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Abstract

The lifetime of theΛ0
b baryon (consisting ofu, d andb quarks) is the theoretically

most interesting of allb-hadron lifetimes. The lifetime ofΛ0
b probes our understanding

of how baryons with one heavy quark are put together and how they decay. Experimen-

tally however, measurements of theΛ0
b lifetime have either lacked precision or have been

inconsistent with one another.

This thesis describes the measurement ofΛ0
b lifetime in proton-antiproton collisions

with center of mass energy of 1.96 TeV at Fermilab’s Tevatroncollider. Using 1070±

60pb−1 of data collected by the Collider Detector at Fermilab (CDF), aclean sample of

about 3,000 fully-reconstructedΛ0
b→ Λ+

c π− decays (withΛ+
c subsequently decaying via

Λ+
c → p+K−π+) is used to extract the lifetime of theΛ0

b baryon, which is found to be

cτ(Λ0
b) = 422.8±13.8(stat)±8.8(syst)µm.

This is the most precise measurement of its kind, and is even better than the current

world average. It also settles the recent controversy regarding the apparent inconsistency

between CDF’s other measurement and the rest of the world.

ii



ABSTRACT

Author: Jonathan Reid Mumford

Advisor: Petar Maksimović
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Chapter 1

Theoretical Motivation

The lifetime of theΛ0
b baryon is a topic of considerable recent interest. For yearsthere

has been a long-standing discrepancy between experimentalmeasurements of theΛ0
b life-

time and theoretical predictions. This thesis describes a measurement of theΛ0
b lifetime

that leverages a large sample of fully-reconstructedΛ0
b→ Λ+

c π− decays. The data were

collected by the Collider Detector at Fermilab (CDF) using a Two displaced Track Trigger

(TTT). The TTT produces a very clean sample that offers several times larger statistics

than other triggers for the same integrated luminosity. However, because the trigger selects

events based on the presence of displaced tracks, the lifetime distribution is biased. The ef-

fect of the trigger selection bias on lifetime measurementshas been extensively studied [1]

and is well understood. The measurement described here usessophisticated Monte Carlo

techniques to correct for the trigger bias so that the lifetime can be accurately extracted.

This thesis is organized as follows. The theoretical background and motivation for

1
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measuring the lifetime ofΛ0
b are presented in this Chapter. A description of the accelerator

and particle detector – the experimental apparatus used forthe measurement is given in

Chapter 2. The general issues and formalism for the lifetime measurement are explained in

Chapter 3. The data samples are described in Chapter 4. Chapter 5describes the details of

the fit that is used to extract theΛ0
b lifetime from the data. The result of the fit is given in

Chapter 6. Chapter 7 describes the estimated systematic uncertainties for the measurement.

Finally, the results are summarized and discussed in Chapter8.

By taking advantage of a higher statistics sample and refined trigger bias corrections,

this analysis is the most accurate measure of theΛ0
b lifetime to date, shedding light on the

long standing discrepancy between the world average of the measuredΛ0
b lifetime and its

theoretical predictions.

1.1 Standard Model of Particle Physics

Before moving on to the details involved in a lifetime measurement, a brief introduction

to the Standard Model of particle physics is in order. More comprehensive introductions

can be found in most particle physics texts (for example, References [2] - [5]).

The Standard Model of Particle Physics is the most successful theory to date for de-

scribing fundamental particles and their interactions. According to the Standard Model, all

matter is built from a small number of fundamental,spin1= 1/2, particles called fermions.

Fermions interact via the exchange of, integral spin, gaugebosons. The fundamental

1Spin is a quantum number that describes the intrinsic angular momenutum of a particle.

2
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fermions consist of only sixquarksand sixleptons(and their anti-particles)2. Fermions

are grouped together in three generations with corresponding particles exhibiting similar

physical properties and behavior. Table 1.1 summarizes thefermions included in the Stan-

dard Model.

1.1.1 Fundamental Particles

Leptons include three charged particles; the lightest is the familiar electron (e), followed

by the muon (µ), and the heaviest, the tau (τ). Each lepton has−1 electric charge and the

same spin of 1/2.

In addition to the electrically charged leptons, there are also three neutral leptons called

neutrinos (denoted byν). First postulated by Pauli in 1930 to account for the missing

energy and momentum being carried away in nuclearβ-decay (i.e. the radioactive decay:

n→ p+ +e−+ ν̄e), neutrinos weren’t measured directly until 1956 by Cowan and Reines

[10]. Each of the charged leptons has an associated neutrinoof the same “flavor” (i.e. νe,

νµ, andντ).

In contrast to leptons, quarks all have fractional electriccharges of either+2/3 or

−1/3. In addition to spin and electric charge, quarks also have an extra degree of freedom

that is referred to ascolor or color charge. Quarks come in one of threecolors; red,

2In addition to matter, the Standard Model also includes antimatter. Antimatter particles are identical
to matter particles in all respects save charge. For example, the antimatter version of the electron is called
the positron, which has the same properties as the electron but with a charge of+1 (i.e. e+). With the
exception of the positron, antiparticles are generally denoted by a line over the particle symbol. For example
the antiparticle equivalent of the bottom quark,b, is denoted̄b and pronounced “b-bar”.

3
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Quarks Symbol Charge Mass (MeV/c2)

up u +2
3 1.5−3

down d −1
3 3−7

charm c +2
3 (1.25±0.09)×103

strange s −1
3 95±25

top t +2
3 (174±3.3)×103

bottom b −1
3 (4.20±0.07)×103

Leptons

electron e −1 0.511

electron neutrino νe 0 < 2×10−6

muon µ −1 105.7

muon neutrino νµ 0 < 0.19

tau τ −1 1776.90±0.20

tau neutrino ντ 0 < 18.2

Table 1.1: The fundamental fermions. Charges are in units of the absolute electron charge.
Masses listed are taken from Reference [8]. Because of Einstein’s famous equation re-
lating energy to mass,E = mc2, particle masses are generally quoted in units of energy
divided by the speed of light squared. An electron volt, eV, is the amount of energy given
to an electron that is accelerated across a 1 Volt potential.1 eV = 1.60217646× 10−19

joules. Masses are generally expressed in millions or billions of electron volts, MeV/c2

and GeV/c2 respectively.
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Meson Quark Content Mass (MeV/c2)

π+ ud̄ 139.57018±0.00035

K+ us̄ 493.677±0.016

K∗0 ds̄ 896.00±0.25

D+ cd̄ 1869.3±0.4

D∗(2010)+ cd̄ 2010.0±0.4

J/ψ cc̄ 3096.916±0.011

B+ ub̄ 5279.0±0.5

B0 db̄ 5279.4±0.5

B0
s sb̄ 5367.5±1.8

Table 1.2: Quark content of select mesons that are referenced in this text. Masses are all
quoted from Reference [8].

green, and blue. Thecolor of quarks is not literal, but rather a convention of labeling

three color charges. The physical parallel with color comesfrom the fact that in light, red,

green, and blue light combine to make white, or colorless, light. In the standard model,

stable combinations of quarks are required to be colorless.Stable configurations consist of

either three quarks of different colors (called baryons), or quark/antiquark pairs of matching

color/anti-color (called mesons). Particles that are madeof quarks are collectively referred

to as hadrons. Tables 1.2 and 1.3 list the quark content of themesons and baryons that are

used in this text.

5
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Baryons Quark Content Mass (MeV/c2)

p uud 938.27203±0.00008

∆(1232)++ uuu 1231.6

Λ0(1520) uds 1519.5±1.0

Λ+
c udc 2286.46±0.14

Λ0
b udb 5624±9

Table 1.3: Quark content of select baryons that are referenced in this text. Masses are all
quoted from Reference [8].

1.1.2 Interactions

In the Standard Model, interactions between fundamental fermions take place via the

exchange of gague bosons. Different bosons transmit, ormediate, each of the four funda-

mental forces in nature; electromagnetism, strong nuclear, weak, and gravity. Properties of

the different force carriers are summarized in Table 1.4.

The electromagnetic force is responsible for most extra-nuclear physics. It is the force

responsible for binding electrons to nuclei in atoms. The electromagnetic force is mediated

by a massless, spin-1, boson called the photon (γ) that couples to any particle that has an

electric charge. The field theory used to compute the cross-sections for electromagnetic

processes is called quantum electrodynamics (QED). QED is one of the most accurate

physical theories ever constructed. Predictions agree with experimental measurements to a

precision of 10−10, making QED second only to special relativity (which currently is tested

to 10−21) in its predictive accuracy.
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Force Boson JP Mass (GeV/c2) Relative Strength

Strong Nuclear Gluon (g) 1− 0 1

Electromagnetic Photon (γ) 1− < 6×10−17eV/c2 10−2

Weak Nuclear
W± 1− 80.403±0.029

10−7

Z0 1+ 91.1876±0.0021

Gravity Graviton 2+ unobserved 10−39

Table 1.4: The four forces in nature and their correspondinggauge bosons. The relative
strength depends on the particles involved so the numbers listed in the table are approxi-
mate. The masses are quoted from Reference [8].

The strong nuclear force is responsible for binding quarks into hadrons. This force is

also responsible for binding protons and neutrons inside anatom’s nucleus. The strong

force is mediated by massless, spin-1 bosons called gluons (g) that couple to any particle

with color. The colorless leptons are un-affected by the strong force, while quarks, which

have color are. In strong interactions, color charge has a role analogous to that of the

electric charge in electromagnetic interactions. Unlike photons though, gluons themselves

also carry color charge and couple directly to other gluons.Each gluon carries both a color

and an anti-color charge. There are eight types of gluons corresponding to each of the

states in a color octet3. The field theory used to compute strong force interactions is called

quantum chromodynamics (QCD) which will be described in moredetail in Section 1.3.

The weak nuclear force is responsible for nuclearβ-decay. The weak nuclear force

3There are three possible values for the color charge; Red (R), Green (G), and Blue (B). These three
colors can be combined in eight states with non-zero color. The eight possible combinations (i.e. gluon state
vectors) are;|RḠ >, |RB̄ >, |GR̄>, |GB̄ >, |BR̄>, |BḠ >, 1√

2
|RR̄−GḠ >, and 1√

6
|RR̄+GḠ−2BB̄ >

7
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is responsible for all flavor-changing (i.e. µ→ e or b→ c) interactions. The weak force

is mediated by three massive bosons;W+, W−, andZ0 where the superscript denotes the

electric charge of each type. Since the bosons are very massive (MW = 80.2GeV, MZ =

91.2GeV [8]) the weak force has an extremely short range.

Gravity is by far the weakest force at sub-atomic distance scales and its effects are

negligible in particle interactions. Gravity is not described by the Standard Model and is

included here only for completeness. The existence of a massless, spin-2 boson called the

graviton has been postulated as the mediator of the gravitational force but it has not yet

been observed. Developing an effective quantum theory, or Grand Unified Theory, that

includes gravity, along with the other three fundamental forces, is still one of the primary

goals in modern Physics.

1.2 Feynman Diagrams

Feynman diagrams are used to represent quantum field theory calculations pictorially.

This section is meant as a brief introduction to the diagramsand the interactions that they

represent. More complete introductions can be found, for example, in References [2] - [5].

An example Feynman diagram is shown in Figure 1.1. In a Feynman diagram, particles

are represented by lines of various type that correspond to different fundamental particles.

Solid lines represent fermions and wavy or dashed lines prepresent bosons. Arrows on

lines show the direction of matter flow. In Figure 1.1, time runs forward from left to right

8
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�
W�dbu d

�ud
u
Figure 1.1: An example of a Feynman diagram. This diagram illustrates one possible
mechanism forΛ0

b decaying toΛ+
c π− . In the decay, the bottom quark decays weakly to a

W− boson and a charm quark.W− then decays to an anti-up and a down quark.

along the horizontal axis. Particle lines that run “backward in time” represent antiparticles

moving forward in time. External lines (i.e. lines at the far Right and Left of the diagram)

represent real, observable particles while internal linesdepict particles that cannot be ob-

served without possibly changing the process. These internal particles are said to bevirtual

particles. Points where lines connect to other lines represent interaction vertices. At each

vertex, energy, momentum, and charge are conserved.

Feynman diagrams are purely symbolic and do not represent actual particle trajectories.

Each diagram rather symbolizes a complicated matrix-element calculation that contributes

to the amplitude for the physical process being represented. For a given interaction, an

infinite number of diagrams can be drawn; and the sum of all possible Feynman diagrams

gives the physical amplitude for a process. Fortunately, inthe case of QED, as the diagrams

become more complex (i.e. as the number of vertices increases) the contribution to the

physical amplitude decreases and the calculations converge rapidly. Thus, by evaluating

only the leading order diagrams, a good approximation for the physical amplitude can

9
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generally be obtained.

Feynman diagrams are used in this text to illustrate how bottom quarks are produced

at the Tevatron (Section 2.1). The diagrams are also used to describe interactions that

contribute to lifetime differences measured inb hadrons (Section 1.3.2).

1.3 Quantum Chromodynamics

Quantum Chromodynamics (QCD) describes strong force interactions between colored

objects, and in principle, can be used to calculate the properties of hadrons. However,

unlike QED, in QCD, contributions from higher-order Feynmandiagrams contribute sig-

nificantly to the cross-section making the computations impossible to calculate analytically.

Strong force interactions are more complicated than electromagnetic interactions because

in addition to quark-quark interactions via the exchange ofgluons, gluons also interact with

other gluons.

In QCD, the strong interaction parameter,αs, that quantifies the coupling of the strong

force, is not a constant, but increases as a function of the distance between interacting

particles. This property is known as “asymptotic freedom”.At short distances (i.e. high

energy), the strong force between two quarks is weak. As the distance between quarks

increases (i.e. low energy),αs increases quickly and the strong force makes it impossible to

separate the quarks. This property, known as “confinement” is the mechanism that confines

quarks to hadrons and makes it impossible to observe free quarks. While color-less leptons

10
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can exist freely, quarks, because of the influence of the strong force, apparently cannot.

For short distance (high energy) interactions, quarks and gluons behave as free particles.

Becauseαs is small in this regime, it is possible to use a perturbative expansion in powers of

αs to calculate QCD predictions. This approach, known as perturbative QCD, has resulted

in some of the most precise tests of QCD to date. However, as distances increase (energy

decreases) it becomes impossible to calculate and predict QCD effects because withαs > 1,

the calculations simply do not converge.

The QCD confinement scale,ΛQCD≈ 400MeV/c2, is the typical energy at which QCD

becomes non-perturbative. The interaction of quarks in a hadron is inherently low energy –

whereαs is of order unity. In this case, symmetries of QCD may be exploited to predict the

properties of particle interactions. There are several methods for predicting QCD results

at low energies that include; lattice QCD, 1/N expansions, and effective theories. Lattice

QCD uses a discrete set of space-time points and heavy or lightquark propagators to reduce

continuum path integrals to numerical computations which can be performed on supercom-

puters. Such simulations are time-intensive, and each sample can take years to complete.

The 1/N, or large-N expansion, derives an expansion for QCD properties in powers of 1/N,

which is treated as a small parameter. In the limit of large N,the expansion becomes more

and more accurate. In the case of QCD, where N is only 3, the higher-order terms serve

as corrections to the large N limit. Effective theories alsosimplify QCD calculations by

expanding in other small parameters. For example, chiral perturbation theories begin by

assuming that the light quark masses are zero, while heavy quark effective theories assume

11
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an infinite mass for the heavy quarks.

1.3.1 Heavy Quark Effective Theory

The QCD treatment of quark-quark interactions simplifies significantly when one of

the participating quarks is much heavier thanΛQCD. In this case, the momentum exchange

between the heavy quark and the lightspectatorquarks is small, the recoil of the heavy

quark is negligible, and the heavy quark can be treated as a static source of electromagnetic

and color fields. In the limit of an infinitely heavy quark mass, the interactions of the

light quarks are independent ofmQ. In reality, the mass of the heavy quark is finite, and

corrections to the infinite-mass limit can be applied by expanding in powers ofΛQCD/mQ.

This method for computing QCD predictions is known as a Heavy Quark Effective Theory

(HQET).

Using HQET, the weak decay of the heavy quark can be treated independent of the light

spectator quarks. The heavier the quark, the more appropriate the heavy quark approxima-

tion becomes and smaller lifetime differences are predicted between hadron species.

In the simple spectator model, we can write the decay width4, Γ, for a B meson as;

Γ(b) =
G2

FM5
b

192π3 |Vcb|2 ·
[

A0 +A1

(

ΛQCD

mb

)1

+A2

(

ΛQCD

mb

)2

+A3

(

ΛQCD

mb

)3

+ . . .

]

(1.1)

To first order (i.e. O(ΛQCD/mb)), the heavy quark is a static source of color field which

decays as in the spectator model, with no interaction with the cloud of light quarks and

4The decay width,Γ, of a particle is inversely proportional to the lifetime,τ. Γ ∝ 1/τ
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gluons. At this order, the theory predicts that allb hadron species decay at the same rate

and have the same lifetime.

Measurements confirm that the variousb hadrons in fact decay atdifferentrates. Ex-

periments have been precise enough for some time now to clearly demonstrate that the

spectator model is incomplete atO(ΛQCD/mb). Measurements show thatB lifetimes fol-

low the general lifetime hierarchy of

τ(B+) > τ(B0)∼ τ(B0
s) > τ(Λ0

b) >> τ(Bc) (1.2)

Because of their lighter mass, charm hadrons exhibit even greater deviations from the sim-

ple spectator quark model. Lifetime ratios for several charm and bottom hadrons are listed

in Table 1.5. In order to make more accurate lifetime predictions, Equation 1.1 must be

calculated beyond the leading order.

Precise lifetime and mass measurements inB decays are the most powerful way to

constrain QCD predictions. This is the essence of the measurement described in this thesis;

a more accurate measure ofτ(Λ0
b) will help constrain the QCD effects that can obscure

or confuse indirect searches for physics beyond the Standard Model. It is increasingly

more important to understand non-perturbative QCD contributions as the search for physics

beyond the Standard Model continues. Without a trustworthymodel of QCD effects at low

energies, it is difficult to identify effects that are beyondthe predictions of the Standard

Model.

13
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Lifetime ratio Theory Prediction Measurement

τ(D+)
τ(D0)

Pauli Interference dominant ∼ 2 2.536±0.019

τ(D+
s )

τ(D0)
without Weak Annihilation 1.0−1.07

1.219±0.018τ(D+
s )

τ(D0)
with Weak Annihilation 0.9−1.3

τ(D+
s )

τ(D0)
QCD sum rules 1.08±0.04

τ(Λ+
c )

τ(D0)
quark model matrix elements ∼ 0.5 0.488±0.015

τ(B+)
τ(B0)

Pauli Interference inτ(B+) 1±0.05 1.071±0.009

τ(B0
s)

τ(B0)
QCD 1/mb expansion 1.0±O(0.01) 0.961±0.019

τ(Λ0
b)

τ(B0)
QCD 1/mb expansion 0.95±0.05 0.904±0.032

Table 1.5: Lifetime ratios of charm and bottom hadrons. The theoretical predictions are
quoted from Reference [14] while the experimental lifetime ratios are calculated or quoted
from Reference [17]. Pauli Interference and Weak Annihilation are described in detail in
Section 1.3.2.
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1.3.2 The Origin of Lifetime Differences

Lifetime differences betweenb hadrons manifest themselves only when Equation 1.1

is calculated usingO(ΛQCD/mb)
2 and higher order corrections. AtO(ΛQCD/mb)

2, the

Fermi motion of theb quark and interactions between its spin and that of the lightdegrees

of freedom enter. Lifetime differences between mesons and baryons appear at this order.

Baryons, surrounded by two light quarks in a spin 0 cloud, decay more quickly than mesons

that interact with a spin 1/2 antiquark cloud. As a result, baryon lifetimes are predicted to

be about 2% shorter than that of the mesons [11].

At O(ΛQCD/mb)
3, diagrams involving spectator quark interactions appear.Several

mechanisms are responsible for the lifetime differences atthis order, namely; Pauli In-

terference (PI), Weak Annihilation (WA), and for baryons, Weak Exchange or Scattering

(WE). Although suppressed by an additional power of 1/mb, these effects dominate the

differences in lifetimes because of a favorable phase-space factor [12].

A diagram illustrating Pauli Interference inΛ0
b→ Λ+

c π− is shown in Figure 1.2. There

are two mechanisms for the decay; internal and external emmission of a W. The two final

states are indistinguishable, resulting in quantum mechanical interference in the calculation

of the decay rate. The destructive interference, caused by PI is believed to prolongΛ0
b

lifetime, relative toB0 by as much as 3%. Pauli Interference is also believed to be the

dominant mechanism behind theD+−D0 lifetime difference [14].

Weak Annihilation, is shown for the case ofB− in Figure 1.3. In Weak Annihilation,

the constituent quarks of a meson annihilate to form a virtual W. In the case of aB−, with
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�W�
d
bu

d�ud
u �
W�dbu d

�ud
u
Figure 1.2: Diagram illustrating Pauli Interference. The diagrams showΛ0

b→Λ+
c π− decays

via two different mechanisms. The two final states are indistinguishable which results in
quantum mechanical interferencewhen calculating the decay rate.

constituent quarksbū, the amplitude is proportional toVub, so the effect is expected to be

very small. Many interactions in the Standard Model are described by a 3×3 matrix called

the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The elements ofthe matrix are external

parameters of the Standard Model that must be measured. The CKM matrix can be written

as;

VCKM =

















Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

















,

where the elements of the matrix describe the coupling between various quark transitions.

For example, a vertex where ab quark decays to aW− and ac quark is proportional to

Vcb. Similarly the vertex at which ac quark decays to aW+ ands quark is proportional to

V∗cs [15]. For reference, the measured values of the matrix elements [8] are;

VCKM =

















0.97377±0.00027 0.2257±0.0021 (4.31±0.30)×10−3

0.230±0.011 0.957±0.017±0.093 (41.6±0.6)×10−3

(7.4±0.8)×10−3 (40.6±2.7)×10−3 > 0.78

















.

Weak Annihilation only affects the lifetime of mesons, so theΛ0
b lifetime is not altered
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by this mechanism. The effect of WA is larger in the charm system, where it contributes

to decays ofD+, but notD0 because the weak interaction does not couplec to u in the

constituentcū quarks ofD0.

�W+
b 
�q

q�u �s
Figure 1.3: Diagram illustrating Weak Annihilation.

Weak Exchange, or Weak Scattering, is shown forB0→D+π− andΛ0
b→Λ+

c π− in Fig-

ure 1.6. Because this process ishelicity-suppressedin Mesons, but is not in baryons, it is

expected to be the mechanism most responsible for a shorterΛ0
b lifetime compared toB0.

Helicity is the spin projection on the momentum of a particleand is defined asH = 1
2σ̂ · p̂.

