
NORTHWESTERN UNIVERSITY

Measurement of the W Boson Mass in Proton-Antiproton Collisions at a

Center of Mass Energy of 1.96 TeV

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Physics and Astronomy

By

Sahal Yacoob

EVANSTON, ILLINOIS

June 2010



2

c© Copyright by Sahal Yacoob 2010

All Rights Reserved



3

ABSTRACT

Measurement of the W Boson Mass in Proton-Antiproton Collisions at a Center of Mass

Energy of 1.96 TeV

Sahal Yacoob

I present the measurement of the mass of the W Boson in the electron channel using

4.4 fb−1 of pp̄ collisions at
√
s = 1.96 TeV recorded by the D0 detector operating at the

Fermilab Tevatron Collider.
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CHAPTER 1

Introduction

The current description of fundamental constituents of matter, and the forces be-

tween them is stated in the language of field theory. Treatments of this description (The

Standard Model, or SM) and the underlying mathematical concepts may be found in ref-

erence [7], a less technical description of elements of the SM which relate to this work are

presented in Chapter 2. Chapter 3 describes the detector, and the environment in which

this measurement was performed. The remaining chapters will focus on the details of the

analysis performed to determine the mass of the W boson.

1.1. The Importance of the W boson Mass Measurement

The SM requires the existence of a Higgs field. Interactions of particles with the Higgs

field are responsible for the non-zero mass of fundamental particles. The heavier a particle

is, the stronger its interaction with the Higgs field will be. A consequence of this is the

existence of a spin zero particle, the Higgs boson, a quantum of the Higgs field. The lack

of direct observation of the Higgs boson is the largest discrepancy between experiment

and the SM; at the same time self-consistency arguments lead one to the conclusion that

the SM is not the true underlying theory of nature. In this context, it should be clear

that direct observation and characterization of the Higgs boson, or the exclusion of the

Higgs boson (as described in the SM) is currently of the highest priority. It is hoped that

we find a discrepancy between the SM and our observations, which will direct us towards
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�
Figure 1.1. Top quark loop correction to the W propagator.

�
Figure 1.2. An example of a Higgs boson loop correction to the W propagator.

a better understanding of nature.

Within the SM the known masses of observed particles depend on their interaction with

the Higgs boson, one can invert this dependence to constrain the Higgs boson mass due

to the measured masses of observed particles. In particular the mass of the Higgs boson

(msm
H ) affects the masses of the Z (mZ), and W (mW ) bosons (due to the radiative

corrections to the propagator shown in figures 1.1 and 1.2); The uncertainty prediction

of msm
H is currently dominated by the uncertainty on mW and to a lesser extent on the

uncertainty of the top quark mass (mt). The current uncertainty on mW needs to be

reduced from 23 MeV to 8 MeV in order to be as strong of a constraint on msm
H as the

uncertainty on mt.

1.1.1. Current Constraints on msm
H

The combination of precision electroweak measurements [1] sets tight constraints on msm
H .

The 95 % confidence limit upper bound is msm
H < 186 GeV. The ∆χ2 plot of this result is

shown as Figure 1.3. The yellow bands in Figure 1.3 show the regions excluded by direct
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August 2009 mLimit = 157 GeV

Figure 1.3. ∆χ2 = χ2 − χmin2 vs. mH using precision Electroweak data [1].

searches at LEP (114 GeV < msm
H ) and the Tevatron [8] (160 GeV to 170 GeV). As shown

in the figure the best-fit value has been ruled out. Figure 1.4 shows the dependence of

the allowed range of msm
H on the uncertainties of mW and mt.

1.1.2. Current Value of mW and Recent Measurements thereof

The current World Average mass of the W boson is mW = 80.399± 0.023GeV [2] and is

dominated by LEP and Tevatron measurements as shown in Figure 1.5. The most recently

published measurement, to which I have contributed, is from the DØ Collaboration with

1 fb−1 of Data [9] and is shown in figure 1.5. This work is an extension of that analysis

to higher precision with a factor of 4 greater statistics, incorporating changes which are
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Figure 1.4. The comparison of the indirect constraints on mW and mt based
on LEP-I/SLD data (dashed contour) and the direct measurements from
the LEP-II/Tevatron experiments (solid contour). In both cases the 68%
CL contours are plotted. Also shown is the SM relationship for the masses
as a function of the Higgs mass in the region favored by theory (< 1000
GeV) and allowed by direct searches (114 GeV to 170 GeV and > 180
GeV) [1].

made necessary due to the higher instantaneous luminosity of the Tevatron as described

in Chapter 3.
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Figure 1.5. Measurements of mW compared to the world average value [2].
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CHAPTER 2

Theoretical Overview

2.1. Standard Model Overview

The Standard Model (SM) description of nature has stubbornly refused to yield un-

der pressure from many experimental tests. The ability to describe these experimental

results within the SM is unfortunately a source of consternation, since the model is not

theoretically sound to all energy scales and as such is not believed to be the true descrip-

tion of the particles and forces of nature. Indeed the SM does not include masses for the

neutrinos, tell us whether their mass hierarchy is ‘normal’ or ‘inverted’, tell us if neutrinos

are Majorana or Dirac particles, or provide a quantum description of gravity. We hope

to be able to discover the underlying theory of nature, which will hopefully describe all

of existence at all scales.

The SM has as its components the fermions (matter particles) shown in table 2.1, which

may be divided into generations (columns of increasing mass), and the bosons responsi-

ble for the forces between these particles. The fermion sector is subdivided into particles

which exhibit a color charge (quarks) or rather ‘feel’ the strong force of Quantum Chromo

Dynamics, and those that do not (leptons). The Z0/γ and W± bosons mediate the elec-

troweak force, and the gluons mediate the strong force. The most glaring failure of the

standard model is that in order to provide masses for the elementary particles in a consis-

tent way the model requires there to be a complex scalar SU(2)L doublet field (the Higgs
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u c t
quarks

d s b

e µ τ
leptons

νe νµ ντ

Table 2.1. Table of fermions.

field) with finite vacuum expectation value which provides masses to particles based on

the strength of their coupling to field. We would expect the photon not to couple to the

Higgs field at all and the top quark to have a significantly larger coupling than a neutrino.

An unintended consequence of this mechanism is that there now must exist an additional

boson, the Higgs boson, the quantum of the Higgs field.

As Shown in Figure 1.3, a fit to high Q2 data (based on indirect effects on masses and

couplings), where Q is the momentum transfer of the inelastic collision, predicts the mass

of the Higgs boson to be 87 GeV with 1 sigma uncertainty of +25 and −36 GeV which

falls in the region already excluded by direct searches at LEP. This discrepancy between

direct and indirect evidence constraining msm
H is the most promising avenue for finally

identifying a failure of the SM which we can then further investigate. It must be said that

it is still possible for a Higgs boson to be detected at a mass that is not very incompatible

with the standard model, but increasing the precision of the measurements contributing

to the indirect constraint on msm
H will reduce the allowed parameter space for this to

occur.
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�
Figure 2.1. Tree LevelW boson/ Z Boson production example at the Teva-
tron showing spectator valence quarks (not involved in the hard scatter)

2.2. W Boson Mass

Within the SM the mass of the W boson may be expressed as:

(2.1) mW =

√
πα

GF

√
2

1

sin2 θw (1− δr)
,

where the term δr is due to radiative corrections to the W boson propagator dominated

by (anti-)top (shown in figure 1.1) and Higgs (shown in figure 1.2) loop corrections, θw is

the Weinberg angle defined by the relative magnitudes of the weak and electromagnetic

couplings in the SM Lagrangian ( renormalized to sin2 θw = 1 − m2
W

m2
Z

), α is the electro-

magnetic coupling constant, mt is the top quark mass and GF is the Fermi Constant. δr

is quadratically proportional to Mtop and logarithmically dependent on msm
H .

2.3. Boson Production at a Hadron Collider

To leading order production of W/Z Bosons at the Tevatron is dominated by the tree

level diagram shown in figure 2.1, where the (anti)proton is represented by its valence

(anti)quark constituents. The cross section (σ) for this interaction is given by:

(2.2) σbw ∝
sΓ2

V /m
2
V

(s−m2
V )2 + s2Γ2

0/m
2
V

,
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Where mV and ΓV are the mass and width of the boson being produced, and (
√
s) is the

centre of mass energy of the hard scatter (Q2 = s) . This simple picture breaks down

at the Tevatron and the (anti)proton needs to be considered as a composite object of

many partons. It is important to note that although the (anti)proton momentum is well

determined, each parton (i) carries only a fraction (xi) of the proton momentum. The

fraction of the total momentum carried by a parton i (xi) when the (anti)proton is probed

at a particular momentum scale is parameterized for 7 flavors of partons (6 quarks and

anti-quarks and the gluons) and determined by combining and fitting data from many

sources. Examples of these parton distribution functions (PDFs) include those provided

by the CTEQ collaboration [10], as well as the ABKM [11]and MSTW [12] sets. The

convolution of the tree level cross section (equation 2.2) with the PDFs gives the full

description of the production cross section at the Tevatron:

(2.3) σ =
∑
ij

∫
dx1dx2fi(x1, Q

2)fj(x2, Q
2)σbw(ij),

where the sum is over the incoming parton flavors and the function fi is the PDF for

parton flavor i.

2.3.1. Boson Transverse Momentum Distribution

Due to momentum conservation it should be clear that within the picture described above,

bosons will be produced with little to no transverse momentum (pT ), and any transverse

momentum will be limited to intrinsic transverse momentum of quark anti-quark centre-

of-mass system in the lab frame. Practically this is again an over-simplification of the

picture, higher order corrections to the tree level diagram in figure 2.1 such as initial state
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gluon radiation provide a mechanism for production of bosons with significant pT . A full

theoretical description of the pT and η dependent differential cross sections for production

of a boson (V ) plus something (X) as a result of the scattering between partons i and j

has been presented by Collins, Soper and Sterman [13], and involves a regularized singular

term (Y ), and a term (W ) involving the integral over 1/pT (b).

(2.4)
dσ(ij → V X)

dQ2dQT
2dy

=
1

(2π)2
δ(Q2−MV

2)

∫
d2b ei

~QT
~bWij(b,Q, x1, x2)+Y (QT , Q, x1, x1),

The function Wij in the integrand may be factorized into a function calculable in per-

turbative QCD (W1) and one involving free parameters which need to be determined by

comparison to data (W2) where the incoming parton flavor is still important in general

but has been dropped for this discussion, and QT is the transverse component of the

momentum transfer vector. In particular the authors of [13]state:

(2.5) W2 = exp

(
−F1(b) ln

Q2

Q2
0

− F2(x1, b)− F3(x2, b)

)
,

Landry, Brock, Nadolsky and Yuan [14] have used a wide range of data to determine the

explicit (BLNY) parameterization of equation 2.5:

(2.6) W2 = exp

[(
−g1 − g2 ln

Q2

Q2
0

− g1g2 ln(100x1x2)

)
b2

]
,

In particular measurements by DØ have shown good agreement with the central Z boson

pT distribution [15]. For this analysis we restrict ourselves to the region pT < 30GeV

where the shape of the measured distribution is most sensitive to g2.
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2.4. Boson Decay

The W and Z bosons can decay into any of the fermions listed in table 2.1 although a

decay with a top quark in the final state is kinematically suppressed due to the high mass

of the top quark (172GeV) with respect to the Z (91.188 GeV) and W (approximately 80

GeV) boson masses. The Z boson will decay into particle anti-particles pairs, while the

W boson will decay into 2 fermions from any given column of table 2.1 (the left handled

doublet states [7])or their anti-particles. Although the dominant decay channel is into

quarks (and thus hadronic jets), the large cross section for jet production at the Tevatron

combined with the comparatively poor jet energy scale resolution means that we will

concern ourselves with the lepton decay channels which comprise about 10% of the total

branching fraction. The W and Z bosons decay equally in the electron, muon and tauon

channels. The τ particle is difficult to detect as it decays before reaching our detector.

