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First 5 Tower WIMP-search Results from the Cryogenic Dark Matter Search

with Improved Understanding of Neutron Backgrounds and Benchmarking

Abstract

by

RAUL HENNINGS-YEOMANS

Non-baryonic dark matter makes one quarter of the energy density of the Universe

and is concentrated in the halos of galaxies, including the Milky Way. The Weakly In-

teracting Massive Particle (WIMP) is a dark matter candidate with a scattering cross

section with an atomic nucleus of the order of the weak interaction and a mass com-

parable to that of an atomic nucleus. The Cryogenic Dark Matter Search (CDMS-II)

experiment, using Ge and Si cryogenic particle detectors at the Soudan Underground

Laboratory, aims to directly detect nuclear recoils from WIMP interactions.

This thesis presents the first 5 tower WIMP-search results from CDMS-II, an es-

timate of the cosmogenic neutron backgrounds expected at the Soudan Underground

Laboratory, and a proposal for a new measurement of high-energy neutrons under-

ground to benchmark the Monte Carlo simulations.

Based on the non-observation of WIMPs and using standard assumptions about

the galactic halo [68], the 90% C.L. upper limit of the spin-independent WIMP-

nucleon cross section for the first 5 tower run is 6.6 × 10−44cm2 for a 60 GeV/c2

WIMP mass.

A combined limit using all the data taken at Soudan results in an upper limit of

4.6×10−44cm2 at 90% C.L.for a 60 GeV/c2 WIMP mass. This new limit corresponds

to a factor of ∼3 improvement over any previous CDMS-II limit and a factor of ∼2

above 60 GeV/c2 better than any other WIMP search to date.

This thesis presents an estimation, based on Monte Carlo simulations, of the

nuclear recoils produced by cosmic-ray muons and their secondaries (at the Soudan
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site) for a 5 tower Ge and Si configuration as well as for a 7 supertower array. The

results of the Monte Carlo are that CDMS-II should expect 0.06 ± 0.02+0.18
−0.02 /kg-

year unvetoed single nuclear recoils in Ge for the 5 tower configuration, and 0.05 ±

0.01+0.15
−0.02 /kg-year for the 7 supertower configuration. The systematic error is based

on the available underground neutron data (that we are aware of) relevant to the

unvetoed neutron population. Therefore, for the first 5 tower run, a prediction of

< 0.2 events from cosmogenic neutrons was obtained.

Furthermore, this thesis describes a proposal for a new measurement of the ab-

solute flux of high-energy neutrons (>60MeV) deep underground. The cosmogenic

neutron detector could measure, at a depth of 2000meters of water equivalent, a rate

of 70 ± 8 (stat) events/year. Based on these studies, the benefits of using a neutron

multiplicity meter as a component of active shielding in experiments with similar

background concerns are described.
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Chapter 1

The Dark Matter problem

1.1 Introduction

Throughout the history of life on this planet, humans have asked themselves what

the world is made of? What is the Universe made of? How did the Universe evolve?

Today, inspired by these same questions, we look up at the sky with our most potent

telescopes looking at the electromagnetic spectrum to try to understand the cosmos

and down into matter with our most potent microscopes –particle accelerators– to

understand matter, how it formed and what is made of.

Scientists use particle accelerators to recreate a mini big-bang in the laboratory,

searching for new phenomena that will improve our understanding of particle physics

that will yield a better understanding of what we see in the cosmos. The Dark Matter

problem is a good example of the interplay between particle physics and cosmology

into what has become today Astroparticle physics.

In the 1930’s Fritz Zwicky [1] made the observation that the galaxies of the Coma

cluster move faster than expected if the mass of the cluster was deduced from its

luminosity. During the last 70 years this observation has only undergone a small

correction and still holds today. Vast observations from scales of galaxies (a few Mpc)
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to clusters of galaxies (hundreds of Mpc) have the same problem: the mass that shines

falls short in accounting for the gravitational effect. As a solution, Zwicky proposed

that there should be a non-luminous matter component that was later referred to

as “Dark Matter”. In this chapter a review of the main evidence for Dark Matter

is presented including evidence at scales of galaxies, galaxy clusters and evidence in

large-scale structure formation. Also it is discussed how studies of the early Universe

point towards the conclusion that Dark Matter is not made of any known particle

to date. The last section presents the best candidates for dark matter from particle

physics beyond the Standard Model.

1.2 Evidence at Scales of Galaxies

In this section the evidence from galaxy dynamics is presented both for spiral and

elliptical galaxies. Evidence of Dark Matter halos from galaxies was first presented

about 30 years ago when Vera Rubin and W.K. Ford [2] measured the rotation curves

of the outermost stars of the Andromeda galaxy.

1.2.1 Spiral Galaxies

Spiral galaxies have of the order of billions of stars, they have a central disc of young

stars as well as extended spiral arms in which active star formation is still taking

place. They correspond to about 80% of light galaxies in areas of low density, while

in core areas of galaxy clusters they are very rare (about 10%). Assuming that the

stars in the spiral galaxy have a circular obit around the center of the galaxy, we can

calculate the rotation velocity by equating the gravitational and centrifugal forces

using Newtonian dynamics as

F =
GmM

r2
s

=
mv2

rs

(1.1)
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where M is the mass contained by the orbit of radius rs. Therefore, the velocity of

the star would be

v (rs) =

√
GM

rs

(1.2)

where the mass of the bulge can be written as M = ρV ∼ ρr3
s . Therefore, the velocity

of a star as a function of the distance from the center of the galaxy can be written

as v (r) ∼ r for r < rs and v (r) ∼ r1/2 for r > rs. Nevertheless, the observations

of spiral galaxy rotation curves, for example those shown in Figure 1.1, show that

v(r) = constant after about 5 kpc, which means that M ∼ r, or in other words,

indicates the existance of a large amount of mass extending around the center of the

galaxy and extending far beyond the visible region but this mass by itself is optically

invisible.

The rotation curves of spiral galaxies can be fitted to a Universal Rotation Curve

(URC) that is determined solely by the luminosity as a function of radius [3]. These

rotation curves constitute some of the most robust evidence for dark matter halos in

galaxies and although some of the “invisible matter” is certainly baryonic –composed

of neutrons and protons– for example, faint stars and black holes, there is strong

evidence from studies of the early Universe (to be discussed in Section 1.5) that the

bulk of Dark Matter is not composed of baryons.

Navarro, Frenk and White [4] (hereafter NFW) have done N-body simulations to

predict the structure of dark matter halos on kpc and sub-kpc scales, where it can

be compared to observations of galactic dynamics. They have found a “universal”

structure between the density profiles of dark matter halos of galaxies independent

of mass and of the value of cosmological parameters. The universal density profile

proposed by NFW can be written as

ρ (r)

ρcrit

=
δc

(r/rs) (1 + r/rs)
2 (1.3)
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Figure 1.1: Two-component fits to the universal rotation curve of galaxies. The dotted line
corresponds to the galaxy disk, the dashed line to the halo and the solid to the universal
rotation curve. Figure from [3].

and describes the density profile of any halo with only two parameters, a charac-

teristic density contrast δc, and a scale radius rs.
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1.2.2 Elliptical Galaxies

It is believed that elliptical galaxies originate from major mergers of spiral galaxies

and therefore, they should also contain dark matter halos [5, 6, 7, 8]. The merger of

two spiral galaxies in which the initial galaxies had a spherical bulge and a thin ex-

ponential disk, as well as a thin gaseous disk and a spherical NFW dark matter halo.

The galaxies are made incident at each other (see Figure 1.2) and followed 2-3 Gyr

after the final merger. The similarity between the observed and simulated velocity

dispersion profiles is shown in Figure 1.3, hence demonstrating that the simulations,

including normal amounts of dark matter, reproduce the observed velocity dispersion

profiles.

Figure 1.2: Snapshots of two equal mass spiral galaxies merging into a single elliptical
galaxy. Figure from [10].
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1.3

Figure 1.3: Line-of-sight velocity dispersion profiles. The lower and upper thin (green)
curves represent the predictions of Romanowsky et al. [9], respectively without and with
dark matter. Figure from [10].

1.3 Clusters of Galaxies

Clusters of galaxies are the largest well defined building blocks of the Universe. They

are formed by gravitational pull of cosmic matter over a region of several megaparsecs.

They contain hundreds to thousands of galaxies to form a total mass up to 1015 solar

masses. One of the first confrontations between luminous and gravitational matter

came from the analysis of the the Coma cluster by Zwicky in 1937 [11]. It was found

by Zwicky that the measurement of the velocities and distance of the galaxies yield

an estimate on the gravitational mass of the cluster. Other proposed solutions invoke

alterations to the gravitational force law [12, 13, 14]. The virial theorem for a central

force states

2
〈
Ekin

〉
+
〈
Epot

〉
= 0, (1.4)

however, the use of the virial theorem implies that the system is closed and in me-

chanical equilibrium. If we write the kinetic energy of N galaxies in a cluster by
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〈
Ekin

〉
= 1

2
N
〈
mv2

〉
, then the potential energy of the cluster would be

〈
Epot

〉
= −1

2
GN (N − 1)

〈
m2
〉〈

r
〉 (1.5)

hence the dynamic mass is given by

M '
2
〈
r
〉〈

v2
〉

G
, (1.6)

where for large number of galaxies (N − 1) ' N , and N
〈
m
〉

= M . Hence, by mea-

suring r and v an estimate on the mass of the cluster M can be done. Another

method to estimate the mass of the cluster is analyze the X-ray-emitting gas in the

intra-cluster medium. Assuming hydrostatic equilibrium, the temperature of the X-

ray-emitting gas can be related to the energy in the system which in turn depends

on the mass of the cluster. Other methods include the use of gravitational lensing

and the Sunyaev-Zeldovich effect to be discussed in section 1.4 and 1.5.2 respectively.

All of these methods yield a gravitational mass that is significantly higher than the

luminous mass.

1.4 Gravitational Lensing

Einstein deduced with his theory of General Relativity that the deflection angle α of

a light ray passing at a distance r from a body of mass M is

α =
4GM

c2

1

r
, (1.7)

where G is the gravitational constant and c is the velocity of light. Putting in the

values for our Sun, Einstein obtained

α� =
4GM�

c2

1

R�
= 1.74 arcsec. (1.8)
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During a solar eclipse in 1919 Arthur Eddington measured a value within 20% of

the prediction, becoming one of the first experimental confirmations of General Rel-

ativity [15]. More advanced observations have measured and confirmed the predicted

value to better than 0.02% [16]. Today, gravitational lensing -the deflection of light

by matter- is a widely used astrophysical tool that is used, for example, to estimate

the amount of dark matter in clusters.

Figure 1.4: Galaxy Cluster Abell 2218 with Giant Luminous Arcs and many arclets, imaged
with the Hubble Space Telescope.

Weak gravitational lensing is a method that can be used to measure the mass of

a body by knowing that the path of a light bundle passing a gravitational potential

will be bent according to the strength of the potential. For example, the images of

background galaxies that are near a cluster of galaxies are deflected away from the

cluster, becoming enlarged while preserving the surface brightness and distorted tan-

gentially to the center of the potential (also known as gravitational shear). Figure 1.4

shows the galaxy cluster Abell 2218 with luminous arcs of the background galaxy.

The gravitational shear effects are used to measure the mass of the structure(s) caus-
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ing the lensing. This technique does not assume anything about the dynamical state

of the mass and therefore it is particularly robust when applied to a system with an

unknown dynamical perturbation. Dahle et al. [45] found, for a sample of 40 clusters,

a mass-to-light ratio derived using gravitational lensing of M/L = 377± 17.

Figure 1.5: The spectroscopically measured velocity dispersion σP vs. the dark matter
velocity dispersion σDM . The error bars shown are at 1σ. The dotted line indicates a slope
of one. Figure from [46].

Since many of the clusters in the sample studied by Dahle et al. have also been

studied using X-ray temperature measurements or galaxy velocity dispersion mea-

surements, it is possible to compare the weak lensing measurements to the velocity

dispersion measurements by fitting an isothermal sphere model to the measured shear

profiles around the clusters. Figure 1.5 shows the comparison between the dispersion

velocities of the galaxies as obtained by X-ray measurements or velocity distribution

measurements against the dispersion velocities obtained from weak lensing. The spec-

troscopically measured velocity dispersion tends to be somewhat larger than the dark
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Figure 1.6: Mass to light ratio as a function of scale. The horizontal dashed lines correspond
to different matter densities. The mass-to-light ratios stay constant at approximately Ωm =
0.3 after R ∼ 1 Mpc. The plotted points for rich clusters, Morgan groups, Hickson groups,
CfA groups, spirals and ellipticals are median values of these samples. The plotted circles
are values for the clusters studied by [45]. Figure from [46, 47, 48].

matter dispersion (derived from the weak lensing measurements) for about half of the

cluster sample, but there is a good agreement between these two methods that further

supports the dark matter hypothesis of Zwicky. Figure 1.6 shows the inferred mass-

to-light ratio of many systems that have scales ranging from galaxies (10−2 Mpc) to

superclusters (10 Mpc). Bahcall et al. [48] have found that mass-to-light ratio remains
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flat at Ωm = 0.3 after R ' 1 Mpc.

1.5 Studies of the Early Universe

In the previous sections we have described astrophysical evidence for Dark Matter

from scales of stars within galaxies to galaxies within clusters. In the following sec-

tions, I will describe the less intuitive studies of the early universe, starting with

big-bang nucleosynthesis, which sheds light on the nature of dark matter, and follow-

ing with measurements of the cosmic microwave background radiation, which opened

the field of precision observational cosmology and has become one of the best tools

to study the composition of the universe.

The understanding of the early Universe begins with the observation that almost

all galaxy spectra (except those nearby galaxies) are red shifted. The light that we

see today was emitted when the Universe was a few billion years old. The luminosity

distance dL and the redshift of a galaxy z can be written in a power series

H0dL = z +
1

2
(1− q0) z2 + ... (1.9)

where dL ≡ (L/4πF )2 and L being the luminosity of the object and F the measured

flux. Therefore we can write

z = H0dL +
1

2
(q0 − 1) (H0dL) + ... (1.10)

where the Hubble constant, H0 ≡ (dR/dt) /R(t0) is the expansion rate of the Universe

at present time, and q0 ≡ − (d2R/dt) /RH2
0 measures the rate at which the Universe

is slowing down. The Hubble constant has a value of [18]

H0 = 72h km sec−1 Mpc−1 (1.11)

0.9 . h . 1.1. (1.12)
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The Hubble diagram, shown in Figure 1.7, is the most direct evidence of the

expansion of the Universe. The age of the Universe can be measured in a variety of

different ways [59], among them by using the expansion rate and computing the time

back to the big bang, by dating the oldest stars in globular clusters and by dating

the radioactive elements such as 238Th (mean lifetime τ = 20.27 Gyr). All techniques

yield results consistently within the range of 10 to 20 Gyr. The current best estimate

is 12.6 Gyr, with a 95% confidence level lower limit of 10.4 Gyr [19].

Figure 1.7: Hubble diagram of distance vs. velocity by the Hubble Space Telescope Key
Project. A slope of H0=72 is shown, flanked by ±10% lines. The bottom box shows the
Hubble constant vs distance and the horizontal line is the best fit to data. Figure from [18].

1.5.1 Big Bang Nucleosynthesis

Studies of big bang nucleosynthesis lead to robust and independent measurement of

the baryon density of the Universe, and therefore it is the cornerstone for the existence
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of nonbaryonic dark matter. Big bang nucleosynthesis is a nonequilibrium process

that took place over the course of a few minutes in an expanding, radiation-dominated

plasma with high entropy and many free neutrons [17]. Due to its relevance to the

prediction of dark matter, I will describe in the following paragraph, a brief history

of the of the formation of the lightest elements, following the guidelines of S. Burles

et al. [17].

Figure 1.8: Predictions and measurements of the baryon density from big bang nucle-
osynthesis for deuterium, 3He and lithium. The solid vertical band is constrained by the
primordial measurements of deuterium. Note that even relatively large errors in deuterium
measurements give small errors on the baryon density. Figure from [17].
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At times much less than a second after the big bang, there were roughly equal

numbers of electrons, positrons, neutrinos and antineutrinos and photons. The ratio

of nucleons to photons was more than a billion to one. The nuclei had not been

formed and the ratio of neutrons and protons was unity due to the weak processes

that interconvert them and due to the small mass difference of the proton and neutron,

for example through reactions like ν + n ↔ p + e−. At about one second, when the

Universe had cooled to around 1010 K, the weak processes where not able to keep

the same number of neutrons and protons and the first formations of D, 3He, 3H

and 4He took place. As the Universe continued to expand and cool, the processes

maintaining equilibrium slowed relative to the temperature evolution and, after five

minutes, most neutrons were in 4He nuclei, and most protons remained free. There

was also formation, although in much smaller amounts, of D, 3He, 7Li but the low

density and temperature caused the elemental composition of the Universe to remain

unchanged until the formation of the first stars several billion years later.

The predictions of big bang nucleosynthesis for the light element abundances are

shown in Figure 1.8 in which the boxes and arrows show the current estimates for the

light element abundances and they are consistent with the corresponding predictions.

This result not only provides another confirmation of the big bang, but the theoretical

predictions of the light element abundances depend on the density of protons and

neutrons (baryon density) at the time of nucleosynthesis. Deuterium is the most

robust predictor of the baryon density, resulting in Ωb = 0.05 ± 0.005. This means

that all that we see directly through the electromagnetic spectrum in the sky, and all

the baryonic matter that we are made of and that we study at particle accelerators,

constitutes only 5% of the energy density of the universe.
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1.5.2 The Cosmic Microwave Background Radiation

The expansion of the Universe implies that at earlier times, the Universe was hotter

and denser. As a result, the interactions among particles when the Universe was

at its early stage occurred more frequently than they do today with only a small

probability of being scattered by gas or dust. At present, a photon is likely to travel

several Hubble distances (3700-4700 Mpc) before being scattered or absorbed. As

we “rewind” the Universe in time, the energy density and therefore the temperature

become higher and at the gas will be made hotter by the radiation. When the

temperature reaches about 3000 K, then the hydrogen starts to become ionized and

the high scattering rate of free electrons puts an end to the transparency of radiation.

This is called the epoch of decoupling of matter and radiation. Before this moment,

matter and radiation were in thermal equilibrium. Therefore the radiation should

have the Planck blackbody spectrum∫ ∞

0

ν3dν

exp (hν/kTr)− 1
∝ T 4

r , (1.13)

were Tr is the radiation temperature. In 1963, Arno Penzias and Robert Wilson, using

a horn-reflector radio antenna sensitive to wavelengths ∼7 cm, measured an excess

noise when they turned the antenna towards the sky that was isotropic and constant

with time. Dicke and collaborators had deduced that the Universe should be filled

with a microwave radiation (hereafter Cosmic Microwave Background or CMB) if it

began in a hot and dense state as we have described at the beginning of this section.

The FIRAS instrument inside the COBE satellite (COsmic Background Explorer)

measured, at any angular position on the sky, the spectrum of the CMB to be that of

an ideal blackbody up to 1 part in 104. Figure 1.9 shows spectrum measured by the

FIRAS instrument [20]. The COBE satellite also found that the CMB has a dipole

anisotropy, which means that even though each point in the sky has a blackbody

spectrum, in approximately one half of the sky the spectrum is redshifted, and in the
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Figure 1.9: The spectrum of the Cosmic Microwave Background as measured by the FIRAS
instrument on board of the COBE satellite. The measured temperature by the COBE team
was 2.728 ± 0.004 K. Error bars on the measurement are smaller than the thickness of the
line. Figure from [20].

other is blueshifted. This is caused by the doppler shift that occurs due to the motion

of the COBE satellite with respect to a reference frame in which the CMB is isotropic.

When this dipole distortion is substracted, the root mean square of the temperature

fluctuation measured was 〈(
δT

T

)2
〉1/2

= 1.1× 10−5 (1.14)

were we have defined

δT

T
(θ, φ) ≡ T (θ, φ)− 〈T 〉

〈T 〉
. (1.15)

More recent experiments have measured the CMB with a better angular resolution,

for example the MAXIMA experiment (balloon-borne), the DASI experiment (located

at the South Pole), and the BOOMERANG experiment (a balloon-borne experiment
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launched from Antarctica) have provided measurements of δT/T at scales of order

δθ ∼10 arcminutes. The Wilkinson Microwave Anisotropy Prove (WMAP) was a

+200-200 T( K)

North South

Figure 1.10: North (left) and South (right) sky maps of the temperature of the Cosmic
Microwave Background as measured by WMAP. Figure from [21].

mission designed to measure the CMB anisotropy in the full sky. Figure 1.10 shows

the temperature fluctuations of the CMB as measured by WMAP.

In order to analyze the temperature fluctuations we can represent a sky map T(n)

in spherical harmonics as

T (n) =
∞∑
l=0

l∑
m=−l

almYlm(n) (1.16)

where

alm =

∫
dnT (n)Y ∗

lm(n), (1.17)

and n is a unit direction vector. For a gaussian CMB, we would have that

〈
alma∗

l′m′
〉

= δll′δmm
′
Cl, (1.18)
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where Cl is the angular power spectrum and δ is the Kronecker symbol. The Cl can

be interpreted as the mean variance per l that would be observed by a hypotheti-

cal ensemble of observers distributed through-out the Universe, but the real power

spectrum that is observed in the sky is [21]

Csky
l =

1

2l + 1
σl

m=−l|alm|2. (1.19)

In other words, a term Cl is a measure of the temperature fluctuations at an angular

scale θ ∼ 180o/l. The moments with l > 2 tell us about the fluctuations present at

the time of last scattering. Figure 1.11 shows the CMB power spectrum as a function

of multipole l from various experiments.

Multipole moment l
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Figure 1.11: WMAP power spectrum in black compared with other measurements of the
CMB power spectrum such as Boomerang [22], Acbar [23], CBI [24] and VSA [25]. Figure
from [21] and references therein.

Using WMAP data only, the best fit values for cosmological parameters for the
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power-law flat Λ cold dark matter (ΛCDM) model [29] are

Ωmh2 = 0.1277+0.0080
−0.0079 (1.20)

Ωbh
2 = 0.02229± 0.00073. (1.21)

The result of Ωb is in agreement with estimations using arguments from big bang

nucleosynthesis that we have described in Section 1.5.1. Furthermore, when the

knowledge of the baryon density is combined with that of the total matter density,

we are able to conclude that approximately 25% of the matter density of the universe

is not baryonic and therefore a natural solution is to search for undiscovered particles.

1.6 Observations of Type Ia Supernovae

In the late 1930’s, Walter Baade, working closely with Fritz Zwicky, pointed out that

supernovae were extremely promising candidates for measuring the cosmic expansion.

Their peak brightness seemed to be very uniform, and they were bright enough to

be seen at extremely large distances [26]. In the early 1980’s supernovae with no

hydrogen features in their spectra had been classified as type I. Later on this class

was subdivided into types Ia and Ib, depending on the presence or absence of a

silicon absorption feature at 6150 Å in the spectrum of the supernovae. A remarkable

consistency between the type Ia supernovae was found, and this was further confirmed

and improved when their spectra were studied in detail as they brightened and then

faded. The detailed uniformity of the type Ia supernovae implies that they must have

some common triggering mechanism. This uniformity provides standard spectral and

light-curve templates to measure the expansion rate of the cosmos, or the Hubble

constant H0 [27, 28].

The best fit to measurements of supernovae Ia imply that, at the present epoch,

the vacuum energy density ρΛ is larger than the energy density associated with mass
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ρmc2, and this means that the expansion of the Universe is accelerating. If the

Universe has no large-scale curvature, as indicated by the WMAP data [29], we can

conclude that about 70% of the total energy density is vacuum energy and 30% is

mass [27, 28]. Specifically the matter density has been measured to be

Ωm = 0.3± 0.04 (1.22)

and from big-bang nulceosynthesis it has been inferred that there are too few baryons

to account for this:

Ωb = 0.05± 0.005. (1.23)

Figure 1.12 shows the normalized matter as a function of energy density as ob-

tained using high-redshift supernovae, galaxy clusters, and the cosmic microwave

background. The Figure shows how all the three type of observations converge in a

model where ΩΛ + Ωm = 1 (called the ΛCDM model).

In the following section we will describe why this unseen matter, dark matter, is

regarded to be cold or in other words traveling at speeds much slower than the speed

of light. Further, I will review the most well motivated particle candidates, from

particle physics, to make up the dark matter.

1.7 Large-scale Structure Formation

The large-scale structure of the Universe is sensitive to the energy and matter it

contains. A model that can predict measurements of the large-scale structure of

the nearby Universe needs the energy and matter content of the Universe as input

parameters. In this Section, I describe how the ΛCDM model (Ωm + ΩΛ = 1) is

in agreement with measurements of galaxy redshifts and therefore it provides yet

another astrophysical piece of evidence for the dark matter content of the Universe.

The 2dF Galaxy Redshift Survey (2dFGRS team) measured the redshifts of about
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Figure 1.12: The normalized matter (Ωm) versus the energy density (ΩΛ) for three indepen-
dent sets of observations: high-redshift supernovae, galaxy cluster surveys, and the cosmic
microwave background. These three independent observations converge near Ωm = 0.3 and
ΩΛ = 0.7. The black diagonal with a negative slope indicates the expectation from a flat
cosmos (Ωm + ΩΛ = 1 or ΛCDM model). The small yellow contour in this region indi-
cates how SNAP, a satellite experiment, is expected to deliver on the sensitivity to this
parameters. Figure from [30].
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a quarter million galaxies in order to have a detailed picture of the galaxy population

and its large-scale structure in the nearby Universe. The 2dFGRS team has measured

the galaxy power spectrum P (k) on scales up to a few hundred Mpc, filling the gap

between the small scales where P (k) is known from previous galaxy redshift surveys

and the largest scales where P (k) is well-determined by observations of the cosmic

microwave background anisotropies [31]. Figure 1.13 shows the projected distribution

Figure 1.13: The 2dF Galaxy Redshift Survey (2dFGRS) projected distribution of galaxies
(about 250000) as a function of redshift. The 2dFGRS has provided the first clear detection
the redshift-space clustering anisotropy on large scales. Figure from [31].

of the galaxies measured by the 2dFGRS team and provides the first detection of the

redshift-space clustering anisotropy on large scales. Using only the WMAP data, a

40



1.8

prediction can be made of the amplitude and shape of the matter power spectrum.

The band in Figure 1.14 shows the 68% confidence interval for the matter power

spectrum.

The points in the Figure show the Sloan Digital Sky Survey (SDSS) galaxy power

spectrum [32] with the amplitude of the fluctuations normalized by the galaxy lensing

measurements of the 2dFGRS data [33]. This Figure shows that the ΛCDM model

accurately predicts the large-scale properties of the matter distribution in the nearby

Universe when normalized to observations at z ∼ 1100, the scale at which the CMB

was formed.

Figure 1.14: The mass power spectrum predicted with a range of parameters consistent
with the WMAP-only parameters (shown as the band with a width determined by the 68%
confidence interval) compared with the mass power spectrum as measured by the SDSS
galaxy survey [32]. The figure shows that the ΛCDM model, when normalized to observa-
tions at z ∼ 1100, accurately predicts the large-scale properties of the matter distribution
in the nearby Universe. Figure from [29].
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1.8 Dark Matter particle candidates

There is a wide range of possible dark-matter candidates. Their mass could be as

small as that of axions with m = 10−5 eV = 9 × 10−72M� to black holes of mass

m = 104M�. There can be baryonic and non-baryonic dark matter. The main

baryonic candidates are massive compact halo objects (MACHOs) [34, 35, 36] such

as brown dwarfs (balls of H and He with masses below 0.08M�), jupiters (masses

near 0.001M�), stellar back-hole remnants (masses near 100M�) and neutron stars.

