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Teppei Katori

A MEASUREMENT OF THE MUON NEUTRINO CHARGED

CURRENT QUASIELASTIC INTERACTION AND A TEST OF

LORENTZ VIOLATION WITH THE MINIBOONE EXPERIMENT

The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator

Laboratory (Fermilab) is designed to search for νµ → νe appearance neutrino oscillations.

Muon neutrino charged-current quasi-elastic (CCQE) interactions (νµ + n → µ + p) make

up roughly 40% of our data sample, and it is used to constrain the background and cross

sections for the oscillation analysis.

Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is

measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured

total cross section is σ = (1.058±0.003 (stat)±0.111 (syst)) × 10−38 cm2 at the MiniBooNE

muon neutrino beam energy (700-800 MeV).

νe appearance candidate data is also used to search for Lorentz violation. Lorentz sym-

metry is one of the most fundamental symmetries in modern physics. Neutrino oscillations

offer a new method to test it. We found that the MiniBooNE result is not well-described

using Lorentz violation, however further investigation is required for a more conclusive

result.
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Part I

Neutrino physics

1



An object so small, impalpable, invisible, would seem myth enough, but scientists

reached beyond.

- I. Asimov, The Neutrino

2



Chapter 1

Introduction of this thesis

In this thesis, we present results from two major pieces of work: Tests of Lorentz violation via

neutrino oscillations and a measurement of neutrino charged current quasielastic (CCQE)

scattering with the MiniBooNE experiment.

In Part I of this thesis, the general features of neutrinos are discussed. This provides

introductory material for the remaining parts. In Chapter 2, we discuss the formalism of

neutrino oscillations. And we examine the interesting nature of neutrino oscillations. In

Chapter 3, we discuss the formalism of neutrino scattering. And we re-derive neutrino-

charged lepton, neutrino-nucleon, and neutrino-nuclei scattering cross section formulas.

More details of calculations are found in Appendix C.

In Part II, we explain the test of Lorentz violation with neutrino oscillations. This

includes three original works: Tests of Lorentz violation in ν̄µ → ν̄e oscillations (Chap-

ter 4) [1]; Global three-parameter model for neutrino oscillations using Lorentz violation

(Chapter 5) [2]; and Neutrino oscillations and Lorentz violation with MiniBooNE (Chapter

5) [3]. In Chapter 4, we provide an introduction to Lorentz violation and briefly discuss

the analysis of a test of Lorentz violation in the LSND experiment. In Chapter 5, a model

of neutrino oscillations, the “tandem” model, using Lorentz violation is presented. It is

3



CHAPTER 1. INTRODUCTION OF THIS THESIS

then compared to existing oscillation data including recent results from the MiniBooNE

experiment. In Chapter 6, we summarize Chapters 4 and 5 (Part II), and then discuss the

status and outlook of this aspect of Lorentz violation.

In Part III, we present our CCQE measurement in the MiniBooNE experiment. Part III

includes two of my original works: Measurement of muon neutrino quasielastic scattering

on carbon (Chapter 8) [4]; and Measurement of νµ CCQE double differential cross section

(Chapter 10). In Chapter 7, we provide an introduction to the MiniBooNE experiment.

We briefly explain the experimental apparatus and the associated systematic uncertainties.

The details of the neutrino event model (and errors) used for the neutrino event rate predic-

tions are presented. In Chapter 8, we discuss the CCQE measurement for the MiniBooNE

oscillation experiment. The CCQE measurement as was performed for the MiniBooNE

νe appearance result is presented along with a discussion about the tuning of the nuclear

model parameters. Then in Chapter 9, we discuss the simultaneous measurement of the

CCQE interaction and the charged current one pion production (CC1π) interaction. To

improve our CCQE measurement, we need a better description of the background. From

this measurement, the CC1π background in the CCQE sample is determined. Finally, in

Chapter 10, we present the CCQE differential cross section measurement in MiniBooNE. In

this chapter, the differential cross section of the CCQE process is presented with a careful

discussion of all systematic errors. In Chapter 11, we summarize from Chapters 8-10 (Part

III), and discuss the status and outlook.

In addition to the main text of this thesis, in Appendix A, we introduce the FINeSSE

experiment. This Appendix provide a brief introduction of this experiment and results

from the pilot detector beam test. This appendix includes one of my original work: A

large-volume detector capable of charged-particle tracking [5].

4



Chapter 2

Neutrino oscillations

The most distinct feature of neutrinos may be their state definitions. Neutrinos are the

only particles in the standard model defined by their flavor eigenstates. All quarks and

charged leptons are defined by their mass eigenstates, which are simultaneous eigenstates

with the Hamiltonian. So, we can say, “The muon has mass of 105 MeV/c2.” but a similar

statement does not exist for neutrinos. In addition, because neutrino flavor states are not

also eigenstates of the Hamiltonian, neutrino flavor states are not conserved with time

evolution.

In this chapter, we derive the equations of neutrino oscillations under the wave packet

formalism [6], following Ref. [7]. Then we investigate the interesting nature of the quantum

physics of neutrinos.

2.1 Neutrino oscillation formula

Since neutrino flavor states are not simultaneous eigenstates of the Hamiltonian, they are

not conserved under time evolution. The neutrino flavor states are written as mixtures of

5



CHAPTER 2. NEUTRINO OSCILLATIONS

the Hamiltonian eigenstates,

|να > =
∑

i

U∗αi|νi > . (2.1)

Here, |να > are the flavor eigenstates, whereas |νi > are the Hamiltonian eigenstates,

and they are related via the mixing matrix U∗αi. In the vacuum (= no interactions), the

Hamiltonian eigenstate can be identified with the mass eigenstate. Then the mixing matrix

is called PMNS matrix. Since the quark-sector analog, the CKM matrix, is defined in order

to mix flavor eigenstates to describe mass eigenstates, the PMNS matrix is defined via its

conjugate in order to follow the same definition as the CKM matrix.

The time evolution of a flavor eigenstate is,

|να(t) > =
∑

i

U∗αie
−iλit|νi > . (2.2)

Now, we use λi for the ith eigenvalue of the Hamiltonian eigenstate |νi > and ∆ij for the

eigenvalue difference (= λi − λj).

Then, the the transition amplitude from flavor eigenstate α to flavor eigenstate β after

time t is,

< νβ|να(t) > =

∑
j

< νj |UT
jβ

(∑
i

U∗αie
−iλit|νi >

)

=
∑

j

U∗αie
−iλitUβi. (2.3)

Finally, the oscillation transition probability from flavor state α to flavor state β after time

6



2.1. NEUTRINO OSCILLATION FORMULA

t is,

Pνα→νβ
(t) = | < νβ|να(t) > |2 =

∣∣∣∣∣∣
∑

j

Uαje
iλjtU∗βj

(∑
i

U∗αie
−iλitUβi

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i,j

U∗αiUβiUαjU
∗
βje

−i(λi−λj)t

∣∣∣∣∣∣
=

∑
i

|Uαi|2|Uβi|2 + 2

∣∣∣∣∣∣
∑
i>j

U∗αiUβiUαjU
∗
βj(cos(∆ijt) + isin(∆ijt))

∣∣∣∣∣∣
=

∑
i

|Uαi|2|Uβi|2 + 2Re
∑
i>j

U∗αiUβiUαjU
∗
βjcos(∆ijt) + 2Im

∑
i>j

U∗αiUβiUαjU
∗
βjsin(∆ijt)

=
∑

i

|Uαi|2|Uβi|2 + 2Re
∑
i>j

U∗αiUβiUαjU
∗
βj

(
1− 2sin2

(
∆ijt

2

))
− · · ·

= |Uα1|2|Uβ1|2 + |Uα2|2|Uβ2|2 + |Uα3|2|Uβ3|2

+2Re(U∗α3Uβ3Uα1U
∗
β1) + 2Re(U∗α3Uβ3Uα2U

∗
β2 + 2Re(U∗α2Uβ2Uα1U

∗
β1)

−4Re
∑
i>j

U∗αiUβiUαjU
∗
βjsin

2

(
∆ijt

2

)
− · · ·

=

∣∣∣∣∣∑
i

U∗αiUβi

∣∣∣∣∣
2

− 4Re
∑
i>j

U∗αiUβiUαjU
∗
βjsin

2

(
∆ijt

2

)
− · · · (2.4)

Since neutrinos are extremely relativistic particles,

t = L, (2.5)

therefore,

Pνα→νβ
(L) = δαβ − 4

∑
i>j

Re(U∗αiUβiUαjU
∗
βj)sin

2

(
∆ij

2
L

)
+2
∑
i>j

Im(U∗αiUβiUαjU
∗
βj)sin (∆ijL) . (2.6)

This is the model-independent formula describing neutrino oscillations.

Since the neutrino kinetic term is the only one non-trivial term for the neutrino Hamil-

tonian eigenstate in the vacuum, under the standard assumption (the so-called ”equal mo-

7
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mentum approximation”), then

λi = Ei =
√
p2 +m2

i ∼ p+
m2

i

2p
∼ E +

m2
i

2E
. (2.7)

Then, using standard units for neutrino oscillation experiments,

∆m2
ijL

4E
=

∆m2
ij(MeV 2)L(fm)

4E(MeV )~c(MeV ḟm)

= 1.27
∆m2

ij(eV
2)L(m)

E(MeV )
, (2.8)

Equation 2.6 becomes the familiar form of the standard three neutrino massive model in

the particle data group [8]:

Pνα→νβ
(L) = δαβ − 4

∑
i>j

Re(U∗αiUβiUαjU
∗
βj)sin

2

(
1.27∆m2

ij

L

E

)

+2
∑
i>j

Im(U∗αiUβiUαjU
∗
βj)sin

(
2.54∆m2

ij

L

E
L

)
. (2.9)

Under the assumption that all elements of the mixing matrix are real (equivalent to as-

sumption of no CP violation in the neutrino sector), the two-neutrino oscillation formula

is,

Pνα→νβ
(L) = δαβ − 4(cosθ) · (sinθ) · (cosθ) · (±sinθ)sin2

(
1.27∆m2

12

L

E

)

=


1− sin22θsin2

(
1.27∆m2

12

L

E

)
for α = β

sin22θsin2

(
1.27∆m2

12

L

E

)
for α 6= β

, (2.10)

using the Cabibbo-matrix-like mixing matrix, U =

 cosθ sinθ

−sinθ cosθ

.

8
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2.2 Wave packet formalism

2.2.1 Group velocity based formalism

In this section, we discuss the conditions required for neutrino oscillations to occur. Al-

though the standard formulas above describe neutrino oscillations, in a more rigorous sense,

oscillations should be described with wave packets [6]. To see the nature of wave packet

formalism, the group velocity based approach [7] is very instructive.

The normalized Hamiltonian eigenstate neutrino wave packet in momentum space is

defined

Ψi(p) =
√√

2πσpexp

(
−(p− < pi >)2

4σ2
p

)
. (2.11)

and we have used the mean value of the momentum wave packet < pi >, the mean energy <

Ei >=
√
< pi >2 +m2

i , and the group velocity vi = <pi>
<Ei>

. For simplicity, one-dimensional

neutrino propagation is considered but it is easily extended to 3 dimensions. Then, the

Fourier transformation of the momentum wave packet is,

Ψi(x, 0) =
∫ ∞

−∞
Ψi(p)eipxdp

=
1√√
2πσx

exp

(
i < pi > x− x2

4σ2
x

)
. (2.12)

And, after time t, using, < pi > vi = <pi>
2

<Ei>
= <Ei>

2−m2
i

<Ei>
∼< Ei >,

Ψi(x, t) =
1√√
2πσx

exp

(
i < pi > (x− vit)−

(x− vit)2

4σ2
x

)
=

1√√
2πσx

exp

(
i(< pi > x− < Ei > t)− (x− vit)2

4σ2
x

)
.

Therefore, the transition probability of a flavor eigenstate from να to νβ, after propagating

9



CHAPTER 2. NEUTRINO OSCILLATIONS

distance L within time T is,

Pνα→νβ
(L, T ) =

(
ΣjU

∗
αjΨ

∗
j (L, T )Uβj

)
·
(
ΣiUαiΨi(L, T )U∗βi

)
=

1√
2πσx

∑
i,j

UαiU
∗
βiU

∗
αjUβj

×exp [i(< pi > − < pj >)L− i(< Ei > − < Ej >)T ]

× exp
[
−(L− viT )2

4σ2
x

− (L− vjT )2

4σ2
x

]}

=
1√

2πσx

∑
i,j

UαiU
∗
βiU

∗
αjUβj

exp [i(< pi > − < pj >)L− i(< Ei > − < Ej >)T ]

×exp
[
− L2

2σ2
x

+
LT

2σ2
x

(vi + vj)−
T 2

4σ2
x

(v2
i + v2

j )
]}

= ei(<pi>−<pj>)L ×

exp

−v2
i + v2

j

4σ2
x

[
T −

(
vi + vj

v2
i + v2

j

L− i 2σ2
x

v2
i + v2

j

(< Ei > − < Ej >)

)]2

− L2

2σ2
x

+
v2
i + v2

j

4σ2
x

(
vi + vj

v2
i + v2

j

L− i 2σ2
x

v2
i + v2

j

(< Ei > − < Ej >)

)2
 .(2.13)

In practice, we know the distance neutrinos propagate, however we do not know the

time it takes. So we take the average over T by
∫∞
−∞ eα(x−β)2dx =

√
π
α , and introduce a

normalization factor NT (=
∑

i
|Uαi|2
|vi| ). Then,

Pνα→νβ
(L, T ) =

√
2

v2
i + v2

j

· 1
NT

∑
i,j

UαiU
∗
βiU

∗
αjUβj · ei(<pi>−<pj>)L ·

×exp

[
− L2

2σ2
x

+
(vi + vj)2L2

4σ2
x(v2

i + v2
j )

−i vi + vj

v2
i + v2

j

(< Ei > − < Ej >)L

− σ2
x

v2
i + v2

j

(< Ei > − < Ej >)2
]
. (2.14)

10



2.2. WAVE PACKET FORMALISM

Using σx · σp ≥ 1
2 ,

Pνα→νβ
(L, T ) =

√
2

v2
i + v2

j

· 1
NT

∑
i,j

UαiU
∗
βiU

∗
αjUβj

×exp

{
i

[
(< pi > − < pj >)− (< Ei > − < Ej >)

vi + vj

v2
i + v2

j

]
L

}

×exp

{
−
L2[2(v2

i + v2
j )− (vi + vj)2]

4σ2
x(v2

i + v2
j )

− 1
4σ2

p(v2
i + v2

j )
(< Ei > − < Ej >)2

}

=

√
2

v2
i + v2

j

· 1
NT

∑
i,j

UαiU
∗
βiU

∗
αjUβj

×exp

{
−i

[
(< Ei > − < Ej >)

vi + vj

v2
i + v2

j

− < pi > − < pj >)

]
L

}

×exp

[
− (vi − vj)2L2

4σ2
x(v2

i + v2
j )

]

×exp

[
−(< Ei > − < Ej >)2

4σ2
p(v2

i + v2
j )

]
. (2.15)

In Eq. 2.15, the first exponential term is imaginary, and so it represents the oscillating

coherent nature of neutrinos. The second and third exponential terms are damping terms,

and they describe the destructive effects of coherence.

From the first term, we can see that the standard approximation, T = L (Eq. 2.5),

corresponds to T =
(

vi+vj

v2
i +v2

j

)
L.

In the first exponential term, we can define the oscillation length,

exp

{
−i(< Ei > − < Ej >)

[
vi + vj

v2
i + v2

j

− < pi > − < pj >

< Ei > − < Ej >

]
L

}
≡ exp

(
−i · 2π L

Losc
ij

)

with Losc
ij ≡

2π
| < Ei > − < Ej > |

{
vi + vj

v2
i + v2

j

− < pi > − < pj >

< Ei > − < Ej >

}−1
ER∼ 2π

∆ij
. (2.16)

Here, the oscillation length Losc
ij describes the resonance condition for neutrino oscillations.

In the extremely relativistic case (”ER”), which is always true for neutrinos, the oscillation

11



CHAPTER 2. NEUTRINO OSCILLATIONS

length becomes ∼ 2π
∆ij

, and, for the standard three neutrino massive model,

Losc ∼ 4πE
∆m2

ij

. (2.17)

Next, in the second exponential term,

exp

[
− (vi − vj)2L2

4σ2
x(v2

i + v2
j )

]
≡ exp

−1
4

(
L

Lcoh
ij

)2


with Lcoh
ij ≡ σx

√
v2
i + v2

j

|vi − vj |
ER∼ σx

|vi − vj |
, (2.18)

the damping becomes larger when the neutrinos propagate longer distances. Therefore, this

term describes the situation when two neutrinos propagate over a long distance and lose

coherence. And, the coherence length, Lcoh
ij , is the condition that this damping is sizable.

This term is important only for cosmological and astrophysical neutrinos.

Finally, in the third term,

exp

[
−(< Ei > − < Ej >)2

4σ2
p(v2

i + v2
j )

]
ER∼ exp

−4π2

(
σx

Losc
ij

)2
 , (2.19)

the damping is large when energy separation is big. So this term describes the uncertainty

principle, that is, the interference happens only when the energy separation (or ∆m2, for

the standard three neutrino massive model) is smaller than σp. In the extremely relativistic

limit, there is another interpretation. If the oscillation length is small compared with the

position resolution, the neutrino oscillation is damped. This term is important for the

design of realistic long-baseline oscillation experiments.

