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ABSTRACT

Search for Supersymmetry Using Diphoton Events
in Proton-Antiproton Collisions
at a Center of Mass Energy of 1.96 TeV. (May 2010)
Eun Sin Lee, B.S., Korea University, Seoul; M.S., Texas A&M University

Chair of Advisory Committee: Dr. David Toback

This dissertation presents the results of a search for supersymmetry in proton-
antiproton collisions with a center of mass energy of 1.96 TeV studied with the Collider
Detector at Fermilab. Our strategy is to select collisions with two photons in the final
state that have the properties of being the decays of very massive supersymmetric
particles. This includes looking for large total energy from the decayed particles as
well as for the presence of particles that leave the detector without interacting. We
find no events using 2.6 fb~! of data collected during the 2004-2008 collider run of the
Fermilab Tevatron which is consistent with the background estimate of 1.440.4 events.
Since there is no evidence of new particles we set cross section limits in a gauge-
mediated supersymmetry model with Y} — ’yé, where the X! and G are the lightest
neutralino and the gravitino (the lightest supersymmetric particle), respectively. We
set limits on models as a function of the ) mass and lifetime, producing the world’s
most sensitive search for ¥ by excluding masses up to 149 GeV/c? for XV lifetimes

much less than 1 ns.
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“The roots of education are bitter,

but the fruit is sweet”

- Aristotle (384 BC-322 BC)
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CHAPTER I

INTRODUCTION

A. Introduction

A ‘Standard Model’ is a theoretical framework built from observations that predict
and describe old data and make quantitative predictions about outcomes of new ex-
periments. For example, Mendeleev’s table of the elements was an early example of
this type of structure; from the periodic table one could predict the properties of
many hitherto unstudied or undiscovered elements and/or compounds. Nonrelativis-
tic quantum theory is another Standard Model that has made predictions that are
confirmed by countless experiments. Like its precursors in other fields, the Standard
Model of particle physics [1], hereafter denoted the SM, has been enormously suc-
cessful in predicting a wide range of phenomena and in correlating vast amounts of
data.

However, a major aspect of the SM is as yet untested, namely the origin of elec-
troweak symmetry breaking [1]. The electroweak interaction is the unified description
of two of the four fundamental interactions of nature: electromagnetism and the weak
interactions. Although these two forces appear very different at everyday low ener-
gies, the theory models them as two different aspects of the same force. Above the
unification energy, on the order of 100 GeV, they merge into a single electroweak
force. The corresponding force carriers, the gauge bosons, are the photon of electro-

magnetism and the W and Z bosons of the weak force. In the SM, the weak gauge

This dissertation follows the style of Physical Review D.



bosons get their mass from the spontaneous symmetry breaking of the electroweak
symmetry, caused by the Higgs mechanism [2].

The Higgs mechanism is just the simple ansatz that a gauge invariant theory
undergoes spontaneous symmetry breaking as its potential develops a non-trivial
value (non-zero vacuum expectation value) for the Higgs scalar field at its minimum.
Unfortunately, the introduction of this Higgs scalar field has problems. The most
famous is the infamous “hierarchy problem” [3], which describes the calculation of
the Higgs mass which must take into account large quantum corrections from SM
particles that can diverge. However, because the Higgs self-interaction terms are
proportional to Gpm?, where G;l/ ? & 300 GeV is the Fermi constant and the my
is the Higgs boson mass, it has frequently been remarked that a large Higgs boson
mass implies a strong interaction among Higgs bosons. It has been emphasized that
the Fermi constant is a natural mass scale of nature and that, if the Higgs self-
coupling is strong, the effective ultraviolet cutoff would be at this energy [4]. It has
also been shown that for Higgs boson masses exceeding approximately this energy
the perturbation expansion of weak interactions may well break down [5]. These
and other theoretical reasons [6, 7| suggest that the Higgs boson mass is most likely

bounded by [8]:

1/2
2
mn< [V2) L vy (1.1)
3Gy

It is not clear how large quantum corrections to the Higgs mass can exist and leave
a Higgs mass below a TeV. Moreover, a strongly interacting scalar field theory is
not self-consistent as a fundamental theory: the coupling constant grows with energy
and therefore any finite coupling at high energy implies a weakly coupled theory
at low energy. There is, therefore, compelling reason to believe that the SM Higgs

mechanism is incorrect or incomplete, and that electroweak symmetry breaking must



FIG. 1: The one-loop quantum corrections to the Higgs squared mass parameter m%{,
due to (a) a Dirac fermion f, and (b) a scalar S. In supersymmetric extensions of the
SM the contributions to the mass corrections produce a near cancellation of the Higgs
boson quadratic mass correction due to the equal number of fermion (a) and scalar (b)
loop Feynman diagrams for each particle type.

be associated with fundamentally “new” physics beyond the SM.

A remarkably elegant solution for the problem of the huge quantum corrections
to the Higgs mass from SM particles can be overcome by extending the symmetry of
the theory to one that relates gauge particles (bosons) to matter particles (fermions),
known as supersymmetry (SUSY) [9]. In other words, the number of particles that
can exist in nature is doubled; for every boson that currently exists in nature there
is a fermionic “version”. Similarly, for every fermion in nature there is a bosonic
“version”. Since quantum corrections from fermions and bosons have opposite signs
in the loop corrections to the Higgs mass, as shown in Figure 1, many of them cancel
in a supersymmetric theory; exactly if the masses are equal, and approximately if the
partners are less than the TeV scale.

The most striking implication of the SUSY hypothesis is that each of the known
particles, each of the quarks, leptons and gauge bosons, must have an associated

partner, a “superpartner”, that in principle should be observable. However, despite



multiple searches for these particles [10], none of the superpartners have been directly
observed. These searches constrain the masses of most of them to be above the
100 GeV range or to have very weak couplings to the SM particles. On the other
hand, for the Higgs mass corrections to be small (as would be expected), the sparticles
are likely to have a mass scale less than the TeV range which should make them
observables in high energy collision at current collider experiments.

On the other side of the size scale spectrum, experimental observations of the size
scales of cosmology also give reason to believe that a revision of the SM is necessary.
On cosmological scales, the structure of the cosmic microwave background suggests
that 22% of mass of the universe is missing, called “dark matter”, and favors the
existence of a non-baryonic particle as a dark matter candidate [11]. While such a
particle is not predicted by the SM, SUSY models provide excellent candidates.

To understand more how some of the problems at the biggest scales can be
impacted by physics at the smallest scales requires an understanding of the ways that
SM particles are likely to interact with SUSY particles. One of the primary features
of many supersymmetric theories is that the existence of all these new particles could
allow for the SM decay of the proton via SUSY loops. Since this has not yet been
observed in nature, it has been postulated (and typically assumed) that there is a
conservation law, typically known as “R—parity”, which states that the number of
SUSY particles in an interaction is conserved. This protects the proton lifetime and
predicts that the lightest SUSY particle is stable [9]. The lightest SUSY particle,
if neutral, would be copiously produced in the high energy collisions of the early
Universe or as part of the decays of the other, heavier, SUSY particles. It would be
around today because it is stable. Thus, SUSY could both provide a dark matter
candidate and help solve the Higgs problems.

The SUSY hypothesis can be tested in particle collider experiments which at-



tempt to directly produce and observe sparticles in collisions. If the lightest SUSY
particles are the dark matter, then they are likely to be weakly interacting and neutral
and if produced in a collision they are likely to leave the detector without interacting.
These particles can be identified by looking for a momentum imbalance in the set of
measured final state particles that result from a collision, which is often referred to
“missing energy (Fr)” [12] (described in detail in Chapter IV). This technique has
been used for many years to infer the presence of other neutral weakly interacting
particles such as the SM neutrinos. Since these particles are so weakly interacting it
is unlikely they would be produced directly. However, SUSY models predict a large
number of other heavy exotic, yet unobserved, particles that could be more readily
produced (and always in pairs) and then detected by their decays into both visible
and non-interacting particles. The essence of SUSY searches at colliders is to look
for evidence of the production of SUSY particles which decayed into multiple, high
energy particles, two of which left the detector without interacting, thus producing
Fr. An observation of events with large amounts of Jr and other high energy SM
particles would be a golden signature.

In late 1990s an unusual collision (“event”) was observed and extensively stud-
ied [13] during the Run I of the Fermilab Tevatron, a proton-antiproton (pp) collider,
with a center-of-mass energy (y/s) of 1.8 TeV. This event produced two electron
candidates, two photon candidates and missing energy (‘eeyyFr’). It was calcu-
lated to have a very tiny probability to come from SM processes. An attempt to
understand the event in terms of known SM particles led to the speculation that
the electrons and Fr came from WW — evev production. Thus, the event would
be WW~y — eeyyfr, either as a rare fluctuation from SM predictions or some
anomalous production. While SM WW~~ production should produce roughly 10=°

such events in the data, the anomalous W W~y production hypothesis was tested



quantitatively [13]. The anomalous WW~~ production would produce many more
WW~yvy — qGqqyy events where the quarks are identified as “jets” produced by their
hadronization of the quarks since the branching fraction of WW —jets is much larger
than WW — evev. Since no anomalous production of these events was observed, it
was concluded that the Fr was unlikely to be from a SM neutrino from W — ev.
The Fr could thus be from some new particle other than the left-handed neutrino.
The lightest supersymmetric particle, if neutral, is a natural candidate.

To provide a SUSY explanation for this potential experimental hint we note that
a special version of SUSY, known as Gauge Mediated SUSY Breaking or GMSB for
short, predicts photons in the final states along with a neutral dark matter candidate
that could account for the energy imbalance [14, 15]. These models will be described in
the next section. A major feature of this model is that it predicts the production and
decay of heavy, supersymmetric electrons. Each supersymmetric electron would then
decay to an electron and a “neutralino (X?)”, which is described more in Section 1.B.2,
but can be thought of as a supersymmetric photon for now. The X? then decays into
a photon and a “gravitino (é)” which is the supersymmetric partner of the as-yet-
unobserved graviton. The gravitino is the dark matter candidate as the lightest SUSY
particle and is weakly interacting, neutral and stable. As such, it leaves the detector
and causes Fr. In this case the eeyyfr event could be the production and decay of
a pair of supersymmetric electrons, ¢, which both decay via € — e + X} — e + 7@.

As described so far theoretical motivations, dark matter observations and the
observation of the ‘eeyyfr’ candidate event provide compelling rationale to search
for the production and decay of new heavy, neutral SUSY particles that produce
events with final state photons with Fr in collider experiments. There are a number
of other SUSY theories that have these properties [16], but we focus on GMSB since

it is currently the most compelling. In addition it provides a natural framework for



more model-independent search strategies. Within this model, there are a number
of free parameters in the theory, including the lifetime of the lightest neutralinos.
Each scenario produces a number of different phenomenological features that can
produce distinct final states that need to be searched for in an experiment [15, 17].
Thus, a number of searches for both high lifetime (750 Z 5 ns) [18, 19] and low
lifetime [13, 18, 20, 21] neutralinos have already been done. Since at the time of this
analysis the Tevatron was the highest energy collider we have taken the opportunity
to search for the production of a pair of supersymmetric particles.

This dissertation presents the world’s most sensitive search for low-lifetime Y9
GMSB models by looking at Tevatron collisions for the pair production of SUSY
particles, each of which decays into SM particles as well as a neutralino which decays,
in turn, to a photon and a gravitino. We search directly for evidence of anomalous
production of events with two photons and missing energy in association with a large
amount of energy from other SM particles. In this search we focus on the case
where the lifetime of the XY is small, less than 2 ns. In doing so we are the first to
directly take into account the possibility of the X} having a non-zero lifetime, but
still showing up with the two photon final state. This analysis significantly extends
the search sensitivity to these models, compared to other previous Tevatron and LEP

searches [18-21], and sets the world’s best limits. We begin with a more complete

description of the theoretical underpinnings of this search.

B. Theory

This section provides a more detailed description of supersymmetry to help motivate
our search. We begin with a description of the concepts and main features of the

minimal supersymmetric standard model (MSSM) [9], and in the next sections we



outline the phenomenology of the particular version considered, Gauge Mediated
Supersymmetry Breaking. Finally, we use the results of previous searches and other
constraints to help point to the most favored search region at the Tevatron. These
include constraints from cosmology for GMSB [15], astronomical observations of the

dark matter [11] and non-observations from previous collider experiments [10].

1. Supersymmetry

Supersymmetry is the idea that at the fundamental level the basic laws of nature
are invariant if fermions and bosons are interchanged in the theory (i.e. in the La-
grangian). In the SM quarks and leptons (both fermions) are the matter particles.
The particles that mediate the forces are the ‘gauge bosons’, v, W, Z, g. Another
particle, the Higgs boson, is responsible for giving both fermions and bosons their
masses [2]. Within the SM fermions and bosons are treated very differently and
a SUSY transformation turns a bosonic state into a fermionic state, and vice versa.
The operator () that generates such transformations must be an anticommuting spinor
such that

()|Boson) = |Fermion), Q|Fermion) = |Boson). (1.2)

The single-particle states of a supersymmetric theory fall into irreducible represen-
tations of the SUSY algebra, called supermultiplets. Each supermultiplet contains
both fermion and boson states, which are commonly known as superpartners of each
other. While a combination of a two-component Weyl fermion (left-handed and right-
handed) and its own complex scalar partner is called a chiral or matter multiplet, the
other combination of spin-1 vector gauge bosons and their fermionic partners are
called gauge or vector supermultiplets. The minimal, phenomenologically viable type

of supersymmetric model is sometimes called N = 1 SUSY, MSSM [9], where N refers



to the number of supersymmetries.

The common names for the spin-0 partners of the quarks and leptons are labeled
by prepending an “s”, for scalar, and generically are called “squarks” and “sleptons”,
or sometimes “sfermions”. Similarly the fermionic partners to the SM gauge bosons
get an “ino” suffix, and are called “gauginos”. The symbols for the sfermions and
gauginos are the same as for the corresponding fermion and gauge boson, but with
a tilde (7)) used to denote the superpartner of a SM particle. These chiral and
gauge supermultiplets make up the particle content of the MSSM. In addition to
the known particles of the SM, in the MSSM, there are two complex Higgs doublets
H, = (H,HY) and H, = (HJ, H;), where the subscript u denotes for coupling
to charge +2/3 up-type quarks (up, charm, top) and d to charge —1/3 down-type
quarks (down, strange, bottom) and to the charged leptons, rather than just one in
the ordinary SM. There is also the gravitino which is postulated to be the SUSY
partner of the as yet undiscovered graviton which, from astronomy observations and
General Relativity, is believed to be spin 2 [22]. The particle contents of the MSSM
are shown in Table I.

In the chiral supermultiplets of the MSSM the spin-0 fields are complex scalars,
and the spin-1/2 fields are left-handed two-component Weyl fermions. The gauge
supermultiplets have the W°, B° gauge eigenstates mix to give mass eigenstates Z°
and v and the corresponding mixtures of the WO and B° are called the zino (20)
and photino (7), respectively. The higgsinos and electroweak gauginos mix with
each other because of the effects of electroweak symmetry breaking. The neutral
higgsinos (H?, HY) and the neutral gauginos (B, W°) combine to form four mass
cigenstates called “neutralinos”. The charged higgsinos (H.", I:Td’) and winos (/V\V/JF,
W*) mix to form two mass eigenstates with charge 41 called “charginos”. These

are denoted as the neutralino and chargino mass eigenstates by Xy (i = 1,2,3,4)
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and X7 (i = 1,2). By convention, these are labeled in ascending mass order, so that
mgp < mgy < Mg < mzo and Mgt < Mgk In the MSSM there are 32 distinct
masses corresponding to undiscovered particles, not including the gravitino, which
are summarized in Table II, along with their gauge eigenstate particles.

The general superpotential of the MSSM contains terms where the baryon and
the lepton numbers are violated. Since both baryon and lepton number conservation

have been tested to a high degree of precision [10], in order to forbid this, each particle

is assigned a quantum number, R—parity [23], which is defined as
R = (—1)B-D+2s (1.3)

where B (L) is its baryon (lepton) number and s is the spin of the particle. This
quantity is constructed so that R = +1 for the particles of the SM (including the Higgs
bosons) and R = —1 for their SUSY partners. The R acts differently on particles
of different spin in the same supermultiplet, so R—parity is a discrete symmetry. If
R—parity is conserved, then there can be no mixing between the SM particles and
the sparticles. The R—parity conservation has extremely important phenomenological

consequences [23]. They include:

e The lightest supersymmetric particle, LSP, must be absolutely stable by con-
servation of energy and R—parity. If the LSP is electrically neutral, it interacts
only weakly with ordinary matter, and so can make an attractive dark matter

candidate for the observed missing mass of the universe [11].

e Each sparticle other than the LSP must eventually decay into a state that
contains an odd number of LSPs (usually just one) unless there are other sym-

metries in nature.

e In collider experiments between SM particles, sparticles can only be produced
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TABLE I: The particles of the MSSM. In chiral supermultiplets the spin-0 fields are
complex scalars, and the spin-1/2 fields are left-handed two-component Weyl fermions.
In the gauge supermultiplets the W°, B° gauge eigenstates mix to give the mass eigen-
states Z° and « and the corresponding mixtures of W and B are called zino (2 %) and
photino (7).

Chiral supermultiplets

Names spin 0 spin 1/2
squarks, quarks (U, dy) (ur, dp)
(x3 families) u, ul,

&, d,
sleptons, leptons (ver) (vep)
(x3 families) e el
Higgs, higgsinos (HI HY) (H} HO)

(HY Hy)  (HY Hy)

Gauge supermultiplets

Names spin 1/2 spin 1
gluino, gluon g g
winos, W bosons W+ Wo W= wo
bino, B boson B° B°

Other MSSM particles

Names spin 1/2 (3/2)  spin 2

goldstino (gravitino), graviton G G




TABLE II:

12

The gauge and mass eigenstate particles in the MSSM (with sfermion

mixing for the first two families assumed to be negligible). Note that the spin 1/2
goldstino becomes the longitudinal components of the spin 3/2 gravitino, superpartner
of the spin 2 graviton. Couplings of the spin 1/2 goldstino components are only directly
relevant to collider phenomenology for a gravitino which is much lighter than the energy
scale of a collider experiment. In addition, the spin 3/2 components only couple with
gravitational strength and are not relevant to the collider phenomenology [24].

Names Spin  Gauge Eigenstates Mass Eigenstates
Uy g dp, dp (same)
squarks 0 SL Sr €L Cr (same)
t tr by b Ty Ty by by

€1 €p Ve (same)
sleptons 0 B AR Uy (same)
TL TR Ur T T2 Uy

neutralinos  1/2 B WO ﬁg ﬁg XY X9 XS XY
charginos  1/2 W Hf f[d_ X Xs
gluino 1/2 g (same)
goldstino  1/2 G (same)

(gravitino)

(3/2)
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in pairs, which will always decay into a pair of LSP’s plus other SM particles

that can be identified.

As previously noted, none of the superpartners have been discovered as of this
writing. If SUSY were a perfect symmetry then the SUSY particles would have
masses that are exactly equal to the corresponding SM particles (like particles and
anti-particles) and these particles would have been easily detected long ago. Clearly,
therefore, SUSY is a broken symmetry in the vacuum state chosen by Nature [9].

The mechanism of SUSY breaking is not yet understood. From the example of
spontaneous symmetry breaking in the SM, it is reasonable to expect that in the
MSSM there is a field whose vacuum expectation value leads to the SUSY breaking.
However, in practice, this has not worked for theoretical reasons [9]. A solution to
this difficulty is to construct models of spontaneously broken SUSY using a different
strategy from the one that we use for electroweak symmetry breaking in the SM. A
popular and well motivated choice is to break SUSY by introducing a new “hidden
sector”, which is a collection of yet-unobserved quantum fields and corresponding
hypothetical particles at a much higher mass scale that do not directly interact with
the leptons, quarks, or gauge bosons. In this way SUSY breaking relies on a weak
coupling of the hidden sector to the observable MSSM particles (in the “visible” sec-
tor) to share some interactions that are responsible for mediating the SUSY breaking
terms. What is particularly appealing about this solution is that if SUSY is sponta-
neously broken in this hidden sector, which has no direct coupling to quarks, leptons,
and SM gauge bosons, it avoids quadratic divergences of the SUSY breaking terms.
This is called a “soft” SUSY breaking interaction. We next turn to the mechanism of

SUSY breaking as it has a direct impact on the observables in collider experiments.
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2. Gauge Mediated Supersymmetry Breaking

There have been two main competing proposals for what the mediating interactions
might be. The first (and historically the more popular) is that they are gravitational in
nature, often called gravity-mediated supersymmetry breaking or “Supergravity” [25].
A second possibility is that the interactions for SUSY breaking are gauge-mediated
using the ordinary SM gauge interactions. This is known as Gauge Mediated Super-
symmetry Breaking or GMSB [14]. While there have been many searches [10] for
both types of models, and others, all searches have yielded null results. The bulk of
direct searches for SUSY in collider experiments have focused on the Supergravity
type models since they provide a heavy (cold) dark matter candidate [26].

Theories with Gauge Mediated SUSY breaking [9, 14, 15] provide an important
alternative to the supergravity scenario. These models have the significant advantage
that they allow for a natural suppression of flavor violations in the SUSY sector and
have very distinctive phenomenological features as they produce photons from decay

of X{ — 7@ , for the reasons described below.

a. Theory and Phenomenology

In general, GMSB arises if the breaking mechanism originates in a hidden sector
and is then “mediated” to the visible MSSM sector by some massive fields that also
transform under the SM gauge groups (see Figure 2). These heavy fields are referred
to as messengers, with the messenger masses determining the messenger scale M,,.
The breaking mechanism causes fields that couple to the messenger fields to acquire
a SUSY breaking vacuum expectation value, (F'). The messenger fields thus become
massive and give masses to the MSSM fields dynamically via loop corrections. If

the mass scale of the hidden sector is given by A, then the visible MSSM sector
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iupesymms:u.ry Flavor-blind MSSM
reaking origin NV\/\/\J (Visible sector)
(Hidden sector) interactions

FIG. 2: A schematic of the structure for (flavor-blind) gauge mediated supersymmetry
breaking.

superpartner masses are of the order of

F A?
e~ (14)

where /F is the fundamental (“intrinsic”) SUSY breaking scale. In principle the
messenger scale can be anywhere between just above the electroweak scale up to the
Plank scale [14]. In GMSB models a messenger scale that is significantly below the
Plank scale is generally preferred to be less than 10'® GeV/c? to realize SUSY breaking
at low energy. On the other side, the messenger scale is also required to be greater
than v/F to avoid flavor breaking [14]. Thus, if M, and VT are roughly comparable
then the scale of SUSY breaking can be as low as about v/F ~10 TeV/c?, while the
messenger mass scale is M, ~100 TeV/c? [27]. In this case the gravitino mass is well
below the MSSM superpartner masses and electroweak symmetry breaking results in

the rest of the sparticles of the MSSM having TeV scale masses given by

2
F VF
=L o[ YT ) ey 1.5
N T (100 TeV) ¢ (1.5)

where Mp = 2.4 x 10'® GeV is the Plank mass. This would keep the Higgs mass, due
to the loop corrections described previously, both finite and at electroweak masses
(below a TeV). Since all the sparticles masses would be below a TeV this has the
advantage to experimentalists that they are detectable at the Tevatron.

There are both fundamental and phenomenological differences between Super-
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gravity and GMSB. Many are related to the problem of how they solve the problem of
lepton flavor or quark flavor violating processes such as p — ey decay, K < K oscil-
lations, or b — s decay [24]. Most of the new parameters in the soft SUSY breaking
terms comply with the observations of these flavor mixing processes that are severely
restricted by experimental data. Supergravity models have trouble keeping these pro-
cesses at low levels [25]. Perhaps the most appealing theoretical feature of GMSB,
therefore, is the natural lack of SUSY contributions to flavor violation. This arises
because the leading contributions to visible sector soft SUSY breaking involving the
squark and slepton superpartners depends only on gauge couplings, which do not dis-
tinguish between the three generations of leptons and quarks. All soft SUSY breaking
parameters are then automatically flavor independent or aligned with the quark or
lepton Yukawa couplings, which are the only relevant sources of flavor violation, as in
the SM. This is generally possible if the messenger scale, M,,, is well below the flavor
violating scale, which is otherwise expected to be as large as the Plank scale. But
with high-scale SUSY breaking arising from Plank scale operators, as in supergravity
models, no separation of the messenger and flavor scales is possible and it is difficult
to enforce a symmetry in the high energy theory that can prevent flavor violation in
the visible sector soft SUSY breaking parameters [14]. Even with GMSB, however, if
the messenger scale is not too far below the flavor scale, this presents the possibility
of observing small lepton flavor violation with NLSP sleptons [28]. The bottom line
is that while there are many advantages and disadvantages of GMSB it provides a
compelling theory to search for in data in addition to the fact that it provides a pos-
sible explanation for a number of experimental observations which may or may not
be artifacts. We next move on to phenomenological studies of GMSB at the Fermilab

Tevatron.
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b. The Phenomenological Model Line

As there are many different versions of GMSB models we consider a minimal GMSB
model in this analysis. While the minimal models are described by only a few pa-
rameters, it is useful to reduce the number of parameters even further by making well
motivated assumptions about relationships between them. In particular, if we can
find relationships that keep the phenomenology to be similar over large portions of
the parameter space this is very convenient from an experimental stand point and
ideally the model can be parameterized linearly with one or two parameters which
are well correlated with observables. A particular combination of parameters that
produces a single linear parameterization is known as a “model line”. In order to
understand our discovery sensitivity and to simplify the search process for a collider
experiment it is useful to introduce this notion of a “model line” and to have one of
our parameters be the mass of the lightest neutralino, mgo. We will allow a second
parameter to vary to retain more inclusiveness, the lifetime of the lightest neutralino,
TR0

The minimal GMSB model is useful for phenomenological studies since the model

is well specified in terms of six free parameters, which can be related using a model

line for the masses. Their meaning and importance can be summarized as follows [14]:

e A: This parameter describes the mass scale of the visible sector SUSY breaking.
As such it sets the overall mass scale for all the MSSM superpartners (see
Eq. 1.4). For superpartners with masses at the electroweak mass scale we find
this parameter is A ~O(100 TeV)/+/N,,, where N,, is the number of messenger
generations. To first approximation, all of the MSSM superpartner masses scale

linearly with A.

e N,,: This is the number of messenger generations. The gaugino masses scale
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like the number of messenger generations, N,,, while the squark and slepton
masses scale like y/NV,,,. Phenomenologically, for low values of N,,, a neutralino,
XY, is the next-to-lightest SUSY particle (NLSP), while for larger values a right-

handed slepton, ZR, is the NLSP.

M,,: The messenger scale that specifies the mass scale at which the MSSM
sparticles obtain their masses radiatively from gauge interaction with the mas-
sive messenger fields. The electroweak scale and all of the sparticle masses are
a function of M,,, but depend only on its logarithm. We only consider models
with M, > A since only these models avoid flavor breaking in the messenger
sector, which is one of the advantages of GMSB. A second constraint we impose
is that M,, < 10'% GeV so SUSY is broken at low energy and helps solve the

hierarchy problem.

tan #: The ratio of MSSM Higgs vacuum expectation values. For our purposes
we only consider values in a range 1.5 < tan 3 < 60. The lower limit is from
limits on light CP-even Higgs scalars, which are excluded by the LEP experi-
ments [29]. Large value of tan 3 yield a 7 slepton which is significantly lighter
than the other sleptons [14] and can be the NLSP which would remove the

%? — yé final state so we ignore it here.

sgn(p): The sign of Higgs and Higgsino supersymmetric mass parameter g
which appears in the chargino and neutralino mass matrices. This is correlated
with the sign of the MSSM correction to the anomalous magnetic moment of

the muon, g — 2, which is favored to be positive at the 3o level [30].

Cg: The ratio of the messenger sector SUSY breaking order parameter (F) to

the intrinsic SUSY breaking order parameter (F). This controls both the G
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mass and the NLSP lifetimes since the NLSP lifetime scales like C’%.