Astronomical surveys for MACHOs indicate that these objects cannot make up all

the amount of dark matter that is needed in our galactic halo. The rest of the dark-

matter candidates are nonbaryonic, and this can be divided between hot and cold. A

dark-matter candidate is called hot if it was moving at relativistic speeds at the time

galaxies form (when the horizon first contained about 1012M�). If it was moving at

nonrelativistic speeds at that time, then its called cold dark-matter.

Studies with N-body simulations of structure formation in a Universe dominated

by hot dark-matter cannot reproduce the observed structure [37]. The hypothetical

nonbaryonic cold-dark-matter candidates are particles that have not yet been discov-

ered. The leading nonbaryonic cold-dark-matter candidates are axions and weakly

interacting massive particles (WIMPs). In the following sections I will describe these

two main particle candidates for cold dark matter.

There is also the possibility that the dark matter problem could be explained

by non-Newtonian gravity models, in which the strength of the gravitational force

decreases less rapidly than r−2 at large distance. Gravitational lensing by the colliding

galaxy clusters 1E0657-56 has been claimed to give theory independent proof of dark

matter dominance at large scales [38]. In this dynamical system, shown in Figure 1.15,

a smaller cluster (called bullet cluster) has crashed through a larger one and the

intracluster gas of both clusters has been stripped by the collision, and is interpreted
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as the bullet’s gas trailing behind its galaxy component. When this system is studied

and mapped with weak lensing, it shows that the lensing mass is concentrated in the

two regions containing the galaxies, rather than in the two clouds of stripped gas

which contain most of the baryonic mass [38, 39]. Weakly interacting dark matter

would move together with the galaxies, and therefore explains the observed system.

Hence the inference that much dark matter continues to accompany the bullet. These

observations present a difficulty for alternative gravity theories.

Figure 1.15: The bullet cluster (right) passing through the cluster on the left. The hot gas
that is stripped off the colliding clusters is colored in red-yellow. The green and white curves
denote the levels surfaces of gravitational lensing convergence; the two peaks of this do not
coincide with those of the gas which is mostly all the mass, but are skewed in the direction
of the galaxy concentrations. The white bar corresponds to 200 kpc. Figure from [39].
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1.8.1 WIMP Candidates From Particle Physics: SUSY

The Standard Model of particle physics has been tested since the 1970’s over a wide

range of experiments and energies that have supported its validity. Nevertheless,

it remains to find the Higgs boson, a missing ingredient of the Standard Model.

Furthermore, the Standard Model cannot explain the so-called hierarchy problem,

where as Supersymmetry introduces a solution, among other benefits, to some of the

unnaturalness of the standard model. Solving the hierarchy problem means that Su-

persymmetry explains how the weak and gravitational scales are determined. Super-

symmetry was not conceived or crafted to solve the hierarchy problem in particular,

but it did. Furthermore, Supersymmetry can explain one of the central problems

of the standard model of how electroweak symmetry is broken. If supersymmetry

is relevant to electroweak-symmetry breaking, it should manifest in physics near the

electroweak scale, E .O(TeV ).

Among the many theoretical motivations for low energy supersymmetry, a par-

ticularly interesting feature is that supersymmetry transformations yield a spacetime

transformation, and hence theories of local supersymmetry contain local spacetime

transformations, and therefore they contain gravity.

Well motivated cold dark matter particle candidates in models that contain super-

symmetry is a pleasant coincidence. The feature that gives rise to a supersymmetric

cold dark matter candidate is R parity. In terms of the implications of R parity on

the fields of the theory is that

R = (−1)3(B−L)+2S , (1.24)

where B, L and S are the baryon, lepton and spin number operators respectively.

When R = 1 this corresponds to ordinary particles and if R = −1 to the correspond-

ing superpartners. If R-parity is broken, it means that there are no selection rules

to prevent the decay of the supersymmetric particles in the spectrum with masses of

44



1.8

Normal Particles SUSY partners

Symbol Name Symbol Name

q = u, c, t up quarks q̃1
u, ..., q̃

6
u up squarks

q = d, s, b down quarks q̃1
d, ..., q̃

6
d down quarks

l = e, µ, τ leptons l̃1, ..., l̃6 sleptons

ν neutrinos ν̃1, ..., ν̃3 sneutrinos

g gluons g̃ gluinos

W± W boson χ̃±1 , ..., χ̃±1 charginos

H± charged Higgs

γ

Z0 Z boson

h0(H0
2 ) light scalar Higgs χ̃0

1, ..., χ̃
0
4 neutralinos

H0(H0
1 ) heavy scalar Higgs

A0(H0
3 , P0) pseudoscalar Higgs

Table 1.1: The spectrum of particles predicted by the minimal supersymmetric standard
model [43]. The neutralino is most probably the lightest supersymetric particle in the
MSSM (Minimal Supersymmetric Standard Model) and a good WIMP candidate [50].

order a few GeV or heavier. The scale of R-parity violation regulates the strength

of baryon- and lepton-number violation processes, which have not been observed in

nature so far and severe constraints on R-parity violation arise. For each fermionic

degree of freedom there is a bosonic degree of freedom and vice versa, causing an

extension of the particle spectrum (see Table 1.1). For example, quarks have spin 1
2
,

and the supersymmetric partners would be the squarks and are bosons. The neu-

tralino is most probably the lightest supersymetric particle in the MSSM (Minimal

Supersymmetric Standard Model) [50]. The neutralino would be stable and weakly

interacting and therefore a good WIMP dark-matter candidate.
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1.8.2 Expected WIMP relic density

If a WIMP-like stable particle (call it χ) existed in the early Universe, it could have

a significant cosmological abundance today [40, 41, 42]. The particle χ would have

existed in thermal equilibrium and in abundance in the early Universe, when the

temperature of the expanding Universe exceeds the mass mχ of the particle. The

equilibrium abundance could be conserved by the annihilation of the particle with its

antiparticle into lighter particles χχ → ll and also through the inverse reaction ll →

χχ. As the Universe expands and cools to temperature below mχ, the equilibrium

abundance drops exponentially until the rate for annihilation reaction χχ → ll falls

below the expansion rate H and at this point the interactions which maintained the

thermal equilibrium freeze out, and a relic cosmological abundance remains [43]. The

conclusion of the cosmological-abundance calculation for a thermal relic is essential

to the arguments for WIMP dark matter.

In order to do a simple estimate of the cosmological abundance of WIMPs, I follow

the steps outlined in the review paper by Jungman, Kamionkowski and Griest [43]

and first proposed by Lee and Wienberg [44]. Suppose that in the early Universe,

in addition to the known particles of the standard model, there is a new stable (or

long-lived) WIMP χ. In thermal equilibrium, the number density of χ particles is

neq
χ =

g

(2π)3

∫
f (p̃) d3~p, (1.25)

where g is the number of internal degrees of freedom of the particle and f(~p) is

the Fermi-Dirac or Bose-Einstein distribution. At high temperatures (T � mχ),

neq
χ ∝ T 3 so that the number of photons and WIMPs is roughly the same. Furthermore,

WIMPs are abundant and rapidly converting to lighter particles and vice versa. At low

temperatures (T � mχ), neq
χ ' g (mχT/2π)3/2 exp(−mχ/T ) hence, the WIMP density

is Boltzmann suppressed 1 . Shortly after T drops below mχ, the number density of

1If the species is in equilibrium , then f (p̃) = 1/ (exp [(E − µ)]± 1), where µ is the chemical
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Figure 1.16: Comoving number density of WIMPs in the early Universe. Dashed lines
correspond to the forming relic abundance of WIMPs, and the solid curve corresponds to
the equilibrium abundance. Shortly after T drops below mχ, the number density of WIMPs
drops exponentially, and the rate for annihilation of χ’s (Γ = 〈σAv〉nχ) drops below the
expansion rate, Γ . H. At this moment, WIMPs no longer annihilate and fall out of
equilibrium, forming a relic cosmological abundance that remains at present times. Figure
from [59].

WIMPs drops exponentially, and the rate for annihilation χ’s (Γ = 〈σAv〉nχ) drops

below the expansion rate, Γ . H. At this moment, WIMPs no longer can annihilate

and fall out of equilibrium, forming a relic cosmological abundance that remains at

present times. The quantitative way of describing this process is done by using the

Boltzmann equation, which describes the time evolution of the number density nχ(t)

potential of the species and +(−)1 corresponds to the Fermi-Dirack (Bose-Einstein) distributions.

In the non-relativistic limit (m � T ) the number density would be n = g
(

mT
2π

)3/2
exp [−(m− µ)/T ],

where the total energy E is replaced by the rest mass m.
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of WIMPs:
dnχ

dt
+ 3Hnχ = −〈σAv〉

[
(nχ)2 −

(
neq

χ

)2]
, (1.26)

where H = ȧ/a is the Hubble expansion rate, and a is the scale factor of the Universe.

The second term on the left-hand side accounts for the expansion of the Universe.

The first term in brackets on the right-hand side accounts for depletion of WIMPs due

to annihilation, and the second term arises from creation of WIMPs from the inverse

reaction. This equation can be derived by imposing that, in equilibrium, the rate

for annihilation and creation of WIMPs is equal. The analytic approximation that

yields a solution to about 10% to equation 1.26 is presented in Kolb and Turner [59].

Figure 1.16 shows numerical solutions to the Boltzmann equation for WIMPs. The

equilibrium (solid line) and actual (dashed lines) abundances per comoving volume

are plotted as a function of x ≡ mχ/T . As the annihilation cross section decreases, the

WIMPs stay in equilibrium longer, and a smaller relic abundance is formed. The fact

that generally, the annihilation cross section depends on the kinetic energy and mass

of the WIMP produces a temperature of the freeze out to be Tf ' mχ/20 � mχ, hence

WIMPs are moving at nonrelativistic velocities when they freeze out. The resulting

density is the relic density of the WIMP. The ratio of the relic density to the closure

density is given by [43, 59]

Ωχh2 =
s0

ρc/h2

(
45

πg∗

)1/2
xf

mPl

1

〈σv〉
(1.27)

where s0 is the current entropy density of the universe, ρc is the critical density, h is

the scaled Hubble constant (H0 = 100h km/sec/Mpc), g∗ is the number of relativistic

degrees of freedom at the time the WIMP falls out of equilibrium, mPl is the Planck

mass, xf ≈ 25 2 and 〈σv〉 is the thermal average of the dark matter pair annihilation

2xf = x at the time of the ‘freeze out’ which is when the rate of annihilation is equal to the

cosmic expansion.
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cross section times the relative velocity. Using Ωχ = 0.2, we find that

〈σv〉 ∼ 0.9 pb. (1.28)

In terms of mass, this means for example that if 〈σv〉 = πα2/8m2 (the value ob-

tained for a generic electroweak mass particle annihilating through the exchange of

the electroweak gauge or Higgs bosons [51]), then m ∼ 100 GeV, giving the order of

magnitude for the WIMP mass.

In the next chapter I will review the current proposed detection techniques, direct

and indirect, of WIMP dark matter. First, I will review calculations for the expected

WIMP rates and potential signatures for direct detection, and following that with a

summary of the most promising experimental techniques.

1.8.3 Axions

The axion is a dark matter particle candidate that arises as a consequence of a

theory by Peccei and Quinn [52] that proposes a dynamical mechanism to conserve

strong CP symmetry. This symmetry, according to the Standard Model of particle

physics, should be violated and therefore produce a neutron magnetic moment 10

orders of magnitude larger than the current experimental lower limit of 10−28 e-

cm [53]. Therefore, this upper limit requires a mechanism to preserve CP symmetry.

The axion is described by the spontaneous symmetry breaking scale of the Peccei-

Quinn symmetry, fa, and its related to the mass, ma, as

ma ' 6µeV

(
1012GeV

fa

)
(1.29)

and the axion-photon coupling gaγγ is defined as

gaγγ ≡
αgγ

πfa

(1.30)

where α is the fine structure constant and gγ is a dimensionless model dependent

coupling parameter. If gγ is ∼ 0.97 then these axions are denominated KSVZ (for
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Kim-Shifman-Vainshtein-Zakharov) [54, 55] and if this parameter is ∼ -0.36 then the

axions are denoted DFSZ (for Dine-Fischler-Srednicki-Zhitnitshi) [56, 57]. This values

of gγ can constrain the axion-to-photon conversion rates an order of magnitude at any

axion mass.

The axion mass has been constrained with observations of nuclear burn off times

in different stellar phases [58] since axions, like neutrinos, are byproducts of stellar

nuclear reactions and can carry some of its energy. Also, the axion mass can be

constrained by studying the neutrino emission from the supernova SN1987a [59] for

which there is experimental data from the Kamiokande and IMB experiments. The

measured duration of the time period of neutrino emission can rule out axion masses

between 2 eV and 10−3 eV [60], otherwise the length of the period would be shorter.

Cosmological considerations can yield constraints on the axion mass since at the time

of the big bang axions would be produced and the total contribution to the energy

density from axions, for a flat Universe, puts a lower limit on the axion mass of

ma ≥ 10−6 eV. The current allowed axion mass range is from 10−6eV to 10−3eV, with

lower masses if they are a major component of dark matter [61].

At present times, we expect axions to be gravitationally bound in our own galaxy,

forming a large halo of particles moving with relative velocities of order 10−3c [62]. For

an axion to be gravitationally bound to our galaxy means they are moving slower than

the escape velocity of 2× 10−3c. In principle, a flux of axions traversing a microwave

cavity permeated by a strong magnetic field could be converted to radio frequency

(RF) photons when the cavity is tuned to the resonant frequency determined by

their mass. This detection principle, based on the axion-photon coupling, was first

proposed by Pierre Sikivie in 1983 [63] and has marked the way to the most sensitive

searches to date of the cosmological axions.

The axion to photon conversion power is proportional to B2V Q, where B is the

magnetic-field strength, V the cavity volume and Q its quality factor. The expected
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Figure 1.17: The 90% confidence upper limit on axion-to-photon conversion power and
coupling gaγγ , assuming an axion halo density of 0.45 GeV/cm3. Figure from [65]

signal is of the order of 10−24W . The signal-to-noise ratio for an actual experiment

is determined by the bandwidth of the signal, the integration time, the signal and

noise power and the noise temperature of the system. At Lawrence Livermore Na-

tional Laboratory the Axion Dark Matter Experiment (ADMX) consists of an 8-tesla

superconducting magnet, a high-Q tunable cavity and an ultrasensitive microwave

amplifier used to search for an axion-to-photon signal as proposed by Sikivie [61].

The first phase of the ADMX experiment excluded KSVZ axions over an octave in

mass, setting the best limits to date, as shown in Figure 1.17. The next generation

of the ADMX experiment will scale up the cavity volume and will use ultra-low-noise

microwave technology [64].

The sensitivity of the ADMX experiment was limited by the noise in the cryogenic

HFET amplifiers and its being improved by the implementation of Superconducting

Quantum Interference Devices (SQUIDs) at the cryogenic stage [66]. Future upgrades
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of the ADMX experiment will use SQUID amplifiers with a dilution refrigerator to be

able to operate at ∼100 mK allowing a significant improvement in the scanning rate

and ultimately reach the DFSZ axion couplings.

* * *

In the next Chapter, I will focus on WIMPs, how can we aim to detect them

in experiments underground, or detect their products, in space-based experiments.

Also, I will review the prospects for producing WIMPs at future high-energy colliders

experiments and how all these measurements could complement each other in order

to measure the properties of WIMP dark matter.
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Chapter 2

WIMP Detection

In this chapter the signatures expected for direct and indirect detection for WIMPs

will be described and the estimation of expected rates in a terrestrial detector target

for direct detection will be derived. Furthermore, the experimental techniques of

a wide variety of direct and indirect detection experiments will be described briefly,

with emphasis on how all these experiments underground, in space and at accelerators

can constrain the properties of dark matter.

Direct detection of dark matter encompasses all those experiments that search for

a dark matter particle interacting directly with the detector, such as via elastic scat-

tering with a target nuclei causing a nuclear recoil of about 15 keV. Indirect detection

experiments search for a non-WIMP particle originating from WIMPs that interact

with the detector (hence the term indirect detection). For example, WIMP annihila-

tion could be observed through gamma ray, positron, antiproton, antideuteron, and

neutrino signals. There are already claims, although controversial, of an excess of

gamma rays from the galactic center providing evidence for WIMP dark matter [67].

The fact that WIMPs are expected to be a thermal relic from the Big-Bang makes

direct detection experiments particularly important due to the long lifetime of the

dark matter particle. In collider experiments a new particle may be detectable but it
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can not be determined if it has the necessary stability to be a “freeze out” product

from the Big-Bang. In addition, signatures at collider experiments will consist of

“missing energy” or missing transfer momentum and therefore a measurement of the

couplings is highly unlikely. Nevertheless, direct detection experiments will be able

to provide information on the WIMP couplings to the Standard Model. Furthermore,

comparing direct to indirect detection which relies on the observation of the annihila-

tion products of the dark matter particles, it is expected that this measurements will

have significant model dependence and therefore have higher uncertainty compared to

the direct detection case. In the following sections I will describe the expected event

rates for direct detection experiments, some of the main experimental approaches to

direct detection as well as indirect detection techniques and also will discuss what we

can learn about dark matter in collider experiments, with emphasis in the fact that

not one approach or experiment alone will be able to fully determine the properties of

dark matter, but only a combination of all of direct, indirect and collider experiments.

2.1 Direct detection experiments

Before going on to describe each experimental technique, it is necessary to derive the

expected rates in a given terrestrial detector for nuclear recoils from WIMPs. The

differential rate per unit mass of a particle with a velocity v incident on a detector is:

dR =
N0

A
σ0vdn, (2.1)

where N0 is Avogadro’s number, A the atomic mass of the target nucleus and σ0

is the WIMP-nucleus scattering cross section assuming zero-momentum transfer. In

the case of WIMPs, dn is the differential particle density in the reference frame of a

detector stationary in the galaxy:

dn =
n0

k
f (~v, ~vE) d3v, (2.2)
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where ~v and ~vE are the WIMP and Earth’s velocities and k is a normalization constant

such that ∫ vesc

0

dn = n0, (2.3)

and n0 is the mean WIMP density in the galaxy. Hence, equation 2.1 becomes:

dR =
N0

A
σ0v

n0

k
f (~v, ~vE) d3v

= R0

√
πv

2Kv0

f (~v, ~vE) d3v

where in the last step, I have introduced the following constants:

R0 =
2N0√
πA

n0v0σ0

K =

∫ 2π

0

dφ

∫ 1

−1

d(cos θ)

∫ vesc

0

f (~v, ~vE) v2dv

and v0 is such that in the limit of vesc →∞, k becomes:

k = k0 =
(
πv2

0

)3/2
. (2.4)

The recoil energy of a nucleus of mass MT , for an incident WIMP particle with

energy E and mass Mχ is given by:

ER =
1

2
Er(1− cos θ) (2.5)

where

r =
4MχMT

(Mχ + MT )2 . (2.6)

The Earth speed has been measured to be

vE = 232 + 15 cos

(
2π

t− 152.5

365.3

)
km/s. (2.7)

The velocity distribution of the WIMPs, assuming that the WIMPs do not interact

with each other, is given by a Maxwellian velocity distribution:

f (~v, ~vE) ∼ exp

(
−(~v + ~vE)2

v2
0

)
, (2.8)
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where v0 is defined by Mχv2
0/2 ∼ 230km/s [68]. The differential recoil energy spectrum

is:

dR

dER

=

∫ Emax

Emin

1

Er

dR

dE
dE, (2.9)

where Emin = ER/r and Emax is the WIMP escape velocity. Also, we can write

equation 2.9 in terms of velocity instead of energy:

dR

dER

=

∫ vesc

√
2MχER/r

2

rMχv2

dR

dv
dv

=
R0

rE0

2π3/2v0

K

∫ vesc

√
2MχER/r

v exp

(
−(v + vE)2

v2
0

)
dv

where E0 = Mχv2
0/2. When we take the limits vE → 0 and vesc →∞, K → (πv2

0)
3/2

,

the differential energy rate is given by:

dR

dER

=
R0

rE0

e−ER/rE0 . (2.10)

Taking into account the velocity of our Galaxy to be of order 10−3c, then the

values of Mχ in the 10-1000 GeV/c2 would produce recoils up to 100 keV in energy.

The majority of the direct detection experiments searching for WIMPs aim to measure

the left hand side of equation 2.10 as a function of recoil energy mostly between 10

and 100 keV. These experiments are very low threshold neutron detectors searching

for nuclear recoils from WIMPs and therefore they have to be performed underground

to shield from cosmic rays and inside gamma-ray and neutron shielding. In the

next chapters I will describe the backgrounds that these experiments need to address

with emphasis on the neutron backgrounds. When an experiment has set an upper

limit on the differential rate at a particular value of ER, then the right-hand side of

equation 2.10 can set a corresponding limit for the dark matter signal R0 that can be

calculated as a function of the WIMP mass.

A more realistic right-hand side of equation 2.10 will consider the kinematics of the

earth (where the detector is located) with respect to the Galaxy, detector efficiency,
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several target elements in the detector, instrumental resolution and threshold effects,

spin-dependent versus spin-independent interactions, and form factor corrections that

can suppress the differential scattering rate significantly. The recoil energy spectrum,

in general, can be written as

dR (vE, vesc)

dER

=
dR′ (vE, vesc)

dE ′
R

F 2 (q) S, (2.11)

where dR′/dE ′
R is the recoil spectrum at zero momentum transfer but for a finite

escape velocity vE and for a finite threshold velocity, given by [68]:

dR′ (vE, vesc)

dE ′
R

=
k0

k1

[
dR(vE,∞)

dER

− R0

E0r
ev2

esc/v2
0

]
, (2.12)

where

dR(vE,∞)

dER

=
R0

E0r

√
π

4

v0

vE

[
erf

(
vmin + vE

v0

)
− erf

(
vmin − vE

v0

)]
k0 = (πv2

0)
3/2

k1 = k0

[
erf

(
vesc

v0

)
− 2√

π

vesc

v0

e−v2
esc/v2

0

]
.

and, for spin-independent interactions

S = A2µ2
N/µ2

p

µN,p =
MNMp

MN + Mp

where MN and Mp is the mass of the nucleus and proton respectively.

The Helm form factor F (q), for q =
√

2MT ER is determined empirically, and there

is one for each type of interaction (spin-independent or spin-dependent). For a spin
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independent interaction the Helm form factor is given by [68]:

a = 0.52 fm

s = 0.9 fm

c = 1.23A1/3 − 0.6 fm

r2
n = c2 +

7

3
π2a2 − 5s2

F (qrn) = 3
j1(qrn)

qrn

e−(qs)2/2

= 3
sin(qrn)− qrn cos(qrn)

(qrn)3e(qs)2/2
.

Figure 2.1 shows the form factor as a function of recoil energy for Ge, Si and Xe.

Figure 2.1: The Helm form factors for Ge, Si and Xe as a function of recoil energy [142].

Assuming the spin-independent coupling dominates, using standard halo param-

eters, and the formalism described here and developed by Lewin and Smith [68], the

interaction rate is shown in Figure 2.2 for a WIMP mass of 100 GeV and a cross
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section normalized to that of a single nucleon. Shown in figure are the expected dif-

ferential and integrated WIMP event rates as a function of recoil energy for Xe, Ge

and Si. We can see from the plot that higher WIMP rates favor heavier nuclei due to

coherence enhancement of the rate (∼A2) and also due to a more effective transfer of

the recoil energy with respect to lighter nuclei (lighter than an WIMP). Furthermore,

the form factor is suppressed at high recoil energy for Xe. The parameters needed to

optimize the expected rate are: target nuclei, threshold and scalability (or detector

mass). The effect of threshold energy is magnified when an experiment searches for

low-mass WIMPs due to the reduction of kinetic energy that can be transferred to

the nucleus from the WIMP.

Figure 2.2: Integrated interaction rates for Ge (dashed line), Si (solid line) and Xe
(dash dotted line). In order to take advantage of the cross section enhancement for spin-
independent interactions, which goes as A2, a low threshold is necessary together with a
heavy target nuclei [143].
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The spin independent WIMP-nucleus elastic scattering cross section can be written

as:

σ '
4M2

χM2
T

π (Mχ + MT )2 [Zfp + (A− Z) fn]2 , (2.13)

where A and Z are the common notation for the atomic number and atomic mass

respectively for the target nucleus. The WIMP couplings are fp for protons and fn

for neutrons and are given by:

fp,n =
∑

q=u,d,s

f
(p,n)
Tq

aq
mp,n

mq

+
2

27
f

(p,n)
TG

∑
q=c,b,t

aq
mp,n

mq

, (2.14)

where the WIMP mass couplings are given by aq and the quark content of the nucleon

is denoted by f
(p,n)
Tq

. Interpreting each term in the sum of equation 2.14, the first term

corresponds to the contribution from interactions with the quarks of the target nuclei

which, for neutralino dark matter, can occur via t-channel CP-even Higgs exchange,

or s-channel squark exchange [51]:

The interactions with the gluons of the target nuclei correspond to the second term

through a loop diagram. Aside from the determination of the WIMP mass, in order to

understand the nature of this particle we need to know its quark couplings aq which,

in the case of neutralino dark matter, depend on the underlying supersymmetric

theory. Direct detection experiments will not be capable of revealing much about

supersymmetry or the underlying physics behind the dark matter particles. Only by
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using the information from colliders, together with direct and indirect detection can

we hope to understand the nature of dark matter and its composition. Furthermore,

it is noteworthy the pace at which direct detection experiments are gaining sensitivity

with high likelihood of reaching ∼10−45 cm2 by 2010 and therefore in a position to

discover a signal in the same time scale that the Large Hadron Collider is expected

to produce results on searches for new particles.

Most of the direct detection experiments, including CDMS, aim to measure the rate

of WIMP induced nuclear recoils and their energy with an average of 15 keV. A few

events of this kind will represent a positive signal for a zero background experiment

such as CDMS. After a few events are seen and good statistical significance is obtained,

an annual modulation is expected at the few percent level due to the Earth’s motion

around the Sun [70, 71]. Other approaches aim at detection of the direction of the

nuclear recoils since we expect a directional dependence of the WIMP scattering rate

with respect to the direction of solar motion. If sensitivity to the direction of the

WIMP nuclear recoil is achieved, the scattering rate is expected to be significantly

larger when moving in the direction of the solar motion [72]. Certainly having a

directional signal improves the signal confidence level since the background events will

be isotropic compared to the expected anisotropic signal. Nevertheless, sensitivity to

the nuclear recoil direction usually means a low density target material and therefore

very large arrays are needed since the mass of the target will be proportional to the

sensitivity as well. The sensitivity of a directional detector, aside from mass, threshold

and exposure, depends on whether it measures the recoil momentum in two or three

dimensions and whether the sense (head/tail effect) of the recoil momentum vector

can be measured [73, 74].

In the following subsections I will discuss the main detection techniques for direct

detection of dark matter. These consist mainly in very low threshold (few to tens

of keV) neutron detectors (via nuclear recoil) build with low radioactivity materials
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and under passive shielding such as hydrogenated materials, lead and the earth’s crust

(underground). Muon vetoes are also used in some experiments such as CDMS in order

to have an extra order of magnitude background discrimination against cosmogenic

neutrons, these will be discussed in more detail in Chapter 4. In Figure 2.3 the

main detection techniques are shown around a triangle that depicts the energy from

the interaction of a WIMP-nuclear recoil. When the recoil occurs, the energy is

partitioned in ionization, heat/phonons and scintillation. Each detection technique

exploits one or more of this channels or degrees of freedom that help to make the

discrimination between nuclear recoils (neutrons and WIMPs) and electron recoils

(majority of backgrounds).