Finally, the neutrino oscillation probability using the group-velocity based wave packet

12



2.2. WAVE PACKET FORMALISM

formalism is (again, assuming all mixing matrix elements are real),

Pνα→νβ
(L) =

∑
i,j

UαiUβiUαjUβj × exp

(
−i2π L

Losc
ij

)

×exp

−1
4

(
L

Lcoh
ij

)2
× exp

−4π2

(
σx

Losc
ij

)2


=
∑

i

|Uαi|2|Uβi|2 + 2
∑
i>j

UαiUβiUαjUβj · cos

(
2πL
Losc

ij

)

×exp

−1
4

(
L

Lcoh
ij

)2
× exp

−4π2

(
σx

Losc
ij

)2
 . (2.20)

To further examine the nature of this equation, consider the special case of muon-neutrino

disappearance oscillations in the two-neutrino oscillation approximation,

Pνµ→νµ(L) = cos4θ + sin4θ +
1
2
sin22θ × cos

(
2πL
Losc

ij

)

×exp

[
−1

4

(
L

Lcoh
ij

)]
× exp

−4π2

(
σx

Losc
ij

)2
 . (2.21)

This formula can be used to quantify the effects of experimental smearing on oscillations.

The smearing of the oscillatory shape can be seen in all neutrino oscillation experiments.

This happens mainly due to bin migration by poor energy resolution for low-energy events.

In a rigorous sense, the bin migration can be treated correctly only by using a simulation of

a specific experiment. However, using Eq. 2.21, one can mimic the experimental smearing

theoretically.

Interestingly, the first two terms, cos4θ + sin4θ, do not depend on any coherent condi-

tions. Thus, when neutrinos lose their coherence by long distance propagation, very good

energy resolution, very poor position resolution, etc, this formula reduces to,

Pνµ→νµ ∼ cos4θ + sin4θ. (2.22)

13



CHAPTER 2. NEUTRINO OSCILLATIONS

2.2.2 Time-averaged neutrino oscillations

For the standard two neutrino oscillation formula (Eq. 2.10), decoherence occurs when the

neutrino oscillates many times and the oscillation is averaged over many periods. These are

the so-called ”time-averaged” neutrino oscillations,

Pνµ→νµ = 1− sin22θsin2

(
π
L

Losc
ij

)
∼ 1− sin22θ · 1

2
= cos4θ + sin4θ. (2.23)

As expected, we find the same solution as in Eq. 2.22.

2.2.3 Incoherent sum of neutrino oscillations

In fact, the cos4θ+sin4θ term can be understood as an incoherent sum of two neutrinos [9].

If any two paths of neutrino transitions are independent, the total oscillation probability

will be an incoherent sum of all paths,

νµ →


cosθ→ ν1

cosθ→ νµ

sinθ→ ν2
−sinθ→ νµ

. (2.24)

Then, the total transition probability is

Pνα→να = |cos2θ|2 + | − sin2θ|2 = cos4θ + sin4θ, (2.25)

and again, we discover the same equation as Eq. 2.22.

2.2.4 Neutrino oscillations with perfect kinematics measurements

For accelerator-based neutrino experiments, neutrinos are created by the decay of pions,

π+ → µ+ + νµ, (2.26)

14
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and we consider the following gedanken experiment. If you measure the mass and mo-

mentum of the pion and muon with very high precision, you can determine the mass of

the neutrino from four-momentum conservation. Then, what do you expect for neutrino

oscillations?

When you know the kinematics so precisely, more precise than the mass difference, the

neutrino wave function is contracted to either one of the mass eigenstates. This is equivalent

to knowing perfectly which mass eigenstate neutrinos take from the production point, as νµ,

to the detection point, as νµ, and the neutrino oscillation probability is again the incoherent

sum of all paths, therefore,

Pνµ→νµ = cos4θ + sin4θ. (2.27)

2.2.5 Neutrino decay

Neutrino decay [10] also exhibits the interesting nature of neutrino coherence. If a heavier

neutrino, ν2, decays to a lighter, ν1, with decay constant Γ, then the survival probability of

νe is,

Pνe→νe(t) = cos4θ + e−Γtsin4θ +
1
2
e−Γtsin22θcos

(
∆12

2
t

)
. (2.28)

If the decay is very fast,

Pνe→νe(t) ∼ cos4θ, (2.29)

and this result is equivalent with with an incoherent sum of neutrino oscillation where one

of the two paths is eliminated due to the neutrino decay.

2.2.6 Factor 2 ambiguity

The group-velocity based understanding of neutrino oscillations has a very famous pitfall,

the so-called “factor 2 ambiguity” [11]. Since neutrino oscillations are governed by the
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phase difference of two neutrinos, one can calculate this phase difference from the neutrino

wave packet group velocity. For the two-neutrino approximation, the propagation time for

ν1 can be written,

t1 =
L

v1
=
< E1 >

< p1 >
L, (2.30)

thus, the phase rotation of ν1 after propagating L is,

Φ1 = p1L− E1t1 =
(
p1 −

E2
1

p1

)
L = −m

2
1

p1
L. (2.31)

Then, the phase difference of ν1 and ν2 after propagating a distance L is (p1 ∼ p2 ∼ E),

Φ12 = (p1 − p2)L− (E1t1 − E2t2)

=
[
(p1 − p2)−

(
p1 +

m2
1

2p1

)
E1

p1
+
(
p2 +

m2
2

2p2

)
E2

p2

]
L

=
[
(p1 − p2)

(
p1 +

m2
1

2p1

)
·
(

1 +
m2

1

2p2
1

L

)
+
(
p2 +

m2
2

2p2

)
·
(

1 +
m2

2

2p2
2

)]
L

∼ −
[
m2

1

p1
− m2

2

p2

]
L ∼ −

[
∆m2

12

E

]
L (2.32)

Therefore the equation of two-neutrino oscillations is,

Pνα→νβ
(t) = sin22θsin2

(
2.54∆m2

ij

L

E

)
for α 6= β. (2.33)

Comparing with the standard formula of Eq. 2.10, the phase term is factor of two bigger!

The problem is that the oscillation is not caused by the interference of two wave packets,

but the interference of equal energy (or momentum) plane waves in the wave packets. So,

the group velocity cannot be used to describe the phase shift of two neutrinos.

Again, the phase difference for the standard two massive neutrino oscillation is (t = L),

Φ12 = (p1 − p2)L− (E1 − E2)t

=
[
(p1 − p2)−

(
p1 +

m2
1

2p1

)
+
(
p2 +

m2
2

2p2

)]
L

∼ −
[
m2

1

2p1
− m2

2

2p2

]
L ∼ −

[
∆m2

12

2E

]
L. (2.34)
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2.2.7 False Lorentz violation in neutrino oscillation

We start with the following gedanken experiment [11]. Twins, Diana and Artemis, perform a

νµ−νe neutrino oscillation experiment using the following standard two neutrino oscillation

formula,

Pνµ→νe = sin22θsin2

(
1.27∆m2

12

L

E

)
. (2.35)

Diana needs to move to Mars, but since she loves neutrino physics, she decided to keep

watching how many neutrinos were detected as she travels on the spaceship. Artemis

predicts how many neutrino Diana counts and, of course, the number of neutrino detected

is Lorentz invariant — the number of neutrinos detected should be the same in any frame.

Since Diana is in a fast moving frame, the baseline L for her is Lorentz contracted,

L′ = γ−1L, (2.36)

and the energy of the neutrinos is shifted by the Lorentz transformation,

E′ = γ(E − βp) ∼ γE(1− β). (2.37)

Then, she inserts them into the oscillation formula, and finds,

P ′να→νβ
= sin22θsin2

(
1.27∆m2

ij

L′

E′

)
= sin22θsin2

(
1.27∆m2

ij

γ−1L

γE(1− β)

)
6= Pνα→νβ

. (2.38)

The number of neutrinos is not Lorentz invariant!

The mistake is that Artemis interprets L to be (L, 0) in space-time. Since this L is the

space coordinate of the neutrino propagation distance, the space-time point of the neutrino

is (L, T ). One can solve this problem geometrically (Fig. 2.1). The space coordinate of

the space-time point (L, 0) looks like p′′ in Diana’s coordinates. This p′′ corresponds to L′′

for the rest frame, or Artemis’s coordinates. Here, the space-time point L′′ is found from
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space-time point p′′ by a coordinate transformation, t′2− x′2 = t2− x2. Then, this problem

is solved geometrically, and we find,

L′′ = γ−1L. (2.39)

This is the so-called Lorentz contraction.

On the other hand, space coordinate of (L, T ) in Diana’s system is p′, and it corresponds

to L′ for rest frame, or Artemis’s coordinates. We find,

L′ = γL(1− β), (2.40)

therefore,

P ′να→νβ
= sin22θsin2

(
1.27∆m2

ij

γL(1− β)
γE(1− β)

)
= Pνα→νβ

. (2.41)

and the oscillation formula is proved to be Lorentz invariant.
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Figure 2.1: Space time diagram for false Lorentz violation with neutrino oscillation.

2.3 Test of new physics with Neutrino oscillations

2.3.1 Neutrino oscillations as natural interferometers

The oscillation of neutrinos is an interference experiment. Figure 2.2 illustrates shows the

concept via an analogy of neutrino oscillations and optical (photon) double-slit experiments.

There is a light source, and we imagine two light paths to reach the screen behind the

slits. When light propagates through the slits, the two paths have different light propagation

lengths, and hence a different phase rotation, and they create an interference pattern on
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  1

ν1

ν2

νµ νe

Uµ1 Ue1
∗

ν2ν1

Figure 2.2: An illustration of neutrino oscillations as interferometers. There is an analogy

between neutrino oscillations and optical double slit experiments.

the screen.

Connecting to neutrinos, the light source is equivalent to the flavor eigenstates of νµ,

and the two different light paths are ν1 and ν2, because those two Hamiltonian eigenstates

have different phase rotations due to their different Hamiltonian eigenvalues. For example,

if two neutrinos have different masses, then ν1 and ν2 have different group velocities, and

hence they interfere differently at the detection point. Note, this phase rotation difference

does not come from the group velocity difference, as discussed in Sec. 2.2.6.

20



2.3. TEST OF NEW PHYSICS WITH NEUTRINO OSCILLATIONS

2.3.2 Neutrino oscillations in the search of new physics

Then, the question is what is the sensitivity of this interferometer? We will use, as an

example, the case of atmospheric neutrino oscillations where there is evidence for ∆m2
atm ∼

10−3 eV2 [8]. Then the oscillation length (Eq. 2.17) is (the typical atmospheric neutrino

energy is ∼ 1 GeV),

1/Losc ∼ ∆m2

E
∼ 10−21 GeV. (2.42)

Now, the natural suppression factor for Planck scale physics in the Standard Model (SM)

can be written as a ratio of the electroweak scale (EW ∼ 100 GeV) to the Planck scale

(MP ∼ 1019 GeV), ∼<
EW
MP
∼ 10−17. Then, the Planck scale physics expected in atmospheric

neutrinos may be smaller than 10−17×1 GeV = 10−17 GeV and the known oscillation length

of the atmospheric neutrinos is beyond this naive benchmark scale. Therefore, neutrino

oscillations may provide the opportunity to discover high-energy physics that is suppressed

in the low energy world and neutrino oscillations are a candidate phenomenon in which to

search for physics beyond the Standard Model (BSM).

In Chapter 4, we examine the actual formalism and experimental details in order to use

neutrino oscillations to search for a possible signature of new physics, Lorentz violation [1].

It is quite natural to test Lorentz invariance with neutrino oscillations. First, Lorentz in-

variance is usually tested with high precision interferometers (see, for example [12–14]), and

neutrino oscillations are a natural high precision interferometer. Second, Lorentz violation

has not been well-investigated with neutrinos. Neutrinos are neutral, fundamental building

blocks of the SM, and defined with their flavor eigenstates. These peculiar features of neu-

trinos encourage people to imagine exciting new discoveries and, perhaps, neutrinos may

even shed light on the Planck scale!
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Chapter 3

Neutrino interactions

In this chapter, we discuss the topic of neutrino interactions with matter. Since neutrinos

only have a weak nuclear charge (the coupling constant of SU(2)L symmetry), they only

interact with matter via the weak interaction by exchanging W± or Z◦ bosons. However the

internal structure of the nucleon and higher order corrections allow more than just V − A

interactions, and neutrinos exhibit a rich scattering nature.

We start with a description of the neutrino-charged lepton interaction as it is the most

fundamental interaction for neutrinos. Then we move to the neutrino-nucleon interaction,

the most fundamental neutrino-hadron interaction. We re-derive the famous Llewellyn-

Smith formalism [15], and discuss the implications for neutrino-nucleon scattering. Finally,

we explore the most relevant type of scattering for modern neutrino oscillation experiments,

the neutrino-nuclei interaction. We re-derive the cross section formulas of the Smith and

Moniz formalism, based on the relativistic Fermi gas (RFG) model [16].
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Figure 3.1: Feynman diagram for neutrino-charged lepton scattering.

3.1 Neutrino-Charged lepton scattering

Neutrinos interact with any charged lepton via the neutral current (NC) interaction (Fig. 3.1a),

να + β
Zo

→ να + β with any α and β. (3.1)

Neutrinos can also interact via charged current (CC) interaction if the transition connects

neutrinos of the same family (Fig. 3.1b),

να + β
W±
→ να + β with α = β. (3.2)

Assume that the charged lepton is an electron (α = e) and the neutrino to be of arbitrary
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flavor (β = e, µ, τ). We define the incoming and outgoing neutrinos to have 4-momentum

k = (Eν ,~k) and k′ = (E′ν , ~k′), respectively and the incoming and outgoing charged leptons

have p = (Ee, ~p) and p′ = (E′e, ~p′). The general expression for the transition amplitude for

neutrino-electron scattering is [9, 17],

M =
GF√

2

{
[JCC)†µ(JCC)µ + 2ρ(JNC)†µ(JNC)µ]

}
=

GF√
2

{
[ēγµ(1− γ5)νβ] · [ν̄βγ

µ(1− γ5)e]

+2ρ
[
ν̄βγµ

1
2

(1− γ5)νβ

]
· [ēγµ(gV − gAγ5)e]

}
. (3.3)

Here gV and gA are the vector and axial vector coupling constants for charged leptons.

They depend on the weak mixing angle, sin2θw, and are, in the standard model,

eL eR

gV = −1
2 + 2sin2θw 2sin2θw

gA = −1
2 0 .

Here, we use Fierz reordering (Fig. 3.1b to c),

[ēγµ(1− γ5)νβ] · [ν̄βγ
µ(1− γ5)e]→ [ēγµ(1− γ5)e] · [ν̄βγ

µ(1− γ5)νβ]. (3.4)

Then we can add CC and NC part of the amplitude,

M =
GF√

2

{[
ν̄βγµ

1
2

(1− γ5)νβ

]
· [ēγµ(CV − CAγ5)e]

}
, (3.5)

with

e = β e 6= β

CV = ρgV + 1 ρgV

CA = ρgA + 1 ρgA .

Then, the spin-averaged square of invariant amplitude (∝ cross section) is,

| M |2 =
1

(2se + 1)(2sνβ
+ 1)

∑
spin

| M |2, (3.6)
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where se and sνβ
are the spin degrees of freedom of the electron (=2) and neutrino (=1).

Then,

| M |2 =
G2

F

4
· tr[ν̄β(k′)γµ(1− γ5)νβ(k)][ν̄β(k)γν(1 + γ5)νβ(k′)]

×tr[ē(p′)γµ(CV − CAγ5)e(p)][ē(p)γν(CV + CAγ5)e(p′)]

=
G2

F

4
· tr[γµ(1− γ5)/kγν(1− γ5)/k′]

×tr[γµ(CV − CAγ5)(/p+me)γν(CV − CAγ5)(/p′ +me)]

=
G2

F

4
·
{
tr[2γµ/kγν/k

′] + tr[2γ5γµ/kγν/k
′]
}

×
{
tr(C2

V + C2
A)[γµ/pγν/p′] + tr(2CV CA)[γ5γ

µ/pγν/p′]

+tr(C2
V − C2

A)[γµγνm2
e] + tr(2CV CA)[meγ5γ

µγν ]
}
. (3.7)

Using identities of gamma matrix algebra (Appendix B),

| M |2 =
G2

F

4
·
{

2(C2
V + C2

A) · 32[(k · p)(k′ · p′) + (k · p′)(k′ · p)]

+2(2CV CA) · 32[(k · p)(k′ · p′)− (k · p′)(k′ · p)]

+[8(kµk
′
ν + kνk

′
µ − (k · k′)gµν) + 8iεµλνσk

λk′σ]

×[(C2
V − C2

A) · 4m2
eg

µν + 0]
}

=
G2

F

4
{

64(CV + CA)2(k · p)(k′ · p′) + 64(CV − CA)2(k · p′)(k′ · p)

+32m2
e(C2

V − C2
A) · (−2k · k′)

}
= G2

F {16(CV + CA)2(k · p)(k′ · p′) + 16(CV − CA)2(k · p′)(k′ · p)

−8m2
e(CV + CA)(CV − CA)(2k · k′)}. (3.8)

Now, we define left-handed and right-handed coupling coefficients to simplify the expression

above,

e− νβ(e = β) ē− νβ(e = β) e− νβ(e 6= β) ē− νβ(e 6= β)

CL = 1
2(CV + CA) 1

2 + sin2θw sin2θw −1
2 + sin2θw sin2θw

CR = 1
2(CV + CA) sin2θw

1
2 + sin2θw sin2θw −1

2 + sin2θw ,

25



CHAPTER 3. NEUTRINO INTERACTIONS

and,

| M |2 = 16G2
F [C2

L(2k · p)(2k′ · p′) + C2
R(2k · p′)(2k′ · p)

−2m2
eCLCR(2k · k′)]. (3.9)

Using the following Mandelstam variables,

s = (k + p)2 = m2
e + 2meEν ,

u = (p− k′)2 = m2
e − 2meE

′
ν ,

t = (k′ − k)2 = 2me(E′ν − Eν),

Eq. 3.9 can be further simplified,

| M |2 = 16G2
F [C2

L(s−m2
e)2 + C2

R(u−m2
e)2 + 2m2

eCLCRt]. (3.10)

The differential Lorentz-invariant phase space (dLips) is,

dLips =
∫

d3k′

(2π)3 · 2E′ν
·
∫

d3p′

(2π)3 · 2E′e
(2π)4δ4(p+ k − p′ − k′)

=
∫

d3p′

16π2EνE′e
δ(Ee + Eν − E′e − E′ν)

=
∫

d2p′

16π2EνE′e
=
∫

2πE′edE
′
e

16π2E′νE
′
e

=
1

8π

∫
dE′e
Eν

. (3.11)

Since the differential cross section in the center of mass system is [18],

dσ =
| M |2

4|~k|
√
s
dLips

→ dσ

dE′e
=

1
32πmeE2

ν

· | M |2. (3.12)

Defining the elasticity y and recoil-electron kinetic energy T ′e,

T ′e = E′e −me = Eν − E′ν

y =
T ′e
Eν

=
Eν − E′ν
Eν

, (3.13)
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gives the differential cross section,

dσ

dT ′e
=

1
32πmeE2

ν

· 16G2
F [C2

L(2meEν)2 + C2
R(2meE

′
ν)2 + 2m2

eCLCR · 2me(E′ν − Eν)]

=
2G2

Fme

π

[
C2

L + C2
R

(
E′ν
Eν

)2

− CLCR
me

Eν
· Eν − E′ν

Eν

]
. (3.14)

After integrating over y to find the total cross section,

σ =
2G2

Fme

π

∫ 1

0
dy

[
C2

L + C2
R(1− y)2 − CLCR

me

Eν
y

]
=

2G2
FmeEν

π

[
C2

L +
1
3
C2

R −
1
2
CLCR

me

Eν

]
∝ Eν . (3.15)

We can see that the total cross section for neutrino-charged lepton scattering monotonically

increases with neutrino energy.