In this analysis we consider a minimal GMSB model and choose to look at ver-
sions with an Y0 NLSP that decays via X! — ~vG with a branching ratio of ~100% to
maximize the search sensitivity. As there are many GMSB parameter combinations
that match this phenomenology, representative model lines have been identified that
cover specific characteristics of SUSY model (e.g., GMSB models with an Y NLSP)
with only one free parameter that sets the sparticle masses and one parameter that
sets the NLSP lifetime. We choose this analysis to follow the Snowmass Points and

Slopes (SPS) model line 8 [31], which is:

M, = 2A
tang = 15
sgu(p) = 1

N, = 1

where A determines the gaugino and sfermion masses and Cgz controls the G mass
and ! lifetime; both are allowed to vary independently. This parametrization has
been used in multiple searches at the Tevatron and at LEP.

For this model line the X? is the NLSP and the gravitino is the LSP. Taking these
model parameters is the equivalent of taking the mgo and Ty, as free parameters,

which we do for clarity of presentation and for use for future model builders. As

calculated in [15] the X7 lifetime, 750, is given by

5
100 GeV meg \2

~ p— . . 1.

s ¢ ( Mo ) (1 keV) s (1.6)

where C' = 69.33, with mg in keV and mg in GeV.

In the next sections we consider further constraints to help us focus our search.
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In particular, we consider constraints from collider experiments, astronomy and cos-
mology, especially using the assumption that the gravitino is the dark matter. Finally,
we discuss the phenomenology we would expect to observe from proton-antiproton

collisions with /s = 1.96 TeV at the Fermilab Tevatron.

c. Cosmological Constraints on GMSB

As described earlier, if R-parity is conserved then the lightest supersymmetric particle
(LSP) will be absolutely stable. This conclusion has an important implication for
the relation of SUSY to cosmology [27] and observed astronomical observations [11].
Many astronomical observations of dark matter over the last 40 years can be explained
by the presence of enormous amounts of invisible, weakly interacting particles. In the
past few years, measurements of the cosmic microwave background have given a new
source of measurement of the dark matter density in the Universe which has been
interpreted multiple ways [11]. Since this data comes from an era in the early universe,
before the formation of any structure, it argues strongly that the invisible matter is
not made of rocks or brown dwarfs but is actually a new, very weakly interacting form
of matter. These measurements also determine quite accurately the overall amount of
ordinary matter (4.6+0.1%) and dark matter (23.3+1.3%) in the universe (the rest of
the universe (72.1+1.5%) is believed to be dark energy). Evidence from experimental
cosmology has now solidified to the point that, with some plausible assumptions, the

dark matter density, Q2pyr, is measured to be
Qpumh? = 0.110 £ 0.006 (1.7)

where h is the Hubble constant in units of 100 km sec™! Mpc™! and Qpy is the average
energy density in non-baryonic dark matter divided by the total critical density that

would lead to a spatially flat and homogenous universe.
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In GMSB models where R-parity is conserved the G is stable and important
upper and lower bounds come from its contribution to the energy density [14]. If
gravitinos are in thermal equilibrium in the early universe and freeze out at the

temperature T, their contribution to the present energy density, {25, is given by [32]

~ T 100
O-h2 = G 1.
o = o |7 ()

where mg is in keV and ¢*(T%) is the effective number of degrees of freedom at
Ty, which is typically between 100 and 200 in a supersymmetric model [33]. This
produces an upper bound on the gravitino mass as only mgz < keV would not lead
to overclosure of the Universe (causing it to collapse after a short time) [34]. In
this case there is no need for a mechanism of late entropy production required to
dilute the gravitino abundance which would otherwise cause an overly large and
unobserved relic density [35]. On the other side, if the G’s are t0o light then despite
their small interaction strengths there would be so many of them that they could
destroy the nuclei produced during the Big Bang Nucleosynthesis and can lead to
a cosmic microwave background that is inconsistent with observations [36]. Taking
all these things together, gravitinos could be the dark matter and give the dominant
contribution to the present energy density from Eq. 1.7 if m is about a keV. Thus,
gravitinos would behave as “warm” dark matter since they are usually produced as
relativistic final states in the decay of heavy particles and may never reach thermal
equilibrium, keeping most of their initial energy! [35].

For the purpose of this analysis we consider the G mass range, 0.5 < mg <
1.5 keV /c?, to be the cosmology favored region. Following Eq. 1.6 we have a relation
between the neutralino mass and lifetime as shown in Figure 3. This shows the region

1Cold dark matter candidates are usually produced by scattering in the thermal
bath, then reach equilibrium and finally decouple after they become non-relativistic.
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of X! mass and lifetime that are consistent with these constraints and the model line

used in this search.

Cosmology favored region with 0.5<m, <1.5 keV/c?
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FIG. 3: The cosmology favored region, where the G could be a warm dark matter
candidate, in the Y mass and lifetime region for the model line used in this search.
The G mass range, ~0.5 (lower bound) - 1.5 (upper bound) keV/c?, is considered.
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d. Collider Phenomenology

Non-observation of neutralinos from collider experiments have produced limits on
GMSB models, and indicate a heavy Y9, with a mass greater than 100 GeV [18, 19, 21].
This, according to Figure 3 and for our model line, favors a lifetime on the order of
a few tens of nanoseconds or less. Similarly, the lightest X? should always decay
to fyé [31]. These limits and mass relations restrict the masses of the squarks and
gluinos to be so large (~600 — 800 GeV/c?) that they are too heavy to be produced
in pp collisions at the Tevatron. Thus, gaugino pair-production channels dominate
for much of the available parameter space [37] that is typified by our model line.

The major production and decay diagrams for this mass regime are shown in
Figure 4. More quantitatively, Y7 x93 and X;X; productions are produced ~45%
and ~25%, respectively, of all channels. Table III summarizes the GMSB model
parameters, the resulting xJ mass and lifetime, and the next-to-leading-order (NLO)
production cross sections for example points on the SPS 8 model line [31]. The
chargino mass is typically the same mass as the X3 and is 1.9 times the mass of the
X}. The differential and total production cross sections are calculated to leading-
order (LO) using the PyTHIA Monte Carlo program [38]. The NLO cross sections are
calculated in Ref. [39] and we take and use the ratio of the NLO to LO cross sections,
defined as k-factors, for our analysis. These are shown in Figure 5 as a function of
XY masses for i pair and xixy production. The values range between 1.1-1.3 for
the mass range considered. The production cross section is independent of the X9
lifetime, as this only scales with the G mass for a fixed XY mass [14]. Throughout
this search we consider all production, the total production cross section, and use it
to estimate the sensitivity as it produces the best search sensitivity [40].

In all cases the heavy sparticles decay promptly to X9 plus other high energy SM
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FIG. 4: Feynman diagrams of the dominant production processes at the Tevatron for
the GMSB model line considered: Y1 X3 (45%) (a) and X X; pair production (25%) (b).
Since our model line has a large value of tan 3 = 15, the decay products are dominated
by 7 which in turn decay to 7’s. The 7’s can be identified as a deposit of energy in
the detector which we refer to as a jet (although that term is typically used to describe
the hadronization of a light energy quark or gluon). Note that only one choice for the
charge is shown. The remaining processes are slepton (71, eg, pur) pair-production, as
shown in Figure 5.
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particle(s) because of the ~100 GeV/c? mass difference between the YJ/X; and the
X}. For much of the parameter space in this model the Y can, from Eq. 1.6, have a
decay time on the order of nanoseconds which corresponds to decay lengths of meters
from the collision if it is relativistic [15, 17]. The X! can decay to a photon and a
gravitino inside a detector at collider experiments or, in a fraction of cases, leave the
detector volume before it decays. This separates the X} X decay into the following
event signatures: yy+ Fr, v+ Fr or Fr, each in association with hadrons and jets from
the 7’s in the cascade decays. In this analysis we will focus on the yy+Fr case as it is
more sensitive to lifetimes on the order of nanoseconds (<2 ns), which is favored for
mszo 2,100 GeV for regions consistent with the cosmology favored region [17]. While
we will take advantage of the other high energy final state particles produced from

the decays, we retain a model independent type analysis by not explicitly requiring

the identification of taus.
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TABLE III: Examples of X! masses and lifetimes relevant for this analysis and
their translation to the SUSY parameters in accordance with the GMSB SPS model
line 8 [31]. To get different Y masses we vary the SUSY breaking scale, A, and the
messenger mass scale, M,,, but fix the ratio, M,,/A = 2. Also given are the NLO pro-
duction cross sections. Note that the production cross section is independent of the 5{(1)
lifetime. Also note that since we are not yet sensitive to the cosmology favored region,
mg ~ 1 keV, we are focusing on T < 1 ns cases. Note that Mgk & Mg o 1.9m)2(1).

mgo (GeV/c?) 1y (ns) mg (eV/c?) A (TeV) k-factor NLO oy0a (fb)

X
70 <1 1.38 93.5 1.23 999.9
90 <1 2.18 67.2 1.20 286.8
100 <1 2.63 74.0 1.19 169.0
130 <1 4.34 95.0 1.16 36.23
130 2 317 95.0 1.16 36.23
140 <1 4.99 101.8 1.15 22.97

150 <1 2.7 108.8 1.14 14.54
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FIG. 5: In (a) the NLO opoq Of X1 X; pair and ﬁcﬁ) production at the Tevatron
and the LHC, and in (b) the ratio of NLO to LO cross section (“k-factor”), both as a
function of the average )Zic, X9 mass. The k-factors are used in calculating the NLO
Oprod from the LO cross sections, provided by the PYTHIA event generator. The )Zf[
and Xy masses are almost identical in the scenario chosen in Ref. [31]. These figures

are taken from Ref. [39].
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C. Previous Searches

As previously mentioned, there have been many previous searches for GMSB SUSY
production both in general and in anomalous yy+Fr production in collider experi-
ments. In particular, these include Tevatron Run I searches from the Collier Detector
at Fermilab experiment (CDF) [13] and the DO experiment [41] at Fermilab as well as
multiple searches from the Large Electron-Positron collider experiment (LEP II) [18]
at the European Organization for Nuclear Research (CERN). LEP II collides elec-
trons and positions with a center of mass energy of 209 GeV. Figure 6 shows the
limits from the most sensitive search for GMSB from LEP II using the same SPS
model line we use and considers a large variety of mass and lifetime combinations.
These results, from the Apparatus for LEP PHysics (ALEPH) detector at LEP, are
from direct searches for the X} and indirect searches for sleptons and charginos. In
indirect searches for high-lifetime (7’5((1) > 10 ns) neutralinos where the neutralinos
are expected to leave the detector they used ete™ — Il — IXVNXY — U+ Pr and
ete™ = Xi Xy — W XSW*XY — jjjj+ Fr or I+ jj + Fr decay channels that yield
a lifetime dependent limit on the X9 mass of 60-98 GeV/c? [18]. In direct searches
for low-lifetime neutralinos they used ete™ — X% — vGAG — vy + Fir (70 < 1ns)
or v+ fr (1 < 70 < 10 ns), where one of the neutralinos escapes the detector before
decaying, decay channels using a photon “pointing” method [18], which measures the
photon direction and extrapolates it towards the center of the detector. Separately
shown is the impact from Higgs searches in ete™ — hZ and ete™ — hA on the
X} in this model with an indirect, lifetime independent limit on the myo at around
90 GeV/c? [18]. However, these results are unpublished as of this writing and unlikely
to be so. The previous most sensitive search for GMSB with low neutralino lifetimes

(T30 < 1 ns) was done using Run II data from the DO experiment, which set a limit



29

ALEPH Vs=189-209 GeV

_

[Em—
o O
o O

Higgs

m, (GeV/c?)
~J o0
e <2

N QN
C?C?

XNLSP
40 | tanf=15 , Ny=1 M>O
{ Excluded 95% CL.

005771 0 9 8 7 6 5 4

loglo(tx/ S)

FIG. 6: The 95% C.L. exclusion region for GMSB searches with the ALEPH detector at
LEP [18] as a function of the X! mass and lifetime for the SPS 8 choice of parameters [31].
The shaded region is from direct searches for a GMSB X! up to TR ™~ 10 ns using
pointing techniques, and from indirect searches for sleptons and charginos for longer
XY lifetimes. The dashed line shows the indirect upper exclusion limit on the X9 from
searches for the Higgs boson; X} masses of less than 90 GeV/c? in GMSB models are
excluded. There are comparable limits from other LEP collaborations [18] but they are
unpublished as of this writing.
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on mg > 125 GeV/c* [21].

In 2006 CDF extended its searches to include those for long-lived Y%’s (1 ns<
Tz <10 ns) by searching for events where one of the neutralinos decayed with a
macroscopic decay length but in the detector, while the other was allowed to leave
the detector [19]. This was done by looking for events with a single photon that
arrived with a delayed time at the detector (relative to expectations), using a new
photon timing detector [42]. This search was done by requiring the delayed arrival
of a photon, at least one jet (from a gaugino decay to the Y?), and Fp. The search
found 2 events using 570 pb~! of data, which was consistent with the background
estimate of 1.3+0.7 events. This search produced the most stringent limits on GMSB
for nanosecond lifetimes and large masses of the YV’s. Figure 7 shows the exclusion
region in the X! lifetime vs. mass plane with a mass reach of 101 GeV /c? at Tgo =5 ns.

The most recent published search using the CDF in the yy+Fr final state was
with 202 pb™! of data [20] in 2005. That search yielded zero observed events with
two photons and Fr> 45 GeV on a background of 0.27+0.12. It produced a limit of
mgo > 93 GeV/ c?, assuming the SPS 8 model and a X! lifetime of much less than
1 ns, as shown in Figure 8-(a). There has been more than 10 times the amount of data
collected since then, thus, we are in a position to significantly extend our sensitivity.

Since the search presented in this thesis covers more collected data, 2.6 fb~!
vs. 0.2 fb~!, and the authors have gained more experience we focus on a number of
improvements based on the dominant limitations from the previous Run II searches.
In the preceding search the dominant background was due to SM v+ and y+jet pro-
duction where one jet fakes a photon, and in both cases the Fr is due to a detector
mismeasurement. We now have improved methods to reject these events while re-
taining our sensitivity to SUSY events. However, as we do a better and better job

of rejecting mismeasurements, other backgrounds become important. In particular,
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events from electroweak production that produce neutrinos, and thus real fir, become
important. Finally, non-collision backgrounds become a larger fraction of the back-
ground and need to be dealt with more carefully. All of these are described in the

next section.
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FIG. 7: The predicted and observed exclusion region from the delayed photon search in
the v+ Fr-+jet final state, taken from Ref. [19], along with cosmology favored region and
the exclusion limit from ALEPH/LEP [18]. The X! mass is excluded up to 101 GeV/c?
for T = 5 ns. The black dashed lines show the expected limits for searches with higher
luminosities of 2 and 10 fb~!, respectively. Note that there is an uncovered region below
about a nanosecond for masses above 100 GeV/c2.
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FIG. 8: In (a) the 95% C.L. upper limits on the total production cross section times
branching ratio versus Mgt and mgo for the light gravitino scenario using the SPS 8

parameters with 7g0 < 1 ns [31] from the CDF search for GMSB with vy + fr and

0.2 fb~! of data [20]. The lines show the experimental limit and the LO and NLO
theoretically predicted cross sections. The mgo < 93 GeV/c? was excluded. A similar

search for GMSB with 730 <1 ns from DO using 1.1 fb~! of data [21] is shown in (b).
All values with mgo <125 GeV/c? were excluded.
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D. Overview of the Search

This analysis is designed to extend our search sensitivity to low-lifetime neutralinos
GMSB with higher masses. For this reason we focus on the vy + Fr final state [17]
with mgo > 100 GeV/ ¢ and a lifetime of T < 1 ns, but interpret our results for
the higher lifetime regimes since the same analysis is sensitive for 7o < 2 ns. This
also makes it complimentary to the single delayed photon search [19]. In addition to
the two photons and Fr in the event we also take advantage of the other high energy
final state SM particles expected to be in the event from the cascade decays from i
and/or 9 down to the Y?!.

The analysis strategy is to study a large number of high energy proton-antiproton
collisions and select all the collisions that produce two photons in our data and search
them for the presence of indications that they are supersymmetric in origin. The
dominant source of two photon events are from QCD type interactions. Specifically,
the main backgrounds sources are dominated by vy, 77 — V7V fake and 77 — 7V fakeVfake,
where j is a jet, and in this case is misidentified by the detector as a photon, which
is labeled vfqke. The subset of events with vy + fr are typically from QCD with fake
Fr, electroweak events with real fr (e.g., Wy — evy — v7yyarey where the electron is
misidentified as a photon, again 74k.) and non-collision backgrounds such as cosmic
rays and beam related interactions.

The new features of our analysis to improve over the last 7y + Fr search with

202 pb~! [20] are the following:

e Use a new Met Resolution Model (METMODEL) [43] to improve the rejection of

events with no intrinsic Fr such as QCD production of ~+.

e Use the EMTiming system [42] to reject non-collision backgrounds from cos-

mic rays muons interacting the detector material and accelerator-related back-
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grounds (“beam halo”).
e Include a more complete set of backgrounds from electroweak sources.

e Simplify and re-optimize the analysis due to more direct ways of rejecting back-
grounds and include the additional final state particles in the event as part of

the optimization process to separate SUSY from SM sources.

e Investigate the sensitivity for models where the Y9 lifetime becomes significantly

different than 0 ns. Expand it to estimate the sensitivity for 730 < 2 ns.
e Use 13 times the data (2.6 fb™1).

The analysis begins by examining sets of interactions from collision events with
two photon candidates in the detector that surrounds the collision point. All events
are required to pass photon identification requirements as well as non-collision back-
ground rejection requirements. This set of requirements defines our preselection sam-
ple.

We perform an a priori analysis in the sense that we do not look at (“blind”) the
signal region until after we have completely defined the final event requirements based
on the expected GMSB event rate (“signal”) and background expectations alone.
The final signal region is defined to be the subset of events that pass the presample
requirements as well as the final optimization requirements. These requirements are
designed to select events with significant Fr and identify the presence of a large
amount of energy deposited in the detector that would indicate the production and
decay of heavy supersymmetric particles. By tuning the values of these requirements
we optimize the rejection of the remaining backgrounds while retaining acceptance for
our signal. The methods for determining the number of signal events and the number

of expected background events in the signal region are based on a combination of



35

data and Monte Carlo (MC) simulation techniques and allow for a large variety of
potential final sets of requirements for a wide variety of different neutralino mass
and lifetime values. We optimize our search for models with 730 <1 ns decays and
estimate our sensitivity for models with 740 < 2 ns. As shown in Figure 7 there is
an uncovered region below about a ns. We thus extend the limits beyond the current
X! mass and lifetime region and towards the cosmologically favored G mass region
0.5 < mg < 1.5 keV/c? where the G could be a dark matter candidate [15].

The results of the full analysis presented here have been approved by the CDF

Collaboration and were published in Phys. Rev. Lett. in January of 2010 [44].

E. Outline of the Dissertation

The outline of this dissertation is as follows: Chapter II describes the experimental ap-
paratus including the Fermilab Tevatron proton-antiproton (pp) accelerator complex
and the Collider Detector at Fermilab (CDF), which is a large, powerful multi-purpose
particle detector that surrounds the pp collision and is used to identify the final state
particles and their 4-momenta. Chapter III describes how the final state photons
from GMSB events are identified and measured. We use the standard identification
techniques with minor, customized modifications for our purposes. Also motivated
and described in Chapter IV are the measurement of the Fr in the detector and the
other final state observables including jets (the final observables from quarks, gluons
and hadronic 7 decays) and the measurement of a global event property, known as
Hr, which is an effective measurement of the total energy of all the objects (photons,
jets and Fr) in the event. Chapter V discusses the set of preliminary requirements
to identify v events and describes the data sample of events selected. Chapter VI

describes our techniques of quantitatively estimating the probability of Fr just being
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from a fluctuation of the measurement uncertainty. This new technique is known as
METMODEL and it measures the significance of the Jr measurement. The various
background sources, as well as the methods to estimate their rates of passing the
final requirements, are described in Chapter VII. Chapter VIII describes the MC
simulation of GMSB events and the systematic uncertainties on the rates at which
they are produced as well as the rates at which they pass our final set of requirements.
The optimization procedure and the expected sensitivity are described in Chapter I1X.
Chapter X discusses the data in the final signal region and compares to background
expectations. Finally, Chapter XI concludes with the final results and a discussion of

future prospects for complimentary analyses with more data.
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CHAPTER II

THE FERMILAB TEVATRON, THE CDF DETECTOR, TRIGGERS AND

MONTE CARLO EVENT SIMULATION
This chapter both describes the parts of the experimental apparatus that are in-
dispensable for this analysis as well as their simulation. The Tevatron is a circular
particle accelerator that produces and collides proton-antiproton beams at the Fermi
National Accelerator Laboratory (Fermilab) in Batavia, Illinois. During the time the
data for this analysis was collected and analyzed it was the highest energy particle
collider in the world !. The CDF detector, which surrounds the collision point with its
subsystems, is used to identify and record the trajectories and energies of long-lived
particles such as electrons, photons and hadrons. The subsystem that are relevant to
this analysis are the calorimeters, including the timing system in the electromagnetic
calorimeter, and the central charged particle tracking chamber which are described in
the following subsections. The results from these subsystems are fed to a custom set
of systems which allow us to select (“trigger on”), in real time, diphoton candidates
from millions of collisions that occur every second. This set of events is then analyzed
offline and searched for the presence of evidence of collisions that are supersymmetric
in origin.

This analysis relies heavily on the use of Monte Carlo (MC) event generation
for both signal and background processes which is followed by a full detector simula-
tion and event reconstruction. We, therefore, describe MC event simulation after a
discussion of the various experimental apparatus descriptions.

IThe Large Hadron Collider (LHC) at the European Organization of Nuclear Re-
search (CERN) had collisions at 2.36 TeV on Dec 14th, 2009.
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A. The Fermilab Tevatron

The Tevatron accelerator complex [45, 46] is a superconducting synchrotron of 1 km
radius. An aerial view of the Fermilab site is shown in Figure 9-(a). As shown
in Figure 9-(b) at the first stage it has a proton source, that consists of a Pre-
accelerator that negatively ionizes hydrogen (H™) and a Linac that accelerates the
ions and then passes them through carbon foil for electron removal. A Booster then
accelerates the protons to an energy around 8 GeV and gathers them into “bunches”.
The proton bunches are then transferred into the Main Injector which is a bigger
synchrotron. To load the protons into the Tevatron, the Main Injector accelerates 7
proton bunches to 150 GeV and combines them into a single bunch. This process
is repeated 36 times to get 36 bunches. Separately, protons are also accelerated by
the Main Injector to 120 GeV and directed to hit a nickel target to produce a wide
range of secondary particles including many antiprotons. The antiprotons are then
collected and decelerated (“debunched”) and stochastically cooled and transferred to
an Accumulator, where the antiprotons are accumulated. Then the Main Injector
accelerates them to 150 GeV and combines them into 4 bunches. This process is
repeated 9 times to get 36 bunches. Finally the 36 bunches of protons and antiprotons
are sent (“injected”) into the Tevatron main ring [45] where both particle types are
accelerated from 150 GeV to 980 GeV. Also shown in Fig. 9-(b) are the Recycler that
is used to store unused antiprotons returned from the Tevatron and the Switchyard
that controls the 120 GeV beam to a number of final destinations, e.g. fixed target
experiments.

Each of the 36 proton and antiproton “bunches” typically contains ~3- 10! and
~3-101 particles, respectively. They counter-rotate in the Tevatron ring during data

taking (“a store”) and collide with a center of mass energy of 1.98 TeV on average



39

P Source

do1sal
N TVAD T

&, EH =
Vi a—te——a——%aLinac

Booster
A

Main Injector

_ AO Dump(s)
AQ
v

7 < .
B P3]ine/( \ .

p Abort ) AN W

Recycler

Tevatron

FIG. 9: An aerial view of the Fermilab accelerator complex with the Main Injector
in the foreground and the Tevatron in the back (a) taken from Ref [47]. The bottom
figure, (b), shows the Fermilab accelerator chain [45] in detail. The CDF detector is
situated at the BQ point.
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every 396 ns at each of the two focus points, B® and DO in Figure 9. These points
are surrounded by the CDF and the D@ detectors, respectively. The smallest data-
taking unit is a “run” which is defined by a uninterrupted time interval as part of a
store for which no change in detector setup or data-acquisition occurred.

Since the bunches have finite extent in both the longitudinal (along the beam line)
and the transverse profile, a description of the collision distribution in the interaction
region is well approximated by Gaussian distributions with a typical RMS of 30 cm
along the beam (z) and 30 pm in the transverse direction (2-y). The interaction time
variation is also Gaussian with an RMS of ~1.28 ns. The average number of collisions
per bunch crossing varies between 0.4-4.4 [48].

The number of collisions per bunch crossing, the instantaneous luminosity, is
measured using gaseous Cherenkov luminosity counters (CLC) [49] to estimate the
amount of collision data. Two modules of 48 counters each are situated along the p
and the p direction at 3.7 < |n| < 4.7 (see the definition of the  with the CDF coor-
dinate system in next section). As the number of pp interactions in a bunch crossing
follows Poisson statistics the instantaneous luminosity is determined by the inelastic
cross section (o, ~ 60 mb) and the measured fraction of empty bunch crossings.
The systematic error on the integrated luminosity is estimated to be 6% [49]. The
integrated luminosity for the data used in this analysis was 2.59 4 0.16 fb~!, which
corresponds to approximately 1.6 x 10 collisions to be sorted through for evidence

of Supersymmetry.

B. The CDF Detector

The CDF detector for the data taking period 2002-2008 (“CDF II”) [50] is an az-

imuthally and forward-backward symmetric, general-purpose magnetic spectrometer.
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Figure 10 shows a photograph of the detector and a schematic drawing of the major
detector components. A detailed description can be found in [51, 52].

The CDF coordinate system defines the proton beam direction to be the positive
z direction, and the azimuthal angle ¢ is measured around the beam axis. The polar
angle 0 is measured with respect to the positive z direction. The pseudorapidity 7 is
defined as 7 = —Intan(6/2). The transverse components of particle energy (F) and
momentum (p) are conventionally defined as projections onto the plane transverse to
the beam line, Ep = E'sinf and py = [p]sin 6.

A 1.4 T magnetic field along the z-direction is generated by a superconducting
solenoid of 1.5 m radius and 4.8 m length and contains the tracking detectors to mea-
sure charged particle trajectories. The calorimetry and muon detectors are located
outside the solenoid to further provide particle identification and energy measure-
ments.

The CDF detector is a well understood measuring instrument and there exist
standardized identification criteria for photons, electrons, muons, taus, b-quarks, and
other standard model particles. The identification criteria for the objects we use most
in this analysis, like photons, are described in Chapters III and IV. Techniques to
remove non-collision backgrounds such as muons from cosmic rays and beam-related
effects that interact in the detector are discussed in Chapter V. Next we describe the

detector elements directly related to this analysis.

1. The Tracking Systems

The innermost portion of the detector consists of a set of tracking detectors designed
to measure the momenta and charge of charged particles using their measured paths
and curvatures in a magnetic field. Where the particle trajectories are projected to

intersect at the beam line allows for the reconstruction of both the time and position
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FIG. 10: A photograph [45] (a) and a side view [51] (b) in 2-dimensional projection
of the CDF 1II detector. This analysis mainly uses the calorimeter systems for photon
identification and timing, with the EMTiming system in the EM part. The tracking
chambers are also used to reject electron backgrounds.
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of the primary interaction (the vertex for an event) as well as any secondary vertices
due to decays of long-lived particles coming from the primary collision. The tracking
system includes two detectors: the Silicon VerteX detector (SVX II) and the Central
Outer Tracker (COT). Figure 11 shows end views of the SVX II and a section of the
COT end plate.