A process is said to be helicity-suppressed when, because ofspin alignment, the decay is

not favored quantum mechanically. It is believed that WS shortens theΛ0
b lifetime by as

much as 7.5%. Helicity suppression ofW exchange is present in pseudoscalar mesons for

the same reason that the decayπ→ eν is suppressed. The helicity assignments ofV−A

interaction are left-handed for particles and right handedfor antiparticles. Left-handed he-

licity, or a helicity of−1/2 occurs when the spin and momentum vectors are in opposite

directions. Right-handed helicity, refers to the situationwhen both the spin and momentum

vectors are in the same direction. For weak exchange in aB0, B0 decays toc and ū as

17



CHAPTER 1. THEORETICAL MOTIVATION

shown in Figure 1.6. A cartoon illustrating the desired helicity configuration for the decay

of a spin-0 particle is shown in Figure 1.4. This conflicts with the configuration where

theW couples to a left-handedc quark and a right-handedu quark, since both particles

must be left-handed for the spins to add correctly. Meson decays then are said to be helic-

ity suppressed. In contrast, Figure 1.5 illustrates the favored helicity configuration inΛ0
b

decays.

u c
_

0B

Figure 1.4: A cartoon illustrating Helicity suppression inB0 decays. The direction of
the ū andc quark momentum is given by the narrow arrows. The bold arrowsabove the
momentum lines represent the spin direction. The spin-0B0 is shown decaying at rest.
For spin to be conserved, both the quark and anti-quark are required to have left-handed
spins, this configuration is disfavored by the W coupling andthe decay is said to behelicity
suppressed.

cΛb
d

d
Figure 1.5: A cartoon illustrating the favorable helicity configuration inΛ0

b decays. Again
the quark direction is indicated with the narrow arrows while the bold arrows represent the
spin direction. The spin-1/2 Λ0

b is shown decaying at rest. For spin to be conserved all of
the decay products are required to have left-handed spins. This configuration is favored by
W coupling and the decay is not suppressed.

Recently, sub-leading spectator effects that appear atO(ΛQCD/mb)
4 in the HQET, have

been included in the calculation ofB lifetime ratios. The theoretical predictions for the
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�
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b 
�dd�d �u �
W�

u
bd

d�uu
d
Figure 1.6: Diagrams illustrating Weak Exchange forB0→D+π− andΛ0

b→Λ+
c π− decays.

lifetime ratios thus calculated are [7];

τ(B+)

τ(Bd)
= 1.06±0.02

τ(Bs)

τ(Bd)
= 1.00±0.01

τ(Λ0
b)

τ(Bd)
= 0.88±0.05

The ratioτ(Λ0
b)/τ(B0) has been the source of theoretical scrutiny since early calcu-

lations predicted a value larger than 0.90, almost 2σ higher than the world experimental

average at that time. However most of the theoretical predications of the lifetime ratio cen-

ter around 0.94 [16]. Some theorists believe that the lowest value of the lifetime ratio that

can be accommodated in the context of the HQET corresponds toa ratio of 0.88. A larger

deviation than this would imply a failure of the conventional, QCD description of hadrons

and require a new paradigm for describing baryonic structure.

The experimental world-average forτ(Λ0
b) in 2007, and the values that contribute to that

average, are shown in Figure 1.7. Assuming a value ofτ(B0) = 1.530±0.009ps [17], the

values ofτ(Λ0
b) that correspond to a lifetime ratio of 0.88 and 0.94 are 1.346 and 1.438ps
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respectively. For several years, experiments reportedτ(Λ0
b) lower than those predicted

by theory. In late 2006, CDF reported a value that was as much as2σ higher than the

experimental world average [9].

 lifetime [ps]bΛ
0.5 1.0 1.5 2.0

 lifetime [ps]bΛ
0.5 1.0 1.5 2.0

 Prelim.Λ ψCDF RunII J/ 0.012±0.077±1.580

CDF RunII (hep-ex/0609021) 0.033±-0.078
+0.083 1.593

 lcΛD0 RunII  0.09±- 0.11
+ 0.12  1.28

D0 RunII (5179-Conf) 0.050±0.137± 1.298

D0 RunI (Abazov 05C)  0.04±- 0.18
+ 0.22  1.22

 lcΛCDF RunI  0.07± 0.15±  1.32

 lcΛDELPHI  0.05±- 0.18
+ 0.19  1.11

 lcΛOPAL  0.06±- 0.22
+ 0.24  1.29

 ll0Λ l + cΛALEPH  0.11±  1.21

PDG 2006 0.074±1.230 

m]µ[100 200 300 400 500 600

 Lifetime MeasurementsbΛ

Figure 1.7: A summary of recentΛ0
b measurements compared to the world average [8]. Re-

cent CDF measurements suggest a longerΛ0
b lifetime than has previously been measured.

On the quark level, there exists a single lifetime for ab quark. Differences in the

lifetimes of weakly decaying B hadrons, thus provide a powerful yardstick for evaluating

the impact of QCD hadronization. B decays offer a nice labratory for studying QCD. By
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more accurately measuringτ(Λ0
b), theorists can use the result to constrain nonperturbative

QCD effects to provide a better model of hadronic behavior. Better hadronic models will

help to identify physics effects beyond the predictions of the Standard Model in the future.
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Experimental Setup

In order to measure the lifetime ofΛ0
b a large sample of the particles is required.Λ0

b

baryons are not commonly found in nature; they are heavy particles that rapidly decay

into lower-energy particle states. To produce the baryons one needs a high-energy particle

accelerator like Fermilab’s Tevatron. To measureΛ0
b decays, one needs a sophisticated

particle detector like the Collider Detector at Fermilab (CDF). Descriptions of both the

accelerator and detector are given in this chapter. More detailed descriptions of the Tevatron

and CDF can be found in References [19] and [20] respectively.

2.1 bb̄ Production at the Tevatron

The simple model of a proton is of three quarks (twou and oned) bound together by

the strong force. However, as described in Section 1.3, the real picture is more compli-
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cated. Hadrons are composed of three classes of partons: valence quarks – the constituent

quarks of the hadron; virtual gluons; and sea quarks – quark-antiquark pairs produced by

virtual gluons. All of these pieces, collectively referredto as “partons”, carry part of the

total energy and momentum. The hadron momentum is not distributed equally among all

partons. Measured parton distribution functions,f a
i (x) give the probability that partoni

carries a fractionx of the total momentum of the hadrona.

At the Tevatron, protons and antiprotons collide with a center of mass energy of

√
s = 1.96TeV. At these energies, the collision time and distance betweenpartons is so

short that they may be treated as free particles – this property of QCD is referred to as

asymptotic freedom as described in Section 1.3. In this caseperturbative QCD and the par-

ton distribution functions may be used to determine the possible interactions. Very rarely is

the entire momentum of the proton and the antiproton involved in a collision. More com-

monly, only one parton from the proton and one from the antiproton will interact, via the

exchange of virtual bosons.

There are many ways in which abb̄ pair can be produced. Figure 2.1 shows the lowest,

or leading order, QCD production mechanisms. The leading order mechanisms are those

with the fewest possible number of quark-gluon or gluon-gluon interactions. In leading

order production, thebb̄ pair are the only outgoing products so they move away from each

other with equal and opposite momenta in the center-of-massframe. The leading order

production dominates forqq̄ pairs when the quark massmq is comparable to, or larger

than, the average momentum carried by the partons. At Tevatron energies, this is only true
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of tt̄ production. Forbb̄ production, next-to-leading order production mechanisms, such

as those shown in Figure 2.2 also play a significant role. Eachof these mechanisms has

an additional quark-gluon or gluon-gluon connection than the leading order mechanisms,

resulting in a final state with abb̄ pair and a gluon. The gluon may take a significant portion

of the energy. (a)
��q

q

�b

b (b)

�g

g

�b

b

(
)
�g

g

�b

b

Figure 2.1: Feynman diagrams of the leading orderbb̄ production mechanisms. Diagram
(a) shows flavor creation through quark annihilation whereq can be any quark flavor. Dia-
grams (b) and (c) are both examples of flavor creation from gluon fusion.

As described in Section 1.3, confinement keeps quarks and gluons bound in hadrons.

After abb̄ pair is produced, the strong force organizes the quarks and gluons into colorless

hadrons. This process is usually achieved by the creation ofadditionalqq̄ pairs from the

vacuum in a process calledfragmentationor hadronization. For high energy gluons or

b quarks, many fragmentation particles may be produced, leading to a collimated “jet”
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(a)
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q
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b (b)
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g

�b
b

g

(
)
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g

b (d)

�g

g

g
�b

b

Figure 2.2: Feynman diagrams of the next to leading orderbb̄ production mechanisms;
each of these processes have an additional final state gluon and three vertices. Diagrams
(a) and (c) are both examples of flavor creation. Diagram (b) is an example ofb production
through flavor excitation. Diagram (d) illustrates an interaction called gluon splitting.

of hadrons whose total energy is equal to the energy of the initial quark or gluon. The

fractions fu , fd , fs , fc, and fΛ0
b

give the likelihood for ab-quark to first produce auū, dd̄,

ss̄, cc̄, or diquark-antidiquark pair respectively. Depending on theqq̄ produced, theb quark

will hadronize into aB+, B0, B0
s, or Λ0

b. TheBc is produced so rarely that the production

fraction fc has not yet been measured. The fractionsfu ≈ fd have been measured at both

e+e− andpp̄ colliders to be about 39.8±1.0%. A recent CDF measurement of the relative
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production fractions [18] finds;

fu
fd

= 1.054±0.018(stat.)+0.025
−0.045(syst.)±0.082(BR)

fs
fu + fd

= 0.160±0.005(stat.)+0.011
−0.010(syst.)+0.057

−0.034(BR)

fΛ0
b

fu + fd
= 0.281±0.012(stat.)+0.058

−0.056(syst.)+0.128
−0.086(BR).

The three errors on each measurement are due to statistical fluctuations (stat.), systematic

uncertainties (syst.), and uncertainties due to measurements of the branching ratios on the

decays of the given hadrons (BR). Using these numbers,b hadrons will be produced in the

following ratio;B+ : B0 : B0
s : Λ0

b = 36 : 34 : 11 : 19.

2.1.1 Topology of abb̄ Collision

When two partons interact to produce abb̄ quark pair and possibly also a gluon, the

two b quarks and the gluon fragment to produce other hadrons. The remnants of the orig-

inal proton and antiproton also hadronize to form other colorless states, producing more

hadrons that are not related to theb quark production. These hadrons are collectively re-

ferred to as theunderlying event. In addition, there may be more than onepp̄ collision

in a bunch crossing. At the very highest luminosities, theremay be as many as 5-10pp̄

interactions per crossing. Since the proton and antiprotonbunches in the Tevatron are quite

long (about 30 cm) multiplepp̄ interactions are typically far enough apart that they can be

distinguished. Background hadrons from otherpp̄ collisions are referred to as a “pile-up

event”. The topology of abb̄ event at CDF is shown in Figure 2.3. An event display from
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an actual event is shown in Figure 2.4. The cylindrical symmetry of pp̄ collisions motivate

the design of the CDF detector as described in Section 2.3. Concentric layers of tracking

detectors are used to track charged particles as they travelthrough CDF.

protons

antiprotons

underlying
event

pile−up
event

b−hadron + its jet

b−bar hadron
+ its jet

Figure 2.3: Cartoon of a typicalbb̄ collision at CDF.

2.2 The Accelerator

Fermilab’s Tevatron accelerates bunches of protons and antiprotons each to 980 GeV.

An electron volt (eV) is the amount of energy given to an electron that is accelerated by a

voltage difference of 1 Volt and is equivalent to 1.60217646×10−19 joules. The particles
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Event : 2494070  Run : 186355  EventType : DATA | Unpresc: 7,40,42,19,21,23,55 Presc: 42

Missing Et

IS NOT DEFINED

List of Tracks

Id    pt    phi   eta

Cdf Tracks: first 5

184     4.4  2.0  0.1

171    -3.6  2.4  0.2

172    -3.0  1.9  0.0

202    -2.4  2.4 -1.6

203    -2.4 -2.7  1.8

To select track type

SelectCdfTrack(Id)

Svt Tracks: first 5

  1    -3.8  2.4

  0    -3.0  1.9

To select track type

SelectSvtTrack(Id)

Figure 2.4: An event display from an actual collision event at CDF. The display shows
thexy-plane (with the Tevatron beam going into the page). Layers of the silicon tracking
detector are shown as dark blue lines that encircle the collision point. Most of the tracks
originate from a single point called the Primary Vertex (PV). Other tracks are displaced
from the PV. Some of these displaced tracks are from the decayof long-lived particles (e.g.
Λ0

b ) that are created at the PV and travel some distance before decaying.

collide with a center of mass energy of 1.96 TeV. The initial Run II integrated luminosity

goal was 2 inverse-femtobarns (f b−1) with a long-term (Run IIb) goal of as much as 8f b−1.

A barn1 is a unit for measuring particle cross-sections. 1 barn equals 10−24cm2. In the

Spring of 2008, the Tevatron has achieved a record instantaneous luminosity of 2.92×

1032cm−2s−1.
1Physicists developed the term ”barn” during World War II while scattering neutrons off of uranium

nuclei, which were described as being as ”big as a barn.” One femto-barn (f b) is equal to 10−15 barns.
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Luminosity is a measure of particle interaction, specifically the chance that a proton

will collide with an antiproton. The higher the luminosity,the greater the chance of quark

production. Luminosity is given by;

L =
f BNpNp̄

2π(σ2
p +σ2

p̄)
F

(

σl

β∗

)

, (2.1)

where f is the revolution frequency,B is the number of bunches, andNp (Np̄) is the number

of protons (antiprotons) per bunch (typically 3×1011 for protons and 3×1010 for antipro-

tons). σp andσp̄ denote the rms beam sizes at the point of interaction.F is a form factor

that depends on the ratio ofσl , the bunch length, andβ∗, the beta function, at the interaction

point. The beta function is a measure of the beam width, and isproportional to thex and

y dimensions of the beam. The limiting factor for achieving high luminosity is the number

of available antiprotons.

Fermilab uses a series of sequential accelerators to createthe worlds highest energy

beam of protons. Figure 2.5 gives a schematic representation of the accelerators in the

Tevatron chain. The Cockcroft-Walton pre-accelerator provides the first stage of accelera-

tion by creatingH−, hydrogen gas ions, consisting of two electrons and one proton. The

ions are accelerated by a positive voltage and reach an energy of 750,000 electron volts

(750 keV). The ions next enter a linear accelerator (Linac) that is approximately 500 feet

long. Oscillating electric fields accelerate the ions to 400million electron volts (400 MeV).

Before entering the next accelerator stage, the ions are passed through a thin carbon foil to

strip the electrons and leave only the positively charged protons. At this point, the protons

enter the Booster; a circular, synchrotron accelerator thatuses magnets to bend the beam
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Figure 2.5: Schematic view of the elements in the Tevatron accelerator chain.

of protons in a circular path. The protons travel around the Booster about 20,000 times,

repeatedly experiencing electric fields that accelerate the particles. The protons exit the

Booster with an energy of 8 billion electron volts (8GeV) [21].

The next phase of acceleration takes place in the Main Injector where protons accelerate

from 8GeV to 150GeV before they are injected into the Tevatron. Additionally, high-energy

protons from the Main Injector are used to make antiprotons.

To produce antiprotons, the Main Injector sends 120GeV protons to the Antiproton

Source, where the protons collide with a nickel target. The collisions produce a wide range

of secondary particles that include antiprotons. The secondary particles are focused using

a lithium lens and antiprotons are filtered using a pulsed magnet. Roughly one antiproton
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is created, and successfully captured, for every 500,000 incident protons. Upon creation,

antiprotons are stored in the Accumulator until a sufficientnumber (about(80− 200)×

1010) have been collected, at which point, they are sent to the Main Injector, where they

too are accelerated to 150GeV.

The Main Injector shares its tunnel with a recent Tevatron upgrade called the Antiproton

Recycler. The Recycler was originally designed to store un-collided antiprotons that return

from the Tevatron. The Recycler has never been used this way but now serves as an 8GeV

antiproton storage ring between Tevatron collider stores.The Recycler reduces the time

required to accumulate a sufficient antiproton store for Tevatron collisions.

The final accelerator in the chain is called the Tevatron which is a circular ring with

a radius of one kilometer. The Tevatron receives 150GeV protons and antiprotons from

the Main Injector and accelerates them to 980 GeV(or nearly one Tera electron volt (1

TeV) hence the name “Tevatron”). At this energy, the protonsand antiprotons travel just

200 miles per hour below the speed of light. 36 bunches (or clouds) of positively charged

protons, and 36 bunches of negatively charged antiprotons,circle through the Tevatron in

opposite directions. Each particle bunch is about 1 meter long with a circular width of a few

millimeters. Particle bunches are focused, and made to collide at two places on the Teva-

tron ring; at the centers of the 5000-ton CDF and D0 detectors.To achieve high luminosity

at the two detector sites, the particle bunches are are focused, or “squeezed” by supercon-

ducting quadrapole magnets called Low Beta magnets, to a width of approximately 35µm

and collided.
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2.3 The Collider Detector at Fermilab

The Collider Detector at Fermilab (CDF) is a general purpose, solenoidal detector ca-

pable of precision charged particle tracking, fast projective calorimetry, and fine grained

muon detection. The detector has been designed to make precision QCD, electroweak,

and heavy flavor physics measurements as well as search for exotic, new particles and new

physics. The experiment is run by a multi-national collaboration of over 800 physicists

from more than 50 participating institutions. A cartoon of the CDF detector is shown in

Figure 2.6.

The detector was designed to be nearly cylindrically symmetric around the beam and

symmetric front to back with respect to the nominal beam interaction point. The tracking

systems are located within a super-conducting solenoid magnet that provides a 1.4 Tesla

field in the direction of the beam. The momentum and charge of tracked particles can be

determined by their deflection in the magnetic field. A Time-of-Flight (TOF) system is

located directly outside (radially) of the tracking system. TOF information is combined

with momentum information from the tracking system to aid inparticle identification. The

calorimeter systems are located outside the solenoidal magnet and are used to measure

electron and photon energies, jet energies, and net transverse energy flow. Calorimeter

systems are also used to identify electrons and photons. Muon detection systems are located

on the exterior of the detector and are used for triggering and for identifying particles as

muons.
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Figure 2.6: Three dimensional diagram of the CDF detector. The Tevatron beam-pipe is
shown running through the center of the detector. The innermost detector, shown in light
blue and green, is the silicon tracking system. The COT, shownin yellow, is surrounded
by a cylindrical magnet, shown in pink. The electromagneticand hadronic calorimeters are
shown in orange and dark blue respectively. The outermost detectors, shown in green and
light blue are the muon detectors. The detector is about 12 meters tall and 20 meters long.

2.3.1 From Detector Hits to Particle Tracks

Efficient and precise charged particle tracking is criticalfor most of the measurements

done at CDF. The tracking system reconstructs charged particle trajectories that traverse the

tracking volume. The tracking system is comprised of a driftchamber, called the Central

Outer Tracker (COT), and a silicon based tracking system comprised of three sub-detectors;

The inner-most Layer Zero Zero (L00), the Silicon Vertex Detector for Run II (SVX II),
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and the Intermediate Silicon Layers (ISL). All of the tracking systems are enclosed by a

superconducting, 1.4T, solenoidal magnet that is 2.8m in diameter and 3.5m long.Figure

2.7 is a cartoon of the tracking systems.
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Figure 2.7: Tracking systems of CDF

In a uniform magnetic field, like the one produced by the CDF solenoid, the trajectories

of charged particles are bent to form a helix. The curvature of the helix depends on the

electric charge of the particle and is inversely proportional to the particle’s momentum.

Before describing each of the tracking systems in detail, it may be useful to first describe

how information from each system is combined to form tracks.
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2.3.1.1 Definition of Common Tracking Variables

There are two commonly used coordinate systems used at CDF. A Cartesian coordinate

system(x,y,z) where the origin is located at the center of the beam pipe in the center

of the detector. The positivez-axis is along the beam in the direction of proton motion.

The positivex-axis points toward the outside of the Tevatron ring. The positive y-axis

points straight up, perpendicular to the Tevatron ring. Thesecond coordinate system that is

commonly used is a polar coordinate system(r,θ,φ) wherer is the distance from the beam,

θ is the polar angle made with respect to thez-axis andφ is the azimuthal angle.

Five track parameters are used at CDF to describe the helical trajectory of a charged

particle [22];

• d0: The signed impact parameter of the track, defined as the distance of closest ap-

proach to the beam..

• z0: Thez-position of the track at its point of closest approach to thebeam.

• C: The half-curvature of the track,C = 1
2ρ whereρ is the radius of the circle made

by projecting the track trajectory on thexy-plane.

• φ0: The azimuthal angle of the track at the point of closest approach to the beam.

• cotθ: The co-tangent of the polar angle,θ, of the track the point of closest approach

to the beam. Sometimes denoted asλ.

Other variables that are often used at CDF (and in many other high-energy collider
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experiments) are;

• η =−ln
[

tan
(θ

2

)]

: whereθ is the polar angle.η is known as pseudorapidity.

• ET = E ·sinθ: Transverse energy.

• pT = p · sinθ: Transverse momentum (component of the particle’s momentum pro-

jected onto the transverse plane).

• Lxy: The distance a particle travels in the transverse plane from the primary vertex

before decaying.

• ct =
Lxy·mc

pT
: ct is the proper decay length of a particle.m is the particle mass andc is

the speed of light.

2.3.1.2 Reconstructing Tracks

Tracks are reconstructed using data taken by the COT and silicon tracking systems.

Because the COT is at a larger radius from the interaction, the track density there is lower

than in the silicon. Track reconstruction generally beginsby looking for clusters of hits in

the COT. Hits from different COT superlayers are linked into straight segments, and the

segments are joined into tracks. Tracking in the silicon is done using COT tracks as seeds.

A tracking “window” is defined using the point of a COT track’s intersection with the

outermost layer of silicon. All silicon hit clusters withinthe window are attached to track

seeds one at a time; the track is then refit using the updated hit information. The track fit for

each layer of silicon is used to define a new tracking window for the next layer of silicon.
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This process continues until all silicon layers have been searched. It is possible to have

multiple silicon tracks from a single COT track seed if more than one valid combination

of silicon hits is found. The best track is chosen based on theχ2 of the track fit and the

number of attached silicon hits. This algorithm is referredto as “Outside-In” (OI) tracking.

After the OI tracking algorithm is run, some unattached silicon hits may remain. A

stand-alone silicon tracking algorithm has been developedto reconstruct tracks using only

these unattached hits. This algorithm is particularly useful in the forward region of CDF

where there is no COT coverage.

2.3.1.3 Track Refitting

Tracks reconstructed from detector information are not ready to be used in an analysis

until a couple of important corrections are applied. First,Multiple Coulomb Scattering

(MCS) in the COT volume must be considered. MCS is a statistical description of the

scattering angle of a particle as a result of many small interactions with atomic nuclei. MCS

has the highest impact on particles with low energy. For reconstructed COT tracks, ignoring

MCS results in underestimated track parameter errors. As a correction, the elements of the

track covariance matrix are rescaled using the prescription given in Reference [23].