Figure 2.3: The triangle depicts the energy after a nuclear recoil interaction from a WIMP,
each corner represents a channel where the energy from the interaction appears. Each
detection technique exploits one or more of these channels. Most of the energy goes into
phonons and ionization, the two channels used by CDMS and EDELWEISS. Figure from[76].
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2.1.1 Cryogenic Particle Detectors

The detection of energetic particles through their calorimetric effects is based on the

first law of thermodynamics. It is believed that as far back as 1880 Langley [77] de-

veloped a resistive bolometer to measure infrared radiation from the sun [78]. Some

of the main applications of the calorimetric detection of particles includes high reso-

lution X-ray astronomy, material analysis, neutrino physics, Lamb shift experiments,

nuclear waste determination and, for the CDMS experiment, a low threshold nuclear

recoil detector.

A cryogenic calorimeter consists of an absorber weakly thermally coupled to a

heat bath. The temperature of the absorber is monitored by a thermometer. When

a particle interacts with the calorimeter, it produces a temperature rise δT = E/Ctot

as a result of the energy E transferred from the particle to the calorimeter. Ctot is the

total heat capacity of the absorber and thermometer. When the energy transfered

to the detector mass is allowed to reach thermalization among all possible degrees of

freedom in the absorber/thermometer, these are called equilibrium detectors. When

the detector signal consists mostly of the energy channeled though certain degrees

of freedom before it thermalizes or reaches equilibrium, it is called non-equilibrium

detector. The CDMS detectors lie within the non-equilibrium regime.

The CDMS experiment, on which this thesis is mainly based, makes use of phonon

sensors on the surface of germanium and silicon disks with 3 inch diameter and 1 cm

thickness. The experiment measures the charge and phonon energy of each particle

interaction occurring in the crystal. By taking advantage of the quenching of the

charge signal by a factor of 2-3 for nuclear recoils relative to electron recoils, the

CDMS detectors can distinguish between neutron (and WIMPs) and the rest of the

particles. Figure 2.4 shows the ionization energy as a function of recoil energy for

neutron events from a 252Cf source and electron recoil events from a 133Ba gamma-ray
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source. In Chapter 3 I will describe in detail how is that CDMS-II achieves sensitivity

to WIMP-nuclear recoils.

Figure 2.4: Ionization energy as a function of recoil energy. The upper band (blue) are
events from a 133Ba source, and the lower band (green) contains events from a 252Cf
source[142]. Note that there are some green events in the upper blue band. This is be-
cause the 252Cf neutron source emits a significant amount of gamma-rays in addition to the
low-energy neutrons.

The CRESST [79] dark matter experiment makes use of CaWO4 crystal as the

substrate, operated as a cryogenic calorimeter for the phonon channel, and also uti-

lizes a nearby separate cryogenic detector optimized for the detection of scintillation

photons, making the light channel. Since a nucleus and an electron or gamma of the

same energy differ in the amount of scintillation light they produce, by measuring

the phonon and light signals in an event by event way, they are able to discriminate

between the electromagnetic backgrounds such as gamma-rays, electrons, positrons,

alpha particles and any charged cosmic rays from neutrons or WIMPs [80]. The lat-

est data from CRESST in 2005 consists of two 300 g detector modules, with a net
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exposure of 20.5 kg-days.

Of all direct detection experiments, the one that resembles the CDMS detection

technique the most is the one used by the French collaboration EDELWEISS [81]. They

have used germanium detectors with a mass of 320 g each and were able to accumulate

an exposure of 62 kg-days in the latest results reported for which competitive limits

on the WIMP-nucleon cross section were set [82].

The operation efficiency of these cryogenic detectors is a significant part of the

effort needed for the experiment to succeed given the difficulties of operating at tens

of millikelvin. As I will discuss in the upcoming chapters, the CDMS experiment is at

the forefront in WIMP sensitivity (for spin-independent interactions) not only with

respect to the other cryogenic experiments but to all direct detection experiments so

far, although noble liquid based detectors have made significant progress in the past

few years and are a very promising competition to CDMS.

2.1.2 Noble liquid detectors

Noble liquid based nuclear recoil detectors for WIMP detection have put their poten-

tial on the map with the front runners using a Xe TPC (Time Projection Chamber)

detector. Many noble liquids such as xenon, argon and neon have high scintillation

yields, can be somewhat purified of radioactive contaminants (39Ar requires isotope

separation and 85Kr can be removed by charcoal distillation), and are likely scalable

to large masses more easily than cryogenic particle detectors. Furthermore, the fact

that the scintillation light from these noble liquids does not get absorbed by the liquid

itself together with their relatively high atomic weight (Xe and Ar) makes them an

excellent target for WIMP detection. They also have the ability to use self shielding

to set a fiducial volume cut in the central part of the target material in order to

avoid external radioactive backgrounds (coming mostly from the readout system of

photomultiplier tubes).
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WIMP detectors based on noble liquids are based on the discrimination between

nuclear recoil events that constitute the WIMP signal (and neutrons) and electron

recoil events that constitute the electromagnetic backgrounds. Some experiments

rely on the scintillation light as well as the ionization produced by the interaction,

for example the XENON [83], ZEPLIN [84], WARP [85] and ArDM [86] experiments.

These experiments are dual phase detectors, in which the liquid phase is used for the

target and the gaseous phase is used to amplify the ionization signal. The ratios of

light to charge signal are used as discrimination parameters to distinguish the nuclear

and electron recoil event populations. Single phase detectors have been proposed

as well, in which only the scintillation light using pulse shape difference is used to

discriminate nuclear and electron recoils. The scintillation light in noble gases is

produced by the decay of excimers that can exist in either a singlet or triplet molecular

states, and are produced by particle interactions. The decay lifetimes of these singlet

and triplet states for neon, argon and xenon is shown in Table 2.1. The relative

amplitudes of the fast and slow emission of scintillation light according to the type of

interaction can be used to discriminate between nuclear and electron recoils, although

the effect is not that strong in Xe.

Singlet Lifetime (ns) Triplet Lifetime (ns)

Ne < 18.2 ± 0.2 14900 ± 300

Ar 7.0 ± 1.0 1600 ± 100

Xe 4.3 ± 0.6 22.0 ± 2.0

Table 2.1: Lifetimes of the singlet and triplet excimer states for neon, argon and xenon [87,

88].

The CLEAN [89] and DEAP [90] dark matter experiments are planning to use the

pulse shape discrimination qualities of neon and argon, respectively. The presence of

the cosmogenic 39Ar in argon produces 1 Bq per kg [99], demanding a discrimination
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capability for DEAP of about 10−8 or better [90]. Discrimination capabilities of part

per billion in electron recoil contamination (the probability of incorrectly classifying

an electron recoil as a nuclear recoil) have been claimed possible with these experi-

ments. The CLEAN experiment will be sensitive to low energy neutrinos as well as

for WIMPs, although the low-A of neon requires more mass compared to argon to

reach the same WIMP sensitivity.

2.1.3 Directional Detectors and Other Technologies

An ongoing research and development effort is focused on directional WIMP detectors

in which the ability to measure the day/night modulation of a WIMP signal would be

possible by measuring the direction of the recoiling nucleus when a WIMP scatter oc-

curs. Some detectors such as the proposed by the DRIFT [91] collaboration would be

sensitive to the recoils track, other detectors such as the proposed by the DMTPC [92]

collaboration aim to not only measure the recoil track but also the direction of it (the

“head-tail” effect). The DRIFT detector consists of a Negative Ion Time Projection

Chamber (NITPC) and operates at a pressure of ∼1/20 atm and can measure recoil

tracks to a few mm [93]. The DMTPC detector is being developed to have the ca-

pability of imaging the direction of the nuclear recoils by using a low pressure TPC

filled with CF4 and coupled with a CCD camera. These technologies are still under

development and are not expected to have competitive WIMP sensitivity in the next

several years but, if proven successful, will provide a unique measurement that could

have more sensitivity to establish the galactic origin of the WIMP halo, compared to

the other detectors that only measure the energy of the nuclear recoil.

Other detector technologies with radically different approaches are the super-

heated liquid detectors. Super heated liquid detectors, in the form of bubble cham-

bers, were used as a particle detector in accelerator experiments [94]. The COUPP col-

laboration has improved the deactivation of inhomogeneus bubble nucleation centers
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and has shown that it is possible to achieve a long stability in moderately superheated

bubble chambers, reaching competitive sensitivity to direct detection of WIMP dark

matter [95]. The thermodynamic properties of superheated liquids can be set up in a

way to respond exclusively to particles that have a large stopping power and there-

fore muons, gamma-rays, etc. will fall below a certain bubble nucleation threshold

(∼ 50 keV for a WIMP search [96]). Given that a few-keV nuclear recoils will deposit

much more energy than minimum ionizing particles due to the denser energy deposi-

tion, it is possible to be sensitive to WIMP nuclear recoils while insensitive to most

other ionizing particles. The COUPP collaboration has recently reported on a WIMP

search run with a bubble chamber containing 1.5 kg of superheated CF3I, a target

optimum for spin-dependent and independent WIMP interactions. They achieved an

exposure greater than 250 kg-days, achieving improved limits on the spin-dependent

WIMP-proton scattering cross section, excluding the remaining DAMA/NaI dark mat-

ter discovery claim (to be explained in section 2.1.4) under the WIMP hypothesis and

standard halo.

2.1.4 The DAMA annual modulation

The Italian-Chinese collaboration, DAMA, aims at exploiting the expected annual

modulation signature of dark matter caused by the Earth orbit around the Sun on

the number of events induced by the dark matter particles. Therefore, this experiment

expects a larger flux around June 2nd when the orbital velocity of the Earth is summed

to the orbital velocity of the solar system around the Galaxy, and expect a smaller

rate around December 2nd, when the orbital velocities of the Earth and of the Sun are

anti-parallel [100]. The signal counting rate in the k-th energy interval as a function

of time t can be written as:

Sk = S0,k + Sm,k cos [ω (t− t0)] , (2.15)
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where S0,k is the constant part of the signal, Sm,k is the modulation amplitude, ω is

the frequency and t0 the phase [100]. The DAMA detectors consist of ' 100 kg of

radiopure NaI(Tl) scintillators. The latest generation of this experiment (LIBRA) has

a mass of approximately 250 kg. The expected DAMA annual modulation signature

from dark matter particles will have the following features [100]:

(a) the modulation of the rate must follow a cosine function with a period of one

year,

(b) the phase of the signal modulation should be close to June 2nd and produce an

effect ' 7% (depending on the properties of the galactic dark matter halo),

(c) the signals producing the modulation must be low energy and be single hits.

The DAMA collaboration sees this approach as model-independent because noth-

ing is assumed about the nature of the particle causing the energy deposition and the

modulation, in contrast to all the other direct detection methods that assume that

the dark matter is the Weakly Interacting Massive Particle and scatters from nuclei.

The DAMA/NaI experiment [101] claims the first direct-detection model-independent

evidence for the presence of dark matter particles in the Milky Way halo. In 1996,

the DAMA/LIBRA experiment was proposed which consists in a 250 kg of radiopure

NaI(Tl) cristals. Recently, the DAMA/LIBRA collaboration has reinforced the claim

of evidence for dark matter from an observed annual modulation of the detected single

rates at very low energies (.10 keV).

They claim they have done a model independent analysis of the residual rates of

the single-hit events in the lowest energy regions. The residual singles rates are calcu-

lated from the measured rate after some efficiency corrections and after substracting

the constant part defined by:

〈rijk − flatjk〉jk , (2.16)
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Figure 2.5: The residual single-hit events in the 2–4, 2–5 and 2–6 keV energy intervals for
the DAMA/NaI and DAMA/LIBRA experiments with an exposure of 0.53 and 0.29 ton-
year, respectively. The zero of the time scale is January 1st. The solid lines correspond
to the superimposed cosinusoidal functions Acos [ω (t− t0)] with a period of one year, a
phase t0 = 152.5 days (June 2nd) and with an amplitude A (0.0215±0.0026) cpd/kg/keV,
(0.0176±0.0020) cpd/kg/keV and (0.0129±0.0016) cpd/kg/keV for the (2–4) keV, for the
(2–5) keV and for the (2–6) keV energy intervals, respectively[102].
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where rijk is the rate in the i-th time interval for the j-th detector in the k-th energy

bin, and flatjk is the rate of the j-th detector in the k-th energy bin averaged over

the cycles. The average is made on all detectors (j index) and on all the 1 keV energy

bins (k index). In figure 2.5 the residual rates for single-hits in the DAMA/LIBRA

experiment are shown over four annual cycles, each with 0.53 ton-year. Also the

rates from the previous experiment, the DAMA/NaI which accumulated an exposure

of 0.29 ton-year, are shown. The improved signal due to increased statistics is clear

in this plot and the annual modulation is evident. Other possible systematic effects

such as temperature effects on the noise of the photomultiplier tubes, humidity related

backgrounds, radon or other systematic effects has not been conclusively established.

Assuming a spin-independent interaction and a WIMP mass of tens of GeV/c2

or higher, the primary target would be iodine because of the low A of Na, and the

WIMP-nucleus cross section extracted from the annual modulation in the DAMA/NaI

experiment would correspond to '10−5 pb. This claim has been ruled out by pre-

vious CDMS results [203, 204] and by many other experiments, including various

targets and radically different techniques from that of CDMS. Nevertheless, due to

the insufficiently-low energy threshold of the CDMS and majority of the other ex-

periments, it has been proposed that light WIMPs (.10 GeV/c2) could cause the

observed modulation and still be undetected by the other experiments [103, 104]. Re-

cently, the COUPP collaboration, using an improved bubble chamber technology, has

ruled out the WIMP hypothesis for spin-dependent WIMP-nucleus interactions [96].

The remaining possibility that low-mass WIMPs undergo spin-independent interac-

tions has been ruled out more recently by the CoGeNT collaboration [97] employing

a new type of germanium radiation detector with a very low electronic noise [98].
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2.2 Indirect detection experiments

In the previous section I discussed the main signatures of the dark matter particle

as it interacts directly with the detector medium. In addition to direct detection

signals, there are also proposed methods to detect the annihilation products of the

dark matter particles. Indirect detection experiments aim to detect the annihilation

products of the dark matter particles. These annihilation products could be photons,

neutrinos and antimatter. In the following subsections I will discuss each of this

detection channels and the main experiments that have been proposed, are operating

or already have results.

2.2.1 Gamma ray searches

In considering WIMP annihilation to gamma-rays, it is important to consider the

distribution of WIMPs in the Galaxy, particularly at the galactic center. One of the

standard models, which is due to Navarro, Frenk and White (NFW) gives a density

profile that peaks at the galactic center. This region has long been considered to

be one of the most promising windows to search for gamma rays from dark matter

annihilations yet the understanding of astrophysical backgrounds is essential in order

to understand a potential signal. Furthermore, not only is the galactic center is

expected to have enhanced probability of detection, but any high-density objects

nearby such as dwarf spheroidals (see for example Evans et al. [105]) or other dark

matter structures (as an example see Pieri et al. [106]) could also enhance the rate.

There are two main types of detectors that can look for WIMP-induced energetic

gamma rays: space based such as the GLAST [75] and its predecessor EGRET and the

Atmospheric Cerenkov Telescopes such as HESS [107], MAGIC [108], WHIPPLE [109]

and CANGAROO-II [110]. The advantages of GLAST over other telescopes are the

low energy threshold, allowing to probe neutralino masses greater than 10 GeV. The
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background to GLAST is expected to be mainly due to the diffuse extragalactic emis-

sion and furthermore, the spatial resolution of the GLAST telescope varies with the

threshold energy, allowing to probe the halo density profile [75].

According to latest reviews [51], the prospects of detecting gamma rays from dark

matter annihilations in the near future lie mostly on the satellite-based experiment

GLAST and several ground based Atmospheric Cherencov Telescopes such as HESS,

MAGIC and VERITAS. While GLAST will have a lower threshold (∼300 MeV) and be

more sensitive to lighter WIMPs (∼200 MeV), it has limited effective area compared

to the ground based observatories that have several orders of magnitude larger but

have higher threshold (∼ 100 GeV) and therefore are more sensitive to higher mass

WIMPs. Furthermore, GLAST will continuously observe a large fraction of the sky in

contrast to ground based telescopes that can study the emission of gamma rays from

a small angular field, but with much larger exposures.

In relation to indirect detection of dark matter with photon fluxes, that studies of

the WMAP data have revealed an excess of the microwave emission from the region

around the center of the Milky Way (in the inner 20◦). It has been suggested that

this signal, known as the “WMAP Haze” [111], could be synchrotron emission from

relativistic electrons and positrons generated in dark matter annihilations [112].

2.2.2 Neutrino detectors

The dark matter particles that are captured in the gravitational wells of the Sun

and Earth, are expected to end their journey through the universe 13.4 billions later,

through the process of annihilation, as we have mentioned in the previous section.

The rate of capture in the Sun depends on whether the dark matter WIMPs are spin

dependent (SD) or independent (SI) since the Sun is primarily composed of Hydrogen

which has a net spin. For the case of the Earth, the contributions to the capture rate

via SD interaction are negligible for heavy nuclei. Since the SD cross section is ∼6
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orders of magnitude less constrained than the SI cross section, the models that predict

large SD rates are able to produce larger signals due to less constraints so far and

therefore a neutrino flux from dark matter annihilations from the Sun will most likely

be originated from SD WIMPs [113]. The dark matter capture rate in the Sun is given

by

C� = 3.4× 1020s−1

(
ρlocal

0.3 GeV/cm3

)(
270 km/s

vlocal

)3(
σcap

10−6 pb

)(
100 GeV

MDM

)2

(2.17)

where ρlocal (∼0.3 GeV/cm3) and vlocal are the local density and velocity of the WIMPs.

The effective capture cross section of WIMPS with solar matter, which determine how

efficiently the Sun slows down and captures WIMPs is given by

σcap = σH
SD + σH

SI + 0.07σHe
SI (2.18)

where the factor 0.7 comes from the relative abundance of helium and hydrogen in

the Sun [114]. The capture rate of WIMPs in the Milky Way halo by the Earth is

given, approximately, by [43]

C⊕ = 4.8× 1013s−1

(
ρlocal

0.3GeV/cm3

)
f⊕ (Mχ)

(
σcap

10−6pb

)( µp−χ

1GeV

)−2

, (2.19)

where µp−χ = Mχmp

Mχ+mp
is the reduced mass of the WIMP-nucleon system, σcap = σH

SI and

the form factor f⊕ (Mχ) has been obtained in Ref. [43]. If a WIMP annihilation signal

from the Earth is observed, but not from the Sun, this would strongly suggest that the

WIMP particle has no significant SD couplings. In Fig. 2.6 the event rate expected in

a kilometer-scale neutrino telescope with a threshold of 50 GeV is shown as a function

of the WIMPs effective scattering cross section for several annihilation modes [114].

These rates are expected in experiments such as IceCube at the South Pole [115] or at

the Mediterranean Sea with a similar scale [116]. The strongest limits on high-energy

neutrinos from the Sun are set by the Super-Kamiokande experiment [117]. WIMPs

with a largely spin-dependent scattering cross section with protons may be able to

generate large event rates in high energy neutrino telescopes.
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Figure 2.6: The event rate produced by neutrinos from WIMP annihilations in the Sun
in a kilometer-scale detector such as IceCube as a function of the effective WIMP elastic
scattering cross section for several annihilation modes. The dashed, solid and dotted lines
correspond to a WIMP mass of 100, 300 and 1000 GeV respectively [51].

2.2.3 Cosmic antimatter detectors

Another product of WIMP annihilations in the galactic halo are the anti-matter

charged particles: positrons, anti-protons and anti-deuterons. When WIMPs annihi-

late in the galactic halo, they can produce quarks, leptons, gauge bosons, Higgs bosons

and gluons. The origin of positrons comes when these particles either decay and/or

hadronize (produce hadron jets). Therefore, a signal is expected to be possibly made
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of both monochromatic positrons (at an energy mχ) from direct annihilation into e+e−

and a continuum of positrons from the other annihilation channels [118]. The most

recent satellite-based experiments looking for cosmic antimatter are PAMELA [119],

which began a three-year satellite mission in June 2006, and AMS-02 [122] which

hopes to be deployed to the International Space Station sometime soon. Collected

data from the HEAT [120] and AMS-01 [121] experiments contain excess positrons

that could be explained only by dark matter annihilations.

The search for cosmic positrons is motivated by the fact that positrons lose most

of their energy over length scales of a few kiloparsecs and therefore can sample only

the local dark matter distribution and thus are subject to less uncertainty than to an

antiproton or antideuteron signal [118] owing to less well known non-local cosmic-ray

backgrounds. In Fig. 2.7 the ratio of positrons to both positrons plus electrons in

the cosmic ray spectrum is shown as a function of energy together with a potential

contribution from dark matter annihilations and the measurements from the HEAT

experiment [120] which could possibly contain an excess of positrons in comparison

to the expectations at energies greater than ∼7 GeV.

In 1999, Donato and collaborators [124] proposed to look for cosmic antideuterons

(d̄) as a possible indirect signature for dark matter in our galaxy. They showed that

the antideuteron spectra from dark matter annihilation is expected to be much flatter

than the standard astrophysical component at low kinetic energies (Td̄ . 2−3 GeV/n).

The production of antideuterons in our galaxy is based on the fusion process of p̄

and n̄. Currently there are several efforts underway for space-borne experiments to

measure the galactic antideuteron flux such as the GAPS experiment [125, 126, 127]

although the AMS-02 experiment [128] could potentially have a window to observe

antideuterons as well. The gaseous antiparticle spectrometer (GAPS) identifies an-

tiparticles through the characteristic X-rays emitted by antimatter when it forms

exotic atoms in gases. The source of background in a primary antideuteron search
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Figure 2.7: The fraction of the positron flux relative to the sum of positrons and electrons
flux together with what is expected from dark mattter annihilations compared to the mea-
surement of the HEAT experiment [120]. The WIMP masses considered are for 100, 300
and 600 GeV. In the left plot, the WIMPs originate from bb̄ annihilations. On the right plot,
WIMPs are originated from a mixture of ZZ and W+W−. In order to make the HEAT data
comparable to the expected WIMP annihilations, a cross section of σv = 3× 10−26 cm3/sec
and a local density of 0.3 GeV/cm3 is assumed together with a factor of 50 or more “boost
factor”. The solid line corresponds to a Galactic cosmic ray model [123].

is the secondary antideuterons produced in cosmic-ray interactions, as is in the case

for the antiproton induced WIMP annihilation searches. But the fact that secondary

antideuterons cut off at much higher kinetic energy than in the case of secondary and

tertiary antiprotons, makes the case for an antideuteron search more promising [125].

If primary antideuterons are searched for at low energy, the background contamina-

tion from secondary antideuterons would be negligible, in contrast to the antiproton

background as seen in Fig. 2.8.

In summary, indirect searches could have better sensitivity than direct searches

for some regions of parameter space, and play an equally significant role in others.

Figure 2.9 shows the reach of the next generation searches for neutralino dark matter,
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Figure 2.8: The interstellar flux of secondary antideuterons (solid curve starting at TD̄ of
∼0.3 GeV/n) decreases at lower energy (the background) and the energy spectrum of the
antideuterons from WIMP annihilations (curves a to d) remain approximately constant at
low energy [124]. Figure from [125].

comparing the reach of direct and indirect searches.

2.3 New Particles at the High-Energy Colliders

If TeV-scale supersymmetry exists in nature, it will very likely be within the discovery

reach of the Large Hadron Collider (LHC). Particles with TeV scale masses that

originate in models of electroweak symmetry breaking also have QCD color, therefore,

any particle with these properties will be pair-produced at the LHC with a cross

section in the tens of picobarns [131]. The signature of these type of particles at

the LHC would be events with many hadronic jets and an imbalance of measured

momentum [51]. If a measurement of the supersymmetric particles is done at the LHC,
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Figure 2.9: The possible reach of the next generation of direct and indirect neutralino
dark matter searches. (a) Top left: Direct Searches, (b) Top right: Indirect Searches via
high-energy neutrinos from the Sun, (c) Bottom Left: Indirect Searches via a gamma-ray
line from the Galactic halo, (d) Bottom Right: Indirect Searches looking for antideuteron
component in cosmic rays. The y-axis, the neutralino component, is expressed by the ratio
of the gaugino and higgsino fractions Zg/(1− Zg) = Zg/Zh. The green full dots are values
that can be reached in the respective search, the blue triangles are values that some but
not all can be reached and red open circles correspond to values that none of the searches
can reach [129, 130].
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this can provide the cross check for measurements from direct and indirect detection.

Direct and indirect detection experiments provide information on the combination

of density and cross section, i.e., a measured rate of nuclear recoils (or annihilation

products) from a small fraction of the dark matter halo might be due to a large elastic

scattering (or annihilation cross section).

Baltz and coworkers [132] have done studies of supersymmetry models with neu-

tralino dark matter that give quantitative estimates of the expected accuracy to make

predictions of the cosmic density, the annihilation cross sections, and the cross sec-

tions relevant to direct detection based on the measured microscopic properties of

dark matter at acceleretors such as the LHC and the ILC. Because there are many

parameters of SUSY that remain unconstrained by data, Baltz and coworkers have

chosen a few values in this parameter space to help define measurement scenarios for

specific experimental signatures at the LHC, ILC and direct searches as well as how a

set of actual measurements might constrain the SUSY parameter space. They picked

certain benchmark points in the parameter space of the models and are labeled LCC1,

LCC2, LCC3 and LCC4, each with a relic density of enough to explain dark matter.

The benchmark points are intentionally chosen so that the lightest particles of

the supersymmetry spectrum can be observed at the ILC at its initial center of mass

energy (500 GeV). Furthermore, they have chosen to analyze points in the MSSM

parameter space at which simulations have been carried out to estimate the ability

of colliders to measure parameters of the supersymmetry spectrum. In the LCC1

benchmark point, the LHC could measure the accesible masses of the neutralinos,

sleptons (except the heavy stau), squarks (except for stops), the gluino and the light

Higgs. Figure 2.10 shows how the combination of collider and direct detection data

can help constrain the mass of the WIMP. Specifically, the mass of the heavy Higgs

bosons is usually unconstrained until a TeV ILC measurement, unless the value of the

parameter tanβ is large.
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Figure 2.10: The range of mass of the heavy CP-odd Higgs for the benchmark model
LCC1 is shown in the case of constraints from collider data only (left) and also the effect of
combining the collider data together with direct detection data from the Supercdms 25 kg
experiment [132]. The mass of the distribution for the CP-odd Higgs, when combined with
the proposed CDMS 25 kg experiment, improves dramatically for LHC and also there is
even mild improvement with measurements of the LHC+ILC.

It is clear from this chapter that not one experiment alone can determine the

properties of the cosmological dark matter particle, but it will take a combination

of ground, space and underground experiments. In the next chapter I will focus on

the direct dark matter search experiment that this thesis is based on: the Cryogenic

Dark Matter Search.
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The Cryogenic Dark Matter Search

In this chapter I will describe the strategy of the Cryogenic Dark Matter Search

(CDMS) for nuclear recoils produced by WIMPs deep underground. To give an idea

of the challenge, consider the expected event rate is < 1 event/kg/day, with an ex-

pected nuclear recoil energy of about 15 keV (as discussed in Chapter 2). The CDMS

experiment can distinguish between nuclear recoils (neutron and WIMPs) and electron

recoils (electromagnetic backgrounds) by simultaneously measuring the ionization and

phonon energy of the particle interactions within an array of Ge and Si detectors, due

to the fact that the ionization of nuclear recoils is quenched by a factor of 2-3 as com-

pared to electron recoils. Furthermore, the pulse shape of the phonon signal provides

the extra discrimination against events that could be misidentified as nuclear recoils

due to an incomplete charge collection near the detector surface [133, 136] and are

mainly due to low-energy electrons.