The SVX II is the component of the CDF II detector closest to the beam line. It
provides a precise determination of the track position in the transverse plane via r-¢
tracking and is used as part of the measurement of the momentum and vertex mea-
surements in conjunction with the COT. There are three separate silicon microstrip
subdetectors. At the smallest radius there is a single-sided silicon strip detector
mounted on the beam pipe and called Layer 00 (L00) [53]. The SVX II [54], a re-
placement for the Run I version, has five layers of double-sided silicon arranged in 12
wedges of 15° between a radius of 2.44 cm and 10.6 cm. In the z-direction each layer
is split into three 29 cm cylindrical “barrels” of 12 wedges each. The intermediate
silicon layer (ISL) detector [55] surrounds the SVX II. It is 175 cm long and extends
the tracking coverage to the region of |n| < 1.9. It is also structured into three barrels
of twelve wedges each. The central barrel has one layer of silicon at a radius of 22 cm,
and the outer barrels have two layers at 20 and 28 cm, respectively. There are a
total of 722,432 channels in the eight layers of SVX II. While the silicon systems are
usually used in conjunction with the tracking of the COT to search for tracks and
they allow for full 3D standalone tracking of charged particles even without a COT
track seed. The SVX II+ISL has a single hit resolution of 20 pm.

Just outside the SVX II is the central outer tracker. The COT is a cylindrical,
310 cm long [56], open cell drift chamber covering the radii from 43.3 cm to 132.3 cm.
The COT reconstructs charged particle trajectories and momenta in the region || <

1. The COT chamber is filled with a 50-50 Argon-Ethane gas mixture with a small
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admixture of isopropyl alcohol and oxygen, which has maximum drift time of 100
ns (which is small compared to the 396 ns bunch spacing). The chamber contains
96 layers of sense wires grouped into eight “superlayers” (4 axial and 4 stereo) of 12
wires each that run approximately parallel to the beam line. Each wire is 40 ym in
diameter and made of gold-plated tungsten and run between the two endplates. In
total there are 30,240 wires. The superlayers alternate between purely axial wires that
run parallel to the beam line, and stereo wires tilted by 3° with respect to the beam
line. The two different kinds of layers allow particle trajectories to be reconstructed
in 3D. Each superlayer is divided in ¢ into cells with 12 wires each, and each making
35° angle with respect to radial lines from the z-axis as shown in Figure 11-(b).
The number of cells increases from 168 for the first superlayer to 480 at the eighth
(last or outer) one to maintain the same wire density with increasing radius. With
a hit resolution of 140 pm it measures the track momentum with a resolution of
o(pr)/p% ~ 0.3%(GeV/c)™! [52], and the track z position at the beam line with a
typical resolution of 0.22 cm. The time information of each hit allows for a timing
measurement of the track along the trajectory and is used to derive the time that the
particle was produced, ty. The track ¢ty has an approximate resolution of 0.27 ns for
well measured tracks.

Trajectories in the COT are used to draw a path in the SVX II and look for
SVX II hits which can be attached to the trajectory. This can give a better mea-
surement of the particle trajectory. The combined system (SVX II4+COT) results in
~30 pm resolutions for zy and o(pr)/p% ~ 0.17%(GeV/c)~! for the pr measurement
resolution. Since there is no timing information from the SVX II it does not improve
the tp measurement.

In all events the tracks are used to create a set of vertices. In this analysis we

will require the presence of a well measured vertex that was produced along the beam
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line indicating the primary collision between the proton and antiproton (known as a
primary vertex), which is likely the source of the photon and Fr candidates. Since
the photon is neutral there is no associated track with it and we cannot be sure we are
selecting the true collision point. Thus, in this analysis we select the primary vertex
to be the one that produces the highest total pr of charged tracks, the highest > pr,
in the event and use a number of techniques, such as checking to see which produces
the smallest Fr, to reduce the potential problems this can cause. This vertex is used
to determine the polar angle, 8, of any final state particle. The transverse energy, Er,
of each calorimeter tower is calculated according to this vertex using Er = E'sinf.

This will also be used in measuring the Er of final state objects, including the Fp.

2. The Calorimeters

The CDF calorimeters [51] are located outside of the tracking volume, cover the
region |n| < 3.6, and are used to measure the energy and direction of the particles at
large distances from the collision point. The sampling calorimeters have a sandwich-
like structure with layers of absorber, lead or iron, and active layers of scintillator.
They consist of an electromagnetic (EM) compartment followed by a hadronic (HAD)
compartment and are divided into a central portion that surrounds the solenoid coil
(In] < 1.1) and a pair of end-plugs that cover from outside the central region to an
angle close to the beam line (1.1 < |n| < 3.6). The calorimeters are segmented into
projective geometry? “towers”. Most towers cover 15° in ¢ and between 0.10 to 0.13
units in 7.

Different particles deposit their energies in different ways in the two calorimeters.

Electrons and photons mostly interact and deposit all their energy in the EM calorime-

2The division between towers always point at the center of the detector, z = 0.
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FIG. 11: 1In (a) is an end-view of the silicon detector. The innermost layer (L00)
is attached to the beam pipe, and is surrounded by five concentric layers of silicon
wafers (SVX II). The outmost layers are the intermediate silicon layers (ISL), which
sit just inside the outer tracking chamber. In (b) end-view of a section of a central
outer tracker (COT) end plate. The COT consists of eight concentric “superlayers”,
separated azimuthally into cells, each containing 12 sense wires and sandwiched by field
sheets. The end plates contain precision-machined slots where each cell’s sense wires
and field sheets are held under tension. The radius at the center of each superlayer is
shown in cm.
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ter. Upon reaching the front face of the calorimeter, they start to interact with the
heavy material in the calorimeter in ways which produce a cascade, or “shower”, of
electrons, positrons and photons which are detected and measured as they deposit
energy in the various components of the detector. These electrons and photons lose
energy mainly through the process of electromagnetic showering that consists of cy-
cles of bremsstrahlung and pair production, and is characterized by the radiation
length, Xy, which is the average distance a particle must travel in order for 1/e of its
original energy to remain. The central EM calorimeter (CEM), shown in Fig. 12, uses
23 alternating lead and polystyrene scintillator layers of ~5 mm thickness each and
has a total of 21 radiation lengths. The electromagnetic shower reaches its maximum
profile between 4-7 radiation lengths. Hadrons, on the other hand, typically lose their
energy through inelastic nuclear interactions, forming hadronic cascades in material.
The nuclear interaction length is much longer than X, due to the smaller interaction
cross section. So hadrons mostly pass through the EM calorimeter and deposit most
of their energy in the hadronic calorimeters, which are outside the EM calorimeter.
Muons lose only a small amount of their energy in either calorimeter since they only
interact via ionization. Thus, electrons and photons can be separated from hadronic
particles by virtue of the fact that they deposit the overwhelming majority of their
energy in the EM calorimeter, while hadronic particles deposit significant amount of
energy in both. Muons can be identified by having deposited small amounts of both
and by having continued on through to detectors located outside the calorimeters.
The calorimeters measure the energy of the photons, electrons and hadronic
particle using sampling techniques. The energy is proportional to the total num-
ber of particles created in an electromagnetic shower or hadronic cascade. The EM
calorimeter contains the majority of the particles created in an electromagnetic shower

cascade, although there is some leakage of the shower into the hadronic calorimeter.
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The light produced by the charged particles interacting in the various layers of the
scintillator is collected by two phototubes on opposing sides of each tower for read-
out. The light output is proportional to the total energy. This system, along with
the readout system, has an energy resolution of 13.5%/v/Er & 2%.

A photon is identified as an energy deposition in one EM calorimeter tower (“a
seed tower”) with only a small amount of leakage (“shoulder”) into an adjacent tower
of the same wedge in 7 (same ¢ wedge). A set of one seed and its two adjacent shoulder
towers in 7 is referred to as an “EM cluster” and constitutes a photon candidate.
Within the CEM, a proportional strip and wire chamber (Central Electron Strips,
CES) at ~6Xj, corresponding to the shower maximum of electrons and photons,
measures the transverse position and profile of the beam, as shown in Figure 12.
Then, the CES in this tower is searched for a cluster and, if found, the centroid of
the CES profile is used to determine the position of the photon. The typical shower
profile of promptly produced electrons or photons is Gaussian with a width of 1.5-
2.0 cm. The resolution of the position measurement is typically 2 mm for 50 GeV /¢
electrons.

The central hadronic (HAD) calorimeter has the same tower/wedge geometry
as the EM but uses iron instead of lead. It typically measures “sprays” of hadronic
particles from the collision, known as “jets”, with an energy resolution of approxi-
mately ~0.1E7r 4+ 1.0 GeV [57]. The plug calorimeters are also sampling scintillator
calorimeters. The EM part has an energy resolution of 16%/vEr & 1%, and the
HAD part has an energy resolution of 74% /v/Er ® 4%. During beam operations the
calorimeter systems integrate the energy deposited in each tower over an integration
window time of 128 ns around the collision time which collects over 95% of the energy

deposited which we correct for.
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FIG. 12: In (a) is a schematic drawing of a wedge in the central calorimeter, including

the EM and CES subsystem. In (b) is a schematic drawing of the CES subsystem
showing strips and wires taken from Ref [45].
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3. The EMTiming System

In addition to measuring the energy and direction of the particles from the collision,
the calorimeters also record the time of arrival of the particles. This information is
used to help reject photon candidates and other particles that might be from sources
other than from the primary collision. The EMTiming system [42] was partially built
in response to the eeyyfr candidate event from CDF in Run I [13], in particular to
verify whether EM clusters in future events were from the primary collision; one of
the photons and the plug electron in this event had no arrival time information and
it was speculated that they were from cosmic ray sources. It is particularly useful in
this analysis to reject events with cosmic ray or beam-related background sources and
do so in a way that allows us to estimate their rate of occurrence. The timing system
covers the central and plug region of the calorimeter, |n| < 2.1, and produces a timing
readout. The hadronic calorimeter also has timing with a threshold of ~2 GeV, but
it is not used in this analysis.

As shown Fig. 13-(a) the photon arrival time in the calorimeter is measured
using the electronic signal from the energy of the EM shower. As the shower develops
in the calorimeter the scintillator lights from the particle interactions travel in the
scintillator and are routed to photomultiplier tubes (PMTs), which effectively convert
the energy deposited into an analog signal, as shown in Fig 13-(b). The EMTiming
system attaches to the output of two PMTs on opposite sides of each tower in the
CEM detector as shown in Fig. 12-(a). This signal is sent to an amplifier shaper
discriminator (ASD) that converts the analogue signal to a digital signal, which is
sent to time-to-digital converters (TDCs) for a time measurement that is then read
out by the data acquisition system. The system is 100% efficient for tower energies

above ~3 GeV in the CEM with an “intrinsic” system timing resolution of 0.5 ns [42].
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FIG. 13: In (a) is a schematic diagram of the EMTiming system including the pulse
descriptions. The pulse from the PMT in the CEM gets inverted due to the inductive
splitter. Note that the tower example in (b) does not show the CES.
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C. Trigger: Generic Description

Collisions occur at the center of the CDF detector every 396 ns. The necessary
rejection rate is roughly 10° : 1, as only about 100 events per second can be written
to tape, since the average logging rate is ~23 MB/s. The challenging task of selecting
~vv candidate events from the millions of other types of collisions is done using a three
level selection “trigger” system [51]. The levels are referred to as Level 1 (L1), Level 2
(L2) and Level 3 (L3), respectively. The first two levels consist of special-purpose,
custom built hardware, allowing for a gradual reduction of the event rate to < 50 kHz
out of LL1 and down to 300 Hz out of L2. For L1 and L2 each subdetector system is
read out separately and an overall decision is made based on the observations in that
single detector. After L2 accepts an event, the data from all the detector systems
is combined into a single event recorded by an event “builder” [58] and passed to
L3. Level 3 is a farm of computers that filters the datastream coming from the event
builder down to about 100 events per second and sends them for data storage. The
system is designed so that the operation results in a minimal or no loss of important
data (no dead time).

At each level there are a number of different trigger paths that correspond to
accepting different types of physics events. The relevant trigger paths for this analysis
will be described in Chapter V. Here we only describe the basic elements of the trigger
system that are important to us.

L1 picks up events from every beam crossing and performs some simple hardware
reconstruction. This time it takes for L.1 to analyze an event is ~4 us. L1 has access
to the energy measurements for the calorimeter “trigger tower”, defined as groups of
two physical towers adjacent in 7. This tower segmentation is used only at L1 and

L2; in all other parts of the text the term “tower” always refers to a physical tower
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unless specified otherwise.

Both L1 and L2 have access to the measurement of missing transverse energy,
Fr. 12 performs the same reconstruction algorithm as L1 but with greater accuracy
and a longer decision time of ~20 pus. It also performs clustering of energy in adjacent
trigger towers, which allows a better energy measurement.

L3 allows further refinement of the selection by running a smaller version of the
offline photon and Fr reconstruction algorithms. These will be described in more
detail in Chapters III and IV. There are about 200 separate paths or combinations
of L1, L2 and L3 triggers that are implemented at L3. About 5% of the events that
pass L3 are selected to monitor the quality of data taking and functionality of the

detector systems in real time at the CDF control room.

D. Monte Carlo Event Simulation

Due to the complexity of the detector systems, MC methods provide the only possible
way to accurately model the observables for GMSB signal production predictions, as
will be described in Chapter VIII. We also depend on MC predictions for many of the
background estimation processes. A full generation-simulation-reconstruction chain
is fulfilled by the standard CDF MC tools [59].

The full simulation chain begins by running an event generator which uses theo-
retical differential cross section formulae, random number generation, initial and final
state radiation and hadronization mechanisms. This is sent to a special particle de-
cayer package to produce possible outcomes of physics processes such as the decays of
the hadrons. The result for each generated event is a list of particles that would enter
the detector volume including their kinematics and their relationships to the primary

collision particles. We typically use PYTHIA [38] as a MC generator, as it provides
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a well understood description of our backgrounds and GMSB signal processes. The
number of events simulated is proportional to the integrated luminosity. Effects of
the instantaneous luminosity during different data taking conditions are simulated
by adding extra collisions, known as Min-Bias events [60], which are also generated
using PYTHIA.

After an event is generated, a full simulation of the interactions of the final state
particles with the detector is simulated using a GEANT-based detector simulation,
often called cdfSim [61]. Different versions of the simulation correspond to different
data taking conditions and are calibrated using collision data. The detector simulation
process begins with the random picking of the primary vertex location according to the
beam parameters. The simulation performs step-by-step particle propagation using
GEANT through the detector medium following a detailed geometrical representation
of CDF II. This enables the creation of detector hits using particle position and
energy loss in each step. The results of this procedure are finally converted into the
raw data format that is the same as coming from the real detectors and data. This
simulated raw data can then be processed and analyzed using the same techniques
as used in real data. The output has been shown to do an excellent approximate
simulation of the production and reconstruction of physical processes in our detector.

The identification of photons, and other particles, in the event is discussed next.
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CHAPTER III

PHOTON IDENTIFICATION
This chapter describes the identification of photons, the primary object in this search.
It begins with a review of the standard CDF photon identification (ID) procedures and
criteria as well as two additional, customized requirements that remove backgrounds
that are particularly important to our search. Photons are identified using the central
region of the CDF detector, |n| < 1.0, which contains both calorimeters and tracking
chambers for robust identification. The calorimeters are used to distinguish between
photons produced as part of the pp collision and those which are produced in the decay

of hadrons, such as 7°

— 77, or non-collision sources. The tracking systems are used
to provide additional rejection against jets of hadrons as well as against electrons
which are the other primary background as they shower in the EM calorimeter in a
manner that is virtually identical to photons. To ensure that events are well measured
and allow the full capability of the calorimeter and tracking chambers to be used in

the identification of photons we only consider candidates in the fiducial region of the

EM calorimeter.

A. Standard Photon Identification Variables

The CDF detector has been identifying photons for over 20 years so the ID criteria
are well established and standardized. A photon deposits most of its energy in the
EM calorimeter, so the primary identification searches for a large amount of energy
deposited in an EM calorimeter tower. Since the dominant backgrounds are from
electrons and 7 —~~ from jets, additional requirements are placed to reject them in a
way that retains a high efficiency for real photons. For example, we require that there

only be a small fraction of additional energy deposited in the hadronic tower behind
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it to reject hadronic jets. We also require that there be a large amount of energy
deposited in the CES and that it have a shower profile in the CES which is consistent
with being from a single shower. We also require that there be no reconstructed
track in the COT pointing to the cluster of energy in the tower, which would have
indicated that the particle hitting the calorimeter was charged (or was associated
with a charged particle). We also separate prompt photons from photons which are
the decay products of hadrons, which are typically associated with other hadrons in
jets and would make the photon “non-isolated”. Thus, we require all photons in our
sample to be isolated. This section briefly describes the high-£, photon ID criteria;
Ref. [62] lists sources that contain good reviews. All the criteria are summarized in
Table IV.

At CDF we typically consider photons that deposit their energy in the central,
In| < 1.0, portion of the detector as it is the best instrumented for our purposes.
Photons are identified as an energy deposition in up to three calorimeter towers in n
and one tower in ¢ where the seed tower exceeds 3 GeV. We also require a matching
cluster of energy in the CES in the same seed tower that is also used to determine
the position of the photon. In order for a photon to be considered, we require that it
be deposited in a portion of the calorimeter such that it is likely to be well measured
and its shower to be fully contained. This region is called the fiducial region and
is defined to be near the center of each tower, within 21 c¢m of the tower center in
r-¢ (| Xcrs| < 21 e¢m). A similar requirement in z is 9 < |Zcgs| < 230 cm [63].
The fraction of the CEM covered is ~80%. The photon E_ is calculated from the
summed energy of the three towers in the cluster (including the seed tower) and sin 0

is calculated with respect to the highest-Xpr vertex and the position in the CES.
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TABLE IV: The photon selection requirements used to identify high-E,., isolated pho-
ton candidates. These are the standard requirements with the addition of a customized
electron rejection algorithm known as “Phoenix” rejection as well as a PMT asymmetry
requirements.

The Standard Photon ID and Isolation Requirements

detector In| < 1.0
Er > 13 GeV
fiduciality | Xcgs| <21 em

9 cm < |Zeops| <230 cm [63]

X s <20
Fuaa/Fem <0.055+0.00045x E
Ese <0.1x Ep if Ep<20 GeV or

<2.0+0.02x (B — 20)

track isolation < 2.0+ 0.005 x Ep
N3D tracks in cluster <1

track Pr if N3D =1 <1.0+0.005x Ep

2nd CES cluster energy <0.14x Er if Ep<18 GeV

Additional Photon ID Requirements
“Phoenix” Reject photons matched to a “Phoenix” track

PMT Asymmetry Ap = [Boumi—Feura| g

Epyvti+EpMT2
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The identification and isolation variables are:

e YZgs: The photon shower shape is measured at shower maximum by the strip
chamber and wire chamber components of the CES in both the x and z direc-
tions as shown in Figure 12-(b). This is compared to the expected shape as
measured from test beam data using a 2 test. This is particularly helpful in
rejecting 7’s that decay via vy where both photons deposit energy very near

each other because of their large boost.

e Hadronic Leakage (Enaq/FEm): Photons leave most of their energy in the EM
portion of the calorimeter. The ratio of energy deposited in the hadronic part of
the towers in the cluster to that in the electromagnetic part helps separate pho-
tons from jet backgrounds. The upper limit rejects these backgrounds from jets
that usually deposit most of their energy in the hadronic part. Since higher en-
ergy photons are more likely to deposit some energy in the hadronic component

this requirement scales with photon energy.

e E%: Photons from heavy neutralino decays are likely to be spatially separated

from other particles from the collisions. By way of comparison, photons from
the decays of hadrons are often parts of jets and not isolated in space. To
reject photons from hadron decays (which are often from jets) we create a
calorimeter isolation variable that takes the sum of the energy of all EM and
HAD towers within a cone of 0.4 in n— ¢ space, \/m = 0.4, centered on
the photon and subtracts off the energy of the photon cluster, £%° = E%4—E7.

This variable is then corrected to take into account the location of the photon

within the calorimeter and subtract-off an average amount of energy to take into

Elocation

account potential energy leakage into the ¢-cracks between the towers, E2°

If there are additional reconstructed vertices it is expected that particles from
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those collisions deposit an additional 356.3 MeV, on average, energy per tower
from the underlying event. This contribution is subtracted for each additional
vertex before the final requirement is made: E%¢ = %4 — pv — plocation _ |, .
0.3563 GeV.We require E'9 to be less than 2.0 GeV for EJ. > 20 GeV, but

becomes less restrictive with higher photon Er to retain efficiency or to be less

than 0.1 x £ for B} < 20 GeV.

Track rejection: Since electrons shower in the calorimeter in a manner that is
almost identical to that for photons, the primary way to reject this background
is by identifying the track from the charged particle’s trajectory. If a track
points to the photon cluster it is allowed to have a pr of at most 1 GeV /c. This
helps reject electrons, but since there can be stray tracks pointing at the photon

the efficiency is retained by allowing a single track (N3D = 1) with a small py.

Track isolation: In the same way we reject hadrons using isolation in the
calorimeter, we require photons to be isolated in the tracking chamber. The
Ypr of all tracks coming from the vertex associated to the photon’s position in
the calorimeter within a cone of 0.4 around the seed tower, is required to be
less than 2 GeV /¢, but becomes less restrictive with higher photon Er to retain

efficiency.

2nd CES cluster rejection: If a photon is due to a 7° — 7 decay, there should
be a second photon that can be identified in the CES. The CES of the seed
tower is searched for the presence of a 2nd cluster. If one is found, the lower
energy one is required to be less than 2.34 GeV, becoming less restrictive with
higher photon Er. We note that this requirement becomes less effective for high
energy photons as the two photons from boosted 7 decays are typically very

colinear.
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We note again at this point that this procedure is well established for identifying
photons that come from the beam line. However, photons that are the decay products
of neutralinos that travel a significant distance from the beam line before decaying,
as shown in Figure 14, can alter the distribution of the yZpg for photons [19]. For this
reason, only low lifetimes of the X are considered in this analysis since the detector
simulation does not simulate yZpg correctly for a high incident angle photons from
XV's [19]. To avoid this problem we only consider the the X{’s lifetimes up to 2 ns
where this problem is not an issue.

The next sections describe two additional photon ID requirements that are de-
signed to reject instrumental backgrounds and electrons that could otherwise be
misidentified as photons. Without their rejection, they would constitute a substantial

background to our final state.

CDF Calorimeter

(Xit) , ~ CDF Calorimeter
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FIG. 14: The production and decay of a long-lived neutralino into a photon and a
gravitino. The incident angles (« and [3) of the photon at the face of the calorimeter,
relative to the expected direction from the center of the detector, are large when a
photon comes from a long-lived X! compared to a prompt photon. This causes the
X% pg Vvariable to be different from expectations.
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B. PMT Spikes

In the CEM an energy deposition is identified as a large amount of charge mea-
sured from the output of the two PMTs that collect light from the scintillator in the
calorimeter. However, a high voltage breakdown in the PMT, known as a “spike”,
which is unrelated to an energy deposited in the calorimeter, can fake an energy de-
posit which can be misidentified as a photon. This instrumental effect can mimic
photons if they overlap with a low energy deposit from an unrelated collision sources.
Such an occurrence can produce false photon candidates that are uncorrelated with
the collision and thus erroneously create corresponding missing energy. Since pho-
tons from the collision will approximately deposit the same amount of energy in each
PMT (i.e., the same amount of light will be collected on both sides of the scintillator
from each tube) these PMT spikes can be separated from real photon deposits by

considering the asymmetry of the two energy measurements of the PMTs of a tower:

E —F
Ap — | EpnTi PMT2| (3.1)
Epyvri + Epvire

where Epyri and Epyre are the energies as reported by PMT 1 and 2, respectively.
Figure 15 compares photon candidates from both real photons and spikes to real
electrons from W — ev events selected using a special trigger, described in Table V.
The photon and spike candidates pass the PMT-enriched  + Fr sample identification
requirements given in Table VI, while the electrons are required to pass the require-
ments of Table VII and the W — er sample requirements are given in Table VIII. A
comparison shows that PMT spikes cause a high PMT asymmetry and can be effi-
ciently (~100%) rejected by requiring Ap < 0.6. While most events with PMT spikes
have a high asymmetry, their asymmetry magnitude is mainly less than 1 because of

spurious deposits of energy from unrelated particles. The rate of this background,
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after this requirement, is negligible and this requirement has a rejection power of
~100%. Thus, this source will be neglected in the background estimate. We note, for
completeness, that this requirement is more than 99.9% efficient as measured from

the W sample.
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FIG. 15: A comparison of the PMT asymmetry, Ap, for a photon+Fr sample that
contains both PMT spikes and real photons, and a sample of electron from W — ev
events. PMT spikes can be effectively removed by requiring the asymmetry to be less
than 0.6.
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TABLE V: The trigger requirements used to create the v+ Fir and W — ev sample
used to study the PMT asymmetry in electrons, photons and PMT spikes. This trigger
is known as the W_NOTRACK trigger for historical reasons. Note also that all trigger
E7’s at all three levels are calculated using z = 0.

W_NOTRACK

L1 Single tower Er > 8 GeV, |n| < 3.6
Single tower Epaq/Frm < 0.125
Fr > 15 GeV
Y Er>1GeV

L2 | Single EM cluster Ep > 20 GeV, |n| < 1.0

L3 | Single EM cluster Ep > 25 GeV, |n| < 1.0
Single cluster Fyaq/Frpm < 0.125
Fr > 25 GeV
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TABLE VI: The PMT-enriched v + Fr sample selection requirements. This sample is
selected using the W_NOTRACK trigger given in Table V. The photon identification
requirements are identical to those of Table IV, but with higher photon E7 > 30 GeV
and a looser Ep,q/Frm < 0.125 requirements denoted with an * except that the two
additional requirements (PMT and Phoenix) are not required. Also the trigger, fr and
vertex requirements are added and denoted with an . The Fpr will be defined in next
chapter.

The PMT-enriched v + Jir selection requirements

trigger W_NOTRACK trigger'
detector In| < 1.0

Er* > 30 GeV
fiduciality | Xcrs| <21 em

9 cm < |Zeps| <230 cm [63]
Etad/ Een™ 0.125
Eis <0.1x Ep if Ep<20 GeV or

cal

<2.040.02x (E7 — 20)

track isolation < 2.040.005 x Ep
N3D tracks in cluster <1

track Pr if N3D =0 <1.0+0.005x Ep
2nd CES cluster energy <2.440.01x Ep
Bt > 30 GeV

vertex requirement’ N, > 1 with z,, < 60 cm
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TABLE VII: The standard (“tight”) requirements used to identify isolated electrons.
Since we will also be considering electrons selected with a looser set of requirements later
in this document (higher efficiency, smaller purity) the “loose” electron ID requirements
are also given. They are identical to the tight electron ID requirements except for the
requirements denoted with an *. Note that “Q” is the charge of the electron. All the
variables are the same as those used to measure photons. Appendix A describes the
electron-only ID variables that have not been used to identify photons.

The Standard Electron ID Requirements

detector In| < 1.0
ET Z 20 GeV
fiduciality | Xcrs| <21 em

9 cm S |ZCES| S 230 cm [63]

track pr > 10 GeV

track |z < 60 cm

COT axial segments with Np;;s > 5 >3

COT stereo segments with Ny > 5 > 2

track E/p if pr < 50 GeV* <2.0

Lshr* <0.2

XEES strip* < 10

Azops* <3 cm

signed Azcps™ 3 em< Q- Axcps < 1.5 cm

Etad/ Efm < 0.055 + 0.00045 x E
ot <0.1xEr
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TABLE VIII: The identification requirements for use in selecting electrons from W —
ev events. Appendix A describes the matching requirements.

The Requirements for Selecting the W — erv Sample

W_NOTRACK trigger in Table V
The tight electron ID requirements in Table VII
Fr > 30 GeV
Vertex requirements: Y pr > 2 GeV, Ny > 2 and |z, < 60 cm

Electron track-vertex matching: |z, — 2yx| < 2 cm and |ty — x| < 1.3 ns
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C. Customized Electron Rejection: Phoenix Tracking

Since W~ — evy — yYfake + Fr sources are an important background to the vy + £r
final state, additional electron rejection techniques are needed. This section describes
an additional photon identification requirement designed to suppress events where an
electron is misidentified as a prompt photon candidate. This can occur, for example,
when an electron has a catastrophic bremsstrahlung in the detector material before
the COT chamber [64]. Such electrons, as charged particles, however, are likely
to have left energy deposits in the silicon detector. By looking in the silicon for
the presence of these hits along the path between the calorimeter deposit and the
vertex we can sometimes find evidence of a charged particle. This algorithm, for
historical reasons, is known as “Phoenix tracking” [65]. The algorithm reconstructs
the trajectories of electrons without requiring hits in the COT as shown in Figure 16.

