions and nucle-

ons is adjusted within the bounds allowed by external data (±30% and±20%

respectively) [151]. A correlated shift in these values is implemented as ±1σ

special MC samples, and independent shifts are available as intranuke

weights.

• Baryon xF selection – Based on the scenario of a neutrino striking a con-

stituent quark of a nucleon, the final state baryon is most likely to form from

the remaining two quarks, i.e. in the opposite direction to the momentum

transfer, the backwards hemisphere. This leaves the pions to be formed in

the forward hemisphere and thus to have higher energies when boosting back

to the lab frame. The baryon xF distribution has been measured in bubble

chamber data, confirming this effect, and the AGKY model draws from this

distribution [148]. The model change in this sample is, conservatively, to

undo this behaviour and simply generate the hadron momenta as a phase

space decay in the centre of mass [144].

• Formation zone – The 0.342 fm/c formation time described above is based

on measurements in the SCAT bubble chamber [152]. For these samples the

formation time was adjusted by ±50% (τ = 0.171, 0.513 fm/c), reflecting

the uncertainty on this measurement. The effects of formation time uncer-

tainty can also be studied via the intranuke reweighting procedure, but

as described above, this is expected to suffer from some problems.
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An improved formation zone model, in which interactions of newly created

particles turn on gradually, instead of with a step function as at present,

is currently under development [153]. When available, simulations using

this model should, at the least, be incorporated as an additional systematic

sample. Previous work [143] has shown the effect of this modification to be

similar in magnitude to the adjustment of τ described above.

• intranuke assumptions: absorption – intranuke simulates the pion ab-

sorption process according to the Ransome model. The energy of the ab-

sorbed pion is most often distributed between 3 or 4 nucleons [154]. As a

conservative estimate, this sample doubles this number of nucleons.

• intranuke assumptions: de Broglie ring – At low pion energies, the quan-

tum mechanical nature of the interactions becomes more significant as the

de Broglie wavelength λ = h/p increases. This is taken into account in an

empirical manner, increasing the reinteraction probability by artificially in-

creasing the size of the nucleus. This adjustment was tuned by matching

the output to data on the total cross-section of pion-iron scattering, and

cross-checked for consistency with neutrino data [155]. By default the best

fit of a 0.5λ increase is used [156]. For these samples the constant of propor-

tionality is varied by the larger ±0.6 uncertainty obtained from the neutrino

data. To get good agreement with this data, it was also necessary to modify

the pion absorption cross-section by +0.5σ. This change is also included in

both samples.

• Charged/neutral particle correlations – The AGKYmodel first selects the to-

tal multiplicity and then divides this between charged and neutral particles.

Measurements show that the charged and neutral multiplicities are in fact

independent. This sample uses an updated model where the multiplicities

are chosen independently [144].
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• π0 probability – The relative probability for AGKY to produce a π0 pair

instead of π+π− is 0.30. For these samples the probability is varied by

±30% to 0.21 or 0.39 [144].

• Two-body decays – All decays to two-body hadronic final states, both in

the AGKY model and in the simulation of resonant interactions, are made

isotropically in the centre of mass. These samples consist of two extreme

(unphysical) modifications. In one sample, the particles are produced per-

pendicular to the direction of momentum transfer, in the other they are

produced parallel [144].

Evaluated by intranuke reweighting:

The 1σ errors quoted on the intranuke parameters are tabulated in [143]. A

detailed description of the construction and evolution of the model is given in

[149].

• Pion charge exchange – The branching ratio for charge exchange is varied

by ±50%.

• Pion elastic scattering – The branching ratio for elastic scattering is varied

by ±10%.

• Pion inelastic scattering – Similarly, the inelastic scattering branching ratio

is varied by ±40%.

• Pion secondary pion production – The fraction of pion interactions creating

a second pion is scaled by ±20%.

• Nucleon secondary pion production – Likewise, the fraction of nucleon in-

teractions that create a pion is scaled by ±20%.



5.6 Evaluation of the systematic error 126

 (GeV)trueShower E
0 2 4 6 8 10

tr
ue

/E
kN

N
S

ho
w

er
 E

0

0.5

1

1.5

2

1

10

210

310

410

Figure 5.14: Example distribution of EkNN/Etrue for a systematically shifted Monte
Carlo sample. The black marker in each bin indicates the mean.

• Pion cross-section – The total pion interaction cross-section is adjusted by

±10%.

• Nucleon cross-section – Similarly, the total nucleon interaction cross-section

is adjusted by ±15%.

5.6.6 Evaluation of individual error contributions

The evaluation of the systematic error introduced by each model uncertainty be-

gins by selecting events from the shifted Monte Carlo which pass the charged-

current selection. For these events, an EkNN/Etrue vs. Etrue histogram is con-

structed, as for the construction of the energy corrections (Section 5.5 and Figure

5.9). The statistics in these samples are significantly lower than the full Monte

Carlo, so a coarser 500MeV binning is used. An example distribution is shown in

Figure 5.14. The mean is evaluated in each true energy bin, including the uncer-
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tainty σ/
√
N . The same procedure is applied to the nominal sample, and the ratio

of the means is taken, to leave the bias introduced by the systematic shift, with

any component due to the special generation circumstances of the Monte Carlo

removed.

For systematic components evaluated by intranuke reweighting, the equiva-

lent procedure is followed for the full Monte Carlo sample, with one weight factor

applied to each event, divided by the case with no weights applied. The uncer-

tainty on the errors evaluated for these systematics is much lower, due to the higher

statistics of the full Monte Carlo sample. Additionally, the two distributions being

divided are correlated, so the statistical uncertainties are overestimated.