Second, the energy loss of a particle due to interactions with both the active and passive

materials in the detector must be accounted for. As a particle loses energy its momentum

decreases, and thus the curvature of the track changes alongthe particle’s path. The original

track reconstruction assumes the same curvature along the entire length of a track. Energy
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loss per unit length in a material is also dependent on the type of particle being tracked,

as the interaction cross-sections change for different particles. Different corrections are

applied for pion, kaon, and muon track hypotheses using a Kalman fitter [24] when tracks

are refit. Additionally, corrections to the magnetic field inthe tracking volume and the

silicon geometry are also applied [23].

2.3.2 The Tracking System

This section provides a description of the detector systemsthat provide the hit informa-

tion required to track particles as described in the previous section.

2.3.2.1 Silicon Tracking

The inner-most tracker, L00, was added to the original CDF II upgrade design to im-

prove the impact parameter resolution of the tracking system. L00 consists of 48 single-

sided silicon wafers mounted directly to the Tevatron beam pipe. The wafers come in two

widths; 8.4 and 14.6 mm wide, and are mounted in an overlapping, 12-sided pattern as

shown in Figure 2.8. The inner (outer) wafers are mounted 1.35 (1.65) cm from the Teva-

tron beam. The silicon wafers are each 7.84 cm long, but are electrically bonded in pairs to

form 15.7 cm long sensors. The entire length of the L00 detector is 0.9 m.

Each L00 silicon wafer consists ofp-doped strips implanted on ann-doped substrate.

The strips have a pitch of 25µm and a width of 8µm. The strips are readout through AC

coupling to an insulated conductor above the doped signal strip. L00 consists of 13,824
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Figure 2.8: L00 silicon tracker.

individual readout channels.

The next tracker, radially outward from L00, is five layers ofsilicon that comprise the

SVX II detector as shown in Figure 2.9. The SVX II detector resembles a series of five

concentric cylinders that surround the beam pipe and L00. Each cylinder is divided into

3 barrels length-wise. Like L00, each cylinder, or layer, ofSVX II consists of 12 silicon

wafers, or ladders, that are each 29 cm long.

The silicon sensors in SVX II are all double-sided. The bulk material is nearly pure

silicon with 60-65µm pitch, 14µm wide, p-doped, strips running axially down one side.

Depending on the layer, the other side of the sensor consistsof n-doped, stereo2, strips

that are arranged at a 90o angle, or at a small angle relative to the length of the wafer.The

pattern for the five layers of SVX II from the inside-out is 90o, 90o, −1.2o, 90o, and 1.2o.

The spacing of the stereo strips for each layer is 141µm, 125.5µm, 60µm, 141µm, and 65

µm with strip widths of 20µm for 90o strips and 15µm for small angle stereo strips. All

SVX II channels use readout electronics similar to that of L00 that are mounted directly to

2Stereo strips provide information on the z-position of the track.
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Figure 2.9: SVX II silicon tracker. Left: an end-view of the 5layers of the SVX II detector.
Right: a 3-D view illustrating the three-barrel structure ofthe detector.

the silicon wafers. SVX II consists of 405,504 individual readout channels.

Outside of the SVX II is one more Silicon sub-system called the ISL. The ISL provides

another layer of tracking between the SVX II and the large COT drift chamber. As in SVX

II, the sensors that make up the ISL are double-sided siliconwafers. The strip pitch on both

sides of the ISL is 112µm and uses the same readout electronics as the SVX II. One side

of the ISL sensors are axial strips while the other side uses 1.2o small angle stereo strips.

The ISL consists of 5 barrels as shown in Figure 2.10. The central barrel of the ISL

consists of silicon wafers that are staggered at a radii between 22.6 cm and 23.1 cm from

the beam. On either end of the ISL are two concentric barrels;the inner with sensors at
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radii between 19.7 cm and 20.28 cm and the outer composed of sensors at radii between

28.6 cm and 29.0 cm from the beam. The two barrels at either endof the ISL provide

tracking at high-η where, because of poor coverage, the acceptance of the COT is low.

64 cm 

SVX II

 ISL

Layer 00

Figure 2.10: ISL silicon tracker. Left: end-view of the ISL.Right: The barrel structure of
ISL. The barrels on either end consist of two layers of silicon, while the central layer is a
single layer.

2.3.2.2 Central Outer Tracker

Outside the Silicon Tracker is a large cylindrical drift chamber called the Central Outer

Tracker (COT). The COT is 310 cm long, covering a radius of 43.4 cm to 132.3 cm from

the beam. The COT provides tracking for particles with pseudo-rapidity as high as 1.1

(|η|< 1.1).

The COT consists of 96 radial sense wire layers organized into8 “superlayers” of 12

wires each. Superlayers 1, 3, 5, and 7 consist of wires that are oriented at a stereo angle of
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±3o relative to the beam while superlayers 2, 4, 6, and 8 consist of wires that are parallel

to the beam. Each superlayer is divided inφ into “super cells”. A super cell consists of

one wire plane surrounded by a field plane on either side. A wire plane in a super cell

consists of 12 sense wires, 13 potential wires, and 4 field-shaping wires. Figure 2.11 shows

the cell layout for superlayer 2. Super cells are mounted at an angle of 35o with respect

to the ˆr direction; providing better left-right hand curvature signal resolution during track

reconstruction.

SL2
52 54 56 58 60 62 64 66

R

Potential wires

Sense wires

Shaper wires

Bare Mylar

Gold on Mylar (Field Panel)

R (cm)

Figure 2.11: Cell layout of the COT. Left: The nominal layout for superlayer 2. Right:
end-view of 1/6th of the COT wire planes.

Critical to the performance of the COT is low drift time. Drift time is a measure of how

long it takes an ion to drift to a sense wire after being produced in the chamber. A mixture
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of Argon/Ethane (50:50) is used in the COT to achieve a maximumdrift time of 177ns over

the 0.88cm, maximum drift distance in the COT.

CDF also has precise calorimeter and muon tracking systems that are not relevant for

this analysis, but, for completeness, they are described inAppendix A.

2.3.3 Trigger Systems

Tevatron collisions at CDF occur every 396ns or at a rate of 2.5MHz. The maximum

rate at which recorded events can be written is only about 75Hz. Since only a small fraction

of the collisions can be recorded, CDF uses a three-level system of digital electronics to

select events with signatures that indicate the presence ofinteresting underlying physics.

2.3.3.1 Level-1 Trigger

The Level-1 trigger stores data in a pipeline capable of storing detector information

for up to 42 beam crossings. Simultaneously, data from the COT, calorimeters, and muon

systems are analyzed using custom hardware to find particle tracks and jets.

Hit information from the four axial layers of the COT is sent toa custom piece of hard-

ware called the eXtremely Fast Tracker (XFT) where tracks and particle jets are roughly

reconstructed. The reconstructed tracks from the XFT are matched to muon and calorimeter

information using look-up tables by the extrapolation unit(XTRP).

Based on the rough, Level-1, tracking information, a decision is made regarding the

physics quality of the event based on the presence of variousparticle types (ie electrons,
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L2 trigger
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Figure 2.12: CDF data flow schematic.

muons, photons, and jets), missing energy, and transverse momentum. If the event is de-

termined to be sufficiently interesting, the event is storedin one of four, Level-2 buffers for

further reconstruction. The accept rate at Level-1 is limited to about 40kHz by the speed of

the Level-2 trigger. About 1.5% of the total bunch crossings are accepted by Level-1.
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2.3.3.2 Level-2 Trigger

Level-2, uses a combination of custom hardware and softwareto do a more sophisti-

cated event reconstruction than was possible at Level-2. Level-2 processing begins as soon

as an event passes Level-1 and is written to one of four, Level-2 buffers3. Level-2 combines

the Level-1 trigger information with data from SVX II and thecalorimeter shower-max de-

tectors, in order to more precisely reconstruct an event.

At the heart of the CDF trigger system is the silicon DAQ. All three of the silicon

tracking sub-systems use the same, SVX3D,dead-timelessreadout chip. Each chip is able

to store hit information for 128 channels in a 46 capacitor analog storage ring. The chip

is said to bedead-timelessbecause it is capable of integrating the charge on one capacitor

while reading from another. This mode of operation is crucial to the CDF trigger system

and allows CDF to use the silicon hit information to make trigger decisions at Level 2.

Tracks from the XTRP are combined with SVX II hit information in the Silicon Vertex

Tracker (SVT). The SVT is capable of quickly reconstructingthe 2-D trajectory of tracks

measured at CDF. The SVT is particularly important for theb-physics program at CDF.

Hadrons that include a bottom quark have a relatively long lifetime (on the order of 10−12s),

and, at the Tevatron, are produced with enough momentum to travel a few millimeters

before decaying. Because of this long lifetime, the decay products of ab hadron will be

displaced (ie have a large impact parameter,d0) from the primary vertex of the interaction.

By triggering on displaced tracks, identified by the SVT, CDF iscapable of triggering

3Level-2 dead-time occurs when all four of the Level-2 buffers are full and Level-1 accepts another event.
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on events that are rich in heavy flavor physics. This capability of CDF is central to our

measurement of theΛ0
b lifetime. Displaced tracks are illustrated in Figure 2.3 and the

impact of the displaced track trigger on this measurement isdiscussed in more detail in

Section 3.3 and Chapter 4.

The global Level-2 decision is made based on information from the SVT, calorimeter,

and muon systems. The average Level-2 processing time is∼ 30µs. The Level-2 accept

rate is set, by the capability of Level-3 to accept events, atabout 600Hz. When an event is

accepted by the Level-2 trigger, information from the entire detector is read for that event

and passed to Level-3.

2.3.3.3 Level-3 Trigger

When an event is accepted by Level-2, the hit information fromall detectors is read and

sent to the Level-3 processor farm by the Event Builder. The Event Builder is a small farm

of Scanner CPUs which assemble the event data from the variousdetector sub-systems.

The L3 farm is composed of 16 sub-farms; each sub-farm consisting of 10-15 process-

ing nodes and one converter node. A converter node receives the event from the Event

Builder and distributes the event to the next available processor in its sub-farm. Each con-

verter node has multiple event buffers, so that new events can be received while distributing

others. The processor nodes are PCs running Level-3 reconstruction software, which fully

reconstructs the event and checks all possible trigger paths before making the final trigger

decision. Events that don’t pass Level-3 are discarded, while accepted events are sent to
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Figure 2.13: CDF trigger system block diagram.
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the Consumer Server Logger (CSL) where events are monitored and written to disks for

permanent storage. The accept rate at Level-3 is about 75 Hz.
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Chapter 3

Methodology

3.1 Measuring the time of a particle’s decay

In a detector with perfect resolution and without a trigger bias, the distribution of the

proper decay timet ′ (or, equivalently, of the proper decay length,ct′) of an unstable particle

with true lifetime, τ (andcτ) follows a simple exponential distribution. For a givenΛ0
b

candidate, the probability of observing a proper decay length ct′ in the interval[ct′,ct′+

cdt′] is P(ct′)cdt′, where

P(ct′) =
1
cτ

e
−ct′
cτ . (3.1)

is the Probability Density Function (PDF). The proper decaylength,ct′, is defined in terms

of perfectly measured quantities to be

ct′ ≡
L′xy ·mPDGc

p′T
. (3.2)
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whereL′xy is the decay length projected in the transverse (xy-plane),p′T is the transverse

momentum,mPDG is the true mass of the unstable particle (from Reference [8]), andc is

the speed of light.

In practice, theobservedproper decay length,ct, is defined in terms of quantities that

have measurement errors (indicated by un-primed variables);

ct ≡ Lxy ·mc

pT
. (3.3)

As the detector does not have perfect resolution, we need an expression equivalent to Equa-

tion 3.1 forct from Equation 3.3 to account for this difference.

3.2 Detector Resolution

In a real detector, the measurement ofLxy has a finite resolution, and thus each mea-

surement ofct′ has an uncertaintyσct. This smearing of the truect′ which results in the

measured valuect is accounted for by convoluting the measured lifetime with afunction

that describes the detector resolution1. The resolution function,R(ct,σct;ct′), is the PDF

of the measuredct andσct given the true value ofct′. With this addition, the PDF for the

measured proper decay length distribution becomes

P(ct|σct) =
1
cτ

e
−ct′
cτ ⊗R(ct,σct;ct′). (3.4)

1In this analysis, thect resolution is modeled by a sum of two Gaussians.
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The probability density functionP(ct|σct), is a one-dimensional conditional PDF2 that pre-

dicts the probability of observing this value ofct giventhe value ofσct. In order to obtain

a proper two-dimensional PDF for bothct andσct based on the conditional probability, the

σct distribution (PDF) must multiplyP(ct|σct). So the full two-dimensionalct-σct PDF

becomes;

P(ct,σct) = P(ct|σct) ·P(σct)

=
1
cτ

e
−ct′
cτ ⊗R(ct,σct;ct′) ·P(σct) (3.5)

whereP(σct) is the distribution ofσct observed in data.

The error onLxy, σLxy (and therefore alsoσct due to Equation 3.3), as reported by a

vertex-constrained kinematic fit, is usually underestimated. There are two reasons for this:

one is the imperfect knowledge of the resolutions of siliconhits3. The other cause for the

underestimation of the errors on the track parametersd0, ϕ0 andZ0 (which propagate to the

errors on the secondary vertex) is the small probability forthe pattern recognition to pick

up a wrong hit (e.g. in a dense track environment ). This would result in tails in the track

parameter distributions even if the silicon hits on tracks had perfect errors.

To account for these effects, theσct estimated by a vertex-constrained kinematic fit, is

multiplied by an additional scale factor,Sct. One can estimate the value of this scale factor

by comparing the truect′ obtained from the MC truth information in theΛ0
b→Λ+

c π− signal

Monte Carlo with thect measured in the same event. Figure 3.1 shows the samect pull

2The conditional PDF is implemented via the RooFit toolkit using RooProdPdf with the optional Condi-
tional(pdfSet,depSet) statement [46].

3We are using Gen 5 pattern recognition; the silicon hit resolutions were re-done in Gen 7 and the resolu-
tions are larger, in particular on L00.
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distribution (ct′−ct)/σct) fit with a single Gaussian resolution function (Left) and a double-

Gaussian resolution function (Right). It is clear from thesefits, that the double-Gaussian

resolution provides a better resolution model. Based on the result of this fit, a double-

Gaussian resolution function is used to model the detector resolution in this analysis;

R(ct,σct) = f ·Gauss(S1 ·σct)+(1− f ) ·Gauss(S2 ·σct);

Where the relative fraction,f = 0.76, and the scale factor widths,S1 = 1.107 andS2 =

1.508 are all parameters obtained from the fit shown in Figure 3.1 (Right).

Throughout the analysis, the same fraction and relative widths are used to model the

resolution. In particular, when generating the SVT efficiency and fitting theΛ0
b signal

Monte Carlo sample (described in Section 4.3.1) the values obtained from the fit in Figure

3.1 are used. When fitting data, it is impossible to measure thect resolution directly as

done for the Monte Carlo; this is usually done via the prompt peak from the combinatorial

background, but in this sample the peak has been removed by the Two Track Trigger.

Instead, a global scale factor,Sct, is used to scaleσct. The value of the narrow Gaussian is

set toSct while the broad Gaussian is scaled in order to maintain the same relative widths

betweenS1 andS2 as measured in the Monte Carlo. The choice ofSct is somewhat arbitrary

and is treated as a source of systematic error. It will be shown that the measurement is not

sensitive to large variations in the choice ofSct.
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Figure 3.1: Thect(Λ0
b) pull (ct′−ct)/σct) from HQGenΛ0

b→ Λ+
c π− signal Monte Carlo.

(Left) The distribution is fit with a single Gaussian resolution. (Right) The distribution is
fit with a double Gaussian.

3.3 Trigger Efficiency

In addition to the detector resolution, the Two Track Trigger (TTT) introduces a bias

on the observed proper decay length. Let us consider a simpleexample from everyday life:

imagine if the average length of a human life was measured using a group of only people

who graduated college and who hadn’t yet retired from their jobs. The selection of the

sample introduces a very strong bias on both the lower and upper value of a person’s age.

Similarly, the TTT selects events with two displaced trackswhich removes both the events

with short proper decay lengths, and those with very long ones. The resulting lifetime

distribution is no longer exponential and this crucially (and dramatically) complicates the

extraction of the lifetime.

In order to correct for the trigger selection bias, an efficiency function,εTTT(ct), is

introduced. To first order, the efficiency function depends only on the observedct of each

event and is computed using theΛ0
b → Λ+

c π− signal Monte Carlo sample described in
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Section 4.3.1.

With the addition of theσct scale factorSct and the efficiency function,εTTT(ct), the

joint two-dimensionalct−σct PDF becomes

P(ct,σct;Sct) = P(ct|σct,Sct) ·P(σct) · εTTT(ct). (3.6)

Several Monte Carlo based methods for computing the trigger efficiency are described

in Reference [1]. In all cases, a sample of simulated signal events are used to model the

effect of the trigger and analysis cuts on measuring the lifetime. The efficiency function is

of the form;

hTTT(ct) =
HistoTTT(ct)

∑i exp(cti,cτMC)⊗R(cti ,σi
ct)

. (3.7)

The numerator is thect distribution of the realistically simulated signal eventsafter

all the trigger (and also offline cuts that may have impact on the proper time distribution

or σct ) cuts have been applied. The denominator is computed in the following way; for

each event that enters the histogram at the numerator, the following quantity is added to the

content of each bin of a second histogram (with same number ofbins of the numerator);

r i = f (xi ,σct) (3.8)

whereσct is the uncertainty onct of the event we are considering,xi is thect corresponding

to the center of thei-th bin, andf (xi ,σct) is thenormalizeddistribution given by the con-

volution of an exponenatial (with lifetimecτMC) with an appropriate resolution function

centered at zero with a width equal toσct. The ratio is the TTT efficiency as a function of

ctrepresented as a histogramhTTT.
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In other CDF measurements of the lifetime-related quantities using the TTT data, the

efficiency histogram,hTTT(ct), computed using Equation 3.7, was fit with an arbitrary

function (preferably one that is analytically integrable)to obtain a parameterized efficiency

function εTTT(ct). We find that, due to differences in both the event selection and the

properties of the decays (e.g., a much shorter charm lifetime), the functional forms used

in previous lifetime analyses do not adequately describe our distribution; leading to biases

and instabilities in the final lifetime fit results. So, instead of parameterizinghTTT, we use

a smoothed version of the numerator in Equation (3.7), divide it by the same denominator,

and use the resulting histogram directly;

εTTT(ct) =
HistoTTT

smoothed(ct)

∑i exp(cti ,cτMC)⊗R(cti ,σi
ct)

. (3.9)

This method has the advantage of avoiding systematic error due to inadequate choice of

parameterization to model the efficiency shape. However, since the shape of the smoothed

distribution is arbitrary, we must now numerically integrate the PDF in Equation 3.6 in

order to normalize it to unit area, making this approach computationally much more ex-

pensive.

3.4 Roadmap Towards a Lifetime Measurement

Let us now pause and review the ingredients of a lifetime measurement in a sample of

fully reconstructedΛ0
b events collected with a displaced track trigger. Equation 3.6 has

two parts,εTTT(ct) andP(ct|σct,Sct)P(σct). Each part is discussed in detail below.
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3.4.1 Building Confidence inεTTT(ct)

The TTT mangles the original exponential distribution of proper times. However, by

computing the TTT efficiency,εTTT(ct), with great precision, it is possible to disentangle

the effect of the trigger on the measured proper time distribution and compute the lifetime

of Λ0
b correctly.

The TTT efficiency,εTTT(ct), is the probability that a given decay of theΛ0
b baryon

passes the trigger. It depends onσct(since we use the measuredct and not the truect′)

but only very weakly. However, the TTT trigger efficiency depends crucially on both the

kinematics of the decay and the behavior of the SVT trigger.

εTTT(ct) is derived using realistic Monte Carlo simulation. A varietyof checks are

performed to compare the data and MC. Whenever a disagreement is found that stems

from our lack of knowledge of production and decays ofΛ0
b baryons, the Monte Carlo is

reweighted to look like the distributions observed in data.The reweighting of the Monte

Carlo is described in detail in Section 4.3.1.

In particular, the quantity calledtrigCode is important in identifying whether the decay

kinematics of the particularΛ0
b candidate is simulated well (see Section 5.5.5).trigCode

is a number used to classify the events in our sample according to which of the stable

daughter tracks satisfy the requirements of the TTT. The fact that eachtrigCode sample

results in a measured lifetime that agrees with the input value, confirms that both the decay

kinematics and the detector simulation are at least consistent with each other for different

categories of decays. ThetrigCode study builds confidence thatεTTT(ct) is correct within
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the assigned systematic uncertainties.

Furthermore, a dedicated study, usingJ/ψ→µµdecays, has been performed to quantify

the accuracy of the SVX II and SVT simulation. The details of this study are documented

in Section 7.2.2. No significant discrepancy is found between the actual data and the SVT

model used in the simulation. However, due to limited statistics for theJ/ψ→ µµstudy, the

SVT model is actually the leading source of systematic uncertainty for this measurement.

3.4.2 Building confidence inPct(ct,σct,Sct)

The productP(ct|σct,Sct) ·P(σct) is less controversial. However, two concerns need to

be addressed:

1) Sct is only roughly known. It is not possible to measureSct directly in our sample

because it does not have the so-called ‘prompt’ peak [25]. A prompt peak is produced

by events that decay very close to the Primary Vertex. In our sample, this peak

is removed by the TTT requiring displaced tracks. However, the systematics due to

unknownSct is small; large variations ofSct (spanning the range from∼ 1.1 to∼ 1.5)

produce very small (sub-micron) changes toΛ0
b lifetime, as is shown in Section 7.

Thus, any choice ofSct in a broad range is acceptable.

2) ct andσct are correlated, sinceσct depends on the kinematics of the decay (namely

angles w.r.t. the flight path). However, this dependence betweenσct andct does not

need to be represented as the joint two-dimensional PDF, butcould also be modeled
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by a dependence of the scale factor onct: Sct = Sct(ct). However, because of (1)

above, the changes in the distribution ofσct do not really influence the value of the

Λ0
b lifetime.

Therefore, if the claims made in this section are supported by evidence, both parts of

Eq. 3.6 are correct within the assigned systematic errors, and we can proceed with a mea-

surement ofΛ0
b lifetime. The following sections demonstrate all of these points specifically.
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Data Samples

This chapter describes the data and Monte Carlo samples that are used in this analysis.

Approximately 3,000Λ0
b decays are reconstructed from CDF data that was collected over a

span of about 4 years. The details of the CDF data samples, run ranges, triggers, and criteria

used to reconstruct theΛ0
b candidates are given in Sections 4.1 and 4.2. This analysis also

relies heavily on a simulated data sample to correct for the trigger bias on measuring the

lifetime as described in Section 3.3. The techniques used togenerate the Monte Carlo data

sample from which the trigger correction is derived are described in Section 4.3. Finally,

Section 4.4 describes a sample ofB0→ D∗−π+ decays that are used as a crosscheck to

develop confidence in our lifetime fitting procedure.
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4.1 Λ0
b Run Periods

The present analysis is based on events collected by the CDF detector from February

2002 through February 2006, with an integrated luminosity of L = 1070±60 pb−1 before

good run criteria are applied. We apply the same good run criteria as the CDFBs mixing

analysis [28]; these criteria reduce the number of reconstructedΛ0
b by about 8%. The

stripped sample described in detail in Ref. [32] is used for this analysis. This sample is a

combination of the compressed all-hadronic datasetsxbhd0d, xbhd0h andxbhd0i. We use

theB_CHARM_SCENA andB_CHARM_HIGHPT flavours of the two displaced track trigger for

this measurement. There also exists a dataset with data which pass on theB_CHARM_LOWPT

trigger configurations. Events in this dataset which pass the B_CHARM_LOWPT but not the

B_CHARM_SCENA trigger configuration may be added to this analysis in the future to increase

theΛ0
b statistics. We also discovered that there are some duplicated events present in this

sample – events in the run ranges from 186040 to 211539 which were processed twice

and thus contain exactly the sameΛ0
b candidates. The second instance of these events was

removed from the analysis.