The approach is similar to the standard tracking algorithms in which recon-
structed COT tracks are projected into the silicon and hits in a narrow road around
the trajectory are considered for addition to the fit. In the same way, the Phoenix al-
gorithm uses information from the calorimeter and the vertex position to project into
the silicon and performs a standalone silicon track reconstruction, considering both
the electron and positron hypothesis. A photon candidate will be rejected if it has
a Phoenix track reconstructed. The standard rate at which electrons pass the stan-
dard photon ID requirements is 1.5+0.1%; after the addition of the Phoenix rejection
requirements it is reduced to 0.440.2% (although it is Ep dependent). Because of
the possibility of stray tracks being identified by this algorithm and causing prompt
photons to fail this requirement, the efficiency of this requirement is 91.5 & 0.4% for

real photons.
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FIG. 16: The method of identifying electrons from their hits in the silicon detector
(black solid lines).

D. Photon Identification Summary

The final efficiency for identifying two isolated, promptly produced photons is defined
to be the ratio of all true photons that hit the fiducial part of the detector passing
all photon identification requirements to the total number of events that have both
photons hitting the fiducial part. It is measured to be 74.3 & 0.4% from MC and
is largely consistent with the the efficiency for identifying a single photon which
is estimated to be 86.0 £ 0.3% [66]. We note that with all the requirements the
probability of a jet faking an isolated photon is 0.3 & 0.1% at E%?t = 10 GeV and is
falling as a function of Er [67] and the probability of an electron faking an isolated
photon is 0.440.2% and is also falling as a function of Er. Both effects are simulated

in MC and taken into account in our background estimation techniques.
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CHAPTER IV

MISSING TRANSVERSE ENERGY, UNCLUSTERED ENERGY, JETS AND
TOTAL TRANSVERSE ENERGY

This chapter describes the remaining other objects that are central to our search:
missing transverse energy, unclustered energy, jets and total transverse energy. The
missing transverse energy is defined as an energy imbalance in the calorimeter and
it is an experimental signature of neutrinos or new particles, like the gravitino, that
do not interact significantly with the detector material. The [, however, can be
mimicked by a simple energy mismeasurement or misreconstruction in SM events.
We refer to this as “fake” Fir. Fluctuations or mismeasurements of jet energy are the
most common source of such fake Fir. Thus, the more energy in the event the more
likely it is to have a large amount of measured Fr. For these reasons, we describe
both the energy measurement in the event and how it is broken into both a clustered
component, which is what we call jets, and unclustered energy. We then talk about
the jet measurement, the ways we correct their measurement and how we use these
corrections to get a better measurement of the Fr.

Events with two photons from SM sources with no intrinsic fr can have a large
measured Fr, fake Fp, from two major sources. There are large energy measure-
ment fluctuations in the calorimeter, and event reconstruction pathologies such as
picking the “wrong” vertex where one or both photon candidates are coming from
a vertex other than the highest > Pr primary vertex. A similar pathology is when
tri-photon events are produced and one of the photons does not deposit its energy in
the calorimeter (it is lost). More details of these pathological sources are described in
Section VII.A.2 where we describe methods to correct for them and/or reduce their

impact on our search.
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We begin with a more complete description of the missing transverse energy
measurement. Then we describe jets and unclustered energy, which will also be
heavily used in correcting and modeling the Fr resolution in Chapter VI. Finally, we

end this chapter with describing the measurement of the total transverse energy, H,,.

A. Missing Transverse Energy

In proton-antiproton interactions the collision occurs with approximately no momen-
tum in the plane transverse to the collision!. By conservation of momentum the
vector sum of the transverse momenta of the final state particles is approximately
zero. Particles that do not interact with the calorimeter can be inferred from the
transverse energy imbalance of the detected, outgoing particles of a collision.

The measured missing transverse energy, Fr, is defined as the negative of the
vector sum of the transverse energy measured in all calorimeter towers with |n| < 3.6.
It is calculated relative to the highest-Xpr vertex z-position, taking into account the

x and y coordinates of the vertex. We refer to this value as ™"

. To improve the
resolution, and to reduce the number of events with large fake fr, the Fr is corrected
to account for the detector response for each reconstructed jets with Ep > 15 GeV.
This procedure will be described after we describe the jet measurements.

There are both non-collision and collision sources that can cause fr. SM neutri-
nos will leave the detector and produce significant i, and gravitinos, if they exist,
are also expected to produce real significant Fr. Another source of significant fir can
come from non-collision backgrounds. While the transverse energy of all produced
particles is expected to be conserved in collisions, this is not true for non-collision

'As the momentum in the z direction of the protons and antiprotons is shared

among its constituents (“partons”), the total momentum of the colliding partons is
not known.
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backgrounds that can produce energy deposits of the calorimeter; this will be de-
scribed in detail in Section VII.C. In some sense this fr is fake since it is not from
the collision, but it is real in the sense that it is not due to a mismeasurement of the
energy deposited. On the other hand, mismeasurements of deposits of energy can
give the appearance of Fr in the detector. For QCD (vv, vj, and jj) events there
are, in principle, no high Er particles from these collisions that do not interact with
the detector. In principle they produce minimal Fr, assuming perfect measurements.
However, they can have large fake Jir due to energy loss or mismeasurement in the
calorimeter. We will refer to any source of Fi that is not from high energy, weakly
interacting particles as fake Fi.

While large values of fake Jir from energy fluctuation are rare, there are so many
events with no true Fr that this is one of the biggest backgrounds in vy events.
Historically, the way to identify events with high energy, non-interacting particles in
the final state was to require a large amount of Fr. Since only a small fraction of
QCD events have a large measured value of Jr this has been effective. However, the
amount of fake Fr due to mismeasurements is highly correlated with the amount and
location of energy deposited energy in the detector. Since we are looking for events
with large amount of energy, a more powerful, less biased technique is needed. For
these reasons we compare the measured Fr to the typical expectations based on the
amount and location of the energy deposited. Thus, we consider the significance of
the measured Fr, rather than its absolute value, to separate events with mismeasured

Fr from events with real fp. This will be described in Chapter VI.
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B. Jets, Jet Corrections and Corrected Fr

The term “jet” typically refers to the hadronization of a high energy quark or gluon
that is produced in the pp collision. Since, at CDF, jets are identified as clusters
of energy in the calorimeter this definition generically includes the reconstruction
of the hadronic decays of a 7-lepton [68] and/or the energy deposited from elec-
trons or photons. Algorithmically, jets are identified as clusters of energy in the
calorimeter, using the standard jet-cone algorithm [69] with a search-cone radius
R = \/m = 0.4. Calorimeter towers are grouped within 0.4 in n — ¢ space
(“0.4 cone”) around any single “seed” tower with F,. > 1 GeV, and the energy and
cluster centroid are calculated using all calorimeter towers within the 0.4 cone. The
cluster centroid is calculated and the cone is moved to be centered on the centroid.
This process is iteratively recalculated until convergence. Jets with an overlap of
>50% are merged. The Er is calculated based on the energy and location of the
centroid of the jet in the calorimeter and the location of the primary vertex. Since
the primary goal of the jet energy measurement is to determine the energy of the
particle that originally produced it, see Figure 17, the energy measured directly in
the calorimeter is corrected for a number of effects. In addition, these corrections
help reduce the amount of mismeasurements of the energy of jet which are, in turn,
used to correct the measurement of the Fi.

The jet energy corrections at CDF are standardized and have been used with
great success for many years [70]. They are divided into different groups to accom-
modate different effects that can distort the measured jet energy. These include
a) the response of the calorimeter to different particles, non-linear response of the
calorimeter to the particle energies and uninstrumented regions of the detector, and

b) effects like the fraction of the energy radiated outside the jet clustering algorithm
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cone. After these corrections the typical jet energy resolution is ~64%/./pr ® 4%.
More details on some of the effects that we correct for are described in Appendix B.
Unless otherwise stated, only jets with Er > 15 GeV and |n| < 3.0 are considered.
Since one of the biggest sources of fake Fr is jet energy mismeasurement we
reduce this effect by correcting the raw Fr for the improved jet energy measurement.

The correction due to all the jets is given by:

jets
— corr — raw

Er =Fr - (Ef—EYT) (4.1)

— COTT — raw

where fir  is the missing Fr corrected for all the jets, fr  is the missing Er
before the correction, and E" (Er™) is the jet Er after (before) the jet energy
correction described above. From here on out when we refer to the F for an event

— COTT

we will only be talking about |fr |

C. Unclustered Energy

Figure 18 shows different types of interactions in the pp collision as well as additional
collisions that produce energy in the event that is not part of a reconstructed cluster.
We refer to this energy as the unclustered energy, > E4n“l. While jets come from the
portion of the proton-antiproton collision that produces a “hard” parton scattering
with large transverse momentum, py, the unclustered energy comes from the other
particles that originate from the two outgoing partons as well as initial and final state
radiation and particles that originate from the breakup of the proton and antiproton
bunch (“beam-beam remnants”). Everything except the outgoing hard scattered
objects, and the initial and final state radiation are known as the “underlying event”.
Also it is possible that multiple parton scattering contributes to the unclustered

energy as shown in Figure 18-(b).
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The activity of the underlying event and additional interactions in the same
bunch crossing produce the unclustered energy. The Y E¥n“ for each event is esti-
mated by taking the total measured transverse energy in the event (measured tower-
by-tower in the same way as the Fr, but using a scalar sum, and assuming the collision
came from the position of the highest » pr vertex) and subtracting the transverse

energies of all reconstructed photons, electrons, and jets:

S gt =3B - B - Ep - Y B (4.2)

where the photons are identified using the criteria of Table IV and the electrons are

identified using the criteria of Table VII.

D. Total Transverse Energy

Now that we have a good definition of the photon Er, the jet Er and the Fr, we
are in a position to describe our last important object: the total transverse energy,
H,, for an event. The H, is defined as a scalar sum of the transverse energies of all

identified objects as follows:

Hy =Y E}+Y B+ Ef+ Fr. (4.3)

The H, is an important variable because it is highly correlated with the mass of any
SUSY particles produced. For example, they would produce large Er photons and
large Fr from the neutralino decays. They would also produce large Er particles in
addition to the decay products of the YU as part of the X3 and Y+ decays as shown
in Figure 4. In SPS 8 these would be taus, but in other, similar models, they could
be other SM particles, like quarks or electrons, that would be identified as clusters of

energy in the detector (jets). In the interests of model-independence we just simply
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FIG. 18: In (a) is an illustration of a proton-antiproton collision in which a “hard”
parton scattering produces a set of outgoing partons with large transverse momentum,
pr (hard). The resulting event contains particles that originate from the two outgoing
partons (plus initial and final state radiation) and particles that come from the breakup
of the proton-antiproton (“beam-beam remnants”). The “underlying” event is every-
thing except the two outgoing hard scattered particles and consists of the beam-beam
remnants. As shown in (b) it is possible that multiple parton scattering contributes to
the underlying event. In addition to the hard parton-parton scattering, there can be
a second “semi-hard” parton-parton scattering that contributes particles to the under-
lying event. Operationally, we consider the clustered portion of the event separately
from the unclustered energy.
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measure the total transverse energy of the photons, £r and jets and include electrons,
if any are observed that pass the requirements listed in Table VII.

According to GMSB models, new physics is expected to appear at large energy
scales and may reveal itself in an anomalous rate of vy + Fr events with large values

of H, compared to SM expectation.
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CHAPTER V

TRIGGERS, DATASETS AND EVENT PRESELECTION
Since the vy + Fr analysis provides the best sensitivity for Y’s with low lifetimes and
large masses this chapter describes the selection of vy candidate events with an eye
towards the final analysis where we take experimental limitations into consideration.
There are three major sources of background for Fr in vy candidate events. They

are:

e QCD events with fake fr

These types of events can arise from a number of sources: a) direct production
of vy, vJ — YVfake, and jj — YfakeVfake €vents where the Fr arises due to
normal resolution variations in the energy measurements in the calorimeter.

b) large fake Fr due to event reconstruction pathologies such as wrong vertex
events where one or both photon candidates are coming from a vertex other
than the highest Y pr primary vertex, causing a systematic mismeasurement of
the Fr or other pathologies such as tri-photon events with a lost photon that
creates the fake Fi.

e Electroweak events with real Fp
a) charged leptonic decays of 1) W~~ and Z~~ events where both photons are
real and the fr is from a neutrino produced in W decays, but lost leptons in
Z’s; 2) Wrj and Z~j events where the jet fakes a photon and the F is the same
as in the previous case; 3) Wjj and Zjj events where both photon candidates
are fake photons; 4) tf production and decay where the photons are produced
from radiation from internal fermion lines or are from jets or electrons which

fake the photon signature.
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b) neutral leptonic channels: Zvyy — voyy, Zvyj — vDYYfake OF Zjj —

Vﬂ’)/fake’)/fake'

e Non-collision events:
a) PMT spikes that overlap with soft particles, e.g. 7, from the collision.
b) cosmic ray muons that bremsstrahlung in the calorimeter and create one or
more fake photons.
¢) beam related backgrounds (“beam halo”) that produce one or more fake

photons that are not related to the collision.

More details on each of these backgrounds, and rate at which they pass the selection
requirements, are described in Chapter VII.

With these backgrounds in mind we describe our two-stage event selection pro-
cess. First, we create an inclusive vy sample, where we select any events with two
photon candidates passing our photon ID and isolation requirements. We also re-
quire that it has a well measured vertex and does not have any specific properties
that indicate a pathological reconstruction. This sample is defined as our “prese-
lection” sample. In the second stage, a subset of this presample is chosen using
selection requirements that are optimized for sensitivity to retain signal and reject
backgrounds. This chapter describes the triggers used to select diphoton events for
this search. Then the full set of event preselection criteria are motivated with an eye
on the expectation of what GMSB events would look like. A full description of their
simulation is given in Chapter VIII and forms the starting point for an optimization

of the sensitivity to the GMSB signal, which is done in Chapter IX.
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A. Triggers and Datasets

For this analysis events are selected from the subset of events that by pass one of
four different sets of 3-level trigger requirements. These four trigger “paths” are
summarized in Tables IX and X. Each set of requirements is slightly different, and
has different advantages and limitations, but when the outputs are combined they are
very efficient for our signal. They are known as the DIPHOTON_12, DIPHOTON_18,
PHO_50 and PHO_70 triggers. To summarize their requirements, the first two triggers
require two photons. The DIPHOTON_12 trigger allows candidate events with two
photons with Er as low as 12 GeV, but requires that each photon be isolated (using
calorimeter isolation requirements similar to, but not the same as those described
in Chapter III, [71]) in order to reduce the rate. Since these requirements can be
inefficient, the DIPHOTON_18 trigger allows two photon candidate events to enter
the data stream if they are both above 18 GeV without any isolation requirement.
Since the photon ID requirements at the trigger level include a x2&gq cut, and this
value is slightly different online and offline (and inefficient at high Er), we allow events
into our sample if they pass a trigger if there is even a single photon in the event
with Fr > 50 GeV without an isolation requirement or Er > 70 without a Fyaq/Frm
requirement. These triggers are known as the PHO_50 and PHO_70 triggers. We next
describe these requirements in more detail at each trigger level.

For all the trigger paths, at L1, events are required to have an energy deposit in
a single EM calorimeter trigger tower (two adjacent physical towers in 1) [72] that
received a deposit of more than 8 GeV and has Eyaq/Erm < 0.125 to help reject
hadronic jets, unless Er > 14 GeV. At L2 the diphoton triggers require two EM
clusters [71] with |n| < 3.6 and Er > 10 GeV (Er > 16 GeV), and Fyaa/Frm < 0.125
with (without) an isolation requirement for the DIPHOTON_12 (DIPHOTON_18)
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trigger. The single photon triggers at L2 requires an EM cluster to have E7 > 40 GeV
(Er > 70 GeV) with Eyaq/Fem < 0.125 (no Fyaq/FEgm) for the PHO_50 (PHO_70)
triggers. At L3 the diphoton triggers do an EM clustering algorithm and require two
EM clusters to have Er > 12 GeV (Er > 18 GeV) with y&ps < 20 and isolation
(no isolation) for the DIPHOTON_12 (DIPHOTON_18) trigger. As mentioned in
Section III.A this trigger path already requires the x4gq requirement and limits our
search sensitivity to long-lifetime neutralinos. The single photon triggers require only
a single EM cluster to have Ep > 50 GeV (Er > 70 GeV) with Epaq/Erm < 0.125
unless F > 200 GeV (Epaq/EFem < 0.240.001F unless £ > 100 GeV) for the PHO _50
(PHO_70) triggers.

In this analysis we consider data from the data-taking period after the EMTim-
ing system became fully functional (Dec 7th, 2004, run number 190851), and until the
spring shutdown of 2008 (April 16th, 2008, run number 216005). The integrated lumi-
nosity is measured using the Cherenkov Luminosity Counters. To ensure data quality
a standard set of subsystems are required to be fully functional during data taking.
We require the following systems to be good: CAL, SMX, COT [73]. After these

requirements the data correspond to an integrated luminosity of 2.59+0.16 fb=! [74].

B. Event Preselection

In this subsection we describe the full set of offline preselection requirements. These
include the photon requirements, the vertex requirements as well as non-collision and
instrumental backgrounds rejection requirements.

Diphoton candidate events are selected from the subsample of events that pass

any one of the four triggers. The two highest Er (“leading”) photons are required



82

TABLE IX: The diphoton triggers used in the selection of the diphoton sample. We
only require an event to pass one of the four trigger paths described in this table or
Table X. Note that while the L3 cluster isolation is basically the same as in offline, as
described in Chapter III the L2 cluster isolation is calculated differently [71]. Note also
that all trigger Fr’s and isolations at all three levels are calculated using z = 0.

DIPHOTON_12

L1

Single tower Er > 8 GeV, |n| < 3.6

Single tower Epaq/Erm < 0.125 unless Er > 14 GeV

L2

Two EM clusters Er > 10 GeV, |n| < 3.6
Both clusters Eyaq/Frm < 0.125

Both L2 clusters isolation < 3 GeV or < 0.15E1

L3

Two EM clusters Ep > 12 GeV, |n| < 3.6
Both clusters Fyaq/Erm < 0.055 + 0.00045E or Ep > 200 GeV
Both L3 clusters isolation < 2 GeV or < 0.10E1

Xems < 20

DIPHOTON_18

L1

Single tower Er > 8 GeV, |n| < 3.6

Single tower Epaq/Erm < 0.125 unless Er > 14 GeV

L2

Two EM clusters Er > 16 GeV, |n| < 3.6

Both clusters Eyaq/Frm < 0.125

L3

Two EM clusters Er > 18 GeV, |n| < 3.6
Both clusters Fyaq/Egm < 0.055 + 0.00045E or Ep > 200 GeV

Xérs < 20
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TABLE X: To help ensure that signal events are in our sample with 100% efficiency,
we allow the event to come on either one of the triggers in Table IX or on one of the
PHO_50 or PHO_70 triggers that are described here.

PHO_50

L1

Single tower Ep > 8 GeV, |n| < 3.6

Single tower Epaq/Erm < 0.125 unless Er > 14 GeV

L2

Single EM cluster Er > 40 GeV, |n| < 3.6

Single cluster Fpaq/Frpm < 0.125

L3

Single EM cluster Er > 50 GeV, |n| < 3.6
Single cluster Eyaq/Fgm < 0.125 unless for £ > 200 GeV

PHO_70

L1

Single tower Ey.q + Frm > 10 GeV, |n| < 3.6

Single tower Epaq/Erm < 0.125 unless Er > 14 GeV

L2

Single EM cluster Er > 70 GeV, |n| < 3.6

No Eyaqa/FEgm requirements

L3

Single EM cluster Er > 70 GeV, |n| < 3.6
Single cluster Eyaq/Fgpm < 0.2 4 0.001E unless £ > 100 GeV
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to be in the central part of the calorimeter, |n| < 1.0, be in the fiducial part, have
EJ > 13 GeV, and pass the standard photon ID and isolation requirements, with
the two additional ID requirements in Table IV described in Section III.A. When
we consider these and the other, final offline requirements, as described in the rest
of this Section, and using the MC techniques described in Section II.D we estimate
that GMSB events that would pass all the final requirements are 100% likely to also
pass the trigger requirements; said differently we estimate that they would have been
written to disk by the trigger with 100% efficiency. More details on trigger efficiency
and luminosity effects on the GMSB signal acceptance are described in Appendix C.

Since we only want to consider events that are well measured, only events where
the diphoton candidates pass one of the trigger requirements as well as the photon ID
and isolation requirements make it into our sample. We also require them to have:
(a) a high quality vertex for the event, (b) no evidence of being from a non-collision
source, and (c) no evidence of being an event from instrumental backgrounds. We

next describe these selection requirements in more detail.

1. Vertexr Requirements

To reject against non-collision events we require a high quality collision vertex, and
to help maintain the projective nature of the calorimeter we require it to have |z| <
60 cm. If there is more than one vertex reconstructed in the event, the Er of all
calorimeter objects (individual towers, photons, electrons, jets and Fr) are calculated
with respect to the highest ) pr vertex. In some cases this algorithm chooses the
wrong vertex, for example, when a v pair is produced by one interaction and overlaps
with a more energetic, second interaction that produces the highest > pr vertex.

A wrong vertex choice results in a mis-measurement of the Er of both photon

candidates, thus it causes fake Fr. Although this mis-measurement is small in most
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cases, sometimes it can give a very large value of fake Fp if the two vertices are
far apart or if the photons are very energetic. Fortunately, this effect can be easily
corrected for most events by a vertex re-assignment procedure. For every event we
calculate the photon E7 for every vertex with |z| <60 cm and correct the Fr for this
difference. If it produces a smaller Jir value we take these new values of the photon Ep
and Fr, and use then these values instead of the primary vertex values in the kinematic
calculations used in the final event selection'. This procedure minimizes the fake Fr
in events with the wrong vertex choice. The effect is shown in Figure 19 for a sample
of 41,402 events that pass the photon ID requirements in Table IV and the vertex
requirement (z > 60 cm) where we plot the difference of Fr, AFp = Fr®% — B,
where Fr®? and B are before and after vertex swap, respectively. The changes
are mostly small, but in some cases they are as large as ~20 GeV. This well defined
algorithm is used for signal and background calculations with identical procedures.
As a result of this procedure some photons fall below the EJ. >13 GeV threshold
and are removed from the final sample. Events that start with E7. <13 GeV are not

added back. The standard vertex requirements, with vertex re-assignment, are listed

in Table XI.

'This algorithm is different than just choosing a vertex with the lowest Fr since
we only correct the photon Er for a different vertex and use the other objects Erp
based on the highest ) pr vertex.
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FIG. 19: Change in Fir after passing the photon ID and isolation requirements given
in Table IV and the vertex re-assignment in Table XI. Note that this value is always
positive since we always select the smaller Fr after reassignment.

TABLE XI: Summary of the vertex requirements and vertex re-assignment algorithms.

Vertex Requirements

At least one vertex with |z| <60 cm
The highest > pr vertex is selected as a primary vertex
For events with multiple vertices:
Calculate the photon Ep and i for every vertex with |z| <60 cm
Correct only the photon Er for this change (and the fr for the photon Er)

Take these new values of the photon Ep and the fr if the fp is smaller
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2. Non-Collision Rejection Requirements

We next describe the additional requirements placed on the sample to reduce the
contamination of non-collision events. In particular, they are designed to remove
backgrounds from beam related and cosmic ray sources where either a single or double

photon-like signature produces the photons and/or Fr.

a. Beam Halo Rejection

Beam related backgrounds arise from particles, such as muons, which are created in
interactions between the proton beam and material near the beam pipe upstream
of the CDF detector [19]. They then travel parallel to the beam and thus form a
“halo” around it. Backgrounds from them are known as beam halo backgrounds.
As illustrated in Figure 20-(a) they travel roughly parallel to the original proton
beam and can traverse the HAD and/or EM calorimeters where they have minimum
ionizing interactions. While they typically leave a small amount of energy in multiple
towers, they can deposit significant energy in a single tower that can mimic a photon.
Figure 20-(b) shows the energy deposits of all calorimeter towers with |n| < 4 in a grid
in 7-¢ space from an example beam halo event with no collision vertex; EM energy
deposits are indicated in pink, hadronic in blue. Clearly visible is the tower with the
photon candidate and the trail of energy deposits in towers along the z direction of
the same wedge. For geometric reasons these photon candidates are typically located
in the same wedge, mostly |¢| < 15°. A beam halo “photon” typically arrives a few
ns earlier than prompt photons, again for geometric reasons [19]. However, while the
rate is lower, the photon candidate can also have a T, of ~18 ns, where T, is the
EMTiming recorded value without vertex time, or time of flight corrections [42], and

multiples later and earlier, if the muon was created by a satellite proton bunch [19].
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The dominant background from this source is when a beam halo source creates both
photon candidates that overlap with a second collision from the bunch crossing; single
v beam halo overlapping a SM 7 event has been shown to be negligible [43].

To suppress contributions due to this background, events are rejected if both
photons are identified as beam halo candidates, using the beam halo ID requirements
in Table XII, and separated by |A¢| < 30° (within neighboring wedges). These
events are required to have energy deposits in multiple towers of the same wedge by

the beam halo particle candidate as it travels roughly parallel to the beam pipe.

TABLE XII: Summary of the requirements used to identify photons from beam halo
sources. For more detail see Ref. [19, 43]. Events are rejected if both photons are iden-
tified as beam halo candidates and are separated by |A¢| < 30°. Note that seedWedge
is the number of CEM towers with E7 > 0.1 GeV (calculated with respect to z = 0)
in the same wedge as the beam halo candidate, NHadPlug is the number of Plug HAD
towers with E7 > 0.1 GeV in the same wedge as the beam halo candidate. The variable
seedWedgeHadE is sum of the energy deposited in all of the hadronic towers from the
same wedge as beam halo candidate. Note that this requirement on this quantity scales
with both the number of observed vertices as well as the number of CEM towers.

A photon is identified as being from Beam Halo if

Requirements values
seedWedge >9
NHadPlug >2

seedWedgeHadE | < [0.4 + (0.019(N,; — 1) 4+ 0.013)seedWedge] GeV
wedge number 0 or 23 (|¢| < 15°)
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FIG. 20: In (a) is an illustration of beam halo type events. The beam halo path is
indicated with an arrow and is along the path of the proton direction. A comparison of
the time distributions of prompt collision events and beam halo “photons” that arrive
at three example towers in the calorimeter shows that it is harder to separate them the
further tower lies in beam halo direction. In (b) the energy deposit of all calorimeter
towers with || < 4 in a grid in 7-¢ space from an example beam halo candidate event
with no collision. Beam halo tends to deposit energy in a series of towers in the same
wedge along the z direction.
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b. Cosmic Ray Rejection

It is believed that cosmic rays produce EM clusters that are misidentified as photons
either from bremsstrahlung as they traverse the magnet, or from a catastrophic inter-
action with the EM calorimeter [19]. This also can help fake the vy + Fr signature.
Figure 21 shows an event with a reconstructed photon candidate that has likely been
produced by a cosmic ray particle. As cosmic ray sources interact with the detector
and produce a photon randomly in time, their time distribution is flat over the full
energy integration window range of 132 ns around the collision [19]. Figure 22 shows
the “corrected” arrival time (corrected for average path length) distribution for cos-
mic ray events, which are selected from the v+ Fir sample that pass the requirements
in Table VI except we have added the PMT rejection requirement, but removed the
reconstructed vertex.