Figure 5.15 shows the shifts resulting from all of the uncertainties described in

Section 5.6.5. In some cases, the systematic consists of a parameter adjusted by

±1σ in which case an approximately symmetric error band is expected. In other

cases, a discrete model change results in a one-sided error.

An alternative, arguably more correct, approach to evaluating the effect of the

intranuke weights is to pick all the parameters simultaneously from Gaussian

distributions and use the average spread from a large sample of such variations.

This approach was found to give very similar results for the overall intranuke-

induced systematic. The treatment with discrete ±1σ components was adopted,

since it separates out the contribution from each component, and for consistency

with the treatment of the special Monte Carlo samples.
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Figure 5.15: Systematic shifts induced by the 15 items listed in Section 5.6.5 as a function of true shower energy, including
uncertainty on the estimate. In cases with a ±1σ parameter change, the two cases are shown by red and blue points. In cases
with a discrete model change, the shift is shown by black points. Note that the “2-body decays” case actually consists of two
independent model changes, to perpendicular or parallel decays.
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5.6.7 Crosschecks

The consistency of the shifted Monte Carlo and intranuke reweighting estimates

can be checked, since two of the Monte Carlo samples correspond to equivalent

intranuke weights. One sample implements a shift of both the pion and nu-

cleon absorption cross-sections. These are implemented as independent weighting

factors. The top plot of Figure 5.16 shows a comparison of these two approaches,

where the two intranuke results have been linearly summed to represent a corre-

lated shift. Agreement between the two estimates is reasonable. The bottom plot

shows the equivalent comparison for the formation time estimates. Agreement

between the two methods here is very good. There is some evidence of the prob-

lems applying a reweighting scheme for the negative shift at higher energies, as

described in Section 5.6.3. In both cases, the estimate from the dedicated Monte

Carlo samples is taken for use in the determination of the total error.

5.6.8 Calibration and single particle response

The response of the MINOS detectors to the passage of single particles (protons,

pions and muons) was determined from exposure of CalDet to test beams at CERN

[157]. The systematic error associated with such energy measurements comes from

uncertainty in the Monte Carlo modelling of the energy deposit of these particles,

and from uncertainty in the absolute calibration of the detector channels. This

error is quoted in two components: “absolute calibration” is the full systematic

error of the measurement, taken to be fully correlated between the two detectors;

“relative calibration” is the additional uncorrelated component due to differences

between the two detectors, in practice this is implemented as a shift applied in the

far detector, but not the near. Based on the largest data/MC discrepancies seen

at CalDet, these values are taken as 5.7% and 2.1% in the MINOS analyses [158].

To determine the effect of these uncertainties on the kNN shower energy es-
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Figure 5.17: Effect of shifting the calorimetric input variables of the kNN by
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estimator is shown by the dashed lines, for comparison.

timate, it is necessary to create Monte Carlo samples that reflect such a shift in

calibration. Two of the kNN variables are directly affected: the energy in the

first two showers, and within 1m of the vertex. The third variable, length of the

primary shower, is unaffected by the scale of the detector response. The samples

are generated simply by taking the nominal Monte Carlo and scaling these two

variables by the appropriate amount. These samples are then processed through

the standard kNN procedure, using the usual unshifted training file. The same

procedure is then followed as for the hadronization and rescattering uncertainties.

Figure 5.17 shows the effect of ±2.1% and ±5.7% shifts on the kNN output. The

uncertainty on the shape is very low, since the Monte Carlo sample is large and

the shifted and nominal events are strongly correlated. For the purposes of com-

bination later, the uncertainty is taken as zero. The effect is nearly symmetric

for ±1σ shifts, as might be expected. At high shower energies, where the kNN
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behaves similarly to the calorimetric estimator, the full error in the calorimetric

components is reflected in the results. At lower energies, where the kNN relies

more heavily on the number of planes, it is seen to be affected to a somewhat

lesser extent by calibration errors.

5.6.9 Gain calibration

Whilst the effects of an overall calibration scale are dealt with in the previous

section, there is another point in the calibration chain which can affect the final

energy scale. This is the question of the PMT gains: how much charge corresponds

to a certain number of photons. In MINOS this is measured by the light-injection

procedure. For each strip, LEDs frequently (O(0.1Hz)) inject a constant amount

of light, and the resultant charge is measured. The uncertainty on this procedure

is estimated to be around 5% [159].

Whilst the direct (linear) effect of poorly known gains is corrected out by the

rest of the calibration procedure, various threshold effects remain. Most obviously,

the two photo-electron cut made at reconstruction time. If the measured gains are

too low, the Monte Carlo will incorrectly throw some hits away as they fail to pass

threshold. Likewise, high gains will cause some hits to be recorded that would not

have been in reality. The kNN estimator is likely more sensitive to these effects

than the calorimetric estimator. For example, a difference of a single hit could

cause the length of the shower to change, or a small secondary shower not to be

reconstructed.

The impact of the gains uncertainty was investigated by taking a Monte Carlo

sample (Run III, far detector) and passing it through the full reconstruction8 with

gains set either 5% high or low. The standard procedure is then followed to arrive

at the systematic error estimate. Figure 5.18 shows the result. By construction,

8The output of the Monte Carlo is a series of energy deposits. It is actually the first step of
the “reconstruction” that converts these to light levels and then to charges.
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Figure 5.18: The effect of a ±5% shift in the PMT gains in Monte Carlo on kNN
energy (left) and calorimetric energy (right).

altering the gain factor in the Monte Carlo does not alter ADC/energy. But

with higher gains, the same amount of deposited energy must correspond to less

simulated light and a greater chance of the hit failing some threshold. For this

reason, the energy estimates for high gains are systematically low, and vice versa.