The CDMS-II experiment is located in one of the two caverns of the Soudan Un-

derground Laboratory, close to the city of Ely, Minnesota, about an hour (by car)

south of Canada. The CDMS-II infrastructure was designed and constructed jointly

by Fermi National Laboratory and the University of Minnesota. The Depth of the

Soudan Lab is 780 m. The rock consists of mostly Greenstone rock with a density of
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2.8 g/cm3 but there is also some iron in the mine among other components (it was

an iron mine).

Figure 3.1: A ZIP detector such as those used in the Cryogenic Dark Matter Search at the
Soudan Underground Laboratory. The detector, inside its hexagonal copper housing has
nearly cylindrical shape with 1 cm thickness, 3 inch diameter, and masses of 250 g in the
case of Ge and 100 g for Si.

After the event discrimination is made using the ionization and phonon amplitudes

and pulse shape of the phonon signals to reject electromagnetic backgrounds, the

remaining backgrounds will be low energy (MeV) neutrons that can produce a nuclear

recoil identical of that of the WIMP. CDMS can reject neutrons by using the fact that

they can multiple scatter with the Ge/Si detector array while WIMPs cannot (the

mean free path of an MeV neutron in Ge is a few cm). Furthermore, given that

Ge and Si have similar scattering rates per nucleon for neutrons, the WIMP-nucleon

cross section rate will be 5 to 7 times higher in Ge than in Si due to the difference

in atomic number, while the rate of neutron events would be two times greater in a
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Si than in a Ge detector. CDMS requires passive and active shielding that will be

discussed in Section 3.6, to attenuate and veto neutrons from radioactivity in the

rock and those that are produced by the remaining cosmic rays at the underground

site (about 1 muon/minute reaches the shielding).

The detectors are almost cylindrical in shape, with a 1 cm thickness and 3 in diam-

eter. In this chapter I will describe how they measure the ionization and phonons, the

efficiency achieved for background rejection and how the passive and active shielding

reduces the ambient backgrounds. Figure 3.1 shows a picture of a Ge detector in its

copper housing. On top of the detector, square units can be distinguished which con-

sist of tungsten transition edge sensors (TES) that will be described in this chapter.

Each square unit has many phonon sensors totaling about 1000 per detector.

3.1 Cryogenics

The measurement of the phonon signal by the CDMS-II detectors using the TES

technology require operation at tens of milikelvin in temperature. This ultracold

temperature is achieved by the use of an Oxford Instruments Kelvinox 400-S dilution

refrigerator. The refrigerator has an attached cold volume and many additions that

allow to monitor it closely and allow remote control and good stability conditions for

long term running (several months per “good” run). Surrounding the dilution refrig-

erator, the attached cold volume, the passive shielding and the active veto together

with the outer vacuum chamber and a few electronic boxes, is the RF-shield box,

known as the RF room. This RF-room is a class-10000 clean room during working

hours and has achieved about class-1000 when it is being occupied. All the pumps,

cryogen liquid supplies and the control systems of the dilution refrigerator unit are

located outside the RF room (the “cryo pad”). The front-end electronics are in crates

inside the RF-room. All the rest of the readout electronics for the detectors and veto
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system are located outside the RF-room (the “electronics room”), see Figure 3.2.

Figure 3.2: Drawing of the laboratory space assigned to CDMS-II at the Soudan Under-
ground Laboratory, in Soudan, Minnesota.

There are six nested cylindrical cans that comprise the CDMS-II cryostat or “ice-

box” [137, 138]. The copper used to make the cans is from low radioactivity copper

and is thermally coupled to the temperature stages of the dilution refrigerator through

a horizontal configuration of five nested copper cylinders and one cold finger, which

together make the “cold stem”. The copper can housing the detectors is a cylinder

with a 30 cm diameter and 30 cm height. The detectors are stacked in “towers” which

consist of six detectors, one on top of the other. Each of them achieves a temperature

of less than 50 mK. Figure 3.3 shows the innermost copper housing one tower. The

icebox contains the cold hardware needed to mount cool and read out the detectors.

Each detector tower has four temperature stages: 4 K, 600 mK, 50 mK and base.

Furthermore, each detector is connected to an electronics card mounted on top of

the tower. The electronics card consists of two field effect transistors (FETs) that
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read out the ionization channels and are cooled to a temperature between 100-120 K

to achieve optimal noise performance. At the 600 mK stage, four arrays of super-

conducting quantum interference devices (SQUIDs) are mounted, and they comprise

the readout of each of the four phonon channels. After this stage, the signals are

transported to room temperature through flexible copper-kapton striplines. All the

cold hardware is made from low background materials such as copper, kapton and

custom made solder [139].

3.2 Measurement of the Ionization Energy

The current design of the detectors used in CDMS-II are the ZIP (Z-dependent Ioniza-

tion and Phonon mediated) detectors. The ZIP detectors consists of nearly cylindrical

high-purity Ge or Si crystal that are 1 cm in thickness and 7.6 cm in diameter. Each

has two concentric ionization electrodes and four independent phonon sensors (one

for each quadrant) that are photolithographically patterned onto each crystal. When

electromagnetic particles interact with the crystal, it will be primarily with the elec-

trons in the crystal, for example via Compton scattering with an electron, causing

an “electron recoil”, which means that the interaction deposits about 25% of its en-

ergy into the crystal through generating electron-hole pairs, and the reminder into

phonons. If the interaction occurs with the nuclei, it will cause a nuclear recoil, and

this will generate lattice vibrations or phonons as well as some electron-hole pairs

(although only about 10% of the recoil energy). The simultaneous measurement of

the ionization and phonon energy for each event allow the ZIP detectors to make an

accurate measurement of the recoil energy independent of the recoil type, and more

importantly, to distinguish between these electron and nuclear recoils. On average,

one electron-hole pair is produced for every ' 3.0 eV of energy deposited in Ge, be-

ing ' 3.6 eV for Si. Depending on the material, energy and type of recoil, about
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Figure 3.3: The innermost copper can with a “tower” consisting of a stack of six detectors.
Note that there is no material in between the top and bottom faces of the detectors. The
tower has four nominal temperature stages: 4 K, 600 mK, 50 mK and base. The FET cards
are the cold electronics for the ionization channels, the SQUIDs are the readout for the
phonon channels and are mounted on the 600 K stage.

6 to 33% of the recoil energy is first converted into ionization before it is converted

to phonons. We define the “ionization energy” EQ as the recoil energy as inferred
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from the detected number of electron-hole pairs NQ, by assuming that the event is

an electron recoil with 100% charge collection efficiency:

EQ ≡ NQ × ε. (3.1)

The ionization energy is conventionally reported in units of “keVee” (keV of the

electron equivalent recoil determined from electron recoil calibration measurements).

Figure 3.4: The charge energy measurement of the ZIP detector for the 133Ba gamma
calibration source used in CDMS-II. The mean of each gamma-line is shown and additionally
the standard deviation of a gaussian fit for the 356 keV line.

Each ZIP detector has two channels from which the ionization measurement is

made, the inner and the outer electrode. The outer electrode consists of a thin

ring on the outside the ZIP detector, measuring about 2.0-2.7 mm in thickness, and

totaling about 15-18% of the area. Figure 3.6 (a) shows the ionization side of the ZIP

detector. The outer electrode (the “guard ring”) is used to reject events that occur

near the bare unpolished edges of the crystal. These outer events are rejected due
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to their reduced ionization signal that is degraded due to the shape of the electric

field lines in this region. Also, the phonon signal is not optimum because the phonon

sensors do not cover the outer edge with full efficiency (Figure 3.6 (b) shows the

phonon side of the ZIP detector). Figure 3.4 shows the charge energy for the gamma

calibration source 133Ba. The resolution of the ionization measurement is ∼ 1% for

the 356 keV line. About 5% resolution is observed in Ge detectors at the low energy

scale using the 71Ga line at 10.36 keV from neutron activation of 70Ge:

70Ge + n → 71Ge → 71Ga + γ(10.36 keV ), (3.2)

with a halflife of 11.4 days. Figure 3.5 shows the neutron activation-induced gamma

line.

Figure 3.5: A neutron activation-induced gamma line observed in the Ge detectors after
neutron calibrations. A resolution of ∼ 5% is observed in Ge detectors at the low energy
scale using the 71Ga line at 10.36 keV from neutron activation of 70Ge with a halflife of
11.4 days. The mean and standard deviation of a gaussian fit are shown in green [140].

.
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3.3 Measurement of the Phonon Energy

The phonon measurement is made using 4 channels, each corresponding to a quad-

rant that has about 1000 quasiparticle-assisted electrothermal-feedback transition-

edge sensors (QETs) [141], see Figure 3.6. These QETs consist of 8 aluminum thin

films “fins” deposited on the Ge or Si substrate connected to tungsten (W) thin film

strips. The Al fins act as quasiparticle absorbers: see Figures 3.7 and 3.6-(d). The

tungsten films are operated in the superconducting transition and comprise the TESs.

When a particle interaction occurs, phonons are generated (with an energy of about

10 THz for Ge and Si) and quickly decay to lower energy phonons. In a few microsec-

onds the phonons have decayed to an energy below 1 THz, and have longer mean free

paths than the dimensions of the crystals. These “ballistic” phonons travel through

the crystal, hit the surface and are reflected or absorbed by the Al fins.

Following Figure 3.7, when the ballistic phonons are generated in the crystal due

to an electron- or nuclear- recoil interaction, the ballistic phonons break the Cooper

pairs in the Al fins and some of these Cooper pairs will eventually be absorbed by

the tungsten TESs due to a difference in the energy gap. The energy needed to break

a Cooper pair is about 340 µeV or a phonon frequency higher than ∼ 82 GHz. The

ballistic phonons created by the interaction in the Ge or Si crystal have ∼ THz in

frequency and therefore many quasiparticles are created in the Al fins and diffused

to the tungsten TES, but some of the phonons created will be below the Cooper-pair

break-up threshold and therefore will be lost (∼ 50% of the energy from the initial

interaction will be lost in this way [143, 144]).

The phonon population that brakes the Copper pairs that in turn generate the

phonon pulse in the ZIP detector contains phonons from the lattice vibrations gener-

ated by the recoil energy ER, and also phonons generated by the energy from drifting

the electrons and holes across the crystal by an applied voltage (a few volts in mag-
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Figure 3.6: (a) Charge side of a CDMS ZIP detector. The inner and outer electrodes are
shown. (b) Phonon side of the detector showing the four quadrants A, B, C and D. In each
quadrant there are 37 dies and each of these dies contains 28 QETs. (c) shows a die and
(d) shows a QET which consists of 1 µm wide tungsten strip connected to 8 aluminum fins.

nitude). When the electrons and holes are drifted, they generate phonons. These

phonons are called Neganov-Trofimov-Luke phonons [134, 135] (Luke phonons here-

after). The energy contribution from the Luke phonons to the total phonon energy

EP is:

EP = ER +
∑

q

dq

d0

, (3.3)

where d0 corresponds to the thickness of the crystal and Vb = Ed0 is the bias voltage.
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Al Collector
W Transition-

Si or Ge

quasiparticle
diffusion

phonons

W  Transition 
Edge Sensor

Figure 3.7: Drawing of the cross section of the ZIP detector showing the Ge/Si substrate,
the aluminum fin and the tungsten. Quasiparticle diffusion occurs when ballistic phonons
with a frequency higher than 82 GHz break the Cooper pairs in the Al and cause quasipar-
ticle production for which a smaller energy gap in the tungsten region allows diffusion to
the tungsten TES. The TES is operated at its transition temperature and tends to increase
in resistance when energy is deposited and cooper pairs broken. Electrothermal feedback
reduces the Joule heating that maintains the TES in its transition. This feedback forms
the pulse that is produced by a particle interaction in the Ge/Si substrate.

Therefore, using the definition of ionization energy form equation 3.2 yields

EP = ER + eVbNQ = ER +
eVb

ε
EQ, (3.4)

since we calibrate electron recoils with full charge collection to have EQ = ER, where

ε has been measured to be 3 eV for Ge and 3.9 for Si by using several bias voltages

and using known gamma-lines using calibrated sources. The fact that drift charges

generate Luke phonons means that the recoil energy ER of an event is inferred from
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measuring both the phonon and ionization energy:

ER = EP −
eVb

ε
EQ. (3.5)

Figure 3.8 shows the phonon energy measured by a ZIP detector when it was exposed

to a 133Ba calibration source. You can see that the resolution is much worse than the

ionization measurement (about a factor of 3), but as discussed in the sections that

follow, what we aim in CDMS is for nuclear recoil vs electron recoil discrimination,

and the phonon signal provides a powerful timing discrimination parameter.

Figure 3.8: The phonon energy as measured by a CDMS ZIP detector when it was exposed
to a 133Ba gamma-ray source. The resolution for the 356 keV line is about 3 times worse
than the ionization measurement resolution.
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3.4 Background Rejection

Electron recoils that have reduced ionization can look like nuclear recoils as measured

by the ZIP detector. There are two cases for which the measured charge can under-

estimate the total ionization [136]. In the first case, it is due to poor space-charge

neutralization within the crystal. When the crystals are cooled at tens of mK, im-

purity sites can be left with a non-zero net charge, causing trapping sites. When

the electron-holes generated after an interaction are drifted, the trapping sites will

collect some of the charge and therefore cause an inefficiency in the charge collection

by the inner and outer electrodes. Fortunately, by shinning the crystal with an LED

we can neutralize the traps with these source of photons by generating free charges.

The LED energy spectrum is optimized to neutralize Ge, and therefore the Si crystals

require more shining time (or “baking”).

The second case of charge loss happens when an interaction occurs close to the

electrodes. The ionization charge collection is realized by drifting the electrons and

holes created in the interaction to the positive and negative electrodes respectively

using the external electric field. The electrons and holes can fail to reach their respec-

tive electrodes when the kinetic energy transferred to them by the incident particle

produces a diffusion in the wrong direction with respect to drift direction imposed by

the external electric field. This back diffusion of the charges causes some loss of the

ionization charge collection. Depositing a thin film (∼ 40 µm) of amorphous silicon

between each electrode and the detector surface helps to reduce number of reduced

ionization events [133, 145]. Amorphous Si has a bandgap Eg = 1.2 eV , significantly

larger than the band gap of Ge (0.74 eV). Due to the difference in band gaps between

the deposited amorphous Si layer and the bulk Ge, the amorphous Si can block the

back diffusion of charges of both polarities. There would still be interactions within

the 10 µm “dead layer” that have reduced ionization and are referred to as “surface
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events”. In order to gain sensitivity to nuclear recoils induced by WIMPs, the ZIP

detector provides timing parameters using the phonon pulse shape that allow further

rejection of “dead-layer” events. Figure 3.9 shows the ionization yield for the gamma

calibration source 133Ba in which the green dots correspond to surface events. The

surface events leak into the nuclear recoil band, around yield of ∼ 0.3 and at low

energy (where WIMPs are expected, too).

Figure 3.9: Ionization yield for a gamma calibration source 133Ba. Most of the gammas
are centered around a yield value of 1, while the green dots, which correspond to surface
events, leak into the 2σ nuclear recoil band (dotted purple line) around a yield value of 0.3.

The physics underlying the pulse shape and timing discrimination pertains to the

frequency-dependent propagation speeds of the phonons produced in an interaction

and the subsequent evolution. When an interaction occurs in the crystal, it produces

high-frequency phonons that propagate through the crystal. The phonon diffusion

process is made by two processes: elastic scattering and anharmonic decay. Elastic

scattering mixes phonon modes and anharmonic decay will increase the total number
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of phonons while reducing the average phonon frequency. Eventually all initially cre-

ated high-frequency phonons are converted into ballistic phonons that subsequently

thermalize. After an interaction occurs in the crystal, the electron-hole pairs gener-

ated drift across the detector and yielding Luke phonons. The population of Luke

phonons is higher for electron recoils than for nuclear recoils due to the difference in

electron-hole production. Due to the fact that ballistic phonons move at the speed

of sound, and the high-frequency phonons generated initially have a speed of approx-

imately one third the speed of sound, there is an earlier and faster leading edge for

electron recoils when compared to nuclear recoils. The two main timing parameters

that are used in the analysis are: the primary rise time and the primary delay. The

primary rise time is defined as the time from 10% to 40% in phonon amplitude for

the largest pulse (out of the 4 phonon pulses per event). The primary delay consists

in the time from 20% in charge amplitude to 20% in phonon amplitude for largest

pulse. Using the yield only, CDMS achieves a rejection efficiency of ∼ 104 to 1 for bulk

electron recoils, and using the primary delay and risetime for surface event rejection

gives us another ∼ 100 to 1 allowing an overall rejection efficiency to electron recoils

> 106. Figure 3.10 shows an example of the pulses in an event, and how the primary

delay and risetime are defined.

Figure 3.11 shows the peak phonon delay versus ionization yield for a typical

detector. The events in the plot correspond to the neutron source 252Cf (blue circles)

and the gamma source 133Ba (red dots). The gamma events form the blob centered

at a Yield value of 1 and Timing Parameter (a combination of primary delay and

risetime) of 13 µs. The surface events (black crosses) overlap in ionization yield with

the neutron band (∼ 0.2 to 0.4 in yield) but the Timing Parameter separates most

of the neutron events (blue circles) from the surface events. The black box shows, in

the Timing Parameter vs Yield plot, where the nuclear recoil acceptance window is

defined.
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Figure 3.10: The CDMS ZIP detector pulses are shown for an event. The four phonon
pulses (one for each quadrant) are shown, together with the two ionization pulses (the inner
and outer electrodes). The biggest phonon pulse corresponds to the quadrant in which the
event occurred. Also it is shown graphically how the primary delay and primary risetime
are defined. Figure courtesy of J. Filippini.

3.5 Gamma and Neutron Calibrations

Gamma calibrations with a 133Ba source are made 3 times a week spread evenly during

the course of the runs and approximately once a month for neutron calibration with a

252Cf source. The gamma-ray source is used to characterize the ZIP detector response

to electron recoils and the neutron source to characterize the neutron recoil response

such as determination of the efficiency and how the timing parameters will look for a

WIMP candidate. The gamma-ray source has the following lines: 276 keV, 303 keV,

356 keV and 384 keV. Even though the source is positioned outside the copper cans
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Figure 3.11: In this plot it is shown how the timing parameter can help discriminate be-
tween electron recoils (red dots from a 133Ba calibration) from the neutron events (blue
circles from a 252Cf calibration). The black crosses are surface events. The black box con-
tains only neutron events and indicates the acceptance window for WIMPs. The ionization
yield and the timing parameter that utilizes the phonon rise time is what gives the ZIP
detector the sensitivity for WIMP nuclear recoils.

that conform the different temperature stages of the refrigerator, they are energetic

enough and the cans sufficiently thin (few cm in total) to be observed in the ZIP

detectors. The ∼ 10 keV line from Ge activation is also used as a calibration line.

The ionization channels have a linear response at low and high energies. The phonon

channels only have a roughly linear response up to ∼ 200 keV, whereas above this

energy there is significant saturation of the QETs and the ballistic phonon energy

cannot be fully collected by the detector. Figure 3.12 shows good agreement between

gamma calibration data from a Ge detector and Monte Carlo simulations made with

GEANT4 toolkit [146].
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Figure 3.12: Gamma calibration data using a 133Ba gamma-ray source (black) compared
to a GEANT4 Monte Carlo simulation (red) for a Ge detector. There is good agreement
between data and simulation [147].

For the Si detectors, the gamma lines from the 133Ba source are not clearly visible

since Compton scattering dominates at these energies. Therefore, the calibration

for the Si detectors is made by matching the spectral shapes of the Monte Carlo

simulation and the data. Furthermore, some of the Si detectors can be calibrated

using the Ge detectors on top and/or bottom of them since a gamma from the source

can be fully absorbed by a Ge detector after making an energy deposition on a Si

detector so that, knowing the photon energy, the energy in the Si detector will be the

difference between the known photon energy and the energy deposited in the adjacent

Ge detector (that is already calibrated).

In order to characterize the nuclear recoil response of the detectors, we use a 252Cf.

The neutrons emitted from the 252Cf have a peak energy of ∼ 1 MeV that has the

99



3.5

Figure 3.13: Comparison between neutron calibration data (252Cf neutron source) and
GEANT3 Monte Carlo simulations. The events correspond to single scatters in Ge detec-
tors [149].

Figure 3.14: Comparison between neutron calibration data (252Cf neutron source) and
GEANT3 Monte Carlo simulations. The events correspond to single scatters in Si detec-
tors [149].
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following functional form, called the Watt spectrum

f(E) = k1exp

(
−E

a

)
Sinh (k2E)1/2 (3.6)

with k1 = 1.025 MeV and k2 = 2.926 MeV−1 resulting in a distribution of Ge nuclear

recoils with energies around ∼ 10 keV, and therefore an excellent calibration source

to define the WIMP acceptance signal region. Figures 3.13 and 3.14 show a com-

parison between neutron calibration data and simulations made with the GEANT3

toolkit [148], for a Ge detector. Good agreement is found between data and simula-

tion [149], which implies that the calibration of the phonon channels using electron

recoils remains valid for nuclear recoils and that the phonon measurement of the

recoils and the induced Luke phonons is not recoil-type dependent.

3.6 Passive and Active Shielding

In order to achieve sensitivity to WIMP nuclear recoils, the CDMS experiment re-

quires passive and active shielding against particles induced by radioactivity and from

cosmic rays. Neutrons with an energy greater than 200 keV can generate a Ge nu-

clear recoil above the 10 keV energy threshold. Neutrons with an energy distribution

extending to a few MeV are generated as products of the U/Th chain in the Soudan

rock. Therefore CDMS utilizes passive neutron shield to attenuate the neutrons gen-

erated primarily from the radioactivity in the rock. The passive neutron shielding

consists of high density hydrogenated material (polyethylene). The hydrogen in the

polyethylene moderates neutrons (mainly through elastic scattering with hydrogen)

with incident energies of a few MeV down to thermal energies (1/40 eV) and therefore

renders them unable to produce a Ge nuclear recoil above the 10 keV threshold. If

an incident neutron with an energy εi is made incident in a piece of hydrogenated

material (polyethylene or water for example) the thickness (T ) needed to moderate
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the neutron to an energy εf is

T '

√
1

Nσiξ
log

(
εi

εf

)
(3.7)

where ξ is given by [150]

ξ = 1 +
(A + 1)2

2A
log

(
A− 1

A + 1

)
, (3.8)

A is the atomic number, N is the number density of atoms, and σi is the n-p
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Figure 3.15: Thickness vs Incident Neutron Energy. The thickness is referred to a hy-
drogenated material such as water or polyethylene with a density of 1 g/cm3. The curves
correspond to the final neutron energy achieved after traveling a certain thickness (y-axis)
and beginning with an incident energy (x-axis).

elastic scattering cross section for the i-th energy bin εi. Figure 3.15 shows the

thickness T of the hydrogenated material with a density of 1 g/cm3 as a function
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of incident neutron energy εi. The color curves correspond each to a final neutron

energy εf after passing through a thickness T . As the incident neutron energy reaches

100 MeV, the curves slope increases such that the thickness needed to moderate a

neutron with an incident energy of 100 MeV down to 100 keV is about 3 m. cosmic

rays underground can produce high-energy neutrons for which the polyethylene shield

cannot moderate efficiently. In Chapters 4 and 6 it will be discussed in detail the

origin of these cosmogenic high-energy neutrons, their rates and how they contribute

to the irreducible neutron background as well as prospects for their detection at the

Soudan Underground Laboratory.

After the detectors are surrounded by the passive shielding, the shielding itself

becomes a target to Cosmic rays underground. The primary component of under-

ground cosmic rays are muons. At 2090 meters of water equivalent (m.w.e.), the

rate of muons at the Soudan underground laboratory is reduced by a factor of 5×104

compared to the surface muon flux. The muon rate in the CDMS veto shield is about

1 muon per minute. The CDMS passive shielding is surrounded by 40 Bicron BC-406

scintillator panels (colored green in Figure 3.16) that have a thickness of 5 cm and are

connected to a 2 inch Hammamatsu R329-02 photomultiplier tubes. The top panels

extend well beyond the side panels (as shown in Figure 3.16) in order to avoid leaving

out small gaps between the top and side panels.

The 40 scintillator panels comprise the veto system. Each panel can distinguish

between muons and ambient photons since a minimum ionizing particle will deposit

2 MeV/cm and muons will travel at least 5 cm (the thickness of the plastic scintillator)

most of the time, and therefore deposit 10 MeV or more. Ambient photons have a

distribution that extends only to the 2.6 MeV 208Th peak hence a good separation

between muons and ambient gamma background is achieved.

In the following chapter I will describe the sources of the main backgrounds that

CDMS faces at the Soudan site, starting from the electromagnetic backgrounds (pho-

103



3.6

Figure 3.16: The CDMS shield top and side views. The blue in the figure corresponds
to the polyethylene shield, the gray and dark gray to the Pb layer and the green to the
plastic scintillator panels. The outer polyethylene has a thickness of 40 cm, the Pb layer
is 27 cm thick with the inner 4.5 cm being ancient Pb with reduced activity from 210Pb
(T1/2 = 22 years). The inner polyethylene layer has a thickness of 10 cm.

tons and betas) and continuing with neutron backgrounds with an emphasis on those

originated by cosmic rays underground.
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Chapter 4

CDMS backgrounds

In the previous Chapter I described in general terms the CDMS strategy to achieve

sensitivity to WIMP-nuclear recoils. The CDMS experiment is able to make a com-

petitive WIMP-search by implementing low-threshold nuclear recoil detectors in a low

background environment. A low background environment is achieved by going half-a-

mile underground and utilizing passive and active shielding together with a nitrogen

gas shield in order to reduce the ambient photons, ambient neutrons and neutrons

induced by cosmic rays. In this Section I will describe the background levels achieved

by the CDMS experiment, the methods implemented to make reliable estimations of

the electromagnetic and neutron backgrounds, and the challenges that lie ahead if

the experiment is to be run at the Soudan Underground Laboratory or at SNOLAB.

This chapter is divided in two main parts. In the first part I describe electro-

magnetic backgrounds: those interactions that occur in the detector due to a charged

particle, for example a beta or alpha particle and also by ambient photons. I will

describe the evidence regarding the source of the electromagnetic backgrounds, how

we assess which isotopes are the source of this backgrounds, and what levels of con-

tamination we infer from the data in order to understand future material cleanliness

challenges.
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The second part of the chapter consists of a description of the neutron back-

grounds, what are the main sources, how can we estimate their induced nuclear recoil

rate, and what are the estimates for the combined runs 123 and 124. Furthermore,

I will describe the challenges on estimating nuclear recoils induced by neutrons pro-

duced by cosmic rays, in particular those cosmic rays that miss the CDMS veto system

which is the main motivation for the high-energy neutron detector that I conceived

together with Prof. Dan Akerib, and that is fully described on Chapter 6.

4.1 Electromagnetic Backgrounds

As mentioned above, electromagnetic backgrounds refers to those events induced by

a charged particle or a photon. These events lie in the gamma band with ioniza-

tion yield (discussed in Chapter 3) normalized to unity. The efficiency for rejecting

electromagnetic interactions in the bulk of the ZIP detectors is above 104 just based

on yield. Taking into account the risetime information, the rejection efficiency can

reach above 106. In order to maximize the sensitivity to WIMP nuclear recoils,

CDMS implements a low background environment that allows the experiment to be

background free. In this Section I describe the sources of the events that lie in the

gamma-band, where they come from, what are the expected rates for the combined

Run 123 and 124 data runs, and what are the prospects for the future with respect

to this kind of background.

4.1.1 Ambient photons

Bulk electromagnetic backgrounds (those that occur deeper than about 10 µm from

the detector surfaces) consist mainly of photons. We identify them as those events

in the gamma-band centered at yield ∼ 1 (see Figure 3.9). For the 5 tower runs 123

and 124, the rate of bulk photons in the 15(8) Ge(Si) detectors was 3.6(9.2) /keV/kg/day
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in the 10-40 keV energy range. Assuming a 75% efficiency of the Q-inner cut in the

10-40 keV energy range, the integrated bulk electron recoil event singles rate were

35±11 (64±26) /kg/day for Ge(Si).