If a hypothetical neutrino magnetic moment µν is included, the differential cross section

(Eq. 3.14) can be written,

dσ

dT ′e
=

2G2
Fme

π

[
C2

L + C2
R

(
E′ν
Eν

)2

− CLCR
m+e

Eν
· Eν − E′ν

Eν

]

+
παµ2

ν

m2
e

(
1
T ′e
− 1
Eν

)
. (3.16)

Thus, a non-zero neutrino magnetic moment implies a significant shape distortion in the

low-energy recoil electron spectrum. Using this feature, a number of experimental limits are

set for neutrino magnetic moment, although astrophysical limits (cooling of red giants) are

usually stronger [9]. The MiniBooNE experiment set an upper limit for the muon neutrino

magnetic moment to be µνµ < 12.7× 10−10µB with 90% C.L [19].
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3.2 Neutrino-Nucleon scattering

3.2.1 Llewellyn-Smith formalism for the neutrino experiments

The scattering processes under consideration in this section are the following 2 reactions

(Fig. 3.2),

νl + n→ l− + p, (3.17)

ν̄l + p→ l+ + n. (3.18)

In Appendix C.1, we derive the expression for neutrino-nucleon differential cross section

formula (Eq. C.41),

dσ

dQ2

 νl + n→ l− + p

ν̄l + p→ l+ + n


=
M2GF

2cos2θc

8πEν
2

{
A(Q2)±B(Q2)

(s− u)
M2

+ C(Q2)
(s− u)2

M4

}
, (3.19)

with the expressions for A(Q2), B(Q2), and C(Q2) given in Eqs. C.38, C.39, and C.40.

Here, Eν is an incident neutrino energy, M is a nucleon mass, and s and u are Mandelstam

variables. Now we transform them to the familiar form [20] used in practice. All the

contributions to the weak nucleon current other than the vector and axial vector form

factors arise from the electromagnetic or strong interaction. However, the electromagnetic

and strong interactions are G-parity conserving processes. So one can reasonably omit

terms involving G-parity violating second-class-current form factors (FV
3 and FA

3), which

should not exist within the standard model (Sec. 3.2.8). And, we assume all form factors

are purely real which mean there is no T-violation in any nucleon weak elastic scattering

experiment (Sec. 3.2.8). Also, the ξF2 term may be rewritten as F2 which is more standard

in this (neutrino) community. This also means κpF
EM,p
2 ≡ FEM,p

2 and κnF
EM,n
2 ≡ FEM,n

2 .
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(1) Lab frame

(3) Feynman diagram

(2) center mass frame
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Figure 3.2: The scattering process under consideration, from top to bottom, (1) lab

frame view, (2) center-of-mass frame view, and (3) Feynman diagram (t-channel). νl is

the (anti)neutrino, l is the (positively) negatively charged lepton and N1 and N2 are the

proton or neutron. The charged lepton has mass m and the initial and final state nucleon

have the same mass M .
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With these procedures, Eqs. C.38, C.39 and C.40 become,

A(Q2) =
(m2 +Q2)

M2

[
(1 + τ)F 2

A − (1− τ)F 2
1 + τ(1− τ)F 2

2 + 4τF1F2

− m2

4M2

(
(F1 + F2)2 + (FA + 2FP )2 − 4

(
1 + Q2

4M2

)
F 2

P

)]
, (3.20)

B(Q2) = Q2

M2FA(F1 + F2), (3.21)

C(Q2) =
1
4

(F 2
A + F 2

1 + τF 2
2 ). (3.22)

Here we have used the common abbreviation, τ = Q2

4M2 . Eqs. 3.20, 3.21, and 3.22, as well

as Eq. 3.19 agree with [20] except for a missing cos2θc term in [20].

Next, we are able to eliminate the lepton mass term ( m2

M2 � 1) for our applications

(electron and muon production). In this case, the contribution from the pseudo-scalar form

factor (FP ) becomes zero, and these equations agree with those of [21, 22].

3.2.2 Is it B or −B?

There exists a sign inconsistency for the B(Q2)-term between many papers (for example [15,

20, 22]). This problem arises from the many possible choices in: (1) the definition of the

sign of gA (Eq. 3.62), (2) the sign in front of gA, (3) the sign in front of FA (axial vector

form factor), and (4) the sign in front of the B(Q2)-term. This problem may be avoided by

remembering that dσ
dQ2 (νl + n→ l− + p) > dσ

dQ2 (ν̄l + p→ l+ + n).

3.2.3 Llewellyn-Smith formalism for Neutral Current

We can modify Eqs. 3.20, 3.21 and 3.22 so that Eq. 3.19 is also correct for the neutral current

cross section. Since the neutral weak current is related to the electromagnetic current,

< N |Jµ
Z |N >=< N |Jµ

3 − 2sin2θW · Jµ
EM |N >, (3.23)

where J3 is the third component of the isospin current and JEM is the electromagnetic cur-

rent. Then, the nucleon neutral current form factor can be written completely by including
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an isoscalar part of the weak form factor (indicated with s in upper index) [17],

FZ,p
1 = (1

2F1 − 1
2F

s
1 )− 2sin2θWFEM,p

1 ,

FZ,n
1 = (−1

2F1 − 1
2F

s
1 )− 2sin2θWFEM,n

1 ,

FZ,p
2 = (1

2F2 − 1
2F

s
2 )− 2sin2θWFEM,p

2 ,

FZ,n
2 = (−1

2F2 − 1
2F

s
2 )− 2sin2θWFEM,n

2 ,

FZ,p
A = 1

2FA − 1
2F

s
A,

FZ,n
A = −1

2FA − 1
2F

s
A.

From the conservation of the vector current (CVC, Sec. 3.2.4), the isovector part of elec-

tromagnetic currents are related to the weak charged current,

F1 = FEM,p
1 − FEM,n

1 , (3.24)

F2 = FEM,p
2 − FEM,n

2 . (3.25)

Thus, the required replacements in the Llewellyn-Smith formalism (Eqs. C.41, 3.20, 3.21,

and 3.22) for neutral current scattering are the following [22]:

GF cosθc → GF ,

ml → mν ,

FZ,p
1 → (1

2 − sin
2θW )F1 − sin2θW (FEM,p

1 + FEM,n
1 )− 1

2F
s
1 , (3.26)

FZ,n
1 → −(1

2 − sin
2θW )F1 − sin2θW (FEM,p

1 + FEM,n
1 )− 1

2F
s
1 , (3.27)

FZ,p
2 → (1

2 − sin
2θW )F2 − sin2θW (FEM,p

2 + FEM,n
2 )− 1

2F
s
2 , (3.28)

FZ,n
2 → −(1

2 − sin
2θW )F2 − sin2θW (FEM,p

2 + FEM,n
2 )− 1

2F
s
2 , (3.29)

FZ,p
A → 1

2FA − 1
2F

s
A, (3.30)

FZ,n
A → −1

2FA − 1
2F

s
A. (3.31)
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3.2.4 Conservation of vector current (CVC)

This subsection follows Ref. [17].

The most general expression for the electromagnetic matrix element for the proton is,

< p|Jµ
EM |p > = p̄

[
γµF

EM,p
1 + 1

2M iσµνq
νFEM,p

2

]
p. (3.32)

Here, we have introduced the proton electromagnetic Dirac and Pauli form factors. Notice

under current conservation, ∂µJ
µ
EM = 0, the electromagnetic scalar form factor, FV

3EM,p is

naturally zero.

Similarly, using the neutron electromagnetic Dirac and Pauli form factors, the electro-

magnetic matrix element for the neutron is,

< n|Jµ
EM |n > = n̄

[
γµF

EM,n
1 + 1

2M iσµνq
νFEM,n

2

]
n. (3.33)

Since the proton and neutron comprise the nucleon isodoublet (isospin symmetry or charge

symmetry), Eqs. 3.32 and 3.33 can be combined using the projection operators τ+, τ− and

the isodoublet spinor u,

p = 1
2(1 + τ3)u = τ+u, (3.34)

n = 1
2(1− τ3)u = τ−u. (3.35)

Here, u is the eigenspinor of τ3, and the eigenvalue is +1 (-1) for the proton (neutron).

Then,

< u|Jµ
EM |u >= ū

{
1
2

[
γµ(FEM,p

1 + FEM,n
1 ) + 1

2M iσµνq
ν(FEM,p

2 + FEM,n
2 )

]
+ 1

2

[
γµ(FEM,p

1 − FEM,n
1 ) + 1

2M iσµνq
ν(FEM,p

2 − FEM,n
2 )

]
τ3

}
u (3.36)

The first square bracket term is constant with proton or neutron (isoscalar term), however,

the second bracket term changes its sign due to the isospin projection (isovector). Thus one
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can define:

FEM,s
1 = FEM,p

1 + FEM,n
1 , isoscalar vector form factor,

FEM
1 = FEM,p

1 − FEM,n
1 , isovector vector form factor,

FEM,s
2 = FEM,p

2 + FEM,n
2 , isoscalar tensor form factor,

FEM
2 = FEM,p

2 − FEM,n
2 , isovector tensor form factor.

And Eq. 3.36 may be rewritten,

< u|Jµ
EM |u > = ū

{
1
2

[
γµF

EM,s
1 + 1

2M iσµνq
νFEM,s

2

]
+1

2

[
γµF

EM
1 + 1

2M iσµνq
νFEM

2

]
τ3
}
u. (3.37)

Now we go back to weak interaction, the polar part of the matrix element between the

proton and neutron is,

< p|V †µ|n > = ū
[
γµF1 + 1

2M iσµνq
νF2 + qµ

MFV
3
]
τ+u (3.38)

< n|V µ|p > = ū
[
γµF1 + 1

2M iσµνq
νF2 + qµ

MFV
3
]
τ−u (3.39)

Comparing the second bracket of Eq. 3.37 with Eqs. 3.38 and 3.39, it can be seen that JEM ,

V , and V † make isotriplet (spin 1 representation of SU(2)). In order for this symmetry to

be perfect, these 2 equations must satisfy,

F1 = FEM
1 ,

F2 = FEM
2 ,

FV
3 = 0.

This means that the weak vector form factor, F1, and weak tensor form factor, F2, are

measured from electromagnetic scattering, i.e., electron scattering experiments. In electro-

magnetic interaction measurements, the current conservation law means the non-existence

of the scalar form factor. In weak interaction measurements, CVC means not only the non-

existence of the scalar term, but also it implies a connection between the electromagnetic

and the weak vector/tensor form factors [17].
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3.2.5 Partial conservation of axial vector current (PCAC)

This subsection follows Ref. [17].

The general expression for the axial part of the matrix element between the proton and

neutron is,

< p|A†µ|n > = p̄
[
γµFAγ5 + qµ

MFPγ5

]
n. (3.40)

The origin of the pseudo scalar form factor, FP , cannot be of leading order, so must be

a second order term (Fig. 3.3). Fig. 3.3a is the so-called “pion vertex correction”, and

since the interaction with the lepton current is still axial vector, this diagram contributes

as a higher order correction to the axial vector coupling. However (Fig. 3.3b), in “one

pion exchange”, the nucleon current emits a pion, which is a pseudo scalar interaction, and

therefore this diagram is the primary contribution to the pseudo scalar form factor.

Then, the axial part of the nucleon-lepton current interaction term consists of 3 parts:

pion emission by neutron, subsequent pion propagation, and then pion decay. That is,

A ∼ [n→ p+ π]× [π − propagator]× [π → l + ν],

A ∼ [ig0(p̄γ5n)]×
[

1
q2 −m2

π

]
×
[
GF cosθc√

2
ifπqµ(l̄γµ(1− γ5)ν)

]
. (3.41)

Here, g0 and fπ are the pion-nucleon coupling constant and pion decay constant, respec-

tively. Then, Eq. 3.40 is written,

< p|A†µ|n > = p̄

[
γµFA −

qµ
M

g0fπ

q2 −m2
π

]
γ5n. (3.42)

Although the axial current is not conserved, it may be approximately conserved in mπ → 0

limit (partial conservation of axial current),

lim
mπ→0

∂µA
µ = 0. (3.43)

34



3.2. NEUTRINO-NUCLEON SCATTERING

  24

(a) pion vertex correction

(b) pion One­pion exchange
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Figure 3.3: Although these two pion diagrams are same order, their contributions are

different. (a) pion vertex correction is a higher order correction to the axial vector current,

whereas (b) one pion exchange contributes to the pseudo scalar form factor.
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Then, using the Dirac equation, −ip̄
↔
/∂n = p̄(/pp − /pn)n = p(mp +mn)n ∼ p(2M)n Eq. 3.42

becomes,

0 = lim
mπ→0

p̄

[
2MFA −

q2

M

g0fπ

q2 −m2
π

]
γ5n,

= p̄

[
2MFA −

g0fπ

M

]
γ5n. (3.44)

Therefore,

g0fπ = 2M2FA. (3.45)

Eq. 3.45 is called the Goldberger-Treiman relation [17]. Finally, the pseudo scalar form

factor derived from one pion exchange is,

FP = − g0fπ

q2 −m2
π

=
2M2

Q2 +m2
π

FA. (3.46)

At our energy scale, Q2 < 1.0 GeV2, the pseudo scalar form factor FP derived here is bigger

than the axial vector form factor FA. However, since FP always couples with the muon

mass term, m2/M2 ∼ 0.01, the contribution from this term is small (Sec. C.1.4)

3.2.6 The expressions for Llewellyn-Smith’s form factors

Now, we want to derive expressions for the form factors of Eqs. 3.20, 3.21, and 3.22. Go-

ing back to proton electromagnetic current (Eq. 3.32) and using Gordon decomposition

(Eq. C.9),

< p|Jµ
EM |p > = p̄

[
γµ(FEM,p

1 + FEM,p
2 )− FEM,p

2

2M
(pµ

1 + pµ
2 )

]
p. (3.47)

As will be seen in Sec. 3.2.7, we want to provide some physical interpretation of the form

factors. When the 3-momentum transfer is low, the scattering should be classical, so the

form factors can be interpreted as Fourier transformations of the charge and magnetic

moment distribution in configuration space. Therefore, it is good to define form factors
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in 3-dimensions. For this purpose, we need to consider this current in a special Lorentz

frame, i.e., the Breit frame (brick wall frame) shown in Fig. 3.4. In the Breit frame,

p1 = −p2 = (0, 0, p), there is no energy transfer, so, F (~q2) = F (−q2) = F (Q2). Now, the

proton current is < p|Jµ
EM |p >≡ (ρ, ~J), thus,

ρ = p̄

[
γ0(FEM,p

1 + κpF
EM,p
2 )− EFEM,p

2

M

]
p, (3.48)

~J = p̄
[
~γ(FEM,p

1 + FEM,p
2 )

]
p. (3.49)

Here, we introduce a standard Dirac spinor with Dirac representation for protons with χ

and φ as spinors for the z-direction spin state. Then,

p(p1, λ1) =
√
E +M

 χ

~σ·~p1

E+Mχ

 =
√
E +M

 χ

p
E+Mχ

 , (3.50)

and,

p̄(p1, λ1)p(p2, λ2) = (E +M)
(
χ† − ~σ·~p1

E+Mχ†
)
·

 φ

~σ·~p2

E+M φ


= (E +M)

(
1 +

p2

(E +M)2

)
=
E2 + 2EM +M2 + p2

E +M
= 2E

when χ = φ.

p̄(p1, λ1)γ0p(p2, λ2) = (E +M)
(
χ† ~σ·~p1

E+Mχ†
)
·

 φ

~σ·~p2

E+M φ


= (E +M)

(
1− p2

(E +M)2

)
=
E2 + 2EM +M2 − p2

E +M
= 2M

when χ = φ
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p̄(p1, λ1)~γp(p2, λ2) = (E +M)
(
χ† ~σ·~p1

E+Mχ†
)
·

 0 ~σ

~σ 0

 ·
 φ

~σ·~p2

E+M φ



= (E +M)

 χ† p
E+M

 1 0

0 −1

 · χ†
 ·


~σ −p

E+M

 1 0

0 −1

 · φ
~σφ


=

1
2
q

χ†~σ
 −1 0

0 1

φ+ χ†

 1 0

0 −1

~σφ

 = qχ†

 0 x̂+ iŷ

−x̂+ iŷ 0

φ

when χ 6= φ

Thus,

ρ =

(
2MFEM,p

1 + 2MFEM,p
2 − 2E2FEM,p

2

M

)
= 2M

(
FEM,p

1 + FEM,p
2

(
1− E2

M2

))
= 2M

(
FEM,p

1 + q2

4M2F
EM,p
2

)
≡ 2MGE(q2) when χ = φ.