The same effect, calculated for calorimetric energy, is shown for comparison. The

impact on the kNN estimator is indeed significantly larger, but not unreasonably

so.

5.6.10 Intensity effects

It is conceivable that the kNN estimator might be vulnerable to effects of the beam

intensity in the near detector. For example, that activity associated with another

event from the same beam spill, the number of which increases with intensity, may

be included in the estimate, leading to an intensity-dependent energy bias.

The varying beam intensity is taken into account in the Monte Carlo, as de-

scribed in Section 3.4. Figure 5.19 shows the shift in EkNN/Etrue for the lowest

and highest intensity Monte Carlo samples. Because the intensity of the NuMI

beam has generally increased with time, the largest available samples are drawn

from Run I (1.24 × 1013 POT/spill) and Run III (3.24 × 1013 POT/spill). The

“nominal” dataset used as the basis for comparison is the full Monte Carlo sample
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Figure 5.19: Shift of kNN energy with low intensity MC (red) and high intensity
MC (blue) relative to the full MC dataset.

over all run periods and intensity conditions. There is evidence of a small (< 1%)

effect, but this is in any case an overestimate, approximately corresponding to a

case where beam intensity variations are not simulated at all in Monte Carlo. The

calorimetric shower energy displays similar behaviour.

Figure 5.20 shows the distribution of EkNN as a function of beam spill inten-

sity in near detector data. There is no visible evidence that the mean energy

varies in any way as a function of intensity. Similarly, there is no visible intensity

dependence in the Monte Carlo. There is some evidence that the energies are sys-

tematically higher in Monte Carlo, but at a level that can be comfortably covered

by the uncertainties described in previous sections.

On this evidence, intensity effects are not considered in the construction of the

overall kNN systematic error.
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Figure 5.20: Left: distribution of EkNN in near detector data as a function of beam
intensity. Right: the mean value of EkNN as a function of beam intensity in data,
and at the discrete points simulated in Monte Carlo.

5.6.11 Combination and overall systematic

To calculate the overall error on the absolute kNN shower energy scale, the effects

from all the sources considered above are combined. Systematics that were evalu-

ated as ±1σ shifts are converted to a symmetric, or one-sided, error by averaging

the two cases:

S±1σ(Etrue) =
1

2
(|S+1σ(Etrue)|+ |S−1σ(Etrue)|) . (5.8)

This procedure is also followed for the “two-body decays” systematic – averaging

the effect from the two different dramatic models changes made.

As mentioned in Section 5.6.5, an additional component representing a change

to the implementation of the formation time ought to be included. This component

is expected to be of similar magnitude to, but uncorrelated with, the already

evaluated formation time systematic. For that reason, this effect is scaled by a

factor of
√
2, to represent both effects, before the combination is performed:

Sform(Etrue) 7→
√
2Sform(Etrue) . (5.9)

The full systematic estimate is then the sum in quadrature of all the AGKY and
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Figure 5.21: Total estimated error on the kNN shower energy estimator from
all sources (black points). Also shown, for comparison, is the parameterization
previously used for the error on the calorimetric estimator (red curve).

intranuke systematics, and the calibration and gain errors:

Stot(Etrue) =

√

√

√

√

(

had
∑

i

S2
i (Etrue)

)

+ S2
cal(Etrue) + S2

gain(Etrue) . (5.10)

The uncertainties on the error evaluations are propagated correctly through this

combination.

Figure 5.21 shows the resulting systematic estimate as a function of true shower

energy. For previous analyses, the error on the calorimetric energy, evaluated in

a similar manner, was parameterized with a simple functional form for use in the

oscillation fit [160]:

σabs = 6.6% + 3.5%× eEshw/1.44GeV . (5.11)
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Figure 5.22: Total estimated error on the calorimetric shower energy estimator
from all sources (black points), for comparison with Figure 5.21.

This curve is also shown in Figure 5.21 for comparison. The evaluated kNN

systematic error does not exceed this level at any energy. The majority of the

improvement at low energy is due to the shape of the calibration systematic, as

compared to the flat 5.7% used for the calorimetric error.

To cross-check the systematic evaluation procedure, the evaluation of the var-

ious components was repeated for the calorimetric estimator, using a flat 5.7%

absolute calibration error. Figure 5.22 shows the calorimetric error evaluated this

way, again with the previous parameterization for comparison. The agreement is

very good, validating the procedure against previous estimates.

Due to time constraints, the error on the shower energy used in the oscillation

fit was taken as the old parameterization, Equation (5.11). This is something of

an overestimate. In future, a new parameterization specific to the kNN energy

could be used (for example, something like a flat 7%).
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5.6.12 An alternative error estimate

An alternative route to estimating the systematic on the kNN energy, used as a

cross-check, is to take a top-down approach, based on observed data/MC discrep-

ancies, in contrast to the main bottom-up, first principles, evaluation presented

above.

The idea is to start from the observed disagreements between near detector

data and Monte Carlo in the kNN input variables. The Monte Carlo should then

be adjusted so that it matches what is observed in data, regardless of the source of

the discrepancies. Passing this modified Monte Carlo through the unmodified kNN

will yield a shifted EkNN/Etrue distribution, which can act as an error estimate.