Due to the superior energy resolution of our electromagnetic calorimeter in comparison to

the tracking and muon systems this analysis will focus on the electron decay channel. For

the remainder of this work the term electron will be used to refer to both electrons and

positrons and the term neutrino can be assumed to refer to the νe or ν̄e unless otherwise

specified.

In the boson rest frame the lepton products of the decay will be back to back with each

carrying half the energy of the boson. Here we can already note that the energy of the

boson decay products is sensitive to the mass of the boson. The angular distribution of

the lepton decay products with respect to the bisector of the incoming beams in the rest

frame of the boson differs for W and Z boson events. The general form of the angular
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decay distribution for Drell-Yan (Z boson) decay products in this frame is [16]:

(2.7)
dN

dΩ
∝ 1 + cos2θ + (

1

2
− 3

2
cos2 θ)A0 + 2 cos θ sin θ cosφA1 +

1

2
sin2θ cos 2φA2

and for W boson decay products is [17]

(2.8)
dN∓

dΩ
∝ 1± α1 cos θ + α2 cos2 θ

where θ is the angle between the lepton and the inner bisector of the beams, and φ is

measured with respect to the plane defined by the incoming beams. α2 and the Ai go

to zero with the boson transverse momentum, and can be computed perturbatively. The

term N− in equation 2.8 refers to the number of W− particles. For a Z → ee event one is

able to reconstruct the hard scatter by combining the 2 electron four vectors. Since the

neutrino from W boson decay is invisible (does not interact with our detector) we are left

to infer its properties from momentum conservation. Having no information about the

initial longitudinal momentum (along the beam direction) of the W boson we can still

assume that any transverse momentum imbalance is due to momentum carried by the

neutrino.

The electron may radiate photons (final state radiation [FSR]) and this 2nd order process

interferes with the initial state electromagnetic radiation mentioned earlier.

2.5. Kinematic Observables

The rapidity of a particle is defined as:

(2.9) y ≡ 1

2
ln

(
E + Pl
E − Pl

)
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where E is the energy of the particle and Pl is the longitudinal momentum. In the limit

E >> m this may be approximated by the pseudorapidity:

(2.10) η ≡ − ln

(
tan

θ

2

)

where θ is the polar angle defined with respect to the proton beam direction.

When describing detector coordinates in the lab frame it is common to use the term ηdet,

defined as the pseudorapidity of a particle which has been produced at the origin (0,0,0)

in the detector co-ordinate system. In order to avoid confusion η is sometimes referred to

as ηphys. The invariant mass of a particle as a function of its mass-less decay products is:

(2.11) m2 ≡ 2(E(1) · E(2)− ~p(1) · ~p(2))

where E(i) (~p(i)) is the energy (momentum) of particle i. and finally the transverse mass

of a particle is defined in an analogous way:

(2.12) mT
2 ≡ 2(ET (1) · ET (2)− ~pT (1) · ~pT (2))

where ~pT is momentum transverse to the beam axis, and ET is the magnitude of the

transverse momentum vector.
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CHAPTER 3

Experimental Apparatus

3.1. The Tevatron

The Tevatron is a proton(p)-anti-proton(p) synchrotron accelerator located at Fermi

National Accelerator Laboratory with beam energy of 0.98 TeV. The protons and anti-

protons travel in ‘bunches’. There are 36 proton and anti-proton bunches comprising

the beam circulating in opposite directions, and crossing at collision points every 396

ns. The instantaneous luminosity (L) is a measure of the probability for a hard scatter

to take place, for each of the thirty-six possible crossing pairs (Ticks). It is recorded in

inverse barns per second averaged over 60 second intervals. (The integrated luminosity

is measured in inverse barns.) Data from the Tevatron can be separated into 3 distinct

categories, Run I (1992 – 1996) at 0.90 TeV per beam delivered approximately 160 pb−1

per experiment; RunIIa (2002 – 2006) at 0.98 TeV per beam delivered 1.41 fb−1 to DØ;

and RunIIb which began in 2006 at 0.98 TeV per beam which has delivered over 8 fb−1 of

which 4.35 fb−1 collected between the ninth of June 2006 and the thirteenth of June 2009

is used for this analysis. RunIIb is characterized by higher instantaneous luminosities

with regards to RunIIa with the mean increasing by a factor of 3, and is still in progress.

For our data sample (RunIIb) these high instantaneous luminosities, while providing large

data samples, have lead to challenges described in detail later. In brief, there is a large

amount of energy recorded in the detector in any given event which is uncorrelated with
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the boson production we are trying to study, but which we need to describe correctly,

taking into account its effect on the overall detector energy response, and the degradation

of tracking and triggering.

3.2. DØ Detector

3.2.1. Overview

Located at the south-east side of the Tevatron, DØ is a multi-purpose detector, combining

tracking, calorimetry, and muon detectors to study the events created by p-p̄ collisions at

the Tevatron, to test the Standard Model. Unless otherwise specified this description relies

on ref [18]. Figure 3.1 shows an overview of the detector. The sub-detector systems visible

(from the outside moving inwards) are the muon system, calorimeter, pre-shower, fiber

tracker, and silicon tracker. The luminosity monitors are at high |η| and are not shown in

this figure. Between the central fiber tracker and pre-shower is a solenoid providing the

magnetic field used to determine momentum from reconstructed tracks. For RunIIb the

tracking system and calorimeter triggers have been upgraded in comparison to RunIIa.

This analysis depends on the tracking system to help with event selection and background

subtraction, but is most sensitive to the response of the calorimeters. Our ability to

understand and characterize the calorimeter response will determine how precisely we are

able to measure the lepton energy and the missing transverse energy.

3.2.2. Tracking System

The tracking system lies immediately outside the beam pipe and is surrounded by a

solenoidal magnet as shown in figure 3.2. It is comprised of two separate detectors,
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Figure 3.1. the DØ detector

a silicon micro-strip tracker (SMT) and a central fiber tracker (CFT). For RunIIb an

additional layer has been added to the SMT called layer 0 and described in reference [19]

to allow for efficient tracking with the increased beam luminosity.

3.2.2.1. Silicon Tracker. The SMT (disregarding layer 0 for now) consists of six (twelve

cm long) barrel segments parallel to the beam each consisting of 4 layers, and 16 disks

perpendicular to the beam arranged as shown in figures 3.2 and 3.3. The barrel segments

extend to |z| < 37.8 cm and provide a measurement of r – φ with a resolution of 10 µm.

Each barrel segment is terminated at high |z| with an ’F-disk’, a disk of 12 wedges placed

perpendicular to the beam. Six additional F-disk arrangements are placed at higher |z|.
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Figure 3.2. DØ Tracking Subsystem

Larger radius ’H-disks’ comprising 24 wedges each are located at a |z| coordinate of 100.4

and 121.0 cm extending tracking to the far forward region.The disks provide r – z and r

– φ determination.

Inside the original barrel SMT layers, a new ’layer 0’ detector with sensors at a radius

16.1 to 17.2 mm (the layer 1 SMT sensors are at 27.15mm) extends out to |z| = 380 mm.

For tracks with a transverse momentum less than 2 GeV, the addition of layer 0 has

improved our vertex resolution by greater than 20%

3.2.2.2. Fiber Tracker. Outside of the SMT in the central region (|η| < 1.7) additional

tracking is provided by the Central Fiber Tracker (CFT). Comprised of 8 layers between

20 and 52 cm in the radial direction, the CFT contains 76,800 scintillating fibers grouped

into alternating layers along the beam direction or at ±3 deg. The photons emitted by
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Figure 3.3. DØ Silicon Microstrip Tracker

charged particles traversing the detector are collected by high quantum efficiency photo-

detectors. The CFT provides 3D track reconstruction with a resolution of approximately

100 µm.

3.2.3. Solenoid and Pre-shower

The solenoid is a 2 T superconducting magnet placed just outside the CFT. It is 0.9

radiation lengths thick at normal incidence. The pre-shower detector consists of the

central pre-shower (CPS) covering the region |η| <1.3 and the forward pre-shower covering

the region 1.5 |η| < 2.5. The pre-shower was designed to help identify photons and

electrons. Unfortunately the detector electronics were saturated for the RunIIa data-

taking period. Although the electronics have since been replaced this analysis does not

utilize any readout from either of the pre-shower detectors. Reference [20] focuses on the

performance of the pre-shower and fiber tracker detectors for RunIIb.
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3.2.4. Calorimetry System

The DØ calorimetry system consists primarily of 3 sampling calorimeter sub-detectors

with layers of absorber plates sandwiching the active layers of liquid argon. A central

calorimeter covers the range |η| . 1 and two end cap calorimeters(EC) extend coverage

out to |η| . 4 as shown in figure 3.4. Each of the calorimeters is housed within a cryostat

to keep the temperature at approximately 90 K. The first four layers of each calorimeter

are referred to as the electromagnetic calorimeter or EM Cal. Photons and electrons from

the interaction region are expected to lose all of their energy before escaping these layers.

The remaining four (five)layers of the CC(EC) are the hadronic calorimeter and measure

energy deposits due to the nuclear interactions of hadrons. As shown in figure 3.4, the

hadronic calorimeter is further subdivided into fine, and course layers. The absorber plates

in the EM layers are depleted uranium, in the fine hadronic layers they are a uranium-

niobium alloy, and in the course hadronic layers they are copper (stainless steel) in the

CC (EC). The calorimeter is divided into 5000 pseudo-projective towers of size 0.1 in η

and φ coordinates. Figure 3.5 shows the eta and depth segmentation of the calorimeter.

In general the size of individual calorimeter cells is also 0.1 in η and φ coordinates, the

exception is layer three of the EM Cal with four cells per tower covering 0.05 in η and φ

coordinates. This is because the calorimeter was designed for RunI when, in the absence

of the solenoid, an electron at normal incidence would deposit the largest fraction of its

energy at layer 3. The calorimeter cell structure is shown for reference in figure 3.6, but

will not be discussed. Complete details of the calorimeters are available in reference [18].

The region 1.1 < |η| < 1.4 covering the transition region between the CC and EC

calorimeter sub-detectors has been instrumented with scintillator tiles (ICD) to aid with
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Figure 3.4. DØ Calorimeters

the degraded energy resolution in this area. As with the pre-shower detectors the ICD is

not used in this analysis (with an exception for the estimation of the background).

3.2.5. Calorimeter Trigger System

The DØ trigger system has three layers of increasing complexity. The Level 1 Calorimeter

triggers have been significantly upgraded for the high instantaneous luminosity environ-

ment of RunIIb. A calorimeter trigger tower (TT) consists or two adjacent calorimeter

towers and spans 0.2 × 0.2 in η – φ space. for EM triggers the Level 1 trigger object

consists of a TT, which has a large energy deposit and its neighbor with highest trans-

verse energy. This is a change from RunIIa when the Level 1 trigger object was only
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Figure 3.5. Quarter panel of the DØ calorimeter illustrating segmentation
and ηdet coverage

a simple TT. The Level 1 calorimeter trigger can make decisions based on the ratio of

electromagnetic to hadronic energy, and isolation of the level 1 cal object. Reference [21]

gives the full details of the new system.

The Level 2 and Level 3 trigger systems are unchanged from RunIIa. At Level 2

we cut on the combined energy of a seed TT and its neighbor with highest energy and

evaluate its isolation compared to the remaining towers in a 3× 3 cluster centered on the

seed tower. At Level 3 decisions are based on complex shape variables of EM clusters as

described in section 4.4.
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Figure 3.6. A typical DØ calorimeter cell.