On the other hand, ~J is,

p̄~γp(FEM,p
1 + FEM,p

2 ) ≡ p̄~γpGM (q2) = qχ†

 0 x̂+ iŷ

−x̂+ iŷ 0

φGM (q2),

and,

J1 ± iJ2 = qχ†

 0 2(−)

−2(+) 0

φGM = ∓2qGM (q2) when χ = ∓ 6= φ,

Note that ρ is only non-zero for same spin conserving case (χ = φ), and J1 ± iJ2 is only

non-zero for spin flipping case (χ = ∓ 6= φ). Thus,

ρ = 2MGE(Q2) for λ1 = λ2, (3.51)

J1 ± iJ2 = ∓2qGM (Q2) for λ1 = ∓1
2 6= λ2. (3.52)

Therefore, Q2 → 0 limit of Sachs form factors can be interpreted as physical electric charge

and magnetic moment [18]. This gives the normalization conditions for the Pauli and Dirac

form factors.
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Figure 3.4: Proton electromagnetic current in the Breit frame. In the Breit frame, the

energy transfer to the proton is zero.

Now, the F1 and F2 form factors are defined from the Sachs form factors,

Gp,n
E (Q2) = FEM,p,n

1 (Q2)− Q2

4M2F
EM,p,n
2 (Q2), (3.53)

Gp,n
M (Q2) = FEM,p,n

1 (Q2) + FEM,p,n
2 (Q2). (3.54)

In the Q2 → 0 limit, the Sachs form factors have the physical interpretations,

Gp
E(Q2 → 0) = 1, proton electric charge,

Gn
E(Q2 → 0) = 0, neutron electric charge,

Gp
M (Q2 → 0) = 2.793, proton magnetic moment,

Gn
M (Q2 → 0) = −1.913, neutron magnetic moment.

Also, the Sachs form factors are assumed to have Q2 dipole dependence (equivalent to an
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exponential charge distribution, see Sec. 3.2.7), and we have,

Gp,n
E (Q2) =

Gp,n
E (0)(

1 + Q2

M2
V

)2 , (3.55)

Gp,n
M (Q2) =

Gp,n
M (0)(

1 + Q2

M2
V

)2 . (3.56)

Then the proton/neutron electromagnetic Dirac and Pauli form factors can be defined,

FEM,p,n
1 (Q2) =

Gp,n
E (Q2) + Q2

4M2G
p,n
M (Q2)(

1 + Q2

4M2

) , (3.57)

FEM,p,n
2 (Q2) = −

Gp,n
E (Q2)−Gp,n

M (Q2)(
1 + Q2

4M2

) . (3.58)

Under CVC, (Sec. 3.2.4, Eqs. 3.24 and 3.25), one can derive expressions for the F1 and F2

form factors,

F1(Q2) =
1 + Q2

4M2 (1 + ξ)(
1 + Q2

4M2

)(
1 + Q2

M2
V

)2 , (3.59)

F2(Q2) =
ξ(

1 + Q2

4M2

)(
1 + Q2

M2
V

)2 . (3.60)

Likewise, for the neutral current, the Sachs form factors can be defined for the isoscalar

terms (Eq. 3.26, 3.27, 3.28, and 3.29). The physical interpretation for their Q2 → 0 limit is

that the strange quark charge contribution and magnetic moment in the nucleon.

Gs
E(Q2 → 0) = es, strange quark contribution for nucleon electric charge,

Gs
M (Q2 → 0) = µs, strange quark contribution for nucleon magnetic moment.

Of course, these are zero in the constituent quark model [18]. However, some measurements

indicate small but non-zero contributions [23] and we are waiting for further experiments.

The axial vector form factor is also assumed to have a dipole form (Sec. 3.2.7),

FA(Q2) = − gA(
1 + Q2

M2
A

)2 . (3.61)
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The Q2 → 0 limit of FA(Q2) is identified with the axial coupling constant, which is equiv-

alent to the difference of spin contributions from the up and down quarks in the nucleon,

gA = ∆u−∆d = −1.267. (3.62)

The spin contribution to the nucleon from each quark species q is also defined from the

longitudinally polarized quark function (denoted by upper “+”). The difference between

helicity “+” and “−” (denoted by lower “+” and “−”), and the difference between quark

and antiquark functions define ∆q(x). The integral of ∆q(x) over all Bjorken x can be

identified with the spin contribution of quarks to the nucleon,

∆q(x) ≡ q++(x)− q+−(x)− (q̄++(x)− q̄+−(x)),

∆q ≡
∫ 1

0
∆q(x)dx.

Therefore, the axial coupling constant provides an important normalization condition for

the quark spin distribution functions.

For neutral-current scattering, (Eq. 3.30 and 3.31), the isoscalar form factors are also

assumed to have dipole from,

FZ,p
A (Q2) = − gA

2
(

1 + Q2

M2
A

)2 −
∆s

2
(

1 + Q2

M2
A

)2 , (3.63)

FZ,n
A (Q2) = +

gA

2
(

1 + Q2

M2
A

)2 −
∆s

2
(

1 + Q2

M2
A

)2 , (3.64)

where ∆s is the spin contribution of strange quark in a nucleon. Here, we can see that a

negative ∆s will enhance the neutrino-nucleon neutral current scattering cross section for

protons and decrease the corresponding cross section for neutrons when gA < 0. We discuss

a proposed ∆s measurement by the neutrino neutral current elastic scatterings, FINeSSE

experiment [24], in Appendix A.

And finally, the pseudo scalar form factor can be deduced from PCAC (Sec. 3.2.5),

FP (Q2) =
2M2

m2
π +Q2

FA(Q2).
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3.2.7 Dipole form factor

In scattering theory, the observables from scattering experiments can be interpreted as the

Fourier transformation of the charge distribution of the scattering body. For example, the

dipole form factor results from an exponential charge distribution,

ρ(r) = ρ0 exp(−Mr) Fourier←→ G(|q|2) ∼ 1(
1 + |q|2

M2

)2 . (3.65)

The basic motivation for the dipole form of the Sachs form factors (Sec. 3.2.6) is the naive

assumption of an exponential electromagnetic charge distribution for the nucleon.

However, this interpretation only works for the static case, where the effective size of

the probe is smaller than the size of scattering body ( 1
|q| < R), but big enough compared

with the de Broglie wave length of the scattering body ( 1
|q| > 1/M). Here, the de Broglie

wave length measures the scale of localizability (uncertainty) of the scattering body. All

non-relativistic objects satisfy this condition, but this is not always true for the relativistic

case. For the relativistic case, for example when |q| > M ∼ 1 GeV2, not only the internal

structure of a scattering body, but also the dynamical effects contribute to the form factor

and the interpretation is complicated. So, the assumption of dipole form factor at high

3-momentum transfer is necessarily broken [25].

3.2.8 Discrete transformation

This subsection follows Ref. [17].

G-parity and second class currents

G-parity is the combination of isospin rotation and charge transformation,

G = CeiπI2 . (3.66)
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3.2. NEUTRINO-NUCLEON SCATTERING

Since the strong interaction is isospin and charge invariant, G-parity is always conserved in

those processes. Here isospin rotation only affects the Dirac spinors, and all form factors

relatively transform in the same way, so we only consider charge transformation.

Under the charge conjugation operation, Cu(~x, t) = γ1γ3ū(~x, t), bilinear forms trans-

form in the following ways.

p̄[F ]n C−→ n̄[γ0γ2F
Tγ2γ0]p

p̄[FV
3]n → −n̄[FV

3]p

p̄[γµF1]n → n̄[γµF1]p

p̄[σµνF2]n → n̄[σµνF2]p

p̄[γ5FP ]n → −n̄[γ5FP ]p

p̄[γµγ5FA]n → −n̄[gaµγ5FA]p

p̄[σµνγ5FA
3]n → n̄[σµνγ5FA

3]p

Notice that FV
3 and FA

3 transform in the relatively opposite way from F1 and FA, respec-

tively. Now, all interaction types other than F1 and FA originate from the strong interaction

and are induced from F1 and FA. So the C-parity of FV
3 and F2 are necessarily the same

as that for F1, and also, the the C-parity of FP and FA
3 should be the same as FA. Thus,

one can prove that there is no FV
3 and FA

3 in the nucleon current. Here, F1, F2, FA, and

FP are called first class, and FV
3 and FA

3 are called second class. The second class form

factors are known to violate G-parity and do not exist in the standard model [17].

T-invariance and form factors

All Hamiltonians are hermitian by definition. The CPT transformation replaces the first

half with second half, namely hermitian conjugate part. This can be seen in the following

expression for a nucleon weak current,

p̄[γµ(F1 − FAγ5) + . . . ]n CPT←→ n̄[γµ(F ∗1 − F ∗Aγ5) + . . . ]p. (3.67)
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This is the famous CPT theorem, and the result is independent from the expression of C,

P, and T transformation [26].

Under the time reversal operation, Tu(~x, t) = iγ1γ3u∗(~x,−t), transformations of bilinear

forms are following ways.

p̄[F ]n T−→ n̄[γ0γ3γ1F
Tγ1γ3γ0]p

p̄[FV
3]n → n̄[FV

3]p

p̄[γµF1]n → n̄[γµF1]p

p̄[σµνF2]n → −n̄[σµνF2]p

p̄[γ5FP ]n → −n̄[γ5FP ]p

p̄[γµγ5FA]n → n̄[gaµγ5FA]p

p̄[σµνγ5FA
3]n → n̄[σµνγ5FA

3]p

Although CP is violated in weak processes, the amount is small and we can assume CP as

a good symmetry. Then, using the result from Sec. 3.2.8 and the parity transformation,

p̄[γµ(F1 − FAγ5) + · · · ]n C×P×T←→ n̄[γµ(F1 − FAγ5) + · · · ]p. (3.68)

The required conditions from Eq. 3.67 and Eq. 3.68 are obviously,

F1 = F ∗1 , FA = F ∗A, · · ·

Therefore, T-invariance implies that all the form factors are relatively real [17].
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3.3. NEUTRINO-NUCLEI SCATTERING

3.3 Neutrino-Nuclei scattering

3.3.1 Smith-Moniz formula for the neutrino experiments

We now want to consider charged-current quasielastic scattering from a bound nucleon,

(Fig. 3.5).

νl +A→ l− +A′, (3.69)

ν̄l +A→ l+ +A′. (3.70)

The details of the calculation are given in Appendix C.2. In Fig 3.5, initial and final lepton

ν and l, initial and final nuclei A and A′, and initial and final nucleon N and N ′ have

4-momentum k1, k2, p, p′, k, and k′ respectively. The charged lepton l has mass m, and

the nuclear target A has mass mT . Also we define nucleons N and N ′ to have mass M . We

found the expression for the double differential cross section(Eq. C.60) to be,

dσ2

dk2dΩ
=

G2
V k

2
2

2π2mT

{
2W1sin

2

(
1
2
χ

)
+W2cos

2

(
1
2
χ

)
+ sin2

(
1
2
χ

)
m2

m2
T

Wα +
m2(Wβ +W8)

mT ε2

−2W8

mT
sin

(
1
2
χ

)√
q2cos2

(
1
2
χ

)
+ |q|2sin2

(
1
2
χ

)
+m2

}
, (3.71)

where χ is defined through k2
ε2
cosθ (k2 = (ε2, ~k2), and θ is a scattering angle of a charged

lepton). This formula has five functions, hadronic nuclei functions, Wi, i = 1, 2, α, β, 8, and

we found their expressions in Eqs. C.83, C.84, C.85, C.86, and C.87.

W1 = T1 +
1
2

(a2 − a3)T2

W2 =
[
a4 +

2ω
|q|
a5 +

ω2

|q|2
a3 +

q2

2|q|2
(a2 − a3)

]
T2

Wα =
m2

T

|q|2

(
3
2
a3 −

1
2
a2

)
T2 +

m2
Ta1

M2
Tα − 2

a6m
2
T

M |q|
Tβ

Wβ =
mT

M

(
a7 +

ω

|q|
a6

)
Tβ −

mT

|q|

[
a5 +

ω

|q|

(
3
2
a3 −

1
2
a2

)]
T2

W8 =
mT

M

(
a7 +

ω

|q|
a6

)
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Figure 3.5: The neutrino-nuclei scattering diagram.
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Notice the sign difference in expressions of Wα and Wβ compared to the original paper [16,

27].

The hadronic nuclei functions are made of hadronic nucleon functions, Ti, i = 1, 2, α, β, 8,

and their expressions are found in Eqs. C.105, C.106, C.109, C.108, and C.107 from neutrino-

nucleon scattering (Eq. C.29 to C.34) which we already know.

T1 =
[

1
2
Q2(F1 + 2MF2)2 +

(
2M2 +

1
2
Q2

)
F 2

A

]
T2 =

[
2M2[F 2

1 +Q2F 2
2 + F 2

A +Q2FA
32]
]

Tα =
M2

Q2
T1 +

1
4
T2 + 4M2FV

3

[
2MF1 − F2Q

2 +
(

2M2 +
1
2
Q2

)
FV

3

]
+M2(2MFA − FPQ

2)
[
FA

3 +
1

2Q2
(2MFA − FPQ

2)
]

Tβ =
1
2
T2 + 4

[
(2MF1 − F2Q

2)M2FV
3 + (2MFA − FPQ

2)M2FA
3]
]

T8 =
[
2M2FA(F1 + 2MF2)

]
These contain nucleon form factors from Sec. 3.2.6.

The expressions for ai, i = 1, · · · , 7 in the hadronic nuclei functions are found in Eq. C.64

to C.70.

a1 =
∫
d~kf(~k, ~q, ω)

a2 =
∫
d~kf(~k, ~q, ω)

k2

M2

a3 =
∫
d~kf(~k, ~q, ω)

k2cos2τ

M2

a4 =
∫
d~kf(~k, ~q, ω)

ε2k
M2

a5 =
∫
d~kf(~k, ~q, ω)

εkkcosτ

M2

a6 =
∫
d~kf(~k, ~q, ω)

kcosτ

M

a7 =
∫
d~kf(~k, ~q, ω)

εk
M

47



CHAPTER 3. NEUTRINO INTERACTIONS

Here f(~k, ~q, ω) is a function describing how nucleons distribute in momentum space, and

cosτ is an angle made between initial nucleon momentum ~k and 3-momentum transfer ~q.

The analytic solutions are also found for relativistic Fermi gas (RFG) model (Eqs. C.96

to C.102). For RFG model, these integrals, taken within the momentum space of target

nucleon, are limited by Pauli blocking. And they are re-written by the integral of target

nucleon energy, ∫
d~kf(~k, ~q, ω) ∼

∫ kmax

kmin

kdk ∼
∫ Ehi

Elo

εdε. (3.72)

Here, Elo and Ehi are written,

Ehi =
√
p2

F +M2
n, (3.73)

Elo =
√
p2

F +M2
p − ω + EB, (3.74)

where Ehi is the energy of an initial nucleon on the Fermi surface and Elo is the lowest

energy of an initial nucleon that leads to a final nucleon just above the Fermi surface by

adding the energy transfer ω. The Fermi momentum pF and the binding energy EB should

be found experimentally. Later, we introduce a new parameter, “κ”, to scale Elo to increase

Pauli blocking. We discuss this more in Chapter. 8.

And finally, this results in a cross-check of Smith and Moniz’s RFG model.

3.3.2 Cross section formula comparison with nuance

The nuance neutrino reaction code (Sec. 7.4) employs the quasi-elastic model of Smith-

Moniz for both bound and free nucleons. In nuance,

dσ2

d(lnq2)d(lnω)
=

Q2ω

32πmT ε21
G2

V ·

 isospin

factor(= 1)

 ·
 Weakboson

propagator(∼ 1)

×
16ε1ε2

{
2W1sin

2

(
1
2
χ

)
+ · · ·

}
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with,

d(lnq2) =
1
q2
dq2 =

2ε1k2

q2
d(cosθ),

d(lnω) =
1
ω
dω = − 1

ω
dε2 = − k2

ωε2
dk2,

dΩ = 2πd(cosθ).

And remember, in old notation, Eq. C.44 has q2 defined as positive, then,

dσ2

d(lnq2)d(lnω)
= − q2ωε2

2πmT ε1
G2

V

{
2W1sin

2

(
1
2
χ

)
+ · · ·

}
→ dσ2

dq2dω
= −

G2
V ε2

2πmT ε1

{
2W1sin

2

(
1
2
χ

)
+ · · ·

}
→ dσ2

d(cosθ)dε2
=
G2

V k2ε2
πmT

{
2W1sin

2

(
1
2
χ

)
+ · · ·

}
→ dσ2

dk2dΩ
=

G2
V k

2
2

2π2mT

{
2W1sin

2

(
1
2
χ

)
+ · · ·

}
. (3.75)

Therefore, it is verified that nuance is using an identical expression with as that of Smith

and Moniz [16].
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3.4 Neutrino Charged current quasielastic (CCQE) scatter-

ing cross section measurements

The CCQE cross section has been measured in a number of past experiments. But a precise

measurement of the CCQE process has become an urgent program because the CCQE cross

section has a tight relationship with neutrino oscillation measurements.