4.2 Λ0
b Reconstruction

The stripped sample was produced with very loose cuts and reconstructed with the

Universal Finder [41].1 We added in the Layer-00 (L00) silicon hits and also used Event

1We reconstructedΛ0
b from a xbhd0h subset of the data using three different packages: the Universal

Finder, the JpsiXMods [42], and the BottomMods package [43]. No significant discrepancy in theΛ0
b yields
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by Event Primary Vertexing. The tcl inputs for the UniversalFinder track reconstruction

are shown in Appendix B. To reconstruct aΛ0
b candidate, the selection module loops over

three tracks, assumed to be proton, kaon, and pion candidates. These tracks must each pass

basic track quality requirements:

• At least 5 hits each in 2 axial layers of the Central Outer Tracker (COT)

• At least 5 hits each in 2 stereo layers of the Central Outer Tracker (COT)

• At least 3rφ hits in the Silicon Vertex Tracker (SVXII)

Additionally, each track must have an impact parameter (d0) from the primary vertex of less

than 0.1 cm and a transverse momentum of more than 500 MeV/c. The proton candidate is

additionally required to have a transverse momentum greater than the pion candidate, and

greater than 2.0 GeV/c. Once these tracks are selected, a kinematic fit is performed using

CTVMFT to constrain the tracks to a common vertex. If this fit is successful, the following

cuts are applied to thisΛ+
c candidate:

• χ2
xy < 30

• pT(Λ+
c ) > 4.3 GeV/c

• 2.269< |M(pKπ)|< 2.301 GeV/c2.

If the above criteria are satisified, the program enters a loop over the fourth track. This

track, assumed to be a pion candidate, must again pass track quality cuts and have an

or signal between the three methods was found.

61



CHAPTER 4. DATA SAMPLES

impact parameter< 0.1 cm, with a transverse momentum (pT) of > 2.0 GeV/c. Another

kinematic fit constrains this track along with the previouspKπ candidate vertex to form the

Λ0
b candidate vertex. For this fit, the mass of thepKπ candidate is constrained to theΛ+

c

mass from the PDG [8]. The requirements on thisΛ0
b candidate are:

• χ2
xy < 30

• 4.8 < |M(pKππ)|< 7.0 GeV/c2

• pT(pKππ) > 6.0 GeV/c

• −0.007< ct(Λ+
c ) < 0.028 cm (w.r.t toΛ0

b vertex)

• ct(Λ0
b) > 0.025 cm.

These are the basic requirements to reconstruct aΛ0
b candidate from the stripped sample,

not the final analysis cuts. Cut optimization of theΛ0
b sample is described in detail in

Reference [32]. The final cuts determined by this optimization and applied in this analysis

are listed in Table 4.1. Using these cuts on the stripped datasample gives aΛ0
b→ Λ+

c π−

yield of 2927±58 candidates in the signal region m(Λ0
b ) ∈ [5.565, 5.670] GeV/c2, with

theΛ0
b mass plot shown in Figure 4.1.
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Variable Cut value

B_CHARM_SCENA

pT(π−b ) > 2 GeV/c

pT(p) > 2 GeV/c

pT(p) > pT(π+)

pT(K−) > 0.5 GeV/c

pT(π+) > 0.5 GeV/c

ct(Λ0
b) > 250µm

ct(Λ0
b)/σct > 10

∣

∣d0(Λ0
b)

∣

∣ < 80µm

ct(Λ+
c ← Λ0

b) >−70µm

ct(Λ+
c ← Λ0

b) < 200µm

|m(pK−π+)−m(Λ+
c )PDG| < 16 MeV/c2

pT(Λ0
b) > 6.0 GeV/c

pT(Λ+
c ) > 4.5 GeV/c

Prob(χ2
3D) of Λ0

b vertex fit > 0.1%

Table 4.1: Analysis cuts determined forΛb reconstruction.
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Figure 4.1:Λ0
b mass fit from Ref. [32]. The solid blue line is the total fit. The primary

background components are listed in the legend and explained in detail in [32].
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Quantity Cut value

Q(trk1)×Q(trk2) < 0

pT(trk1)+ pT(trk2) > 5.5GeV/c

pT(trk1) > 2.0GeV/c

pT(trk2) > 2.0GeV/c

|z0(trk1)−z0(trk2)| < 5.0cm

|D0SVT(trk1)| [0.012,0.1]cm

|D0SVT(trk2)| [0.012,0.1]cm

pT(SVT)(trk1) > 2.0GeV/c

pT(SVT)(trk2) > 2.0GeV/c

∆φ(trk1, trk2) [2◦,90◦]

Table 4.2: Cuts used for offline confirmation of the Scenario A,Two Track Trigger
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4.3 Monte Carlo Generation

All Monte Carlo samples are generated in the CDF II analysis framework, and involve

the successive use of the following steps (performed by different executables):

Event Generation (cdfGen): This phase begins with an event generator which creates an

event. The Monte Carlo samples in this analysis use either thePYTHIA [33], BGen-

erator [34], or HQGen [35] software packages. After the generation, a decayer pro-

gram runs to simulate the decay of the generated particles; our samples use either the

EvtGen [36] or QQModule [37] software packages. At this point b hadrons may be

forced to decay only in a specified channel, such asΛ0
b→ Λ+

c π−;Λ+
c → pKπ.

Detector simulation (cdfSim): This phase runs a detailed simulation of the CDF II detec-

tor using the GEANT software package [38]. The CDF II detectorsimulation oper-

ates at the level of hits for all detector components except the calorimetry, where the

shower evolution is computationally prohibitive. However, the tracking, especially

the hits in the silicon detector, are simulated at a very detailed level, and include

the strip-to-strip variations in performance as well as thegeneration of random noise

throughout the detector. The output of cdfSim looks like theoutput from the CDF II

data acquisition system.

Trigger simulation (TrigSim++): The detector-like event information is then fed to a trig-

ger emulation system developed at CDF. TrigSim++ runs as an event filter, transmit-

ting only those Monte Carlo events that would pass the real trigger system.
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Event reconstruction (ProductionExe): Events that pass the trigger simulation are pro-

cessed with the standard CDF II production executable. At this stage, the hits in

the muon chambers (CMU, CMP, and CMX) are reconstructed and linked into muon

stubs. Hits in the COT are reconstructed and linked into COT tracks. COT tracks are

extrapolated and matched with the muon stubs. The other tracks are also extrapolated

into the silicon detector where silicon hits are attached tothese tracks. The output of

ProductionExe has the same format as the final CDF II data.

Analysis reconstruction (Universal Finder): Finally, the Monte Carlo data is recon-

structed by the same analysis code used to reconstruct the decay mode in data.

4.3.1 Λ0
b Signal Monte Carlo Sample

As outlined in Sec. 3.4.1, the TTT efficiency,εTTT(ct), is obtained from the Monte

Carlo simulation. In order to ensure that this procedure is not influenced by fluctuations,

the Monte Carlo sample ofΛ0
b→ Λ+

c π− decays from whichεTTT(ct) is derived needs to

be very large. A signal sample was produced using the HeavyQuarkGenerator (HQGen)

package, which directly producesb-hadrons following a known kinematic distribution. For

this purpose we used a custompT(Λ0
b) spectrum, measured and described in Reference

[27]. The resultingΛ0
b hadrons are decayed, simulated, and reconstructed as described

above. After the trigger and offline reconstruction selection cuts are applied, there are

approximatelyone millionevents. This sample is the starting point for the re-weighting.
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Re-weighting is a process used to sculpt a Monte Carlo distribution to look more like

the same distribution observed in the data. Kinematic agreement between Monte Carlo

and data is critical to correctly measuring the lifetime ofΛ0
b. The Monte Carlo has been

re-weighted with respect to theΛ+
c Dalitz fractions,Λ0

b polarization, trigger track pairs

(trigCode), andpT(Λ0
b) to match the distributions observed in the data. A description of

the re-weighting in each variable follows. After re-weighting, a sample of about 230,000

signal Monte Carlo events remain. Several plots comparing the kinematics between the

re-weighted Monte Carlo and sideband-subtracted data are given in Appendix C.

4.3.1.1 Primary Vertex Errors

When reconstructingΛ0
b→ Λ+

c π− decays in data, event-by-event primary vertexing

is used to better constrain the primary vertex position and more accurately estimate the

associated errors. In the HQGen Monte Carlo sample, this approach is not possible because

the sample lacks the prompt tracks required to do the event-by-event primary vertexing. In

order to simulate event-by-event primary vertexing in the Monte Carlo, the distribution

of PV errors, inx and y, from sideband-subtracted data are used to generate PV errors

when reconstructing the Monte Carlo. Figure 4.2 compares thedistribution of errors from

sideband-subtracted data and Monte Carlo.
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Figure 4.2: The distribution of primary vertex errors inx (Left) andy (Right). Sideband-
subtracted data is shown in blue with errors. Monte Carlo errors (red) are generated based
on the distributions observed in sideband-subtracted data.

4.3.1.2 Λ+
c Dalitz Fractions

Λ+
c decays via the following four dominant Dalitz modes;Λ+

c → pK∗, Λ+
c → ∆++K−,

Λ+
c → Λ(1520)π+, and the non-resonantΛ+

c → pK−π+. The branching fraction for each

mode has not been measured very accurately and consequentlythe uncertainty on each

fraction is quite large. The latest branching fractions andtheir associated errors, from the

PDG [8], are given in Table 4.3. The sample is weighted to the quoted PDG fractions. The

uncertainty in the Dalitz fractions is treated as a systematic error.

4.3.1.3 Λ0
b Polarization Re-Weighting

The Monte Carlo programs in use, namely HQGen, Pythia and EvtGen, do not have

provision forΛ0
b polarization. In an effort to take the true non-zero value ofthe polarization

into account we re-weight the Monte Carlo to look like data following the prescription

described in Reference [45].
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Λ+
c Decay Mode Branching Fraction

pK∗ 22.7 ± 7.1%

∆++K− 12.2 ± 5.4%

Λ(1520)π+ 25.5 ± 8.5%

pK−π+ non-res 39.7 ± 11.3%

Table 4.3: PDGΛ+
c branching fractions

The angular distribution ofΛ0
b→ Λ+

c π decay chain are best described using the follow-

ing two variables:

• ΘΛ+
c
: the angle between theΛ+

c momentum inΛ0
b rest frame and the “Λ0

b production

plane,” defined byΛ0
b’s momentum in the lab frame and the beam direction.

• Θp: is the angle between the proton inΛ+
c rest frame and the “Λ+

c production plane,”

defined as the plane containing theΛ0
b andΛ+

c momenta.

We do not attempt to extract the trueΛ0
b polarization from data, since these two distributions

in Λ0
b→ Λ+

c π− decays are only sensitive to the product ofΛ0
b polarization and the decay

asymmetry ofΛ+
c decays,αΛ+

c
. Instead, we re-weight the distribution of cosΘΛ+

c
and

cosΘp from the Monte Carlo to match the sideband-subtracted data.

Fig. 4.3, shows the distributions match very well in the caseof ΘΛ+
c
. In the case of

Θp, the Monte Carlo is re-weighted to better match the distribution observed in data. The

uncertainty in the re-weighting is considered as a source ofsystematic error.
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Figure 4.3: Left: Data (points) and Monte Carlo (red histogram) cos(ΘΛ+
c
) distribution.

Right: Data and Monte Carlo raw (red), and re-weighted production distributions for
cos(Θp). In the case ofcos(Θp), the Monte Carlo has been re-weighted to better match
the distribution observed in data.

4.3.1.4 Trigger Track Re-Weighting

The Two Track Trigger (TTT) requires a pair of stable tracks to fire. The kinematics

of the decay can be very different depending on which pair of stable tracks satisfy the

requirements (listed in Table 4.2) of the TTT. The decay;Λ0
b→ Λ+

c π−2 ;Λ+
c → pK−π+

1 has

four stable tracks that can be combined into four unique track pairs capable of satisfying the

TTT. Each event is examined to determine which allowed pair(s) of trigger tracks satisfied

the TTT. The distribution of tracks which satisfy the TTT selection is shown in Figure 4.4.

The Monte Carlo is re-weighted to match the distribution of trigger tracks observed in data.

The uncertainty in the re-weighting is considered as a source of systematic error.

4.3.1.5 pT(Λ0
b) Re-Weighting

As previously mentioned, the Monte Carlo is generated using acustomη(Λ0
b) vs.

pT(Λ0
b) spectrum described in Reference [27]. However, the Monte Carlo pT(Λ0

b) spec-
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Figure 4.4: Distribution of track-pairs that sastify the TTT requirements in data (points with
error bars) and the Monte Carlo (red) before re-weighting. Each track pair is assigned a bit
as shown in the legend. For example, bin 9, shows the number ofevents where thep,π2

and p,K track combinations both simultaneously satify the triggerrequirements. (We note
an excellenta priori agreement of the two distributions, considering how littlewe know
about theΛ0

b decays.) The Monte Carlo is subsequently re-weighted (blue)to match the
distribution observed in data.

trum does not completely agree with what is observed in the data, especially in the turn-on.

Therefore, the turn-on (pT(Λ0
b) < 10GeV/c) of the spectrum in Monte Carlo is re-weighted

to match the data. The data, original, and re-weighted MonteCarlo spectra are shown in

Figure 4.5. The uncertainty in the re-weighting is considered as a source of systematic

error.
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Figure 4.5: pT(Λ0
b) distribution from data (points), original Monte Carlo (red), and re-

weighted Monte Carlo (blue).
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4.4 Cross-CheckB0→ D∗−π+ Sample

As a cross-check of our fitter, a sample ofB0→ D∗−π+ events is fit with a simplified

lifetime model described in Section 5.6. TheB0 sample used is the same as that used for

the recent CDF measurement ofB0, B+ andB0
s lifetimes [30], [31].

The event selection and reconstruction used for theB0→D∗−π+ sample is described in

detail in Reference [29]. The sample consists of events reconstructed inxbhd0d, xbhd0h,

andxbhd0i datasets. The sample consists of about∼ 16,500 fully and partially recon-

structedB0 decays. For our cross-check, only the fully-reconstructed(m∈ [5.225,5.331])

candidates (∼ 4000) are considered. TheD∗−π+ mass distribution is shown in Figure 4.6.
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Figure 4.6:B0→ D∗−π+ mass distribution fromxbhd0d, 0h, and0i data.
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Fit Description

A two-step process is used to obtain the lifetime of theΛ0
b baryon. In the first step, the

sample composition is determined using a binned maximum likelihood fit of the invariant

mass distribution of theΛ+
c π− candidates. The chief objective of the first step (ie. mass fit)

is to determine the composition of theΛ+
c π− sample. In addition to the signal, there are

several background components whose fractions are established via the mass fit.

The mass fit is described with the following likelihood;

−ln L(m) =−NT ∑
i

ln
Ni

NT
·Pi

m(m)−NT lnν+ν (5.1)

whereν is the expected number of events predicted by the PDF,NT is the total number of

events in the sample.m is the invariant mass ofΛ+
c π− candidates, the indexi sums over all

signal and background components,Pi
m(m) is the invariant mass distribution of each of the

components normalized to the unit area (so each is a proper probability density function

(PDF)) andNi is normalization of each of the components. This is an extended likelihood

75



CHAPTER 5. FIT DESCRIPTION

fit with a number of external Gaussian constraints. The normalizationsNi are floating as

fit parameters, and the main result of the mass fit is the set ofNi ’s and their errors. TheΛ0
b

mass fit is described further in Section 5.5.1.

In the Second step, the sample composition is fixed and the fit for theΛ0
b lifetime is

performed. The lifetime fit is an unbinned maximum-likelihood fit in ct andσct. Only

events in theΛ0
b signal region are used in the lifetime fit. The mass PDFs,Pi

m(m), from the

mass fit are integrated over the signal mass region, and multiplied by the correspondingNi

to obtain the sample composition in thesignal region. This yieldsNi
sig, or the number of

events for each signal and background component in the signal region.

The likelihood of one event is a sum over several fit components, i, of two-dimensional

distribution functions;

L(ct,σct) = ∑
i

Ni
sig ·Pi

ct(ct|σct) ·Pi
σct

(σct). (5.2)

HerePi
ct is the probability distribution ofct – a product of the proper time of theΛ0

b decay,

t and the speed of lightc. Pi
σct

is the probability distribution of the error onct. In this

fit, all values ofNi
sig are fixed, and theΛ0

b lifetime is the sole parameter allowed to float.

Moreover, several of the background components do not contribute to the signal region and

are ignored in the lifetime fit.

Distributions used to modelct, andσct are either defined parametrically or are obtained

from templates derived from Monte Carlo or data samples, as discussed in the following

sections.
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5.1 Mass Templates

In general, the templates used to model the mass probabilities are derived from data and

Monte Carlo samples. The observed mass distributions are either modeled parametrically

with functions which are then fit to Monte Carlo distributions, or are modeled as histograms

and simply smoothed.

5.2 Proper Decay Length Templates

The majority of the proper decay length PDFsPi
ct(ct|σct) from Equation 5.2 are broken

into a product ofεTTT(ct), obtained using the procedure outlined in Sec. 3.3, and an analyt-

ical function, as given in Equation 3.6. Only one shape – the combinatorial background –

is completely modeled by a histogram (ofct from events in the upper-sideband), smoothed

using the kernel-estimating algorithm provided by RooFit called RooKeysPdf [26].

5.3 σct Templates

The templates forσct are derived directly from the data that is being fit. Only two

σct distributions are used for any of the several PDF componentspresent in the lifetime

fit: Ps
σct

describes the distribution of errors for theΛ0
b signal andB meson background

components andPb
σct

describes the combinatorial background. It has been shown that the

σct distributions for signalΛ0
b andB decays are very similar in the inclusive realistic Monte
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Carlo (see Figure 5.1, Right).Ps
σct

is obtained from the sideband-subtracted data whilePb
σct

is taken directly from the upper-sideband.
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Figure 5.1: Left: ThePs
σct

distribution from the sideband subtractedΛ0
b andB meson de-

cays (black) and the combinatorial background,Pb
σct

(red). Right: The distribution ofσct

from sideband subtractedΛ0
b→ Λ+

c π− (black) andB0→ D∗−π+ (black) data events. The
agreement betweenB andΛ0

b distributions is good, and is the basis for using the samePs
σct

distribution for both theΛ0
b andB0 components of the fit.

5.4 Efficiency Distribution

The TTT efficiency distributions, used in each fit, are computed from realistic signal

Monte Carlo samples using Equation 3.9.

A comprehensive description of each lifetime fit; includingthe shapes used for the

proper decay templates,σct templates, and efficiency distributions is given in the following

sections.
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5.5 Lifetime Fit in Λ0
b→ Λ+

c π− Decays

5.5.1 Λ0
b→ Λ+

c π− Mass Fit

TheΛ0
b mass fit is a one-dimensional, extended likelihood fit with Gaussian constraints

as described above. All normalizations are allowed to float,though they may be constrained

to an external number, or to another component. TheΛ+
c π− components are divided ac-

cording to the number ofstable1daughters. The mass fit is composed of the following 12

shapes.

1. B Meson Four-Track: decays starting withB0 or Bs that have exactly four charged

stable daughters and exactly zero neutral stable daughters. Mostly B̄0→ D+π−, this

forms a lumpy peak below the signal mass mean position. This shape (Figure 5.2) is

derived from realistic signal Monte Carlo usingRooKeysPdf smoothing.

2. B→ ℓν̄ℓX: B meson semi-leptonic modes. The lepton in question must be stable

and hence modes decaying viaτ lepton are excluded from this category. This shape

(Figure 5.2) is derived from a QuickSim Monte Carlo sample using RooKeysPdf

smoothing.

3. B Other: all other decay modes starting withB0, B± or Bs. This shape (Figure 5.3) is

derived from the QuickSim sample usingRooKeysPdf smoothing.

1Particles that do not decay inside the CDF detector are considered to be stable. For example, muons are
taken to be “stable”.
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4. Λ0
b→ Λ+

c π−: the signal mode. This shape is modeled by a Gaussian PDF plus

exponential-like tails on both sides to account for the resolution effects. (The tails

are implemented as exponential decay PDF using a Gaussian resolution model.) The

mean position of the Gaussian PDF and the mean position of thesmeared decay PDF

are taken to be the same, as are the standard deviations of theGaussian PDF and

Gaussian resolution model. The amount of tails is determined to the fit to the signal-

only Λ0
b→ Λ+

c π− sample based on Pythia, since the extra hits from fragmentation

tracks allow for a more realistic description of the patternrecognition mistakes in

COT which cause the tails.

5. Λ0
b Four-Track: Similar to theB four-track decays. These areΛ0

b decays that have

exactly four charged stable daughters and exactly zero neutral stable daughters. This

shape resides more or less entirely within 2σ of the signal mass mean position, as

shown in Figure 5.4). It is derived from a QuickSim Monte Carlosample on account

of its low statistics in the realistic simulation and employs RooKeysPdf smoothing.

It is expected that the overall normalizaton of this shape issmall, however with a

large systematic uncertainty – neither of the decay modes that comprise this shape

has been observed, so all their branching fractions are guesses.

6. Λ0
b→ ℓν̄ℓX: Λ0

b semi-leptonic modes. Similar to theB semi-leptonic category. De-

cays proceeding withτ leptons as a primary daughter are excluded. This shape (Fig-

ure 5.4) is defined parametrically. The distribution from the inclusive realistic Monte
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Carlo,Λ0
b→ Λ+

c X, sample is fit with a Gaussian plus an exponential with a cutoff at

the high mass range.

7. Λ0
b→ Λ+

c K−: the Cabbibo-suppressed mode. Shifted down from the signal mass

mean position by approximately the difference between the pion and kaon masses,

this shape (Figure 5.5) is derived from the realistic Monte Carlo usingRooKeysPdf

smoothing.

8. Λ0
b→ Λ+

c ρ−: this mode is separated from the otherΛ0
b decays on account of the

poor knowledge of its relative branching ratio. The shape (Figure 5.5) is defined

parametrically by fitting the realistic simulation with a Gaussian plus an exponential

with a cutoff in the high mass region.

9. Λ0
b→ Σ+

c π−,Σ+∗
c π−: also separated from otherΛ0

b decays on account of the poor

knowledge of its relative branching ratio. This shape (Figure 5.6) is derived from

realistic simulation usingRooKeysPdf smoothing.