If the cosmic ray created both photons then the difference in arrival time of the
first and second photons from cosmic rays is also proportional to the spatial separation
between these two photons; photons from collision events arrive at the calorimeter al-
most coincidentally in time. Thus, to suppress contributions from cosmic ray sources,
we use the EMTiming system to apply timing requirements and compare their tim-
ing to a sample of Z — ete™ events. The Z — ete™ sample is created by selecting
events with two electrons of opposite charge and 85 GeV/c? < M+~ < 97.5 GeV/c?
to be consistent with the measured Z mass of 91 GeV/c?. Both electrons are required
to pass the standard loose electron ID and isolation requirements in Table VII; Ta-
ble XIII gives the full event requirements. There are 12,477 events in this sample.
These timing requirements separately reject an event if either photon is more than 4o,

+

where o = 1.665 ns as measured in Z — e*e~ events as shown in Figure 23. Simi-

larly, the event is rejected if the two photons are well separated in time; specifically if
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|AT,, = T,1 — T3] > 4071, where oar = 1.021 ns as measured in the same sample

of Z — eTe™ events (again see Figure 23). The cosmic ray rejection requirements are

listed in Table XIV.

TABLE XIII: The Z — ete™ sample selection requirements.

The Requirements for Selecting the Z — ete™ Sample

Both electrons passing the requirements in Table VII
Z mass requirement with two opposite signs of electrons:
85 GeV/c* < M+~ < 97.5 GeV/c?
|2vx| < 60 cm

Fr cleanup requirements given in Table XV

TABLE XIV: Summary of the EMTiming requirements used to remove cosmic ray
events. T, is the EMTiming recorded value without vertex time, or time of flight
corrections [42].

An event is identified as a cosmic ray if

Either |T,1] or |T2| > 407, where o = 1.665 ns

or |AT,, =Ty — T,2| > 40aT, where oot = 1.021 ns
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Event: 1858655 Run : 195309 EventType : DATA | Unpresc: 4,6,47,19,53,23,24.25 Presc: 4,6,47.24,25

FIG. 21: A view in the r-¢ plane (a) along the beam direction and the calorimeter
towers in the 1-¢ plane (b) for a cosmic ray background candidate. Note that (a) shows
no tracks associated with photons, indicating that this is a non-collision event.



93

T l T T l T T 17 I T T l T T
oal o atlaL. % s as

PN A TR ot ﬂ‘f‘e,.W;*.a-,,r;,.,«,s.g,,+ "

1 : - i3 ""'.;L"-h.

U
TTTT]

o

Cosmic Events/ns

po o e by e by b by e by b 1

60 -40 -20 O 20 40 60 80 100 120

FIG. 22: The corrected time, T, for cosmic ray background in the v + Fr sample
selected using the requirements in Table VI, but with the PMT rejection requirement
and no reconstructed vertex. Note that the number of events falls off rapidly towards
the edges of the energy integration windows on both size of 0 ns.
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3. Fr Cleanup Requirements

The last set of requirements are to remove events where the Fr is likely to be due to
a severe energy mismeasurement (not due to a fluctuation of the measurement) of a
photon in the calorimeter. Photons with the second highest Er that either has very
few tracks (Vi) or deposit energy in a small number of calorimeter towers (N ),
can be severely mismeasured and thus cannot be reconstructed as a photon if they
are located close to the calorimeter cracks at n~0 and |n|~1.1. Such cases include
when a photon (or 7°) is partially lost in the cracks. When the photon hits an edge of
CES chamber close to the crack (| Xcgs(72)| >18.5 cm) it leaves the signature of a jet
mostly in HAD calorimeter (EmFr <0.3) and thus, the photon is reconstructed as
a jet with small number of tracks. Therefore, we remove events where the azimuthal
angle between Fir and the second-highest Er photon or a jet is |A¢(Fr — 72)| < 0.3
or if any jet points to the uninstrumented regions of the calorimeter. The full set of

Fr “cleanup” requirements are listed in Table XV.

TABLE XV: Summary of the Fr cleanup cuts. Note that misreconstructed photons
can be identified as jets where the number of calorimeter towers in the jet, Ny, and
the number of tracks in the jet, Nk, are small. Also the fraction of the energy in the
EM towers divided by the total energy of the jet, EmF'r, is small.

Case The event is removed if
For 2nd photon |n(~2)| >1.0 or |n(~2)| <0.1
with A¢(Fr —~2) <0.3 or |[Xcrs(72)| >18.5 cm
For any jet (|n4e:(jet)| <2.5, EmFr >0.875 and |nge(jet)| <1.1
Er >5 GeV, Nyyr <10, Nypi <5) or EmFr <0.3
with A¢(Fr — jet) <0.3 and (|n(jet)| <0.1 or ||n(jet)| — 1.15] <0.05)
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C. Summary of the Preselection Requirements

After all the requirements in Tables IV-XV the ~10¢ collisions considered by the CDF
detector have been reduced to a preselection sample that consists of 38,053 events.
Table XVI gives a summary of the event reduction as a function of the requirements

as they are applied sequentially.

TABLE XVI: Summary of the yy+ Fr presample selection requirements and the event
sample reduction. The trigger requirements are given in Tables IX and X, the photon
ID and isolation, Phoenix and PMT requirements are described in Table IV, the vertex
requirements and vertex swap procedure are described in Table XI, the beam halo
rejection requirements are described in Table XII, the cosmic rejection requirements
are given in Table XIV and the Fp cleanup cuts are given in Table XV.

Requirements Signal sample

events passed
p

Trigger and photon ID and isolation requirements

with 7| < 1.1 and Er > 13 GeV 45,275
Phoenix rejection 41,418
PMT spike rejection 41,412
Vertex requirements 41,402
E7’*" > 13 GeV after vertex swap 39,719
Beam Halo rejection 39,713
Cosmic rejection (EMTiming requirements) 39,663

Fr cleanup 38,053
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CHAPTER VI

METMODEL: A Fr RESOLUTION MODEL

Since SUSY particles are expected to produce both a large amount of Jr and a large
amount of clustered energy (Hr) we will need a sophisticated understanding of the
Fr. Since we will require the presence of a large amount of deposited energy we need
additional techniques to separate events with large energy and fake fr from large en-
ergy and real Fr. This can be achieved if we consider the significance of the measured
Fr, Fr-significance, rather than its absolute value, which requires an understanding
of the Fr resolution as a function of the energy deposited in the calorimeter.

While large values of fake Fir from energy fluctuation are rare, there are so many
events with no true fr that this is one of the biggest backgrounds in 7y events.
Historically, the way to identify events with high energy, non-interacting particles in
the final state was to require a large amount of Jr. Since only a small fraction of QCD
events have a large measured value of Fir this has been effective. However, the amount
of fake Fir due to mismeasurements is highly correlated with the amount of energy
deposited energy in the detector. Since we are looking for events with large amount
of energy, a more powerful, less biased technique is needed. Since the overwhelming
majority of events are slightly mismeasured we have developed a new model of the
resolution of the measurement which we call METMODEL [43]. This predicts the shape
of fake Fr distribution due to fluctuations in energy measurements in the calorimeter
and calculates its significance on an event-by-event basis. We define the quantity
of Fr-significance as a dimensionless number based on the METMODEL. This new
modeling takes into account a detailed understanding of how each jet in the event
(clustered energy) as well as all the unclustered particles interact in the detector.

The previous version of the significance used at CDF [75], defined as Fr/ ) Er
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where Y Er is the total energy measured in the detector, is useful, but it is insuf-
ficient. Its effectiveness is limited because it does not take into account important
effects like the number of jets and how and where they deposit energy in the detector.
The Frr-significance we calculate is based on the simple assumption that fluctuations
in energy measurements of the jets and unclustered energy are different, but when
combined separately well model the dominant sources of fake fr. With this assump-
tion we can calculate the probability that the observed Fr is significant.

The individual contributions of each of these components to fake Fr can be
modeled, on average, by varying their energy distributions (“smearing”) according to
the corresponding energy resolutions of the measured objects. Jets are the dominant
source of fake Jir because they contain most of the energy and because they are
collimated sprays of energetic particles in a certain direction, which can cause large
energy measurement fluctuations in that direction. The unclustered energy, on the
other hand, tends to be smaller and uniformly spread in the calorimeter. Therefore,
the portion of Fir due to this source is usually small.

The resolution of the Fr is an unusual quantity. Typically, when a quantity is
measured it can be well described by its mean value and its RMS. The RMS often
describes the resolution. The JFr distribution, however, for events with no intrinsic
Fr is different in that it is not Gaussian. Rather, it is the measurement of the missing
energy in the x and y directions separately and these are then added in quadrature.
That being said, the missing energy distribution in the x-direction is essentially a
Gaussian with a mean centered at zero (assuming a well calibrated detector) and an
RMS that is given by the resolution. The same is true with the y-direction. Knowing
the mean and RMS’s of these two distributions allows us to determine the expected
Fr distribution assuming no mean, true £r. When we describe the fr resolution we

mean the RMS of the z and y direction measurements. Both are a function of the jet
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activity and the unclustered energy in the event.

We begin with a measurement of how the detector responds to both jets and the
unclustered energy and how we create what we call the energy resolution functions.
With these resolution functions we can calculate the overall mean offset and resolution
of the Fr” and FrY separately on an event-by-event basis. This allows for a prediction
of the distribution of expected Fr measurement when there is no “true” Fr in the
event. Essentially we can calculate a probability distribution function, P(£r), for
the event. We can use this probability along with a Monte Carlo pseudo-experiment
method to estimate the distribution of the expected Fr and its correlation with H..
in events. Similarly, we can use it with integration techniques, to quickly calculate a
Fr-significance for the event.

In the next sections we describe how we measure the contributions of the unclus-
tered and jet energies to the Fi resolution functions separately. We then continue
with a description of how these resolution functions are combined. We begin with
a description of the measurement of the resolution due to the unclustered energy

because it is easier to explain.

A. The FEr Resolution Function due to Unclustered Energy

The Fr resolution due to the unclustered energy is measured and checked using two
independent sets of data events from SM sources where there is expected to be no
significant source of real fir. These are a sample of photon+jet events and a sample
of Z — eTe™ events since both samples can be selected without the presence of a jet.
The photon+jet sample is selected as having all the same properties of the diphoton
sample, but where one of the photon candidates does not pass all the photon criteria

in Table IV, yet does pass a “loose” photon-like set of photon requirements. The loose
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photon ID requirements are listed in Table XVII. The full set of sample requirements
are given in Table XVIII. We call this the v control sample. There are 52,229 events
in this sample. Unlike the ~~ control sample a set of Z — ete™ events, selected using
Table XIII, have essentially no contamination from non-collision backgrounds thus
making this sample ideal! for testing techniques to evaluate the resolution for QCD

background with fake Fir. The downside to this sample is that it has lower statistics.

TABLE XVII: Summary of the standard loose photon ID requirements used to create
the v+ control sample. Note that the requirements that are different from the standard
photon ID and isolation requirements in Table IV are indicated with a *. Also we do
not require the PMT asymmetry and Phoenix rejection requirements.

Cuts Loose photon ID requirements
detector In| < 1.0
Er > 13 GeV
fiduciality | Xcgs| <21 em

9 cm < |Zeps| <230 cm [63]
Xgs <20
Ead/ Erm™ <0.125
Eso* <0.15x Ep if Er<20 GeV or

track isolation™®
N3D tracks in cluster
track Pr if N3D = 1*

2nd CES cluster energy*

<3.040.02x (Er — 20)
<5 GeV
<1
<0.25x Ep

no cut

IThis is only true for low region since WW, W Z and ZZ process can signifi-

cantly contribute large, real Fr.
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TABLE XVIII: The v control sample selection requirements. There are 52,229 events
in the sample. Note that any events where both photons pass the tight photon ID
requirements in Table IV are rejected from this sample.

The Requirements for Selecting the vy Control Sample

Both photons pass the requirements in Table XVII
At least one photon fails the requirements in Table IV

The event passes all other preselection requirements in Table XVI

We start by looking at the subsample of 42,334 events with no jets in the v
control sample, N;.(Er > 15 GeV) = 0, to isolate and measure the contribution of
the unclustered energy to the Fr” and Fr” resolutions. Since, as we will see, the
calorimeter energy resolution in the x and y directions grows linearly as a function
of /S E¥ (defined according to Equation 4.2) we break the i into the distri-
butions of both x and y components of the Fr for events with no jets into eight
separate bins of \/ZT%"CZ . The Fr" and Fr? distribution, which we call a proba-
bility distribution function, is shown for a single bin of Y E¥"“ in Figure 24 and is
well described by a two Gaussian fit where the second Gaussian helps describe the
probability of observing a large energy value of Fr” or Fr” tails and which, overall,

does a better job of describing the distribution. The probability distribution function,

Pf,i;’y (VZ E%”Cl>, due to the unclustered energy is thus given by

x,Y
P (\/ E E{,ﬂ"d) = Norm; - Gaussy(meany, o1) + Normsy - Gausss(meansy, 03)

(6.1)
where Gauss; and Gausss refer to the two Gaussians fit to the distribution, and the
mean;, o;, and Norm; of two Gaussians are measured for each bin of 1/ E’{,ﬁ”d from

the individual fits of Fr" and Fr? distributions, as shown in Figure 24. Since we
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assume the two Gaussian’s have the same means we take mean; = means = mean.
We allow the two RMS’s to be different and take oy = scale - 07 = scale - o due to
intrinsic calorimeter effects (e.g., particles lose some energy in the calorimeter cracks),
and do the normalizations so that only a single normalization term is used. Rewriting

we take:

oy ] Gauss(mean, o) + Norm - Gauss(mean, scale - o)
Er E Funcl | — Y ? 6.2
Punci ( T ) 14+ Norm (6.2)

where the -+ term normalizes the P/7" (\/ > E%”Cl> to 1. We find the param-

+No uncl

eters we have chosen vary smoothly as a function of /> F¥* see Figure 24, and

we parameterize them as:

mean = pPo+ p1 Z E}lﬁ”d

o = mrnyS Bp
scale = p0+p“/ZE§i”d

Norm = py (6.3)

where all pg and p, are different for each equation.

The default set of parameters is obtained from the vy control sample since it has
higher statistics. The results of similar parameterizations in fits to the data Z — ete™
sample are used as an alternative set of parameters to study the associated systematic
variations. We do not observe any significant difference in the parameterization of
the Fr resolution due to unclustered energy between Z — ete™ and our 4y control
samples in data. The resulting fits and their uncertainties are given in Table XIX.
More examples and details, including studies with MC simulations that show similar

results, can be found in Ref [76].
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TABLE XIX: The parametrization of the Fir* and Fp? resolutions due to the unclus-
tered energy for the 7 control and Z — ete™ samples. Note that the uncertainties are
only the statistical uncertainties from the fits. The parameters given refer to the for-
mulation given in Eq 6.3. There is no significant difference between the measurements
from the two different control samples.

Parameters | 7y control sample Z — ete” sample
mean g,z po = —0.022 £ 0.057 | po = —0.048 £ 0.057
p1 = 0.0065 £ 0.0008 | p; = 0.0067 £ 0.0007
mean v po = —0.016 £0.038 | pp = —0.017 £ 0.053
p1 = 0.0038 £ 0.0003 | p; = 0.0032 £ 0.0007
O po = 0.82+0.25 po = 1.03 £0.36
p1 = 0.372 £ 0.031 p1 = 0.371 £ 0.042
O v po = 0.60 £0.25 po = 1.04 +£0.32
p1 = 0.387 £ 0.022 p1 = 0.389 £ 0.034
scalep, = po = 2.16 £0.17 po=194+0.11
p1 = —0.064 £0.020 | p; = —0.051 £0.013
scaleg,v po=1.99+0.17 po=2.19+0.16
p1 = —0.046 £0.020 | p; = —0.079 £0.019
Normy, = po = 0.180 + 0.022 po = 0.281 £ 0.076

Normy, v

po = 0.147 £ 0.036

po = 0.235 £ 0.078
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FIG. 24: Example of the measurements of the i parameterization methods due to
unclustered energy. The top figures show a two-Gaussian fit of the fip¥ distribution for
the Z — eTe™ control data (a) and the the vy control data (b) sample events from

one of the bins in

W/ZE%"CI . The bottom figures demonstrate how the width, o, of

the leading Gaussian depends on the \/ZE%"CI. On both plots, points are data and
curves are the fit functions.
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B. The Fr Resolution Function due to Jets

To account for the contribution of the measurements of jets to the Fr resolution we
measure the detector response to jets as a function of both jet energy (E) and pseudo-
rapidity (7). To do this we simulate samples of dijet [77] and Z-jet [78] events using the
PYTHIA [38] MC with the GEANT-based detector simulation [61] because data samples
such as our ¥y control sample cannot provide hadron level jet energy information,
which is needed to fully measure the jet energy resolution. In each simulated event,
jets are reconstructed before they hit the detector (hadron jet) and after the detector
simulation (detector jet) by using the same cone clustering algorithm at both levels

(again see Figure 17). We define the jet energy resolution (JER) measurement to be

Edet

JER = Fhad

1 (6.4)

where E%! is the measured jet energy in the detector and £"%? is the simulated hadron
level jet energy. For this study we consider clusters of energy with both E%* and Ehed
greater than 3 GeV which is well below the 15 GeV threshold and require that both
jets are matched within a cone of R(¢,n) < 0.1 of each other. This definition of
JER accounts for detector effects such as energy lost in the calorimeter cracks, and
minimizes the dependence of the resolution on the effects of initial and final state
radiation (see Section VIIL.C.1.b).

Since the JER is a strong function of jet energy and n we break the data into
a number of different subsamples or “bins”. Each bin is in increments of 5 GeV
in jet energy and An=0.2 bins in 2. A set of examples are shown in Figure 25.
Each distribution is fit using a linear combination of a Gaussian and a Landau [79]

2We have 14 n-bins of size of 0.2 in the range |n| < 2.8 and one bin for 2.8 < |n| <
3.6.
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function. The jet energy resolution probability distribution function, P;pr(FE’¢, n),

is then described as:

_ Landau(meany, 01) + Norm - Gauss(means, 03)

Prer(E
JER( 777) 1+ Norm

(6.5)

where both the mean and o of the Gaussian and Landau distributions are measured
with the PYTHIA dijet MC sample. Here we use a Landau instead of a Gaussian
because it better fits the tails of the distributions. Examples of fits are also shown in
Figure 25, which illustrate that this fit function successfully describes the jet energy
resolution in a wide range of jet energies. It is also important to mention that we
use the same functional form for all n-bins, but with the parameters measured for
each n-bin. From the individual fits for each (E’“ n)-bin, a relative normalization
(Norm) and parameters of a Gaussian (mean and o) and Landau(mean and o) fits
are obtained. These parameters are fit as a function of E’¢ for each n-bin with the

following functions:

e pg
mean; = po+ p1E7 + Tt
Do
o = et T D1
+ A /Ejet
Norm; = % + po (6.6)

where each i refers to a different n-bin. This provides a smooth parameterization of
JER for all reconstructed jets with F7** > 3 GeV and |n| < 3.6. The results of the
JER parametrization for ¢ = 3 (0.4 < |n| < 0.6) are shown in Table XX. The full

results are given in Ref [76].
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Examples of the jet energy resolution fits from the PYTHIA dijet sample,

using a linear combination of Gaussian and Landau functions for two different jet energy
bins, but with 0.4 < || < 0.6: 0 GeV<E/®<5 GeV (a), 25 GeV<E/®<30 GeV (b),
100 GeV<E7?<105 GeV (c) and 400 GeV<E7?<405 GeV (d).
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TABLE XX: The METMODEL parametrization of the JER for i = 3 (0.4 < |n| < 0.6)
measured with PYTHIA dijet MC sample. For the full set of parameters see Ref [76].

Parameters Gauss Landau

means po = 0.1006 == 0.0024 po = 0.0105 £ 0.0018
p1 = (—2.018 £0.084)10™* | p; = (—3.77 £ 0.58)1077

p2 = —0.69 £ 0.13 p2 = —1.860 = 0.097

o3 po = 0.656 £ 0.010 po = 0.1396 & 0.0051

p1 = (3.007 £0.087)1073 p1 = (2.272 £0.038)1073

Norms po=—19.3£1.1, py =5.67+0.26, po = —0.161 £+ 0.014
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C. Prediction of the Fake Fr Distribution

The METMODEL is not designed to predict the exact value of the fake Fir in each event.
Instead, it predicts the expected shape of the fake Fr based on the energy resolution
probability distribution functions as described in the previous section. Specifically,
for each data event, we can produce a probability density function, P(Fr), of all
possible values of the fake Jir by taking into account the variation of the energies
of the unclustered energy and jet energy according to Equations 6.2 and 6.5. For a
sample of events we can sum up these individual P(#r) distributions for all events to
obtain a shape for the full sample. We will use this probability density function to
simulate an expected Fr distribution using pseudo-experiments and a Fjr-significance
using integration techniques.

Generating pseudo-experiments is very useful to help determine the final selection
requirements as they provide a simulated sample of events to test the final sample
selection requirements on. Algorithmically, we simulate pseudo-experiments for each
event individually using the unclustered energy in the event as well as the £ and 7 of
all the observed jets. For each pseudo-experiment, a list of all reconstructed jets with
Er >3 GeV and |n| < 3.0 in an event is formed and their energies are “smeared” using
an MC method according to Pypr(E’*, n) as described above (the angles are assumed
to stay the same). If the smeared jet energy, 5" is above the 15 GeV threshold,
the contribution of that jet to the fake Fr is calculated: E}jet — Epeas _ [smear
The unclustered energy is also recalculated based on E7™" of each jet to avoid
double-counting when one of the jets with Ep < 15 GeV has E7™ > 15 GeV.
Thus, we subtract these jets from the unclustered energy. We also add a jet back
in if the jet with Ep > 15 GeV has E7" < 15 GeV. Then we randomly generate

the expected Fr” and Fr” contributions due to the measured unclustered energy
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deposited in the calorimeter according to the resolution probability function given by
— uncl

Eq. 6.2. We label this contribution r . Finally, we take a vector sum of all the

individual Fr components due to the unclustered energy and from each of the jets

with E5m” > 15 GeV to obtain the final prediction of the fake i as the following:

E-\Tpred _ Z ﬁTjet N E»Tuncl' 6.7)
An example where we run 1000 pseudo experiments for a single 7y data sample event
that passes the preselection requirements given in Table XVI is shown in Figure 26.
The results of the predicted Fr distribution are compared with the measured F dis-
tribution in MC samples without intrinsic fr in Figure 27 which shows the predicted
and measured distributions for the PYTHIA vy and PYTHIA Z — ete™ samples af-
ter the preselection requirements in Table XVI and shows how well the METMODEL
works. We note that the number of pseudo-experiments per event controls the preci-
sion of our predictions. While ideally we would run millions of simulations per event,
we only use 10 pseudo-experiments per event because our data samples have tens of
thousands of events. Similarly, we must run multiple different pseudo-experiments
per event to generate systematic variations. This has been shown to have negligible
effect on our search sensitivity. We next consider an integration method to calculate

the Fr-significance.
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FIG. 26: Examples of the expected Fir as generated pseudo-experiments (top) and
Fr-significance (bottom) distributions for one of the vy sample events. Note that the
Fr-significance will be defined in Equation 6.9. The shaded regions in both plots are
statistical uncertainty only from the pseudo-experiments.
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FIG. 27: Examples of the METMODEL predictions for the ¥ distributions in simu-
lations of vy (top) and Z — eTe™ (bottom) events using the PyTHIA MC that pass
the requirements of Table XVI. These events do not have intrinsic fr. This shows
how simple fluctuations in energy measurements can result in the fake Fp as large as
100 GeV. Both distributions are well described by the METMODEL predictions in the
entire range of the observed Fr until fr > 60 GeV which are due to pathologies as
described in Section V.B.
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D. Fr-significance

A powerful way to use the resolution functions is to create a significance of the
observed Fr. While there are a number of ways to define significance, we choose a
value which is simple to use in searches. Supposing our data sample has no intrinsic

Fr, we define the true Fp-significance to have a simple shape defined by an a priori.

dN

% = Nevent . ln(l()) -107* (68)
where x = Frr-significance and Neyens is the number of events in a sample. The shape
of this true Fip-significance has one important property: if all events in a data sample
were to have only fake Fr due to energy mismeasurements, then Noyeq - 107" events
would pass a requirement of Fpr-significance>cut. For example, a Fir-significance

requirement of 2, 3, and 4 allows ~1.0%, ~0.1%, and ~0.01% of events respectively,

as shown in Figure 28. We thus define the Fp-significance to be

meas

Fr-significance = — logy, <1 - /0 P(FEr) dET> (6.9)

where Fr™® is the measured Fr for an event. While the calculation of P(Fr)dFr
is straightforward from the resolution functions, it is a non-trivial function. In the
limit of infinite number of pseudo-experiments, we can estimate Equation 6.9 using

the following:

pseud meas
Fr-significance = — logy (1 _ 2 b ) ) (6.10)

> (all pseudo experiments)

where Fr""% is the generated fake Jir from the pseudo-experiments. While the
Fr-significance defined by Equation 6.10 takes into account all of the correlations
between jets and the observed fir, a significant operational drawback is that it requires

generating a large number of pseudo-experiments (e.g., > 10° pseudo-experiments for
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Fr-significance= 6).
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FIG. 28: The perfect prediction of the Fyp-significance where energy measurement
fluctuations in events that have no intrinsic fir create fake Jr. This is an a priori
distribution of 2¥ = Neyept - In(10) - 1077

To overcome this problem we use a simplified approach and calculate an up-
per limit on the Fp-significance by doing a simplified integration of the resolution
functions (“raw” Fp-significance) and then correct this limit for known limitations
of the integration method (“corrected” Fr-significance). For each event there are
n = 2 + Nje components of the resolution functions; 2 from the x and y components
of the unclustered energy, and one from the energy variation for each jet, Nje;. Note
that we only consider the energy variation in the jet and not the variation in the
directionality of the jet. Since it is non-trivial to calculate this n-dimensional integral

explicitly to create a P(Fr), we calculate the product of n 1-dimensional integrals.
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Each integral is designed to overestimate the probability of observing a fluctuation
which would be equal to or larger than the observed value of Fr in this event from
the x and y components of the unclustered energy and the jets, if any, separately.
This is an approximation since the probability for only one component to make the
fluctuation go above the measured value while keeping all other constants provides
an estimate of the upper limit on the “true” Fr-significance, which we would obtain
if we were to calculate the n-dimensional integral explicitly. After multiplying the
probability from each separately, we then correct.

The raw Fp-significance is calculated according to following formula:
raw Frr-significance = — loglo(ﬁmclﬁjm) (6.11)

where ﬁuncl is the probability of observing the fluctuation from the unclustered energy
contribution to F resolution and ﬁjets is the probability for the jet contribution to
cause the i to go above the measured Fr value. The two are calculated separately

and we then take the product of the two. The value of ﬁuncl is given by

i,meas

Puna = I] | 1= / gm Pira(\/ Y Bie!) dBr’ (6.12)

1=,y N

where Pf;cl(\/ZTW) are the probability functions of observing the Fr" and Fr?
values for an observed value of the > E¥* of the event. The limits of integration
represent the measured Fr* and Fr? components of the Fr.

The contribution of the probability of the jet energy mismeasurements to fake
the Fr is calculated by assuming that the direction of the jet remains the same, but
that the single jet energy fluctuates to create the entire fr. To take into account the

direction in which the jet points we consider the case where the difference between the

observed energy of the jet and the fluctuated energy, due to variations in the resolution
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function, caused the Fp. Taking into account the direction we are interested in the

case when

(ERed — Bty cos Ag > P (6.13)

where £l is the measured energy of the jet in the event, E4¢ is the fluctuated value
of the jet Er and A¢ is the azimuthal angle between the jet and the measured Fr.
Using the definition of the JER in Equation 6.4 (and adding the sinf term to the

numerator and denominator) we find

JER = 552 —1= —E%;;;E%d
— BY — pred = pled. JER. (6.14)
Combining with Equation 6.13 we find
Ehed . JER, a0 - cos A$ > Fir (6.15)

where JE R, is the variation required to produce the observed Fr from a fluctuation

of this jet. We then solve to find

Fr
JER oy > 77— 6.16
Ehad cos Ag (6.16)

We can then integrate the probability of observing the JER from —1, given in Equa-
tion 6.5, to the JER that produces the Fir. Since the jet can point either towards or

away from the Fr we consider the two cases of cos A¢ > 0 or cos A¢ < 0. To calcu-

late the contribution to the raw significance from each jet, P!

iet» We use the following

equations:

i
Pjet

JERY, 1 .
= / Prer(E n) d(JER), if cosAg¢; <0, (6.17)

1

. JER}0q ,
or P, = (1—/ PJER(Eget,m)d(JER)), if cosAg; >0,

1
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where P JER(E,{ ° m;) is the probability of observing a fluctuation energy to a value
JER (given in Equation 6.5) for the measured values of E/* and 7, for the jet, and
JER! . is taken according to Equation 6.16 for jet i. We find the probability for all

the jets by taking the product of the probability using

Njets

ﬁjets = H ﬁ;et' (618)
=0

This integration method provides an approximation to the Fp-significance from the
jets alone and is combined with the contribution from the unclustered energy accord-
ing to Equation 6.11 to create the raw Fp-significance.