3.4.1 Long baseline accelerator-based neutrino oscillation experiments

The goal of next-generation long baseline accelerator-based neutrino oscillation experiments

is to measure a non-zero θ13, the last mixing matrix element. The value of θ13 is an

important parameter through which to access beyond-the-standard-model (BSM) physics.

If it is indeed non-zero, then the hope is to measure leptonic CP violation, which may

help in our understanding of leptogenesis, one of the candidate explanations of the baryon

asymmetry of the universe [28].

Currently there are two experiments planned, the Tokai-to-Kamioka (T2K) experi-

ment [29] (E ∼ 800 MeV, L ∼ 300 km) and the NuMI Off-axis νe Appearance (NOvA)

experiment [30] (E ∼ 2 GeV, L ∼ 800 km). Both experiments will use a νµ beam and

search for νe appearance events in order to measure θ13 via,

P (νµ → νe) = sin2θ23sin
22θ13sin2

(
1.27

∆m2
32(eV 2)L(km)
E(GeV )

)
. (3.76)

Since a small P (νµ → νe) is proportional to sin2θ23 and sin2
(

1.27∆m2
32L

E

)
, we also need ac-

curate knowledge of these two oscillation parameters, and can achieve by the measurements

of νµ disappearance events,

P (νµ → νµ) = 1− sin22θ23sin2

(
1.27

∆m2
32(eV 2)L(km)
E(GeV )

)
. (3.77)

These two oscillation parameters are extracted from the shape of P (νµ → νµ) as a function

of reconstructed neutrino energy. Therefore, a good extraction of sin2θ23 and ∆m2
32 relies
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on a good reconstruction of neutrino energy, which requires a better understanding of the

signal (νµCCQE) and background interactions, mainly the CC1π interaction.

It is important to perform these cross section measurements prior to the oscillation

experiments. Although all long baseline accelerator-based neutrino oscillation experiments

have near detectors, they exist to constrain neutrino flux uncertainties, and this constraint

relies on an accurate knowledge of the neutrino cross sections. Figure 3.6 shows the world’s

data for neutrino charged current cross sections. As can be seen, the existing data are rather

sparse and old. Since the two experiments, T2K and NOvA, span different energy ranges, we

need cross section measurements in both energy regions because the dominant interaction

types are different in each, and, therefore, the energy reconstruction and backgrounds are

different. Fortunately, there is much new input from current and future neutrino cross

section measurements: K2K near detector [31] (∼ 1.2 GeV, completed), MiniBooNE [4]

(∼ 800 MeV, ongoing), SciBooNE [32] (∼ 800 MeV, completed), MINOS near detector [33]

(∼ 2 − 20 GeV, ongoing), MINERvA [34] (∼ 2 − 20 GeV, approved), and NOMAD [35]

(∼ 5− 70 GeV, completed).
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Figure 3.6: The world data for νµ charged current cross section divided by neutrino energy.

The figure is taken from [36]. The dominant interaction for T2K and NOvA are quasi-elastic

(QE) and deep inelastic scattering (DIS) respectively. The existing data are rather sparse

and old, but there will be new input soon from current and future experiments!
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3.4.2 Neutrino energy reconstruction for T2K

At the T2K energy scale (∼ 800 MeV), the dominant neutrino reactions are νµ charged-

current quasi-elastic (CCQE) interactions,

νµ + n→ p+ µ−. (3.78)

This channel is used to measure νµ disappearance, and thus the νµ energy reconstruction

is critical. Since neutrino oscillation experiments use nuclear targets, understanding of this

interaction is not trivial.

Recently K2K [31, 37] and MiniBooNE [4, 39] have reported new measurements of the

axial mass, MA, which are higher than the historical value (Table 3.1). In this energy

range, the axial vector form factor is the dominant contribution to the cross section and

controls the Q2 dependence. Inconsistency of their results from the world average, and the

consistency between K2K and MiniBooNE is best understood in terms of nuclear effects,

because most of the past experiments used deuterium targets whereas K2K and MiniBooNE

used oxygen and carbon. Instead of using the world average, both experiments employ their

measured MA values to better simulate CCQE events in their oscillation analyses. After the

MA adjustment, both experiments see good agreement between data and simulation [4, 31].

We can only measure the interaction rate, which is the convolution of flux and cross

MA(GeV) target

K2K (SciFi) [31] 1.20 ± 0.12 oxygen

K2K (SciBar) [37] 1.14 ± 0.11 carbon

MiniBooNE [4] 1.23 ± 0.20 carbon

world average [38] 1.026 ± 0.021 deuteron, etc

Table 3.1: The comparison of measured axial mass MA.
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section (R =
∫

Φ × σ). So, without knowing that the flux prediction is perfect, one can-

not tune the cross section model from measured interaction rate. MiniBooNE carefully

examined this, and showed that the observed data simulation disagreement is not the effect

of mismodeling of the neutrino flux, but is really a cross section model problem. This is

discussed in detail in Chapter 8.

It is not only important to understand the energy reconstruction of signal events (i.e.,

CCQE interaction), but also for background channels. For Super-K, the neutrino energy

is reconstructed from the measured muon energy Eµ and angle θµ, assuming a CCQE

interaction,

EQE
ν ∼

MNEµ − 1
2m

2
µ

MN − Eµ +
√
E2

µ −m2
µcosθµ

. (3.79)

Here, MN and mµ are nucleon and muon masses. Since this formula assumes a 2-body

interaction, any interaction involving more than two particles is a source of neutrino energy

mis-reconstruction (Fig 3.7, left). The most notable channel contributing to this is charged

current one pion (CC1π) production. Especially when the detection of the outgoing pion

fails for various reasons (pion absorption, detector effect, etc), CC1π events become an

irreducible background, and thus they need to understand CC1π’s relative contribution

rather than rejecting them by cuts (Fig. 3.7, right).
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Figure 3.7: (Left) (a) CCQE interaction and (b) CC1π interaction. Eq. 3.79 correctly

reconstructs neutrino energy only for (a). (b) can be distinguished from (a) by additional

pion, however when pion is lost (by pion absorption for example), (b) becomes indistin-

guishable from intrinsic backgrounds. When (a) and (b) have the same muon kinematics,

the reconstructed neutrino energies are the same, however the true neutrino energy for (b)

is higher due to the creation of the pion in the event (neutrino energy mis-reconstruction).

(Right) true and reconstructed neutrino energy distribution for Super-K predictions with

neutrino oscillations. The shaded region is non-QE (mainly CC1π) channels. As can be

seen from the bottom plot, CC1π background events are misreconstructed at lower neutrino

energies and hence can fill out the dip created by neutrino oscillations. Figures are taken

from [40].
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3.4.3 CCQE cross section measurement

Currently, most of simulations of CCQE interactions are based on Smith and Moniz’s for-

malism of relativistic Fermi gas (RFG) model [16]. However, to understand nuclear effects

correctly, recently developed models for CCQE interactions (for example [41–45]) are more

promising. To tune these models, we need to compare with CCQE cross section data.

And to obtain precise CCQE cross section measurements, the background should be sub-

tracted carefully. In Chapter 9, we use in situ measurement of CC1π events to constraint

these CC1π background in the CCQE sample, even though most of pions are lost (irre-

ducible backgrounds). Then, in Chapter 10, we report a measured flux-folded differential

and double differential cross section, and the flux-unfolded total cross section for the CCQE

interaction in MiniBooNE.
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Lorentz Violation with Neutrino
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Intellectualism as well as empiricism remains anterior to the problem of orientated space,

because it cannot even begin to ask the question. In the case of empiricism, the question was

how the image of the world which, in itself, is inverted, can right itself for me. Intellectualism

cannot even concede that the image of the world, after the glasses are put on, is inverted.

- M. Merleau-Ponty, Phenomenology of Perception
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Chapter 4

Test of Lorentz violation with

neutrino oscillations

Lorentz symmetry is one of the most fundamental symmetries of modern physics. Never-

theless, many recently developed theories to describe the most fundamental state of matter

and space, such as super strings [46] and quantum gravity [47], do predict a violation of

Lorentz symmetry.

Also, a phenomenological model that describes all possible types of Lorentz violation

with conventional quantum field theory has been developed. Using this model, the so called

Standard-Model Extension (SME) [48–50], one can describe the possible features of neutrino

oscillations under the assumption of Lorentz violation. Since the oscillation of neutrinos is

effectively a high precision interferometric technique, and neutrinos are the least understood

fundamental particles in nature, it is extremely interesting to investigate possible Lorentz

violation with neutrinos.

In this chapter, we start with a brief description of the SME formalism, then we discuss

a test of Lorentz violation with data from the LSND experiment [1]. This analysis further
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motivates the construction of a global neutrino oscillation model using Lorentz violation [2].

In the next chapter, we discuss this global neutrino oscillation model, and compare the

prediction to recent results from the MiniBooNE experiment [3].

4.1 Introduction

Lorentz symmetry is a fundamental law in the Standard Model (SM). However, it needs to

be supported by experimental observation, and many people have tested this law in various

ways over the past 100 years.

Although intrinsic Lorentz violation is very difficult to formulate, Lorentz symmetry

could be broken dynamically, namely via spontaneous Lorentz symmetry breaking (SLSB).

This is especially relevant after the discovery of the actual process for SLSB in string

theory [46], Lorentz violation is widely recognized as a signal of Planck scale physics (MP ∼

1019 GeV). The Planck scale is a very high energy scale, and currently it is impossible to

attain. However, if Planck scale physics is suppressed in the low-energy world by its inverse,

the natural suppression factor in SM energy scale (EW ∼ 100 GeV) is, ∼<
EW
MP
∼ 10−17.

Then, precise measurements, for example interference experiments, could observe a signal.

The general effective quantum field theory constructed from the SM and allowing ar-

bitrary coordinate independent Lorentz violation is called the Standard Model Extension

(SME) [48–50]. The minimal SME formalism has all the conventional properties of the

Standard Model including observer Lorentz covariance, power counting renormalizability,

energy momentum conservation, quantized field, micro causality, and spin-statistics with

particle Lorentz and CPT violation due to background Lorentz tensor fields of the universe.

The minimal SME also has SU(3)C × SU(2)L × U(1)Y gauge invariance. Since the back-

ground Lorentz tensor fields are fixed in space-time, by definition, they do not transform

under an active transformation law. That implies rotation and boost dependence of physics
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in a specific coordinate system.

Here coordinate independence is important for the analysis of Lorentz violation, be-

cause Lorentz violation is understood by the coupling of vacuum expectation value (VEV)

with Lorentz indices, and the Lagrangian itself is Lorentz invariant with coordinate trans-

formation, or observer Lorentz transformation (passive Lorentz transformation). Thus,

Lorentz violation happens when we consider the transformation in a fixed coordinate sys-

tem, namely particle Lorentz transformation (active Lorentz transformation in a fixed back-

ground). This situation is illustrated in Fig. 4.1. Here, a particle is moving in the y-direction

in 2-dimensional coordinates, and we consider the rotation in this coordinate system. We

introduce a background vector field, which is the source of Lorentz violation. Lorentz vi-

olation is the violation of orthochronous Lorentz transformation, where 3 rotation and 3

Lorentz boost generators make the Lorentz group. The rotation violation is considered here.

First, we consider the observer Lorentz transformation (passive Lorentz transformation).

This situation is described in Fig. 4.1a. This is the inverse coordinate transformation to

transform the object passively, and as can be seen, the couplings of matter and background

fields stay the same, so Lorentz violation does not occur in this transformation.

Next, we consider the particle Lorentz transformation (active Lorentz transformation in

fixed background). This situation is described in Fig. 4.1b. This is the active transformation

of an object in fixed coordinate space. Now it can be seen that the coupling is not an

invariant of the transformation, so Lorentz violation results in physical observables by the

active motion in fixed coordinates.

Lorentz symmetry has an intimate relationship with CPT symmetry, namely, CPT

violation implies Lorentz violation [51]. This is understood by the following argument.

Each Lorentz index has CPT odd parity. Since Lagrangian is Lorentz scalar, this means

that the number of Lorentz indices are always even, and any terms in the Lagrangian can be

defined as CPT even. However, if odd numbered Lorentz indices are insensitive to particle
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(a)

(b)

(a) rotation 
direction of the  
coordinate axes

(b) rotation 
direction of the 
moving particle

Figure 4.1: A cartoon illustrating observer and particle Lorentz violation.

Lorentz transformation, the phase of CPT is shifted π for each Lorentz index. Then, the

phase of the CPT transformation is

(−1)N , (4.1)

where N is the number of Lorentz violating Lorentz indices. Rigorously, any interactive

field theories with CPT violation always violates Lorentz invariance [51].

Lorentz violation is expected to be smaller than the inverse of Plank scale E
MP

, where

E is the energy scale of the system. Surprisingly, atomic physics has achieved this sensitivity

level, and extensive experimental studies have been done (see, for example, Ref. [12, 14, 52–

54]). A recent experiment [13, 55] of this type reaches a sensitivity to a specific combination

of SME coefficients to order ∼ 10−31 GeV, well beyond a naive estimation of the scale of

new physics. However, many of the SME coefficients still have no experimental bounds.

Similarly, quantum interference experiments, such as neutrino oscillations, are also sen-

sitive to the small effect of Lorentz and CPT violation [56]. Tests have been made using
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data from many experiments. Traditionally, a test of Lorentz violation is done via an energy

spectrum distortion for neutrino oscillations [57, 58]. This is one of the signals of Lorentz

violation in the neutrino sector, which we call “spectrum anomalies” in Sec. 4.2. Using this

technique, MACRO [59] and KamLAND [60, 61] data are analyzed. However, the smoking

gun of Lorentz violation is direction-dependent physics in a fixed coordinate system. This

may be seen in a sidereal time dependence of neutrino oscillation signals, or what we call

“periodic variation” in Sec. 4.2. Super-K [62], MINOS [63], LSND [1], AMANDA [64], and

MiniBooNE [3] have analyzed their experimental data in this way. For the remainder of

this chapter, we focus on tests of Lorentz violation with neutrinos [56, 65, 66].

4.2 Lorentz violating neutrino oscillation

For the neutrino sector, Lorentz violation induces additional terms in the Lagrangian. The

neutrino free-field Lagrangian is [56],

L =
1
2
iψ̄AΓµ

AB

↔
Dµ ψB − ψ̄AMABψB + h.c., (4.2)

Γν
AB ≡ γνδAB + cµν

ABγµ + dµν
ABγ5γµ + eνAB + ifν

ABγ5 +
1
2
gλµν
AB σλµ, (4.3)

MAB ≡ mAB + im5ABγ5 + aµ
ABγµ + bµAB +

1
2
Hµν

ABσµν . (4.4)

The first term of Γµ
AB and the first and second terms of MAB are the only non-zero terms

in the case of conventional neutrino oscillations. The remaining terms in this Lagrangian

represent the physics of the background fields. In general, the background Lorentz tensor

fields are an infinite series, but if the focus is on a low energy effective theory, these eight

additional fields are complete. Here, vacuum expectation values that contain cµν
AB, dµν

AB,

and Hµν
AB are CPT-even (CPT conserving) terms while eµAB, fµ

AB, gµνλ
AB , aµ

AB, and bµAB are

CPT-odd (CPT non conserving) by definition of the background fields. Notice that each

background field has flavor indices (A and B) that, unlike other systems, bring additional

complication for the neutrino sector.
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This Lagrangian leads to the modified Dirac equation,

(iΓµ
AB∂µ −MAB)ψB = 0. (4.5)

Neutrino oscillations are a function of eigenvalue differences, so we need to construct an

effective Hamiltonian from Eq. 4.5. After some algebra, the effective Hamiltonian within

the conventional neutrino flavor basis is,

(heff)ab = |~p|δab

 1 0

0 1

+
1

2|~p|

 (m̃2)ab 0

0 (m̃2)∗ab


+

1
|~p|

 [(aL)µpµ − (cL)µνpµpν ]ab −i
√

2pµ(ε+)ν [(gµνσpσ −Hµν)C]ab

i
√

2pµ(ε+)∗ν [(gµνσpσ +Hµν)C]∗ab [−(aL)µpµ − (cL)µνpµpν ]∗ab

 . (4.6)

Here, the effective Hamiltonian is written in a physical neutrino (three active left-handed

neutrinos) and antineutrino (three active right-handed antineutrinos) basis, so the top left

block matrix describes ν − ν oscillations, top right and bottom left block matrices are for

ν − ν̄ oscillations, and bottom right is for ν̄ − ν̄ oscillations. The first term is the leading

energy term and disappears with a phase rotation. The second term is the neutrino mass

term. m̃ab is the light neutrino mass matrix, generally believed to be the solution of the

seesaw mechanism [9] and written, using the right-handed (R), left-handed (L), and Dirac

(D) mass matrices,

m̃ab = L−DR−1DT =


mee meµ mτe

meµ mµµ mµτ

mτe mµτ mττ

 . (4.7)

The third term contains all Lorentz violating physics. Here, some SME coefficients only

show up in certain combinations, (aL)µ
ab ≡ (a+b)µ

ab and (cL)µν
ab ≡ (c+d)µν

ab . The parameters

eµab and fµ
ab do not contribute to neutrino oscillations. These terms form a Lorentz scalar

with the momentum of neutrinos. Neutrino propagation directions are changed with time,

but Lorentz violating coefficients are fixed in space (Fig. 4.1(b)). Thus, these Lorentz scalars
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are invariant under observer Lorentz transformation (passive Lorentz transformation) but

non-conserving for particle Lorentz transformation (active Lorentz transformation in fixed

background). As a consequence, the oscillation signal may exhibit a dependence on the

rotation of the earth (sidereal time).