The most obvious way to modify the distribution of a single variable to match

what is observed in data is via a reweighting scheme. There is a unique choice

of weights to apply to individual events such that the overall distributions match.

Specifically, ordering the data and Monte Carlo events by their value for the

variable, and forming cumulative distributions, each Monte Carlo event in turn

should have its weight adjusted so that the cumulative distribution at that point

matches. Unfortunately, when more than one (in this case three) variables need

to be made to match, there is no consistent set of weights which will completely

achieve this goal.

A better approach is to modify the values of the variables themselves in the

Monte Carlo events, leaving the weights unaltered. The advantage is that this

can be done independently for all three variables and achieve agreement in all of

them simultaneously. Figure 5.23 illustrates the two methods of adjusting events

to make a cumulative distribution match. If there were an equal number of data

and Monte Carlo events (and no beam reweighting), the algorithm would simply

be to sort all the events by the value of one variable, and copy the data values

into the Monte Carlo event in corresponding place in sequence, and then repeat



5.7 Conclusion 139

Input variable
0 2 4 6 8 10

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

0

0.2

0.4

0.6

0.8

1
Monte Carlo

Data

Figure 5.23: Cartoon of two methods to distort one distribution into another. The
black and red curves represent (normalized) cumulative distributions in data and
Monte Carlo respectively. In the left half, the blue arrows represent the approach
of applying a weight to individual events to make the Monte Carlo match the
data. In the right half, the arrows represent modifying the value of the variable
in individual Monte Carlo events to achieve agreement.

for the other two variables. In practice, the weighted average from the two data

events with the closest cumulative weight is used.

Figure 5.24 shows the resultant shift in EkNN from this method, compared

with the conventional estimate from Section 5.6.11. The statistical error on this

estimate is small, due to the large Monte Carlo sample and correlation between

the shifted and unshifted events, and the resulting curve is smooth. The devia-

tion expected in the kNN energy estimate, as determined by this method, is well

covered at all energies by the error band estimated previously.
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Figure 5.24: The shift to the EkNN distribution when Monte Carlo events are
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are the conventionally estimated error (Figure 5.21) for comparison.

5.7 Conclusion

The kNN energy estimator presented in this chapter achieves substantially im-

proved shower energy reconstruction over the previous calorimetric estimator.

This leads directly to an improvement in the MINOS oscillation sensitivity, approx-

imately equivalent to the sensitivity gain that would be made with an additional

1020 POT of data.

Various sources of systematic error have been considered, and crosschecked.

The final estimate of the systematic error on the shower energy scale is slightly

smaller than the error on the calorimetric estimator. This error, while still among

those with the largest impact, is acceptable for the oscillation analysis.

When combined with other analysis improvements made since the previous

(2008) analysis, the overall sensitivity improvement is substantial. Figure 5.25
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tivity when using the kNN shower energy. The green and blue curves show the
cumulative improvement towards the final sensitivity obtained by additionally di-
viding events by bins of resolution, and by including the rock and antifiducial
event sample.

shows the cumulative effect on the sensitivity of the analysis as successive im-

provements are added.



Chapter 6

Results of the MINOS νµ and ν̄µ

disappearance analyses

This chapter presents, in Section 6.1, the results of the charged-current νµ-dis-

appearance analysis described by earlier chapters of this thesis. Section 6.2 then

presents the results of the similar analysis performed on data from the subsequent

period of antineutrino-mode running. Finally, Section 6.3 briefly discusses the

significance and interpretation of these results.

6.1 νµ disappearance

This section presents the results of the analysis described in Chapter 4.

Applying the charged-current selection of Section 4.3, and tuning the beam

Monte Carlo as described in Section 4.2, near detector data and Monte Carlo

spectra are obtained, as shown in Figure 6.1. The data and Monte Carlo spectra

are in good agreement, for both positively and negatively charged tracks. The

distribution of the ν̄µ background illustrates the decision to include events with

positive charge reconstruction in the analyzed data sample. Their statistical con-

tribution is non-negligible and, in the most significant sub-5GeV region, about

142
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Figure 6.1: The energy spectrum of charged-current selected near detector events,
summed over the three low energy run periods. The solid points show the ob-
served spectrum of events with negatively charged tracks. The black line shows
the (tuned) Monte Carlo expectation, with 1σ error band. The open points, and
associated line show the data and expectation for events with positively charged
tracks. The shaded region indicates the component of the positively-charged spec-
trum expected to be due to ν̄µ interactions.

half of this sample is composed of mis-identified νµ events. Including events of

both charge-signs in the analysis also helps to mitigate any systematic effect in

the charge-sign determination.

The remaining data/MC discrepancies contribute, via the beam matrix tech-

nique described in Section 4.4, to the far detector prediction. They also modify

the prediction for the rock and antifiducial sample, as described in Section 4.6.

The analysis was carried out in a “blind” fashion. That is, to prevent uninten-

tional bias, the selection criteria, extrapolation technique, fitting procedure and

so forth were decided on and finalized before inspecting the far detector data.