3.2.6. Luminosity System

The luminosity monitor consists of 2 arrays of scintillator counters with photomultiplier

tube readout located at z = ± 140 cm. covering the rapidity range 2.7 < |η| < 4.4.

The system measures the luminosity by counting the number of inelastic collisions for

a particular bunch crossing over one minute, which are determined by a signal in both

detectors in timing coincidence with a bunch crossing.
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CHAPTER 4

Calorimeter Calibration and Reconstruction of Physics Objects

Our analysis is particularly sensitive to the response of the EM and hadronic calorime-

ter systems. In order to reduce our uncertainties and perform an accurate measurement

we need to calibrate the detector. A measurement of the missing transverse energy re-

quires that the response of the calorimeter is relatively uniform over all η and φ values.

A measurement of the electron transverse momentum requires that the calorimeter re-

sponse to electrons in the transverse momentum range concerned is well understood. The

calibration takes place in multiple steps:

• Pulsar calibration of readout electronics.

• φ balance in rings of η from events with minimal trigger requirements.

• Energy loss corrections.

• Absolute scale based on the Z invariant mass peak.

4.1. Read Out Calibration

The initial calibration of the calorimeter electronic readout is performed using pulsers.

Pulses of known charge spanning the range of the readout are injected into the electronics

and then read out. A comparison of the true charge with the measured value allows one

(in principle) to linearize and equalize the gains of each channel. In practice the input

signal is modified by reflections off the calorimeter cells, which degrade this calibration

and need to be accounted for with detailed simulations.
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Figure 4.1. An EM Cluster in η × φ Space each square signifies a tower of
dimension 1× 1.

4.2. EM Response Calibration

Since the Tevatron beams are unpolarized we expect the energy flux to be φ-independent.

We exploit this to adjust the relative gains of calorimeter towers and layers in rings of φ at

fixed η values until we see uniform occupancy above specified threshold. This procedure

allows us to remove the φ degree of freedom from the calibration of the absolute energy

scale without limiting ourselves to the small sample of reconstructed electron events avail-

able to us [22]. We cluster towers within a cone of radius 0.2 in η×φ as shown in figure 4.1

into electromagnetic (EM) objects. The clustering algorithm requires a seed of ET > 500

MeV, and the final cluster must have less than 10% of its energy deposited in the hadronic

calorimeter and a final ET greater than 1.5 GeV. The cluster should also be isolated from

other calorimeter activity. The overall energy scale for an EM cluster is determined using

a combination of Monte-Carlo and data studies [3]. The energy deposited in the active

layers by an electron traversing our calorimeter is dependent on the initial energy of the
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Figure 4.2. Longitudinal shower development for a 45 GeV electron at η =
0 and η = 1 Ref [3] using the GFLASH [4] simulation tool. The marked
regions refer to the layers of the EM calorimeter as defined in the text.

electron and the angle of incidence (the dependence on the angle of incidence is demon-

strated in figures 4.2(a) and 4.2(b)), since electrons at larger values of η will encounter

more dead material before reaching the active calorimeter layers than more central elec-

trons. By studying the response of the detector as described in the Monte-Carlo with

single electron events spanning the energy and η plane, we derive correction factors as

a function of η and energy, relating the energy deposited in each calorimeter layer at a
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given η to the total true energy of the electron. It is extremely important that the mate-

rial description in our Monte-Carlo accurately describes the dead material in front of our

detector in order to describe this dependence correctly. Detailed studies [23, 24] by the

W Mass group have shown that the standard detector description in our GEANT based

Monte-Carlo description of the detector does not account for all of the dead material in

front of the calorimeter. The same studies show that by adding 0.16 radiation lengths of

‘effective material’ in the form of a copper cylinder outside the solenoid, we can recover a

longitudinal shower profile as a function of η and electron energy which agrees with the

data. As a final step in the calibration we compare the Z Boson Mass peak measured in

data with the known value from LEP [25]. We fit a Voigtian (a convolution of a Breit-

Wigner and a Gaussian distribution) function to the data allowing for an additional gain

calibration as a function of η. This procedure effectively averages over the effects of the

instantaneous luminosity on the reconstructed EM cluster energy. To keep the data size

manageable the read out is zero-suppressed. This means that cells with energy below a

certain threshold are not read out. These factors are taken into account in this analysis

as described in chapter 6.

4.3. Reconstructed Physics Objects

4.3.0.1. Tracking and Vertex Identification. Charged particles leave hits in the

SMT and CFT detectors. which are reconstructed in two stages. First track segments

are created in each layer, and then these track segments are combined into tracks. A χ2

is calculated between the track trajectory and the hits associated with the track, this χ2

is used to determine the quality of the track. Based on initial work described in [26], the
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tracking algorithm consists of a propagator [27] fed into a Kalman fitter [28]. A vertex is

the source of multiple detected tracks and indicates the position of a proton-anti-proton

collision (primary vertex) or the decay of a particle (secondary vertex). A primary vertex

is required to have at least three tracks with at least one hit in the SMT, which point

back to a common origin. The vertex position along the beam direction (z axis) (V txZ) is

well described by a Gaussian convoluted with a Lorentzian and extends out to |z| values

greater than sixty cm., while in the x–y plane the vertex has a small spread related to the

beam width. Determining the correct vertex position along the z-axis is important for an

accurate calculation of the missing transverse energy in the event.

4.3.0.2. Electromagnetic Cluster. As described earlier 13 Electromagnetic Calorime-

ter Towers are grouped together to form an Electromagnetic cluster as shown in figure 4.1

using a simple cone algorithm with radius ∆R =
√

∆η2 + ∆φ2 = 0.2 centered on the

tower of maximum energy. In the absence of a track pointing towards a reconstructed

cluster the position is determined using the primary vertex and centroid of the cluster,

however if possible the θ and φ positions of the cluster are given by a track which points

towards the ∆R cone of the EM cluster. In order to separate electrons and photons from

π0’s or other hadrons, which may have deposited energy in the calorimeter, we apply ad-

ditional criteria to the EM Cluster based on how deeply into the calorimeter the shower

progressed (fracEM), how isolated the shower cluster is from other energy deposits (fIso),

and a shower shape requirement (HMatrix). The fracEM variable is the ratio of the total

energy deposited in the EM layers of the cluster towers to the energy in the EM layers
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and the first layer of the hadronic calorimeter. Isolation is defined as:

(4.1) fIso =
E(R < 0.4) + EEM(R < 0.2)

EEM(R < 0.2)
,

where E is the total energy in the calorimeter and EEM is the energy deposited in the

EM layers only. The shower shape variable (HMatrix7) is the inverse of the covariance

matrix comparing seven EM cluster shape variables to the eigenvector values determined

for electrons in Monte Carlo. The variables concerned are:

• EM fraction in each of the 4 EM layers,

• the width of the shower in the φ direction,

• the energy, and

• V txZ .

To determine whether a track and an EM cluster are matched we use a spatial χ2 between

the cluster centroid and the track direction extrapolated to layer 3 of the calorimeter:

(4.2) χ2 =

(
∆z

σz

)2

+

(
∆φ

σφ

)2

,

4.3.1. Recoil

The transverse recoil vector ~uT is the vector sum of the transverse energy of unsuppressed

calorimeter cells which are not included in the leading (W boson event candidates) or

leading and sub-leading (Z boson event candidates) EM clusters. The ~uT variable may

include contributions from spectator quarks and multiple interactions in addition to the

actual recoil against the vector boson. Cells in the ICD region are not included in the

sum.
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4.3.2. Missing Transverse Energy ( ~MET )

The ~MET is defined as:

(4.3) ~MET = −~peT − ~uT

It is a proxy for the transverse energy carried away by the neutrino and is a useful cut for

removing backgrounds from the W candidate event sample. Fake sources of MET include

the misidentification of a QCD jet as an EM Object resulting in an incorrect energy scale

application, and the loss of energy into an inactive volume of the detector.

4.3.3. Scalar Transverse Energy (SET)

SET is the scalar sum of all non-zero suppressed cells in the calorimeter, except those

which are in towers associated with an EM cluster, and gives us a handle of the overall

energy of the event. We see that the tracking efficiency is strongly dependent on SET

which needs to be modeled accurately.

4.4. Analysis Cuts

Primary Vertex requirement:

• | V txZ |< 60 cm.

Electron requirements:

• An EM object clustered with the simple cone algorithm, fracEM > 0.9, fiso <

0.15.

• |ηdet| < 1.05.

• HMatrix7 < 12,
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• The EM cluster should not be close to the edge of a calorimeter module (fiducial

cuts),

• pT > 25 GeV, and

• Spatial track match probability greater than 0.01 with a hit in the SMT.

Z → ee requirements:

• Two electrons which pass the cuts listed above.

• At least one electron passes trigger requirements (L1/L2/L3).

• Both electrons have good matched tracks.

• Electron |ηdet| < 1.05.

• |~uT | < 15 GeV.

• 70 < mee < 110 GeV.

Where mee is the invariant mass of the two electrons W → eν requirements:

• One electron which passes the cuts listed above.

• The electron must pass trigger requirements (L1/L2/L3).

• The electron must have a good matched track.

• Electron |ηdet| < 1.05.

• |~urecT | < 15 GeV.

• 50 < mT < 200 GeV.

The fiducial cuts are applied based on the position as determined from the matched track.

This is important because the response of a calorimeter tower varies strongly with the

position of the EM cluster with respect to cracks in the φ direction, and the cluster position

is biased towards the center of the module as shown in figure 4.3. The degradation of the

calorimeter response is due to energy that would normally be deposited in active layers of
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Figure 4.3. Shift in EM Cluster φ position in a module compared to the po-
sition from the tracking system as function of the position from the tracking
system.

the calorimeter, being deposited in the cracks between the modules. The variable Phimod

is the remainder of the mathematical operation:

(4.4)
32φ

2π
÷ 1.0

0 ≤ Phimod ≤ 1 for any φ module is a measure of the φ position within the module. We

use events in the range 0.1 < Phimod < 0.9.
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4.5. Trigger Requirements

The data have been collected with 2 distinct trigger list sets (v15 and v16). During

the period of data collection with the v15 trigger list we use an unprescaled EM trigger

with a level 3 pT cut at 25 GeV. Due to the higher instantaneous luminosities delivered by

the Tevatron as RunIIb progressed, we used two triggers from v16. At high instantaneous

luminosities at the beginning of a store we used a prescaled EM trigger with a level 3 pT

cut at 27 GeV. This was necessary to reduce QCD background while keeping the trigger

rates at an acceptable level. When the luminosity in a store has decreased enough to

allow it we switch back to an unprescaled EM trigger with a level 3 pT cut at 25 GeV.

The detailed requirements for each trigger are level 1, level 2 and level 3 are listed in

table 4.1.

Trigger L1 L2 L3
E1 SHT25 ET > 19 GeV ET > 22 GeV or ET > 25 GeV and

ET > 19 GeV and Isolation shower shape requirements
E1 SHT25 (v16) ET > 19 GeV ET > 25 GeV or ET > 25 GeV cut and

ET > 19 GeV and likelihood shower shape requirements
E1 SHT27 ET > 19 GeV ET > 25 GeV or ET > 27 GeV cut and

ET > 19 GeV and likelihood shower shape requirements
Table 4.1. Single EM triggers.