10. Λ0
b Bump: mainly composed ofΛ0

b→Λ+∗
c X. This shape was also originally included

in the ’Λ0
b Other’ category but was separated because of the poor knowledge of its

relative branching ratio. This shape (Figure 5.6) is derived from realistic simulation

usingRooKeysPdf smoothing.

11. Λ0
b Other: all other decays originating fromΛ0

b , which are not alredy included in

one of the other categories. This shape (Figure 5.7) is derived from the realistic

simulation usingRooKeysPdf smoothing.
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12. True Combinatorial Background2: modeled by a single falling exponential PDF. In

theΛ+
c π− invariant mass fit, the decay constant in the exponential is floating. Thect

part of this component is determined by fitting the data sample on the upper sideband

region,m(Λ+
c π−)≥ 5.7 GeV/c2.
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Figure 5.2: Left:B Four-Track realistic simulation distribution. Right:B→ ℓν̄ℓX Quick-
Sim distribution.

2OtherB→ Dπ mass fits used at CDF usually employ a parameterization of a constant + exponential
to describe the combinatorial mass shape. This shape results in a more quickly falling background below
the main Gaussian peak. That shape includes the combinatorial background of the “D” meson because the
definition of other shapes does not include the contributionof decays that do not decay to “D”, but contribute
to the “D” combinatorial background. In our analysis, we explictly include in non-combinatorial components
theΛ0

b andB decays that contribute toΛ+
c sidebands. After comparing those components and theΛ+

c sidebads,
we do not have evidence that the shape of the true combinatorial background (i.e. in which at least one track
is fake) is not a simple exponential.
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Figure 5.4: Left:Λb Four-Track QuickSim distribution. Right:Λb→ ℓν̄ℓX realistic simu-
lation distribution.
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Figure 5.5: Left:Λ0
b→ Λ+

c K− realistic simulation distribution. Right:Λ0
b→ Λ+

c ρ realistic
simulation distribution.

83



CHAPTER 5. FIT DESCRIPTION

) (GeV)-π +
cΛm(

5.0 5.5 6.0 6.5 7.0

C
an

d
id

at
es

 p
er

 2
2 

M
eV

0

500

1000

1500

2000

2500

3000

3500

) (GeV)-π +
cΛm(

5.0 5.5 6.0 6.5 7.0

C
an

d
id

at
es

 p
er

 2
2 

M
eV

0

500

1000

1500

2000

2500

3000

3500

) (GeV)-π +
cΛm(

5.0 5.5 6.0 6.5 7.0

C
an

d
id

at
es

 p
er

 2
2 

M
eV

0

500

1000

1500

2000

2500

3000

3500

) (GeV)-π +
cΛm(

5.0 5.5 6.0 6.5 7.0

C
an

d
id

at
es

 p
er

 2
2 

M
eV

0

500

1000

1500

2000

2500

3000

3500

Figure 5.6: Left:Λ0
b→ Σ+

c π− realistic simulation distribution. Right:Λ0
b→ Λ+∗

c realistic
simulation distribution.
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Figure 5.7:Λb Other realistic simulation distribution.
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5.5.1.1 Fit Constraints

Because several background shapes are quite similar (e.g.B semi-leptonic andΛ0
b semi-

leptonic) and since all of the normalizations are allowed tofloat in the fit, it is necessary

to constrain the ratios of several normalizations to improve fit stability. The constraints

described below appear asχ2 penalty terms in the extended negative log likelihood. For

brevity, the categoriesall mesonsandall baryonsare defined as the sum of all categories

starting withB andΛ0
b respectively. The following constraints are imposed on themass fit:

1. B Four-Track Candidates: The normalization of this component is based on the num-

ber ofB0 decaying to a kaon and three pions (including, for example,B̄0→ D+π−),

which is observed in theΛ+
c π sample when the mass of the proton candidate track has

been replaced bymπ. The fit of the invariant mass of suchB→ ·· · → K3π candidate

is given in Figure 5.8. The total number ofB→ ·· ·→ K3π candidates obtained from

Λ+
c π data this way still needs to be scaled up to accomodate theB reflections which

do not fit theK3π signature. This scale factor is obtained from the inclusiveMC

simulation and is found to be 1.75. As the events from theB→ ·· · → K3π invariant

mass distribution come from theΛ+
c π sample itself, we do not consider the statistical

error from theB mass fit. However, the scale factor based on the MC simulation

depends on PDG branching ratios [8], and we do use their combined relative error of

0.0906. The number ofB four-track events are constrained to

NBFour−Track = 1356±125.
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Figure 5.8: The fit of the invariant mass ofB→ K3π candidates. This distribution is
computed from theΛ+

c π mass distribution where the mass of the proton candidate track,
from Λ+

c → pKπ, has been replaced by the mass of a pion.

2. B Semi-Leptonic Candidates to AllB Meson Candidates: The value of this con-

straint is obtained from the Generic Realistic sample. The relative error comes from

the measurement of theB0 semi-leptonic branching fraction. Using the PDG value,

one obtains the error on the ratio ofB semileptonic to allB meson events of 0.012.

NB→ℓν̄l

Nallmesons
= 0.195±0.002

3. Λ0
b Semi-leptonic Candidates toΛ0

b→ Λ+
c π Candidates: The amount ofΛ0

b semi-

leptonic events is pinned down to theΛ0
b→ Λ+

c π signal itself, using Reference [39].

After taking the efficiencies into account, we get

NΛ0
b→ℓν̄l

NΛ0
b→Λ+

c pi
= 2.87±0.53.
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4. Total Number ofb-baryon Candidates: While the total contribution of variousB me-

son decays is relatively straightforward to estimate from the known branching frac-

tions measured at theB factories, there is a considerable uncertainty in estimating the

total number ofΛ0
b decays that end up in ourΛ+

c π sample.

We therefore adopt the following strategy: we subtract theΛ+
c sidebands, and that

way remove almost all contribution fromB meson decays, as well asΛ0
b decays that

do not produce aΛ+
c , or those that do, but into aΛ+

c which does not decay topKπ.

From Figure 5.9 we measure 30,976Λ+
c candidates in the data. Next, we extrapolate

theΛ+
c π combinatorial background (composed of true-Λ+

c and fakeπ-from-Λ0
b pairs)

from the upper sideband back to lower masses (see Figure 5.10), calculate the total

amount ofπ-from-Λ0
b combinatorial background and subtract that too from the area

of theΛ+
c -sideband-subtracted distribution. We subtract about 2500 true-Λ+

c , fake-π

events, which leaves us with about 28,500Λ+
c candidates. What remains is the total

of Λ0
b decays from our sample which decay toΛ+

c X, with Λ+
c → pKπ. That number

needs to be multiplied by a correction factor of 1.04, which takes into account theΛ0
b

decays that do not result inΛ+
c X,Λ+

c → pKπ. Following this procedure, we obtain

the total number ofΛ0
b candidates as 28,272. We assign the uncertainty of∼ 5%

to this overallΛ0
b yield. This is motivated mainly by the lack of understandingof

theΛ0
b branching fractions. The non-pKπ baryon contribution is determined largely

by theΛ0
b branching fractions with large uncertainties, since most of them have not

be observed and are mere theoretical estimates. Therefore,the total number ofΛ0
b
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candidates in the mass fit is constrained to

NΛ0
b→ anything= 28,272±1,414
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Figure 5.9: m(pKπ) distribution. We fit the signal distribution with a Gaussianand the
background with a straight line. We count∼ 31,000Λ+

c candidates in our data sample.

5. Λ0
b→ Λ+

c K− to Λ0
b→ Λ+

c π− Events: This constraint is based on the prediction made

from [40] for the ratio ofB→ Dπ:B→ DK events. We use the following constraint.

NΛ0
b→Λ+

c K−

NΛ0
b→Λ+

c π
= 0.07±0.021.

6. Λ0
b→ Λ+

c ρ: we again use the results from [40]. to constrain the ratio ofNΛ0
b→Λ+

c ρ to

NΛ0
b→Λ+

c π. The relative error is taken from the uncertainty onB→ Dρ decays.

NΛ0
b→Λ+

c ρ

NΛ0
b→Λ+

c π
= 0.56±0.10
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lbmass_sbsub
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Figure 5.10:m(Λ+
c π) distribution forΛ+

c sideband subtracted data. The upper sideband
of this distribution is fit with an exponential in order to estimate the number of true-Λ+

c ,
fake-π candidates we have.

7. Λ0
b→ Λ+∗

c X: The hadronic branching ratios used in the generation of theinclusive

real Monte Carlo samples were, in many cases educated guesses. A more complete

description of these branching fractions and the generation of the Monte Carlo sam-

ple can be found in [40]. Conservative branching ratio uncertainties forΛ0
b→ Λ+∗

c X

are+150% and−70% which, when we average positive and negative uncertainties,

propagates to±0.21.

8. Λ0
b Four-Track: Similar toΛ0

b→Λ+∗
c . We use a relative uncertainty of±0.005 which

represents errors of+100% and−50% on the original branching ratios.

9. Λ0
b→ Σcπ andΛ0

b→ Σ∗cπ: Similar to Λ0
b→ Λ+∗

c X. We use a relative uncertainty of

±0.17 which represents uncertainties of+150% and−70% in the original branching
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ratios.

5.5.1.2 Λ0
b→ Λ+

c π− Mass Fit Results

Using the previously described background templates and constraints, we obtain the

mass fit shown in Figure 4.1. The results of this binned, extended likelihood mass fit are

shown in Table 5.1. The pulls from the constraints describedabove are listed in Table

5.2. The signal window is defined to bem(Λ+
c π−) ∈ [5.565,5.670]GeV/c2. This choice

was made to correspond to the bin boundaries closest to the signal mass mean position plus

or minus three times the standard deviation of the signal distribution. Similarly, the upper

sideband is defined to bem(Λ+
c π−) ∈ [5.8,7.0]GeV/c2. The normalizations returned from

the fit in the signal window are listed in Table 5.3.
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Parameter Fit Value Error

NΛ0
b→Λ+

c π− 3152 63

NΛ0
b→Λ+

c K− 357 41

NΛ0
bFour−Track 394 55

NΛ0
b→ℓν̄ℓX

3621 1043

NΛ0
b→Λ+

c ρ− 1987 307

NΛ0
b→Σ+

c π− 1256 185

NΛ0
b→Λ+∗

c X 838 187

NΛ0
b‘Other′ 14734 1162

NBFour−Track 1271 78

NB→ℓν̄ℓX 558 241

NB‘Other′ 1050 989

NCombinatorial 2160 94

m(Λ0
b) 5.6135 0.0004

Table 5.1: Results of the binnedΛ0
b mass fit on the entire fit range; from 4.8 to 7.0 GeV/c2.
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Constraint Pull (χ2)

Total Baryons 1.367

Λ0
b→ Λ+

c K+ 2.058

Λ0
b→ ℓν̄l 3.248

Λ0
b four-track 3.77

Λ0
b→ Λ+∗

c X 1.346

Λ0
b→ Λ+

c ρ 0.7058

Λ0
b→ Σcπ 1.456

B four-track 4.545

B→ ℓν̄l 0.05638

Table 5.2: Theχ2 pulls on the mass fit constraints.
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Normalization Value

NΛ0
b→Λ+

c π− 2904.9±57.9 (82%)

NBFour−Track 250.5±15.4 (7%)

NΛ0
b→Λ+

c K− 138.6±15.9 (4%)

NCombinatorial 116.2±5.0 (3%)

NΛ0
bFour−Track 113.7±15.9 (3%)

NΛ0
b→ℓν̄ℓX

27.0±7.8 (< 1%)

NΛ0
b‘Other′ 7.2±6.8 (< 1%)

NB‘Other′ 3.5±0.3

NΛ0
b→Σ+

c π− 0.763917±0.112236

NB→ℓν̄ℓX 0.643348±0.27741

NΛ0
b→Λ+∗

c X 0.097919±0.0217996

NΛ0
b→Λ+

c ρ− 0.0265047±0.00408758

Table 5.3: Normalizations for all backgrounds in theΛ0
b signal windowm(Λ+

c π−) ∈
[5.565,5.670]GeV/c2.
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5.5.2 Λ0
b→ Λ+

c π− Lifetime Fit

Based on the mass fit results listed in Table 5.3, only 7 of the mass fit components

contribute appreciably to the signal composition in theΛ0
b signal window. Therefore, the

lifetime likelihood is composed of only 7 components; theΛ0
b→ Λ+

c π− signal and 6 other

backgrounds.

ThePs
σct

andPb
σct

models are obtained from the data as described in Section 5.3. Both

templates are shown overlaid in Figure 5.1 (Left).

Theσct dependence on the mass of theΛ+
c π− candidate was investigated by separating

the upper-sideband into two regions and comparing theσct distribution from each. The

result is shown in Figure 5.11. As a further check, the averagect andσctfor m(Λ+
c π−) slices

of the signal (Figure 5.12 and the upper-sideband (Figure 5.13) were computed. There is

no evidence to suggest that there is any correlation betweentheσct andm(Λ+
c π−).

The Λ0
b→ Λ+

c π− Monte Carlo sample described in Section 4.3.1 is used to compute

the TTT efficiency,εΛ0
b

TTT(ct), for the Λ0
b components of the likelihood. Approximately

270,000 events are used to compute the efficiency. The proper decay length distribution,

and the derived TTT efficiency distribution are shown in Figure 5.14.

A separate efficiency,εB0

TTT(ct), is computed for theB→ four track component of this

fit using a Bgenerator sample ofB0→ D+π− decays reconstructed asΛ0
b→ Λ+

c π−. Ap-

proximately 80,000 events are used to compute the efficiency. The proper decay length

distribution and the derivedB0 TTT efficiency are shown in Figure 5.15. For comparison,

theΛ0
b andB0 efficiencies are shown overlaid in Figure 5.16.
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Only the signal region is used when fitting for the lifetime. In some lifetime fits, the

upper sideband is included explicitly, and the parametric shape of the combinatorial back-

ground is allowed to float in a combined signal plus sideband region fit. We chose not to

follow this approach in favor of a less complicated, faster fit. We have studied changes

to the shape of the combinatorial background along thect axis. Since the ratio of theΛ0
b

signal to combinatorial background in the signal region is about 30 : 1, the shape of the

combinatorial background lifetime has sub-micron influence on the final lifetime fit (i.e.,

on the order of 0.2−0.3 µm), and is therefore negligible.
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Figure 5.11: Left: comparison ofσct distribution for two regions of the upper-sideband
(pure combinatorial background):m(Λ+

c π−) ∈ [5.8,6.5] GeV/c2(red) andm(Λ+
c π−) ∈

[6.5,7.0] GeV/c2(black). There is no evidence for any dependence ofσct in the com-
binatorial background onm(Λ+

c π−). Right: comparison ofct for the same two regions
of the upper sideband. The low-mass region (red points) (i.e., the region nearest to the
Λ0

b→ Λ+
c π− mass peak) differs slightly from the high-mass region (black points). The

low-mass region is however larger in terms of the overall normalization, so the modeling
of thect shape of the background underneath theΛ0

b→ Λ+
c π− main mass peak is not very

affected. The effect on the blinded fit due to changes of the background shape is at the
sub-micron level.

95



CHAPTER 5. FIT DESCRIPTION

2) GeV/cπcΛm(
5.58 5.60 5.62 5.64 5.66

<c
t>

 (
cm

)

0.03

0.04

0.05

0.06

0.07

0.08

Mean ct vs mass (RMS)

2) GeV/cπcΛm(
5.58 5.60 5.62 5.64 5.66

> 
(c

m
)

ctσ<

0.0014

0.0016

0.0018

0.0020

0.0022

0.0024

0.0026

 vs mass (RMS)ctσMean 

Figure 5.12: Profile histograms ofct andσct in slices ofm(Λ+
c π−) in the signal window.

The points on both figures represent the average ofct (σct) for each mass slice, and the
error is the RMS of the distribution. RMS is used in order to indicate the shape of the
distribution which is, by nature a two dimensional distribution.

The general form of the likelihood used in the lifetime fit is given in Equation 5.2. The

normalizations used for each component are those listed in Table 5.3. ThePct andPσct

distributions for each component of the fit are described below.

1. Λ0
b→ Λ+

c π− Signal. Comprised ofΛ0
b events that decay intoΛ+

c and a pion, with the

Λ+
c decaying (eventually) into a proton, a pion and a kaon.
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Figure 5.13: Profile histograms ofct andσct in slices ofm(Λ+
c π−) in the upper-sideband.

The points on both figures represent the average ofct (σct) for each mass slice, and the
error is the RMS of the distribution.

• P1
ct: The parametric proper decay length model described in Section 3.2;

P1
ct(ct|σct) = exp(ct,cτ)⊗R(ct,σct) · ε

Λ0
b

TTT(ct).

TheΛ0
b lifetime, τ, is the only parameter left floating in the lifetime fit.

• P1
σct

: Ps
σct

from sideband-subtracted data.

2. B→ four tracks: Comprised ofB meson events (excluding semi-leptonicB decays

and those covered by the “otherB decay” component described below) that decay
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Figure 5.14: Top: thect distribution forΛ0
b→ Λ+

c π− HQGen Monte Carlo after trigger

and analysis cuts have been applied. Bottom: TheΛ0
b TTT efficiency distribution,εΛ0

b
TTT(ct)

computed applying Equation 3.9 to the HQGen sample described in Section 4.3.1.

into exactly four charged stable daughters and exactly zeroneutral stable daughters.

• P2
ct: The same parametric model used to model theΛ0

b signal is also used here

with a slight modification. When reconstructing a candidate,it is assumed that

we have a trueΛ0
b decay andm(Λ0

b) is used to compute the candidate’sct. On

an event-by-event basis, we don’t know if we are reconstructing a trueΛ0
b or

B decay and all events getct computed using theΛ0
b mass. To compute the
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Figure 5.15: Top: thect distribution for B-GeneratorB0→ D+π− reconstructed asΛ0
b→

Λ+
c π−, εB0

TTT(ct), after trigger and analysis cuts have been applied. Bottom: TheΛ0
b TTT

efficiency distribution computed applying Equation 3.9.

correctct for a trueB0, one needs to use the correctB0 mass. Therefore, in

place of theΛ0
b lifetime, in the PDF, we make the following substitution;

τ→ τ̃ =
m(Λ0

b)

m(B0)
· τB0.

TheB0 lifetime is fixed to the value from the PDG [8], and scaled by the ratio

of Λ0
b to B0 masses to correct for theΛ0

b mass hypothesis used when incorrectly
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ct (cm)
-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.000

0.002

0.004

0.006

0.008

0.010

SVT Efficiency Function

 EfficiencybΛ
 Efficiency0B
 EfficiencybΛ
 Efficiency0B

Figure 5.16: TheΛ0
b and B0 efficiencies shown super-imposed on one another for

comparison.

reconstructing a trueB decay as aΛ0
b.

P2
ct(ct|σct) = exp(ct,cτ̃)⊗R(ct,σct) · εB0

TTT(ct).

• P2
σct

: Ps
σct

from sideband-subtracted data.

3. Cabibbo suppressed,Λ0
b→ Λ+

c K− Comprised ofΛ0
b events that decay toΛ+

c and a

kaon, with theΛ+
c eventually decaying to a proton, a pion and a kaon.

• P3
ct: These are pureΛ0

b decays and therefore use a model identical to the signal.

• P3
σct

: Ps
σct

from sideband-subtracted data.

4. Combinatorial Background: Comprised ofΛ0
b candidates reconstructed with a true

Λ+
c and a fake pion.

• P4
ct: The lifetime shape is derived directly from candidates in the upper sideband

(5.8 < m(Λ+
c π−) < 7.0) of data. The candidates are fit with a Landau distribu-
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tion, as shown in Figure 5.17 (Left). The model is manually set to zero for

proper times less than 0.025cm to mimic the analysis cut,ct(Λ0
b) > 0.025cm.

The resulting model forP4
ct is shown in Figure 5.17 (Right).

• P4
σct

: Pb
σct

from the upper-sideband of data.

5. Λ0
b→ four tracks: Comprised ofΛ0

b events (excludingΛ0
b→ Λ+

c π−, Λ0
b→ Λ+

c K−,

andΛ0
b semi-leptonic decays) that decay into exactly four chargedstable daughters

and exactly zero neutral stable daughters.

• P5
ct: These are again pureΛ0

b decays and therefore use the same model as the

signal.

• P5
σct

: Ps
σct

from sideband-subtracted data.

6. Λ0
b→ l ν̄l X: Λ0

b events that have a stable lepton (ane or aµ as opposed to aτ) as one

of the direct daughters.

• P6
ct: The smoothed histogram shown in Figure 5.18 (Left), used tomodel this

background is derived from inclusive realistic Monte Carlo.No special atten-

tion is given to the loss of momentum associated with the un-detected neutrino

in these decays. For the lifetime fit, only events in the signal mass window, near

theΛ0
b mass peak are considered. Neutrinos from these decays carryalmost no

momentum and their effect can be neglected.

• P6
σct

: Ps
σct

from sideband-subtracted data.
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7. OtherΛ0
b Decays: All Other Λ0

b events that are not already included in another tem-

plate.

• P7
ct: The smoothed histogram shown in Figure 5.18 (Right) is derived from

inclusive realistic Monte Carlo.

• P7
σct

: Ps
σct

from sideband-subtracted data.
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Figure 5.17: Left: The Landau fit to candidates in the upper sideband of data. The fit
probability is 0.835. The model is manually set to zero forct < 0.025 cm. The resulting
combinatorialct template is shown on the Right.
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5.5.3 Lifetime Fit Cross-Check I: Toy Monte Carlo

With all of the fit templates and lifetime likelihood ingredients in place, we can test

the fitter using Toy Monte Carlo. Toy Monte Carlo samples are generated by sampling the

total lifetime probability distribution function to generate distributions for each of the fit

variables (in our casect andσctṪoy Monte Carlo allows one to quickly generate similar

but statistically independent datasets. Toy generation isperformed using RooFit’s “Ac-

cept/Reject” method using the distributions of our combinedlikelihood as input. Events

for ct, andσct are generated separately by RooFit’s Accept/Reject method using the fol-

lowing algorithm.

1. Start by finding the maximum,ymax, of the PDF in a given variable by random sam-

pling.

2. a number,x, from the domain of the variable is generated using a uniformdistribution.

3. a uniform random numberr ∈ [0,ymax] is generated.

4. if PDF(x) > r, x is accepted; otherwise it is rejected.

The same Toy generation method is used to evaluate the impactof systematic errors as

described in Section 7.