Figure 6.2 shows the spectrum obtained when the far detector data was un-
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Figure 6.2: The spectrum of charged-current selected events in the far detector
(top panel). All runs, resolution bins, and reconstructed charges are summed. The
dashed line shows the predicted far detector spectrum in the absence of neutrino
oscillations. The points are the observed data spectrum, and the solid line shows
the prediction at the best-fit oscillation parameters. The shaded area indicates
the neutral-current component expected from Monte Carlo. The bottom panel
shows the ratio of the data to the unoscillated prediction (points). The estimated
neutral-current background is subtracted from both spectra before the ratio is
formed. Also shown are the ratio of the best oscillation fit to the unoscillated
case (solid line), and the best fits assuming pure neutrino decay or decoherence
scenarios (grey and dashed lines respectively). The x-axis is non-uniform above
10GeV in order to compactly display the content of the high-energy tail.
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to the unoscillated (red) and best-fit (blue) predictions for each resolution bin.
The spectrum of events in the best resolution quantile is shown first, in the top-
left panel, followed by the lower resolution bins, and ending with the spectrum of
events having positive reconstructed charge.

blinded, compared to the prediction in the case of no oscillations. In all, 1986

events were observed, against an unoscillated prediction of 2451. This numeri-

cal deficit alone provides overwhelming evidence of νµ disappearance. Figure 6.3

breaks the same data down by resolution bin.

Figure 6.4 shows the spectrum of visible muon energy for observed far detector

rock and antifiducial events, again compared to the unoscillated prediction. In

this sample, a total of 2017 events were obtained, compared to an unoscillated

prediction of 2206.

The event deficits are concentrated at low energies, as expected for neutrino

oscillations driven by the atmospheric mass splitting. Figure 6.2 shows the ratio

of events observed to the unoscillated prediction as a function of reconstructed

energy. The data displays a convincing oscillation dip form, with some evidence
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Figure 6.4: The spectrum of selected far detector rock and antifiducial events. All
runs and detector regions are summed. The dashed line shows the far detector
prediction in the absence of oscillations. The points show the observed data, and
the solid line the prediction at the best-fit oscillation parameters. The neutral-
current background prediction is shown by the shaded region. Above 10GeV the
scale is compressed, in order to focus on the oscillation region.

of a subsequent rise in the lowest two bins.

While Figures 6.2 and 6.4 show the overall fiducial and RAF spectra for sim-

plicity, the actual oscillation analysis divides the events into separate spectra by

run, and by estimated energy resolution in the case of fiducial events (see Section

4.5), or by detector region for RAF events (see Section 4.6).

Performing a maximum-likelihood fit to the model of two-flavour νµ ↔ ντ os-

cillations, and taking into account the largest systematics as nuisance parameters,

as described in Section 4.7, the best-fit oscillation parameters are found to be:

|∆m2| = 2.32+0.12
−0.08 × 10−3eV2 (6.1)

sin2 2θ > 0.90 (90% C.L.) . (6.2)
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The best-fit value of sin2 2θ is at maximal mixing1. Expressing the result as a

measurement, instead of a limit, gives sin2 2θ = 1.00−0.06. The quoted errors

include both the statistical and systematic contributions. None of the systematic

parameters had a best-fit value outside of its 1σ range. Figures 6.2 and 6.4 include

the Monte Carlo prediction with oscillations applied at these best-fit parameters.

This oscillated prediction is seen to agree well with the observed data.

Also shown in the ratio plot of Figure 6.2, are the best fits to the pure-decay

and pure-decoherence models described in Section 2.4.5. It is clear that these

models have difficulty reproducing the shape of the deficit at low energies, having

bad agreement with the data in this region. Comparing the χ2 of these fits with the

best oscillation fit, these models are disfavoured at 7σ and 9σ respectively. Work

is underway to fit the mixed models of Section 2.4.5, in which a small admixture

of these effects coexists with standard oscillations [161].

Scanning over the oscillation parameter space, and forming the ∆χ2 to the best-

fit point, gives the two-dimensional allowed region shown in Figure 6.5. The results

of the previous MINOS analysis [69], and of two alternative Super-Kamiokande

analyses [54, 55], are shown for comparison. This result is consistent with the

earlier measurements, and achieves significantly tighter limits on ∆m2. The Super-

Kamiokande results retain an advantage in their measurement of sin2 2θ.

These results have been published by the collaboration in [162].

6.2 ν̄µ disappearance

After taking data for the νµ analysis in Runs I-III, MINOS then took 1.71× 1020

POT in the “reversed horn current” (RHC) configuration. In this mode, the

current in the magnetic horns is reversed, leading them to focus negative pions

and yielding an antineutrino-enriched beam.

1In fact, if the fit is not constrained to the physical region, the best-fit value for sin2 2θ is
very slightly in the unphysical region, at 1.001.
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Figure 6.5: Best fit oscillation parameters for the νµ charged-current analysis,
along with 68% (dashed black) and 90% (solid black) confidence contours. Also
shown, for comparison, are the 90% contours from the previous MINOS results
(grey), and from Super-Kamiokande’s zenith angle [54] and L/E [55] analyses
(dashed and dotted lines respectively).

The decision to run in this mode, instead of collecting further neutrino-mode

data, which would benefit the νµ-disappearance and νe-appearance analyses, was

in part motivated by the results of an analysis of the antineutrino component

of the usual forward horn current beam [128, 163]. The analysis was heavily

statistically limited, due to the low proportion of antineutrino “contamination”

in the usual beam mode. Nevertheless, a clear deficit was observed: 42 events

against an unoscillated expectation of 65. This in itself is unsurprising, what
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was a surprise was that this is also a deficit compared to a prediction based on

the best-fit FHC neutrino-oscillation parameters (58 expected events). Detailed

investigations found no flaws in the analysis. Interpreting this deficit in terms of

neutrino oscillations, the best-fit point is at a much higher mass-splitting than

the neutrino result, and at sub-maximal mixing. The poor statistics meant that

the significance of this discrepancy was not particularly high. The decision was

therefore taken that Run IV should be in the RHC configuration, where the data

would have a large impact on this measurement, compared with the incremental

improvement further neutrino data would make.