This effective Hamiltonian contains very rich physics, more than just sidereal time vari-

ation. The main signals of Lorentz violation can be classified into 6 types [56]:

1. Spectral anomalies,

2. L-E conflict,

3. Periodic variation,

4. Compass asymmetries,

5. Neutrino-Antineutrino oscillation,

6. Classic CPT test.

Signal (1) is a anomalous energy spectrum distortion, for example the MiniBooNE νe low-

energy event excess [67] could be this type of signal. We consider this in Chapter 5.

Signal (2) is an anomalous mapping of experiment in sin22θ−∆m2 space. It is possible

to have oscillation signals in the region excluded by other experiments in sin22θ − ∆m2

space, because if an oscillation signal is based on an anomalous energy dependence due to

Lorentz violation, this signal cannot be mapped correctly in sin22θ−∆m2 space. The LSND

ν̄e appearance result could be an example. Using L − E space is the model-independent

way to show signal sensitivity regions (Fig. 4.2).

Signal (3) is a sidereal variation of an oscillation signal. We focus on this type of signal

in this chapter.
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Signal (4) is a special case of rotation violation. Even if an oscillation signal does

not exhibit a dependence with sidereal time, time-independent direction dependence could

be measurable by actively rotating the neutrino propagation direction on the earth. For

example, directional information of atmospheric neutrino data could be used to consider

this case.

Signal (5) are helicity-violating neutrino oscillations, and hence Lorentz violating. Mini-

BooNE νe/ν̄e appearance data could be used to explore this possibility [68], but we do not

consider this scenario here.

Signal (6) is the standard test for CPT symmetry by comparing neutrino and antineu-

trino phenomena.

Some combination of these six types of signal observation would support Lorentz viola-

tion even more strongly. The observed signal in the LSND experiment is not understood

in L − E plane given results from other experiments [69]. Thus, this can be interpreted

as signal type (2). This gives motivation to analyze LSND data under the assumption of

Lorentz violation. We search for the signal (4), periodic variation, by analyzing the LSND

data, using statistical methods, to find possible variations with sidereal time. Therefore the

confirmation of a sidereal variation of LSND oscillation would be very strong evidence for

Lorentz violation.
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Figure 4.2: A sensitivity plot for general neutrino oscillations illustrating all possible

oscillation scenarios taken from [56]. In this space, energy dependence of the neutrino mass-

like oscillations appear on the solid line, while CPT-odd and CPT-even energy dependences

would show occur on the dashed or dotted lines. The square regions show the sensitivity

region of various experiment. For example, neutrino oscillations observed by the K2K

experiment could be ∆m2 ∼ 10−3 eV2 or aL ∼ 10−21 GeV or cL ∼ 10−21, but the energy

spectrum analysis excludes naive CPT-odd- and CPT-even-like energy dependent solutions.

In Chapter 5, a model is presented to create a mass-like oscillatory behavior with CPT-odd

and CPT-even terms.
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4.3 Test of Lorentz violation with LSND experiment

The details of this analysis are available in [1]. Here, we give a brief summary of a test of

Lorentz violation using data from the LSND experiment.

4.3.1 LSND experiment

The Liquid Scintillator Neutrino Detector (LSND) experiment [69], completed at the Los

Alamos National Laboratory (LANL), observed an excess of ν̄e in a beam of ν̄µ created

from µ+ decay at rest (Fig. 4.3). The data analysis used the sample of detected ν̄ep→ e+n

events with positron energy 20 < Ee+ < 60 MeV. If interpreted as ν̄µ to ν̄e oscillations, this

ν̄e excess implies a two-neutrino oscillation probability of (0.264±0.067±0.045)%. Here the

first error is statistical and the second error is systematic (neutrino flux, particle detection

efficiency, cross sections, etc.). Despite the evidence for neutrino oscillations from solar

neutrinos [70–77], atmospheric neutrinos [78–80], accelerator neutrinos [81, 82], and reactor

neutrinos [83], the oscillation signal observed at LSND remains a puzzle. Since the neutrino

sector is thought as likely to reveal new physics, the LSND anomaly is often explained with

new ideas such as sterile neutrino models (see Ref. [84, 85] for a recent example). The

MiniBooNE experiment at Fermilab was designed to test the LSND signal (Chapter 7).
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Figure 4.3: The ν̄e oscillation signal at LSND experiment. The data excess is visible

above the predicted background (light cross-hatched area). This excess is consistent with

backgrounds plus neutrino oscillations (darker cross-hatched area).

4.3.2 SME formalism for LSND

Using an the SME formalism (Eq. 4.6), the relevant effective Hamiltonian is,

(heff)ab = |~p|δab +
(m̃2)∗ab

2|~p|
+

1
|~p|

[−(aL)µpµ − (cL)µνpµpν ]∗ab (4.8)

The original and complete effective Hamiltonian can describe ν − ν, ν̄ − ν̄, and ν − ν̄

oscillations, but, in this work, lepton-number violating ν− ν̄ oscillations are not considered.

Therefore, the neutrino and antineutrino sectors can be diagonalized separately. For the

usual conventional neutrino oscillation case, the effective Hamiltonian (Eq. 4.8) contains

only the first two terms. Then, the neutrino oscillation probability depends on ∆m2 and

the mixing matrix. But, in this general form, including possible Lorentz and CPT violation,

the diagonalization of the effective Hamiltonian is more complicated and, in general, it can

not be represented by ∆m2 and the mixing matrix alone.

The effective Hamiltonian of Eq. 4.8 may be used to analyze the LSND ν̄e appearance

data. The problem here is that there are too many free parameters to test. However, under
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the assumption of a short baseline neutrino oscillation experiment, L is small compared with

the neutrino oscillation length (Sec. 2.1), and the oscillation probability can be expanded

using this effective Hamiltonian [66]. This approximation is especially suitable for the LSND

result, because of the small indicated oscillation probability (∼0.26%). Then, to leading

order in heff , the oscillation probability is

Pν̄µ→ν̄e ' |(heff)ēµ̄|2L2

(~c)2
. (4.9)

Since, in the effective Hamiltonian, pµ depends on the neutrino propagation direction, this

oscillation probability depends on this propagation direction. In order to form a phenomeno-

logical expression for the neutrino oscillation probability, it is most convenient to use a

coordinate system fixed to the experiment [86, 87]. The standard choice is a Sun-centered

system (Fig.4.4a) that is, to a good approximation, an inertial frame for the experiment.

Recall that the nature of observer Lorentz covariance can guarantee the existence of

inertial frame even under particle Lorentz and CPT violation. And, in this coordinate

system, the neutrino oscillation transition probability depends on the rotation of the earth

with respect to distant star (sidereal time dependence) .

With this choice of coordinates, the neutrino oscillation probability becomes,

Pν̄µ→ν̄e ' L2

(~c)2
| (C)ēµ̄ + (As)ēµ̄ sinω⊕T⊕ + (Ac)ēµ̄ cosω⊕T⊕

+(Bs)ēµ̄ sin 2ω⊕T⊕ + (Bc)ēµ̄ cos 2ω⊕T⊕ |2. (4.10)

The parameters, (C)ēµ̄, (As)ēµ̄, (Ac)ēµ̄, (Bs)ēµ̄, and (Bc)ēµ̄, depend on the SME coefficients

(aL)µ and (cL)µν and the neutrino propagation direction unit vectors N̂X , N̂Y , and N̂Z in

the Sun-centered system.

Here ω⊕ is the sidereal frequency (=2π/23h56min4.1 sec), and T⊕ is the sidereal time

which is the time measured from standard origin. The full expressions for each coefficient
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Figure 4.4: The coordinate system for the sidereal time variation analysis of LSND: a) the

Sun-centered coordinates, b) the Earth-center coordinates, c) LSND local beam direction

coordinates, and d) our definition of T⊕ = 0.
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are [66]

(C)ēµ̄ = (C(0))ēµ̄+ E(C(1))ēµ̄ (4.11)

(As)ēµ̄ = (A(0)
s )ēµ̄+ E(A(1)

s )ēµ̄ (4.12)

(Ac)ēµ̄ = (A(0)
c )ēµ̄+ E(A(1)

c )ēµ̄ (4.13)

(Bs)ēµ̄ = E(B(1)
s )ēµ̄ (4.14)

(Bc)ēµ̄ = E(B(1)
c )ēµ̄ (4.15)

(C(0))ēµ̄ = (m̃2)∗ēµ̄

2E − (aL)T
ēµ̄ + N̂Z(aL)Z

ēµ̄ (4.16)

(C(1))ēµ̄ = −1
2(3− N̂ZN̂Z)(cL)TT

ēµ̄ + 2N̂Z(cL)TZ
ēµ̄ + 1

2(1− 3N̂ZN̂Z)(cL)ZZ
ēµ̄ (4.17)

(A(0)
s )ēµ̄ = −N̂Y (aL)X

ēµ̄ + N̂X(aL)Y
ēµ̄ (4.18)

(A(1)
s )ēµ̄ = −2N̂Y (cL)TX

ēµ̄ + 2N̂X(cL)TY
ēµ̄ + 2N̂Y N̂Z(cL)XZ

ēµ̄ − 2N̂XN̂Z(cL)Y Z
ēµ̄ (4.19)

(A(0)
c )ēµ̄ = +N̂X(aL)X

ēµ̄ + N̂Y (aL)Y
ēµ̄ (4.20)

(A(1)
c )ēµ̄ = 2N̂X(cL)TX

ēµ̄ + 2N̂Y (cL)TY
ēµ̄ − 2N̂XN̂Z(cL)XZ

ēµ̄ − 2N̂Y N̂Z(cL)Y Z
ēµ̄ (4.21)

(B(1)
s )ēµ̄ = N̂XN̂Y ((cL)XX

ēµ̄ − (cL)Y Y
ēµ̄ )− (N̂XN̂X − N̂Y N̂Y )(cL)XY

ēµ̄ (4.22)

(B(1)
c )ēµ̄ = −1

2(N̂XN̂X − N̂Y N̂Y )((cL)XX
ēµ̄ − (cL)Y Y

ēµ̄ )− 2N̂XN̂Y (cL)XY
ēµ̄ (4.23)

The N̂X , N̂Y and N̂Z are the direction vectors of the neutrino beam in the Sun-centered

coordinates. The components are further described with a co-latitude χ of detector location

in the Earth-centered system (Fig.4.4b) and the zenith and azimuthal angles θ and φ of the

local beam system. (Fig.4.4c):
N̂X

N̂Y

N̂Z

 =


cosχ sin θ cosφ+ sinχ cos θ

sin θ sinφ

− sinχ sin θ cosφ+ cosχ cos θ

 =


−0.053

0.980

−0.194

 . (4.24)

Here, we found the LSND beam, that of the Los Alamos Neutron Science Center (LANSCE),

direction to be χ = 54.1◦, θ = 99.0◦, and φ = 82.6◦ [88]. The sidereal time has a specific
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origin (T⊕ = 0) in astronomy, but for simplicity, we chose a relative origin. The sidereal

time is defined to start when the local coordinates correspond to the midnight point near the

autumnal equinox (Fig.4.4d). At that time, the y-axis of the Earth-centered coordinates

coincides with the Y axis of the Sun-centered coordinates. The earth was at autumnal

equinox near the start of the LSND experiment on 1993, Sept. 23rd, 00:32 (GMT). The

location of LANL is 105◦ west of Greenwich, UK, so LANL was at autumnal equinox at 7

hours later on that day. Therefore, the nearest midnight point for LANL near autumnal

equinox occurred at 6:28 from the precise autumnal equinox. The revolution angle for the

earth (in orbit around the sun) during 6:28 is,

θ =
6×60+28
24×60

365.25
= 0.27◦. (4.25)

This corresponds to approximately 1 minute of earth rotation (about its axis of rotation).

Therefore, the estimated difference between the true sun-centered coordinate system and

this definition of T⊕ is ∼ 1 minute, which is sufficiently small compared with the size of

time bins used in this analysis.

4.3.3 Analysis and results

Since the LSND oscillation candidate sample size is only 186, an unbinned likelihood method

was used to maximize statistical power [89, 90] of the data set. The sidereal time distribution

of the LSND oscillation sample was found to be consistent with flat (no sidereal time

dependence) using Kolmogorov-Smirnov and Pearson’s χ2 tests [1]. However, the data did

allow (within errors) non-zero Lorentz violation. Figure. 4.5 shows the data compared to

1-parameter ((C)ēµ̄ only, no sidereal dependence), 3-parameter ((C)ēµ̄, (As)ēµ̄, and (Ac)ēµ̄),

and 5-parameter ((C)ēµ̄, (As)ēµ̄, (Ac)ēµ̄, (Bs)ēµ̄, and (Bc)ēµ̄) fits.

Figure 4.6 shows the allowed regions of parameter space resulting from the 3-parameter

fit. Since the fitting function is dependent on the square of the parameters, there are always
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Figure 4.5: Sidereal time distribution of the LSND oscillation data (dots) in 24 time bins

together with the maximum-` solutions for the 1-parameter (solid line), 3-parameter (dot-

ted), and 5-parameter (dot-dashed) fits. The dashed line indicates the estimated background

contribution.

duplicate solutions and positive and negative parameter values. Note that there are two

distinct solutions within 1σ region.

In summary, we found that the LSND data is consistent with no Lorentz violation, but it

can not rule out Lorentz violation as an explanation of neutrino oscillations. This motivates

further study.

From here, we can set the scale of possible Lorentz violation as an explanation of LSND.

Since the neutrino beam energy is ∼ 40 MeV, if the LSND signal is due to Lorentz violation,

then the suppression factor of Lorentz violation is ∼ 10−19 GeV
40 MeV ∼ 10−17. And this is the

right order of naive expectation for the Standard Model, EW
MP
∼ 100 GeV

1019 GeV ∼ 10−17.

Although this is a small value, 10−17 is quite large for neutrino oscillations. For example,

if atmospheric neutrino oscillations are due to Lorentz violation, that suppression factor for

atmospheric neutrinos is ∼ 10−21 (Sec. 2.3). This would imply that all Lorentz violation of
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Figure 4.6: Log likelihood value for the 3-parameter fit of the LSND sidereal time distri-

bution: a) (As)ēµ̄ vs (C)ēµ̄, b) (Ac)ēµ̄ vs (C)ēµ̄, and c) (Ac)ēµ̄ vs (As)ēµ̄. The contours in

a)-c) indicate the 1-σ (total error) allowed regions and the stars indicate parameter values

for the maximum-log-likelihood parameter values.
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order 10−17 would wash out all coherent behavior (=L/E dependent oscillatory behavior) for

atmospheric neutrino oscillations and the description would become that of time-averaged

oscillations, like Eq. 2.22.

In the next chapter, we consider a possible global model using Lorentz violation to

explain the world’s data on neutrino oscillations, including the LSND signal. In such a

model, LSND can see the Lorentz violation with a scale of 10−17, and it does not wash out

the oscillatory behavior for atmospheric and reactor neutrinos.
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Chapter 5

Global three parameter model for

neutrino oscillation with Lorentz

violation

Neutrino oscillations are described in the solution of the Hamiltonian for neutrinos. Since

we are concerned with a 3×3 Hamiltonian corresponding to the three families of neutrinos,

we can find both analytic and numerical solutions from any Hamiltonian unless the solutions

do not exist.

Although the energy dependence of Lorentz violation Lagrangian is, in the minimal

SME case, ∝ E0 for the CPT-odd term, and ∝ E+1 for the CPT-even, some combination

of these terms can result in a mass-term-like energy dependence ∝ E−1 for the solution.

The “bicycle model” [65] is the simplest case for this kind of model. This model is very

interesting, because it has potential to explain all neutrino oscillation signals, including

the LSND signal. Furthermore, this type of model may have a small number of degrees

of freedom, which means it is superior as a phenomenological model than the standard
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three massive neutrino model. We have constructed such a model, called the “tandem

model” [2]. One of predictions of tandem model was a low energy signal for MiniBooNE.

Since MiniBooNE did observe a low-energy excess of νe candidate events [67], we compared,

in more detail, the tandem model with MiniBooNE data [3]. This tandem model of neutrino

oscillations and the comparison with the MiniBooNE data is presented in this chapter.

5.1 A global model for neutrino oscillations

We found the equation of neutrino oscillation in Eq. 2.6. We now consider a real 3 × 3

Hamiltonian for simplicity. Then, the most general effective Hamiltonian,

heff =


hee(E) heµ(E) heτ (E)

heµ(E) hµµ(E) hµτ (E)

heτ (E) hµτ (E) hττ (E)

 , (5.1)

yields very complicated solutions for neutrino oscillations,

Pνα→νβ
(L,E) = δαβ − 4

∑
i>j

Uαi(E)Uβi(E)Uαj(E)Uβj(E)sin2

(
∆ij(E)

2
L

)
. (5.2)

Here, both U(E) and ∆(E) are functions of energy. As far as we are concerned, for a 3× 3

matrix, analytic solutions always exist. But in the more general case, or for dimension

greater than four, only numerical solutions exist.