By construction, since the raw Fr-significance represents an upper limit on the
true Fp-significance, the true Fp-significance will also always be less than or equal
to the predicted value of the raw Fr-significance. While we calculate the raw fip-
significance on an event-by-event basis, we can correct the raw Fr-significance for all
events using a simple set of functional forms for events with zero jets, 1 jet or more
than 1 jet. We begin with throwing pseudo-experiments where we randomly smear
the unclustered and jet energies according to their resolution probability functions as
given in Egs. 6.2 and 6.5 for a MC sample of 7y events [81] that pass the requirements
in Table XVI where we have split the sample into events with no jets, one jet and more
than one jet to generate high statistics. This generates multiple values of fake fir for
each event. We then calculate the raw significance of each generated Fr just as we do
for a data event. The result is shown in Figure 29. By counting the fraction of events
that pass a value of a particular raw Jir-significance we can determine the relationship
between the raw Fp-significance and what is expected from a true Fr-significance. We
calculate the corrected Fir-significance for an event using the relationship between a

raw fr-significance value and corrected Fr-significance value for this sample using
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the following relationship:

Z Nevent(raw Frp-significance > raw Fjr-significance cut) (6.19)

_ 107(true Er-significance>true Er-significance cut)

event *

For example, for the sample with one jet we see that 0.1% of the events have raw
FPr-significance > 6. Thus, we say events with a raw [Jp-significance of 6 have a
corrected Fr-significance corresponding to 0.1% which is a corrected Fr-significance
of 3. The relationship between the corrected Fp-significance is shown in Figure 29
and is different for events with no jets, one jet and more than one jet. Effectively, for
every event we calculate the energy resolution functions and calculate the raw Fp-
significance and then use the relationships given in Figure 29 and from that look-up
the value of the corrected significance. It is this value of the corrected fr-significance
that we refer to as the Fp-significance through the rest of this document. The Fip-
significance distribution for our simulated ~v sample before and after the correction
are shown in Figure 30.

In summary, the Er and 7 of every jet in an event, the unclustered energy and
the measured Fr allow us to calculate the raw significance of the measured Fr on
an event-by-event basis. This variable is then readily converted into an analogous
variable that can be used in a simple way such that we can simply make a -
significance requirement and calculate the fraction of QCD type events that would
pass it. This will be particularly useful in Section VII.A when we do the optimization
process. Similarly, it allows us to predict the Fp-significance distribution for any
set of events using pseudo-experiment techniques where we simulate the fr, H,. and

Fr-significance for events.
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from the sample using methods in Ref [43].
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CHAPTER VII

BACKGROUNDS AND THEIR ESTIMATIONS
As previously described, the dominant source of two photon events are from QCD
type interactions. Specifically, the main backgrounds sources are dominated by 7,
YJ = YV fake a0d §J — YfakeY fake- The subset of events with yy+ fr are typically from
QCD with fake Fir, electroweak events with real Fir and non-collision backgrounds
such as cosmic rays and beam related interactions.

The “final signal region” for this analysis is defined by the subsample of prese-
lection events that also pass a set of optimized, final kinematic requirements. In this
chapter we describe in more detail the backgrounds that can mimic the GMSB events
in the vy 4+ Fr final state and still pass the final requirements. The final analysis
is a counting of the observed number of events that pass the final event selection
criteria in the data and a comparison to the expectations from background sources
and the number expected from signal sources. The final set of selection criteria is
thus chosen from an optimization that is based on a balance between the number of
events expected from backgrounds and the numbers expected from signal.

The methods for determining the number of background events for a number
of different potential selection criteria are based on an understanding of what the
expected distributions look like as a function of these variables. The methods for de-
termining the number of expected background events in the signal region are based on
a combination of data and Monte Carlo and allow for a large variety of potential final
sets of requirements. These estimates are used, in conjunction with the expectations
from GMSB, described in Chapter VIII, as part of the optimization procedure which
is described in Chapter IX. We note in advance of the optimization description that

the observables that provide the best separation between signal and background are
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the variables: Fr-significance, H.., and A¢(7y1,72). We will show the distributions for
each background separately, after the preselection requirements. Similar distributions

for GMSB will be shown in Chapter VIII.

A. QCD Backgrounds with Fake Er

We start by describing the QCD backgrounds and the techniques used to predict the
number of expected events in the signal region after all kinematic requirements. These

backgrounds come in two different categories; fake fr due to energy measurement

NMETMODEL ) and
’

fluctuations in the calorimeter as estimated using our METMODEL (Ngig,.i

fake Fr due to pathologies (NS L) such as picking the wrong vertex in events where

the true collision did not create a vertex, or from tri-photon events with a lost photon.

The total QCD background prediction in the signal region, Ngggp is given by
QCD _ z\JMETMODEL PATH
Nsignal - Nsignal + Nsignal : (71)

The next subsections describe how each is estimated in more detail.

1.  Energy Measurement Fluctuations in the Calorimeter

Standard Model QCD events, v, 77 — YYfake, a0d 7§ — VfakeYfake, are the dominant
sources of events in the diphoton preselection sample and a major background for
vy + Fr. Energy measurement fluctuations in the calorimeter occur in every event,
but lead to considerable values of fake Fr only in a small fraction of cases. However,
large cross sections for these processes make them one of the largest backgrounds. As
mentioned in Chapter VI we evaluate the Fr-significance for every event and use this
variable to select events. Thus, our goal is to model the QCD expectations in the

signal for large values of Fr-significance for a large variety of potential final selection
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requirements.

Nyl OPEE the QCD contribution of the background with fake Jir that passes
the kinematic requirements due to normal measurement variations, is predicted using
the data and METMODEL. To estimate the expected Fr-significance for a data sample,
the jets and unclustered energy for each event in the sample that pass the other kine-
matic requirements are considered. For each data event 10 pseudo-experiments! are

thrown to generate a fake Jir, H,, and calculate the significance of the measured F.

Then the number of events in the pseudo-experiments that pass our Fr-significance

pseudo
signal

and other kinematic requirements, N is counted. This number, divided by the

number of pseudo-experiments, Nysendo = 10, gives NQ@ENODEL. In this way the Fr-
significance distribution is predicted for lots of kinematic requirement combinations.
The expected Fr and Fr-significance distributions for QCD backgrounds are shown
in Figure 31 for the preselection sample.

The systematic uncertainty on the number of events above a Fr-significance
requirement is evaluated by comparing the METMODEL predictions with the default
set of model parameters to predictions obtained with the parameters deviated by
40 as described in Sections VI.A and VI.B. In total we consider 10 sources of
systematic uncertainties on the METMODEL predictions that can be grouped into three
categories: 1) differences in the unclustered energy parameterization between the vy
control sample and Z — e*e™ event sample; 2) uncertainties on the four parameters
of unclustered energy parameterization given in Table XIX; 3) uncertainties on the
five parameters of the JER parameterization given in Table XX. The systematic
uncertainty is then taken to be the RMS of these 10 different variations from the

"More than 10 pseudo-experiments, such as 100 or 1000, etc., are possible, but
not realistic due to matter of CPU time and total time restrictions. As will be clear

later, we must run many pseudo-experiments for a number of different configurations
to estimate the systematic uncertainties.
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10 pseudo-experiments. The total uncertainty is obtained by adding the statistical
uncertainty on the number of pseudo-experiments passing the kinematic requirements

and these 10 individual sources of systematic uncertainties in quadrature.

2. FEvent Reconstruction Pathologies

A source of QCD background that is unaccounted for by the METMODEL is QCD
diphoton production with event reconstruction pathologies. For example, a v pair is
produced by a QCD interaction and a pair of jets is produced in a separate collision
which produces the highest ) pr vertex, and causes the event to have a very large
Fr-significance. As described in Section V.B.1, this effect can usually be fixed by
the vertex re-assignment procedure. However, there are situations when the vertex
swap procedure cannot identify large fake Fir. This happens, for example, when the
~7 interaction does not produce a reconstructed vertex at all. The METMODEL will
not be able to account for this background since this effect is not due to an energy
measurement fluctuation.

A second example of QCD events whose contribution to the vy + Fir signature
is not estimated by the METMODEL are events with three photon candidates but one
photon is lost in the calorimeter. The cross section of this process is very small.
However, the probability to lose one of the photons in any one of the calorimeter
cracks is on the order of ~10% or more [80], so that the probability to lose one of the
photon candidates in a potential tri-photon event can be ~30% or larger.

To obtain the prediction for all events reconstruction pathologies from QCD
sources at the same time, we model vy kinematics and event reconstruction using
a PYTHIA v sample [81], with large statistics. Additional jets and photons are
produced as part of the simulation in the form of initial and final state radiation.

We then normalize the number of events in the yy MC sample that pass all the
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FIG. 31: The QCD background predictions of the Fr and Fr-significance using the
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presample selection requirements, described in Table XVI, to the number of events
observed in the v data presample. This scale factor, SFocp, takes into account vj
and 77 contributions, but assumes the rate at which pathologies occur is the same
for vy, 77 and jj contributions. It further assumes the rates of electroweak and
non-collision sources of events in the presample are small, which is checked later to
be a good assumption. We subtract off the expectations for energy mismeasurement
fluctuations in the MC using the METMODEL to avoid double counting. The final

prediction of these QCD backgrounds is given by

NPATH _ (NPATH-MC _ NMM-MC) g (7.2)

signal signal signal

where NPATH-MC i5 the number of reconstructed PYTHIA MC v events that pass the

signal
final set of kinematic requirements after optimization (see Chapter I1X), including the

MM-MC

Fr-significance requirement, and Nggnal 18 the estimated rate of energy measure-

ment fluctuation events passing the final kinematic requirements. The NE@&MC is

estimated by

MM—-MC __ atho Pr-significance exp
Nsignal - Nsignal ’ R‘Er—signiﬁcance (73)

where N;(;nif_ﬁgniﬁcance is the number of events in the MC that pass all the kine-

. . . . . exp .
matic requirements except the Fr-significance requirement, and RJ7 i incance 1S the

expected rate for events to pass the Fr-significance requirement using Equation 6.8.
The scale factor, SFqcp, is taken to be equal to the ratio of the number of events
passing the preselection requirements in data (the presample is dominated by QCD),
NQED=Data "1 in the MC sample, N®PMC The number of events that pass the

presample presample

preselection requirements for data (NSP-Da2y and MC (NEP-NMOY are 38,053 and

presample presample
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283,554 respectively. The SFqcp is then given by

Nirecomple - _ 38,053
SFqep = %OD;%C = 583,554~ 0.134 4+ 0.007 (stat.only). (7.4)

In advance of the final optimization requirements we show the expected Fr, Fr-
significance, H,. and A¢(v1,7,) distributions for the vy MC sample passing the pres-
election requirements in Figure 32. The tails in Figure 32-(b) for the Fr-significance
are long and, as expected, are dominated by tri-photon and wrong vertex events.

The systematic uncertainties on this background prediction include the uncer-
tainty on the scale factor and the uncertainty due to MC-data differences in the
unclustered energy parameterization and the jet energy scale. To get the systematic
uncertainty on the unclustered energy parametrization from the METMODEL we devi-
ate the default set of parameters by +o, as described in the previous section. For the
systematic uncertainty on the jet energy scale we allow shifting the jet energy scale
up or down by 4o, following the standard procedure at CDF [48]. An additional
systematic uncertainty due to the fact that the presample includes other pathologies
(see, for example, Figure 31), is overestimated to be 5% and is taken in quadrature
with the other errors. The total uncertainty is estimated by adding the statistical
uncertainty, which is taken to be 4/ Nggfa‘f—MC, and these systematic uncertainties in

quadrature.

3. Combined QCD Results

After estimating both classes of QCD backgrounds, the expected kinematic distribu-
tions for the combined QCD sources, after the preselection requirements, are shown

in Figure 33.
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FIG. 32: The Fr, Fr-significance, H,, and A¢(7y1,72) distributions for the PYTHIA
vy MC sample after the preselection requirements, but normalized by the SFqcp scale

factor. The tails in the Fr-significance are long, but the overall rate of this process is
low.
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FIG. 33: The combined QCD background predictions after the preselection require-
ments. (a) and (b) show Fr and Fir-significance distributions, respectively. Note that
the A¢(71,72) and H, distributions are not given as they are highly correlated with
the v presample. The Fr and Fir-significance samples, after those requirements in the
final selection, are modeled using the METMODEL.
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B. Electroweak Backgrounds with Real Fr

Electroweak processes involving the production and decay of W’s and Z’s are the
most common source of real and significant Fr in pp collisions since they produce
neutrinos in the final state as well as produce leptons in their decays that can be
lost in the detector. The background rate from decays into both charged and neutral
leptons is estimated using a combination of Monte Carlo and data samples [38, 82].

There are four ways to get diphoton candidates in electroweak events: 1) from
W~ and Z~v events where both photons are real; 2) from W~j and Z~j events where
a jet fakes a photon; 3) from Wjj and Zjj events where both jets fake photons; and
4) tt production and decay where photons are from initial and final radiation or from
jets or electrons that fake photons. As will be seen, the dominant electroweak back-
ground in the presample is W~ — evy — v7y7fqke production and decay. Production
and decay of Zvj—vvyytake events are the dominant electroweak background in our
analysis after all kinematic requirements.

To estimate the contribution from each electroweak backgrounds we use a com-
bination of the MC samples and data. Each source is simulated using an MC sample
which is normalized to its production cross sections, k-factors (see Section 1.B.2.d)
and branching fractions. This allows us to normalize all sources to each other. Then
an overall normalization factor is used to take into account Data-MC differences by
using the measured and predicted rate of events with an electron and a photon in the
final state.

To simulate W+ and Z+ processes we use the BAUR MC [82] to evaluate contri-
butions from both W/Z +~, W/Z +~~ and W~ /Z~ + j for the charged decay modes
and ISR/FSR to add the extra photon or jet. Inclusive production of W, Z and

tt are simulated using the PYTHIA [38] (see Section I1.D) to obtain the contribution
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from Wjj and Zjj events where both photon candidates are fakes and ¢t events. To
avoid overlaps between the BAUR and PYTHIA simulated samples, we filter out events
from the PYTHIA samples where photons reconstructed in the detector are matched
to photons from either quark ISR or lepton FSR. Also an inclusive PYTHIA Z(vv)y
sample with ISR/FSR [83] is used to estimate contributions from neutral leptonic
decays.

The electroweak background predictions are given by counting the number of

simulated events from each of the MC samples, labeled i through n, with the following

equation:
n NDat.a .
EWK __ E EWK-MC . e7,signa.
Nsignal - NsignaLi ’ SFZ NMC (75)
i=0 e7y,signal

where Nggwng—iMc is the number of events in the sample passing all the final kinematic

requirements from MC sample i, for each electroweak source. The scale factor, SF;,
normalizes each electroweak background to its production cross section and includes
its k-factor. To minimize the dependence of our predictions on potential Data-MC
differences (trigger efficiencies, acceptance and ID efficiencies, modeling of ISR/FSR,
PDF uncertainties, luminosity uncertainties, etc.), we select the ey sample using the
requirements listed in Table XXI. We then normalize the total electroweak back-

ground estimate to data by comparing the rate of the number of ey events observed

NData

e signals 1O the expected num-

in the data that pass all signal kinematic requirements,

MC

oy signal- To minimize differences between

ber of events predicted using the MC’s, N
the simulation of ey and v+ events, electrons are required to satisfy the photon-like
ID requirements listed in Table XXII. The MC prediction is calculated using the

following equation:

n
MC MC
Ne'y,signal = Z Ne'y,signal,i ’ SFZ (76)
i=0
where Nle\{[ycsignal,i is the number of ey events in each MC sample passing all the re-
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TABLE XXI: The ey presample selection requirements. A total of 1,921 data events
pass all these requirements.

The Requirements for Selecting the ey Sample

Passing one of the triggers in Tables IX and X
An electron that passes the photon-like electron ID requirements in Table XXII
The 7 preselection requirements in Table XVI, but one photon candidate needs

to fail the photon ID requirements, but pass the requirements in Table XXII

quirements in Table XVI as well as the final optimization requirements. All sources
() that contribute to the ey sample are normalized to their production cross sections

and include their k-factors using the SF;. Here, and later, we will refer to the ratio

e~y,signal

Data
of (NW) as the global electroweak normalization factor. After the preselection

e~y,signal

requirements the global electroweak scale factor is given as follows:

NeD'ya:;)?"esample o 1a921
NMC 2,463

evy,presample

= 0.78 £ 0.02 (stat. only) (7.7)

where we take into account statistical errors on all the ey sources. The numerical

values of the scale factors in Eqs. 7.5 and 7.6 are calculated using

EWK (ev)
Nsample,i

SF; = (7.8)

where for each source i o; is production cross section, k; is the k-factor, £ is the
luminosity (2.6 tb~!) and Niﬁglef?) is the number of simulated electroweak vy (e)
events. The results are summarized in Table XXIII.

The uncertainty on the electroweak backgrounds are dominated by the ey nor-

malization factor uncertainty because there are not many events in the data that pass

all the final kinematic requirements. This value includes the data and MC statistical
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TABLE XXII: The photon-like electron ID requirements used to make the ey data set
in data and MC. The requirements that are different from the standard photon ID and
isolation, given in Table IV, are indicated with an *. Also, no additional requirements
in Table IV such as PMT spikes and Phoenix rejection requirements are added. The
electron variables, denoted with a T, are described in appendix A.

The Standard Photon-like Electron ID Requirements

detector In| < 1.0
Conversion*T No

Er > 13 GeV
fiduciality | XcEs| <21 em

9 cm < |Zeps| <230 cm [63]

X&Es <920
Fuaa/ Fem < 0.055 + 0.00045 x E
Eiso <0.1xEp if Er<20 GeV or

<2.04+0.02x (Ey — 20)
N3D tracks in cluster*® 1or?2
E/P of 1st track* 0.8<E/P<1.2if Pr < 50 GeV
no cut if Pr > 50 GeV

2nd track Pr if N3D = 2* <1.0+0.005%x Er
track isolation < 2.040.005 x Ep
2nd CES cluster energy <0.14x BEr if Er<18 GeV

<2.4+40.01x B if Ep>18 GeV

Az = |zpp — Zoa| T |Az] <3 cm
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TABLE XXIII: The calculation of the scale factors for the individual electroweak
backgrounds. Note that the scale factors for W(u) no-ISR/FSR and Z(u) no-ISR/FSR
are listed twice. For these two samples only parts of the samples were used in the evy
counting experiment as they are low rate processes.

Background Source | Cross Section | k-factor | MC events | MC-to-Data SF
o) | k| NEWK SF,
Wiev)+~ 32.0 1.36 1,775,122 0.0635
W (uv) + v 32.0 1.34 1,836,273 0.0605
W(rtv)+~ 32.0 1.34 1,824,182 0.0609
Z(ee) + 10.3 1.36 9,258,132 0.0039
Z(pp) + 10.3 1.36 9,214,135 0.0040
Z(tu) + v 10.3 1.36 9,196,501 0.0040
Z(vo) 4+ 2.5 1.4 8,766,307 0.0010
W (ev) no ISR/FSR 1,960 14 33,815,147 0.210
W (uv) no ISR/FSR 1,960 1.4 23,058,663 0.308
(10,166,426) (0.699)
W (rv) no ISR/FSR 1,960 1.4 24,057,340 0.296
Z(ee) no ISR/FSR 355 1.4 22,986,333 0.056
Z(up) no ISR/FSR 355 14 14,704,660 0.0876
(10,203,233) (0.126)
Z(r7) no ISR/FSR 355 14 33,278,066 0.0387
tt (incl.) 6.7 N/A 7,430,826 0.0023
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uncertainties as well as differences in MC modeling. The other systematic uncertainty
comes from the fact that part of the ey data sample is not from real electron sources.
If a 7° in a jet fakes an electron it will not bremsstrahlung the way that real electrons
do, so they fake photons at a lower late. This effect is estimated by comparing results
for a default value of the E/p requirement (0.8 < E/p < 1.2) and a deviated value
of the E/p requirement (F/p < 2.0) for variation of scale factor as a function of the
requirements. As a check we look at the systematic variation of the scale factor as
the final kinematic requirements are varied. The variations are consistent with the
other methods. The total uncertainties also include the MC statistical uncertainties
and uncertainties on the normalization factors added in quadrature.

The expected Fr, Fr-significance, H. and A¢(~,72) distributions for the elec-

troweak backgrounds in the presample are shown in Figure 34.
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FIG. 34: The electroweak background predictions after the preselection requirements.
(a), (b), (c), and (d) show the Fr, Fr-significance, H,, and A¢p(v1,72) distributions
respectively. Here we have normalized each background to the others using Table XXIII,
but used a global scale factor of 0.78 from Equation 7.7 for the full sample of events
that pass the preselection requirements.
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C. Non-Collision Backgrounds

Non-collision backgrounds to the vy + Fr background come from PMT spikes, beam
halo and cosmic rays sources where either a single or double photon-like signature
comes from the non-collision source. Because these events do not originate from beam-
beam interactions, they can be a source of spurious Fr that is correctly identified by
the METMODEL as being very significant. It was shown in Ref. [43] that other sources
of spurious energy in 77 events are negligible. These non-collision backgrounds are
estimated using the data. We estimate the non-collision background events in the
signal region using extrapolation techniques and the measured efficiencies of the non-
collision rejection requirements given in Tables XIV and XII.

PMT spikes, while not rare, do have a distinct signature (see Ref. [19]) and our
PMT asymmetry requirement removes them very efficiently. Therefore, we do not
explicitly evaluate this background and take the number of remaining PMT spikes

backgrounds events to be zero. We next discuss beam halo and cosmic rays.

1. Beam Halo

Muons from beam halo can fake photon candidates as they pass through the calorime-
ter [19]. Because such events are not related to a hard interaction and usually appear
only in one calorimeter wedge. The dominant background from this source is when
the beam halo muon(s) produce both photons. Events with a single beam halo can-
didate overlapping with a SM event such as v + jet event, as previously mentioned,
have been estimated previously to be negligible and we have ignored them here [43].

To study beam halo contributions to the vy + Fir final state after the beam halo
rejection procedure, listed in Table XII, we create a sample of events (“a beam halo

enriched v sample”) which are mostly beam halo. These events are used to predict
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the shape of the kinematic distributions as well as their correlations so we can predict
how many events will pass all the kinematic requirements. To predict the expected
number of beam halo events after all final requirements we use estimation techniques
to take into account differences between our beam halo enriched sample and the final
signal sample. The numeric calculation of these differences are known as “correction”
factors or “scale” factors.

The beam halo enriched sample is selected as having two “loose” photon candi-
dates passing the requirements of Table XVII, where each photon is also identified
as beam halo using the requirements in Table XII. To increase the number of events
in our sample we do not require a vertex because there is no correlation between the
presence of a beam halo event and a collision event that produces a vertex. The same
is true for the EMTiming requirements. The full set of requirements used to select the
beam halo enriched sample are given in Table XXIV. There are a total of 13 events,
NBH ., in the beam halo enriched sample and their kinematic distributions in the
final signal region are shown in Figure 35. To take into account the difference between
our final signal sample and the beam halo sample we also correct for a number of
effects.

To use this sample to predict the number of events in the signal region, we con-
sider how many events pass the final kinematic requirements, described in Chapter I1X.
We then multiply by the measured rate at which these events pass the kinematic re-
quirements as well as the rate they pass the ID and isolation, vertex and timing
requirements. Since not all beam halo events that are produced make their way into
our enriched beam halo sample, we correct for this effect using the estimated rate at

which they fail our requirements. We estimate the number of events from beam halo
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sources in the final 4y + Fr signal region, after all requirements, to be:

(7.9)

1
signal control kinematic

BH _ a7BH BH BH
N =N : RID,VX,T ‘R
€BH

where RIBD}fVKT is the rejection factor that takes into account the rate at which the
photon ID and isolation, vertex and timing requirements reject beam halo events,

RBH . is the rejection factor that estimates the rate at which beam halo events

pass the kinematic requirements, and takes into account the fraction of beam halo

1
€BH

events that are not in our sample. The first rejection factor, R%{,VX,% is estimated

by
NBH—control 1
Riphvxr = —omm— = = (7.10)
7 7 N]CBOI;IItrOI 13
where NF&{,&‘)}“‘H = 1 is the number of events in the control sample that also pass

the photon ID and isolation requirements, vertex requirements and the EMTiming

BH

kinematic’

requirements. The R rejection factor for the final kinematic requirements is

estimated by

NBH—Control BH—control
RBH o kinematic o kinematic ( 7 11 )
kinematic — NBH - 13 :

control
where Nfiﬁgnfgggml is the number of events in the control sample that also pass the

final kinematic requirements described in Chapter IX. To normalize to the lost rate
of beam halo events in our sample we use the measured rate at which the beam
halo identification requirements select beam halo sources of photons, Rgy. This is

measured to be 90% [76]. We thus take

1 (1—-Rpuw) 1-09
— = = = 0.11. 7.12
€BH RBH 0.9 ( )

The final expected number of beam halo events in the signal region that pass the final
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kinematic requirements is given by

1
BH _ BH BH BH
Nsignal - Ncontrol ' RID,VX,T ’ R‘kinematic ’ €

BH—control
= 13- i 5 Nkinematitc .0.11

— NBH—COHtrOl . (0008)

kinematic

— NBH—Control . SFBH (713)

kinematic

where SFgy = 0.008 £ 0.008 (stat. only).
The uncertainty on the beam halo estimation is dominated by the statistical

uncertainty on the number of events after all kinematic requirements in the beam

NBchontrol

kinematic

halo control sample, The other major source of uncertainty is due to
the uncertainty on the fraction of beam halo events that pass the vertex, ID and

EMTiming requirements.

TABLE XXIV: Summary of the requirements used to select the beam halo enriched
sample. A total of 13 events pass these requirements.

The Beam Halo Enriched Sample Selection Requirements

Passing one of the triggers in Tables IX and X
Two photons passing the loose photon ID requirements in Table XVII
No vertex requirements
No EMTiming requirements
Two photons identified by the Beam Halo ID requirements listed in Table XII
Fr >20 GeV
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FIG. 35: The Fr, Fr-significance, H, and A¢(v1,2) distributions for the 13 events
in the vy beam-halo enriched sample. Events are selected using the requirements in
Table XXIV. As expected these events have large Fp-significance. They have small
A¢(v1,72) by construction.
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2. Cosmic Rays

A cosmic ray muon that traverses the detector can also help fake the vy + Fr sig-
nature. These events can mostly be rejected based on their time of arrival in the
calorimeter; cosmics are not correlated in time with collisions, and therefore their ar-
rival time distribution is roughly flat as shown in Figure 22. In addition to using the
EMTiming system to remove contamination due to cosmic rays (see the requirements
in Table XIV), similar techniques to those above are used to evaluate the remaining
contribution after the kinematic requirements.

A cosmic ray enriched sample of 4y + Fr candidate events is created by selecting
events with two photons passing the loose photon ID requirements in Table XVII,
but failing the timing requirements. Specifically, at least one of the photon candidate
must have |T,,| > 25 ns. That way all cosmic ray sources are taken into account; both
photons from the same cosmic ray, each photon from a different cosmic ray, and one
photon which comes from a cosmic ray and one from the collision. To increase the
sample statistics events are not required to pass our vertex requirements. The full set

of requirements are given in Table XXV. This produces a sample of 40 cosmic ray

CR

eonirol- All 40 events are used as a template for the kinematic distributions,

events, N
as shown in Figure 36, from which the kinematic rejection fraction, RGR . = is
obtained.