In most respects, the antineutrino analysis was carried out in a very similar

fashion to the analysis described in Chapter 4. Due to the relative cross-sections,

both at production and detection, the neutrino contamination in the antineutrino

beam is much larger than the antineutrino contamination of the neutrino beam.

Since the analysis is also designed to investigate possible differences between neu-

trinos and antineutrinos, a charge-sign selection q/p > 0 is applied. Because of

time constraints, and the degree to which the measurement is statistically limited,

the resolution binning of Section 4.5, the rock and antifiducial sample of Section

4.6, and the kNN shower energy estimator of Chapter 5, were not used in the

analysis. For future analyses, it is intended to include the kNN energy.

Figure 6.6 shows the near detector energy spectra for both positively and neg-

atively charged events. As with the νµ analysis, there is good data/MC agreement

in both samples. The remaining disagreement in the positively-charged sample is

used to adjust the far detector prediction, via the usual beam matrix method. As

with the νµ analysis, this analysis was performed in a blinded fashion, with all

aspects finalized before the far detector data was revealed.

Figure 6.7 shows the unoscillated far detector prediction, along with the ob-

served far detector data. As expected, there is a deficit: 155 events were expected,

and 97 observed. Taking the ratio of observed to expected (Figure 6.8) reveals the
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Figure 6.6: Near detector energy spectra from Run IV. The solid and open points
represent the observed spectra of events with positively and negatively charged
tracks respectively. The associated lines show the tuned Monte Carlo expectation
for each case, including a 1σ error band.

usual oscillation dip structure.

This deficit is however, somewhat larger than would be expected from the

best-fit neutrino oscillation parameters (Equations (6.1) and (6.2)). Using these

values, the expected number of events is 111.

Performing a binned log-likelihood fit to the energy spectrum, the best fit
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Figure 6.7: The spectrum of selected far detector events from the Run IV an-
tineutrino analysis. The dashed black line shows the unoscillated prediction. The
points show the observed data, and the best oscillation fit is shown by the solid
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neutrino-induced charged-current events. The grey dashed line shows the predic-
tion assuming the best-fit oscillation parameters from the neutrino analysis.

antineutrino oscillation parameters are:

|∆m̄2| =
(

3.36+0.46
−0.40(stat.)± 0.06(syst.)

)

× 10−3eV2 (6.3)

sin2 2θ̄ = 0.86+0.11
−0.12(stat.)± 0.01(syst.) . (6.4)

The Monte Carlo predictions based on these best-fit parameters are shown in

Figures 6.7 and 6.8 by the solid black lines. These oscillation parameters provide

a good fit to the observed shape of the deficit. These values differ significantly

from those measured in the neutrino-mode running. The far detector prediction
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with those parameters is also shown for comparison.

In order to investigate the performance of, and any possible bias in, charge

reconstruction in MINOS, the near detector has been operated, at various times,

with the magnetic field reversed from the usual direction. During Run III, the

field was reversed for multiple periods of around two weeks each, totalling 1.00×

1020 POT of beam exposure. This configuration, focusing positive muons whilst

defocusing negative muons, is known as “FHC+”, in contrast to the usual FHC−.

Similarly, during Run VII, a 13 day period (1.09×1019POT) of antineutrino data

was taken in the reversed-field (RHC−) configuration. The amount of data that
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Figure 6.9: The near detector charge/momentum ratio for events passing all other
selection cuts. Left: with the magnetic field oriented to focus positively charged
particles. Right: with the field oriented to defocus positive particles. In each case
the Monte Carlo expectation is shown by the red line, and the observed data by
the black points. Data/Monte Carlo agreement is good in both configurations.

could be taken in this configuration was unfortunately limited by MINERνA’s

preference for conventional field direction in MINOS, allowing them to continue

to track muons that exit the back of the MINERνA detector and enter MINOS.

Since the only difference between FHC+/− or RHC+/− is the direction of

the magnetic field, any major difference in data/MC agreement would have to be

due to mismodelling of the effects of detector geometry on charge determination.

Figure 6.9 shows the reconstructed track charge/momentum ratio for the RHC+

and RHC− configurations. The distributions are very similar, and good data/MC

agreement is observed in each case. Figure 6.10 shows the same distribution in

the far detector. Both neutrino and antineutrino samples (q/p < 0 and q/p > 0)

are consistent, within statistical errors, with their expected distributions.

Calculating correct confidence contours for a low-statistics measurement such

as this takes additional care. In the case of a high-statistics data sample, such as

the νµ analysis, the constant ∆χ2 definitions of Table 4.1, which assume the best-

fit point is distributed around the true value in a Gaussian fashion, are sufficient.

In a lower statistics case, where the confidence contour is expected to extend over

a wide range of the parameter space, and the fit to be more heavily constrained
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Figure 6.10: The far detector track charge/momentum ratio for events passing
all other selection cuts. The observed data is shown by the points, the dashed line
represents the prediction in the absence of oscillations, and the solid line shows
the expectation at the best-fit oscillation parameters. The negatively-charged
neutrino events to the left of the plot are almost unaffected by oscillations due to
their higher average energy.

by the physical boundaries, it is necessary to take a more empirical approach to

ensure the correct statistical properties.