This is the case for Lorentz violating neutrino oscillations. Let us assume that there

is no ν − ν̄ oscillation, then, ν − ν oscillation and ν̄ − ν̄ oscillation are described by block

diagonal Hamiltonians. For ν−ν oscillations, the minimal SME Hamiltonian contains three

types of energy dependence, ∝ E−1 for mass term, ∝ E0 for CPT-odd term, and ∝ E+1

for CPT-even term,

(hν
eff )ab = Eδab +

(m2)ab

2E
+

1
E

[(aL)µpµ − (cL)µνpµpν ]ab. (5.3)
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The effective Hamiltonian for ν̄ − ν̄ oscillations is obtained simply by replacing aL → −aL

according to Eq. 4.6.

Since, we want to focus on the energy dependence, in this chapter we ignore the direc-

tion dependence. This can be understood to be plausible for either of two reasons. First,

theoretically, if we take the CMB frame as an isotropic, rotationally invariant inertial frame,

then the Lorentz violating fields in this frame must be isotropic, or, any directional com-

ponents must be zero [57]. Although the motion of solar system governs the visible effect

against the isotropic Lorentz-violating field, the motion is non-relativistic and suppressed to

be order ∼ 10−3. Second, experimentally, most of the neutrino oscillation data is integrated

over long times, and any directional information is simply averaged out.

In either interpretation, it is not unreasonable to start to construct simple model without

any directional components in order to reduce the degrees of freedom of the theory. However,

it does not preclude the possibility of direction dependence.

Then, Eq. 5.3 becomes,

(hν
eff)ab ≈ Eδab +

(m2)ab

2E
+ (aL)ab −

4
3

(cL)abE

=


(m2)ee

2E + (aL)ee − 4
3(cL)eeE

(m2)eµ

2E + (aL)eµ − 4
3(cL)eµE

(m2)τe

2E + (aL)eτe − 4
3(cL)τeE

(m2)eµ

2E + (aL)eµ − 4
3(cL)eµE

(m2)µµ

2E + (aL)µµ − 4
3(cL)µµE

(m2)µτ

2E + (aL)µτ − 4
3(cL)µτE

(m2)τe

2E + (aL)τe − 4
3(cL)τeE

(m2)µτ

2E + (aL)µτ − 4
3(cL)µτE

(m2)ττ

2E + (aL)ττ − 4
3(cL)ττE

 .

(5.4)

This model has 18 free parameters.

Any alternative models to the standard three massive neutrino model must be more

interesting, otherwise there is no motivation to pursue. We require the following seven con-

ditions for alternative models to be more interesting than the standard neutrino oscillation

model. Such a model:

1. is based on the quantum field theory;
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2. involves only renormalizable terms;

3. offers acceptable descriptions for solar, atmospheric, and reactor oscillation signals;

4. has a mass term ∼< 0.1 eV in order to interpret its origin by the Seesaw mechanism;

5. has Lorentz violating terms ∼< 10−17 to interpret their origin from Plank scale physics;

6. does not have a number of free parameters significantly larger than four;

7. describes the LSND signal.

The condition (1) is met as long as we work under the SME formalism. (2) is satisfied if

we use the effective Hamiltonian derived minimal SME (Eq. 5.3). (3) is very challenging

because we need ∼L/E dependence for the phase of oscillation for high energy (atmospheric

neutrinos), even though the CPT-even term dominates at high energy, which has energy

dependence ∼E in the Lagrangian. (4) and (5) add constraints to the model building

process. Condition (6), since the standard three massive neutrino model has four free

parameters (Sec. 5.3.1), is required for the model to be phenomenologically interesting.

Finally, if such a model describes the LSND signal, condition (7), it is very interesting.

5.2 Analytic and numerical solution of neutrino oscillations

Since we are working with the 3× 3 effective Hamiltonian matrix, we can find the solution

of the cubic equations from the Ferro-Cardano method, or numerical diagonalization by

Jacobi rotations [91].
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5.2.1 Ferro-Cardano equation

The eigenvalue solution of an arbitrary 3× 3 matrix (Eq. 5.1) can be found by solving the

cubic equation [91],

λ3 + aλ2 + bλ+ c = 0,

where the λ are the eigenvalues of,

heff =


hee heµ hτe

heµ hµµ hµτ

hτe hµτ hττ

.



The roots and mixing matrix are found to be,

λ1 = −2
√
Qcos

(
θ
3

)
− a

3 ,

λ2 = −2
√
Qcos

(
θ+2π

3

)
− a

3 ,

λ3 = −2
√
Qcos

(
θ−2π

3

)
− a

3 ,

U =


B1C1
N1

B2C2
N2

B3C3
N3

C1A1
N1

C2A2
N2

C3A3
N3

A1B1
N1

A2B2
N2

A3B3
N3

 ,
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with,

a = −(hee + hµµ + hττ ),

b = [(heehµµ + hµµhττ + hττhee)− (h2
eµ + h2

µτ + h2
τe)],

c = [(heeh
2
µτ + hµµh

2
τe + hττh

2
eµ)− (heehµµhττ + 2heµhµτhτe)],

Q = 1
9(a2 − 3b),

R = 1
54(2a3 − 9ab+ 27c),

θ = cos−1

(
R√
Q3

)
,

A[1−3] = [hµτ (hee − λ[1−3])− hτeheµ],

B[1−3] = [hτe(hµµ − λ[1−3])− heµhµτ ],

C[1−3] = [heµ(hττ − λ[1−3])− hµτhτe],

N[1−3] =
√
A2

[1−3]B
2
[1−3] +B2

[1−3]C
2
[1−3] + C2

[1−3]A
2
[1−3] ,

In order to have three real roots (eigenvalues),

Q,R ∈ R and R2 < Q3.

This is always true for the cases of our concern in the next section, and we can always find

three eigenvalue differences ∆ij = λi − λj and mixing matrix element Uαi. Therefore, we

can find solution of neutrino oscillations for any arbitrary Hamiltonian.

5.2.2 Jacobi rotations

The eigenvalue problem is always solvable by the numerical methods. Although cubic

equation has analytic solutions, we also checked numerically.

The “Jacobi rotation” [91] is the similarity transformation to remove off-diagonal el-

ements of the matrix. Since the real Hamiltonian is symmetric, the first Jacobi rotation

can eliminate two off-diagonal elements from Hamiltonian. The next step eliminates other
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off-diagonal elements, but the off-diagonal elements eliminated by the first step return. How-

ever, the returning values are small. And, the third step eliminates the last off-diagonal

elements. These three Jacobi rotations make one “sweep”. We usually sweep five times and

this is sufficient to make off-diagonal elements to be of negligible size. Then, the remaining

diagonal elements, can be understood as roots of the equation:

heff =


hee heµ hτe

heµ hµµ hµτ

hτe hµτ hττ

 = Oeµ


h′ee 0 h′τe

0 h′µµ h′µτ

h′τe h′µτ h′ττ

OT
eµ

= · · ·OOO︸ ︷︷ ︸
U


λ1 ∼ 0 ∼ 0

∼ 0 λ2 ∼ 0

∼ 0 ∼ 0 λ3

OTOTOT · · ·︸ ︷︷ ︸
UT

.

The mixing matrix is calculated from the product of the orthogonal matrices created in

each step of the Jacobi rotation. In five sweeps, fifteen orthogonal matrices are created and

the product is defined as the mixing matrix.

The order of eigenvalues is in general random, so we also apply the column/row exchang-

ing matrix to remedy the order from small (=λ1) to large (=λ3) after taking the modulus,

for example,

· · ·O


λ2 ∼ 0 ∼ 0

∼ 0 −λ1 ∼ 0

∼ 0 ∼ 0 −λ3

OT · · · = · · ·O


λ2 ∼ 0 ∼ 0

∼ 0 λ1 ∼ 0

∼ 0 ∼ 0 λ3

OT · · ·

= · · ·OR12R
T
12


λ2 ∼ 0 ∼ 0

∼ 0 λ1 ∼ 0

∼ 0 ∼ 0 λ3

R12R
T
12O

T · · · = · · ·OR12︸ ︷︷ ︸
U


λ1 ∼ 0 ∼ 0

∼ 0 λ2 ∼ 0

∼ 0 ∼ 0 λ3

RT
12O

T · · ·︸ ︷︷ ︸
UT

,
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5 orthogonal matrices are used to change the order of eigenvalues,

R12 =


0 1 0

1 0 0

0 0 1

 , R23 =


1 0 0

0 0 1

0 1 0

 , R31 =


0 0 1

0 1 0

1 0 0



RLH =


0 0 1

1 0 0

0 1 0

 , RRH =


0 1 0

0 0 1

1 0 0

 .

The positivity of eigenvalues is not guaranteed. Since we took the modulus for the eigen-

values, the solution no longer reproduces the original Hamiltonian [92]. Nevertheless, this

“new” Hamiltonian satisfies most of the conditions in Sec. 5.1, especially, the model that

we discuss in Sec. 5.3.3 reproduces all experimental results with only three free parameters.

5.3 Model construction

5.3.1 Bimaximal model

The bimaximal model [93] is the most simple and naive model based on the three neutrino

massive model. Since we have two distinct signals, atmospheric neutrino oscillations [78–

82, 94] and solar neutrino oscillations [70–77, 83, 95, 96], we require four parameters. They

are two mass square differences, ∆m2
� and ∆m2

atm, and two mixing angles, θ12 and θ23.

Then, the effective Hamiltonian is,

hbimax
eff =

m2
ab

2E
=

1
2E

UT
SM


0 0 0

0 ∆m2
� 0

0 0 ∆m2
atm

USM , (5.5)
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with,

USM =


1 0 0

0 cosθ23 sinθ23

0 −sinθ23 cosθ23

×


cosθ12 sinθ12 0

−sinθ12 cosθ12 0

0 0 1

 , (5.6)

and,

∆m2
� ' 8.0× 10−5 eV2;

∆m2
atm ' 2.5× 10−3 eV2;

θ12 ' 34◦;

θ23 ' 45◦.

The solution of the bimaximal model is shown in Fig. 5.1. From Eq. 5.2, we see the model

is characterized by 3 amplitude terms, (−4UUUU), and 3 eigenvalue differences (∆).

The following are the captions of Fig. 5.1, 5.3, 5.4, and 5.5. From left to right, top to

bottom:

1. evolution of −4UUUU term for e ↔ µ. Black line is −4Ue1Ue2Uµ1Uµ2, which is the

coefficient of sin2(∆12L/2). Red is −4Ue2Ue3Uµ2Uµ3, the coefficient of sin2(∆23L/2),

and blue is −4Ue3Ue1Uµ3Uµ1, the coefficient of sin2(∆31L/2);

2. −4UUUU term for µ↔ τ ;

3. −4UUUU term for τ ↔ e;

4. evolution of the first row of mixing matrix elements, Black line is Ue1, red is Ue2 and

blue is Ue3;

5. the second row mixing matrix elements; Black line is Uµ1, red is Uµ2 and blue is Uµ3;

6. the third row mixing matrix elements. Black line is Uτ1, red is Uτ2 and blue is Uτ3;
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7. evolution of the eigenvalue (positive defined). Black line is λ1, the smallest eigenvalue.

Red is the second smallest eigenvalue λ2, and blue is the largest eigenvalue λ3;

8. inverse of ∆ (eigenvalue difference) as a function of energy. Black line is for ∆12, red is

∆23, and blue is ∆31. Note, the L/E oscillation dependence shows up as logL ∝ LogE;

9. Unitarity of mixing matrix. The black lines (3 lines) are elements of diagonal terms of

UTU and the red lines (6 lines) are elements of off-diagonal terms of UTU . So, black

lines should be 1 and red lines should be 0 through all energy regions if the numerical

diagonalization works.

Fig. 5.2 shows the neutrino oscillation solutions. Not surprisingly, the model predicts

the atmospheric and reactor neutrino oscillations, as well as the solar neutrino oscillation.

Here, we use an adiabatic MSW effect to reproduce solar neutrino signals, with the choice

of Ne = 100(/NA/cm3) as electron density in the central region of the Sun [97]. Of course,

this model does not predict a signal for LSND and MiniBooNE.

We know this bimaximal model is based on the standard three neutrino massive model

and reproduces all known neutrino oscillation data (excepting LSND). So instead of com-

paring the result of our model with experimental data (and trying to take account of ex-

perimental smearing), we compare the result of our model with the bimaximal model as a

proxy for data and the three neutrino massive model.

5.3.2 Bicycle model

The bicycle model [65] can create an L/E dependence for neutrino oscillations by using

only one CPT-odd term (∝ E0) and one CPT-even term (∝ E+1). The trick is that, the

eigenvalue difference cancels at the leading order contribution, and the second-order term

becomes the leading term, like the seesaw mechanism that generates neutrino mass.

86



5.3. MODEL CONSTRUCTION

Figure 5.1: The solution for the bimaximal model. The solution is same for ν−ν and ν̄− ν̄

oscillations. The notation is given in the text, Sec. 5.3.1.
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Figure 5.2: The oscillation probability from the bimaximal model. From top to bottom,

short baseline experiments (left is LSND, right is for MiniBooNE), KamLAND (with data

points from [83]), atmospheric neutrinos, and solar neutrinos (with data points from [97]).

The black line is νe ↔ νµ, red line is νµ ↔ ντ , green line is νe ↔ X, and pink line is νµ ↔ X.

Bottom right plot also shows bimaximal model with MSW effect (dashed). The effects of

experimental position and energy resolution are not shown.
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The effective Hamiltonian for the bicycle model has the following form,

hbicycle
eff =


cE a a

a 0 0

a 0 0

 . (5.7)

Then, the analytic solution is,

λ = 0, 1
2 [cE ±

√
(cE)2 + 8a2] = λ0, λ±, (5.8)

Ubicycle =


λ0√

2a2+λ0
2

λ−√
2a2+λ−

2

λ+√
2a2+λ+

2

a√
2a2+λ0

2

a√
2a2+λ−

2

a√
2a2+λ+

2

a√
2a2+λ0

2

a√
2a2+λ−

2

a√
2a2+λ+

2

,

 (5.9)

and in the high energy limit,

λ = 0, 2a2

cE , cE = λ1, λ2, λ3, (5.10)

∆ = 2a2

cE , cE, cE = ∆12, ∆23, ∆31, (5.11)

Ubicycle =


0 0 1

1√
2

1√
2

0

1√
2

1√
2

0

 . (5.12)

So only the νµ ↔ ντ channel is non-zero in the high-energy region and this channel couples

with ∆12 (Fig. 5.3, black line of top middle plot). Furthermore, ∆12 has an L/E energy

dependence and can create the desired oscillation maximum observed at Super-K. The sim-

ple sinusoidal variation model for the bicycle model has also been considered, but provides

a poor fit with global data [98].

5.3.3 Tandem model

The tandem model was inspired from and expands upon the bicycle model. Additional

details of the tandem model are available in [2]. In order to create a L/E dependence for
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Figure 5.3: The neutrino oscillation solution for the bicycle model. The solution is the

same for ν − ν and ν̄ − ν̄ oscillations. The plots are described in the text, Sec. 5.3.1.
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KamLAND, we require an additional transition in the oscillation spectrum at low energy.

To do this, we introduce a mass term, and the effective Hamiltonian becomes,

htandem
eff =


c̊E å å

å 0 å

å å m̊2

2E

 . (5.13)

The three parameters here correspond to three terms in Eq. 5.4,

c̊ = −4
3(cL)ee, (5.14)

å = (aL)eµ = (aL)µτ = (aL)τe, (5.15)

m̊2

2E = (m2)ττ

2 . (5.16)

Then, we immediately find the following constraints for these parameters from Sec. 5.1:

• From LSND, aeµ ∼ 10−19 GeV, so å ∼ 10−19 GeV; and

• From seesaw mechanism constraint, m̊ ∼< 0.1 eV.

We can justify why we introduce only a mττ term. For example, in the simple SO(10) sce-

nario [9], m2
ττ ∝ m2

t � other mass terms (mt is the mass of top quark ∼ 174 GeV/c2 [8]).

After a search through the allowed 3-parameter space, we found that the following

parameter set can reasonably reproduce the oscillation data,

m̊2

2 = 5.2× 10−3 eV2,

å = −2.4× 10−19 GeV, (5.17)

c̊ = 3.4× 10−17. (5.18)

Note that these are the parameters to reproduce the ν − ν oscillation data. For ν̄ − ν̄

oscillation, å→ −å according to Eq. 4.6.
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Figures 5.4 and 5.5 show the tandem model solution for both ν−ν and ν̄− ν̄ oscillations.

From the bottom middle plots of Figs. 5.4 and 5.5 (inverse of ∆), we can see that the

eigenvalue differences make L/E-type solutions in the high energy region (∼> 100 MeV), but

it is is not easy to predict from these plots exactly how the oscillations behave because the

oscillation amplitudes (−4UUUU terms) also evolve with neutrino energy in a complicated

way (Figs. 5.4 and 5.5, top three plots).

Therefore, it is instructive to look more closely at the oscillation signals produced by

tandem model. As described above, we use the bimaximal model as a representative for the

standard three neutrino massive model and the world neutrino oscillation data.
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Figure 5.4: The solution of ν − ν oscillations by the tandem model. The notation is given

in the text, Sec. 5.3.1.
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Figure 5.5: The solution of ν̄ − ν̄ oscillations by the tandem model. The notation is given

in the text, Sec. 5.3.1.
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Solar neutrinos

One of the very distinct feature of tandem model is that it does not require the widely-

believed MSW mechanism for solar neutrino oscillation. For general neutrino oscillations,

mixing matrix elements are a function of energy (Eq. 5.2). Using this property, the tandem

model can produce the energy dependence of neutrino oscillations in the long-baseline limit

(time averaged oscillation, Eq. 2.22).