By looking at the energy spectrum in the Ge detectors (which have better res-

olution and stopping power) we can infer the parent radionuclide by looking at the

spectral lines of the nuclide in question. Primordial radionuclides are those with a

long enough mean decay lifetime (∼ 109y or more) such that, after their creation

inside a star they have not decayed away and are present in the materials used in the

experiment. This is not particular to CDMS, but to all low background experiments.

Figure 4.1 shows the Q-inner energy spectrum for Run 123 Tower 3 (84.8 kg-d) as

compared to a Geant 4 simulation of the 238U and 232Th in the copper cans and inner

polyethylene shield, 40K and 60Co. The red histogram corresponds to the sum from all

the simulated sources of events and the black histogram is the data. Clear agreement

is observed in predicting the 2.61 MeV 208Th, 1.46 MeV 40K and 1.76 MeV from the

238U+232Th induced gamma lines. Contamination in the cryostat of <0.21 ppb U

and 0.42±0.13 ppb Th are in agreement with the conclusions from the simulations:

0.1 ppb U and 0.5 ppb Th [151].

The contamination of the hardware materials due to primordial radionuclides

and their daughters could have occurred before the raw material was extracted from

the Earth, or could have been mixed with other material that is contaminated with

radionuclides while the material was being manufactured.

Contamination from ambient radon, a noble gas produced in the decay chain

of 238U and 232Th, in the volume between the cryostat and the lead gamma-ray shield

is mitigated in CDMS by using a nitrogen purge. The average radon level in CDMS,

inside the room where the experiment is located, is 500 Bq/m3. Purging the air

within the cryostat with nitrogen at a rate of 8 liters/minute makes the background

contribution from radon subdominant [152].
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Figure 4.1: Comparison of the Q-inner energy spectra between Monte Carlo simulaions of
the main radionuclide contaminants in CDMS (238U, 232Th, 60Co and 40K) with data from
Tower 3 Ge detectors [151].

4.1.2 Surface backgrounds

Surface backgrounds are those events such as electrons and photons that interact

within the 35 µm “dead-layer” of the ZIP detector in which charge collection is

reduced relative to events in the bulk (previously discussed in Chapter 3). Low

energy electrons that reach the ZIP detector will interact there and have reduced

ionization signal leading to an event below the 5σ gamma band.

The main electromagnetic background observed in runs 123 and 124 consists of

electrons (betas) from radioactive contamination on the detector surfaces. A corre-

lation analysis between alpha-decay and surface event rates demonstrates that the

major source of the surface events is 210Pb (a daughter-product of 222Rn) [202]. By

using the 133Ba calibration data, we estimate the leakage of surface events into the
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signal region.

Surface events also come from activation of 64Cu during neutron calibrations.

An excess of events was noticed during runs 123 and 124 a day after the neutron

calibration occurred. A close analysis of the energy spectra in the Ge ZIP detectors

for those data sets just after the neutron calibration was taken shows that there is a

511 keV line that points to neutron activation of 64Cu (see Figure 4.2) [154]. A cut

was imposed to remove events within two days of the each neutron calibration.

Figure 4.2: Energy spectra summed over the Ge ZIP detectors for events before the neutron
calibration (black histogram) and after the two days following the neutron calibration was
taken (red histogram). The 511 keV line shows evidence of neutron activation of 64Cu [154].

4.2 Neutron Backgrounds

The CDMS experiment aims at detecting nuclear recoils from WIMP dark matter

concentrated in the halo of the Milky Way. Furthermore, we use a radioactive neutron

source 252Cf to define our acceptance window. Therefore, it is clear that any neutron

with enough energy to create a nuclear recoil above 10 keV can potentially mimic
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the expected WIMP signal. In order to have sensitivity to WIMP-nuclear recoils,

the experiment requires the earth’s crust as a shield against cosmic rays, and must

be performed at the Soudan Underground Laboratory. Furthermore, the experiment

needs special gamma-ray and neutron shielding. In this Section I will describe the

main sources of neutrons that can lead to a nuclear recoil in the ZIP detectors.

Neutrons with an energy of a few MeV can cause a nuclear recoil in the ZIP

detectors above the 10 keV threshold. These low energy neutrons can be produced

in nuclear reactions such as (α, n) where the α particles originate from the U/Th

decay chain. Also, spontaneous fission occurring in the rock wall and in the shielding

materials such as the Pb and inner polyethylene are sources of MeV neutrons. Fur-

thermore, the remaining component of the cosmic rays, muons and their secondaries

originated by interactions in the rock and in the shielding materials can generate neu-

trons capable of producing a nuclear recoil. In the following sections I will describe

in detail how we have estimated the neutron backgrounds expected in the combined

runs 123 and 124 beginning with the estimation of neutrons from radioactivity inside

and outside the shield. Following that, I will present our evidence for the dominant

neutron background for CDMS at the Soudan Underground Laboratory, the cosmo-

genic neutrons.

4.2.1 Neutrons from Radioactivity

In this section I will describe how the neutron background originated by spontaneous

fission and (α, n) reactions in the shield materials has been estimated for the CDMS-II

experiment.

By using SOURCES-4A [156], a program that calculates neutron production rates

and spectra from (α, n) and spontaneous fission, in combination with Geant 4, we

can can predict the number of nuclear recoils in the 5 Tower geometry. The produc-

tion of the neutron flux caused by (α, n) and spontaneous fission (knowing the U/Th
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U/Th Concentration (ppb)

Material U Th U + Th

Cu Cans (Icebox) 0.08 0.3 0.38

Cu in Towers 0.2 1.0 1.2

Inner Polyethylene 0.12 0.12 0.24

Pb shield <0.05

Table 4.1: The U/Th contamination levels in parts per billion (ppb g/g) of the main
cold hardware components, icebox, inner polyethylene and gamma-ray shield (Pb) of the
CDMS-II experiment.

contamination) is performed using SOURCES 4A, and this flux is then propagated

using a Geant 4 simulation of the CDMS-II 5 Tower geometry. The U/Th contam-

ination assumed for each component is shown in Table 4.2.1. The rate of neutrons

emitted from 1 kg of natural uranium by spontaneous fission is estimated to be 16

neutrons/kg/s [157]. The neutrons from radioactivity originated from the Soudan

greenstone rock are efficiently moderated with the 40 cm thick outer polyethylene

layer (see Figure 3.16) and are not a main concern.

The spectrum of the neutrons produced by the (α, n) process using SOURCES is

shown in Figures 4.3 and Figure 4.4 for the copper and inner polyethylene components

respectively [158]. The differences in shapes of the spectrum shows the different

crossection thresholds that trigger the production of a neutron, which in turn depends

on the Coulomb barrier of carbon and copper isotopes. The reason for the reduced

spectrum for copper in Figure 4.3 compared to polyethylene in Figure 4.4 is because

of the stronger Coulomb barrier for copper compared to the lower-Z of the carbon in

the polyethylene. The energy of the α-particle is reduced as the Coulomb barrier is

stronger.
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Figure 4.3: Energy spectrum of the neutron flux produced by (α, n) reactions in the Copper
(cold hardware and icebox cans) of the CDMS-II experiment [158].
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Figure 4.4: Energy spectrum of the neutron flux produced by (α, n) reactions in the inner
polyethylene layer of the CDMS-II shield [158]
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The number of singles from Cu in the icebox and towers and from the inner

polyethylene, for the combined runs 123 and 124 estimated using the flux of neutrons

produced in SOURCES and propagating it using Geant 4, results in 0.009 single

scatter events. The Pb shield has been considered as a source of neutrons from

radioactivity, specially from spontaneous fission processes given its high-Z, which

makes the (α, n) processes subdominant. Samples of lead used in the CDMS-II shield

which were counted at the Oroville facility show no uranium at the 50 ppt (g/g) level.

The contamination is based on gamma-ray measurements of the daughter products

of U/Th in the Pb. This limit is consistent with measurements by G. Heusser and

coworkers, who have conducted measurements of uranium and thorium levels in lead,

and have found an upper limit of 20 ppt [159]. Furthermore, mass spectroscopy

measurements of U in Pb from the same source as the Pb used in the CDMS-II shield

suggests that the 50 ppt upper limit inferred from the Orville measurement is at least

an order of magnitude lower [160, 161]. The estimated background singles from the

spontaneous fission processes generated by 50 ppt U/Th contamination in Pb is <0.1

for the combined runs 123 and 124 5 tower run. Therefore, the total rate of singles

from radioactive contamination in the shield materials is estimated to be < 0.13 for

the combined runs 123 and 124.

4.2.2 Modeling the Cosmogenic Backgrounds

As mentioned in the previous sections, any neutron with an energy greater than

200 keV inside the inner polyethylene layer of the shield could produce a signal in

the ZIP detectors that would mimic the expected WIMP signal. I have discussed

neutrons produced by radioactivity, which I now distinguish from neutrons produced

by cosmic rays underground and their secondaries (cosmogenic backgrounds).

Cosmic rays are energetic particles dominated by ionized nuclei comprised of 90%

protons, 9% alpha particles and the remainder are heavier nuclei. They have energies
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comparable or greater to their masses up to ∼ 1020 eV [163]. These cosmic rays in-

teract with the atmosphere producing hadronic showers that are well developed when

they reach sea level when 75% of the particles are muons and the rest are pions, pro-

tons, neutrons, electrons and gamma-rays. As we look for cosmic rays underground,

most of them are shielded by the earth overburden, and only muons survive, with

their mean muon energy increasing with depth. Figure 4.5 shows the muon inten-

sity as a function of overburden in units of water equivalent. The passive shielding

that is used for radioactivity induced neutrons and the gamma-ray shield become a

target for the remaining flux of muons hitting the CDMS-II shield (∼1muon/min)

and the produced neutrons become a background to the WIMP-search experiment.

Furthermore, muons interactions in the rock can produce hadronic showers that in

turn produce high-energy neutrons (>60 MeV) that can produce spallation reactions

leading to low energy background neutrons.

In order to estimate the rate of events expected from cosmogenic neutrons that

miss the CDMS veto system, we use Monte Carlo codes such as FLUKA [164, 165],

MCNPX and Geant4 [155]. I have constructed a simulation based on FLUKA and

MCNPX that models the muons and their secondaries at the Soudan Underground

Laboratory and propagates them with a geometry of the shielding, cryostat and ZIP

detectors that will be described in the following sections.

The FLUKA code can describe hadronic and electromagnetic processes up to

20 TeV. It uses different event generators for the various aspects of the particle pro-

duction depending on the energy. The high-energy hadronic processes are described

using the Dual Parton Model that is followed by a pre-equilibrium-cascade model.

Furthermore, it utilizes models for nuclear evaporation, break-up of excited fragments

and gamma-deexcitation that treats the disintegration of excited nuclei.

Cosmogenic neutrons underground are generated due to the following processes:

• Muon spallation, which consists of a muon interacting with a nucleus via a

114



4.2

Figure 4.5: Vertical muon intensity as a functino of underground depth in units of meters
of water equivalent (mwe) [162].

virtual photon and causing nuclear disintegration,

• Elastic scattering of muons with neutrons bound in nuclei,

• Photo-nuclear reactions produced by electromagnetic showers, and

• Secondary neutron production following any of the processes above, such as

those generated by electromagnetic and hadronic showers.

Following Wang and coworkers and in order to assess the implementation of the
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code, I have used FLUKA to model the neutron production from cosmogenic muons

in a cubic detector filled with liquid scintillator (C10H22). A monoenergetic beam of

muons heading at the center of the scintillator is thrown, and the neutrons produced

from all processes are counted. Since the number of neutrons produced is dependent

on the size of the scintillator cube, the neutron production is assessed as a function of

volume and from these data we can extract the neutron yield per g/cm2. The energies

of the incident muon beams where chosen to be the mean muon energy at different

depths underground, from 20 m.w.e. or mean muon energy of 13 GeV to 5 km.w.e. or

muon energy of 346 GeV. The muons at the Soudan Underground Laboratory have

a mean muon energy of 210 GeV. Figure 4.6 shows the neutron yield simulated with

FLUKA as a function of mean muon energy (or depth). The obtained neutron yield

per muon can be fit by the following function:

Nn = 3.43× 〈Eµ〉0.79 × 10−6neutron/
(
µgcm−2

)
. (4.1)

The total neutron yield is dominated by low energy neutrons produced in electro-

magnetic and hadronic interactions. Low energy neutrons are efficiently moderated

by the polyethylene layers of the CDMS-II shield. The processes that give rise to

these low-energy neutrons are different from those producing high-energy neutrons

that lead to unvetoed nuclear recoils. As I will discuss further in Section 4.2.6 and

Chapter 6 the available underground neutron data (that we are aware of) provides a

systematic error of a factor of ∼3 on an estimate of the CDMS-II unvetoed nuclear

recoil rate based on FLUKA. Nevertheless, as I will describe in the remaining sections,

the agreement between my FLUKA implementation and other FLUKA simulations

together with comparisons to experimental data gives a sufficient level of confidence

so that, for the CDMS-II combined runs 123 and 124, we expect well under one

unvetoed event.
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Figure 4.6: Neutron yield as a function of muon energy. Data at different sites is shown
in black circles. The fit obtained with FLUKA in this work is the solid (red) line, and the
fit obtained with FLUKA by Wang and coworkers [216] is the dashed line (blue). For the
references on the data, see Wang et al. [216].

4.2.3 Cosmic Rays Underground: the muon generator

Muons are the only component product of the primary cosmic ray interactions in the

atmosphere that survives underground beyond the ∼10 mwe scale. The muon flux as

a function of depth has been measured by Frejus [167], MACRO [168], and LVD [169]

experiments as shown in Figure 4.7. The muon flux at the Soudan Underground

Laboratory has been measured to be 1.86 ±0.05+0.00
−0.08 × 10−3/m2/s/sr [174].

In order to model the underground muon flux and their particle production, a

muon generator made by S. Yellin [175] was coupled into the FLUKA simulation and
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used as the input muon flux that models muons at the Soudan underground site.

The muon flux is made incident to a cubic rock shell with a size of 28× 24× 24 m3

containing the CDMS-II active and passive shielding and Ge and Si detectors in a

rectangular cavity with a size of 8× 4× 4× m3.

Figure 4.7: Vertical muon intensity as a function of depth. The data corresponds to
Crouch (open dimonds) [170], Baksan (open squares) [171], LVD (open circles) [169] and
Frejus (filled circles) [167]. Figure from [163]. The shaded region corresponds to muons
produced by neutrinos (upper line) and by vertically upward muons (lower line). Figure
from [172]

.

The muon generator takes into account the angular distribution of muons I(θ, φ),
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which can be approximated by a power law of the cosine function [176, 177] and

assuming uniformity in φ (the azimuthal angle) it is expressed as

I(θ, φ) = Iν · cosnθ (4.2)

where θ is the polar angle and Iν is the vertical flux at cosθ = 1. As the depth of the

mine increases, n increases too in order to generate a more vertical flux. Empirically,

Miyake [177] found

n = 1.53 + 8.0 · 10−4 · h + ε (4.3)

where h is the depth in meters of water equivalent and ε is a small correction used at

shallow depths due to muon decay and ionization losses that is not significant for the

Soudan site. The vertical muon flux is obtained by measurements performed with

scintillator panels from the CDMS-II veto system [174] and are included in the muon

generator. The intensity of the muons generated approximately follows a cos3.28θ

distribution. One million muons generated corresponds to about four days of CDMS-

II livetime [175]. Figure 4.8 shows the polar angle and energy distribution of muons

entering the cavity of the cubic rock shell. A mean muon energy of 216 GeV for

vertical muons is obtained.

A muon generator that takes into account the differences between flat overburden

and the actual surface shape at the Soudan site has been constructed [178] in order

to improve the input muon flux for the cosmogenic neutron simulation. This muon

generator is based on a slant depth distribution (distance traveled by muon from

surface) at Soudan using muons measured at the Soudan2 detector [179]. Also, it

utilizes MUSIC [180], a muon Monte Carlo that takes into account fluctuations in

the energy loss of muons at large depths underground. Figures 4.9 and 4.10 show

the comparison between the muon generator used in the FLUKA simulation, and

the muon generator based on Soudan2 measurements and MUSIC. The YELLIN

muon generator is more conservative in the sense that it generates harder muons and
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Figure 4.8: Angular (left) and energy (right) distributions of the muons as they crossed
the rock-cavern boudary. The muon generator by Yellin [175] was used as input to model
the cosmic rays and their secondaries at the Soudan Underground Laboratory.

at higher angles. Nevertheless, the effect of the difference between the two muon

generators is much smaller than the systematic uncertainty on the processes that

produce neutrons that cause background events, as I will elaborate in Chapter 6.

4.2.4 A 5 Tower and 7 Supertower FLUKA-MCNPX cosmo-

genic neutron simulation

In this section I describe the simulation of the muons at Soudan that, by interacting

with the rock and shielding materials, can give rise to nuclear recoils such as those

expected by a WIMP. A model of the cavern and the CDMS-II shielding, icebox and

detectors was setup in FLUKA and MCNPX. The FLUKA Monte Carlo was used

for the “high-energy” part of the simulation, starting with muons from the muon

generator described in the previous section, propagating them and their secondaries
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Figure 4.9: Angular distribution produced by the muon generator by Yellin (dotted) [175]
compared to that of the muon generator based on measurements of the slant depth distri-
bution by Kasahara [179] and MUSIC [180].

Figure 4.10: Energy spectrum produced by the muon generator by Yellin (dotted) [175]
compared to that of the muon generator based on measurements of the slant depth distri-
bution by Kasahara [179] and MUSIC [180].
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through a rock shell with the CDMS-II geometry inside of it. The rock shell has a

density of 2.8 g/m3 (Greenstone rock) and dimensions of 28× 24× 24 m3. Inside the

rock shell there is a volume filled with air with dimensions of 8×4×4 m3. Inside the air

volume is the CDMS-II passive and active shielding, where the active shielding (the

plastic scintillator panels) are modeled by a top and bottom 5 cm thick rectangular

slab and with a 5 cm thick cylindrical shell surrounding the outer polyethylene layer.

The FLUKA part of the simulation has the rock shell, and the CDMS-II geometry

through to the innermost copper can which had vacuum in it. All particles going

inside the innermost copper can were recorded in a file on an event by event basis

(each particle was associated with a parent muon number). The file produced by the

modified FLUKA simulation was later propagated using MCNPX in a geometry of

the detectors and the copper of the cold hardware inside the innermost copper can.

The nuclear recoils produced were later analyzed together with the FLUKA output

from the energy deposited in the plastic scintillator, keeping track of all correlations

back to each parent muon. Furthermore, the MCNPX part of the simulation (“low-

energy” section) included the charge deposited in the Ge and Si detectors due to

ionization from charged particles and photons in order to count how many nuclear

recoils where also vetoed by the ZIP detectors.

The reason for the use of MCNPX is due to the lack of accurate simulation of the

low energy neutrons recoiling with the ZIP detectors. FLUKA does not use point-wise

neutron simulations (except for a few elements) that correlate the incident neutron

energy with the recoil angle using angular-dependent cross section. Instead, it uses

the “group method” in which the correlations are lost. I have modified MCNPX (since

the source was made available) to include point-wise low-energy neutron scatters in

Ge and Si using the approach implemented in MCNP-Polimi [183], which includes

accurate simulation of the nuclear recoils. The MCNPX implementation was tested

using a monoenergetic neutron beam with an energy of 1 MeV and compared with
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the recoil energy spectrum for the same simulation in Geant 3 [184] with very good

agreement at the few percent level. The Geant 3 simulation was previously well tested

against 252Cf calibration data [149].

In order to maximize CPU efficiency, a series of thresholds where applied at various

regions of the FLUKA and MCNPX simulations. In the FLUKA simulation there is a

1 GeV threshold on photon production on the outer 9 m thick rock shell and a 1 MeV

threshold for any other particle (“passive rock”), leaving the 1 m thick inner rock

shell with a 1 MeV threshold on all particles (“active rock”). The simulated plastic

scintillator has a 1 MeV threshold and the FLUKA table made at the innermost

copper can had no threshold. The MCNPX simulation had no lower energy thresholds.

Figure 4.11 shows the top and side of the geometry used in FLUKA and MCNPX.

The innermost rock shell with a 1 MeV threshold is in dark grey (“active rock”), and

the rest is in light grey (“passive rock”).

Table 4.2 shows the neutron flux and neutron multiplicity at the rock-cavern

boundary. The neutron flux is in good agreement with that reported by Mei and

Hime [222] which was obtained with a different muon generator and different cavern

size. The neutron flux at the rock-cavern boundary was counted if a neutron crossed

the geometrical boundary and therefore, low energy neutron scattering off the walls

caused some double counting. The effect of neutron scattering off rock was established

by Wulandari and coworkers, and corresponds to approximately a factor of two for

neutrons with a few MeV [185].

The spectra and angular distribution of the neutrons at the rock-cavern boundary

is shown in Figure 4.12. The angular distribution is shown for the neutrons above

a 1, 10 and 100 MeV threshold. The energy-dependent angular distributions show

that as the energy of the neutron increases, there is a preferred polar angle of the

neutrons, which in turn would be related to the parent muon polar angle.

Table 4.3 shows the main results from the FLUKA-MCNPX simulation for two

123



4.2

Figure 4.11: A side and top view of the FLUKA and MCNPX geometries. The rock shell
has has dimensions of 28× 24× 24 m3 with the cavern inside being 8× 4× 4 m3.

MCNPX geometries, the 5 Tower CDMS-II Ge and Si array and a 7 Supertower

array proposed for a new experiment, the SuperCDMS 25 kg project. One Super-

tower corresponds to 6 Ge detectors except that the thickness increases from 1 cm to

2.54 cm. The cryostat at Soudan could house 7 Supertowers at the most, in terms

124



4.2

Quantity (FLUKA) Energy threshold Rate [n/cm2/sec]

neutron flux >1 MeV 6.11× 10−9

>10 MeV 2.93× 10−9

>100 MeV 1.06× 10−9

neutron multiplicity >1 MeV 2.14
>10 MeV 1.55
>100 MeV 1.20

Table 4.2: Neutron flux and multiplicity counted at the outside of the simulated CDMS-II
veto system from the FLUKA simulation equivalent to 14 years of underground muons in
a model of the Soudan cavern.

Figure 4.12: Left: Neutron flux above 1 MeV (black solid), above 10 MeV (dashed red)
and above 100 MeV (dashed green) at the rock-cavern boundary as a function of energy.
Right: Angular distribution of the neutron flux above 1 MeV (black solid), above 10 MeV
(dashed red) and above 100 MeV (dashed green) at the rock-cavern boundary

.

of volume, while minimizing the modifications to the cold hardware. While the Su-

perCDMS project has not proposed to run a 7 Supertower array at Soudan, the 7

Supertower simulation results show the level at which such an array would be limited

by irreducible cosmogenic neutron backgrounds (if no changes to the existing shield

configuration were implemented). Table 4.3 provides the rates of the irreducible cos-

mogenic neutron background as well as rates of nuclear recoils that will occur in
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coincidence with activity in the veto. Furthermore, it provides the multiples rate as

well, which can be combined with the predicted singles rate and a measurement of

multiples to determine if an excess of single scatter WIMP candidates are observed.

The rate of cosmic-ray induced events that will mimic the WIMP signal is 0.06±

0.02/kg/year in Ge for the 5 Tower configuration, and 0.05±0.01/kg/year for the 7 Su-

pertower configuration. All errors so far are statistical; in Section 4.2.6, I will discuss

the systematic error associated with these estimates and the challenge of benchmark-

ing the relevant neutron production processes. In order to obtain the Unvetoed Ge

Singles for the 5 Tower geometry, I have used the number of Unvetoed Singles-NR and

multiplied it by the fraction of Unvetoed Singles to Unvetoed Singles-NR obtained

from the 7 Supertower array (row 4 divided by row 5 in the 7 Supertower column

gives a factor of 2.7). The reason for this is that at the time the 5 Tower simulation

results where produced, the MCNPX part of the simulation did not include energy

depositions due to charged particles or photons in the ZIP detectors. Nevertheless,

the 7 Supertower configuration included all processes in MCNPX and the 2.7 factor

is sufficiently robust to use in the 5 Tower configuration since the systematic uncer-

tainties in the absolute flux cancel in the ratio. Therefore, for the runs 123 and 124

we expect < 0.2 unvetoed single nuclear recoil events from cosmogenic neutrons.

The advantage of switching from FLUKA to MCNPX is that one can throw the

same input file in different geometries without the need to rerun the FLUKA part of

the simulation, which is CPU intensive due to the size of the rock shell and energy of

the incident muons.

In the remaining Sections of the Chapter, I will describe the veto-coincident data

obtained during runs 123 and 124 and how it can be compared in a sensible way

to the results obtained with the FLUKA-MCNPX simulations. Furthermore, I will

describe the associated systematic error with the estimation of unvetoed Singles from

the FLUKA-MCNPX simulation in Section 4.2.6.
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4.2.5 First muon-induced nuclear recoils at Soudan

In this Section, I describe the CDMS-II runs 123 and 124 veto-coincident data anal-

ysis and how it compares with the FLUKA-MCNPX simulation results presented

previously. First, I describe the data cuts used to select the events, then the exposure

associated with the cuts and the event topologies. I conclude with a discussion on

a comparison of runs 123 and 124 combined veto-coincident nuclear recoils with the

FLUKA-MCNPX simulation results discussed in the previous section.

The data selection used to search for veto-coincident events, apart from data

quality cuts, contained the following cuts:

• cQin 123: Selects events that occurred in the inner electrode,

• cNuMI R123: Selects events that occurred in anti-coincidence with the GPS

time-stamp of the neutrino beam coming from Fermilab towards the MINOS

neutrino detector (no events where observed in coincidence for runs 123 and 124),

• cVTStrict 123: Selects events in coincidence with energy in the veto system

above threshold,

• cNR 123: Selects nuclear recoils based on the energy dependent ionization yield

from neutron calibration,

• cRTChi2EDEP 123: Rejects surface events that can occur in coincidence with

activity in the veto. For example, a high-energy photon (with a few MeV) that

hits a Ge detector, causes the ejection of a low energy electron that can reach

the neighboring detector and gives an event with low ionization yield. Such

events would be confused with nuclear recoils without the use of timing cuts.

• nband yic 123: Selects events within the nuclear recoil band, and
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• Singles: Selects events in the nuclear recoil band that are single hits, and for

which there was no energy in any other detector between 2-10 keV and above

100 keV.

Figures 4.13 and 4.14 show the veto-coincident nuclear recoil hits. The yield bands

were constructed using neutron and gamma calibrations (described in Chapter 5).

The green crosses correspond to hits that occur in the inner electrode, are vetoed and

have a phonon recoil energy >5 keV, that is, they are veto-coincident gammas and

betas. The red dots are hits that are nuclear recoils in coincidence with energy in the

veto system above threshold and also are singles that do not pass the phonon timing

cut (beta rejection cut); they are due to betas. The blue dots are hits in the inner

electrode, in coincidence with energy in the veto, lie inside the nuclear recoil band and

pass the phonon timing cut; they are veto-coincident neutron hits. No single neutrons

were observed in either runs. A total of 5 neutron-like events (8 neutron-like hits in

total) occurred between runs 123 and 124, 5 in the former and 3 in the latter. The

green crosses observed inside the nuclear recoil bands are multiple gamma-like hits.