To test the stability of theΛ0
b lifetime fit, 500 Toy experiments of∼ 3700 events (statis-

tics similar to those found in the signal window of data) weregenerated and fit. In each

case, signal and background components were generated in the same proportion as that ob-

served in data (see Section 6. Toy data were generated usingΛ0
b lifetimes of 350.0, 400.0,
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450.0, and 500.0µm. In all cases, the Toy fit results are consistent with the input lifetime,

with pulls consistent with 1.0. The distributions are given in Figures 5.19 through 5.22.
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Figure 5.19: Left:The distribution of lifetime fit results on Toy Monte Carlo samples. The
Toy was generated with a lifetime ofcτ(Λ0

b) = 350.0µm. Right:The pull distribution from
the Toy fits. The pull is defined as (input - measured)/error. The result shows a small
deviation from a mean of 0 and has a width consistent with 1.
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Figure 5.20: Left:The distribution of lifetime fit results on Toy Monte Carlo samples. The
Toy was generated with a lifetime ofcτ(Λ0

b) = 400.0µm. Right:The pull distribution from
the Toy fits. The pull is defined as (input - measured)/error. The result shows a small
deviation from a mean of 0 and has a width consistent with 1.
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Figure 5.21: Left:The distribution of lifetime fit results on Toy Monte Carlo samples. The
Toy was generated with a lifetime ofcτ(Λ0

b) = 450.0µm. Right:The pull distribution from
the Toy fits. The pull is defined as (input - measured)/error. The result shows a small
deviation from a mean of 0 and has a width consistent with 1.
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Figure 5.22: Left:The distribution of lifetime fit results on Toy Monte Carlo samples. The
Toy was generated with a lifetime ofcτ(Λ0

b) = 500.0µm. Right:The pull distribution from
the Toy fits. The pull is defined as (input - measured)/error. The result shows a small
deviation from a mean of 0 and has a width consistent with 1.
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5.5.4 Lifetime Fit Cross-Check II: Realistic Signal Monte

Carlo

As a second check of theΛ0
b lifetime fit, one can fit realistic Monte Carlo samples.

The large Monte Carlo sample that is used to compute the TTT efficiency provides a good

circular check of the fit. Because the sample is so large, the statistical error on the fit result

is very small making the cross-check very sensitive.

Additionally, two smaller Monte Carlo samples were generated with cτ′(Λ0
b) equal to

325 and 500µm. These samples were re-weighted to match the data using thesame method

described in Section 4.3.1. After re-weighting, the 325µm and 500µm samples consist of

around 22,500 and 31,500 events respectively.

By using three independent Monte Carlo samples, with different Λ0
b lifetimes, one can

probe the sensitivity of the fitting method to the value of theinput Monte Carlo lifetime.

The expectation, from previous lifetime analyses [1] is that the efficiency should be inde-

pendent of the lifetime of the Monte Carlo from which it is derived.

The lifetime fit on signal Monte Carlo is much simpler than the fit on real data because

it only includes signal events. The fit likelihood consists of one, signal component;

L(ct,σct) = P1
ct(ct|σct) ·Ps

σct
(σct) · εTTT(ct).

Because there are no backgrounds competing with the signal events, the signal mass

window is relaxed slightly tom(Λ+
c π−) ∈ [5.54,5.72]GeV/c2 to include nearly all of the

available events.
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Ps
σct

is obtained from theσct distribution in the signal mass window for each of the

three samples (Figure 5.23). Similarly, an TTT efficiency iscomputed from each Monte

Carlo sample using Equation 3.9 wherecτMC corresponds to theΛ0
b lifetime with which the

sample was generated. The efficiency computed from thect(Λ0
b) = 368µm sample is the

default efficiency used when fitting the data. The efficiencies from each sample are shown

in Figure 5.24 and shown overlaid in Figure 5.25.

Using the three Monte Carlo samples and the three TTT efficiency functions, the 9

possible lifetime fit combinations are constructed and executed. The results of each fit are

given in Table 5.4 and shown graphically in Figure 5.26. In all cases, the fits are consistent

with the generated Monte Carlo values. The largest exceptions are seen when fitting the

368µm sample. Because this sample is so large, the statistical error in each fit is very small.

The 325 and 500µm TTT efficiencies are generated from much fewer events than 368µm.

Because they are based on fewer events, these models describethe underlying physics less

accurately than the efficiency generated from more events. When used to fit the smaller,

325 and 500µm samples, even the low statistics models provide an accurate fit. When

applied to the large 368µm sample though, the shortcomings of the model are accentuated

resulting in fit results that are further from the generated lifetime than in the other samples.

Most importantly, the fits using the TTT model based on the 368µm sample return

values forct(Λ0
b) that are consistent with the generated value in all cases. The lifetime fit

projections to the 325, 368, and 500µm samples, using the default, 368µm efficiency are

shown in Figure 5.27. The results based on the 368µm efficiency are also shown in Figure
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5.28. This cross-check demonstrates that the default TTT efficiency distribution serves as

a sufficient model over the range of values where we expect to measurecτ(Λ0
b).
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Figure 5.23: Distribution ofσct in the signal window from the realistic Monte Carlo sam-
ples; 325µm (top Left), 368µm (top Right), and 500µm (bottom). This distribution of errors
is Ps

σct
in the signal Monte Carlo likelihood.
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Figure 5.24: The TTT efficiency distributions,εTTT(ct), obtained from the three realistic
Monte Carlo samples; 325µm (top Left), 368µm (top Right), and 500µm (bottom).
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Figure 5.25: The TTT efficiency distributions from Figure 5.24 shown overlaid. The Blue,
Black, and Red curves correspond to efficiencies computed fromthe 325, 368, and 500µm
samples respectively.
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Input Sample Fit Model Fit Result

325µm 325µm 328.3 ± 3.3µm

368µm 326.9 ± 3.3µm

500µm 329.3 ± 3.4µm

368µm 325µm 371.1 ± 1.2µm

368µm 368.7 ± 1.2µm

500µm 372.8 ± 1.2µm

500µm 325µm 495.0 ± 5.4µm

368µm 497.6 ± 5.4µm

500µm 500.8 ± 5.4µm

Table 5.4: Comparison of fit results on HQGen Monte Carlo samples generated with
cτ′(Λ0

b) = 325, 368 and 500µm. Efficiency distributions are calculated from each of the
three samples to create three unique fit models. Each sample is then fit three times; once
with the TTT efficiency obtained from the 325µm sample, again with the default efficiency
calculated from the 368µm sample, and finally with the efficiency derived from the 500µm
sample. The results show that the measuredcτ(Λ0

b) is independent of the lifetime used to
generate the Monte Carlo from which the efficiency is calculated.
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Figure 5.27: Signal Monte Carlo lifetime fit projections whenfit with the TTT efficiency
computed using the 368µm Monte Carlo. The fits to 325 (top Left), 368 (top Right), and
500µm (bottom) realistic Monte Carlo samples are shown.
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5.5.5 Lifetime Fit Cross-Check III: Trigger Codes

As a third, and more important, cross check of theΛ0
b lifetime fit, we fit different parts

of the cτ′(Λ0
b) = 368µm realistic signal Monte Carlo sample based on the pairs of stable

tracks that satisfy the requirements of the TTT. This check is particularly powerful because

it exercises our fit method (in particular the generation of the trigger efficiency) in decays

with very different kinematics.

For this cross-check, the large realisticΛ0
b→ Λ+

c π− Monte Carlo sample is used. The

events are required to only satisfy the trigger and analysiscut requirements. None of the

reweighting described in Section 4.3.1 is applied in order to maximize statistics.

In a Λ0
b→ Λ+

c π−2 ;Λ+
c → p+K−π+

1 decay, there are four stable tracks that may satisfy

the reqiurements of the two displaced track trigger in pairs. For each event, all possible

pairs of stable tracks are tested to determine if the requirements of the TTT are met. If a

given track-pair satisfies the trigger, a bit is set. More than one track-pair may satisfy the

trigger in a given event. ThetrigCode is the value obtained when all confirmed track pair

bits are anded together. The resulting set of possible trigger codes, track-pair bits, and the

abundance of each trigger code in the Monte Carlo is summarized in Table 5.5.

Because many of the trigger codes have very few events, we decide to consider only the

six distinct types listed in Table 5.6. For each of the sixtrigCodes, a separate efficiency is

computed using the prescription outlined in Section 3.3. The efficiency for eachtrigCode

is shown in Figures 5.29 through 5.31. The efficiency for eachtrigCode are also overlaid

for comparison in Figure 5.32.
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Code Bits Description N events

1 00001 pK 65,419

2 00010 Kπ1 8,014

3 00011 pK+Kπ1 3,431

8 01000 pπ1 569,215

9 01001 pπ1 + pK 70,639

10 01010 pπ1 +Kπ1 128

11 01011 pπ1 + pK+Kπ1 372

16 10000 π1π2 40,493

17 10001 π1π2 + pK 52

18 10010 π1π2 +Kπ1 6,346

19 10011 π1π2 + pK+Kπ1 56

24 11000 pπ1 +π1π2 38,175

25 11001 pπ1 +π1π2 + pK 2,903

26 11010 pπ1 +π1π2 +Kπ1 1,122

27 11011 pπ1 +π1π2 + pK+Kπ1 4,032

Table 5.5: Definition oftrigCodes; pairs of tracks that satisfy the requirements of the Two
Track Trigger.
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The signal Monte Carlo lifetime fit is performed in eachtrigCode sample using the

corresponding efficiency function. The resultingct(Λ0
b) from each fit is plotted in Figure

5.33. The result of each fit is consistent with the generated lifetime ofcτ(Λ0
b) = 368.0µm.

ThetrigCode cross-check is an important verification that our method is robust across

various kinematic situations. The check also builds confidence that the fit to data will be

correct. As described in Section 4.3.1, the HQGen Monte Carlosample is re-weighted such

that thetrigCode distribution matches that observed in sideband-subtracted data. Because

the independenttrigCode lifetime fits in Monte Carlo are consistent with the generated

lifetime value, we can be confident that the combined efficiency, based on the re-weighted

Monte Carlo, is an accurate representation of the decay kinematics present in Data and will

give an accurate value for theΛ0
b lifetime.

Code Description N events

1 pK 65,419

8 pπ1 569,215

9 pπ1 + pK 70,639

16 π1π2 40,493

24 pπ1 +π1π2 38,175

99 All other combinations 26,456

Table 5.6: Because the statistics in several of thetrigCode categories is low, only six
categories are used in the cross-check.
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Figure 5.29: TTT efficiencies generated for trigger codes 1 (Left) and 8 (Right).
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Figure 5.30: TTT efficiencies generated for trigger codes 9 (Left) and 16 (Right).
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Figure 5.31: TTT efficiencies generated for trigger codes 24(Left) and 99 (Right).
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5.6 Lifetime Fit in B0→ D∗+π− Decays

As an additional cross-check of the fit method developed for measuring theΛ0
b lifetime,

one can fit the lifetime of anotherb-hadron whose lifetime is known well. One such hadron

is theB0, that has been measured to have a lifetime of 1.530± 0.009ps (or expressed in

microns as 458.7±2.7µm) [8]. TheB0→ D∗+π− decay mode is chosen as a cross-check

because it is an extremely clean sample, with a signal to background ratio similar to that

found in theΛ0
b sample. The lifetime fit that we use for the cross-check of themethod is a

very simple model compared to other analyses that are dedicated to accurately measuring

the theB0 lifetime in this channel [30]. Because the cross-check is intended only to build

confidence in the fit method developed for theΛ0
b, a simpleB0 lifetime model is sufficient.

The same two-step fit approach described in Section 5 for theΛ0
b fits is also used here

for theB0. The first step is a binned mass fit followed by an unbinned maximum likelihood

fit in ct andσct.

The signal and upper-sideband regions for the fit are defined as m(D∗−π+) ∈

[5.225,5.331]GeV/c2 andm(D∗−π+) ∈ [5.4,6.6]GeV/c2 respectively.

Theσct models,Ps
σct

andPb
σct

are histograms derived directly from sideband-subtracted

signal and upper sideband respectively. The distributionsare shown in Figure 5.34.

The TTT efficiency distribution is computed from a B-Generator sample of pureB0→

D∗−π+ decays. Approximately 23,300 events are used to compute the efficiency using

Equation 3.9. Thect(B0) distribution and the calculated TTT efficiency are shown in Figure
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Figure 5.35: Left: Thect distribution from theB0 signal Monte Carlo. Right: the efficiency
distribution computed from the Monte Carlo using Equation 3.9.

Only three components are considered in theB0→ D∗−π+ mass and lifetime fits. The

fit components and templates used for each shape are listed below;

1. B0→ D∗−π+ Signal:B0 events that decay intoD∗ and a pion, with theD∗− decaying

(eventually) into a kaon and two pions.

• P1
m: Parametric smeared Gaussian model.
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• P1
ct: The same parametric proper decay length model used to describe theΛ0

b

signal.

P1
ct(ct|σct) = exp(ct,cτ)⊗R(ct,σct) · εTTT(ct).

Here,τ represents theB0 lifetime and is the only parameter left floating in the

lifetime fit.

• P1
σct

: Ps
σct

from sideband-subtracted data.

2. B0→ D∗−K+ Background:B0 events that decay intoD∗− and a kaon, with theK∗−

decaying (eventually) into a kaon and two pions.

• P2
m: Parametric Gaussian model.

• P2
ct: Since this background is comprised of trueB0 decays, the same model is

used here as in theB0→ D∗−π+ mode.

• P2
σct

: Ps
σct

from sideband-subtracted data.

3. Combinatorial Background:B0 events reconstructed with a trueD∗− and a fake pion.

• P3
m: Parametric exponential model.

• P3
ct: Events in the upper sideband of data are fit with a Landau distribution to

obtain the template shown in Figure 5.36.

• P3
σct

: Ps
σct

from sideband-subtracted data.
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5.6.1 B0→ D∗−π+ Fit Results

The B0 lifetime results presented here are compared to those reported in Reference

[30]. The measurement made in the reference is a dedicatedB0 lifetime measurement and

uses much more sophisticated mass and lifetime fits than those described in Section 5.6.

Most importantly the reference measurement uses 6-component mass and lifetime fits as

well as fitting for the lifetime using both fully and partially reconstructedB0 candidates.

By including partially-reconstructed candidates, the total statistical error on the lifetime

measurement can be decreased. However, the lifetime fit becomes much more complicated

for these events.

For the purpose of this cross check it is sufficient to compareresults only with the

fully-reconstructed events. In this case, our fit and the reference fit both fit exactly the

same data and the fit results from both measurements are expected to agree very well. The

fully-reconstructedB0 region is defined asm(D∗−π+) ∈ [5.225,5.331]GeV/c2.

In addition, two results are quoted for our cross-check fit. In the first fit, the fit fractions,

f3, from our simple, three-component, mass fit are used in the subsequent lifetime fit. It is

clear that this mass fit, shown in Figure 5.37, is a poor description of the data, especially at

low values ofm(D∗−π+). Therefore, a second lifetime fit is constructed using the sample

composition, from the more sophisticated, 6-component reference mass fit described in

[29]. The fractions from the reference mass fit,f6, are transformed to our 3-component

basis, these fractions are referred to asf ′3. The fractions for all of the mass fits are listed in

Table 5.7.
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Norm f3 f6 f ′3

B0→ D∗π 0.9053 0.9063 0.9063

B0→ D∗K 0.0898 0.0670 0.0750

B0→ D∗ρ - 0.0015 -

B0Other - 0.0064 -

B+ - 0.0036 -

realD 0.0049 0.0151 0.0187

Table 5.7: Fractions used in theB0→ D∗−π+ lifetime fits. f3 is the fraction of each com-
ponent obtained from the 3-component mass fit.f6 is the fraction of each component as
reported in [30].f ′3 is obtained by applying thef6 fractions to the 3 component basis in our
fit model. In all cases, the normalizations represent the fraction of each component in the
region,m(D∗−π+) ∈ [5.225,5.331]GeV/c2.

The results of the un-binned, maximum likelihood,B0 lifetime fits on the data, using

both f3 and f ′3 normalizations, are listed in Table 5.8. The likelihood projection onto the

ct-axis, for both thef3 and f ′3 normalizations, is shown in Figure 5.38.

Normalization cτ(B0)[µm]

f6 442.8±12.8

f3 434.0±9.9

f ′3 440.3±9.9

Table 5.8: Results of theB0 lifetime fits in D∗−π+ decays. Thef6 result is quoted directly
from [30]. The f3 and f ′3 results are obtained by running the 3-component fit described in
Section 5.6 with the normalizations described above.

The B0 lifetime obtained using thef3 normalizations is statistically compatible with
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the f6 result. Since the cross-check fits the same data as the reference fit, we expect much

better agreement than just statistical compatibility. Whenthe improved mass fit fractions,

f ′3, are applied, the agreement between the fit results improvesdramatically.

Because the cross-check fit result is very close to the resultsreported in Reference [30],

this cross-check serves as further validation that the methods developed for measuring the

Λ0
b lifetime are reliable.
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Figure 5.37: Mass fit result for theB0→ D∗−π+ cross-check mode. From this fit, thef3
normalizations are obtained.
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Figure 5.38: The projection of the 3-dimensional likelihood of the fit for cτ(B0) on the
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shown on the Left while thef ′3 fit is shown on the Right.
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Λ0
b→ Λ+

c π− Fit Result

Using the likelihood and shapes described in Section 5.5.2 and the mass fit normaliza-

tions listed in Table 5.3 , the result of the un-binned, maximum likelihood,Λ0
b lifetime fit

on data is

cτ(Λ0
b) = 422.8±13.8 µm (6.1)

The resulting likelihood projected onto thect-axis is shown in Figure 6.1.
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C π− FIT RESULT
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Figure 6.1:Λ0
b lifetime fit on data. The projection of the 3-dimensional likelihood of the fit

for τ(Λ0
b) on thect axis.
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C π− FIT RESULT

6.1 Λ0
b→ Λ+

c π− Result Cross-Checks

In order to gain confidence in the result, several additionalcross checks have been

performed.

6.1.1 Definition of the Signal Region

The baseline,m(Λ+
c π−), signal window is modified by moving the lower edge up by

15MeV/c2; cutting into someΛ0
b signal but also significantly reducing the contribution

from many of the backgrounds. The mass fit remains the same as that used in the default

fit but the fit normalizations change with the re-definition ofthe signal window. The ef-

ficiency distribution is recalculated from the HQGen Monte Carlo sample using the new

mass window definition. Additionally, thePs
σct

distribution is also recreated to reflect the

change in the signal mass window whilePb
σct

remains unchanged.

The normalizations and lifetime fit results are listed in Table 6.1. The lifetime fit

projection is shown in Figure 6.2. The lifetime result with the new normalizations is

429.0±14.4µmfor a shift of about 6µmcompared to the baseline fit result.

6.1.2 Split the Signal Region

The defaultm(Λ+
c π−) signal window is split in half; a low (5.565≤m(Λ+

c π−)≤ 5.617)

and high (5.617≤ m(Λ+
c π−) ≤ 5.670) mass window. The mass fit remains unchanged,

but the normalizations are re-defined for each of the signal mass windows. Efficiency

129



CHAPTER 6. Λ0
B→ Λ+

C π− FIT RESULT
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Figure 6.2: Lifetime fit projection with a revised mass signal window. The lower edge of
the baseline mass window is moved 15MeV/c2 from 5.565 to 5.580GeV/c2.
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C π− FIT RESULT

Normalization Value

NΛ0
b→Λ+

c π− 2789.4±55.6 (86%)

NBFour−Track 181.2±11.1 (6%)

NΛ0
bFour−Track 101.6±14.2 (3%)

NCombinatoric 98.9±4.3 (3%)

NΛ0
b→Λ+

c K 63.8±7.3 (2%)

NΛ0
bSemi−leptonic 16.3±4.7 (1%)

NBOther 5.6±5.3 (< 1%)

cτ(Λ0
b) 429.0±14.4µm

Table 6.1: Normalizations for all backgrounds in the modified signal window; 5.580≤
m(Λ+

c π−)≤ 5.670.

distributions are recalculated from the signal Monte Carlo sample for both the low and high

mass windows. Additionally,Ps
σct

distributions are also recalculated to reflect the changes

in the low and high signal windows. The samePb
σct

distribution is used in both the high and

low mass window fits.

The normalizations andΛ0
b lifetime result from each fit are listed in Table 6.2. The pro-

jection of the fits on the proper time axis are shown in Figure 6.3. Both fits are consistent

with each other and with the defaultΛ0
b lifetime fit result.
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C π− FIT RESULT

Quantity Low Mass Window High Mass Window

NΛ0
b→Λ+

c π− 1650.0±32.9 (79%) 1245.8±25.0 (86%)

NB0 Four−track 177.1±10.9 (8%) 73.3±4.5 (5%)

NΛ0
b→Λ+

c K− 131.8±15.1 (6%) 6.7±0.8 (< 1%)

NCombinatoric 58.8±2.5 (3%) 57.4±2.5 (4%)

NΛ0
b Four−track 50.0±7.0 (2%) 63.7±8.9 (4%)

NΛ0
b→l µ̄l X

23.3±6.7 (1%) 3.7±1.1 (< 1%)

NΛ0
b Other 2.4±0.2 (< 1%) 1.0±0.1 (< 1%)

cτ(Λ0
b) 428.2±18.3µm 414.8±21.0µm

Table 6.2: Comparison of normalizations and resulting lifetimes when the mass and life-
time fit are run separately on a low, 5.565≤ m(Λ+

c π−) ≤ 5.617, and high, 5.617≤
m(Λ+

c π−)≤ 5.670, mass windows. mass window.

6.1.3 Lifetime Fit by Run Ranges

As a final cross-check, the lifetime fit is run independently on data from different run

periods;xbhd0d, xhbd0h, andxhbd0i. Thexbhd0i dataset only consists of runs up to

212133 (instead of the standard 233111) because only those runs were available when the

data sample was stripped. In each of the three run ranges, thetwo-step mass and lifetime

fit is performed. The same default lifetime fit model is used when fitting each sample. The

normalizations from the mass fits and lifetime fit results in each run range are given in

Table 6.3 with the fit projections shown in Figure 6.4. In eachof the three samples, the fit

results are consistent with one another and with the baseline fit result.
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C π− FIT RESULT
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Figure 6.3: Lifetime fit results on two mass windows. Left: the low mass window,
5.565≤m(Λ+

c π−)≤ 5.617GeV/c2 and Right: the high mass window, 5.617≤m(Λ+
c π−)≤

5.670GeV/c2.

133



CHAPTER 6. Λ0
B→ Λ+

C π− FIT RESULT

Quantity 0d 0h 0i

NΛ0
b→Λ+

c π− 946.3±33.3 (81%) 1199.6±37.3 (82%) 768.1±30.0 (81%)

NBFour−Track 108.7±10.5 (9%) 121.1±11.3 (8%) 86.4±8.6 (9%)

NCombinatoric 42.1±2.8 (4%) 46.7±3.1 (3%) 29.9±2.4 (3%)

NΛ0
bFour−Track 21.2±6.2 (2%) 36.7±7.5 (3%) 20.6±5.3 (2%)

NΛ0
b→Λ+

c K 38.4±7.0 (3%) 36.8±8.4 (3%) 21.6±5.8 (2%)

NΛ0
bSemi−leptonic 11.7±3.4 (1%) 16.2±4.0 (1%) 9.0±2.8 (1%)

NΛ0
bOther 1.2±0.1 (< 1%) 1.4±0.1 (< 1%) 1.0±0.1 (< 1%)

cτ(Λ0
b) 398.2±22.6µm 448.1±24.3µm 406.5±25.8µm

Table 6.3: Comparison of normalizations and resulting lifetimes from fits on data from
separate run periods.
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C π− FIT RESULT
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Figure 6.4: Lifetime fit results forxbhd0d (Top Left), xbhd0h (Top Right), andxbhd0i
(Bottom).
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Estimated Systematic Error

According to their effect on calculating the SVT efficiency,we divide the systematic

error estimates into two groups: those that bias the SVT efficiency, and those that do not.