The ν̄µ analysis makes use of the Feldman-Cousins technique [164] in the con-

struction of its confidence contours. The desired property is that of correct “cover-

age”. That is, if the experiment were repeated multiple times, the true oscillation

parameters should be enclosed by the 90% contours in 90% of the trials. At each

point in the (sin2 2θ̄,∆m̄2) parameter space, a large number of mock experiments

are created. These consist of Monte Carlo, oscillated with these true parameters,

with Poisson fluctuations applied to emulate the appearance of low-statistics data.
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Each of these samples is then input to the usual maximum-likelihood fit, and the

best-fit point that would have been obtained in each trial is determined. The ∆χ2

between the best-fit and true oscillation parameters provides the contour level

definition that would have been required for the true point to be enclosed by the

contour in this case. The value of this ∆χ2 which would have caused 90% of these

experiments to have covered the true point is then recorded at each point in the

(sin2 2θ̄,∆m̄2) space. In this way, a map of critical ∆χ2 values is built up across

the whole parameter space. When the final fit to the real data is performed, the

∆χ2 as a function of the oscillation parameters is compared to this map. All those

points where the ∆χ2 exceeds the value at the corresponding point in the map

are outside of the final confidence contour, and those that fall below the critical

value at that point are within the contour. This method guarantees the correct

coverage properties, even in the presence of large departures from gaussian be-

haviour. In addition, it provides a simple way to include the effect of systematic

errors, without the need to introduce additional fit parameters as in Section 4.7.

For each fake experiment, in the construction of the critical ∆χ2 map, in addition

to the introduction of Poisson fluctuations, random values of the systematic shifts

are also chosen, with their assumed distributions, and used to adjust the gener-

ated spectra. In this way, the constituent experiments fully reflect the degree of

variation expected in the real data.

Figure 6.11 shows the 68% and 90% confidence contours for the ν̄µ analysis,

determined by this technique. Also shown are the νµ contours from Figure 6.5, and

the results of a global fit for the antineutrino parameters, based on data from other

experiments [165] (which is dominated by the Super-Kamiokande atmospheric

neutrino analysis), for comparison. As in the νµ analysis, this measurement is the

world’s most precise in ∆m̄2, whilst achieving somewhat lower sensitivity in sin2 2θ̄.

This plot gives some indication of the significance of the discrepancy between the

two measurements, neither best-fit point is within the other measurement’s 90%
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Figure 6.11: Best fit oscillation parameters for the antineutrino charged-current
analysis, along with 68% (dashed black) and 90% (solid black) confidence contours.
Also shown for comparison, in grey, are the best fit parameters and contours from
the neutrino analysis (Figure 6.5). The dotted line shows the results of a previous
global fit for the antineutrino parameters (without MINOS data) [165].

confidence contour. The probability of such a discrepancy occurring by chance

has been evaluated to be at the few percent level.

The results of this analysis are also currently being prepared for publication

[166].
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6.3 Discussion

The statistical significance of this observed discrepancy between the oscillations

of neutrinos and antineutrinos is still sufficiently low that there is a substantial

chance the entire effect is simply a statistical fluctuation, which will be resolved

by future data.

However, especially considering the apparent different behaviour of neutrinos

and antineutrinos seen by MiniBooNE (Section 2.9), the possibilities are intrigu-

ing.

As argued in Section 2.4.1, the survival probabilities for neutrinos and antineu-

trinos in vacuum are guaranteed to be identical by CPT symmetry. Any departure

from this identity would be a signal of CPT -violation.

Accepting the discrepancy as a real effect, we may be saved from the intro-

duction of so extreme a hypothesis by the fact that the MINOS experiment does

not take place in a vacuum. The neutrino beam passes through the Earth’s crust,

composed of matter, and interacts in matter detectors. The symmetry between

the two measurements is therefore not complete. Perhaps there is some mechanism

that can generate a neutrino-antineutrino difference in these circumstances?

The phenomenon of matter effects (discussed in Section 2.4.4) provides an

example of such a mechanism. However, the impact of matter effects on a νµ- or

ν̄µ-disappearance experiment over the MINOS baseline is completely negligible.

One possibility that has been proposed and investigated [167, 168], is to intro-

duce a new, non-standard, interaction between neutrinos and matter. This inter-

action serves to enhance or inhibit the conversion between νµ and ντ , and leads

to an apparent adjustment of the underlying oscillation parameters, in a similar

fashion to conventional matter effects. This possibility is also under investigation

within the MINOS collaboration [169], which will allow official fit parameters and

confidence limits to be produced under the assumptions of such a model.



Chapter 7

Summary and outlook

MINOS has now been running for almost six years. The detectors have performed

very reliably over this period, and the power of the NuMI beam has continually

increased. Over 1021 protons-on-target have been delivered since the start of

operations.

With the data accumulated in the first four run periods (to March 2010),

MINOS has made the most precise measurements of the atmospheric mass splitting

for neutrinos ∆m2
atm [162], and for antineutrinos ∆m̄2

atm [166]. The corresponding

measurements of sin2 2θ and sin2 2θ̄ are consistent with the Super-Kamiokande

best-fit to maximal mixing.

Searching for νe appearance in the first three neutrino-mode runs, MINOS

sets limits on θ13 [68], competitive with the previous limits from the CHOOZ

experiment [65].

This thesis focused on the details of the νµ disappearance analysis. Chapter

4 gave an overview of the full analysis: how charged-current events are effectively

selected, and how the energy spectrum observed in the near detector is used in

the construction of the far detector expectation. This chapter also described two

improvements that were new for this analysis: binning events by their estimated

energy resolution, and a new sample of events originating from outside the fiducial

158
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Name Start End FD exposure Comments
Run V Mar 2010 May 2010 4.59× 1019 POT
Run VI May 2010 Jul 2010 6.16× 1019 POT
Run VII Nov 2010 Mar 2011 1.24× 1020 POT Antineutrino beam

Run VIII+ Mar 2011 Mar 2012 ∼3× 1020 POT Until NOνA upgrade

Table 7.1: Unanalyzed and future MINOS run periods. See text for details.

volume.