Table 4.4 shows the recoil energy, detector, total energy in the veto and the number

of veto-panels hit (veto multiplicity) for each of the neutron-like events in coincidence

with energy above threshold in the veto system. A closer look at the event topology

of these events revealed the following:

• A total of two nearest-neighbor-double neutron events occurred in Run 123, one

in Tower 2 and the other in Tower 4, labeled “1” and “3” in Table 4.4,

• A non-nearest-neighbor double neutron event occurred in Run 124 in Tower 5,

labeled “5”,

• A total of three neutron+gammas occurred, one in Run 123 and two in Run 124,

most of them being in coincidence with several gamma events in the other

detectors, labeled “2” and “4”.
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Figure 4.13: Yield as a function of recoil for the Run 123 veto-coincident neutron data.
Gamma-like hits (green crosses) lie mostly around yield of 1. Single betas are represented
by red dots and neutron hits by blue dots.

Figure 4.14: Yield as a function of recoil for the Run 124 veto-coincident neutron data.
Gamma-like hits (green crosses) lie mostly around yield of 1. Single betas are represented
by red dots and neutron hits by blue dots.
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Label Recoil [keV] Yield Detector Veto Energy [MeV] Veto Multiplicity

Run 123 Veto-coincident neutrons

1a 94.1 0.40 T2Z1 100 9
1b 81.6 0.43 T2Z2 100 9
2 31.5 0.36 T2Z2 17 2
3a 49.7 0.27 T4Z4 547 26
3b 15.3 0.29 T4Z5 547 26

Run 124 Veto-coincident neutrons

4 27.9 0.36 T2Z4 53 7
5a 79.3 0.33 T5Z3 110 6
5b 18.4 0.26 T5Z5 110 6

Table 4.4: Runs 123 and 124 veto-coincident nuclear recoil events [181]

The exposure associated with the veto-coincident neutron analysis is 1.4(0.28) kg-

year of Ge(Si), which is slightly higher than the WIMP-search exposure of 1.15(0.21) kg-

year of Ge(Si). In order to compare to the FLUKA-MCNPX results, the efficiency

of the cuts applied to the data are taken into account by using an average efficiency

of 0.4. In Table 4.5, a comparison between the runs 123 and 124 veto-coincident

data and the FLUKA-MCNPX simulation equivalent to 14 years at the Soudan Un-

derground Laboratory are presented. In order to make a sensible comparison, we

have assumed that “Singles” are single nuclear recoil events in the 10-100 keV range

regardless of energy deposition in another detector that is of non-nuclear-recoil type.

Hence, this event class is the sum of isolated single nuclear recoils and single nuclear

recoils with a gamma-like interaction in another detector. According to this com-

parison, there is fairly good agreement between this CDMS-II veto-coincident data

and the FLUKA-MCNPX simulation described in Section 4.2.4. Nevertheless, this

comparison should be taken knowing that a lack or excess of neutron events in the

simulation could be due to two factors:

(a) The neutron production processes are inaccurate in the models implemented in
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the simulation.

(b) The angular distributions of the neutrons with respect to the parent particle

are inaccurate and therefore the simulation could predict an excess of nuclear

recoils in coincidence with energy depositions by non-nuclear-recoil interactions

in the same detector, hence producing fewer “identifiable” nuclear recoils.

Using CDMS-II data it is not possible to know which of the two factors is responsible

for a discrepancy or if both factors cancel out to produce an agreement between

data and simulation. Fortunately, we are mainly concerned with single nuclear-recoil

events in anti-coincidence with energy in the veto system (unvetoed nuclear recoils).

In order to rely on the unvetoed nuclear recoil rate produced with FLUKA-MCNPX,

the processes that give rise to such event population need to be benchmarked with

data. In Chapter 6, I will describe a new way to benchmark the processes involved

in the production of the unvetoed population. In the next section, I will describe

our best estimate of the systematic error on the unvetoed rate and why a reliable

prediction of the unvetoed rate cannot be based on the measured vetoed rate.

Veto-coincident Run 123+124 vs. Simulation (FLUKA-MCNPX)

Event Type Data (# of events) Simulation (# of events)

Singles (Ge) 0 1.6± 0.2 (stat)
Singles (Si) 2± 1.4 1.1± 0.1 (stat)

Multiples (Ge and Si) 3± 1.7 4.9± 0.2 (stat)

Table 4.5: Comparison between veto-coincident data from runs 123 and 124 and the
FLUKA-MCNPX cosmogenic neutron simulation.

4.2.6 Systematic Uncertainty and Benchmarking

The origin of the systematic uncertainty in the estimate of those nuclear recoils in

anti-coincidence with energy in the veto system lies in how well high-energy neutrons

(> 60 MeV) that penetrate the outer polyethylene and produce low energy neutrons
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in the high-Z gamma-ray shield (Pb) have been measured. As I will discuss in Chap-

ter 6, there are no measurements to our knowledge of the muon-induced neutron flux

(>100 MeV) directly or indirectly underground at any depth. The spectral shape of

the neutron flux caused by muons underground from 1-400 MeV was measured by the

LVD collaboration, located at Gran Sasso with a depth of 3600 mwe, and compared

to FLUKA [216] (see Figure 4.15). The discrepancy between the FLUKA fit and

the LVD data is approximately a factor of 3 for neutron energies of ∼100 MeV and

above. If the high-energy neutron flux is directly proportional to the production of

the unvetoed population, we can assign a factor of 3 systematic uncertainty to the

FLUKA-MCNPX estimate of such a population.

Since the veto-coincident neutron population is dominated by muons interacting

directly with the shield, neutron production processes such as direct muon spallation

and electromagnetic showers would be the dominant processes benchmarked. How-

ever, the muon-induced high-energy neutron flux, which leads to unvetoed recoils, is

produced mainly by hadronic showers that develop several meters through the rock

(muons interacting in the shield will produce neutrons mostly through other pro-

cesses such as direct muon spallation and due to electromagnetic showers). Given

the difference in neutron production processes of the neutron populations that cause

the vetoed and unvetoed recoils, the vetoed neutron rate cannot be used to reliably

predict the unvetoed neutron rate. A new detector (based on old technology) pro-

posed and described in Chapter 6 could measure the high-energy neutron flux deep

underground (we have chosen the Soudan depth for design studies). The proposed

measurement will be able to narrow the systematic error on the unvetoed population

from a factor of 3 to ∼12% in the course of a year. Nonetheless, for the present expo-

sure and systematic errors, we are safely in the regime of < 1 predicted background

event due to cosmogenic neutrons.

133



4.2

Figure 4.15: Comparison of the measured neutron spectra by the Karmen (Top) and LVD
(Bottom) experiments with the FLUKA simulation by Wang and coworkers [216].
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Chapter 5

First 5 Tower Data at Soudan

In this Chapter, I will describe the experimental efforts, including analysis of the

data, that lead to the successful completion of the first 5 tower run, which consists

of two run periods, run 123 and run 124 at the Soudan Underground Laboratory

that occurred between Octuber 2006 and July 2007. First a description of the event

reconstruction, and position and energy corrections in the charge and phonon channels

will be presented. Furthermore, a description of the most important data cuts will

be described, including those classified as “data quality” cuts motivated by stability

and quality of data, and the “physics” cuts, motivated by the search for the WIMP

event topology. The latter includes a singles scatter cut, a fiducial volume cut, a

yield-based nuclear recoil selection cut, and the timing cut to reject surface events

with reduced ionization yield.

The five towers consist of 30 ZIP detectors, described in Chapter 3. In the anal-

ysis of runs 123 and 124, we have included 19 Ge detectors; three suffering reduced

performance from readout failures and one with poor energy resolution were excluded

from the analysis. Figure 5.1 and 5.2 show the top and side views of the 5 towers at

the experimental site in the Soudan Lab. A total of 15 Ge detectors (3.75 kg) were

used for the run 123 analysis. In run 124, a total of 7 Ge detectors (1.75 kg) were
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used used due to variations in performance as compared to run 123.

Figure 5.1: Top view looking into the inside of the icebox (innermost copper can). The five
towers are shown with a drawing superimposed on the picture, describing the tower number
configuration (T1 for tower one and so forth). The white ring surrounding the innermost
copper can corresponds to the inner polyethylene shield (10 cm thick).

The reasons that forced the experiment to produce two different data runs instead

of one “long” run are due to operational problems and detector running conditions.

Run 123 began after initial commissioning period during the summer of 2006, and ac-

quired data for more than 148 calendar days (107 live days of WIMP search running).

An ice plug in the dilution refrigerator plumbing forced the experiment to warm-up
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Figure 5.2: The configuration of the five stacks of detectors for each tower. Germanium
detectors are colored green and the silicon detectors, orange.

in late March, and this marked the end of run 123. WIMP search running resumed in

April 2007, and run 124 began data taking until mid-July 2007 for 83 calendar days or

56 live days. This run was truncated due to substantial neutralization difficulties (the

accumulation of trapped charge in the bulk of the crystal) for several of otherwise

“good” detectors in run 123, presumably due to a modified neutralization scheme

(LED settings). Experimental work began in late June to test detector neutralization

using strong radioactive sources rather than LEDs. These tests were successful and

led to a substantial improvement in the neutralization of some detectors. The end of

run 124 was due to problems with another blockage in the dilution refrigerator that

forced a warm-up.

5.1 Event Reconstruction

The readout of the CDMS experiment includes six data channels per detector, four

for phonons (one for each quadrant) and two for charge. The pulses are characterized

by a 1.638 ms long trace digitized at a rate of 1.25 MHz which corresponds to 2048

bins. Besides the pulse digitation information, the biasing levels, and the veto and

trigger history buffers are stored for each event. This information is further processed

by Matlab based software, which takes the output form the DAQ and converts it into

“Reduced Quantities” or RQs. The RQs have the information relevant for the physics
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analysis.

The reconstructed traces in one tower are shown in figure 5.3. In order to make

best use of the trace we use a frequency-based and noise-weighted optimal filter

algorithm. This algorithm fits a template pulse to a trace, for each trace in an event.

In general terms, if a real pulse has the form

p(t) = Hs(t) + n(t) (5.1)

where s(t) is the expected pulse shape (normalized to have a peak height of 1), H

is the amplitude (to be estimated), and n(t) is a noise baseline. By minimizing

(optimizing) the χ2 of the fit of the event pulse p(t) to the expected pulse shape s(t)

in the frequency domain, where the noise spectrum is independently measured, we

can estimate H. The template pulse shape in the phonon channel has the following

functional form:

s (t) ∼ −e(t−t0)/τrt + e(t−t0)/τft , (5.2)

where τrt is the risetime of the pulses, which corresponds to ∼ 30 µs for Ge and

∼ 25 µs for Si. The parameter τft is the falltime of the pulse and is approximately

170 µs for Ge and 130 µs for Si. More details are described in reference [186].

5.2 Charge position correction

A substantial variation in the charge yield as a function of position in the ZIP detector

is observed. We define the quantities x-delay and y-delay as the difference between

the start times of the two neighboring phonon channels relative to the start time of

the primary channel. For example, if the event occurs on quadrant A (or channel

A), the x-delay is the difference in start time between channel A and channel D and

y-delay would be the difference in start time between channel A and B. Figure 5.4 is

a delay plot that shows the resolving power of the detector position of an event.
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Figure 5.3: Pulse traces from the phonon and ionization channels for all detectors in one
tower (tower 1). The red traces correspond to the sum of the four phonon channels and the
blue to the inner electrode channel. The pulses are made from 2048 data points and are
digitized at a rate of 1.25 MHz. Figure from [187]

The charge collection efficiency in the ZIP detector varies with the event position

along the y-axis or along channels A and B (see figure 5.4). This variation in charge

collection efficiency could be due to the variation in the amorphous silicon layer that

is introduced on top of the Ge and Si substrates of the ZIP detector. The amorphous

silicon layer is used to create an energy gap difference between amorphous silicon and

Ge which minimizes the effect of the dead layer (previously discussed in Section 3.4) by

preventing the back diffusion of electrons and holes [133, 145]. The charge collection

efficiency variation with position occurs mainly on Ge detectors since the energy gap

difference between Si and amorphous silicon is small.
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Figure 5.4: Delay plot of a Ge detector (right) of the corresponding source configuration
(left). The calibration sources used were 241Am, which was located between channels A
and B. A beta source, 109Cd (small dots), was used as well to mimic electron background
surface events. On the figure in the right, the non-circular shape of the source “blobs” is an
indication of the loss of position resolution along the radial coordinate. Figure from [188].

Ge detectors are position corrected in the inner electrode charge collection region

(Q-inner). A 5th-order polynomial is fit to the Ba 356 keV Ba line of Q-inner events

as a function of y-delay. At the extreme values of +y and −y, a piecewise function

corrects the response to become a flat line. Furthermore, Q-inner is divided by this

full y-coordinate fit, calibrating it to 356 keV while making it flat in y. In Figure 5.5

the y dependence of the charge collection efficiency is shown before and after the

position correction is made for T5Z5 (tower 5, ZIP detector 5), as an example.

5.3 Phonon position correction

The phonon timing parameters used for surface event discrimination and the energy of

an event as determined using the phonon channels depend on the event location. The

position dependence can lead to decreased surface event discrimination and worsen
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(a)

(b)

Figure 5.5: Charge collection as a function of y-delay for detector T5Z5 (tower 5, ZIP 5)
before (a) and after (b) the position correction. Figure from [189].

the yield estimation. In order to alleviate the decreased performance due to position

dependence, a method of homogenizing the detector response across the crystal is

implemented. This method, “Lookup Table Correction” consists of creating corrected

quantities which compare the properties of a given event to those properties of the

event nearest neighbors in a high-statistics calibration data set.

The physical reasons that cause the dependencies on event location and the

phonon-based energy measurement are summarized as follows [190]:
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Energy dependence

The number of saturated Transition Edge Sensors (TESs) is larger for a high

energy event than for a low energy event. When a high energy event occurs the

TESs that are closest to the event location have the fastest response and tend

to saturate that phonon channel. Due to variations of Tc across the detector,

the saturation of the TESs is position dependent as well.

x-y position dependence

Events that occur close to the center of a channel have the fastest response. As

the event location moves towards the center of the detector itself or close to the

outer edges, the timing parameters show a slowing down as compared to events

that occur close to the phonon channels.

Z-dependence (Timing Discrimination Parameter)

If the event location is very close to a detector “wall” then the high-energy

phonons are down-converted by interacting with the wall and therefore some of

the phonons that otherwise contribute to making the event pulse are lost.

QETs detector coverage constraints

The shape of the QETs and the photolitographic constraints associated with

detector fabrication lead to voids of detector surface in which there are no QETs

such as the outer cylindrical edge. Therefore, events near the outer edge of the

detector have a higher percentage of phonon loss, causing the estimation of the

energy to be underestimated at large radius.

In order to make the detector phonon response more homogeneous across the

detector, CDMS performs the Lookup Table Correction. In general terms, the Lookup

Table Correction is made by using a sample of bulk electron recoils. For every event

in the sample, a “bin” is constructed corresponding to N nearest neighbors and the
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properties for each event within a bin are corrected relative to those obtained for the

bin. In short, the Lookup table is like a set of position dependent calibration factors

that are applied to each event depending on its initial position parameters. Once the

Lookup Table has been calculated, the data are corrected by finding for each event

its nearest single neighbor in the Table and using the correction factor of that nearest

neighbor. For example, the corrected quantities are defined as follows:

pdelc = pdel
〈pdel〉all

〈pdel〉NN

(5.3)

where pdel is the time (seconds) of the event as inferred from phonon risetime and

〈pdel〉all is defined as the mean of pdel for all events passing the selection cuts. This

position correction is of crucial importance for the phonon timing cut to work suc-

cessfully as well as to understand the detector calibration.

5.4 Analysis pipeline

In this section the analysis chain will be described, including the main physics cuts

applied to the 5 tower data and a description of the WIMP-search results. First, a

description of how the raw data is processed to form the further-refined “physics”

quantities or RRQs (Reduced Reduced Quantities).

The CDMS-II analysis chain consists of two stages: the Data Acquisition (DAQ)

system that is located underground in the mine, and the Soudan Analysis Cluster or

SAC which is located at the surface, less than a mile away from the mine (the “surface

building”). Raw data is written to disk in the mine by the DAQ in the form of binary

files. These binary files are backed up to a tape drive and simultaneously copied to

the SAC in the surface building. The event reconstruction or data reduction process

occurs in the SAC cluster. The primary data reduction process in CDMS consists of

two main software packages:
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DarkPipe: This package performs the first reduction on the raw data, converting

the digitized traces into reduced quantities (RQs). The RQs generally represent

physical quantities such as energy and event timing with nominal calibrations

but are not yet expressed into the most useful or physical units.

PipeCleaner: This package implements various calibrations and corrections to

the RQs produced by DarkPipe, yielding RRQs. Its primary duties are en-

ergy calibration (based on externally-computed correction factors) and the po-

sition/energy correction of phonon parameters. PipeCleaner also implements

the blinding cut (to be described in the following Section) on WIMP search

data,

After processing by PipeCleaner is ready, the data sets produced are analyzed for

WIMP-search, although some of the basic cuts use RQs produced by DarkPipe (such

as the blinding cut).

5.4.1 Blinding Cut

The analysis protocol that allows us to remain unbiased when setting cuts is called

“Blinding” and the cut associated with the protocol is the Blinding Cut. The Blinding

protocol was determined at the beginning of the analysis and is summarized in this

section.

The Blinding Cut hides from consideration until analysis cuts are determined

events that have all of the following characteristics and are thus potential WIMP

candidates:

1. Veto anti-coincident cut. Events that are not triggered by the muon veto or

that occur when there was no activity in the muon veto are called veto anti-

coincident, or simply “unvetoed”. A vetoed event is defined as an energy deposi-

tion above threshold in two or more scintillator panels or one that was triggered
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by a ZIP detector in coincidence with an energy deposition above threshold in a

single Panel in a 200 µs window. I discuss the veto cut further in Section 5.4.7

in the context of the “physics” cuts applied to Run 123 and 124.

2. Inner electrode cut. Events that occurred in the inner electrode or “Q-inner”.

Events that occur close to the “walls” of the detector have reduced ionization

and therefore could look like neutrons or WIMPs. We expect that neutrons and

WIMPs will have low ionization and at the same time interact fully in the inner

electrode, therefore these events are also used in the blinding cut.

3. Energy cut. Events that had an energy between 5 and 130 keV. Even though

previous CDMS analyses have reported a threshold of 10 keV, we have blinded

from 5 keV in order to explore the possibility of a WIMP-search with a lower

threshold.

4. Nuclear recoil band. A nuclear recoil band is defined using neutron calibration

data with a 252Cf source. The 3σ nuclear recoil band is defined in the yield

vs recoil energy plot to take into account of the energy dependence (see Fig-

ure 5.12). The upper and lower limits of the band are defined as µ± 3σ where

µ is the mean per nuclear recoil energy. The definition of the yield bands (the

gamma band and nuclear recoil band) will be discussed in detail in section 5.4.6.

5. Glitch events. Glitch events are those that have high noise or events that have

trigger characteristics of electronics glitches. This events were excluded from

physics analysis as well.

6. Singles. Since WIMPs are expected to only interact once with a ZIP detector,

single event hits are hidden in order to blind the analysis from the WIMP-like

events.
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Blinding, or hiding, just the events that that satisfy these criteria allow us to use

residual data from WIMP-search runs in conjunction with calibration data to tune

the analysis without biasing the selection or exclusion of WIMP candidates

5.4.2 Quality Cuts

In order to ensure data quality, we monitor the data a few minutes after it was taken

using the online analysis tools, and we also perform data quality checks using the

reduced quantities that are obtained after the data has been processed by the SAC.

In this section I will describe the main data quality checks that we have performed

for the two data runs that comprise the first 5 tower run at the Soudan Underground

Laboratory.

The most basic data quality check that is performed just after the data was

recorded is to look at the noise level for a few hundred averaged pulses taken at

the beginning of each data-taking period. A total of 500 of these random noise trig-

gers are recorded and the traces are used for many data quality purposes, including

noise spectra in order to check the noise level in the run.

As soon as the random triggers are completed an automatic script removes any

events with pulses in order to obtain a baseline noise sample and creates a noise

spectrum. After these noise spectra are completed, another script compares each

detector channel spectrum to a template for that channel. If the noise level is a

factor of 3 or more higher than the template, a warning is issued to the Run Control

gui (a gui that displays any alarms or warnings related to the data-taking process)

notifying the operator of the behavior. Figure 5.6 shows the noise spectra taken

for detector T1Z2 (tower 1, second ZIP from top to bottom). All the peaks above

∼10 kHz are filtered out by the optimal filter algorithm and have essentially no effect

on the charge amplitudes. Frequencies from a few hundred Hz to a few kHz are the

critical ones [191]. On the phonon side, amplitude measurements depend on noise
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below ∼2 kHz [192].

Figure 5.6: Phonon and charge noise spectra for a Ge ZIP detector located in tower 5.
The most basic data quality check that is performed just after the data was recorded is to
examine the noise level for 500 traces, and the average noise spectra for special features
below 2 kHz for the phonon side and below 10 kHz for the charge noise spectra.

There are also a number of diagnostic monitoring plots that allow us to discard a

given data run if there is an excessive trigger rate (e.g., possibly from excessive noise),

if a veto panel is not recording any data for several minutes or if a phonon or charge

channel is not behaving “normally” based on pulse template data. Furthermore,

an event display called “pipedisplay” shown in Figure 5.7 allows us to evaluate a

particular event just by glancing at the plots. The information included in pipedisplay

is the phonon and charge traces for each detector, veto panel pulses, noise spectra,

DC offsets, trigger thresholds, number of triggers, fridge base temperature and live

time.

One of the principal tools to monitor any anomalous behavior in our ZIP detectors

are the Kolmogorov-Smirnov (KS) tests. Anomalous behavior could be, for example,
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Figure 5.7: A snap shot of “Pipedisplay”, an event display that allows us to evaluate a
given event on a run by looking at the traces for all 30 detectors including the veto panel
traces on the right. It also includes the fridge base temperature and live time accumulated
since the beginning of the run.

a shift in neutralization state in which the energy calibration changes and therefore

excess events with a reduced ionization can begin to appear in the nuclear recoil band.

The KS-test determines if two data sets differ significantly, while making no assump-

tion of the distribution of the data. Using a good data set as a parent distribution,

the KS tests can determine if the recently taken data set and the template data set

can be drawn from the same parent distribution. The KS test cannot prove that two

data sets are drawn from the same parent distribution, but can only say if they are

not.
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For Run 123 and 124 we compared the distributions of the reduced quantities for

each data set with a reference data set (the template we know has good distributions).

A series of KS tests was run for every low background (WIMP-search) data set and

every barium (gamma calibration) data set. The quantities included in making the

KS tests include timing, energy and noise related RQs. These KS tests led to the

formation of cuts (including the data quality cuts) for R123 and R124.

5.4.3 Fiducial Volume Cut

The rejection of events with reduced ionization and phonon signals at large radius in

the ZIP detector is made by the fiducial volume cut. These “edge” events may be

undermined by distortions of the electric field, poor phonon sensor (QETs) coverage

or reduced charge collection near the outer surface.

The main fiducial volume cut on the charge side is the Q-inner cut. Events with

a charge signal mostly on the outer ring electrode (Q-outer) are cut by the Q-inner

cut, and are discarded from the WIMP search event topology. The Run 123 and 124

Q-inner cut was defined in the following way:

1. Using a good Barium (gamma calibration) data set, a gaussian is fitted in Q-

outer as a function of energy for a set of selected good Q-inner events, for several

energy bins (from 0-300 keV)

2. A line is fitted to the mean and a parabola to the width of the gaussian fitted

in Q-outer

3. Using the fits, the cut is set at ±2σ from the mean

The efficiency of the Q-inner cut is measured using a neutron calibration event

sample and values between ∼ 65 and ∼ 75% on average have been obtained. The

efficiency decreases as the energy of the recoils increases. The physical reasons as
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Figure 5.8: Events from a neutron calibration in the inner vs outer electrode space. The
Q-inner cut is defined to maximize the inner electrode event population and excluding outer
electrode events. The Q-inner cut is made calculating the mean (purple dots) of the Q-outer
events as a function of Q-inner energy bins. The cut selects events in the ±2σ band [193].

to why the efficiency of the Q-inner cut is lower at high energies could be that the

electric field is somewhat distorted in the outer regions of the detector due to the

grounded copper detection housing. Furthermore, it is easier to see a shared event

between the inner and outer electrodes as the energy of the event increases, therefore

the cut is more stringent at high energies i.e., has lower efficiency at high energies.

5.4.4 Thresholds

The charge threshold in the ZIP detectors is set 4σ above the mean of the Q-inner

baseline as a function of total phonon energy for random trigger events. Figure 5.9

shows the Q-inner the number events as a function of total phonon energy for a Ge
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detector in Tower 1. The threshold is set using a gaussian (blue curve) fit to the

Q-inner noise traces.

Even though the phonon noise is considerably lower than the charge noise, the

phonon threshold is set based on the efficiency to achieve good discrimination between

nuclear and electron recoils (using the timing cut). The phonon thresholds therefore

are set by using a sample of surface events and calculating the efficiency of rejection as

a function of recoil energy. The threshold is set when the efficiency is approximately

above a few percent. The analysis thresholds used in Run 123 and 124 are shown in

Table 5.4.4.

Figure 5.9: Q-inner events as a function of the total phonon energy (pt) for a Ge detector
in Tower 1. The events where taken within the first 500 random triggers of the run, and
therefore all were consistent with noise. The charge threshold cut is set at µ + 4σ where µ
is the mean of the gaussian fit to the Q-inner events, and σ is the standard deviation [194].

5.4.5 Singles Cut

WIMP events are expected to be single interaction hits in the ZIP detector and

the singles cut selects only events that have one interaction above threshold in one
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T1 T2 T3 T4 T5

Z1 7 10 10

Z2 10 7 10 10

Z3 10 7 15 7

Z4 10 7 10 10 10

Z5 10 10 15 10 10

Z6 10 10 20

Table 5.1: Analysis thresholds in keV for the ZIP detectors used in Run 123 [195]. The
rows correspond to each ZIP detector and the columns to each tower. Ge detectors are in
bold and the rest are Si detectors.

T1 T2 T3 T4 T5

Z1 10

Z2 10

Z3 15

Z4 7 10 10

Z5 10 10 10

Z6 10

Table 5.2: Analysis thresholds in keV for the ZIP detectors used in Run 124 [195]. The
rows correspond to each ZIP detector and the columns to each tower. Ge detectors are in
bold and the rest are Si detectors.

detector with all other of the detector signals below a lower threshold. Hence, a

pair of thresholds is calculated for each ZIP detector: the upper threshold must be

surpassed in order to consider that there was an interaction in that detector, and the

lower threshold is used as a veto threshold. Single scatter events must exceed the

high threshold in one detector and fall below the low threshold in all of the others.

In Runs 123 and 124, the low and high phonon thresholds are set at 4σ and 6σ,

152



5.4

respectively, above the mean phonon noise. These thresholds yield an efficiency in

excess of 99%, as it is rare that any detector will happen to exceed its threshold due

to noise in coincidence with a true pulse in another detector.

At times when the noise level is high, the thresholds are respectively set high for

the singles cut and the efficiency of the cut is correspondingly reduced. For example,

Figure 5.10 shows the variation in phonon noise as a function of the events date during

Run 123 for Tower 1.

Figure 5.10: Time variation of the mean total phonon noise from the Tower 1 ZIP detec-
tors [196]. The Run 123 and 124 Singles Cut takes into account the variation in the noise
by doing a run-by-run estimation of fit parameters used to calculate the low (for tagging
multiples) and high phonon thresholds.