The instantaneous luminosity distribution of our total data sample broken down by

trigger is shown in figure 4.4. This corresponds to 4.35 fb−1 of integrated luminosity

collected between the ninth of June 2006 and the thirteenth of June 2009, with 1.65 fb−1

collected with the v15 trigger list. The corresponding distribution for RunIIa is shown

in figure 4.5. After our analysis cuts we are left with Z and W boson candidate yields
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Figure 4.4. The number of events in our Z candidate sample as function of
instantaneous luminosity separated by trigger.

of 54,508 and 1,677,489 events respectively. The invariant mass, and transverse mass

distributions are shown in figures 4.6 and 4.7
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CHAPTER 5

Analysis Strategy and Description

We will determine the W boson mass using a template fit method. We fit templates

of the transverse mass distribution generated over a range of possible W boson Mass

values to the data by finding the template (and hence the mass), which has the maxi-

mum likelihood of agreement with the data. This method depends on having a realistic

model for event generation as well as the ability to reproduce the detector response for

our selection cuts with enough accuracy to be able to faithfully describe the final distri-

butions obtained when studying the data. We use the ResBos [29, 8, 30, 31, 32, 14, 33]

Monte Carlo event generator to produce and decay the vector bosons. ResBos uses par-

ton distribution functions from the CTEQ collaboration [34, 10].While Resbos does not

include final state radiation from the electron, which we use Photos [35] to simulate, it

includes NLO perturbative calculations of fully differential cross-sections at high boson

transverse momentum as well as a re-summed calculation for the low transverse momen-

tum cross-section providing a consistent description of boson production over the range of

interest. ResBos does not include a model of the hadronic interaction, which we simulate

using specialy selected events from our data. We also use Pythia version 6.323 [36] for

additional studies as described later. In addition to an accurate description of W Boson

events we also require an accurate description of Z Boson events, which will be used as a

standard candle to tune our simulation. The analysis proceeds along the lines previously

described in references [23, 24] and [9]. In addition to the increased precision required to
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describe four times as much data when compared to reference [9], we are faced with addi-

tional challenges due to the increased instantaneous luminosity. Following the precedent

of previous analyses, in order to reduce bias from experimenters who have an expectation

of the value of mW the numerical value of the result of our fits to mW is blinded, that

is the result returned from the fit program has an unknown offset from the true fitted

value. We will remove the blinding offset once we are satisfied that our comparison plots

indicate that we have a good description of the data.

5.1. Event Generation

Although the CTEQ collaboration has released their version 6.6 PDF set [10], which

include updated parameterizations, and heavy quark distributions, the analysis still par-

tially relies upon the version 6.1 PDF set [34] (particularly for Pythia based studies).

The CTEQ collaboration determines the parton distribution functions for the proton

from global fits to a large range of data. The fit is performed in a space of 20 orthogonal

vectors, and along with the central value function includes additional PDF sets, which

correspond to variations in the positive and negative direction along each eigenvector

corresponding to the 90% uncertainty interval. CTEQ 6.1 contains one function for the

gluon distribution, and 6 other functions for quark and anti-quark distributions (the s

and c quark distributions are assumed to be the same as the s̄ and c̄ distributions respec-

tively) and is fit in a space of 20 eigenvectors. The CTEQ 6.6 set includes improved fits

and parameterizations, and allows for the strange quark distribution to be independent

of the other sea quark distributions. CTEQ 6.6 has 22 degrees of freedom, and 44 error

sets, which describe variations from the optimal fit. ResBos computes fully differential
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production cross-sections of Z and W bosons for the process pp̄→ (V− > ll)X at next-

to-leading order (NLO) in perturbation theory where V denotes either a W or Z boson,

l is a lepton, and X represents QCD recoil. ResBos does not include any description

of spectator quarks, additional interactions or final state radiation. Photos includes the

effects of photon radiation from the final state leptons. The Z boson pT and rapidity dis-

tributions from Resbos+Photos have been shown to be in good agreement with Z boson

Data [37]. Pythia describes the same process at Resbos (as well as many others) at lead-

ing order, however Pythia also includes a description of the underlying event and multiple

interactions presenting a controlled environment which is similar to that found in the data

allowing us to study the effect of these components on our analysis. ZGRad2 (available at

http://ubhex.physics.buffalo.edu/ baur/) has been used to estimate the uncertainty due

to the model of final state radiation.

5.2. Detector Simulation

Our fast Monte-Carlo detector simulation would ideally be optimized to describe the

kinematic range of electrons from W Boson decays. For this reason we calibrate based on

the clean sample of kinematically similar electrons we obtain from the decay of Z bosons.

Unfortunately the cross section for Z boson production is a factor of ten lower than for

W boson production limiting the precisions of our simulation. The requirement that we

must identify both decay products from the Z boson while being unable to limit the

acceptance of the neutrino from W boson decay adds to the intrinsic difference between

W and Z boson event kinematics. The starting point for our simulation is a model of the

electron response incorporating the EM resolution, scale and offset. We add to this the
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effects of zero suppression and the underlying energy reconstructed in the electron cluster

which is uncorrelated with the true electron energy, this underlying energy is based on

the interaction between the electron and the hard recoil system and the energy due to

the underlying event. The recoil simulation is the conglomeration of many components

modeled independently:

• The QCD recoil against the Boson.

• The component due to the breakup of the incoming hadrons involved in the Hard

Scatter (minimum bias component).

• The component due to additional hadronic interactions in the same beam crossing

and electronic noise (zero bias component).

• Leakage of energy from the electron out of the electron cone.

• Final state radiation from the lepton, which is not reconstructed as part of the

EM cluster.

5.3. The Template Fit Method

Once we have a set of templates, each representative of the transverse mass distribution

for a given value of the mass of the W boson we fit for the most compatible value to the

data using a binned negative log likelihood technique. The likelihood L is calculated as:

(5.1) L =
N∏
i=1

e−mimni
i

ni!
,

where N is the number of bins. ni is the number of events observed in bin i and mi is

the number of events in the template histogram. We are performing a shape analysis so

the templates are normalised to the data sample. The number of events in any given
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template is at least two orders of magnitude greater than in our data sample, ensuring

that the only statistical fluctuations we are sensitive to are those in our limited data

sample. We minimize − lnL in order to determine the parameter in our fit. The ±1σ

uncertainty is determined as the values which increase − lnL by 0.5. We use the template

fit to determine parameters in our model as well as for the final determination of the W

boson mass.
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CHAPTER 6

Simulation of Detector Response

We simulate the detector response (and resolution) in three categories. The response

to electrons, the response to the recoil system, and the efficiencies for events to pass our

selection requirements.

6.1. EM Response and Resolution

This section describes the response of the detector to electrons, as implemented in our

fast Monte-Carlo simulation.

6.1.1. EM Resolution

We use the same energy resolution function as was derived in the RunIIa W Mass analysis

[9].Specifically:

(6.1)
σEM(E)

E
=

√
C2
EM +

S2
EM

E
+
N2
EM

E2

where

(6.2) SEM = (S1 +
S2√
E

)× eSexp/ sin θ

eSexp

with

(6.3) Sexp = S3 − S4/E − S2
5/E

2.
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where CEM , SEM and NEM are the constant, sampling and noise terms, S1, S2, S3, S4,

S5 and Sexp are constants, and E is the energy of the electron in GeV respectively. The

term involving NEM accounts for effects due to electronic readout noise, and radiactivity

from the Uranium absorber plates and is negligible at the values of E which concern

us (E > 25 GeV ), and the term in volving CEM accounts for non-uniformities in the

response of the calorimeter. SEM is usually a constant, and the term in equation 6.1

accounts for the loss of resolutiion due to the sampling nature of the calorimeter. We find

that due to the large amount of dead material in front of our calorimeter and the fact that

the amount of dead material varies as a function of η we need to introduce this unusual

parameterization of SEM in order to describe our data. All parameters except the CEM

term, which is determined by a fit to the data, are derived from detailed Monte-Carlo

studies. The exact values of these parameters are sensitive to the number of radiation

lengths of material traversed before the active calorimeter layers, and our ability to derive

the correct values for data was enabled by the studies described in Chapter 4 which

allowed us to determine the amount of material in front of the calorimeter. The constant

term is derived from a template fit of our fast Monte-Carlo output to the data, and we

find a value of CEM = 0.0198 ± 0.0006, which is in agreement with the RunIIa analysis

value of 0.0204± 0.0013 The negative log(likelihood) curve is shown in figure 6.1, and the

comparison to the two EM invariant mass from data after the EM calibration is shown in

figure 6.2.
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Figure 6.1. Negative log(likelihood) plot from used to determine CEM . The
absolute values on the y-axis are arbitrary.

6.1.2. EM Response

In the absence of effects correlated with the recoil system which will be discussed later

the observed energy for an electron in a calorimeter can be related to the true energy by

equation 6.4.

(6.4) Eobs = α0
EMEtrue + β0

EM .

We determine α0
EM and β0

EM from a binned log likelihood fit to Z boson data. The Z

boson invariant mass may be expressed as:

(6.5) M2
Z = 2E(e1)E(e2)(1− cos θ),
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Figure 6.2. Comparison of the Z boson invariant mass peak from fast
Monte-Carlo to the Z boson candidate invariant mass peak from data.
χ2/NDF = 161.6/160.

where θ is the angle between the electrons, which, when combined with equation 6.4 may

be written as:

(6.6) Mobs.(Z) = α0
EMMtrue(Z) + β0

EMf
true
Z +O((β0

EM)2),

where f trueZ is defined as:

(6.7) f trueZ =
Etrue(e1) + Etrue(e2)

Mtrue(Z)
(1− cos θ),
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and Etrue(e1) and Etrue(e2) are the true energies of the two electrons, Mtrue(Z) is the true

Z mass, Mobs.(Z) is the observed Z mass, and θ is the true opening angle between the elec-

trons, which due to the superior resolution on angular position than energy is adequately

described by the detected opening angle. For small offsets f true
Z may be approximated

by f obs.
Z . A template fit to this two dimensional distribution (shown in figure 6.3) which

involves making templates of the fZ vs. mZ distribution as functions of α0
EM and β0

EM

which we compare to the distribution from data, allows us to determine α0
EM and β0

EM .

An in depth study of this method for determining the scale and offset is available at

reference [38]. In order to reduce the correlation between α0
EM and β0

EM we parameterize

the electron response as:

(6.8) Eobs. − Emean = αEM(Etrue − Emean) + βEM

and fit for αEM and βEM . Where we choose EMean = 43 GeV . For our data sample we

find αEM = 1.0162 ± 0.0019 and βEM = 0.0706 ± 0.0144 GeV with a correlation factor

of -0.769. The 1 σ uncertainty contour on the parameters is shown in figure 6.4. The

deviation of the semi-major axis from the horizontal is representative of the correlation

between the parameters. Figure 6.3 shows the mZ vs. fZ distribution from data, and

figure 6.2 shows the comparison to the Z boson candidate invariant mass distribution

in the data after the determination of αEM , βEM and the term CEM described in the

previous section.
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Figure 6.3. mZ vs. fZ used to determine αEM and βEM .

6.2. Hadronic Response

The transverse momentum of the hadronic recoil ~uT is modeled as the sum of individual

components from different sources:

~uT = ~u HARD
T + ~u MB

T + ~u ZB
T + ~u UPARA

T + ~u PHOTON
T

where each of the individual terms above are described in detail below.
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Figure 6.4. 1 σ contour on the fit of the scale and offset parameters to the
Z boson invariant mass peak, as described in the text.

6.2.1. Hard Recoil Smearing (~u HARD
T )

This describes the smearing of the hard scatter recoil against the boson, which balances

the boson transverse momentum.

(6.9) ~u HARD
T = ~f(~qT )

where qT is the transverse momentum transfer for the event. The response is determined

from studies of Pythia Z → νν events in our GEANT based Monte-Carlo and is described

in detail in reference [5]. The neutrinos escape the system undetected leaving us with
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a clean ‘Hard Recoil’ to study. Our model has to account for correlations between the

magnitude of the recoil vector and the azimuthal angle φ. By studying this sample we

determine a parameterization for the hadronic response of our detector which we use to

realistically smear the hard recoil provided by our event generator. The following variables

are used for the parameterization :

• Rrec =
qT − uT
qT

— recoil pT resolution (R < 1),

• ∆φ = φ(~uT )− φ(~qT ) — recoil angular resolution (|∆φ| < π),

• Resp =
uT
qT

— recoil response,

• Respprj =
~uT · ~qT
qT

— projected recoil response.