We use estimation techniques that are similar to those used to estimate the beam
halo background rate to take into account differences between our cosmic ray enriched

sample and the final signal sample. We estimate the expected number of cosmic ray

events in the signal region, using the following equation:

CR—window|[25,
NG = NOR o RO e - R 2200 RCR (7.14)

signal control kinematic 1D, VX
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TABLE XXV: Summary of the requirements used to select the cosmic ray enriched
sample. A total of 40 events pass these requirements.

The Cosmin Ray Enriched Sample Selection Requirements

Passing one of the triggers in Table IX and X
Two photons passing the loose photon ID requirements in Table XVII
No vertex requirements

T,,| or |T,,] > 25 ns

CR—window][25,120] . .. . ) .
where Ry vy owl lis the rejection factor to estimate the rate at which cosmic

ray events have both photons passing the photon ID and the vertex requirements.
This factor takes into account the extrapolation from the control timing window,
[25,120] ns, into signal timing window, [4-07,-4-07] ns. The REX term is used to

estimate the rate at which cosmic ray events pass a cut on AT, between arrival time

of two photons. The first rejection factor, RGR, . is estimated by
NCRfcontrol CR—control
RCR o kinematic o kinematic (7 15)
kinematic NCR - 40 :
control
where NER-control ig the number of events in the control sample that pass the final
. . . . : CR—window([25,120

kinematic requirements defined in Chapter IX. To estimate Ry o250 we

count the number of events in the control region timing window [25,120] ns that
pass the photon ID and vertex requirements and extrapolated into the signal region
timing window [-4-07,4-07| ns, where op = 1.665 ns, using the observed flat timing

distribution [19] shown in Figure 37. The RICDI?\_&meW[%’IQO} term is estimated by:

CR—window[25,120
RCR—window[25,120]  __ Nip vx 120 (4-07r — (=4 -07))ns
DV N((:jo}:I{ltrol (120 - 25)HS

7 (4-1.665 — (—4-1.665))ns
= —. = 0.025 7.16
40 (120 — 25)ns (7.16)
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where N?Dpj;gindow[%’lzo] = 7 is the number of events that pass the photon ID and

vertex requirement where either photon has the arrival time in the range [25,120] ns.
The last rejection fraction, RS, for the AT, cut between arrival time of two photons,
is given by

NCR-ID,VX 1
R =20 — — (7.17)
NcCo%trol 40
CR—ID,VX .
where N = 1 is the number of events that pass the photon ID and vertex
requirements with AT,, < 5-oar ns between arrival times of both photons, where
oat = 1.021 ns[84]. Putting it all together, the final expected number of cosmic ray

events in the signal region that pass the final kinematic requirements is given by

CR o CR CR CR—window CR
Nsignal - Ncontrol ' 1%kinematic ’ 1%ID,VX ’ RAT
NC.Rfcon'trol 1
40 - kinematic .0.025 - —
40 40
o CR—control
- Nkinematic ’ (0001)
o CR—control
- Nkinematic ' SFCR (718)

where SFer = 0.001 £ 0.001. (stat. only) is taken.

The uncertainties are dominated by statistical uncertainty on the number of
identified cosmics events in the various subsamples.

After estimating the beam halo and cosmic ray backgrounds, the expected kine-
matic distributions for the combined non-collision backgrounds in the presample are

shown in Figure 38.
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candidate events in the cosmic ray enriched sample. Events are selected using the
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D. Background Summary

After considering all the backgrounds, the expected kinematic distributions for all the
backgrounds in the presample, normalized to expectations, are shown in Figure 39.
The Fr-significance in Figure (b) shows the clear separation between the QCD (99.7%)
and electroweak (0.3%) backgrounds showing the power of the background estimation
techniques and understanding level of the data sample. The data in the presample
is well described by the background predictions alone. Note that events at large

Fr-significance=10 in Figure (b) are overflow bins.
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CHAPTER VIII

ACCEPTANCE FOR GMSB MODELS AND SYSTEMATIC UNCERTAINTIES
As there are no real GMSB events available a MC simulation is used to mimic both
the event production and decay as well as the detector response. This allows for
an estimation of our sensitivity to various GMSB model parameters for a variety of
different search strategies and final event requirement configurations. Events from all
SUSY processes are simulated, including those which may not have direct sensitivity,
to maximize the sensitivity which we define to be expected 95% confidence level (C.L.)
cross section limit in the no-signal scenario [40]. This chapter describes why this is a
strong estimator of the sensitivity, how it is calculated and how we estimate the values
of the important quantities that go into calculating it. Of particular importance is the
acceptance which is the fraction of all produced SUSY events that are reconstructed
by the detector and pass all our event selection criteria. In addition to describing
how it is estimated we also describe and estimate the various sources of systematic

uncertainty.

A. Overview: Search Sensitivity, Acceptance and Cross Section Limits

A search for “new” physics, such as supersymmetry, at the Tevatron typically involves
the comparison of observables in an experiment where the signal and background
processes are predicted to be different. The number of signal events that will pass all

our selection requirements is given by:
Nsignal =L Oprod Asignal (81)

where the £ is the total integrated luminosity (2.59 & 0.16 fb™!), the op0q is the

GMSB signal production cross section and Aggnar is the fraction of all SUSY events
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that are reconstructed in the detector and pass all the event selection requirements.
The total production cross section, for our SPS 8 model line, is mostly a function of
the X and Y3 mass. However, since this is a linear function of the X! mass we use
the Mgo as our independent variables to parametrize the production cross section as
described in Chapter I, Section 1.B.2.d. The acceptance is a function of the mass
of the neutralino, the lifetime of the neutralino, our detector and the final selection
criteria. That being said, a full estimation of our sensitivity also depends on the
systematic error on the values in Eq. 8.1.

For a fixed detector configuration the total event acceptance for our signal is a
strong function of the mass and lifetime of the Y we estimate it using a MC method.
As the Mmyo rises it has more and more energy to transfer into the final state particles
energies. This makes the acceptance rise. As the lifetime rises, more and more of the
neutralinos will leave the detector before they decay into photons making the accep-
tance drop. The final event requirements are based on the preselection requirements
discussed in Section V.B and on a subsequent set of requirements determined by the
optimization described in Chapter IX. Quantitatively, we estimate the Aggna using

our MC sample as:
Npassing all requirements

Asignal (%) — events (8 2)

Ntotal produced

events

where Npassing all requirements

ovonts is the number of simulated events that pass all the prese-

lection and final optimization requirements.
Since the final observable in this search is the number of observed events in the
signal region in the data, Ny, it is useful to quote results based on that. In particular,

we expect the number of events in the signal region to be given by

Nobs = Nsignal + kag (83)
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where Ny, is the number of background events (estimated in the previous chapter).
Since we observe Nops and calculate Ny, for a set of requirements we can see if there
is any evidence for a value of Ngjgna which is statistically and systematically different
than zero. If it is not observed to be different from zero, it is useful to set a limit on the
amount of new physics events from SUSY. It is further useful to remove the detector
specific sensitivity from this measurement, Aggnal, and report a limit on the number
of produced events (which takes into account the acceptance). Further taking into
account the known luminosity we can report a limit on the production cross section

via:
N, signal

_— 4
L- Asignal <8 )

Oprod =

In this analysis the sensitivity is estimated in the form of expected 95% Confi-
dence Level (C.L.) upper cross section limits [85]. The 95% C.L. cross section upper
limit, ogs, is set by comparing the observed number of events in the data that pass
the final kinematic requirements after subtracting the expected backgrounds from
the non-signal sources and assuming there are no signal events in the data. The 95%
C.L. upper limit on the cross section is a number used in the occurrence of a non-
observation of signal events to describe a limit on the amount of signal that could
be hidden our data but we do not have sensitivity to. Said differently, we exclude
all cross sections above a certain amount with 95% C.L. By comparing the expected
production cross section to the observed 95% C.L. limit we exclude any model where
Oprod > 095. More details of this process are described in Chapter IX.

Since we have the luminosity and production cross section, we next give more
detail on the estimation of the signal acceptance. It shows the methods to find the
GMSB signal acceptance to pass various sets of requirements, both as a function of

the XY mass and lifetime. After that we will discuss the sources of uncertainty on the
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acceptance as well as the uncertainty on the production cross section.

B. Simulated Acceptance for GMSB signal

To estimate the sensitivity for GMSB models we simulate MC samples in the mass-
lifetime range, 75 GeV < mg < 150 GeV and 73 < 2 ns [86, 87]. For non-zero
lifetimes of the X! we also simulate the EMTiming system [88]. These regions are
chosen to cover from below the current limits in mass (see Figure 7) to masses up
to and including where we will be sensitive. Similarly, we will consider lifetimes
only up to 2 ns because of the photon identification issues mentioned in Chapter III.
For each simulated GMSB mass-lifetime combination the particle masses and the
production cross sections are calculated with the ISASUGRA package interfaced with
the PYTHIA [89]. The acceptance is the number of simulated events that pass all the
requirements divided by the number simulated as given in Eq. 8.2. The statistical
uncertainty is estimated based on the number of simulated events passing our final
kinematic requirements. The number of simulated events for each GMSB MC samples
is thus chosen such that their statistical uncertainty is ~ 1% to make it negligible to
the combined systematic uncertainty which, as will be discussed later in this chapter,
is ~8%.

The acceptance is calculated for each GMSB mass-lifetime combination based on
the preselection requirements and the final kinematic requirements. The breakdown
of events passing each of the selection requirements for an example GMSB point at
mgo = 140 GeV and 730 <1 ns is shown in Table XXVI. For completeness we have
included the results for the final event selection, determined in Chapter IX. Figure 40
shows the Fr, Fr-significance, H,. and A¢(7,72) distributions for GMSB signal MC

after the preselection requirements which show that these quantities are expected to
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be very different from the expected distributions of the backgrounds.

TABLE XXVI: Summary of the event reduction for a GMSB example point in the
v+ Fr final state. We have included the final, optimized requirements for completeness.

Requirement Events passed Asgignal (%)
(mﬁ):140 GeV and 70 <1 ns)
Events simulated 133330 100.0
Two EM Objects and |z,z| < 60 cm 124771 93.6
Standard photon ID requirements 18270 13.7
with |n| < 1.0 and Er > 13 GeV
Phoenix and PMT Rejection 17625 13.2
Beam Halo and Cosmic Rejection 17612 13.2
E7"" > 13 GeV after vertex swap 17049 12.8
and Fr Cleanup
FPrr-significance>3 12610 9.5
H,>200 GeV 11913 8.9
Ap(y1,72)<m — 0.35 10395 7.8




155

vy+#; analysis in GMSB CDF Run Il Preliminary, 2.6 ' vy+#; analysis in GMSB CDF Run Il Preliminary, 2.6 "

£
o
t
2

)”g: mass=140 GeV, lifetime<<1 ns H

[ ] cwmsBsignal

i“’ mass=140 GeV, lifetime<<1 ns

Lo
-
=

-

B
Events per 0.5

Events per 10 GeV

4 6
E,-significance

() (b)

yy+§r analysis in GMSB CDF Run Il Preliminary, 2.6 fo” yy+Er analysis in GMSB CDF Run Il Preliminary, 2.6 ft"'
L L o B R M —— T
1= - GMSB signal — 10 - GMSB signal
> F i': mass=140 GeV, lifetime<<i ns - g i? mass=140 GeV, lifetime<<1 ns
[ C ] =
c [ ] ©
I -
« L i S 1
= =
@ )
T el | o
@ = 3 7]
= 3 2
g F 7 c
> [ ] 2 10"
o[ ] w
2 -2
10 800 900 1000 10

15
A¢,, (rad)

(c) (d)

FIG. 40: The Fr, Fr-significance, H, and A¢(v1,72) distributions for a GMSB signal
point with mgo = 140 GeV/c? and T <K 1 ns using the full MC simulation, but after the
preselection requirements. The amount of data is normalized by the NLO cross section
and luminosity. In Figure (b) there are a subset of events with low Fp-significance
(< 7) due to the fact that while the non-interacting particles are highly energetic, they
might not have small 1, or there are two (or more) that point in opposite directions
and cancel each other out, giving small Fip. The second region, which are essentially
all in the the overflow bins at 10, is due to events with large Fr.
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C. Estimation of the Systematic Uncertainties

Since we have defined the sensitivity of the search to be equal to the expected 95% C.L.
cross section limits, a proper sensitivity estimate must take into account the uncer-
tainties on the trigger, luminosity, background and acceptance. As mentioned in
Section V.A (more detail in Appendix C), with our combination of triggers and high
Er photons we take a trigger efficiency of 100% with negligible error [90]. The sys-
tematic uncertainty on the luminosity is measured separately to be 6% [49]. The
systematic uncertainty on the number of background events in the signal region is
determined from our understanding of both the collision and non-collision sources,
as described in Chapter VII. The background uncertainty is evaluated for every set
of requirements in the optimization procedure. The acceptance uncertainties used in
the cross section limits are described in the subsections below. Similarly, the uncer-
tainty on the theoretical production cross sections are estimated in the subsections
below. The results are summarized in Table XXVII for an example GMSB point of
mg = 140 GeV and 730 < 1 ns. All uncertainties are consistent with the GMSB
diphoton and delayed photon in Ref. [19, 20] unless otherwise noted. The systematic

uncertainty is taken to be constant for all masses.
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TABLE XXVII: Summary of the systematic uncertainties on the acceptance and
production cross section for an example GMSB point at mgo = 140 GeV and T < 1 ns.
In the limit calculators (see Chapter IX) we get the full limit from taking into account
the systematic uncertainties on both the production cross section and the acceptance
in quadrature to get a 10.6% uncertainty on the “acceptance” [85].

Source of Uncertainty Relative Systematic Uncertainty (%)
Acceptance:
Efficiency of the Diphoton ID 5.4

and Isolation Requirements

Initial and Final State Radiation 3.9
Jet Energy Scale 1.6
Fr-significance parametrizations 0.7
Parton Distribution Functions 0.4
Total 6.9

Cross section:
Parton Distribution Functions 7.6
Renormalization scale (Q?) 2.6

Total 8.0
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1. Acceptance Uncertainties

There are a number of effects that can cause our estimate of the acceptance to be
systematically misestimated. For example, if the photon ID efficiency is lower than
what the MC simulates this will cause more photons to pass the requirements which,
in turn, causes the acceptance to be overestimated. We next look at the dominant
sources of uncertainty and describe how each is estimated and how the variation in
each effect translates into an uncertainty on the acceptance. They are identified here,

in order of decreasing magnitude.

a. Photon ID and Isolation Efficiency

The photon ID and isolation variables are imperfectly modeled in cdfSim [61], but
have been measured to be correct on average. Thus, we do not correct the acceptance
and only use the the measured uncertainty on the photon ID and isolation efficiency.
Using the results of [91], we take a systematic uncertainty of 1.8% for the photon
ID and 2.0% for the isolation efficiencies and add them in quadrature for a total of
2.7% uncertainty per photon. Since there are two photons we take the total systematic
uncertainty to be 2x2.7% = 5.4%. This represents an improvement over the 202 pb~*

result [20] due to improved understanding of the detector.

b. Initial and Final State Radiation

Initial state radiation (ISR), caused by a gluon radiating from an incoming parton,
or final state radiation (FSR) from an outgoing jet, can both make the Er spectrum
of the final state particles harder or softer than expected without radiation. This can
cause extra jets in the final state or can cause the photon, the jets or the Fr to be

systematically more or less likely to pass the kinematic requirements. These effects
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are included as part of the event simulation, but their rate and magnitude are not
perfectly understood or modelled. To estimate the corresponding uncertainty on the
acceptance we use the standard CDF procedure by varying the Sudakov parameters
as described in [92]. Doing so we find a variation in the acceptance, taken to be the

systematic uncertainty, of 3.9%.

c. Jet Energy Scale

Since we allow jets with a corrected Er > 15 GeV to be counted in our H, and -
significance calculations we have studied the change in acceptance if the jet energy is
mismeasured. The sensitivity in the final event selection depends on how often signal
events have jets that are around the energy threshold. The standard procedure at
CDF [93] varies each correction factor independently by £1o0. The resulting variation

on the acceptance is 1.6%.

d. Fr-significance Parametrization and Calibration

The Fr-significance calibrations for data and MC are slightly different due to the fact
that the unclustered energy parametrizations are measured to be slightly different
(See Figures 10 and 16 in Ref. [76]). To estimate the magnitude of this uncertainty
on the acceptance we compare the acceptance using the most different sets and find

the variation on the acceptance to be 0.7%, which we take as the uncertainty.

e. Parton Distribution Functions

In a typical proton and antiproton collision it is mostly a single subparticle of the
(anti-)proton, a parton (quark or gluon), that participates in the hard collision and
produces a high center-of-mass energy event. The momentum fraction, described by

parton distribution functions (PDFs), that is carried by each of the partons in the
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proton or antiproton is not perfectly understood. This affects both the rate at which
a process happens (the production cross section) and the kinematics of the outgoing
final state particles (the acceptance of the event selection criteria).

To estimate how this uncertainty translates into an uncertainty on the accep-
tance, we use the standard technique. For each simulated event the MC generator
calculates the momentum fraction of the colliding parton using a standardized “PDF-
set” by the CTEQ collaboration (CTEQ-5L) [94]. For this task we use a special “error”
set of 20 uncertainty pairs of CTEQ-6M. This set is based on +1¢ deviations of a di-
agonalized set of 20 parameters which have their most likely values tuned using a
fit to experimental data. We calculate the full event selection acceptance variations
for all 40 “error” PDFs. The variations are taken with respect to the central best-fit
PDEF. All the variations are summed up in quadrature according to a special pre-
scription [94] to obtain the positive and negative uncertainties on the acceptance.
For the example GMSB point we get a relative uncertainty of +0.3% —0.4% on the

acceptance. The larger value is taken to estimate the uncertainty conservatively.

2. Production Cross Section Uncertainties

The production cross section uncertainty is dominated by the uncertainty on the

PDFs.

a. Parton Distribution Functions

Using the same methods in subsection VIII.C.1.e, but considering the total production
cross section calculation for the example GMSB point, the variation is measured to
be taken of +7.6% —7.3% of the cross section. To be conservative the larger value is
taken to be the uncertainty. As expected, this uncertainty is a little bit bigger than

that reported in the delayed photon analysis (~5.9% for mge = 100 GeV [19]) since
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the example point in this analysis uses a heavier mass.

b. Renormalization Scale

While the dominant GMSB production mechanisms are via electroweak processes like
those shown in Figure 4, the probability that QCD processes occur via gluon emission
and higher-order loops depends sensitively on the energy scale at which the process
happens. In PYTHIA [38] events are generated using a fixed renormalized (¢?) scale
of . However, the NLO cross section, which is calculated with PROSPINO2 [95] for
the systematic studies only!, varies as a function of the renormalization scale. The
variation of the NLO production cross section observed by changing the scale from

0.25-¢2 to 4-¢? is calculated to be 2.6% for the example GMSB point.

3. Summary of Systematic Uncertainties

All systematic errors are combined in quadrature to give 6.9% on the acceptance and
8.0% on the production cross section. These are combined in quadrature to give a total
systematic uncertainty of 10.6% used in the limit calculators for the “acceptance”.

The individual results are given in Table XXVII.

IElsewhere we use the PYTHIA and k-factors to calculate the NLO cross sections.
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CHAPTER IX

OPTIMIZATION AND EXPECTED SEARCH SENSITIVITY
In this chapter we describe the methods to estimate and optimize the expected search
sensitivity. Now that the background estimation methods are determined and the
signal acceptance is available for a given set of requirements, along with their un-
certainties, an optimization procedure can be readily employed. Using only general
requirements we can conduct a robust and partially model independent search. We
optimize the values of the requirements before unblinding the signal region in the

next chapter,

A. Optimization Requirements

As previously mentioned we have chosen the Fp-significance, H,, and A¢(7y1,72)
variables for our final optimization requirements. In this section we describe in more
detail why we chose these requirements, and then show the optimization procedure
using them. Note that many other requirements were considered, including the mag-
nitude of the fir, A¢(v1, Fr), Ad(v2, Fr), Ao(jet, Fr), E}', EJ? and N, (number
of jets), but these yield negligible gain and add additional systematic uncertainties
if they were added to the three already chosen; none is a better replacement for the

ones we have. Our primary requirements are:

o [ip-significance:
As described in Section VII.A, this requirement is very effective at separating
between events with no intrinsic fr and those events with real fir. As such it
gets rid of most of the QCD background with fake Fr and large Hr but is very
efficient for GMSB signal.



163

o H :
In GMSB production heavy gaugino pair-production dominates, and the gaug-
inos decay to light, but high Er, final state particles via cascade decays. Thus,
GMSB signal has lots of H, compared to SM backgrounds, which are domi-
nated by QCD and electroweak backgrounds which do not have lots of high Er

objects.

o Ap(71,72):
The dominant electroweak backgrounds with two photons, significant Fr and
large H, are from W~ events where the photon has high Er and is typically
recoiling against W — ev — ~vyue + Fr. This scenario is readily rejected
because the gauge boson decay is highly boosted, which makes the two photon
candidates in the final state mostly back-to-back. Also, the remaining QCD
background with vy + Fr with large H.. are from events with a pair of high
Er photons where the wrong vertex is selected, the right vertex is not found,
and the photons are mostly back-to-back. In this case the Fr is fake and comes
from having picked the wrong vertex. Even after the vertex swap procedure, this
background is still significant. The A¢(v1,72) requirement effectively reduces
both these backgrounds as the two photons in GMSB signal have no reason to

be back-to-back (see Figures 4 and 40) and so efficiently pass this requirement.

B. Optimization and Setting Limits

There are many ways to estimate the search sensitivity. We have chosen to estimate
the search sensitivity to be equal to the expected 95% C.L. upper cross section lim-
its [96] in the no-signal assumption. This chapter will talk about how we set limits

on cross sections, using the definitions from Equations 8.2 and 8.4 from last chapter,
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and how to get expected limits based on expectations from background and signal
predictions. This method is particularly useful as it provides an effective balance be-
tween signal and background, does not depend on the magnitude of a signal if there
is one, and effectively takes into account the systematic errors when deciding on a set
of final requirements.

The sensitivity is estimated on the acceptance for the full set of GMSB production
diagrams [40], and is done for all the considered GMSB parameter points. With
a background prediction and an acceptance, it is straightforward to determine the
expected cross section limit for each set of possible event requirements, and choose the
one that minimizes the expected cross section limit [96]. It is this set of requirements
which optimizes the sensitivity. This can be done for each value of the GMSB Y? mass
and lifetime parameters. If no signal is observed, then by comparing the predicted
production cross section with the 95% C.L. limit, we exclude those mass and lifetime
combinations that have a production cross section that is above the exclusion cross
section limit, after also taking into account the production cross section uncertainties.
Similarly, if we assume no signal we can predict the probability of getting various
results and we can get expected limits. Since the optimized set of requirements
for each mass and lifetime combination are slightly different, we checked to see if a
single choice of final state requirements is robust enough to be applied throughout
the parameter space for simplicity. Since it does, we choose the single combination
that optimizes the mass limit in the 730 <1 ns scenario. This prescription has been
shown to be as effective as optimizing for the case with the assumption that there will
be signal observed. The difference between these two assumptions is small compared
to the variation between the variation of optimal selection requirements for different
mass-lifetime combinations.

We begin with a description of how a 95% C.L. cross section upper limit is
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calculated, and how it is readily extended to calculate an expected 95% C.L. cross
section upper limit. We then talk about how this expected limit changes as a function
of the final selection requirements. In an experiment such as ours, after a set of final
event requirements are selected, this uniquely determines the number of background
events expected, and the acceptance. A certain number of events is observed in the
data, Ngs, and this is compared with background and if no signal is observed then a
95% C.L. limit is set on the amount of production cross section. We next detail that
process, and move on to extending it for the case where we can estimate the expected
sensitivity before looking at the data.

For a fixed integrated luminosity of £ = 2.594:0.16 fb~! and an observed number
of events in the data, Ny, and assuming no signal the 95% C.L. upper limit on
the production cross section, we can find the number of signal events that would
produce more than the observed number of events 95% of the time. The mean number
events from a hypothetical signal is given by fiexp(0) = Npkg + 0 - L - Agignai- The
production cross section that produces this number of events is known as gg5(NVobs)
and is determined using the following equation which takes into account the statistical
fluctuations of the backgrounds and any expected signal (ignoring systematic errors

for now).

Nobs

095=1-— Z Poisson(n, fexp(095)) (9.1)

n=0
where the Poisson(Nops, flexp) 1S the normalized Poisson probability to observe n events
when i, are expected. To take into account the systematic errors and calculate
the full cross section limit, we use the standard Bayesian limit calculation tool [85]
using a flat prior for the cross section and Gaussian priors for the signal acceptances,

backgrounds and luminosity to take into account the systematic uncertainties of each.
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The expected 95% C.L. cross section limit, og;", can be calculated from the
095(Nops) if we assume no signal and allow N, to vary according to the Poisson vari-
ations in the backgrounds alone, N***%_ The expected limit is thus a function of the
selection requirements and is readily determined by a simple expansion of our proce-
dure. Since the cross section limit is a function of the background and acceptance,
which are a function of the selection requirements (“cuts”) we can calculate the cross
section limit if we make the no-signal assumption where fiex, = Npgg(cut). Then the
expected number of observed events is just given by Poisson( N3 Ny, (cut)). The
value of oo (cut) is calculated from ogs( N2 cut) in the no signal scenario and

takes into account all possible outcomes of the pseudo-experiments, determined by

their relative Poisson probability. To summarize, we take:

D
ogPleut) = Y o5 (NHE, cut) - Poisson (NI, Ny (cut)) (9.2)
]\]pseudo:O
obs
o
RMS?(cut) = Z (o5 (NP cut) — ooxP(cut))? - Poisson(N2"% Ny, (cut))
Npseud0:0

obs
(9.3)

Thus, we have the expected 95% C.L. cross section upper limit as a function of the
final selection criteria. For each GMSB point the set of requirements that produces
the minimum expected cross section limit, Min(og;" (cut)), defines our set of optimal
requirements for that mass and lifetime combination. The expected exclusion region
is defined by the region where the production cross section is above the expected
95% C.L. cross section limit. The expected mass/lifetime limit is where the two
cross. To find the optimal set of criteria we consider a simple grid search where we

vary our three requirements over the region: 0 < Fp-significance < 10 in steps of 1,

0 < H, <400 GeV in steps of 25 GeV, and 2.44 < A¢(y1,72) < 3.14 rad in steps of
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0.05 rad.

After the optimization procedure we find that the values of Fr-significance >3,
H,>200 GeV and Ag¢(71,72)<m — 0.35 rad maximize the mass limit for 730 <1 ns.
As an illustration that the optimization minimizes the expected cross section limit in
all three variables, Figures 41-(a), (c¢) and (e) show the expected limit for a GMSB
example point at mgo = 140 GeV/c? and T < 1 ns as a function of a requirement
while keeping all other requirements fixed at the optimized values around the mass
limit. Indicated in green is the 8.0% uncertainty-band on the production cross section.
In yellow we show the expected statistical variation in the cross section limit using the
data in Table XXVIII and the RMS definition in Eq. 9.3. As previously mentioned,
we decided to use a single set of requirements before we open the box based on
the expectation that they will yield the largest expected exclusion region without
significant loss of sensitivity! to lower mass or higher lifetime scenarios.

With these requirements we predict a total of 1.38+0.44 of background events
with 0.9240.37 from electroweak sources with real fir, 0.46+0.24 from QCD with fake
Fr and 0.00115:00% from non-collision sources. Table XXIX shows the raw numbers
and calculations for the individual electroweak background rates to pass the optimal
requirements. They are summarized in Table XXX. The global electroweak scale
factor is estimated to be 1.31+0.47 for the final optimal requirements?. Note that we
calculate the electroweak global scale factor for each different set of requirements and
its distribution is shown in Figure 42. The single dominant electroweak contribution

'This has been shown in the delayed photon analysis [19]. In that analysis we

lost less than 4% of sensitivity in the cross section limits by using one fixed set of
requirements. There was no loss of exclusion region area.