As described in Section 5, we first execute a binned likelihood fit of them(Λ+
c π−) axis

(the mass fit), followed by a two-dimensional unbinned maximum likelihood fit ofct and

σct (the lifetime fit) on a restricted mass range. All of the parameters that are floating in

the mass fit are fixed in the lifetime fit so each fit can be considered independently. In other

cases, especially when testing for bias in the procedure, wegenerate distributions, from the

full 2-D PDF, on the entire mass region (4.8GeV/c2 < m(Λ+
c π−) < 7.0GeV/c2), and then

fit using the previously described two-step procedure.

Most of the systematic errors in theΛ0
b lifetime measurement are evaluated using a

modified Toy Monte Carlo technique. For the parameters associated with an individual

systematic, we generate Toy Monte Carlo samples where these parameters are varied. The
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sample is fit with both the default fit and the fit with varied parameters. We take the differ-

ence between the values ofΛ0
b lifetime in the ‘varied’ (a.k.a. ‘rigged’) fit and the ‘default’

fit. This difference, caused by the systematic variation, constitutes the associated systematic

error. After generating and fitting 1000 Toy Monte Carlo samples, the resulting distribution

is fit with a Gaussian, and the mean is taken as the systematic shift due to that particular

systematic.

7.1 Non-SVT-Biased Systematics

First we treat the systematic uncertainties that are commonto any fully reconstructed

CDF lifetime measurement, regardless of whether that measurement is biased by the SVT

trigger.

7.1.1 Alignment

A 2.0 µm systematic error is quoted from a previous CDF lifetime analysis [1].

7.1.2 Fitter bias

The fitter bias can be evaluated by running a sufficiently large set of Toy Monte Carlo

experiments. The fitter bias has been discussed previously in Section 5.5.3 and found to be

negligible.
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Description Value

Absolute smearing of the blinded lifetime 0.31µm

Fractional smearing of the blinded lifetime0.08%

Fractional smearing of theNΛ0
b→Λ+

c π− 0.82%

Fractional smearing of theNB Four−track 2.5%

Table 7.1: Summary of results from 1000 fluctuations of theB→ four-track mass template.

7.1.3 Background mass template shapes

The shape of various templates in the background depend on the relative amounts of

different modes in the background Monte Carlo samples. Theseshapes affect the relative

contributions of each background mode to the total shape. The most significant source of

background in theΛ0
b signal window is the contribution from theB→ four track template.

By far the biggest contribution to this component comes fromB0→D+π− decays (approx-

imately half). Therefore theB→ four track template is modified by fluctuating the number

of B0→ D+π− decays according to the 1 sigma PDG uncertainty.

An ensemble of 1000 experiments with fluctuatedB0→ D+π− contributions was per-

formed. The result of the experiments are summarized in Table 7.1, and theΛ0
b lifetime

distribution is shown in Figure 7.1. Based on this result, thesystematic uncertainty due to

the shape of the mass templates in the signal window is negligible.

Four examples from these experiments of the fluctuation of the B→ four track back-

ground component are given in Figure 7.2.
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Mean      0.00000± 0.04068 
Sigma     9.676e-07± 3.265e-05 

 dist for 1000 Toy B4Track Exptsτc

Figure 7.1: The distribution ofΛ0
b lifetimes from 1000 toy experiments where the amount

of B0→ D+π− decays is fluctuated. For each toy experiment, the blinded lifetime fit is
repeated on the data.

7.1.4 Background normalizations

The normalization of each background component is obtainedfrom the binned mass fit

that is run before the lifetime fit (see Table 5.3). The mass normalizations are all parameters

obtained from the mass fit; and therefore come with some uncertainty. The normalizations

fix the fraction of each type of background allowed in the finallifetime fit.

In order to evaluate the systematic effect of this uncertainty, an ensemble of 5 sets

of mass normalizations was generated. Each normalization is fluctuated according to a

Gaussian (where the mean is the baseline value from the mass fit, and the width is the un-

certainty from the mass fit). For each set of normalization parameters, the baseline lifetime
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Figure 7.2: Four examples of the fluctuated versions of theB→ four track background
component. Blue: baseline un-fluctuated background component; Red: fluctuated back-
ground component

fit is repeated, and the resulting PDFs are fed into the Toy Monte Carlo (∼ 500 iterations).

The distribution of the resulting Toy lifetime fits and theirpull distribution for one ensem-

ble are shown in Figure 7.3. The estimated systematic uncertainty due to the background

normalization uncertainty is 1.0µm as listed in Table 7.2.

140



CHAPTER 7. ESTIMATED SYSTEMATIC ERROR

) [cm]bΛct(
0.030 0.035 0.040 0.045 0.050 0.055 0.060

 mµ
E

xp
er

im
en

ts
 p

er
 3

.0
 

0

10

20

30

40

50

Systematic: Signal_Norms_3 ct distribution ct_hist
Entries  500
Mean   0.04334
RMS    0.001403
Underflow       0
Overflow        0

 / ndf 2χ  18.41 / 24
Constant  2.40± 41.45 
Mean      0.00007± 0.04336 
Sigma     0.000051± 0.001396 

Systematic: Signal_Norms_3 ct distribution

]σ [ctσ)/input-ct
meas

(ct
-5 -4 -3 -2 -1 0 1 2 3 4 5

σ
E

xp
er

im
en

ts
 p

er
 0

.5
 

0

20

40

60

80

100

Systematic: Signal_Norms_3 pull distribution pull_hist
Entries  500
Mean   0.09104
RMS    0.9919
Underflow       0
Overflow        0

 / ndf 2χ  14.87 / 10
Constant  5.8± 100.1 
Mean      0.0482± 0.1162 
Sigma     0.0357± 0.9685 

Systematic: Signal_Norms_3 pull distribution

Figure 7.3: Left: The distribution of lifetime fit results from the baseline lifetime fit on Toy
events generated from SignalNorms3 rigged PDF’s. The results are fit with a Gaussian
distribution shown in red. Right: the pull distribution for the Toy fits. The pull is defined
as fitct - riggedct / fit σct.

Sample ctRig [µm] ctToy [µm] ctiRig−ctiToy[µm]

SignalNorms1 431.6 432.7 −0.9

SignalNorms2 430.5 432.1 −1.9

SignalNorms3 432.9 433.5 −0.2

SignalNorms4 433.7 433.3 0.2

SignalNorms5 433.8 433.8 0.0

Quoted Systematic (RMS): 0.9

Table 7.2: Summary of the Toy Monte Carlo experiments to estimate the systematic error
due to the uncertainty in the normalizations obtained from the mass fit.
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7.2 SVT-Biased Systematics

All of the systematic uncertainties listed below are due to uncertainties in parameters

or distributions which are fixed in the lifetime fit. Most important of these is the efficiency

function.

The systematic errors are estimated using the following ToyMonte Carlo procedure:

• A maximum or minimum fluctuation (or an ensemble of possible fluctuations) is

constructed for a given source of systematic error. If the fluctuation affects the signal

Monte Carlo sample, a new,riggedefficiency function is calculated.

• The blinded lifetime fit is repeated using theriggedefficiency function or other fluc-

tuation. The lifetime from the resulting fit isctRig(Λ0
b). The resulting PDF’s are those

that we would have measured if the datareally wasdifferent by the amount assumed

by the fluctuation in the first step.

• 1000 Toy Monte Carlo datasets are generated based on theriggedPDF’s.

• Each Toy dataset, is fit with thebaselineblinded fit. Here, we attempt to fit therigged

data with our “wrong”baselinelikelihood. The mean lifetime from thebaselinefit

to riggedToy samples isctToy(Λ0
b).

• The systematic is the difference betweenctRig(Λ0
b) andctToy(Λ0

b).
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7.2.1 Preliminary remarks on the SVT simulation

The crux of theΛ0
b lifetime measurement is the determination of the efficiencyof the

TTT. This efficiency function is evaluated from a carefully crafted realistic Monte Carlo

simulation. The systematics below fall into two groups:

1. systematic uncertainties arising from the simulation ofthe CDF II detector and the

TTT trigger

2. systematic uncertainties arising from the lack of knowledge of theΛ0
b baryon pro-

duction and its decay intoΛ+
c π−.

As it is shown below, the second group of systematics dominates over the first one. The first

group (systematic errors on the TTT efficiency that arises from the incorrect or incomplete

description of the hardware) can be divided into two parts:

(a) Monte Carlo simulation of the CDF events

(b) simulation of the SVT reconstruction and TTT

We will address these two in the reverse order. We use the program svtsim, which is

an emulatorof the trigger hardware. When the data are fed into it, it produces bitwise

identical results as the SVT crates. We apply the TTT selection criteria offline, but use the

SVT information (pT , d0, φ0) produced bysvtsim.

Therefore, in(b) there is no room for a systematic error, as the computations are exact.

The only source of the systematic uncertainty in this case is(a) – potentially incorrect

simulated data that are fed into the trigger simulation.
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The way we generate and simulate events using the B group’s realistic Monte Carlo

simulation is described in Section 4.3.1. In brief, the GEANT3 tracing engine calls the sil-

icon charge deposition model which has been tuned on data. IntheSiClusteringModule,

the run-by-run calibration constants are downloaded and all dead and noisy channels are

masked away (including whole SVX3d chips and occasionally dead half-ladders). We are

using luminosity-weighted simulation, and the dead channel map is downloaded run by

run. The misalignment could impact the TTT rates, and its effect is quoted as a source of

systematic error (the main source being the uncertainty on the radial scale of the SVXII as

a whole, and primarily impacts the meaning ofLxy rather than the TTT efficiency). We esti-

mate a systematic error due to the source(a) explained above using a data sample collected

with an independent (di-muon) trigger path. The only remaining effect that can impact the

behavior of SVT is the location of the primary vertex, which is also obtained run-by-run

in the simulation, and which is studied and quoted as a separate source of the systematic

uncertainty.

7.2.2 Data-Monte Carlo Agreement: simulation of SVX II

and SVT

Nevertheless, we wish to set an upper limit on how discrepantthe Monte Carlo simula-

tion of SVX II and SVT could be from the data, and assign a systematic error which thus

covers several of the areas described above.
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In order to separate the physics effects arising from the lack of knowledge of theΛ0
b

baryon production and its decay intoΛ+
c π− (which are handled separately and yield several

sources of the systematic error), we ‘fake’ the Monte Carlo simulation by feeding the four

vectors of muons from aJ/ψ→ µ+µ− decay, simulate those events and then compare them

to the original data.

We reconstructJ/ψ→ µµ events in thexpmm0d sample, collected with the di-muon

trigger. To reduce the data size we apply loose cuts ofpT(µ) > 2 GeV andLxy(J/ψ) >

100 µm. The resultingJ/ψ mass distribution fitted to a Gaussian (signal) and a second-

order polynomial (background) is shown in Fig. 7.4. We definem(J/ψ)±3σ as the signal
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Figure 7.4:J/ψ→ µµ mass fitted to a Gaussian (signal) and a second-order polynomial
(background).

region and [-10σ,-5σ], [5σ,10σ] as the sideband regions.

Following the prescription of a previous work [47] we calculate J/ψ sideband sub-

tracted TTT efficiencies,ε = Ntrig/Ntot, in pT(µ), |d0(µ)| andLxy(Jψ) bins, whereNtot is

the total number of muons (J/ψ candidates) in a given bin, andNtrig
i is the corresponding
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number of muons (J/ψ candidates) passing the SVT/offline track matching and TTT cuts.

Fig. 7.5 shows the sideband subtractedNtrig (red) andNtot (black) histograms (top) and the

corresponding efficiencies,ε, (bottom).
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Figure 7.5: Sideband subtractedNtrig (red) andNtot (black) histograms inpT(µ), |d0(µ)|
andLxy(Jψ) bins (top) and the corresponding efficiencies,ε, (bottom).

To ensure maximum possible compatibility between physics events in data and Monte

Carlo, we generate HEPG banks from the reconstructed momentaand production vertices

from the data events and pass them through the same series of detector and trigger simu-

lations and reconstruction algorithm as ourΛ0
b signal realistic MC. The efficiencies from

the resulting “Fake MC” is shown in Fig. 7.6. Note that since weuse real data events for

MC simulation, the MC distributions are sideband subtracted the same way as data. Finally

we calculate a correction factor,CF = εdata/εMC, in the bins ofLxy(J/ψ). Fig. 7.7 shows
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Figure 7.6: Sideband subtractedNtrig (red) andNtot (black) histograms inpT(µ), |d0(µ)|
andLxy(Jψ) bins (top) and the corresponding efficiencies,ε (bottom) in “Fake MC”.

theCF(Lxy) distribution fitted to a linear function. The resulting slope, 0.037±0.102, is

consistent with zero.

However, given the available statistics ofJ/ψ→ µµ data available for this check, one

cannot rule out a slight deviation of the slope of the correction factorCF(Lxy) from zero.

Therefore we evaluate the upper limit on a possible source ofa systematic error due to the

simulation of the SVX II detector and SVT by changing the slope ofCF(Lxy) by 1σ (0.102)

up and down from the central value of 0.037, and evaluate the effect. Note, however, that

this is theupper limiton a presence of a systematic error from this source. The actual error

is likely smaller – but we have no ability to tell by how much.

In order to evaluate the effect of moving the slope ofCF(Lxy) by ±1σ, we take both
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shifts and reweight the large realistic Monte Carlo sample, thus obtaining two additional

‘rigged’ TTT efficiency distributions, which are used to estimate the systematic error by
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Figure 7.8: Left: The distribution of lifetime fit results from the baseline lifetime fit on Toy
events generated from riggedLxy(Λ0

b) PDF’s. The results are fit with a Gaussian distribution
shown in red. Right: the pull distribution for the Toy fits. Thepull is defined as (fitct -
riggedct) / fit σct.
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Sample ctRig [µm] ctToy [µm] ctiRig−ctiToy[µm]

Lxy(Λ0
b)+σ 427.2 433.9 −6.3

Lxy(Λ0
b)−σ 433.8 433.5 0.5

Estimated Systematic Error 6.3

Table 7.3: Summary of the results from Toy Monte Carlo experiments to estimate the
systematic error due to the uncertainty in the SVT model.

the usual Toy MC method. Fig. 7.8 (left) shows a distributionof lifetime fit results from

the baseline lifetime fit on Toy events generated from a rigged Lxy(Λ0
b) PDF. Also shown is

its fit (red) to a Gaussian. The corresponding pull distribution is shown on the right. The

results from the+1σ and−1σ experiments are summarized in Table 7.3. The estimated

systematic error due to uncertainties in the SVT simulationinputs is 6.3 µm.

7.2.3 Data-Monte Carlo Agreement: Primary Vertex Po-

sition

The5.3.4 version of the B group’s Monte Carlo production package that was used to

generate the HQGen sample ofΛ0
b→ Λ+

c π− decays only includes SVT beamline informa-

tion up to and including run number 186586. The 1.1 f b−1 data sample that we fit to obtain

the Λ0
b lifetime result includes runs up to run number 212133. As a result, the primary

vertex position is not well reproduced in runs beyond run number 186586 (see Appendix

C.4).
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To estimate the systematic error due to the difference in primary vertex positions, the

Monte Carlo was split into four samples; low and high primary vertexx position and low

and high primary vertexy position samples. Each sample has approximately the same

number events, roughly splitting the sample in half inx and y primary vertex position

respectively. Rigged efficiency functions were computed from each of the four samples.

Toy experiments are again used to generate events accordingto the rigged PDFs which are

fit with the baseline model. The Toy lifetime fit results and the pull distribution for one of

the samples are shown in Figure 7.9. The results from each of the four samples are given

in Table 7.4. The estimated uncertainty due to the primary vertex position is∼ 1.2µm.
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Figure 7.9: Left: The distribution of lifetime fit results from the baseline lifetime fit on Toy
events generated from rigged primary vertex lowx position PDF’s. The results are fit with
a Gaussian distribution shown in red. Right: the pull distribution for the Toy fits. The pull
is defined as fitct - riggedct / fit σct.
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Sample ctRig [µm] ctToy [µm] ctiRig−ctiToy[µm]

High PVx 432.6 431.5 0.8

Low PVx 432.8 433.2 −0.7

High PVy 432.1 432.2 −0.5

Low PVy 433.4 432.5 1.2

Estimated Systematic Error 1.2

Table 7.4: Summary of the results from Toy Monte Carlo experiments to estimate the
systematic error due to the uncertainty in the primary vertex position.

7.2.4 Data-Monte Carlo Agreement: Primary Vertex Er-

rors

When reconstructingΛ0
b→ Λ+

c π− events, we reconstruct the primary vertices event-

by-event using the PrimeVertexFinder algorithm which iteratively clusters prompt tracks

alongzaxis.

In the the process of realistic Monte Carlo simulation, we thus need to reproduce the

errors on the primary vertex finding that is seen in data. Since our realistic samples are pro-

duced with HQGen, there are no prompt tracks and these errorsare parametrically simu-

lated by generating random numbers from the sideband-subtracted distributions of primary

vertex errorsσx andσy. Thus the agreement of the primary vertex errors is excellent by

construction.

Any kind of systematic that can be associated to this processis to include the fluctua-
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tions on the sideband-subtracted data distributions. However, any kind of disagreement that

could be artificially manufactured is much smaller than the disagreement that is brought

with the data-to-MCct scale factor,Sct, which effectively stretches and compresses the

whole distribution along the abcissa. So one expects that this systematics is much smaller

than the systematics due toSct scale factor. However the latter is negligible, so thus the

systematics due to primary vertex error data-MC (dis)agreement is also taken to be negli-

gible.

7.2.5 Data-Monte Carlo Agreement:Λ+
c Dalitz Structure

The contributions of the different sub-components of theΛ+
c → pK−π+ are uncertain in

the Monte Carlo. The four dominantΛ+
c decays are considered;Λ+

c → pK∗, Λ+
c →∆++K−,

Λ+
c →Λ(1520)π+, and non-resonantΛ+

c → pK−π+. In the baseline analysis, the branching

fractions are fixed to the PDG [8] values as described in Section 4.3.1.2. TheΛ+
c branching

fractions are poorly measured, with large uncertainty. Furthermore, our efforts to match

the Monte CarloΛ+
c branching fractions to those observed in data, were met withlimited

success (see Appendix D).

The systematic error, due to the Dalitz fractions, is therefore estimated very conserva-

tively. Several random ensembles are generated; the value of each fraction is fluctuated,

between±3σ of the PDG error, using a flat prior distribution. The fractions generated for

each of the ensembles are listed in Table 7.5. The systematicis computed using Toy Monte

Carlo as described above. The RMS of the resulting shifts from the baseline lifetime result
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is quoted as the systematic. The distribution of the Toy lifetime fit results and the pull dis-

tribution for one ensemble are shown in Figure 7.10. The estimated uncertainty due to the

Dalitz fraction uncertainty is∼ 3.7µm.
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Figure 7.10: Left: The distribution of lifetime fit results from the baseline lifetime fit on
Toy events generated from rigged Dalitz9 PDF’s. The results are fit with a Gaussian
distribution shown in red. Right: the pull distribution for the Toy fits. The pull is defined
as fitct - riggedct / fit σct.

7.2.6 Data-Monte Carlo Agreement:Λb Polarization

The Λ0
b polarization in the signal Monte Carlo is re-weighted to match the angular

distributions as described in Section 4.3.1.3. Only the production angle of the proton in

the Monte Carlo is re-weighted. The re-weighting is done by computing the ratio of the

distributions of the angleΘp in data and Monte Carlo, and fitting with a straight line to

obtain the relative weight. The slope of the re-weighting fitis varied up and down by

1σ. The systematic is then computed using Toy Monte Carlo as described above. The

distribution of the Toy lifetime fit results and their pull distribution for one−1σ test are

shown in Figure 7.11. The results from both the+ and−1σ experiments are summarized
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Sample pK∗ ∆++K Λ(1520)π pKπ ctRig [µm] ctToy [µm] ctiRig−ctiToy[µm]

PDG [8] 0.227±0.071 0.122±0.054 0.255±0.085 0.397±0.113 - - -

Dalitz 1 0.120 0.124 0.360 0.395 432.1 432.3 −0.9

Dalitz 2 0.174 0.109 0.262 0.455 430.1 433.0 −3.1

Dalitz 3 0.169 0.269 0.002 0.560 428.8 432.8 −4.3

Dalitz 4 0.204 0.085 0.316 0.394 433.2 433.4 0.0

Dalitz 5 0.099 0.240 0.101 0.560 430.2 434.0 −3.4

Dalitz 6 0.050 0.304 0.459 0.187 433.6 433.0 0.4

Dalitz 7 0.105 0.071 0.036 0.788 430.9 433.1 −2.5

Dalitz 8 0.309 0.199 0.259 0.233 429.8 432.9 −3.3

Dalitz 9 0.275 0.258 0.015 0.452 425.7 433.2 −7.6

Dalitz 10 0.243 0.285 0.205 0.267 429.3 434.2 −4.9

Estimated Systematic Error (RMS) 3.7

Table 7.5:Λ+
c decay fractions used to evaluate the systematic error due tothe Dalitz branch-

ing fraction uncertainty. The branching fraction of each mode is chosen between±3σ using
a flat distribution to estimate the systematic error. The Right column lists theΛ0

b lifetime
difference from the baseline when the listed fractions are used. The systematic is taken
from the calculated RMS from the 10 Dalitz fraction ensembles.

in Table 7.6. The estimated systematic error due to the uncertainty in the polarization re-

weighting is 1.4µm.

7.2.7 Data-Monte Carlo Agreement: Tracks firing the

TTT

The signal Monte Carlo was re-weighted to match the distribution, found in data, of

track-pairs satisfying the TTT as described in Section 4.3.1.4. The uncertainty in this re-

weighting is evaluated as a source of systematic error. The central value assigned to each
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Figure 7.11: Left: The distribution of lifetime fit results from the baseline lifetime fit on Toy
events generated from rigged Polarization−1σ PDF’s. The results are fit with a Gaussian
distribution shown in red. Right: the pull distribution for the Toy fits. The pull is defined
as fitct - riggedct / fit σct.

Sample ctRig [µm] ctToy [µm] ctiRig−ctiToy[µm]

Polarization+1σ 434.7 432.9 1.4

Polarization−1σ 430.9 432.6 −1.3

Estimated Systematic Error 1.4µm

Table 7.6: Summary of the results from Toy Monte Carlo experiments to estimate the
systematic error due to the uncertainty in the re-weightingof the proton production angle.

trigger track-pair is fluctuated using a Gaussian distribution with a width equal to the error

on the track-pair. An example of one such fluctuation is shownin Figure 7.12. The results

from the Toy experiment using this fluctuation are shown in Figure 7.13. A summary of all

experiments is given in Table 7.7. The systematic error due to the uncertainty in the trigger

track-pair re-weighting is 2.0µm.
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Figure 7.12: An example fluctuated trigger code distribution used to evaluate the systematic
error.
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Figure 7.13: Left: The distribution of lifetime fit results from the baseline lifetime fit on
Toy events generated from rigged TrigCode2 PDF’s. The results are fit with a Gaussian
distribution shown in red. Right: the pull distribution for the Toy fits. The pull is defined
as fitct - riggedct / fit σct.