Where uT (qT ) is the magnitude of ~uT (~qT ). Two-dimensional distributions of the pT

resolution versus the φ resolution are plotted for 32 bins of true pT from 0 to 100 GeV as

shown in figure 6.5 for the bin of 4.5 < (true) pT < 5. These distributions are fit with the

function shown below:

pdf(x, y) = p0 exp

[
−1

2

(
x− µ(y)

σx(x, y)

)2
]

exp

[
−1

2

(
y

σy(y)

)2
]
,

where: x ≡ Rrec, y ≡ ∆φ [rad], µ(y) = p1 + p2 · y,

σx(x, y) =

 p3, x < µ(y)

p4, x > µ(y)
, σy(y) = p5 + p2 · y

and p0 through p5 are parameters of the fit used to describe Rrec and δφ for each bin of

true recoil transverse momentum. These functions allow us to realistically simulate the

uT and φ response and resolution of the hard recoil in our fast Monte-Carlo simulation.
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Figure 6.5. The 2-D distribution of the recoil pT - and φ resolutions for:
FULL MC (boxes) and fit (contours) for qT ∈ [4.5, 5]GeV .

6.2.2. Soft Recoil Smearing (~u MB
T and ~u ZB

T )

The soft recoil describes energy in the event from source other than the leading order

hard interaction responsible for boson production. This includes contributions from the
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remnant of the proton and anti proton involved in the hard scatter, additional interactions

between protons and anti-protons from the current (or previous) beam crossing(s) and

detector noise. The catchall term ‘detector noise’ includes energy from beam related

backgrounds, uranium decays and electronic readout noise. We model these contributions

as the vector sum of two contributions,

• ~UT
MB

– the minimum bias piece which describes the energy from the proton and

anti-proton remnants, and

• ~UT
ZB

– the zero bias piece which describes the remaining effects

which contribute the following term to the recoil.

(6.10) ~u SOFT
T = + αmb · ~UT

MB
+ ~UT

ZB

where αmb is a tunable parameter which allows for the removal of double counting of effects

which unavoidably occur in both the ~UT
MB

and ~UT
ZB

models. In order to describe the

effects due to spectator partons from the breakup of the hadron involved in the initial hard

scatter ~UT
MB

we create a library of events selected by trigger which requires only that

there is an inelastic collision in the event. The library contains per event information about

the SET, instantaneous luminosity and MET. Events in this library must have exactly

one primary vertex so ensure that we do not include contributions in this library which

should be included in the model for ~UT
ZB

. These events underestimate the contribution

we aim to model because the spatial overlap between the hadrons involved in a collision

which results in the production of a W or Z boson is most likely to be larger than

for the events in our library increasing the probability for an interaction between the
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hadron remnants which would lead to an energy deposit in the fiducial volume. We

account for this by comparison of the SET distribution of out MB library with the SET

distribution of low momentum (pT < 3 GeV) Z boson events where the energy in the

electron cones does not contribute to the SET (as usual). The MB library events are re-

weighted to match the SET distribution from this special Z boson sample. We continue

to use the MB library from the RunIIa W mass analysis as the contribution from this

event should not have changed. To describe the effects of the underlying event which

depend strongly on luminosity (due primarily to multiple interactions, and noise in the

calorimeter) our library consists of events read out in time with the beam crossings, which

are selected to match the instantaneous luminosity distribution of the data. The complete

data library consists of approximately twenty-five million events and the comparison of

the instantaneous luminosity distributions from our data sample and the zero bias library

is shown in figure 6.6. For each generated event we process through our fast Monte-Carlo

simulation processes the information for one randomly selected event from each of the MB

and ZB libraries are included as described in equation 6.10. Figure 6.7 shows a comparison

of the magnitude of ~uT in each of the soft libraries which illustrates clearly that the ZB

library add significantly more energy than the MB library. A smaller zero bias library

has been created from events where the calorimeter was read out in a mode where cell

energies are not zero suppressed. For these events the full detector readout is stored in

a format, which enables us to overlay this information onto generated events before the

detector simulation takes place. A complete description of the zero bias library making

process is given in reference [39]. This library has approximately 1.7 million events and

our fast Monte-Carlo program uses these same events when we are performing studies of
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Figure 6.6. Comparison of data and zero bias library luminosity distributions

the full Monte-Carlo. For the moment I will continue to ignore correlated effects between

the recoil system and the boson decay products, there is still the correlation between the

various recoil components to consider. While the ZB and MB libraries give an accurate

description of the SET distribution of the effects they aim to model, the zero suppression

of the calorimeter readout means that the SET due to MB+ZB contributions is larger

than the sum of the individual contributions as additional cells pass the zero suppression

threshold. We study this effect by comparing the SET distribution of Pythia minimum

bias events with unsuppressed zero bias events over-laid onto them before the detector

simulation (including zero suppression) is applied, to the sum of the individual minimum
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(black) libraries.

bias and zero SET values from our libraries. This is done per event and is shown in figure

6.8 we see that this effect can be described with constant multiplicative factor:

(6.11) SETMBi+ZBj = αSET (SETMBi + SETMBj)

We use an αSET value of 1.02.

This accounts for a small part of the correlation between the various components of

the recoil, which we model separately. We account for the full correlation and the effect

of double counting effects by introducing 6 tunable parameters which describe the recoil
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response and resolution and tuning them by comparing the balance between the Z boson

transverse momentum and the recoil transverse momentum in data and fast Monte-Carlo.

We minimize the sensitivity of the recoil tuning parameters to the electron resolution by

comparison of the η imbalance distribution [40] variable (defined below) from Z → ee

events processed through our fast Monte-Carlo simulation with Z events which pass our

standard selection cuts. In the plane transverse to the beam axis, the η axis is defined

along the inner bisector of the transverse momenta of the two electrons as shown in

Figure 6.9. The axis depends only on the directions of the two reconstructed electrons,
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and is independent of their momenta. The ξ axis is defined to be perpendicular to the η

axis.

the momentum imbalances along the η and ξ axes are defined as:

ηimb = ~p ee
T · η̂ + ~uT · η̂,

ξimb = ~p ee
T · ξ̂ + ~uT · ξ̂,
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where ~p ee
T is the momentum of the di-electron pair and ~uT is the transverse momentum

of the recoil. These vectors are projected onto the η axis as p ee
η and uη respectively. The

mean of the ηimb distribution is sensitive to the response and the width is sensitive to the

resolution.

The parameters of the recoil response tuning function (R) are determined by perform-

ing a template fit to minimize the χ2 of the mean of the ηimb distributions in bins of Z

boson transverse momentum between the fast Monte-Carlo and data. The parameters of

the recoil resolution tuning function σR are similarly determined by minimizing the χ2 for

the width of the ηimb distribution in bins of Z boson transverse momentum between data

and fast Monte-Carlo. The best-fit comparison is shown in figure 6.10, as well as the χ

distribution. We have a greater than two σ deviation in the lowest pT bin which we are

investigating, but which should not have a huge effect on our result as this bin does not

contain many events.

(6.12) Rhad = RelScale + RelOffset · exp
−qT
τHAD

(6.13) σRhad
= RelSampA +

RelSampB
√
qT

where Rhad describes the additional response of the calorimeter to the recoil which is not

adequately described by the hard component model baes on GEANT Monte-Carlo as a

function of the magnitide of the generated recoil transverse momentum (qT ). RelOffset

describes the response of the calorimeter at low qT , where the scale of ‘low’ is set by
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τhad. In addition to the parameters in the functions (Rhad) and (σRhad
) the parameter

αmb, introduced previously, is allowed to float when performing the fits. We obtain the

following values:

• RelScale = 1.042 ± 0.011,

• RelOffset = 2.16 ± 0.42,

• τHAD = 2.44 ± 0.38,

• RelSampA = 1.237 ± 0.050, and

• αmb= 0.568 ± 0.082,

where we have fixed RelSampB to be 0, which is consistent with its preferred value when

allowed to float. The recoil response and resolution value are strongly correlated. The

correlation between αMB and RelSampA is -0.6913. The correlation matrix below is for

RelScale, RelOffset, and τHAD. Figure 6.12 shows the comparison of the mean of the ηimb

distribution between fast Monte-Carlo and data, as well as the χ distribution.
1 0.4616 −0.5984

0.4616 1 −0.8657

−0.5984 −0.8657 1



6.3. Correlated Response Modeling (~uUPARAT and ~uPHOTONT )

The response and resolution of the electromagnetic and hadronic components of the

event do not factorize as simply as has been presented above. Energy from the recoil

system which overlaps with the electron cone (−~uUPARAT ) will be included as part of the

electron energy, and has to be removed from the recoil system in our fast Monte-Carlo
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Figure 6.10. Width of the ηimb distribution in bins of Z pT after the recoil tune.

(with the appropriate energy added to the electron description). An electron may radiate

a photon outside of the electron cone which will contribute to ~uT (~uPHOTONT ), but this

effect is trivially included since we have a model of FSR and simply add the ~uT of the γ to

the recoil. The component of the recoil which lies under the electron cone is determined

from events which pass our W boson selection cuts as a function of ηdet, instantaneous

luminosity and the component of the recoil in the direction of the electron (u||) as shown in

figure 6.14 and defined in equation 6.14. We sum the energy of EM cluster-like cones of 13

calorimeter towers at the ηdet value of the leading EM cluster, but rotated away from the

electron in φ (rotated cone ET ). These values are stored as functions of the instantaneous
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luminosity and u|| of the event. When simulating the detector response we draw a random

value for this energy (∆u||) from the luminosity and (u||) bin corresponding to the event

being modeled. Figure 6.15 shows the spectrum of rotated cone ET . The distribution is

heavily peaked in the first bin which has 11.8 × 106 entries. (−~uUPARAT is the transverse

projection of a vector of magnitude ∆u|| in the EM cluster direction.)

(6.14) ~u UPARA
T = −

∑
e

∆u‖ · ~pT (e)
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Figure 6.12. Mean of the ηimb distribution in bins of Z pT after the recoil tune.

The effect of the energy from the recoil which lies under the electron, is slightly

more complicated to model. One cannot simply add the energy from the rotated cone

to the electron, since, as mentioned when describing αSET , the presence of the energy

from the electron will mean that more cells in the EM cluster will be above the zero

suppression threshold. We model this effect by comparing the change in the energy of a

fully reconstructed electron with and without unsuppressed zero bias overlay, as a function

of the energy in the towers occupied by the electron when the zero bias overlay is zero

suppressed. This is achieved by studying three GEANT Monte-Carlo samples:
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Figure 6.13. χ for the Mean of the ηimb distribution in bins of Z pT after
the recoil tune.

• Sample A – Single electrons processed through our full detector simulation with

no zero bias overlay.

• Sample B – Zero bias events from the overlay processed through our full detector

simulation.

• Sample C – Single electrons processed through our full detector simulation with

zero bias overlay.

For all electrons from sample C which pass our selection cuts, we compare the sum of the

energy in the cells, which contribute to the cluster in each of the three samples (Ecells).



83

p
→

T(e)

u
→

T
p
→

T(ν)

u||

u⊥

Figure 6.14. Definition of u||.

This allows us to determine :

(6.15) Uparacorr = f(Ecells
B) = Ecells

C − EcellsA,

the correction to the EM cluster energy (upara corr) as a function of ∆u||. We determine

these functions in bins of ηdet and use two distinct samples of single electrons, one of

which is kinematically similar to the η and ET spectrum of electrons from Z boson decay,

and one which is similar to the spectrum from W boson decay. The correction is shown

in figures 6.16,6.18, and 6.17, where the red points (and fit) correspond to results from
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Figure 6.15. ET spectrum of rotated cone used to model ∆u||

the Z boson like sample, and the black points (and fit) correspond to the results from a

W boson like sample. This correction is not sensitive to the difference between the two.