The variations in noise can have a significant effect on the singles cut because a
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detector that has poor resolution (or high noise) will tend to trigger more frequent

false vetoes, as noise fluctuations drive the phonon signal intermittently over its low

threshold. Noisy periods on any detector can thus reduce the efficiency of the singles

cut and therefore, at the same time, reduced the livetime for WIMP recoils. Im-

plementing run-by-run values for the various phonon means and resolutions reduces

the overall efficiency loss due to periods of high noise. All detectors, even those sub-

optimal detectors excluded from consideration for WIMP candidates, are included for

consideration in vetoing candidate events. The achieved efficiency for the singles cut

is 99.4% [197].

5.4.6 Yield Bands

The charge yield is one of the main discrimination parameters used in CDMS with

the ZIP detectors, and is defined as

y =
Q

Er

(5.4)

where Q is the ionization collected by the inner electrode and Er is the recoil energy

(the energy from the phonon signal Ep corrected for the Luke phonon contribution).

Electron recoils have a yield of ∼ 1 and nuclear recoils of ∼ 0.3. We construct the

electron and nuclear recoil bands by using gaussian fits in the plane of yield versus

recoil energy (defined using the inner electrode and corrected quantities as described

in Section 5.2 and 5.3) for gamma and neutron calibration data obtained with 133Ba

and 252Cf respectively. The center of each band corresponds to the mean of the

gaussian for each energy bin (5-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80 and

80-120 keV). The means are then fitted using the following functional form:

y = aEb−1
r , (5.5)
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and the 1σ points are fitted by a line

σEr = c(aEb−1
r ) + d, (5.6)

where a, b, c and d are fit parameters. The electron and nuclear recoil bands end up

separated by >2σ at 5 keV and the gamma rejection efficiency, just using the yield,

is >99.98% in the 5-100 keV interval [143]. The electron recoil band is fit on the

odd-event-numbered Ba calibration data (half of the total Ba calibrations is used to

set initial cut with the reminder used for background estimates), with an initial guess

provided by a fit to the Cf calibration data between 0.6 < y < 1.4 and 10-120 keV.

The nuclear recoil band is fitted on Cf calibration data between 0.05 < y < 0.6

and 10-120 keV, and added together above 60 keV. Figures 5.11 and 5.12 show band

definitions for the electron and nuclear recoil band respectively for detector T1Z5

(ZIP 5 in Tower 1).

Figure 5.11: Yield as a function of recoil energy in detector T1Z5 (Ge) for events in a
gamma calibration data set. The electron recoil band (or gamma band) is centered around
∼ 1 (solid red) and the nuclear recoil band is shown as solid blue (see Figure 5.12) [198].
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Figure 5.12: Yield as a function of recoil energy in detector T1Z5 (Ge). The nuclear recoil
band is populated with nuclear recoils caused by neutrons from a 252Cf source. There are
also events in the electron recoil band that are caused by gammas emitted by the neutron
source [198].

5.4.7 Veto Cut

The CDMS-II experiment at the Soudan Underground Laboratory is located beneath

an overburden of 2090 meters of water equivalent (m.w.e.) that reduces the surface

muon flux by a factor of 5×10−4 in order to reduce the number of cosmic-ray-induced

nuclear recoils. Even though the experiment is situated half a mile underground,

comic-ray muons interact directly with the shielding materials producing low-energy

neutrons (few MeV in energy) that can produce a nuclear recoil in the ZIP detectors.

Therefore, in order to reduce this type of events, the gamma and neutron passive

shielding that surrounds the detectors is covered almost 100% by forty scintillator

panels that comprise the muon veto system. Figure 5.13 shows a schematic drawing

of the CDMS-II veto system.

Each panel consists of a 5-cm thick slab of Bicron BC-408 plastic connected to

one or two 2-inch Hamamatsu R329-02 photomultiplier tubes. The veto panels are
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Figure 5.13: Schematic drawing of the CDMS-II veto system that consists of 40 plastic scin-
tillator panels covering the passive shielding, icebox and towers holding the ZIP detectors.
The cylindrical structure outside the veto system is the dilution refrigerator.

arranged so that adjacent panels overlap. The top panels extend well beyond the

side panels, guaranteeing that the small gap between top and side panels does not

allow a direct line of sight to the detectors inside the icebox. Given a 5-cm thickness

for the plastic scintillator slabs that make the veto, it is easy to distinguish between

muons and ambient photons since minimum ionizing muons typically deposit 10 MeV

or more while the highest energy photon from radioactivity is about 2.6 MeV, as

noted earlier. The muon detection efficiency for the entire veto system is estimated

by counting the fraction of events with a muon tagged in the bottom panels that are

also tagged by another veto side. In Run 119, the fraction of bottom-tagged events

that had a muon in another side was 99.4 ± 0.2%, directly giving the estimated

efficiency for rejecting muons that stop in the shielding, while the product of the
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two fractions yields the inefficiency for through-going muons. The efficiency for these

through-going muons is estimated as 99.98 ± 0.02% [199]. On average, one muon

per minute is incident on the veto, and the combined veto rate (dominated by the

ambient photons) is ∼600 Hz.

Events with detector signals are recorded regardless of whether or not there was

cosmogenic energy deposition in the veto, but a subsequent analysis cut, the Run 123

and 124 veto cut, rejects events either with a veto trigger within 50 microseconds

before the detector trigger, or with a reconstructed veto energy above a set threshold

anywhere in the −180 to +20 microsecond window for which veto pulses are down-

loaded. The energy threshold used in the cut was set on a panel by panel basis, in

order to maximize efficiency to detect muons without gaining deadtime with respect

to the previous version of the cut, which had set the threshold for all panels at 50 pC.

Figure 5.14 below shows for panel 4, one of the top panels, an energy deposition

histogram, in units of pC, of 1 million events recorded in Run 123. The dashed green

vertical line is the 50 pC mark where the threshold was previously set for an old

version of this cut and the red dashed is were it is now set for Run 123 and 124 veto

cut [200].

The efficiency of the veto cut for WIMP events is determined by considering the

effective deadtime induced by each veto hit. There are random triggers taken through

out the run, i.e., events that are not triggered by the veto nor by the detectors but

by a program that randomly selects ∼ 10% of events compared to all events in a

given run. By measuring the fraction of random triggers removed by the veto cut,

we measure the accidental veto rate associated with this cut. The percent deadtime

(efficiency) associated with the veto cut in data runs 123 and 124 are 2.4% (97.6%

efficiency) and 3.4% (96.6% efficiency), respectively.

In Run 123 and 124, a total of 8 veto-coincident multiple-hit nuclear recoils have

been found and no vetoed singles have been observed during these runs [181, 182]. In
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Figure 5.14: The charge deposited (black histogram) by cosmic rays and ambient photons
in one of the scintillator panels that are part of the veto system. The events that peak at
∼100 pC correspond mostly to muons passing through the 5 cm thick plastic scintillator.
The vertical dashed line is where the veto cut was set for this panel [200].

Chapter 4 in Section 4.2.5 I discussed these events in detail and how they compare

to the predictions made using Monte Carlo simulations.

5.4.8 Timing Cut

After all quality cuts, the yield cut and the veto cut, the events remaining in the

2σ nuclear recoil band are low energy betas and single scatter unvetoed neutrons.

Before looking at the WIMP-search data (to remain blind) we set the cut that will

filter out the beta events (or surface events) using the timing cut. Electron recoil

events near the detector surface can have reduced ionization collection, leading to

misidentification as neutrons or WIMP events if we only look at the ionization yield

alone.
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Phonon pulses from these surface recoils are faster than those from recoils in the

detector bulk. Two timing quantities in the quadrant with the largest phonon signal

or “local quadrant” are particularly good discrimination parameters: the time delay of

the phonon signal relative to the fast ionization signal, and the phonon pulse risetime.

As discussed in Chapter 3 Section 3.4, two phonon timing parameters, the phonon

delay time and the phonon risetime provide good rejection of surface-electron recoils

while retaining reasonable acceptance of nuclear recoils. The delay and risetime

phonon quantities are summed to form a timing parameter upon which selection cuts

are applied.

To define the timing cut, we first combine the phonon delay and risetime to form

this timing parameter. We require that candidates for WIMP-induced nuclear recoils

exceed a minimum value for this timing parameter (see Figure 5.15). This minimum

value is determined on a detector-by-detector basis by setting the allowed leakage

(tuned to about half of an event). These cuts were set based on leakages from a

subset of 133Ba calibrations. The achieved discrimination is >106 with an average

efficiency of ∼ 30% when combined with the rest of the cuts previously discussed.

In Figure 5.16 the overall efficiency to nuclear recoils is shown when the Quality,

Singles and Veto cuts are applied (about 90%), when the Fiducial volume cut is also

applied (about 64%) and finally when the phonon timing cut is applied (about 30%).

The origin of the surface events is determined by the radioactive contamination

of detector surfaces and also external gamma ray interactions that can release low-

energy electrons from surfaces near the detectors. An analysis of the correlation

between alpha-decay and surface-event rates shows that 210Pb (a secondary product

of the 222Rn decay chain) is the major source of the surface event background [202].

The estimated surface event leakage was calculated using the observed number of

single- and multiple-scatter events per detector and requiring them to be within the 2σ

nuclear recoil band. The results are an overall expected background of 0.6±0.5 events
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due to surface events for the Run 123 and 124 WIMP-search runs (3.75 kg of Ge).

Figure 5.15: Delay vs. risetime parameter for a sample of neutron (green dots) and beta
(red dots) events. The circled red dots are betas that pass the timing cut (dashed blue).
Neutrons and WIMPs are selected by the blue dashed and the two perpendicular black
dashed curves [201].

5.5 WIMP search results

Once all the analysis cuts are set, we unmasked the WIMP-search signal region. The

actual unmasking or the “opening of the box” occurred on February 4, 2008. No

events were observed in the box (signal region). A compilation of all the low-yield

events in the detectors observed in the Run 123 and 124 is shown in Figure 5.17.

Single scatter events passing all data selection cuts except the timing cut are shown

on the upper plot of the figure. The lower plot of the figure shows four events that
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passed the timing cut, but nevertheless remained outside the 2σ nuclear-recoil band.

Figure 5.16: Efficiency (or acceptance) of several cuts as a function of recoil energy. Note
that the main steps that reduce the efficiency (about ∼40%) are the fiducial volume cut
and the phonon timing cut.

Figure 5.17: The ionization yield as a function of recoil energy or all the events in all
detectors passing all cuts before (top) and after (bottom) applying the phonon timing cut.
The four events that are shown on the bottom plot are able to pass the timing cut but lie
outside the 2σ nuclear recoil band where neutrons and WIMPs are expected.
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Based on the null observation of events, Figure 5.18 shows (upper solid curve) the

90% C.L. upper limit of the spin-independent WIMP-nucleon cross section for the first

5 tower run and based on standard assumptions about the galactic halo 1 , the limit

is 6.6×10−44cm2. The standard assumptions of the galactic halo allow us to compare

different direct detection experiments. Nevertheless, there is significant uncertainty

on the density of WIMPs in our galaxy and it is currently an active subject of study.

Previously analyzed data taken at Soudan [203, 204] yield a modest improvement

in sensitivity over previous CDMS results (upper curve in Figure 5.18). A combined

limit using all the data taken at Soudan using Yellin’s Optimal Interval method [205]

results in an upper limit of 4.6 × 10−44cm2 at 90% C.L.for a 60 GeV/c2 WIMP

mass. This new limit corresponds to a factor of ∼3 more sensitive than the previous

CDMS-II limit and a factor of ∼2 above 60 GeV/c2 better than any other WIMP

search to date. Furthermore, these data excludes some parameter space of SUSY

models [208, 209].

1The main standard assumptions about the galactic halo are the universal shape of the spherically

averaged density following the NFW profile (presented in Chapter 1) and a density of 0.3 GeV/c2

(which has a factor of ∼2 uncertainty).
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Figure 5.18: Spin-independent WIMP-nucleon cross-section upper limits at 90% C.L. as
a function of WIMP mass. The blue dash-dot upper curve corresponds to the result of
a re-analysis [142, 206] of our previously published data. The upper red solid line is the
limit from the Run 123 and 124 data analysis. The combined CDMS limit (lower solid
black line) has the same minimum cross-section as XENON10 [207] (orange dash) reports,
but has more parameter space at higher masses. WIMP masses and cross section ranges
expected from supersymmetric models described in [208] (grey) and [209] are shown (95%
and 68% confidence levels in green and blue, respectively). Figure courtesy of [210].
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Chapter 6

An Underground Cosmogenic

Neutron Detector

6.1 Introduction

In Chapter 4, I discussed how the remaining component of cosmic rays deep under-

ground (muons) and their secondaries can produce MeV neutrons that in turn lead to

a nuclear recoil similar to those expected from WIMPs scattering of Ge and Si nuclei

in the ZIP detectors. Furthermore, an estimation of these cosmogenic nuclear recoils

was presented, based on a combined FLUKA and MCNPX simulation. In order to

assign a systematic error to the estimate I discussed the relevant underground neu-

tron data currently available upon which the Monte Carlo can be compared against,

or benchmarked, in order to understand the accuracy of the estimation beyond the

statistical power based on the number of events produced in the Monte Carlo. A

factor of 3 systematic error has been assigned to the unvetoed rate, based on the

shape of the spectrum of high-energy neutrons measured with the LVD experiment

located at a depth of 3600 mwe. Motivated by the need to improve the existing

benchmarks to the Monte Carlos and narrow the systematic error on the unvetoed
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estimate, I will present a proposal for a new measurement that could yield as much

as a factor of ∼10 lower systematic error. The proposed measurement is based on an

idea I conceived when studying active neutron veto schemes and ways to statistically

predict the unvetoed rate for CDMS-II at Soudan using a detector medium outside

the gamma-ray (or high-Z) part of the CDMS-II shield. Professor Akerib proposed

to study the possibility of a purpose build neutron detector based on the same detec-

tion principle. This work lead to a successful DUSEL R&D project (also described

in reference [211]) that we designed, and teamed up with Professor Harry N. Nelson

from UCSB. In this Chapter I describe the purpose build cosmogenic neutron detector

design studies and extend on the motivation. Furthermore, I describe how can the

same detection principle be used as a complement in active neutron shield schemes

that can also predict the number of unvetoed events. Finally, I present recent 252Cf

neutron multiplicity data obtained using a small prototype detector and discuss the

prospects for the final design to be deployed at the Soudan site.

6.2 Underground Neutron Data

WIMP searches must be performed underground to shield from cosmic rays, which

produce secondary particles that could fake a WIMP signal. Nuclear recoils from fast

neutrons in underground laboratories are one of the most challenging backgrounds to

WIMP detection. Experiments that search for WIMP dark matter rely on passive and

active shielding to reduce gamma and neutron backgrounds. To reduce the neutron

background, passive hydrogen-rich shielding and active charged-particle detectors are

commonly used to moderate neutrons and veto muon-induced events, respectively. To

reduce the gamma background, high-Z materials such as lead are used to attenuate

gammas from ambient radioactive sources. While the high-Z shielding is effective

against gammas, the shield itself becomes a source of increased neutron background
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due to secondary particles produced by unvetoed muon-induced neutrons that have

energy above about 60MeV. These neutrons have sufficient energy and low enough

cross section on hydrogen that they penetrate the moderator and reach the gamma

shield. They tend to interact there and cause spallation reactions, which produce

multiple secondary neutrons with energy below 10MeV. At these lower energies, the

neutrons can reach the inner detector volume and cause WIMP-like nuclear recoils.

The high-energy neutrons and their parent reactions that originate with cosmic-

ray muons are thus correlated with the unvetoed neutron events that mimic the WIMP

signal. Neutron production by muons underground have been measured at a span of

depths and muon energies, from about 20 meters of water equivalent (m.w.e.) depth

and 10GeV energy [212, 213, 214] to 5200m.w.e. and 400GeV [215]. An estimate of

the neutron production as a function of muon energy for muons interacting in liquid

scintillator has been obtained by Wang and co-workers [216] based on Monte Carlo

simulations made with FLUKA [217] that is about a factor of two within the available

data at that time for depths with a mean muon energy above 100GeV. Since the

interest is in neutrons with energy above ∼60MeV, this work is primarily sensitive

to neutrons below this energy range as illustrated by Figure 5 in their paper [216].

Galbiati and Beacom [218] have calculated, using FLUKA [219], the production rates

for 12B in muon–induced showers and have probed the neutron production in the

energy range of ∼10-100MeV through the 12C(n, p)12B reaction and the calculation

agrees well with measurements of 12B at 2700m.w.e. made by KamLAND [220].

At higher energies (>100MeV) the shape of the neutron spectrum was compared

to FLUKA [217] by Wang [216] and there is about a factor of two discrepancy with

data taken with the liquid-scintillator LVD detector [221] at a depth of 3650m.w.e

and a mean muon energy of 270GeV. Mei and Hime [222] claim that after making

corrections for proton recoil quenching effects, the corrected LVD data agrees well

with the shape of the spectrum predicted with FLUKA simulations. However, the
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individual who performed the analysis of the data, V.A. Kudryavtsev has pointed

out that this correction is inappropriate [223]. At present, there is no other data at

this energy to inform the production of high energy neutrons, leaving the discrepancy

unresolved. The LVD collaboration recently presented results on measuring neutron

production above 20MeV by muons in liquid scintillator [224], and a Monte Carlo

simulation is under development by the collaboration to convert this measurement to

an absolute flux.

Neutron production by 200GeV muons occurs through hadronic showers gen-

erated by the muons interacting in the rock, and to some extent by direct muon

spallation [216]. The CERN NA55 experiment measured neutron production via di-

rect muon spallation by looking at the production of fast neutrons (>10MeV) by

190GeV muons on graphite, copper and lead [225] at three different angles from the

muon beam. Araujo and co-workers [226] show that this experimental data lies above

the Monte Carlo simulations from between a factor 3 to 10 depending on the measured

angle. These measurements could overestimate the rate because of contamination by

neutrons produced by secondaries of the muon-nucleus interaction. The possible sys-

tematic uncertainties leave the matter inconclusive, informing neither muon spallation

production nor the total fast neutron yield above >10MeV.

The measurements to date of neutrons at large depths involve either primary muon

interactions in hydrocarbon liquid scintillator followed by cascade processes within the

detector [221, 227], or muon interactions in higher-Z material such as Pb and Cu [228]

in which neutron production is dominated by relatively low-energy electromagnetic

properties. Of particular interest for dark matter experiments, as noted above, is when

high-energy neutrons produced in the rock through muon interactions and hadronic

cascades, followed by spallation in high-Z shielding, lead to a flux of neutrons of

mostly 10MeV and below. In the work described here our simulations and calculations

indicate that a modest size detector, by exploiting the multiplicity distribution of the
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spallation events, can provide a normalization of the neutron flux to a precision of

about 12%. By measuring the high energy neutron flux at 2000m.w.e. this will

benchmark the neutron production by muon induced hadronic showers and provide a

normalization of the unvetoed neutron background. I have chosen this depth because

the muon-induced neutron production is dominated by hadronic processes according

to Wang and co-workers [216] based on Monte Carlo simulations made with the

particle production and transport code FLUKA [217] and because the rate is good

enough for a modest detector size (see section 6.3) to be able to measure a rate of

70± 8 events/year for neutrons >60MeV.

In addition to the interest for the shielding configurations for many dark matter

experiments, improved knowledge and predictibility of the muon-induced high energy

neutron flux (>60MeV) at depth will aid in the understanding of neutron induced

backgrounds in double beta decay experiments. For example, as noted by Mei and

Hime [222], knowledge of the neutron background is needed to estimate the back-

ground due to elastic and inelastic events that generate gamma rays near the 2MeV

endpoint, and to optimize shielding configurations that also typically involve massive

lead and polyethylene shields to attenuate gammas and moderate neutrons. Thus

for two major classes of low-background underground experiments, dark matter and

double beta decay, a more precise measurement of the neutron background produced

in the appropriate shield components will be of great utility, from the experiment

planning stage through to data analysis.

6.3 Principle of the Instrument

The instrument I have designed is based on applying the Gd-loaded liquid-scintillator

technique to measure the rate of events with multiple low energy neutrons produced

in a Pb target. Our studies, which are presented in Section 6.4, indicate that at a
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depth of 2000m.w.e., the dominant source of these events is due to muon–induced

high energy neutrons interacting in the Pb. Gadolinium has a high thermal-neutron

capture cross section, and emits 8MeV in gamma rays after the capture. Since

neutrons thermalize and capture with a mean of about 10µs, measurements of the

distinct capture times is a straightforward way to determine neutron multiplicity,

and to tag and measure the underlying process of the fast-neutron production. This

method, known as a Neutron Multiplicity Meter, has a long history of use, dating to

searches for superheavy elements expected to decay to high-neutron-muliplicity final

states [229], and more recently in accelerator-based applications [230].

The basic design of the Neutron Multiplicity Meter applied to measure high energy

neutrons (>60MeV) underground employs the Gd-loaded liquid-scintillator detector

(∼0.5% Gd content) atop a 200-cm-square by 60-cm-thick Pb target in which high

energy neutrons produced by muon interactions in the rock walls of the cavern will

mainly enter from above, penetrate the scintillator, and cause neutron spallation in

the Pb, as illustrated in Fig. 6.1. The secondary low energy neutrons produced by the

primary high energy neutron leave the Pb target and enter the Gd-loaded scintillator,

where they are moderated and thermalized by the protons in the hydrocarbon which

comprises the bulk of the scintillator. Within about 40µs, most will have captured

on the gadolinium, and thus the essential problem of detecting neutral particles with

high efficiency has been turned to an advantage: the neutrons which are released

simultaneously are dispersed in time, and individually captured and counted. As the

simulations below illustrate, this unique signature allows both for efficient tagging

of neutron muliplicity events as well as rejection of random gamma backgrounds so

effectively that typical low-background techniques are not required.
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Figure 6.1: Conceptual drawing of the Neutron Multiplicity Meter for Deep Underground
Muon-Induced High Energy Neutron Measurements.

6.4 Instrument Design Studies

In this section the design characteristics of the Neutron Multiplicity Meter adapted to

measure high-energy neutron flux underground are developed. Extensive simulation

studies of the muon-induced neutron background in the Soudan Mine at a depth

of 2000m.w.e. corresponding to 14 years of exposure have been performed using

FLUKA simulation package [164, 165]. These studies, carried out for background

estimates in the CDMS II experiment, are based on an angular distribution of muons

matched to this depth, and normalized to the measured flux in the CDMS II plastic-

scintillator veto system [203]. In the study, the muons are propagated into a rock-
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wall cavern modeled as a 6-sided 10-m-thick rock shell surrounding a 4m by 8m

by 4m cavity. The CDMS II experimental setup is inside the cavity and near one

of the walls. High energy neutron production due to muons occurs through direct

muon spallation and subsequent hadronic showers that develop in the rock. The

angular distribution of neutrons above 60 MeV, as depicted by the distribution in

Figure 6.2, shows that the neutrons are mostly going downward at angles greater

than about 0.88π radians, where π radians corresponds to the direction vertically

downward. Given the predominantly downward direction, the rate of incident high-

energy neutrons is proportional to the area of the Pb target, which defines the first

criterion for the setup.
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Figure 6.2: Polar angular distribution of the neutrons with energy greater than 60 MeV
incident on the CDMSII shield. Neutrons tend to have downward direction at an angle of
about 0.88π radians with respect to the normal vector from the floor. Therefore the area
of the target is proportional to the rate of incident high energy neutrons.
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Figure 6.3: Neutron fluence plot of a FLUKA simulation that propagates a beam of
100 MeV neutrons on a 60-cm-thick Pb target. The upper and lower rectangles are reference
surfaces delimiting the counting boundary for the upper and lower neutrons, respectively.
The central rectangle from z=0 to 60 is the Pb target. The plot shows more evaporated
neutrons going upwards than downwards (the forward direction relative to the beam) due
to backscattering. This effect also causes very few neutrons to go forward as the thickness
increases above about 20 cm.

The next criteria I consider for the Pb target are the optimal thickness and whether

it is best placed above or below the scintillator tank. A simulation with FLUKA

was performed by propagating a beam of 100-MeV neutrons at a 200 cm by 200 cm

Pb target with thickness varying from 1 to 100 cm. I gauge the detectability of a

subsequent multiplicity event by counting the number of secondary neutrons that

emerge from the Pb with less than 10MeV and are thus readily moderated and

captured. I define the parameter P for both the top and bottom surfaces as the
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Figure 6.4: Simulation with FLUKA to explore optimal target thickness and position of
the Gd-loaded scintillator tank with respect to the Pb target. The parameter P is defined
as the fraction of events (relative to the number of 100-MeV incident neutrons) that has 3
or more neutrons of 10 MeV or less going towards the top or the bottom of the Pb target.
(See text for details.) Since a given event may have 3 or more neutrons going to the top
and 3 or more going to the bottom, it is possible to have PTOP + PBOTTOM > 1, for
example as observed for 40-, 60- and 80-cm thickness.

fraction of events for which a downward-direction 100-MeV neutron results in at

least 3 low-energy neutrons exiting either the side from which the neutron beam

was incident (top) or the opposite side (bottom). The overall production point and

neutron travel direction is illustrated in Figure 6.3, which shows the neutron fluence

(neutron track length per unit volume) in units of cm per cm3 per primary neutron,

based on a FLUKA simulation for a 60-cm-thick target. Quantitative results for P

are shown in Figure 6.4, where the “Pb target on bottom” means P is calculated

for downward incident neutrons with updward-going secondaries to be detected in
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a top-side scintillator detector, and “Pb target on top” means P is calculated for

downward secondaries to be detected bottom-side.

I observe that the emission of neutrons is roughly isotropic as expected, and that

the spallation reaction occurs within the first 15 cm of Pb. Furthermore, as the thick-

ness of the target increases beyond 20 cm, more of the secondaries are going upwards

than downwards. This effect is due to backscattering from the Pb, which acts roughly

like a “neutron mirror” for low energy neutrons, since the elastic collisions off the Pb

nuclei do little to reduce the energy of the comparatively light neutrons. Most impor-

tant for the overall configuration, I observed that since the primary interaction rate

is still increasing with thickness, the backscatter effect indicates that the multiplicity

rate is higher on the top side, and higher for increasing thickness. To maximize the

detected multiplicity rate, it is better to place the scintillator atop the Pb, which also

has the advantage of tagging muons that strike the Pb directly.

So far, the detector configuration is to have the Gd-loaded scintillator on top of

the Pb target. Since neutrons with an energy less than about 60MeV will scatter off

the protons in the scintillator, they will tend to either fail to reach the Pb or reach

it with insufficient energy to produce a multiplicity of 3 or more. In other words,

the scintillator will filter low energy neutrons and together with the requirement that

the event has a multiplicity threshold of 3 or more secondary neutrons this will select

only those primary neutrons with an incident energy of 60MeV or more. To illustrate

that high energy neutrons (>60MeV) induce a multiplicity of 3 or more low energy

neutrons on a Pb target, Figure 6.5 shows the induced detectable multiplicity, for

a geometry of the Pb to have an area of 200 cm by 200 cm normal to the vertical,

a thickness of 100 cm, and an incident downward-going neutron beam in FLUKA

at energies of 60, 100, and 200MeV. The detectable multiplicity was estimated by

counting the number of neutrons below 10MeV that enter a top-side detector with

the same footprint as the Pb. The resulting multiplicity distributions for the three
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Figure 6.5: A FLUKA simulation was done with a fixed target thickness of 100-cm and
varying the incident neutron beam energy in order to explore the correlations between the
energy of the incident high-energy neutron on the target and the detectable multiplicity. If
I reference the beam direction a “downward,” the detectable multiplicity is determined by
counting the neutrons that reach a surface just above the Pb target.

energies are shown in Figure 6.5, where “Event Fraction” corresponds to the fraction

of events with respect to the total number of incident neutrons. The plot shows

that the majority of the events have a detectable multiplicity of 3 or more, and

that there is an increase in multiplicity with primary neutron energy and although

some information on the primary neutron energy is potentially available from the

multiplicity distributions; at least an energy threshold on the primary neutron energy

can be established using multiplicity, which has a fairly sharp turn on at 60MeV for

a multiplicity threshold of 3.