7.2.8 Data-Monte Carlo Agreement:pT(Λb) spectrum

The initial pT spectrum of theΛb is not known precisely. In fact the best measure-

ment comes from our own data sample. We re-weight thepT(Λ0
b) of the Monte Carlo as

described in Section 4.3.1.5. The fit used to re-weight thepT spectrum is uncertain. We

change the slope of this fit up and down by 1σ to evaluate the systematic error. The Toy
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Sample ctRig [µm] ctToy [µm] ctiRig−ctiToy[µm]

TrigCode1 431.8 432.4 −1.2

TrigCode2 436.6 432.6 3.8

TrigCode3 432.5 432.9 −0.6

TrigCode4 433.4 432.8 0.5

TrigCode5 430.4 431.6 −1.6

Quoted Systematic: (RMS) 2.0

Table 7.7: Summary of the Toy Monte Carlo experiments to estimate the systematic error
due to the uncertainty in the re-weighting of the trigger track-pair distribution.

results from the experiment with the fit weighted down by 1σ are shown in Figure 7.14.

The Results from both Toy experiments are summarized in Table7.8. The systematic error

due to the uncertainty in thepT re-weighting is negligible.
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Figure 7.14: Left: The distribution of lifetime fit results from the baseline lifetime fit on
Toy events generated from riggedpT(Λ0

b) −1σ PDF’s. The results are fit with a Gaussian
distribution shown in red. Right: the pull distribution for the Toy fits. The pull is defined
as fitct - riggedct / fit σct.
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Sample ctRig [µm] ctToy [µm] ctiRig−ctiToy[µm]

pT(Λ0
b) +1σ 431.2 432.0 0.4

pT(Λ0
b) −1σ 434.1 433.3 −0.4

Quoted Systematic: negligible

Table 7.8: Summary of the Toy Monte Carlo experiments to estimate the systematic error
due to the uncertainty in the re-weighting of thepT(Λ0

b) spectrum.

7.2.9 Combinatorialct template

The shape of the combinatorial backgroundct is modeled, in the baseline fit, with a

Landau distribution to fit thect distribution found in candidates from the upper sideband

of data. We evaluate the sensitivity of the lifetime fit to this shape by using a differentct

shape. The shape that is used for the systematic is a smoothedhistogram of thect of the

same candidates in the upper sideband of data. The baseline and rigged combinatorialct

templates are shown overlayed in Figure 7.15. The Toy resultis shown in Figure 7.16. The

systematic error due to the shape of the combinatorialct template is 2.9µm.

Sample ctRig [µm] ctToy [µm] ctiRig−ctiToy[µm]

Combinatorialct Template 434.5 431.0 2.9

Quoted Systematic: 2.9
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Figure 7.15: A comparison of the baseline (red) and systematic (black) combinatorialct
template shapes.
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Figure 7.16: Left: The distribution of lifetime fit results from the baseline lifetime fit on
Toy events generated from rigged combinatorial backgroundtemplate PDF. The results are
fit with a Gaussian distribution shown in red. Right: the pull distribution for the Toy fits.
The pull is defined as fitct - riggedct / fit σct.
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7.2.10 B0 SVT Efficiency

The defaultB0 background efficiency is computed using a sample of about 80,000

B0→ D+π− decays reconstructed asΛ0
b→ Λ+

c π− as described in Section 5.5.2. The

systematic error associated with the shape of theB0 efficiency is estimated by computing

a rigged efficiency from a subset of theB0→ D+π− Monte Carlo events that pass much

tighter mass cuts on the reconstructedD+π− track pair. The resulting sample consists of

about 9,000 events. The Toy results are shown in Figure 7.17. The systematic error quoted

due to the uncertainty in theB0 efficiency is 1.0µm.

Sample ctRig [µm] ctToy [µm] ctiRig−ctiToy[µm]

RiggedB0 Efficiency 431.7 432.9 −1.0

Quoted Systematic: 1.0
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Figure 7.17: Left: The distribution of lifetime fit results from the baseline lifetime fit on
Toy events generated from the riggedB0 efficiency PDF. The results are fit with a Gaussian
distribution shown in red. Right: the pull distribution for the Toy fits. The pull is defined
as fitct - riggedct / fit σct.
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7.2.11 TrueB0 lifetime

The value of the trueB0 lifetime is set to a constant (cτ(B0) = 460±10µm[8]) for theB

meson backgroundct templates. In order to evaluate the sensitivity of the fit to the value of

theB0 lifetime, Toy experiments are run withcτ(B0) set to 450 and 470µm(i.e.±1σ of the

PDG central value). The result from thecτ(B0) = 450µmexperiment is shown in Figure

7.18. The results of both Toy experiments are summarized in Table 7.9. The systematic

error due to the value of the trueB0 lifetime is∼ 1.0µm.
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Figure 7.18: Left: The distribution of lifetime fit results from the baseline lifetime fit on Toy
events generated from riggedcτ(B0) = 470µm PDF’s. The results are fit with a Gaussian
distribution shown in red. Right: the pull distribution for the Toy fits. The pull is defined
as fitct - riggedct / fit σct.

Sample ctRig [µm] ctToy [µm] ctiRig−ctiToy[µm]

cτ(B0) = 470µm 430.8 432.8 −0.8

cτ(B0) = 450µm 432.3 433.1 0.9

Quoted Systematic: 1.0

Table 7.9: Summary of the Toy Monte Carlo experiments to estimate the systematic error
due to the uncertainty on the trueB0 lifetime.
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7.2.12 Λ+
c lifetime

The lifetime of theΛ+
c is set to 60µm in the default HQGen sample. To estimate

the systematic error due to the assumedΛ+
c lifetime, the sample is re-weighted such that

cτ(Λ+
c ) = 66µm. Based on this re-weighted sample, an efficiency is generated and Toy

experiments are run. The riggedΛ+
c lifetime efficiency results in a shift of< 1µm in the

cτ(Λ0
b) fit. The systematic error due to theΛ+

c lifetime is negligible.

7.2.13 Si simulation effects: Scale factor

As has been previously described, a global scale factor was introduced to correct for

underestimatedct errors. To evaluate the sensitivity of the lifetime fit to thevalue of this

scale factor, the value used in the fit is changed by±20%. The scale factors,S1 andS2,

used to scale the the narrow and the broad Gaussians in our resolution function are varied.

The results from the Toy experiments used to evaluate this effect are summarized in Table

7.10. Variation of the globalσct scale factor produce negligible changes in the final result

of theΛ0
b lifetime.

7.2.14 Impact Parameter Correlation

We quote a systematic of 1.0 µm from Ref. [1].
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Sample ctRig [µm] ctToy [µm] ctiRig−ctiToy[µm]

S+20% 431.5 433.0 0.1

S−20% 431.5 432.5 0.1

Quoted Systematic: negligible

Table 7.10: Summary of the Toy Monte Carlo experiments to estimate the systematic error
due to the uncertainty on global scale factor.

7.2.15 Summary of systematic uncertainties

The sources of systematic uncertainty described above are listed in Table 7.11. The total

systematic uncertainty is computed by adding all sources ofsystematic error in quadrature.

Our total systematic error, thus obtained, is 8.8 µm.
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Description Value [µm]

Alignment 2.0

SVT-SVX d0 correlation 1.0

Background Normalizations 1.0

Mass Template Shapes negligible

SVT Model 6.3

Data-MC Agreement:Λ+
c Dalitz structure 3.7

Combinatorialct Template 2.9

Data-MC Agreement: TrigCode re-weighting 2.0

Data-MC Agreement:Λ0
b polarization 1.4

Data-MC Agreement: Primary Vertex Position 1.2

B0 Efficiency 1.0

B0 Lifetime 1.0

Data-MC Agreement:pt(Λ0
b) spectrum negligible

σct Scale Factor negligible

Fitter Bias negligible

σct Binning negligible

Λ+
c Lifetime negligible

Data-MC Agreement: Primary Vertex Error negligible

Total Systematic Uncertainty 8.8

Table 7.11: Summary of the systematic uncertainties. The first group listed in the table are
non-SVT-biased sources of systematic error. The total systematic uncertainty is obtained
by adding the result of all systematics in quadrature.164
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Conclusion

Analyzing a sample of∼3,000 fully reconstructedΛ0
b→ Λ+

c π− decays from 1070±

60pb−1 of data, collected with CDF’s two displaced track trigger, wemeasure the lifetime

of theΛ0
b baryon to be;

cτ(Λ0
b) = 422.8±13.8 (stat)±8.8 (syst)µm.

Or, expressed in picoseconds as;

τ(Λ0
b) = 1.410±0.046 (stat)±0.029 (syst) ps.

Using the current world average forB0 lifetime [48] we obtain:

τ(Λ0
b)/τ(B0) = 0.922±0.039.

In Figure 8.1 this result is compared with the current world average [48] and previous

measurements ofτ(Λ0
b). This is the world’s single most precise measurement of theΛ0

b
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 lifetime [ps]bΛ
0.5 1.0 1.5 2.0

 lifetime [ps]bΛ
0.5 1.0 1.5 2.0

 (PRELIMINARY)π cΛCDF RunII 0.029±0.046 ±1.410 

Λ ψCDF RunII J/ 0.033± -0.078
+0.083 1.593 

Λ ψD0 RunII J/ 0.042± -0.115
+0.130 1.218 

 lcΛD0 RunII -0.091
+0.0871-0.110

+0.1201.290 0

 lcΛCDF RunI  0.07± 0.15 ±  1.32 

 lcΛDELPHI  0.05± - 0.18
+ 0.19  1.11 

 lcΛOPAL  0.06± - 0.22
+ 0.24  1.29 

 ll0Λ l + cΛALEPH  0.11±  1.21 

PDG 2008 -0.048
+0.049 1.383 

m]µ[100 200 300 400 500 600

 Lifetime MeasurementsbΛ

Figure 8.1: OurΛ0
b lifetime measurement is compared with the current world average (PDG

2007) and all measurements contributing to it.
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lifetime. We see excellent agreement between our result andthe current world average

and good agreement with the HQE predictions ofτ(Λ0
b)/τ(B0) between 0.88 and 0.94 as

described in Section 1.3.2.

Precise measurements of hadronic masses and lifetimes are the most effective way to

constrain the predictions of QCD. In particular, the non-perturbative effects of QCD are

important because without a sound theoretical model, it maybe impossible to identify

physics beyond the Standard Model in indirect searches. Although this measurement is still

statistically limited, it is the best of its kind – better than all of the previous measurements

combined. This measurement conclusively resolves the apparent discrepancy between the

previousΛ0
b lifetime measurements and the 2006 CDF measurement. Furthermore, it

also agrees with the latest theory predictions, confirming the HQE model of the decays of

beautiful baryons.
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CDF Calorimeter and Muon Systems

A.1 Calorimeter Systems

The calorimeter systems are located outside of the solenoidand encapsulate the entire

tracking volume. The calorimeters are separated into two main physical systems; central

calorimeters that are configured cylindrically around the beam line, and plug calorimeters

that are located forward of the tracking region, at high pseudorapidity. Each system is

comprised of two types of calorimeters; an inner, electro-magnetic calorimeter and an outer,

hadronic calorimeter. Both types of calorimeters consist ofalternating layers of scintillator

and absorber (lead for the electro-magnetic and iron in the case of the hadronic calorimeter).

A third, end-wall, hadronic calorimeter fills the coverage gap between the central and plug

calorimeters.

All of the calorimeters are segmented in azimuth and pseudorapidity to form towers
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that point back towards the interaction point on the beamline. Calorimeter data is matched

to tracks and jets found in the tracking system, and used to measure the track energy.

The calorimeters cover the region|η| < 3.64 and the full 2π aziumuthlly. In addition,

drift chambers embeded in the electromagnetic calorimeters provide position and profile

information on the point of shower maximum. Similar pre-shower detectors are also located

between the solenoid and the electro-magnetic calorimeters to help match tracks to towers.

Figure A.1: CDF plug calorimeter upgrade.

169



APPENDIX A. CDF CALORIMETER AND MUON SYSTEMS

A.2 Muon Detectors

The muon detectors are made up of scintillators and drift chambers located on the

perimeter of the other detector systems. The muon detectorsare comprised of four de-

tector sub-systems that provide coverage at different places on the detector. The Central

Muon Detector (CMU) covers the central region (|η| < 0.6) and is embeded in the outer

edge of the calorimeter wedges. The Central Muon Upgrade (CMP)also covers the central

region, but is separated from the CMU by an additional two feetof steel to reduce the noise

from non-muon events.

The Central Muon Extension (CMX) consists of arches arranged at each end of the

central detector, extending in polar angle from 420 to 55o. The CMX provides some overlap

with the CMU and CMP and extends the coverage in pseudorapidityto |η|= 1.0. The CMX

has a 30o gap at the top of the CDF detector. Furthermore, on the bottom of CDF, the CMX

is interrupted by the floor of the collision hall, here, the CMXcoverage is patched with a

fan-shaped section called the “miniskirt”.

The Intermediate Muon System (IMU) is a barrel of CMP-like chambers that surround

the beamline on either side of the detector. Counters on the endplate and inside the IMU

barrel help to reject background in order to more reliably track only muons. The IMU can

trigger on muons up to|η|= 1.5 and can be used in conjunction with the tracking systems

to track muons up to|η|= 2.0.
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Figure A.2: CDF Muon coverage.
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µ

Figure A.3: CDF Muon counter schematic.
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Universal Finder Reconstruction

if { $UFIND_DO_PID == 1 } {
mod enable CT_TrackingModule
talk CT_TrackingModule

NoTracking set t
exit

module enable TofModule
set UFIND_PID_MODULES "CT_TrackingModule TofModule"

} else {
mod disable CT_TrackingModule
mod disable TofModule
set UFIND_PID_MODULES ""

}

talk CalibrationManager
ProcessName set PROD_PHYSICS_CDF

PassName set 16
exit

talk PuffModule
puffOnly set StorableRun2SiStripSet SiClusterSet SiHitSet

exit

mod enable Prereq
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talk Prereq
if { $UFIND_IS_REALMC == 1 } {

bankType set "Simulated Trigger Bank"
}
bankType list
L1Accept set true
L2Accept set true
L3Accept set false
L3TriggerNames set B_CHARM B_CHARM_L1_DPS
show

exit

talk GeometryManager
# TOF geometry model set to Survey
TofGeometryMenu

# Other options: Nominal, Naive
GeometryModel set Survey

exit

#--- Misalignment in MC set in SiliconGeometryMenu
SiliconGeometryMenu

L00Alignment set true
AlignmentPrint set 3
AlignmentSource set default
#--- Simulation of Si passive material
BuildPassive set t
CreatePhantomLayer set true
PhantomLayerRmin set 14.8 14.8 14.8 14.8 14.8 20.5 20.5 20.8 20.5 20.5
PhantomLayerZmin set -100 -45 -15 15.1 46 -100 -45 -15 15.1 46
PhantomLayerZmax set -46 -15.1 15 45 100 -46 -15.1 15 45 100
PhantomLayerThickness set 2.8 0.9 0.8 0.9 2.8 0.38 0.524 0.232 0.524 0.38
PhantomLayerMaterial set BERYLLIUM BERYLLIUM BERYLLIUM BERYLLIUM BERYLLIUM

BERYLLIUM BERYLLIUM BERYLLIUM BERYLLIUM BERYLLIUM
PhantomLayerContainer set SVCC SVCC SVCC SVCC SVCC ISLC ISLC ISLC ISLC ISLC

exit
exit

#--- No use for TrackSelectorModule in QuickSim
talk TrackSelectorModule

#--- Cuts for the Std track views
trackCutManager
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cut errCut = HasHelixFit && PhysicalError
cut ptCutL = Pt > 1.3
cut myptCut = Pt > 0.5
cut etaCut = AbsEta < 2.0
# 2 SL AX (5 hits), 2 SL ST (5 hits)
cut cotCut = HasCOTHits 0 0 2 2 5 5
# 3 AX Si hits
cut svxCut = HasSVXIIHitLayers 3 0 0 0
#
cut K_std = etaCut && svxCut && cotCut && myptCut && errCut
cut pi_std = etaCut && svxCut && cotCut && myptCut && errCut
cut pi_soft = etaCut && errCut
cut p_std = errCut && svxCut && cotCut && Pt > 2.0 && AbsEta < 1.3
cut mu_std = etaCut && svxCut && cotCut && ptCutL && errCut

exit

inputTracks set defTracks

#--- Track Refitting
trackRefit

refitTracks set true
if { $USEL00 == 1 } {

dropL00 set false
L00Refit set true

} else {
dropL00 set true
L00Refit set false

}
dropISL set false
#--- Refit method (KAL vs G3X)
refitMethod set KAL
#--- Rescale COT covariance matrix
rescaleCOTCov set true
curvCOTFactor set 21.72
d0COTFactor set 11.57
phi0COTFactor set 14.64
lambdaCOTFactor set 1.544
z0COTFactor set 1.71
show

exit
exit
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if { $UFIND_DO_PID == 1 } {
set doPid true

} else {
set doPid false

}

talk TrackAssocModule
#--- Pions
pi_Std_Assoc

enabled set t
doSvt set t
doDedx set $doPid
doTof set $doPid
correctDedx set $doPid

exit

#--- Soft pions
pi_Soft_Assoc

enabled set t
doSvt set t
doDedx set $doPid
doTof set $doPid
correctDedx set $doPid

exit

#--- Kaons
K_Std_Assoc

enabled set t
doSvt set t
doDedx set $doPid
doTof set $doPid
correctDedx set $doPid

exit

#--- Protons
p_Std_Assoc

enabled set t
doSvt set t
doDedx set $doPid
doTof set $doPid
correctDedx set $doPid

exit
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#--- Muons
mu_Std_Assoc

doMuons set true
doSvt set true
doDedx set false
doTof set false

exit

exit
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Data vs. Monte Carlo Kinematic

Comparison

The following plots show the agreement between the side-band subtracted data (blue

data points) and the re-weighted, realistic signal Monte Carlo (red histograms).
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C.4 Primary Vertex Quantities
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Figure C.2: Version5.3.4 of the B group Monte Carlo package only includes SVT beam-
line information up to and including run number 186586. The data includes runs numbers
as high as 212133. As a result, the data and Monte Carlo agreement is poor (Left). If we
compare only up to run number 186586, the agreement is much better (Right).
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Figure C.3: Comparison of the Primary Vertexy position for all runs (Left). The agreement
is poor because the Monte Carlo does not simulate the beam position properly for run
numbers above 186586. The same comparison when data below run number 186586 is
used is shown on the Right.
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Appendix D

Studies onΛ+
c 3-body Decay Dalitz

Structures

The current knowledge onΛ+
c 3-body decays, compiled by PDG [8], comes from

a resonance amplitude analysis [49] by the E791 Collab., Fermilab. Making use of a

sample of about 950Λ+
c decays they extract the branching fractions for the 3 resonant

modes,Λ+
c → pK∗(890), Λ+

c → ∆++K− and Λ+
c → Λ(1520)π+, and the non-resonant

Λ+
c → pK−π+ mode from a likelihood fit. The measured fractions add up close to unity,

while no such constraint is imposed in the fit. From this they infer a negligible contribution

of interferences among the resonant amplitudes.

We use EvtGen decay package to generateΛ+
c 3-body decays, where theΛ+

c →

pK∗(890) andΛ+
c → ∆++K− decays are handled by the JETSET model, while theΛ+

c →

Λ(1520)π+ and the non-resonant decays are handled by a generic phase space (PHSP)
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model. We mix these modes according to the results from the E791 results [49] to make

our realistic MC sample forΛ0
b lifetime analysis. Shown in Fig. D.1 a comparison ofΛ+

c

decay Dalitz plots between sideband subtracted data and realistic MC, mixed according to

PDG fractions. As seen in the projection (bottom) plots, several structures are different
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Figure D.1: Comparison ofΛ+
c decay Dalitz plots of sideband subtracted data (top left)

and realistic MC, mixed according to PDG fractions (top right). Also shown in the bottom
plots are projections along x (bottom left) and y (bottom right) axes.

between data and MC. Especially, the bump atm2(p,K) = 4.5 GeV2 andm2(p,π) = 1.3
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GeV2 seen in the data scatter plot is missing entirely from MC. Also, the contribution for

Λ+
c → Λ(1520)π+ seems to be way too large in realistic MC compared to the data.These

discrepancies may arise due to two broad reasons; if the models used in EvtGen for the

resonant modes are inadequate, and/or if contrary to the E791 findings, the interferences

between the resonant modes are important. These issues are too complicated to be resolved

without a complete helicity amplitude analysis, which is beyond the scope of our analysis.

Due to the apparent problem of theΛ+
c →Λ(1520)π+ contribution the first thing we at-

tempted is to extract relative fractions of the 4 modes by a simple 2-Dχ2 fit to the sideband

subtracted data. Assuming E791’s result we constrained thefractions to add up to unity.

Also we imposed am2(p,K) ¡ 4.4 GeV2 cut to remove the bump discussed in the previ-

ous paragraph. The resulting distributions are shown in Fig. D.2. As seen, the fit prefers

the non-resonant mode fraction to be very large (85%). Although the fitted fractions im-

prove the data and MC comparison significantly, the distributions are still quite different

and unacceptable.

Next we explored reweighting the non-resonant mode to the sideband subtracted data,

assuming that all the kinematic info. aboutΛ+
c decays, relevant to our analysis, are con-

tained in the Dalitz plots. Fig. D.3 shows a comparison between Dalitz plots for sideband

subtracted data and the non-resonant MC reweighted to it. Note that we imposed am2(p,K)

¡ 4.4GeV2 cut to remove the bump in the bottom-right corner of the data Dalitz plot from

the reweighting procedure, although it is displayed in the plots for completeness. Starting

from a 180 K non-resonant events we reduce to about 34 K eventsafter Dalitz reweighting.
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With the rest of the reweightings imposed this sample reduces to about 19 K events, which

are not sufficient to produce a stable SVT efficiency histogram. To continue pursuing this

method, we are currently considering to multiply our non-resonant MC sample, which un-

fortunately requires significant CAF resources. If this method becomes usable the relevant

systematic is expected to be significantly smaller than its current value of 9µm.
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Figure D.2: Comparison ofΛ+
c decay Dalitz plots of sideband subtracted data (top left)

and realistic MC, mixed according to fractions extracted from a 2-Dχ2 fit (top right). Also
shown in the bottom plots are projections along x (bottom left) and y (bottom right) axes.
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Figure D.3: Comparison ofΛ+
c decay Dalitz plots of sideband subtracted data (top left)

and non-resonant decays reweighted to data (top right). Also shown in the bottom plots are
projections along x (bottom left) and y (bottom right) axes.Note that the bump in the data
Dalitz plot on the bottom-right corner is left out from the reweighting procedure.
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