These fits are used to correct the EM cluster energy in our fast simulation. As shown in

figure 6.15 the most likely input to this correction (∆u||) is essentially zero. In this case

in order to take advantage on the information we have describing fluctuations in upara corr

we do not modify the EM cluster energy based on the functions shown in figures 6.16,6.18,

and 6.17, instead we select a random value from a histograms of all values of upara corr

in our GEANT Monte-Carlo study which correspond to the correct bins of ηdet and ∆u||.

An example of one of these histograms is shown in figure 6.19.
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Figure 6.16. Correction to EM Cluster Energy as a function of ∆u|| for η
between -1.1 and -0.9. The red points correspond to Z boson like events,
and the black points to W boson like events.

 (GeV)||U∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
h

an
g

e 
in

 E
le

ct
ro

n
 C

lu
st

er
 E

n
er

g
y 

(G
eV

)

0

0.5

1

1.5

2

2.5

3

3.5

4

 < 1.1ηEM Energy Correction for 0.9 < 

Figure 6.17. Correction to EM Cluster Energy as a function of ∆u|| for η
between 0.9 and 1.1. The red points correspond to Z boson like events, and
the black points to W boson like events.
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Figure 6.18. Correction to EM Cluster Energy as a function of ∆u|| for η
between -0.1 and 0.1. The red points correspond to Z boson like events,
and the black points to W boson like events.
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Figure 6.19. Histogram of upara corr values for central (-1.1 < η < 1.1) W like events
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CHAPTER 7

Efficiencies

Our measurement is not particularly sensitive to the absolute efficiencies of our selec-

tion cuts, since we are performing a shape-based analysis rather than a counting based

one. We do need to be careful to describe the kinematic dependence of the efficiency of our

detector and event selection cuts as any kinematic effect in the data which is not repro-

duced in our fast Monte-Carlo will lead to a bias in our result. We begin by measuring the

efficiency for each of our electron selection cuts using a method called tag and probe[41]

that exploits our knowledge of the Z boson to provide us with a clean sample of electrons

with which to evaluate our efficiencies. We then evaluate the efficiencies with respect to

the kinematic variables SET and u|| which are sensitive to more than just the properties of

a single electron, and include information from the recoil system which affects our ability

to identify real electrons in the detector. The Tag and Probe method requires one ‘Tag’

electron to pass our full selection criteria, coupled with a second ‘Probe’ electron which

is used to evaluate the efficiency we are concerned with. We require that the invariant

mass of the tag and probe electrons is within the range 70 < m(e, e) < 110 GeV to reduce

background contributions.

7.1. Direct EM Cluster Efficiencies

This section describes the determination of efficiencies for identifying EM clusters,

which are parameterized in terms of the property of the EM Cluster.
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7.1.1. Vtx Position Simulation

The primary vertex distribution is a function of the beam parameters of the Tevatron,

the information required to reproduce the distribution is determined from studying the

vertex position distribution of events written out with zero bias trigger requirements for a

variety of time ‘epochs’. When simulating an event in our fast simulation we pick a vertex

position randomly from the vertex distribution corresponding to the epoch in which the

event picked from our zero bias library was taken. The final V txZ position is shown after

selection cuts in figure 7.10 for Z boson events.

7.1.2. Trigger Efficiency

The Trigger Efficiency for each of our triggers (E1 SHT 25 (v15), E1SHT 25 (v16) and

E1 SHT 27) is shown in figure as a function of transverse momentum. The Tag electron

is required to pass all our Z boson selection cuts including the trigger requirement. The

probe is required to pass all our usual cuts except the trigger requirement. The efficiency

is determined from the fraction of ‘probe’ electrons which pass the level1, level2, and

level3 trigger requirements for the trigger under study. Figures 7.1,7.2 and 7.3 show

the probability for the probe electron to pass the trigger requirement as a function of

transverse momentum for each of the triggers we utilize. Each histogram includes two

efficiency determinations; a black one, which is based on our entire data sample, and a

red one, which is based only on the data taken with the trigger currently under study.

We see that for E1 SHT 27 which ran only at high luminosity, the determination using

the entire dataset is an overestimation, showing that there is a luminosity dependence of
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Figure 7.1. Trigger Efficiency for RunIIb E1 SHT25 (v15) determined by
Tag and Probe. The black histogram is determined from all the data in our
sample. The red histogram is determined only from the sample of events
taken with E1 SHT25 (v15).

the trigger. We determine the trigger efficiencies for a given trigger using only the data

taken with the trigger under study.

7.1.3. Preselection Efficiency

The preselection efficiency is the probability that we will detect an EM cluster with

fracEM < 0.9 and fiso < 0.15. In this case the tag is still an EM cluster, which passes our

full set of selection cuts. The probe, however, is a track with a pT > 12 GeV. We require
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Figure 7.2. Trigger Efficiency for RunIIb E1 SHT25 (v16) determined by
Tag and Probe. The black histogram is determined from all the data in our
sample. The red histogram is determined only from the sample of events
taken with E1 SHT25 (v16).

that the EM cluster-track invariant mass lies in the window (70 < m(cluster track) < 110

GeV) and look for a second EM cluster within a radius of 0.2 in η × φ of the track. In

the central region we see no evidence of a deviation from an efficiency of unity, as shown

in figure 7.4. The structure outside of |η| > 1.1 is not a concern since we do not use

electrons from the end cap calorimeter in this analysis.
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Figure 7.3. Trigger Efficiency for RunIIb E1 SHT27 (v16) determined by
Tag and Probe. The black histogram is determined from all the data in our
sample. The red histogram is determined only from the sample of events
taken with E1 SHT27 (v16).

7.1.4. Spatial Track Match Efficiency

This is the efficiency for finding any track matched to an EM cluster (with no quality

cuts on the track). The probe EM cluster in this case is any EM cluster which passes

our preselection requirement. This efficiency is determined in bins of ηphys and V txZ as

shown in figure 7.5.
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Figure 7.4. Efficiency for finding EM clusters as a function of ηdet.

7.1.5. HMatrix Efficiency

The probe EM cluster in this case is required to pass the preselection and spatial track

match cuts, and we evaluate the efficiency of these electrons to pass the HMatrix Cut in

bins of ηdet as shown in figure 7.7.

7.1.6. Tight Track Match Efficiency

This is the efficiency for finding a track which passes our full set of analysis tracking

cuts. The probe EM cluster in this case has passed all of the analysis cuts except for

the tracking and trigger selection cuts. This efficiency is determined in bins of ηphys and
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Figure 7.5. Spatial track match efficiency for events which have passed the
EM cluster selection as a function of ηphys and the z co-ordinate of the
primary vertex.

V txZ as shown in figures 7.8 and 7.9. The course binning in this efficiency is responsible

for the discontinuities in the simulated V txZ distribution shown in figure 7.10.

7.2. Recoil Related Efficiencies

This section describes the u|| and SET dependence of our selection. The u|| efficiency,

as its name implies is based on the overlap between the recoil and electron systems. The

SET efficiency introduces a dependence on the activity in the detector for a given event.

Both of these efficiencies aim to describe the degradation of the tracking, isolation, and
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Figure 7.6. Spatial track match efficiency for events which have passed the
EM cluster selection as a function of ηphys and the z co-ordinate of the
primary vertex.

HMatrix discriminates used to identify electrons as energy from other sources leaks into

the EM cluster.

7.2.1. SET Efficiency

The Scalar ET efficiency has two components. The initial efficiency is determined from

GEANT based Monte-Carlo studies. We find that determining the efficiency in this way is

not sufficient for our analysis and a correction based on the ratio of the efficiency in data

and GEANT Monte-Carlo is determined to describe the efficiency in data. Both efficiency

components are applied as ‘per event’ efficiencies, not per electron as with the efficiencies
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Figure 7.7. The efficiency for EM Clusters which have passed the preselec-
tion and spatial track match cuts to pass the shower shape requirements as
a function of ηdet.

previously described. The GEANT based initial efficiency is determined in bins of electron

pT and is determined using truth information as the ratio of the number of events which

pass all selection requirements to the number of events which pass just the acceptance

requirements. The SET and instantaneous luminosity distributions predicted from our

fast Monte-Carlo simulation with this efficiency applied still shows a discrepancy with the

data, we have identified this discrepancy to being primarily due to the SET dependence

of the efficiency for finding spatial tracks, and determined that there is an additional

luminosity dependence. The efficiency for finding a track is evaluated separately for the
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Figure 7.8. The efficiency for EM cluster, which has passed all of our other
selection cuts to be matched to a tight track, shown as a lego plot.

GEANT Monte-Carlo and the data in bins of luminosity, SET, and electron transverse

momentum. The ratio of these efficiencies is applied as an additional efficiency in our

fast Monte-Carlo when we are describing the data. The correction is shown for one bin of

SET (80 < SET < 110 GeV) as a function of the transverse momentum of the electron

for two luminosity bins in figures 7.11 and 7.12. Figure 7.13 shows the entire luminosity

range. The luminosity dependence is clear. Unfortunately the limited yield of Z bosons

means that the binning is coarse.
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Figure 7.9. The efficiency for EM cluster, which has passed all of our other
selection cuts to be matched to a tight track, shown as a box plot.

The effect of the correction is illustrated in figure 7.14, where we see that although

the efficiency correction improves agreement between data and our fast Monte-Carlo, the

agreement is not as good as we would like.

7.2.2. u|| Efficiency [6].

The variation of our ability to identify an EM cluster which passes all of our selection cuts

as a function of u|| is determined from tag and probe studies where the probe is an EM

cluster with fracEM > 0.9 (no isolation cut), and the efficiency is determined by requiring

that the probe pass isolation, HMatrix and track match requirements as we expect these
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Figure 7.10. Comparison of our simulated Z co-ordinate of the Vtx with
Data. The discontinuities in the fast simulation description are due to the
binning of the track match efficiency determination.

conditions to be most sensitive to u||. The efficiency is parameterized in the following

way:

ε(u‖) = p2

 1 for u‖ < p0

1− p1(u‖ − p0) otherwise

Where p2 is an overall efficiency for the combined cuts under study, p0 is the value of u‖

below which the efficiency is constant as a function of u‖, and p1 is the rate of change

of the efficiency above p0. In order to properly account for the relationship between the
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Figure 7.11. SET Efficiency Correction at low luminosity. The black points
correspond to the GEANT Monte-Carlo, the red points to the data, and
the green to the ratio.
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Figure 7.12. SET Efficiency Correction at high luminosity. The black points
correspond to the GEANT Monte-Carlo, the red points to the data, and
the green to the ratio.
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Figure 7.13. SET Efficiency Correction averaged over all luminosity bins.
The black points correspond to the GEANT Monte-Carlo, the red points
to the data, and the green to the ratio.

EM cluster and the recoil system, which applies to W boson events, we allow for the tag

electron to be in either of the end cap (EC) calorimeters. Based on GEANT Monte-Carlo

studies we have verified that the value obtained from tag and probe methods is a realistic

estimate of the efficiency, and that by scaling the u|| value by the ratio of the masses of

the W and Z bosons the appropriate parameters for W boson events is obtained. The

parameters p0, p1 and p2 are not used directly in our fast Monte-Carlo simulation. In order

to ensure that we do not double count efficiencies determined previously, the parameters

we feed into the functional dependence of ε(u‖) are determined so as to ensure that the

tag and probe study of the FAST Monte Carlo returns the same values as the study in the

data. The u|| efficiency has not been properly updated from the RunIIa determination [9].