It is important to estimate the efficiency of the selection criteria for tagging high-

energy neutron events as a function of multiplicity so that an optimization can be
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Figure 6.6: The detectable multiplicity from a Pb slab of 200 cm by 200 cm area and 60 cm
thickness for the events estimated to be anticoincident with an energy deposition of 2 MeV
or more from charged particles, including muons and hadrons. The detectable multiplicity
was counted only by looking at neutrons with energy less than 10 MeV going towards a
surface on top of the Pb target.

made to reject random coincidences and still achieve good efficiency for neutron-

induced events. I identify a class of “clean” multiplicity events, that is, those that

are clearly produced by high energy neutrons interacting in the target as opposed

to other charged particles or gamma rays that may also have been produced by the

parent muon. To estimate the rate of these events as a function of multiplicity I use

the events with neutron energy above 60MeV from our 14–year Soudan simulation

in which associated gamma rays, muons, or hadrons deposit less than 2MeV in the

scintillator. The multiplicity is counted by considering only those secondaries with

energy less than 10MeV entering a top-side detector, and is plotted in Figure 6.6. To
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see the effect of tightening the multiplicity cut to reduce the probability of random

coincidences, the integral number of multiplicity-tagged events per year is plotted

versus the minimum required multiplicity, and is displayed in Fig. 6.7. The total

number of events changes only by about 10% between a minimum multiplicity of 3

and 10.
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Figure 6.7: The total number of events as a function of minimum multiplicity. The total
number of events changes only by about 10% between a minimum multiplicity of 3 and 10.

In determining the optimal thickness of the scintillator modules, we consider two

requirements: the moderation of the secondary neutrons, and the absorbtion of the

Gd capture gammas. The FLUKA simulation predicts that the spectrum of neutrons

emerging from the Pb falls off almost completely by 5MeV, as shown in Figure 6.8. A

scintillator region of 10 cm thickness would be sufficient to moderate them. However,

I found that containing the capture gammas requires a thicker detector. In order to

find the optimal thickness, I used the low-energy simulation code, MCNP-PoliMi [183],
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which includes the neutron-capture process. A beam of 0.5-MeV neutrons was propa-

gated from the Pb up to a top-side scintillator tank, and the thickness of the tank was

varied. In Fig. 6.9 the efficiency to detect the gamma cascade with a 3-MeV threshold

is shown as a function of scintillator thickness. To allow for resolution effects, I have

chosen 3MeV as the nominal lower analysis threshold to gain immunity from gammas

from natural radioactivity, the highest of which comes from 208Tl with an energy of

2.6MeV. I have found that the detection efficiency increases with thickness because of

improved containment of the gamma cascade. The efficiency to detect 3MeV energy

depositions from gamma-rays in the Gd-loaded scintillator tanks is considered to be

100%, as this can be easily achieved with a 5” PMT for the configuration shown in

Fig. 6.1.

To assess the rate of background coincidences that can mimic the signal, I have

considered not just the energy criteria of nominally 3–8MeV for individual captures,

but also the time distribution of the captures. The time profile for the moderation,

thermalization, diffusion and capture of multiple neutrons released simultaneously

into the scintillator is broad, with a peak at about 10µs after emission and about

90% of captures ocurring within the first 30µs. It is the diffusion of the neutron what

dominates the time between moderation and capture. A neutron burst results in a

cleanly-separated readily-counted pulse train since the pulse widths of about 10 ns

are narrow compared to the typical time between captures of order 1µs.

Ambient gamma rays, which dominate the rate of random events in the detector,

can mimic a high energy neutron event due to accidental coincidences within the

time and energy window defined for multiplicity events. The rate of gamma-induced

background as a function of the multiplicity criterion is shown in Fig. 6.10 for a

time window of 40µs and three different gamma rates. The gamma rate at Soudan

expected in the Gd liquid scintillator volume is about 600 Hz, based on gamma rates

measured with the CDMS II plastic scintillator panels for a 1MeV threshold [231].
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Figure 6.8: Energy spectrum of secondary neutrons produced by high-energy neutrons (flux
shown in Fig. 6.2) incident on the Pb target. Neutrons mostly have energy below 5 MeV
energy, and indicates that the thickness of the scintillator is not driven by the moderation
requirements. Rather, I found that the thickness is driven by the need to efficiently contain
the gammas emitted by the Gd.

A reduction of an order of magnitude in rate can be achieved with a threshold of

3MeV, which will render the rate of accidental 3-fold multiplicity events to 10−2

per day, or about one order of magnitude below the multiplicity rate predicted from

high-energy neutrons interacting in the Pb. Further reduction of the gamma ray rate

can be achieved, if necessary, with a thin layer of Pb surrounding the scintillator.

Alternatively, immunity from random coincidences can be gained by increasing the

multiplicity criterion.

I have also considered the background due to neutrons from radioactivity, which

are dominated by alpha-n reactions in the rock originating from alpha decays in the
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Figure 6.9: Simulation with MCNP-PoliMi [183] of the Pb target with Gd-loaded scintilla-
tor contained in tanks placed on top of the target. A beam of neutrons with energy 0.5 MeV
was propagated from the Pb to the scintillator tank. The thickness of the scintillator tank
was varied. Efficiency corresponds to the fraction of incident neutrons for which the energy
deposited in the Gd-loaded scintillator by gamma rays is above 3 MeV.

uranium and thorium decay chains. The ambient rate of neutrons from radioactivity

at Soudan is estimated from the measurements of the U/Th contamination in the

Soudan rock [173] and cross referenced with measurements of both the U/Th level

and neutron flux at the Kamioka mine [232]. The resulting flux estimate of about

2×10−5 neutrons/cm2/sec produces a rate of about 3 neutrons/sec in a detector with

a scintillator volume of 200×200×60 cm3, and is a negligible source of multiplicity

events.

Spontaneous fission from the 238U in the rock could in principle produce events

with multiplicity of 3 or more, although the most frequent multiplicity is 2. However,

the relative rate of fissions to gammas from 238U in secular equilibrium is down by 6
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Figure 6.10: Ambient gammas can mimic a high energy neutron event due to accidental
coincidences. The rate of gamma-induced background events is plotted as a function of the
multiplicity of the events for a time window of 40 microseconds and three different gamma
rates [229].

orders of magnitude. If the entire rate of ambient gammas is attributed to 238U, the

expected rate of multiplicity events from fission would still be negligible. However, if

needed, a layer of 10–20 cm of polyethylene can easily shield them.

Events in which the muon itself passes through the scintillator are also considered.

Most minimum ionizing muons will have sufficient pathlength of about 5 cm in the

scintillator to be readily distinguished from Gd capture, allowing us to study muon-

tagged events. For example, some of these muons will interact directly in the Pb, and

produce a detectable population of neutron multiplicity events. While these events

are of interest, they are dominated by low energy electromagnetic processes [227] and

so are not as useful a cross check on the unvetoed population, which is dominated by

182



6.4

higher-energy hadronic processes.

These tagged muon events will be identified by requiring more than 9MeV in the

scintillator, that is, above the maximum that can be caused by a neutron capture.

However, this criterion will also include some events with no muon in the scintillator

but which have instead a high-energy neutron that deposits more than 9MeV by scat-

tering in the scintillator. Based on a FLUKA simulation, the fraction of high-energy

neutrons impinging on the apparatus that are in this category is about 35%, and will

not be counted in the muon-free category of multiplicity events (which corresponds

to the main population of interest, i.e., high energy neutrons produced by muons in

the rock). The remaining 65% of incoming neutrons will deposit less than 9MeV of

prompt energy from the initial scatter followed by spallation of the Pb. When the

prompt energy in these neutron-scatter-plus-multiplicity events is 3–8MeV, it will be

indistinguishable from events without a neutron scatter but one unit higher multi-

plicity. For example, a multiplicity-three event with 7MeV of prompt energy will, to

first approximation, appear the same as a multiplicity-four event with prompt energy

below the 3-MeV threshold. Since both of these events are due to a high energy

neutron, the inferred rate of high energy neutrons will not be biased.

Finally, muons that deposit less than 8–9MeV in the scintillator (or none at all)

but interact in the Pb and cause multiplicity events, represent a potential back-

ground to the multiplicity events due to high-energy neutrons. Of the estimated

350muons/day that will pass through the Pb, there could be a few per day that

cause such an event. However, these could be vetoed with a simple set of veto coun-

ters placed below the lead, and used in anticoincidence.

In summary, our design studies show that an apparatus consisting of a Pb target of

200 cm by 200 cm area by 60 cm thickness covered by a 60-cm-thick scintillation detec-

tor with Gd-capture detection efficiency of εs(T ), where T is the low energy threshold

for each distinct capture, and assuming an efficiency to detect 3MeV gamma-rays in
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the Gd-scintillator tanks close to 100%, will yield a rate for M -fold multiplicity-tagged

events of

R = N (1− 0.35) (εs(T ))M events/year,

where N is the number of high-energy neutrons that induce an event with M or more

detectable neutrons emerging from the Pb and entering the scintillator, and the factor

of (1 − 0.35) is due to neutron interactions in the scintillator that exceed the high

energy threshold. Our FLUKA and MCNP-PoliMi simulations indicate that M=3

gives N=255 and T=3MeV gives εs(T )=0.75, and therefore R = 70± 8 events/year.

Depending on the actual gamma rate and spectrum, some optimization is possible

for increasing R but protecting against random multiplicity events, for example, by

increasing the multiplicity requirement and lowering the energy threshold. Generally

speaking, our method is capable of measuring the rate of high-energy neutrons to

about 12% statistical error in the span of a year at a depth of 2000m.w.e. The

expected number of background events, which is dominated by the rate of random

gamma-induced coincidences, is expected to be at most 10 events/year, and could be

further suppressed by optimizing the multiplicity and energy thresholds.

6.5 Statistical Predictors of the Neutron Leakage

In this section I present an application of a neutron multiplicity meter detector to a

running dark matter experiment that serves as both an active shield and a monitor

of the presence or rate of background events due to high energy neutrons. The idea

exploits the same technique as a purpose-built instrument for background studies as

described above. It’s principal virtue in a WIMP search experiment is that it can

closely monitor when a neutron background would appear in the data. A Gd-loaded

liquid scintillator detector integrated into the shield would detect, using the multiplic-

ity technique, the same population of events that cause a flux of low energy neutrons
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inside the shielded WIMP detector volume, namely, neutron multiplicity events pro-

duced in a Pb gamma shield by an otherwise undetected high energy neutron. Since

the underlying processes are the same, Monte Carlo simulations would give a very

reliable measure of the ratio of the rate of multiplicity events in the external detector

to the rate of WIMP-like events in the dark matter detectors due to the same neutron

population.

Similar techniques to detect the presence of background sources have been suc-

cessfully used, for example in the CDMS-I [233] and CDMS-II [204] experiments where

multiple simultaneous nuclear-recoil events were used to determine the rate of single

scatter nuclear recoils due to the same neutron background flux. The ratio of multiple

nuclear recoil events to single nuclear recoils has the advantage of having a negligible

source of systematic uncertainty since the neutron elastic cross sections on Ge and Si

are very well known. Nevertheless, the rate of multiple nuclear recoil events is lower

than the rate of single nuclear recoil events, and the uncertainty in the singles rate is

dominated by the fluctuations of the multiples when only a small number has been

observed.

In other words, tagged events that are correlated with the production of a single

nuclear recoil due to a neutron can be used to statistically predict the absolute number

of these nuclear recoils. If I call these tagged events “background predictors” then the

number of unvetoed singles can be estimated by determining the ratio of single nuclear

recoils to the background predictor events with a Monte Carlo simulation, and then

counting the number of background-predictor events in the experiment. Narrowing

the statistical and systematic uncertainty of this ratio improves the ability to monitor

and subtract the neutron background. Dark matter experiments that have a Pb layer

or any high-Z material as their gamma shield could use an external multiplicity

meter to predict, in a statistical way, the number of unvetoed nuclear recoils due to

neutrons. The background predictor events with high multiplicity are detected in the
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multiplicity meter outside the high-Z material. A virtue of this configuration is that

the gamma background due to contaminants in the scintillator and Gd are shielded

by the high-Z material.

As a further illustration based on Fig. 6.4 for 100MeV incident neutrons and a

typical 15-20 cm thick gamma shield made of Pb, the fraction of high energy neu-

tron events that produce multiple low energy neutrons going inside a Pb box will be

roughly the same as outside. For example, the use of 60-80 cm of Gd-loaded liquid

scintillator outside the gamma shield layer allows the moderation of low energy neu-

trons originating from the radioactivity in the rock and at the same time functions

as a neutron multiplicity counter that would allow the prediction of the number of

neutron-induced events in the signal region. Note that the multiplicity threshold in

this case should be set high enough so that gamma induced multiplicity events are

kept at a negligible level, since the Pb layer would be about 20 cm thick.

The effect plotted in Fig. 6.4 shows that the low energy neutrons produced from

the neutron spallation reaction can be detected by clean low energy neutron detectors

inside the gamma-ray shield (for example with plastic scintillator) but I have also

found that outside of the gamma-ray shield, a 60-80 cm of Gd-loaded liquid scintillator

with a threshold of a few MeV, would work as an active veto complementing the veto

inside the gamma shield (or as a standalone veto depending on rejection requirements)

and as a monitor of the muon-induced neutron background. Note that the thickness

of the scintillator outside the gamma-shield is driven by trying to contain the gamma

rays produced in the capture of a neutron by the Gd in order to have a high threshold

to defeat ambient gammas from radioactivity, and also to keep moderating with high

efficiency the neutrons produced from the radioactivity in the rock.
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6.6 A new background predictor for CDMS at Soudan

In this section it will be described how does the use of a neutron multiplicity meter

can be used in CDMS as both a neutron veto and as detector of the background

predictor events that can be used to estimate the rate of unvetoed cosmogenicly

induced nuclear recoils. The multiplicity meter would be outside the Pb and it will

consist of a detector of low energy neutrons with high efficiency such as Gd-loaded

liquid scintilator or water.

In order to investigate the rates to be expected of background predictor events be-

fore a nuclear recoil is expected in the CDMS-II shield a simple simulation was made in

which a beam of 100 MeV neutrons was shot into the Pb and inner polyethylene parts

of the CDMS-II shield. Assuming the veto-anticoincident Ge-singles are originated by

high energy neutrons, hence if some fraction of this events are tagged unambigu-

ously, they could be used as the background predictor. The following results show

that indeed the multiplicity events have a higher rate compared to the Ge-singles.

Furthermore the systematic uncertainties such as the production rate of high-energy

neutrons together with the multiplicity of the low energy neutrons generated at the

spallation reaction, will cancel in the ratio of Multiplicity events to Ge-singles.

A FLUKA simulation was performed in which 1000 neutrons with an energy of

100 MeV where thrown vertically and downwards into the lead, inner polyethylene

and copper layers of the CDMS-II shield (see figure 6.11). For each event, I looked

if there was a neutron in the 100 keV to 10 MeV range going inside the innermost

copper can. Furthermore, events where there were neutrons with less than 10 MeV

going from the lead upwards “backsplash”.

The inelastic collision of the 100 MeV neutrons in the Pb shield produces neutrons

with an energy less than 10 MeV that are:

1. back-splashed and do not reach the inside of the Cu cylinder and therefore
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Figure 6.11: The CDMS gamma-ray shield, inner polyethylene and a copper cylinder inside
of it with a thickness similar to that of the fridge copper cans. In red, a high-energy neutron
with an energy of 100 MeV is depicted. The green dotted lines depict low energy neutrons
(<10 MeV). The Cap corresponds to a cylindrical surface on top of the Pb shield with a
radius equal to that of the outer polyethylene layer (∼ 1 m) and a height of 40 cm.

would not be reaching the detectors,

2. go into the inside of the Cu cylinder and therefore could reach the detectors

and produce a Ge-single and

3. events in which 1 and 2 are in coincidence.

What this study shows is that the rate of type-1 events is greater than the rate of

type-2 events from the previous list. An event is defined as an incident neutron with

100 MeV energy on the Pb shield. If I call “cap” the cylindrical surface on top of the

Pb shield with a diameters equal to the diameter of the outer polyethylene and with

a height of 40 cm then, the results can be described as follows. For every 5 events
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going inside the cap, each with 3 or more low energy neutrons (<10 MeV), there is 1

event with one or more low energy neutrons with with an energy between 0.1-20 MeV

going into the copper cylinder (with sufficient energy to create a Ge nuclear recoil

above 5 keV). Furthermore, for every 3 events going inside the cap, each with 5 or

more low energy neutrons (<10 MeV), there is 1 event with one or more low energy

neutrons with with an energy between 0.1-20 MeV.

Note that the neutrons going into the inside of the copper cylinder have not created

a Ge nuclear recoil. For example, let assume that for every 20 neutrons going into the

copper cylinder there is one nuclear recoil. Then, if a detection can be made of the

multiple neutrons that go into the Cap with high efficiency using a multiplicity meter

replacing the outer polyethylene, this would produce a new background predictor

based on the high multiplicity events detected with the multiplicity meter. If I set

a multiplicity threshold of 3, then I would have 5×20×ε3
M events, at least, before a

single Ge nuclear recoil is produced, where εM is the efficiency to detect a single low

energy neutron with the multiplicity meter. If εM = 0.9 than I would have about

70 to 1 ratio of background predictor events of this type to Ge-singles. If there is

a multiplicity threshold of 5, then I would have about 35 to 1 ratio of background

predictor events to Ge-singles.

6.7 Gd-loaded water as detector medium

In this section I will describe work that is being done at UC Santa Barbara in collabo-

ration with the group at Case Western Reserve University. The main objective of the

work is to investigate if Gd-loaded water can have sufficiently high efficiency in order

to be an efficient neutron multiplicity meter for the purpose of counting high-energy

neutrons at the Soudan Underground Laboratory along the lines described in the first

part of this chapter, given that in terms of handling and cost, the Gd liquid scintilla-
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tor makes is less attractive as compared to a Gd water based detector medium. One

of the first prototypes is shown if Figure 6.12. The prototype consists in an acrylic

cylinder with 61 cm in height and 22 cm in diameter, it is filled with water doped

with small amounts of GdCl3 and it was calibrated using muons crossing the top and

bottom caps of the acrylic cylinder. There are two photomultiplier tubes (PMT), one

on each end of the cylinder. The top PMT has a 2 in photocathode while the bottom

one is 5 in. Furthermore the PMTs are coupled to the detector medium (GdCl3 doped

water) with Winston cones for improvement of the light collection efficiency (∼60%

increase was observed). The thresholds were ∼0.25 and 2 p.e. (photo electrons) for

the 2 and 5 inch PMTs respectively.

A 252Cf neutron source was introduced at the center of the cylindrical tank with

the objective of measuring multiple low energy neutrons in a time window of several

tens of microseconds. The 252Cf neutron source emits neutrons through spontaneous

fission reactions, and the number of emitted neutrons has a probability distribution

with a mean multiplicity between 3 and 4, as shown in Figure 6.13.

The results for this early prototype are shown on Figure 6.14, showing the rate of

multiplicity events as a function of neutron multiplicity for the case where there was no

252Cf neutron source in the cylinder (blue) and for the case where the 252Cf was present

(red). Clearly the multiplicity distribution of the emitted neutrons from the source

was measured. A good separation is observed between the data with and without

the neutron source, confirming how powerful the event topology of the multiplicity

events is in order to defeat the ambient gamma background from radioactivity. The

same idea is intended for the purpose of underground neutron detection, in this case

the source of multiple low energy neutrons would be the cosmogenic high energy

neutrons. The gamma background causing the accidentals is not only produced by

the ambient gammas but also by the 252Cf neutron source due to some emission of

gammas too. The single neutron efficiency achieve was approximately 40%. A new
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Figure 6.12: Neutron detector prototype build by the UCSB group. The detector medium
is GdCl3 and there is a 2 in and a 5 in photomultiplier tubes on each end of the cylinder.
The cylinder has dimensions of 22 cm in diameter and 61 cm in height [234].

prototype is being build as this thesis is written that will further investigate how high

the efficiency of GdCl3 doped water can be obtained by using a larger prototype with

improvements to light collection by reflective surface coating and larger PMTs. If the

detector medium for the purpose build multiplicity meter described in the previous

sections is made of inexpensive and stable Gd-loaded water, then one could think of

using the detector medium on top and bottom of the Pb. Figure 6.4 shows that for

40cm thick Pb, there could be a substantial gain in number of neutrons per event

and in efficiency (25% at the most since, from the P values for 40 cm thick Pb,

0.70+0.50=1.25). If there is a 25% increase in efficiency this would increase the total
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Figure 6.13: The 252Cf multiplicity probability distribution.

rate in a year from 70 to 90 high energy neutrons. Furthermore, there is an overall

increase in “detectable” multiplicity that aids in the high-energy neutron detection

efficiency.

The measurements produced with this prototype have given confidence on the

event topology that we will search deep underground where we expect the neutron

multiplicity distribution (in anti-coincidence with large energy depositions in the de-

tector medium) will be dominated by spallation reactions of high-energy neutrons in

the Pb target, rather from a spontaneous fission neutron source. We expect that a

larger prototype with better light collection as a product of larger PMTs and bet-

ter reflective surfaces could eventually replace the use of Gd-loaded scintillator by

Gd-loaded water.
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Figure 6.14: Multiplicity distribution measured from a 252Cf with GdCl3 doped water.
The blue data points correspond to the gamma background induced multiplicity distribu-
tion while the red data points correspond to the 252Cf neutron source induced multiplicity
distribution [234].
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6.8 Prospects for the Cosmogenic Neutron Detec-

tor Benchmarks

Measuring the absolute high-energy neutron flux and benchmarking the Monte Carlo

simulations down to ∼12% in a year at Soudan, will allow experiments like CDMS-

II, to understand the statistical significance of a WIMP-signal if a few events are

observed in the forthcoming data. Maintaining zero background or at least to under-

stand the level of it with a narrow systematic uncertainty will be critical during the

next 3 years since the LHC will begin physics runs shortly. Furthermore, the indirect

detection experiment, GLAST, has been recently deployed to space and will yield very

interesting results. Hence, as discussed in Chapter 1, only the complement between

accelerator, direct and indirect detection experiments can provide the necessary cross

checks to claim a WIMP discovery and a significant constraint in his properties.

On the side of the value of the underground cosmogenic neutron detector presented

in this Chapter, I summarize the benefits and extend in other potential applications

such as:

Veto Coincident Data

Even though I have mentioned that the benchmark for the unvetoed CDMS-II

neutron rate estimate from Monte Carlo simulations comes from the measure-

ment of the high-energy neutron flux that are in anti-coincidense with muons

(mostly) in the detector medium, the cosmogenic neutron detector will provide

a measurement of the muon-coincident population too. Furthermore, the angle

of the muon could be estimated using the amount of energy deposited in the

detector medium (either scintillator or water in this case) and a distribution of

high-energy neutron flux as a function of angle could be produced.
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Veto Anti-coincident Data

In addition to counting high-energy neutrons greater than ∼60 MeV in energy,

the multiplicity distribution of the low energy neutrons produced will be mea-

sured. By characterizing the low energy neutrons produced in the Pb target

with a beam of high-energy neutrons could allow us to understand the spec-

trum of the incident high-energy neutron flux, i.e. there could be the possibility

to extract some calorimetry information.

Forward and backward splash

Even though the design studies of the proposed cosmogenic neutron detector

show an improved rate when the detector medium is on top of the Pb target,

in the case where the detector medium is relatively cheap, one could think of

implementing a configuration in which the detector medium is on top and on

the bottom of the target. This would allow to benchmark the production of

spallation neutrons by muons and high-energy neutrons underground that are

“forward” and “backward” splashed, i.e., there would be some information on

the angular distribution dependance of the low energy neutrons produced.

Measurements as a function of depth

Even though the cosmogenic neutron detector design was thought for the Soudan

Underground Laboratory, at ∼2000 mwe, one could do the same measurements

made at the Soudan site, but as a function of underground depth. A wide vari-

ety of shallower sites exist and the rates will be significantly increased, provid-

ing better statistics. Nevertheless, since the mean muon energy decreases with

depth, the processes that give rise to the unvetoed population, at 2000 mwe for

example, could be significantly different from those at 500 mwe.
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Different targets

There is the possibility to use different targets too. Even though the high-Z of

the target allows for a robust multiplicity signal when an energetic neutron hits

the target, one could think on the possibility of using Copper, Polyethylene, a

Carbon-rich material or water at a shallower depth in order to understand the

spallation reactions in these materials in an underground environment.

* * *

In the remaining of the thesis I will summarize and conclude the work presented,

as well as discuss the prospects for CDMS-II at Soudan while maintaining zero-

background to maximize discovery potential.
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Chapter 7

Conclusions and Prospects for

CDMS at Soudan

This thesis presents three main areas of research that I led or was heavily involved: the

first 5 tower WIMP-search results, an estimate of cosmogenic backgrounds expected

at the Soudan site, and a proposal for a new measurement of high-energy neutrons

underground to benchmark the Monte Carlo simulations.

Based on the non-observation of WIMPs and using standard assumptions about

the galactic halo [68], the 90% C.L. upper limit of the spin-independent WMIP-

nucleon cross section for the first 5 tower run is 6.6×10−44cm2 for a 60 GeV/c2 WIMP

mass. A combined limit using all the data taken at Soudan using Yellin’s Optimal

Interval method [205] results in an upper limit of 4.6 × 10−44cm2 at 90% C.L.for a

60 GeV/c2 WIMP mass. This new limit corresponds to a factor of ∼3 improvement

over any previous CDMS-II limit and a factor of ∼2 above 60 GeV/c2 better than

any other WIMP search to date. Given that WIMP dark-matter could constitute

∼80% of the matter content of the Universe, the significance of the measurement is

–avoiding any biased exaggerations– of biblical proportions.

An estimation using FLUKA and MCNPX of the nuclear recoils produced by
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cosmic-ray muons and their secondaries underground has been presented for a 5 tower

Ge and Si configuration as well as for a 7 supertower array (1 supertower consists of 6

Ge detectors with 1 in thickness and 3 in diameter). The results of the Monte Carlo are

that CDMS-II should expect 0.06± 0.02+0.18
−0.02 /kg-year unvetoed single nuclear recoils

in Ge for the 5 tower configuration, and 0.05±0.01+0.15
−0.02 /kg-year for the 7 supertower

configuration. The systematic error is based on the available underground neutron

data (that we are aware of) that is relevant to the unvetoed neutron population.

Therefore, for the runs 123 and 124 we expect < 0.2 events from cosmogenic neutrons.

As the exposure of the CDMS-II increases at the Soudan site, narrowing the

statistical and systematic error on the unvetoed rate will become crucial in order to

maintain discovery potential and to reliably predict a zero-background environment. I

have described a new instrument that, based on my design studies, could measure the

absolute flux of high-energy neutrons to about 12% in the span of a year at the Soudan

underground laboratory, yielding a factor of ∼10 reduction of the systematic error.

This measurement could play a major role in determining the statistical significance

of a discovery if a few WIMP candidates are observed in the CDMS-II data over the

next couple of years. An interesting context for WIMP direct detection is that we are

at the beginning of the physics runs at the LHC and the recently deployed GLAST

mission will make underground WIMP-searches even more interesting due to their

complementary nature in terms of determining the existence of WIMP dark matter

and its properties.

Furthermore, I have presented how could the implementation of the neutron mul-

tiplicity meter as a component of active shielding in low background experiments with

cosmogenic neutron background challenges could improve their veto efficiency as well

as how it would allow to predict, in a statistical way, the unvetoed neutron rate and,

at the same time, benchmark the experiment’s cosmogenic Monte Carlo simulations.
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