20.47 = /0.44%2 + (1.57 — 1.41)2 (see Table XXIX), where we take the difference

between the value of 1.41 + 0.44 (stat. only), using Eq. 7.8, with a default value of
E/p and the value of 1.57 +0.43 (stat. only) with a deviated value of E/p, after the
optimal requirements.
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is Zvj — vvyYtake Which produces a total of 0.2640.08 events. From the Table XXX,
the combined rate of Zvj — I} I, A7 fake dominates since most W — [v processes
are rejected by the A¢(1,7v2) requirement (see Section IX.A). The QCD background
contributions are given in Tables XXXI and are dominated by energy measurement
fluctuations in the Fr, estimated using the METMODEL to have a rate of 0.40+0.22
events. The non-collision background calculations are shown in Table XXXII and are
dominated by cosmics which have a rate of 0.001+0.001. Table XXXIII provides the
final summary.

Table XXXIV shows the expected cross section limits, acceptance and production
cross sections for each GMSB point simulated, along with the predicted backgrounds.
Figures 41-(b), (d) and (f) show the distributions of each optimization variable nor-
malized to the number of expected events, while holding all other variables at opti-
mized requirements (“N-1 distribution”). Compared are the background distribution
before unblinding the signal region and the expected signal in the signal region for
an example GMSB point at mgo = 140 GeV/c? and T < 1 ns. Taking into account
the errors, we estimate the acceptance to be (7.8040.54)%. In the next section, the
signal region is unblinded and limits are set on GMSB models.

Note that we do not perform a separate optimization for non-zero lifetimes as
described in Section VIII.B. Rather, the sensitivity of the analysis is simply esti-
mated for these scenarios for lifetimes up to 2 ns. The expected results are given in

Table XXXIV.
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FIG. 41: The expected 95% C.L. cross section limit as a function of the Fp-
significance (a), H, (c) and A¢(y1,72) (e) requirements for a GMSB example point
(mgo = 140 GeV/ ¢ and 7w < 1 ns). All other requirements are held at their op-
timized values. The optimal cut is where the expected cross section is minimized.
Indicated in yellow is the RMS (See Eqn. 9.3) and in green is the 8.0% uncertainty-
band for the production cross section (see Table XXVII). The N-1 predicted kinematic
distributions after the optimized requirements are shown in Figures (b), (d) and (f).
The red arrows indicate the value of the final requirement.
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TABLE XXVIII: The 95% C.L. cross section limit as a function of the hypothetically
observed number of events, after the optimization requirements. The Poisson proba-
bility for this number of events is based on the background expectation of 1.38 events.
The acceptance and cross section limit are calculated for an example GMSB point of
mgo = 140 GeV/c? and T < 1 ns. The expected limit and its variation are calculated
as shown in [96] with Eqs. 9.2 and 9.3. With these numbers we find an expected cross
section limit of 22.1 fb with an RMS on the limit of 7.6 fb.

NEBE | Probability | ogs( N5 (fb)
0 0.252 15.1
1 0.347 20.7
2 0.240 26.8
3 0.110 33.4
4 0.038 40.3
5 0.002 48.2

Electroweak Scale Factors for Optimization I CDF Run Il Preliminary
I I I tr

g o 7
g Value for Optimal Cuts (1.41) ]
8 L _
(/7] - \ 4 7
4 7]

" |Mean 1.422 ]

3 |RMS 0.3301 ]

2 j _

1 ]

0 B Il I 1 1 1 I 1 Il ‘ 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 ]

0.6 0.8 1 1.2 1.4 1.6

EWK Global Scale Factor

FIG. 42: The electroweak global scale factor distributions for each different set of cuts
considered in our optimization procedure. Note that the optimal point is near the mean
of the distribution, consistent with no bias in the optimization. The RMS is consistent
with uncertainties on the expectation from the E/p variation (see Section VIL.B).



**-o8ed JxXou UO ponuIuo))

790" 0F6CL'T 65 8G0'0FEST T 129 Z10°'0F8G0°0 Gz €200°0 (‘Pur) 3
6£0°0F6£0°0 T 6£0°0F6€0°0 T 6£0°0F6£0°0 T 6£0°0 YSA/HSI ou (£4)7
(921°0)
921°0F00°0 0 921°0F00°0 0 880°0F00°0 0 880°0 YSA/HSI ou (1) 7
950"0F950°0 T 950°0F950°0 T 950"0F00°0 0 9500 YSA/HSI ou (99)7
962°0F00°0 0 962°0F00°0 0 670°0F00°0 0 962°0 HSA/HSI ou (1L4) M
(669°0)
669°0F00°0 0 669°0F00°0 0 1G0°0F00°0 0 80€°0 ¥SA/48I ou () m
LV 0FSO'T g TV OFFR 0 i ¢e0'0F00°0 0 0120 YSA/HSI ou (19) 1
100°0F00°0 0 100°0F00°0 0 €10°0FEST'0 €8T 0T00°0 L+ (an)z
SP0'0FITSC0 62T 8€0°0F89€°0 €6 020°0F660°0 T 7000 L+ (21)7
T10°0F2€0°0 8 600°0F020°0 G €20°0FSET0 G 700°0 L+ (1) 7
7€0'0F662°0 9. T€0°0F2SE 0 79 L000FZT00 ¢ 7000 L+ (99)7
GOT'0FE|T0 ¢ GOT'0FE|T0 ¢ 190°0F190°0 I 190°0 L+ (1) M
090°0F00°0 0 090°0F00°0 0 090°0F00°0 0 090°0 L+ (ar) m
2€9'0F982'9 66 L' 0F0LT'G €8 $90"0F790°0 ! 790°0 L+ (12) M
tas - TEEIN | svwoar DI | A - TN | SI0AT DN | S+ SN | STUOAH DTN
Lo 10] 0 >d/i > 070 Lo 10y g1 >d/if > 80 reudts I + AL SIMA 'S 90IN0G punoiIsdyoeg

XXX 9l9eL

Ul POZLIRUIWINS 9IR SI[NSSOI 989 [, ‘Sjusmalmbar uoryeziuaijdo JusIoPIp JO ISqUINU B I0J I030R] 9[RIS [R(O[3 JRIMOIJII[0 1) JO
UOTJRLIRA 91} SMOUS g 9IN31 ‘sjuswadinbal [ew1)do Jo 198 JUSISJIP (e I0] PAJRUIISa ST SUOljeLIRA d /47 [)IIM 10)0R] 9[RIS [RqO[3
YLOMOI)D9[0 [RUY O], "OSIMISY)O PIJOU SSO[UN ATUO [ROIISIIRIS IR SIOLIS [[V TIIXX O[R], WOl Usye) oI pur ') uorenby
Ul pouyep oIe sIojoe] oeds Yg oy, (ge0—L > ()oY pur A9 00z < TH ‘0'¢ < odouedyuSis-Lf) sjuouraImbor
[ewr)do oy} [[B I93Je SPUNOISYOR(Q YLRIMOIID9[d O} I0] ‘W) 108 0) SUOIIR[NO[RD oY) puUe ‘sojel pajoadxs oy, :XIXX ATIV.L



(s&gFrergForey poyadxi) 0¢ 0F1E 0FE60

Teudis‘ia

OEZ imcwa N |
Ecwﬂmbw rmm UE &Bmz |
ereN u

[eusts

(LY OFIP 1) X(ST0FS9°0)= g N TOTIPAId S [RUL] 9L,
eV 0FLS T POFIVT %
91 el N

T TFST 0T 90" TF67'S (SRR szN = PN
4T'0FG9'0 s - ozsmﬂmmz”w

1S - NN | symoag DIV | tas - TTTTLIN | $10AT DIV [ AS g | SYI0AT DIN ]
Lo 105 0'g >d/g > 00 Lo 10y g1 >d/if > 80 [eusts I + AL SIMH 'S 90IN0G puUNoOISIOR

penurjo)) — XIXX OIq¥L



173

TABLE XXX: Summary of the scaled electroweak background estimations after opti-
mization, taken from Table XXIX. Note that we assumed that all the systematic errors

are not correlated in their combination.

Background Source

Expected Ratet+Stat£Sys

W(lv) +~
Z(U)+~

Z(vv) + 7

W (Iv) no ISR/FSR
Z(1l) no ISR/FSR

it

0.176+0.14940.059
0.351+£0.044£0.117
0.26+0.03+0.08
0.0£0.11140.001
0.055%0.096+0.018
0.0824+0.017+0.027

EWK combined

0.92+0.2140.30
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TABLE XXXI: Summary of the QCD background estimations after optimization. The
normalized prediction of the number of events from event reconstruction pathologies

: : PATH PATH-MC MM-MC : :
is given by Ngoo. = (Nsignal — NGignal ) - SFqcp.  To avoid double counting

the number of events from energy mismeasurements predicted by the METMODEL it

is taken to be NMM-MC _

Rexp

Pr—significance=3

METMODEL prediction is given by N

signal

Nno Pr—significance . Rexp

signal Fr—significance=3

= 527 - 0.001, where

= 0.1%, using Equation 6.8, as described in Section VII.A.1. The

signal

METMODEL __

pseudo
signal

pseudo

= 0.40 £+ 0.20 (stat.

0 =

only). See Section VIL.A for a description of the systematic errors.

Background | Scale Factor | MC Events | METMODEL Pred. | Normalized Pred.
PATH—MC MM—MC PATH / METMODEL

Source SFQCD Nsignal Nsignal signal /

Pathology 0.13440.007 1 0.527 0.063£0.092+0.003

METMODEL 0.40+£0.20+0.10

Total QCD 0.46+0.2240.10

TABLE XXXII: Summary of the non-collision background estimations after opti-
mization. The normalized prediction of the beam halo/cosmic ray background rate
is given by N§, .1 = qu_rfe‘);gi?i - SF;, where i=beam halo or cosmic ray, described in

Section VII.C.

Background Source | Total Rejection Fraction | Events Passed | Normalized Pred.

(i) (SF:) (Nigmematie) (Nignar)
Beam Halo 0.0080.008 0 0.0--0.0080.001

0.001£0.001 1 0.001+0.001+0.001

Cosmic Rays

0.00173:9% + 0.001

Non-Collision
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TABLE XXXIII: Summary of the combined background estimations after optimiza-
tion. Note that the small asymmetric uncertainty is ignored in the total calculation.
We have assumed that all the errors are uncorrelated in their combination.

Background Source | Expected RatetStat+Sys

Electroweak 0.92+0.2140.30
QCD 0.46-+0.224-0.10
Non-Collision 0.00119 907 & 0.001

Total 1.3840.30+£0.32
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TABLE XXXIV: The acceptance and expected cross section limits for various sim-
ulated GMSB points for the final selection requirements. For completeness both the
expected and observed number of events and cross section limits from Chapter IX are

included. Note the same analysis is used for all masses and lifetimes up to 2 ns.

mgo T Acceptance Background oo’ Uglgs USEOd
(Gev/e) | (ns) | (%) () | (M) | (M)

70 < 1| 2.0440.43 81.92 | 57.20

70 1 1.85+0.18 90.92 | 62.99 999.9

70 2 1.414+0.14 124.5 | 86.30 '

80 < 1| 4.2940.43 40.83 | 28.22

80 1 3.7140.37 45.59 | 31.51 594.6

80 2 2.8240.28 60.02 | 41.48 '

90 < 1| 5.12+0.51 32.76 | 22.65

90 1 4.4240.44 | Total: 1.384+0.44 | 38.32 | 26.48 986.8

90 2 3.4840.34 (0 observed) 48.60 | 33.59 '

100 < 1| 6.74+0.67 25.12 | 17.36

100 1 6.404+0.64 | EWK: 0.92+0.37 | 26.46 | 18.29 169.0

100 2 4.9340.49 | QCD: 0.461+0.24 | 34.25 | 23.67 '

110 < 1| 7.08+0.71 Non-Collision: 23.88 | 16.53

110 1 | 7.06+0.71 0.00170-95% 23.95 | 16.54 | 047

—0.001

120 < 1| 7.21+0.72 23.97 | 26.24

120 2 5.6440.56 29.97 | 20.71 | 58.38

130 < 1| 7.86%+0.79 21.90 | 14.84

130 1 8.0540.80 21.40 | 14.49 36.23

130 2 5.9540.60 28.44 | 19.67 '

140 < 1| 7.80%0.78 22.62 | 15.11

140 1 7.874+0.79 21.94 | 14.87 | 22.97

140 2 6.084+0.61 27.86 | 19.26

150 < 1| 7.954+0.79 21.25 | 14.67 | 14.54
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CHAPTER X

DATA, CROSS SECTION LIMITS AND FINAL RESULTS
In this chapter the optimized requirements found in Chapter IX are applied to the
data and the signal region is unblinded. No events are observed, consistent with
the background expectation of 1.38 £ 0.44 events. This chapter sets cross section
limits and shows the exclusion region as a function of mgo and 750 for GMSB models.

Expectations for future running are presented in the next chapter.

A. The Data

After all the kinematic requirements listed in Chapter IX there are no events observed
in the data. There is a good agreement between the background prediction and the
number of events observed. Figures 43-45 show the N-1 kinematic distributions for
the background and signal expectations along with the data. The data appears to be

well modeled by the background prediction alone.

B. Cross Section Limits and the GMSB Exclusion Region

Figure 46 shows the predicted and observed cross section limits along with the NLO
production cross sections and errors (see Table XXVII) as a function of the X? mass
at 70 < 1 ns and as a function of the X7 lifetime at mgo = 140 GeV/ ¢?. Indicated
in green is the 8.0% uncertainty-band on the production cross section. In yellow we
show the expected variation in the expected cross section limit using the results from
Table XXVIII and the RMS definition in Eq. 9.3. Since the number of observed
events is below expectations the observed limits are slightly better than the expected

limits. The X! mass reach, based on the predicted (observed) number of events
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vy+Fr analysis in GMSB CDF Run Il Preliminary, 2.6 fb

2
10 —e— Data

[ 1 QCD with fake E;
[ EWK with real E;
[ Non-collision

. 3 GMSB signal
_f %1 mass=140 GeV, lifetime<<1 ns
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Events per 0.5
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0 2 4 L 6 8 10
E-significance

FIG. 43: The same N-1 plot for the Fp-significance as Figure 41-(a), but including the
data. The Fir-significance variable is plotted through the whole region while holding
other variables at the optimal cuts. There is no evidence for new physics and the data
is well modeled by backgrounds alone.
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vy+Fr analysis in GMSB CDF Run Il Preliminary, 2.6 fb

——e—— Data

[ 1 QCD with fake ¥+
1 EWKwith real E;
[ Non-collision

-------------
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Events per 20 GeV
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e
-

=Y

S
)

-

FIG. 44: The same N-1 plot for the H,, as Figure 41-(c), but including the data. The
H,, variable is plotted through the whole region while holding other variables at the
optimal cuts. There is no evidence for new physics and the data is well modeled by
backgrounds alone.
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vy+#r analysis in GMSB CDF Run Il Preliminary, 2.6 fb"
T T T T | T T T T | T T T T T T T T | T T T T | T T T T | T
10" —e— Data =
- [ QCD with fake E; =
g o] [ EWK with real F+ E
© | [ Non-collision _
© i......3 GMSB signal
‘_- 1 —— -0 —o —|
(=] - X, mass=140 GeV, lifetime<<1 ns o RO —
g ST R e SRELLL ]
Q. - LT TR LE L PR B
(7] - ]
ded LhamEga.as .
o 10°
> = =
Ll - =
- — ]
2 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 vI | 1
10 0 0.5 1 2 25 3

FIG. 45: The same N-1 plot for the A¢(v1,72) as Figure 41-(e), but including the
data. The A¢(v1,v2) variable is plotted through the whole region while holding other
variables at the optimal cuts. There is no evidence for new physics and the data is well
modeled by backgrounds alone.
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is 141 GeV/c? (149 GeV/c?), at a lifetime below 1 ns. Lifetimes above 2 ns are not
considered for the reasons mentioned in Section VIII.A as well as the expectation that
most of the parameter space in high lifetimes there should be excluded by searches in
single delayed photon analysis [17, 19]. Fig. 47 shows the 95% C.L. NLO exclusion
region as a function of mass and lifetime of X! using the fixed choice of cuts from the
optimization for both for the predicted and observed number of background events.
These limits extend the reach beyond the delayed photon results [19], well beyond
those of DO search at 750 < 1 ns [21] and the limits from ALEPH/LEP [18]. They

are currently the world’s best.
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yy+¢_in GMSB CDF Run Il Preliminary, 2.6 fb"
T I L I LI I LI I L I LI I L I L I L I T
103 ;”((1’ lifetime<<1 ns —
- --- expected limit and 1o stat. variation
B — observed cross section limit .
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FIG. 46: The predicted and observed cross section limits as a function of the X mass
at Ty < 1 ns (a) and as a function of the XY lifetime at a mass of 140 GeV/c? (b).
Indicated in yellow is the RMS variation on the expected cross section limit and in
green is the 8.0% uncertainty-band for the production cross section (see Table XXVII).



183

-------------- Expected exclusion region with yy+ET and 2.6 fb™' -
Observed exclusion region

Observed exclusion region with y+ET+Jet and 570 pb'

ALEPH exclusion region -
Cosmology favored region with 0.5 < M, <15 keV/c?

A ]
@ 7
-% GMSB 7,—vG .
= M,,=2A, tan()=15 -
W N,,=1, u>0 =

olliiil .. T N P A

80 90 100 1010 120 130 140 150 160
%, mass (GeV/c?)

FIG. 47: The predicted and observed exclusion region along with the limit from
ALEPH/LEP [18] and the v + Fr + jet delayed photon analysis [19]. We have a
mass reach of 141 GeV/c? (predicted) and 149 GeV/c? (observed) at the lifetime up to
1 ns. The green shaded band shows the parameter space where 0.5 < mg < 1.5 keV/ 2,
which is favored in cosmologically consistent models [35].
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CHAPTER XI

CONCLUSION

A. Summary of the Search

This dissertation has presented a search for supersymmetry with gauge mediated
SUSY breaking in a sample of vy + Fr events from pp collisions at /s = 1.96 TeV
using the CDF II detector. This analysis is optimized for the search for high mass,
low lifetime neutralinos, as expected in cosmology favored regions. This analysis is a
significant improvement over previous searches and it has the further advantage that
it considers non-negligible lifetimes of the Y. The experimental improvements such
as selecting candidate events using a Fip-significance and rejecting events with the
new EMTiming system and a full optimization procedure shows a significant impact
on the sensitivity. Using 2.59 fb~! of data collected during 2004-2008 at the Fermilab
Tevatron no events were found, which is consistent with the background estimate of
1.38 £0.44 events. Since there is no evidence for new physics we have set cross section
limits and made an exclusion region for a gauge mediated supersymmetry model with
Y0 — 4G in the Y? lifetime vs. mass plane, with a mass reach of 149 GeV/c2 for Y0
lifetime up to 1 ns. These results significantly extend the world sensitivity to these
models beyond all other previous searches [18, 20, 21].

This exclusion region is also approaching an important region of parameter space

where the G is predicted to be thermally produced in the early universe with a mass

of 0.5-1.5 keV/c? as described in Section 1.B.2.c.
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B. Future Prospects

To investigate the prospects of a search at higher luminosity we calculate the expected
cross section limits assuming all backgrounds scale linearly with luminosity while their
uncertainty fractions remain constant. Figure 48 shows the predicted exclusion region
for a luminosity of 10 fb~!. For higher lifetimes, above ~2 ns, the next generation
delayed photon analysis will extend the sensitivity taken from Ref. [19]. At that point
we expect these results will be combined for completeness. Another improvement that
future versions of this analysis could employ would be to remove the yZpg requirement
so the sensitivity we can be more readily extended to higher lifetimes. However, this
would require that another trigger, like the one used in the delayed photon search, as

it did not have this requirement on it.
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FIG. 48: The black dashed line shows the prediction of the exclusion region limit
after a scaling of the background prediction and the uncertainties for a luminosity of
10 fb~!, which is the expected full CDF Run II data taking. The blue dashed lines
show the prediction of the exclusion region limits from the delayed photon analysis for
a luminosity of 2 fb=1 and 10 fb~!, respectively, as taken from Ref. [19] and the red
region is taken from ALEPH/LEP limits [18].
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APPENDIX A

THE ELECTRON IDENTIFICATION VARIABLES

Electrons in the central calorimeter are identified using methods which are sim-
ilar to those used to identify photons. We listed the identification of electrons using
two different sets of requirements in Tables VII and XXII. The calorimeter clus-
ter requirements (fiduciality, energy isolation, transverse profile x2gg test, ratio of
hadronic to EM energy) are similar and the Er measurement is identical to photons
(see Section III.A). Since photons and electrons will produce different distributions
of these variables and others in this appendix we describe in more detail the variables
used that are not part of the photon ID criteria or ones that are used differently. For

a good description of electron identification see Ref [97]. They are:

e The Fy.q/FErm requirements are typically tighter for electrons than for photons

as electrons can start showering earlier than photons into the EM calorimeter.

e A lateral sharing variable, Lshr, compares the energy that the electron candi-
date deposits in neighboring towers (in 1) in the same wedge to that expected
from test beam data to help discriminate it from hadronic showers. This vari-
able is not used for photons since there is no track to positively identify the

incident angle of the photon at the face of the calorimeter.

e The highest-py track that is extrapolated to the CES position is compared to
the measured position of the shower max. Electrons criteria typically include
requirements that the position be within 3 cm in z (Az) and a charge dependent
distance in (r,¢) (Az) of the CES shower position due to the bending of the

particle trajectory in the magnet field.
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e The track must have at least three axial and stereo superlayers with greater

than 5 hits to ensure a good track quality.

e The E/p requirement matches the track momentum to the calorimeter energy

to reduce the misidentification due to conversions of v — ete™.

e The track is required to originate from the most probable collision region, |z, —
Zyx| < 2 cm and |ty — tyx| < 1.3 ns, as well as be less than 60 cm away from

the center of the detector, |zyi| < 60 cm.

e Electrons coming from photon conversion are removed. The conversion al-
gorithm looks for a pair of opposite sign tracks with |Az| < 0.2 ecm and

|A cot 0] < 0.04.

The standard versions of both the tight and loose ID requirements are summarized in
Table VII in Section III.B. The photon-like electron ID requirements for ey samples
are described in Table XXII in Section VII.B.
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APPENDIX B

MORE ON THE JET ENERGY SCALE

In this appendix we describe the various corrections to the jet energy measure-
ments that were described in Chapter IV in more detail. We also discuss the sources
of systematic error as they are important in our evaluations of the Fr resolution as
well as in the systematic error on the acceptance. We describe the mean measurement
of the jets as well as how we estimate the systematic uncertainties on the jet energy

measurement. This discussion follows those of Ref. [57].

e n-dependency (relative energy corrections): corrects for the calorimeter response
near the gaps at 7 = 0 and n = 1.1 and the response difference between the
central and plug calorimeters. The n-dependent corrections are introduced to
minimize the n-dependence of the calorimeter response. The systematic un-
certainty varies with the Ep of the jet between 0.5% and 2.5% in the region

In| < 2.1.

e Multiple interactions: corrects for the energy from additional collisions in the
same event (“pile-up”) that is deposited in the 0.4 cone of the jet cluster. After
the correction an uncertainty on the slope of 150 MeV remains per additional

vertex.

e Absolute energy scale: transforms the jet energy measured in the calorimeter
into the energy corresponding to the original particles in the jet. The uncer-
tainties are estimated using the differences between MC and data, in particular
the calorimeter response to single particles (~3%), differences in hadronization
modelling between MC’s (PYTHIA [38], BAUR [82], etc.) (1%) and stability of

the calorimeter calibrations (0.5%).
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e Underlying event: corrects for jet energy that falls into the cone that is not
from the jets, but is rather from spectator quarks and initial state QCD radia-
tion. The uncertainty is not well understood and different MC generators give
different results. We take differences in MC generators of up to 28% are taken
as systematic uncertainty which corresponds to ~ 0.11 GeV for a cone size of

0.4.

e Energy out-of-cone (OOC): corrects for radiation and hadronization effects that
can cause a fraction of the jet energy to be deposited outside the jet reconstruc-
tion cone of 0.4. These are detector independent and corrected for on-average.
Differences between MC and data are taken as systematic uncertainty. They

are ~3% at ~15 GeV, decreasing with increasing F...
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APPENDIX C

TRIGGER EFFICIENCY AND LUMINOSITY EFFECTS ON THE
ACCEPTANCE

A. Trigger Efficiency for GMSB Signal

In this analysis diphoton candidate events are selected from the subsample of events
that pass any one of the four triggers, described in Tables IX and X. If they did not
pass one of the four triggers, this would introduce an inefficiency in our analysis and
make our search less sensitive. Therefore it is important to estimate the fraction of our
GMSB signal events that would pass the combination of the four triggers, after the
final kinematic requirements. Figure 49 shows the E7p distributions of both photons
in GMSB MC signal after the final kinematic requirements. With the combination of
four triggers (see Section V.A) we see that over 99% of the events with photons with
the second highest have Fp > 13 GeV. For this reason a trigger efficiency is taken of
100% with negligible error [90].
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FIG. 49: The photon Ep distributions for GMSB signal with myo = 140 GeV/ ¢ and
T < 1 ns after the final kinematic requirements. We note that more than 99% of
our isolated diphoton candidates are well above our Ep > 13 GeV threshold. This is
important because it means that our trigger paths, which requires two photons above
13 GeV, is 100% efficient when taken in conjunction with the other triggers.
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B. Luminosity Effects on the Acceptance

The GMSB signal acceptance is estimated using a “run condition-dependent” MC
simulation that takes into account the different detector responses for different data
taking periods (“run period”)!. To check that our our signal acceptance does not
have any significant dependence on the instantaneous luminosity or other such effects
we calculate the acceptance for the different portions of the data taking period to see
if and how they vary. Figure 50 shows the acceptance curve as a function of data
taking period. While the linear fit finds a small slope, we note that it is consistent
with zero (flat) slope within statistical errors. We observe no acceptance dependence
on the luminosity, thus we ignore additional systematics due to the fact that we have
not simulated the data taking conditions for the last 30% of the data taking which
have, on average, higher instantaneous luminosity. Note that most points are above
the final acceptance for the whole run periods, (7.84£0.8)%, but the preponderance of

the luminosity is in the later run periods.

'We use run periods 1 to 13 only.
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FIG. 50: The signal acceptance as a function of luminosity with only statistical errors.
Each data taking period (run period) is effectively about 1/13'% of the first part of
the data, but with more luminosity for later run periods. The slope (red solid line)
from a linear fit has a small slope, but it is consistent with zero within uncertainty.
The green solid band indicates the total signal acceptance, (7.8+0.8)%, as described in
Chapter IX. Note that the mean value of the fitted value is not equal to 7.8% because
the points do not reflect equal amounts of data taking; more of the data is in later data
taking periods.
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APPENDIX D

PRL FIGURES

Here we show the figures that were published in the PRL that corresponds to

this analysis [44]. Note that they are the same content as Figures 39-(b), 43-(c), 46,

and 47, but with PRL formatting. We have included the captions as they appear in

PRL.
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FIG. 51: The top plot shows the Fp-significance distribution for the inclusive vy
candidate sample, along with the background predictions. The bottom plot shows the
predicted Hp distribution after all but the final Hy requirement.
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FIG. 52: The predicted and observed 95% C.L. cross section upper limits as a function
of the X mass at To<1ns (top) and as a function of the Y lifetime at mg=140 GeV/c?

(bottom). Indicated in green (darker shading) is the production cross section, along
with its 8.0% uncertainty-band. In yellow (lighter shading) is the RMS variation on

the expected cross section limit.
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FIG. 53: The predicted and observed exclusion region along with the limits found
in [18, 19]. The shaded band shows the parameter space where 0.5<m<1.5 keV /c?,
favored by cosmological models [35].
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