The model of u|| has been updated to be representative of the environment at DØ for

RunIIb, and parameter which in our fast simulation which ensures that the p1 values in
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Figure 7.14. Scalar ET distribution for Z→ ee events, illustrating the effect
of the Scalar ET efficiency correction.

the fast Monte-Carlo and the data match has been updated [42]. The new value is a

minor correction, as the previously described set of efficiencies, when applied, bring us

very close to the correct u|| dependence. Table 7.1 shows the parameters that have been

determined for this efficiency. Figure 7.15 shows the efficiency determined from tag and

probe, for RunIIa. Figure 7.16 shows the Tag and Probe comparison between RunIIb

data, and our fast simulation. We see that although the parameters have not been tuned

the simulation shows the correct behavior.



102

p0 p1 p2

(GeV) (GeV−1)
Z → ee 1.250 ± 0.041 0.0053 ± 0.0006 0.7966 ± 0.0012

Table 7.1. u|| Efficiency parameters using tag-probe method in Z → ee events.
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Figure 7.15. u‖ efficiency in full Monte-Carlo Z → ee using the tag-probe
method with the tag electron either in the CC (Red) or the EC (Blue)
region for RunIIa, The probe electron is always in CC region [6].

7.3. Z → ee Comparison with Data

As part of this analysis we have developed a large number of control plots which allow

us to evaluate the quality of our fast Monte-Carlo before making a decision to remove the
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Figure 7.16. u‖ efficiency from Tag and Probe for the data (red) and the
fast Monte-Carlo(black) for RunIIb.

blinding offset from our W boson comparison plots. In lieu of showing all 64 (and their χ

distributions), I will show the recoil transverse momentum, boson transverse momentum,
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Figure 7.17. Transverse momentum distribution of central electrons from
Z boson decays (The red histogram is data, and the blue is our fast simu-
lation).

and electron transverse momentum plots here. These plots relate directly to the variables

which are sensitive to the W boson mass, while our other plots mainly verify that we

describe the data well enough to attempt to describe the W boson decay products which

have different kinematics.
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Figure 7.18. Comparison between the data and fast Monte-Carlo Z boson
transverse momentum distributions. The difference visible in the χ distri-
bution at the low end is a sign that the value of g2 in Resbos needs to be
tuned. We have verified this with an independent high statistics study.
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Figure 7.19. Hadronic recoil transverse momentum from Z boson candi-
dates for data (blue) and fast Monte-Carlo (red).
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CHAPTER 8

Background Estimations

There are three sources of backgrounds to W → eν events. Events where one electron

from the Z boson decay is not properly identified, QCD di-jet events where a QCD jet is

incorrectly reconstructed as an electron, and W → τν events, since the τ may decay into

an electron and additional neutrinos. For the background component from Z → ee and

W → eτ events we determine a background shape, and fraction (described below), and

then add the correctly normalized distribution to the signal from our fast Monte-Carlo

simulation. For the QCD background estimation we rely on a calculation based on the

efficiency and fake rate of electrons and QCD jets respectively to pass our cuts.

8.1. W → τν Background

The background from W → τν events is determined from a Pythia and GEANT

based Monte-Carlo study of these events. The shape of the background is determined by

directly applying our analysis selection cuts to the sample, while the background fraction

is determined as the ratio of the (acceptance × efficiency) of the W → τν sample to pass

our selection cuts to the (acceptance × efficiency) of the W → eν sample to pass our

selection cuts.

(8.1) fτν =

(
Nafter selection

Ngenerated

)
bkg

÷
(

Ngenerated

Nafter selection

)
sig

The W → τν → eννν background fraction is found to be 0.0201817± 0.000059.
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8.2. Z → ee Background

The contribution to the background component from Z → ee events occurs when one

of the electrons either escapes the detector or is incorrectly reconstructed and thus fakes

large missing ET . The largest source of this contribution is the case where one of the

electrons falls into the ICD region. In order to determine the background contribution

due to this effect we identify Z → ee candidate events that pass W → eν selection by

looking for QCD jets in the ICD, or tracks pointing the ICD which are back-to-back in

φ with the EM cluster that survived our analysis cuts. We also require that the 2 object

invariant mass is within a window about the Z boson pole mass, 70 < M(e,Track) < 110

GeV, and 60 < M(e,Jet) < 110 GeV. Both of these selection criteria give compatible

background shapes. In order to determine the background fraction for these events we

determine the efficiency for jet identification using the tag and probe method again where

the probe is a track pointing at the ICD which gives us the total efficiency for finding

QCD jets. The background fraction is:

(8.2) fZ =
εjetN(e, Jet)

NW

,

where εjet is the efficiency for finding QCD jets. fZ is found to be: 1.08± 0.02%

8.3. QCD Background

QCD di-jet events can fake our signal if a jet is incorrectly identified as an electron

and some of the energy in the calorimeter is mis-measured. Although the probability for

this to take place is small the large cross section for QCD at the Tevatron leads to a
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significant contribution to our background. To estimate the QCD background we define

a set of linear equations:

N = NW +NQCD

Ntrk = εtrkNW + fQCDNQCD

where Ntrk represents the number of events which pass our full set of selection cuts,

N is the number of events which pass all our selection cuts except the tight track match

requirement (P(χ2)> 0.01, a hit in the SMT, and track based pT > 10 GeV). εtrk is

the efficiency for an electron to pass the tight track match requirement and fQCD is the

probability that a QCD jet which has passed all our selection cuts except for the track

match requirement, will do so. εtrk is determined using the tag and probe method, as

described earlier. fQCD is determined from a sample of events which have a QCD jet

back-to-back with an EM cluster which has passed our standard selection cuts, except

of course for the tight track match. This object is most likely a QCD jet. fQCD is the

fraction of these events where the ‘EM cluster’ passes the track match requirement. In

order to reduce the possibility that we have selected a real electron from the decay of a

W boson, we consider events with missing transverse energy < 10 GeV when determining

the fake rate. We find:

fQCD = 0.11± 0.01 and,

εtrk = 0.85± 0.0008 (Binomial error only)
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Figure 8.1. The efficiency for finding a track in bins of transverse momen-
tum, determined from Tag and Probe. Above pT of 55 GeV the efficiency
is fixed to its value at 55 GeV which is consistent with the data.

In practice we know that the track matching efficiency is not constant, and in particular

that it varies with transverse momentum. Instead of calculating one global background

fraction we determine the efficiency in transverse momentum bins, where we determine

our efficiency in transverse momentum bins using the Tag and Probe method once again.

The dependence of the efficiency on transverse momentum is shown in figure 8.1. Using

this method we estimate the background due to QCD to be 1.9± 0.08%.
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8.4. Combining the Backgrounds

When fitting for the W Boson mass we begin with two histograms. One consisting

of the data which pass our full set of selection cuts, and one consisting of the output

of our fast Monte-Carlo which provides the shape of the distribution from data without

any backgrounds. Since for the W → τν and Z → ee backgrounds we have a shape and

a normalization relative to the yield of expected signal events, we simply normalize the

histograms correctly and add them to the fast Monte-Carlo prior to the comparison with

data. The QCD background histogram is created bin by bin by solving the matrix of

equations above.

The various background contributions are shown in figure 8.2, correctly normalized

for the standard set of cuts.
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Figure 8.2. Properly normalized background distributions for mT . The
shape and yield determination is described in the test. The black histogram
corresponds to the W → eν background, the red to the QCD background,
and the green to the QCD background.
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CHAPTER 9

Systematic Uncertainties

The uncertainties shown in Table 9.1 are believed to carry over from the previous

analysis [9]:

• The theoretical uncertainty due to the simulation of QED effects.

• The same energy loss model is used and that uncertanty also remains the same.

• The W and Z boson electron energy loss difference uncertainty is due to the

determination of the material in front of the calorimeter, and remains the same.

We have re-evaluated the PDF errors with the more recent CTEQ 6.6M PDF sets, this

will be described below. The uncertainties due to the energy scale and the resolution for

both electrons and hadrons is largely statistical in nature and has inproved substantially

with this larger data sample. The full table of systematic uncertainty from the 1fb−1

measurement [9] is shown below in table 9.1:

9.1. General Method for Evaluation of Uncertainties

The uncertainties are determined using a large ensemble of simulated experiments with

our fast Monte-Carlo for each of the 4 cases in which the parameter being studied is varied

±1σ and ±2σ. We fit for the mass of the W boson for each of these pseudo experiments

using our standard procedure. The difference between the true value of the mass and the

mean resulting value from each of these sets of pseudo-experiments is determined as a

function of the parameter being varied. This dependence is fit to a first order polynomial,
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Source σ(mW ) MeV σ(mW ) MeV σ(mW ) MeV
Mt epT MET

Experimental
Electron Energy Scale 34 34 34
Electron Energy Resolution Model 2 2 3
Electron Energy Nonlinearity 4 6 7
W and Z Electron energy 4 4 4

loss differences
Recoil Model 6 12 20
Electron Efficiencies 5 6 5
Backgrounds 2 5 4
Experimental Total 35 37 41
W production and
decay model
PDF 10 11 11
QED 7 7 9
Boson pT 2 5 2
W model Total 12 14 14
Total 37 40 43

Table 9.1. Systematic uncertainties on the W bosson mass results from
the RunIIa analysis. The dominant systematic uncertainty comes from the
electron energy scale, and this is determined by the statistical power of the
Z boson event sample.

the slope of which is used in the usual error propagation formula:

(9.1) σ2
MW

(X) =

(
∂MW

∂X

)2

σ2
X ,

where ∂MW

∂X
is the slope and σX is the uncertainty on parameter X. In the case that we

need to consider correlations between the matrices we use:

(9.2) σ2
MW

(X1, X2) =

(
∂MW

∂X1

)2

σ2
X1

+

(
∂MW

∂X2

)2

σ2
X2

+ 2σ12

(
∂MW

∂X1

)(
∂MW

∂X2

)

where σ12 is the covariance.
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9.2. Energy Scale and Offset Uncertainty

The uncertainty due to the EM scale and offset parameters are anti-correlated, as

described in chapter 6 the parameters used are:

• αEM = 1.0162 ± 0.0019, and

• βEM = 0.0706 ± 0.0144 GeV with

• σαβ = -0.769

we find: ∂MW

∂αEM
σα = 0.015 GeV, and ∂MW

∂βEM
σβ = 0.0216 GeV. and thus the contribution to

the uncertainty due to the variation in these parameters is:

σMW
(αEM , βEM) = 14 MeV

9.3. EM Resolution Uncertainty

As described in chapter 6 the constant term of the resolution CEM is CEM = 0.0198±

0.0006. The uncertainty on mW due to the error on CEM is 3 MeV.

9.4. Recoil Scale and Resolution Uncertainty

Using the method described above, and the parameters described in chapter 6, we

find an uncertainty due to the modelling of the recoil resolution to be 8.4 MeV, and on

the Recoil Scale to be 16 MeV. Both of these errors seem too large in comparison with

the numbers from RunIIa, and with our expectation for the dependence of the W mass

on the recoil response. This will need to be investigated further. We see that the largest

contributor to this uncertainty is the τhad parameter, which we are able to determine

through studies of energy flow. For the response parameters we have:

•
(
∂MW

∂τ

)
στ = 0.02226
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•
(

∂MW

∂RelScale

)
σRelScale = −0.0085

•
(

∂MW

∂RelOffset

)
σRelOffset = 0.0092

9.5. Efficiency Uncertainty

The most significant efficiency related uncertainty is due to the SET efficiency ratio

correction. Variation of the SET efficiency ratio correction lead to an absurdly large un-

certainty, which must be due to an error in the estimation. Assuming that the uncertainty

due to αEM and βEM is still the dominant EM related uncertainty I will estimate the total

error asuming that the contribution from the SET efficiency in 10 MeV. The reader should

be aware that the uncertainty analysis on this measurement is incomplete.