Chapter 5 described in detail another improvement that was developed for this

round of analysis. This new technique was motivated by the sensitivity improve-

ment potentially available from better energy resolution, particularly of the shower

component of an event. A wide variety of potential estimators based on a kNN

technique were tested, and the one yielding the largest performance improvement

selected. The raw kNN output was corrected to ensure that the final estimator

was unbiased. The final sensitivity improvement achieved was comparable to tak-

ing an additional 1020 POT of neutrino data. Evaluating all potential sources of

systematic error, the final uncertainty on the hadronic energy scale introduced by

this new technique was found to be no larger than with the previous approach,

and the kNN energy was adopted for the analysis.

Chapter 6 presented the results of this analysis. The best-fit point and the

confidence contours are consistent with previous measurements of the atmospheric

oscillation parameters, and provide the most precise measurement of ∆m2 to date.

Exotic explanations of the νµ deficit: neutrino decay and decoherence, were dis-

favoured at high significance. This chapter also presented the results of the similar

analysis performed on the Run IV antineutrino data. This is the only dedicated

analysis to date of antineutrino oscillations over the atmospheric baseline, and

improves on previous world limits for ∆m̄2
atm. The tension between the oscillation

parameters measured from the neutrino and antineutrino data samples was unan-

ticipated. Such a discrepancy cannot be explained under the standard picture of

neutrino oscillations.
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The most direct approach to investigating this puzzle is simply to take more an-

tineutrino data, which MINOS is currently doing with “Run VII” (see Table 7.1).

This run is expected to approximately double the current antineutrino dataset.

If the observed effect is real, inclusion of this data should somewhat increase the

statistical significance. If the current results are merely a statistical fluctuation,

the analysis should show some reversion towards the νµ best-fit. In either case the

evidence is unfortunately unlikely to be conclusive.

Within MINOS, taking antineutrino data in place of neutrino data significantly

hurts the νe analysis, and obviously adds no further contribution to the νµ analysis.

Increasing the ν̄µ statistics, however, has been set as the top priority.

External constraints also impact on the ability of MINOS to take as much an-

tineutrino data as desired. The MINERνA experiment [170] is situated upstream

of the near detector, and is designed to make precision measurements of neutrino

cross-sections, which will be of help in future oscillation experiments. They prior-

itize neutrino-mode running, and are given equal weight by the laboratory. The

current compromise position is that Run VII will end, and NuMI will revert to

neutrino-mode, sometime in May 2011.

The time constraint on all of these decisions is the planned NuMI shutdown,

from March 2012 to February 2013, to upgrade the beam for the NOνA exper-

iment. Once the shutdown ends, although the beam power should be greatly

increased, the beamline will be operated in something similar to the medium en-

ergy configuration, and it will in fact be physically impossible to return to the

low energy configuration. The vast majority of the medium energy beam flux is

outside of the oscillation region of interest to MINOS and MINERνA1. At this

point, it is likely that the MINOS far detector will cease operations.

In addition to the analysis of the ν̄µ data currently being collected, a νe-

1The NOνA far detector is being constructed at an off-axis angle of 0.8◦. At this angle the
beam peak once again falls in the few-GeV oscillation region.
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appearance analysis of the expanded neutrino dataset, incorporating several anal-

ysis improvements, is planned. A unified analysis of the complete MINOS dataset

is also a possibility.

Within the framework of standard neutrino oscillations, there are three param-

eters that remain undetermined. These are: the mixing angle θ13, the CP-violating

phase δ, and the mass hierarchy. Three reactor experiments, searching for θ13 via

νe disappearance, are currently under construction: Double-Chooz [67], Daya Bay

[171], and RENO [172]. The initial goal of the two long-baseline experiments, T2K

[173] and NOνA [174], is to search for θ13 via νe appearance in their νµ beams.

Of these, T2K has recently begun operations, and NOνA is under construction.

If the value of θ13 is large, near the current limit from CHOOZ and MINOS, then

one of these experiments will discover it in the next few years. If the value of

θ13 is small, or even zero, then these experiments will set stringent new limits.

The long-baseline experiments will also make greatly improved measurements of

the atmospheric parameters, for both neutrinos and antineutrinos, confirming or

denying the presence of the effect hinted at by MINOS within about a year of

running [168]. Assuming a sufficiently large value of θ13, NOνA will have some

sensitivity to δ and the hierarchy by comparing the results of neutrino and an-

tineutrino data taking, taking into account the expected matter effects. In the

best case, they can both determine the hierarchy and make a crude measurement

of δ. In the worst case, the two effects cancel and they can merely rule out some

combinations of possibilities.

In the case where θ13 is discovered, but found to be small, or where the signals

from δ and the hierarchy are ambiguous, the proposed LBNE experiment could

investigate further. This experiment would consist of a new neutrino beam from

Fermilab to the Homestake mine in South Dakota. The far detector would be a

100 kt scale water-C̆erenkov or multi-kiloton Liquid Argon detector.

With a robust programme to measure the last remaining pieces of the oscil-
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lation puzzle, a couple of tantalizing anomalies, and the increasing sensitivity of

non-oscillation experiments to the absolute neutrino mass scale, the next decade

in neutrino physics looks set to be as exciting as the previous two have been.
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