9.6. Background Uncertainty

The background uncertainty is determined separately for each of the background com-

ponents (W → τν → eνν, Z → ee, and QCD) by varying the the number of events in

each bin by (±σ) and fitting for the W mass. The maximum change to the fitted W mass

is used as the uncertainty due to the background under study. The errors due to each

of the three background components is added in quadrature to give the final background

uncertainty.

The uncertainties due to to each contribution are added in quadrature to give the

total background uncertainty shown below in table 9.2.
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Source σ(mW ) MeV Mt

Z → ee 3
W → τν 2
QCD 1
Total 4

Table 9.2. Uncertainty on W boson mass from transverse mass distribution
due to background contributions

9.7. PDF Uncertainty

The change on the W boson mass due to the variation of the PDF eigenvectors within

their confidence limit provides a determination of the error on the W mass determination

due to the PDF set. The total symmetric error is evaluated as [10]:

Final PDF uncertainty =
1

2

1

1.6

√∑
i

(4MW (+)i −4MW (−)i)
2(9.3)

The factor of 1.6 is included to because we cite the standard 68% confidence level and

the eigenvectors are varied within their 90% confidence level. We find a total Error of 11

MeV. The individual mass variation per PDF error set are shown in figure 9.1.

9.8. Uncertainty Due to Boson pT

Our data points to a value of g2 which is different from the world average value by twice

as much as the uncertainty on g2. We are unfortunately not able to generate enough events

with the preferred value of g2 for this analysis. Since the RunIIa uncertainty propogation

to the W boson mass was based on the world average uncertainty on g2 we choose to

double this from 2 to 4 MeV.
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Figure 9.1. Change in measured W Mass (mi
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W ) as a function of the
PDF error set being used

9.9. Total Systematic Uncertainty

The total systematic and theoretical uncertainty, based on the estimation described

above is conservatively estimated to be 32 MeV with the breakdown of the contributing

factors shown in table 9.3.
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Source σ(mW ) MeV Mt

Experimental
Electron Energy Scale 14
Electron Energy Resolution Model 3
Electron Energy Nonlinearity 4
W and Z Electron energy loss difference 4
Recoil Model 18
Electron Efficiencies 0 / 10.
Backgrounds 2
Experimental Total 27 / 29
W production and
decay model
PDF 11
QED 7
Boson pT 4
W model Total 14
Total 30 / 32

Table 9.3. Systematic uncertainties on the W mass results in the transverse
mass channel. The dominant systematic uncertainty comes from the Recoil
Model, which is unexpected and requires further investigation. The sys-
tematic uncertainty due to electron efficiencies has not been calculated due
to sstrange behaviour on the dependence, which is most likely due to an
error by he analyzer. Total are calculated twice. Once assuming 0 for the
electron efficiency, and once assume the value on 10 MeV, where we claim
that the uncertainty due to the electron efficiencies should not be as large
as that due to the energy scale.
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CHAPTER 10

Result and Outlook

10.1. First Look at W Boson Data

10.1.1. The Control Sample

The comparison between our control sample (the Z boson data) and our simulation re-

produced below in figures 10.1, 10.2, 10.3, 10.4, and 10.5 indicate that we have obtained a

realistic model of the detector response with the limited statistics available to us. These

two points are quite important before we consider a comparison with the W boson data:

• The Z Boson control plots show good agreement with the data – with the following

caveats:

We see a difference in the low transverse momentum region of the Z boson

transverse momentum distribution, which shows signs of being related to an in-

correct determination of the g2 parameter describing the production cross section

at low transverse momentum. This is not unexpected as our determination of g2

was based on significantly smaller data samples.

The width of the ηimb distribution defined in Chapter 6 in the bin of Z

boson transverse momentum between 0 and 1 exhibits a three standard deviation

difference between our simulation and the data.

• We have limited statistics
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Figure 10.1. boson candidate transverse momentum. The data is shown in
red, and the simulation in blue, along with the corresponding χ distribution.

The W boson sample consists of approximately one million, seven hundred

thousand events.

The Z Boson (calibration sample) consists of approximately fifty-five thou-

sand events.

Because of the low Z statistics it is possible that effects that are not signif-

icantly expressed in the calibration sample may be visible in the W boson data

sample.
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Figure 10.2. Z boson candidate transverse momentum for events with trans-
verse momentum less than fifteen GeV. The data is shown in red, and the
simulation in blue, along with the corresponding χ distribution.

10.1.2. W Boson Data with Standard Cuts

A comparison of the W boson data with our fast Monte-Carlo simulation is shown in

figures 10.6, 10.7, 10.8, and 10.9, events were selected with our standard cuts as shown

below:

• A track matched electron passing all quality cuts with pT > 25 GeV and |ηdet| <

1.05

• MET > 25 GeV

• precT < 15 GeV
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Figure 10.3. Electron transverse momentum distribution for Z boson can-
didates. The simulation is shown in blue with the data in red. The χ
distribution is also shown.

• 50 < MT < 200 GeV

The disagreement in the boson transverse momentum distribution (figure 10.6) is expected

and attributed to the g2 parameter. In addition we see a large disagreement in the lepton

transverse momentum distribution below 30 GeV, this is most likely due to an inefficiency

which we have been unable to describe correctly, possible causes are that the E1 SHT27

trigger eats into our signal region, or there is a Tag and Probe bias and our determination

of the efficiency is not sufficient. To address this issue we will, for this preliminary result,

raise the electron transverse momentum cut to 30 GeV.
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Figure 10.4. Recoil transverse momentum for Z boson candidate events, and
the corresponding χ distribution. The blue points indicate our simulation,
and the red points indicate our data.

10.1.3. W Boson Data with Modified Cuts

With our default cuts, our first look at the W boson data shows some striking features,

which were not apparent from our Z control sample. This is not entirely unexpected as

the yield of W events is significantly greater than for the Z events we use to develop our

model. The obvious deficit in the low transverse momentum electron yield motivates us

to raise the electron transverse momentum cut to 30 GeV before fitting for the W mass,

explicitly we now require:
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Figure 10.5. The invariant mass distribution for our calibration sample of
Z boson candidates (red) compared to our simulation (blue), and the χ
distribution.

• A track matched electron passing all quality cuts with pT > 30GeV and |ηdet| <

1.05,

• MET > 25 GeV,

• precT < 15 GeV, and

• 50 < MT < 200 GeV.

The discrepancy with the boson transverse momentum distribution (after the raised cuts,

figure 10.10), which was apparent with our Z sample to a lesser extent, coupled with the

structure in the peak of the electron transverse momentum (figure 10.11) lead us to believe
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Figure 10.6. W boson candidate recoil transverse momentum distribution.
The data is shown in red, and the simulation in blue, along with the corre-
sponding χ distribution.

that the electron transverse momentum or the missing transverse energy (figure 10.12)

distributions are not being reproduced accurately enough in our simulation to be used

to fit for the W Boson mass. Figure 10.13 shows that the electron transverse momen-

tum distribution is particularly sensitive to the generated boson transverse momentum

distribution.

Ideally for a blind analysis we would want to understand the features of these dis-

tributions, and have them all agree before removing the blinding offset. However the
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Figure 10.7. W boson candidate electron transverse momentum distribu-
tion. The data is shown in red, and the simulation in blue, along with the
corresponding χ distribution.

agreement of the best-fit transverse mass distribution to the data is good, and the dis-

crepancies we see are primarily related to the Boson transverse momentum distribution,

which the transverse mass is less sensitive to. (This can been seen from figure 10.14,

which shows that the transverse mass distribution is more sensitive to the response of the

detector than the intrinsic boson transverse momentum distribution). We are investigat-

ing whether a change in the g2 parameter will help to restore consistency of the electron

transverse momentum and missing transverse energy distributions. I will proceed with

the measurement of the W boson mass by fitting the transverse mass distribution.
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Figure 10.8. W boson candidate missing transverse energy distribution.
The data is shown in red, and the simulation in blue, along with the corre-
sponding χ distribution.

10.2. Blind W Mass Result

The true value of the mass of the W boson (as determined from our template fit to the

data) has been hidden from us by the addition of an unknown offset to the result returned

by the fit algorithm. This is done to remove any bias on the part of the analyzers working

on the experiment. For completeness we include the value (mass plus blinding offset)

returned from our fitter. The fit range in 65 to 90 GeV in mT . We find a (blinded) mass

of M(W)=81.508 ± 0.013 (stat) ± .029 (syst – estimated) ± 0.014 (Theory) GeV with a

χ2/NDF = 46/51 from the W transverse mass distribution (figure 10.15).
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Figure 10.9. W boson candidate transverse mass distribution. The data is
shown in red, and the simulation in blue, along with the corresponding χ
distribution.

10.3. Un-Blinded W Mass Result

Removing the blinding offset we have a measurement for the mass of the W boson:

• M(W)=80.425 ± 0.013 (stat) ± .029 (syst – estimated) ± 0.014 (Theory)

The total uncertainty (combined in quadrature) is 35 MeV.

10.4. Conclusion and Outlook

A presentation by Jan Stark [43] to the DØ collaboration about the RunIIa W mass

measurement states “This is not a simple redo of the DØ RunI analysis,” and proceeds
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Figure 10.10. This comparison between the W boson data (in red) and our
fast Monte-Carlo (plus background) (blue) shows that we do not properly
describe the low transverse momentum region.

to describe the difficulties involved in the measurement. This analysis was intended to

be a simple redo of the DØ RunIIa analysis, with larger data samples helping drive down

our uncertainties. There can be no doubt that this analysis bears more in common with

the RunIIa analysis than the RunIIa analysis does with the RunI analysis. The change

in the environment at the Tevatron has been significant enough to require more than a

‘simple redo’ approach. We have shown however that DØ is extremely close to having an

updated measurement of the W boson mass. While the discrepancy in the low tail of the

electron transverse momentum distribution will possibly hold up a publication, For the
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Figure 10.11. The electron transverse momentum distribution for W data
(blue) and out fast Monte-Carlo (with background). The visible structure is
related to our SET efficiency. As shown in figure 10.10 the boson transverse
momentum distribution is not well reproduced by our simulation, and thus
we do not expect the electron transverse momentum distribution to match.

purposes of this work (assuming that the SET efficiency error determination is due to a

minor oversight) we are a few thousand CPU hours away from a complete measurement.

Combination of this result with previous measurements leads to the following averages:

• Tevatron Average – 80.423 ± 0.025 GeV

• World Average – 80.406 ± 0.0020 GeV

We expect a near future publication worthy result from the DØ collaboration which

will carry the Tevatron average uncertainty below 25 MeV, and the world average below 20
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Figure 10.12. The missing transverse momentum distribution of data (red)
and our signal plus background (blue). The difference between the two
distributions is too large for us to attempt a W mass measurement from
this distribution.

MeV, hopefully increasing the tension between indirect and (the lack of) direct evidence

for the Higgs boson. As DØ accumulates data we aim for a single experiment measurement

with an uncertainty close to 20 MeV.
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Figure 10.13. A simulated electron transverse momentum distribution. The
black histogram describes a boson with no transverse momentum distribu-
tion or detector resolution effects. The red histogram describes a boson
with a realistic transverse momentum distribution. The yellow histogram
includes the effects of a realistic transverse momentum distribution and de-
tector resolution. This illustrates that the electron transverse momentum
distribution is sensitive to the boson transverse momentum distribution.
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togram describes a boson with no transverse momentum distribution or
detector resolution effects. The red histogram describes a boson with a
realistic transverse momentum distribution. The yellow histogram includes
the effects of a realistic transverse momentum distribution and detector res-
olution. This illustrates that the transverse mass distribution is sensitive to
the resolution of the detector, but not very sensitive to the boson transverse
momentum distribution.
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Figure 10.15. The best fit template from our fast Monte-Carlo (in blue)
compared the data. Although there is structure in the χ distribution the
agreement is good. The fit is performed over the range 65 – 90 GeV.
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