Figure 5.6 shows the result for solar neutrino oscillations. For comparison, standard

three neutrino massive model with MSW effect [97] is plotted (Sec. 5.3.1). The tandem

model can reproduce the essential nature of the solar neutrino problem, namely ∼<40%

survival probability for 8B-neutrinos (15.04 MeV end point energy) and ∼>50% for pp-

neutrino (0.420 MeV end point). Note, since the size of Lorentz violation is bigger (in the

tandem model) than the MSW solar potential for the νe interaction, this energy dependence

of for neutrino oscillations is created via Lorentz violation even though the MSW matter

potential may still exist (it just does not manifest itself in this model). Notice the shape

of the spectrum is quite different for tandem model compared with the MSW-effect-based

model.

Atmospheric neutrinos

Since the tandem model shows an L/E behavior in the high-energy limit, it can repro-

duce the observed energy dependence of atmospheric neutrino oscillations (Fig. 5.7). Note,

although the solutions are different for ν−ν and ν̄− ν̄ oscillations (Figs. 5.4 and 5.5), νµ dis-

appearance and ν̄µ disappearance made by the tandem model are the same at ∼> 100 MeV.

This is consistent with the atmospheric neutrino charge separated result from MINOS [80].

Because of the parameter we chose, the phase of oscillations are shifted compared to the

standard three neutrino massive model.
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Figure 5.6: Solar-neutrino oscillation probabilities in the tandem model. (a) Curves repre-

senting survival probabilities for νe (solid), νe ↔ νµ (dashed), νµ ↔ ντ (dotted), and ντ ↔ νe

(dash-dotted). (b) Survival probability of νe in the tandem model (solid line) and in the

standard three-neutrino massive model with a basic matter-induced effect (dashed) [97].

Note the different energy scales. The effects of experimental position and energy resolution

are not shown.
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Figure 5.7: Survival probabilities for atmospheric neutrinos as a function of L/E for (a)

νµ and (b) ν̄µ. Curves are shown for the tandem model (solid) and for the standard three-

neutrino massive model (dashed). The effects of experimental position and energy resolution

are not shown.
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Long-baseline reactor neutrinos

Figure 5.8 shows the resulting oscillation probability for KamLAND. This ν̄e disappearance

spectrum shape is made by the combination of all three channels around the 1 − 10 MeV

energy region. Notice that all ν̄e ↔ X channels die out at ∼> 100 MeV. This is also true for

νe. Therefore, this model predicts no νe appearance signals for NOvA [30] and T2K [29].

Short-baseline reactor and accelerator neutrinos

Finally, Fig. 5.9 shows the oscillation probabilities for a few short baseline accelerator exper-

iments. To tune the model parameters, we first constrained the parameter space so as to not

create signals for null result short baseline reactor oscillation experiments (baseline<1 km),

including, Burgey [99], Gösgen [100], Palo Verde [101], and CHOOZ [102]. In the tandem

model, the oscillation probabilities at short baselines are typically small, so they are unde-

tectable by the short baseline reactor experiments. This is because reactor experiments are

disappearance experiments and their sensitivities are usually ∼10%.

Next, we tested this model for the short baseline accelerator oscillation experiments [69,

103]. As can be seen from Fig. 5.9, the oscillation probability for KARMEN is less than

half of LSND at their typical energy (∼ 40 MeV). Therefore, tandem model can make

signals for LSND, but not for KARMEN within their experimental sensitivity. The model

predicts ∼0.1% level signal for ν̄e appearance in LSND. This is somewhat smaller than the

observation (0.26%). Tandem model also predicts ∼3 times larger signal for the proposed

OscSNS experiment [104] when compared to LSND.

The final test of this model is the prediction for MiniBooNE. This mode has strong

energy dependence in the oscillation probability, and it has a large νe appearance signal

only in the low energy region. At the time we published the tandem model prediction

(June, 2006), MiniBooNE had not yet announced their initial result for νe appearance. The
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Figure 5.8: Survival probabilities for long-baseline reactor antineutrinos for the tandem

model. (a) Survival probabilities as a function of E for ν̄e (solid), ν̄e ↔ ν̄µ (dashed), ν̄µ ↔ ν̄τ

(dotted), and ν̄τ ↔ ν̄e (dash-dotted). (b) Survival probabilities for ν̄e as a function of L/E

in the tandem model (solid) and in the standard three-neutrino massive model (dashed).

The effects of experimental position and energy resolution are not shown.
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initial oscillation result of MiniBooNE (March, 2007) [67] did see an anomalous excess at

low energy νe candidate events. Therefore, it is very interesting to examine in further detail,

namely the spectrum shape comparison, of tandem model prediction and MiniBooNE data.
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Figure 5.9: Oscillation probabilities for short-baseline experiments for the tandem model.

Here, we plot with oscillation probabilities as a function of E for neutrinos (solid) and

antineutrinos (dashed) in (a) KARMEN, (b) LSND, (c) the proposed OscSNS experiment,

and (d) the currently running MiniBooNE experiment. The effects of experimental position

and energy resolution are not shown.
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5.4 Tandem model in MiniBooNE

Figure 5.10 shows the neutrino energy spectrum of νe oscillation candidate events in Mini-

BooNE [67]. Notably, the excess of data at low energy does not fit with any standard

massive oscillation models in the two neutrino oscillation approximation (Eq. 2.10).

The three parameters of the tandem model (Eq. 5.17) were chosen to maximize the

signal yet keep good agreement with all oscillation data. We used the MiniBooNE open

database [105] for this study. The open database is in the form of an ntuple with 9934

events. A given “weight” for an event correctly takes account all experimental effect, such

as efficiency, energy smearing, etc. Say, the sth event has weight ws, true νe energy Es
true,

and reconstructed νe energy Es
recon. If a theoretical model predicts P (Es

true), then the sth

event has an number of event ns,

ns = P (Es
true)× ws/9934.

This event would be binned in energy according to the reconstructed νe energy, Es
recon.

After repeating this process for all events, we can find the model-predicted spectrum of νe

candidate events with all experimental effect, and we can compare our model result with

the data directly. Although the ntuple also included propagation distance for each event,

for simplicity, we used a single number, ∼ 520.0 m, resulting from the baseline (541 m)

minus the average pion decay length (∼ 20 m [106]).

Figure 5.11 shows the result and was presented at the fourth meeting of CPT and

Lorentz violation, Bloomington, 9-11 August 2007 [3]. Even though the parameters were

tuned to increase the signal size, the predicted signal is smaller as compared to the data.

A more sophisticated numerical search in the parameter space is possible for future work.
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Figure 5.10: Number (per MeV) of candidate νe events as a function of reconstructed

neutrino energy. In the top plot, the points show the data with statistical error, while the

histogram is the expected background with systematic errors from all sources. The vertical

dashed line indicates the threshold used in the two-neutrino oscillation analysis. Also shown

are the best-fit oscillation spectrum (dashed histogram) and the background contributions

from νµ and νe events. The bottom plot shows the number of events with the predicted

background subtracted as a function of neutrino energy, where the points represent the data

with total errors and the two histograms correspond to LSND solutions at high and low

∆m2.
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Figure 5.11: Number per MeV of candidate νe events as a function of reconstructed neutrino

energy in MiniBooNE. The data is shown (stars) with statistical errors only. The oscillation

signal as predicted by the Tandem model is shown in the solid histogram, the predicted

background (dashed), and total signal plus background (solid) is also shown. The systematic

errors are not shown on this plot but may be seen in Fig. 5.10. The Tandem model prediction

is preliminary.
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Chapter 6

Summary and outlook for neutrino

oscillations with Lorentz violation

In Part II, we have discussed the test of Lorentz violation with neutrino oscillations. Since

neutrino oscillations themselves are high precision interferometers, neutrino oscillations are

naturally sensitive for small-scale physics, for example, Planck-scale physics suppressed to

our energy level.

The motivation for this comes from simple considerations of the sensitivities. For ex-

ample, in the case of atmospheric neutrino oscillations there is evidence for ∆m2
atm ∼

10−3 eV2 [8]. Then the inverse of atmospheric neutrino oscillation length gives ∼ 10−21 GeV,

and this is beyond the benchmark sensitivity for atmospheric neutrinos (∼< 10−17 GeV) to

search the Planck scale physics (Sec. 2.3). Therefore, neutrino oscillations may provide the

opportunity to discover high-energy physics that is suppressed in the low energy world and

neutrino oscillations are a candidate phenomenon in which to search for physics beyond the

Standard Model (BSM).

The anomalous results from the LSND ν̄e appearance search [69] have motivated alter-
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Combination fit result

1-parameter fit

(C)ēµ̄ (3.3± 0.4± 0.2)× (10−19 GeV)

|(C)ēµ̄|2 (10.7± 2.6± 1.3)× (10−19 GeV)2

3-parameter fit

solution 1 (C)ēµ̄ (−0.2± 1.0± 0.3)× (10−19 GeV)

(maximum likelihood) (As)ēµ̄ (4.0± 1.3± 0.4)× (10−19 GeV)

(Bs)ēµ̄ (1.9± 1.8± 0.4)× (10−19 GeV)

solution 2 (C)ēµ̄ (3.3± 0.5± 0.3)× (10−19 GeV)

(second maximum) (As)ēµ̄ (0.1± 0.6± 0.2)× (10−19 GeV)

(Bs)ēµ̄ (−0.5± 0.6± 0.2)× (10−19 GeV)

|(C)ēµ̄|2 + 1
2 |(As)ēµ̄|2 + 1

2 |(Ac)ēµ̄|2 (9.9± 2.3± 1.4)× (10−19 GeV)2

5-parameter fit

|(C)ēµ̄|2 + 1
2 |(As)ēµ̄|2 + 1

2 |(Ac)ēµ̄|2 + 1
2 |(Bs)ēµ̄|2 + 1

2 |(Bc)ēµ̄|2 (10.5± 2.4± 1.4)× (10−19 GeV)2

Table 6.1: Summary of the test of Lorentz violation with LSND experiment. The fit result

from three different parameter combinations [1]. For 5-parameter fit, only their combination

is listed. The definitions of parameter combinations are given in Eqs. 4.11 to 4.23.

native solutions for neutrino oscillations, such as Lorentz violation. We analyzed the LSND

data under the SME formalism to test the allowed sidereal variation [1]. The LSND data

can be interpreted as an order 10−19 GeV signal of Lorentz violation. We extracted three

combinations of SME parameters via a 3-parameter fit, shown in Fig. 4.6 (Eqs. 4.11, 4.11,

and 4.11). The results are summarized in Tab. 6.1 (here, the first and the second errors

are statistic and systematic errors). The data are consistent with no sidereal variation,

however, they are also well-described within the SME formalism and so, Lorentz violation

can not be excluded.
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This result further motivated the construction of a global, “tandem” model for neutrino

oscillations using Lorentz violation [2]. The tandem model is motivated from the bicycle

model [65], namely, combinations of mass, CPT-odd, and CPT-even parameters were used

to produce oscillation signals at certain L-E values to match experimental data. In this

way, both mixing angles and eigenvalue differences are complicated functions of energy,

but they can mimic solar, atmospheric, and KamLAND oscillation signals, as well as the

LSND signal. The model also predicted a signal in the low-energy region of MiniBooNE.

However, so far, this tandem model cannot quantitatively reproduce the MiniBooNE result

(Fig. 5.11).

The original tandem model also shows limitations when compared to recently published

high-statistics neutrino oscillation results. In the solar sector, the recent data from SNO,

focusing on low-energy 8B neutrinos [107] do prefer an MSW-like energy spectrum more

than tandem model. Also, the low-energy neutrino measurement at Borexino combined

with results from previous solar neutrino experiments constrain the flux normalization of

pp-neutrinos [95]. That result also prefers the standard three neutrino massive model with

MSW effect. In the atmospheric sector, the oscillation maximum made by tandem model is

shifted somewhat from the standard three massive neutrino model, and this shift may be a

problem in reproducing the recent high-statistics accelerator based long baseline oscillation

data from K2K and MINOS [81, 82]. However, the tandem model does agree well with

recent high statistics results from the KamLAND experiment [96].

The SME formalism of neutrino oscillations does have additional possibilities. It looks

as though one specific parameter set of a specific model cannot precisely account for the

data. However, a small change of the model in the right way can perhaps improve the

situation dramatically. Thus, as of now, we cannot make a conclusion about the future of

tandem model.

In conclusion, a possibility of Lorentz violation in LSND and MiniBooNE is not yet
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excluded. The simple models, for example those with only a CPT-odd term in the Hamilto-

nian, can have only a simple energy dependences in the oscillation probability (∼ sin2(ΩL),

here Ω is a combination of SME parameters). This type of model is excluded up to a

∼ 10−27 suppression scale through high energy atmospheric neutrinos from AMANDA [64].

However, complications in the diagonalization of Hamiltonians for models which contain

more than one type of energy dependence forbids a simple application of this limit to other

experiments. Therefore, it is important to test Lorentz violation in all experiments, in-

dividually. Among all possible tests, sidereal variation is the “smoking gun” of Lorentz

violation.

The sidereal variation analysis for MiniBooNE is an important piece of this program.

The fact that the MiniBooNE experiment has an unexplained low energy excess [108] makes

the test of Lorentz violation with this data very interesting! A very preliminary sidereal

variation test with the MiniBooNE low energy excess has been was presented [109], but

needs to be examined further. This is a subject of future work.

108



Part III

Charged Current Quasielastic

scattering measurement in

MiniBooNE
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We cannot regard it as impossible that integral laws, to use an expression of C. Neumann,

will some day take the place of the laws of mathematical elements, or differential laws, that

now make up the science of mechanics, and that we shall have direct knowledge of the

dependence on one another of the positions of bodies. In such an event, the concept of force

will have become superfluous.

- E. Mach, The Science of Mechanics
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Chapter 7

MiniBooNE

The mini Booster neutrino experiment (MiniBooNE) is designed to confirm or reject oscil-

lation signals observed by the LSND experiment [69]. The muon neutrino beam created

by the Booster Neutrino Beamline (BNB) are observed by the MiniBooNE detector 550 m

from the source. The signature of νµ → νe oscillation (νe appearance) is a single isolated

electron. The first oscillation result from MiniBooNE ruled out the two massive neutrino

oscillation hypothesis as an interpretation of the LSND signal [67].

An overview of the MiniBooNE experiment is available elsewhere [19, 106, 110–115].

In this chapter, we briefly describe the main part of the detector [116] and the neutrino

beam [117]. Then, we discuss the signature of neutrino events in MiniBooNE.

7.1 MiniBooNE, motivation

MiniBooNE is designed to test the LSND ν̄e appearance signal. Since LSND has a baseline

∼30 m and a neutrino energy ∼ 30− 60 MeV, L/E is∼1. Under the two massive neutrino

oscillation hypothesis (Eq. 2.10), LSND signals correspond to neutrino oscillations with

∆m2 ∼ 1 eV2. We have several other well-established oscillation signals. The first kind is
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called atmospheric oscillations [78–80]. They have been confirmed by long baseline neutrino

oscillation experiments [81, 82, 94] and are characterized with ∆m2
atm ∼ 10−3 eV2. The

second type is called solar neutrino oscillations [70–77, 95]. They have been confirmed by

a long baseline reactor neutrino oscillation experiment [83, 96] and are characterized with

∆m2
� ∼ 10−5 eV2. Since the Standard Model (SM) has only three generations of leptons,

the confirmation of the LSND signal would suggest the existence of a new type of neutrino

around the 1 eV mass scale. These new type of neutrinos do not have a weak charge and

hence are sterile for the weak interaction (“sterile” neutrinos). Therefore, the confirmation

of the LSND oscillation signal would imply new physics beyond the Standard Model (BSM).

The MiniBooNE experiment was designed to test LSND. MiniBooNE has a 550 m

baseline and ∼ 700 MeV neutrino energy, to have same L/E with LSND so that MiniBooNE

is sensitive to the same ∆m2 observed at LSND. However, MiniBooNE has an order higher

energy as compared to LSND, and the signal and backgrounds are completely different from

LSND.

7.2 Booster neutrino beam

Fig. 7.1 shows an overview of Fermilab. For Tevatron operation, the protons accelerated by

the Booster are extracted into the Main Injector, and finally injected into the Tevatron to

study high energy collider physics. High energy neutrinos are not required but a high-flux

of neutrinos are, so protons are extracted directly from the Booster. The Booster Neutrino

Beamline (BNB) is separated into three parts (Fig. 7.2),

1. primary proton beam,

2. secondary meson beam,

3. tertiary neutrino beam.
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Target
Hall

Tevatron

Main Injector

Booster

Figure 7.1: A overview of Fermilab. Protons accelerated in the 8 GeV Fermilab Booster

are sent to the target hall. The Main Injector and Tevatron are visible in this picture.

The details of the neutrino beam, the flux prediction and errors are available in [106, 112,

117].

The protons are accelerated to 8 GeV kinetic energy in the Booster synchrotron, then

“fast extraction” sends all of protons in the ring to Booster neutrino beamline. The protons

collide with the beryllium target in the magnetic focusing horn, and the produced mesons

are focused by a toroidal magnetic field to collimate the neutrinos resulting from the decay

in flight (DIF) of the mesons.
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Figure 7.2: A schematic overview of the MiniBooNE neutrino beamline.

7.2.1 Primary proton beam

The Fermilab Booster accelerator is a 24 FODO cell synchrotron, but does use combined

function magnets for focusing and defocusing [118, 119]. H− ions (of 400 MeV kinetic

energy) are injected from Fermilab LINAC, then, after passing the electron stripping foil,

the protons are accelerated at 200 GeV/s to 8 GeV kinetic energy, and the fast extraction

kicker brings 81 bunches to the Booster Neutrino Beamline. For the first MiniBooNE

oscillation data set, (run 3539 to run 12500, or a data-taking period from August 2002

to December 2005), a total of 5.579 × 1020 protons were delivered to the target (called

“protons on target”, or “POT”) with ∼ 1.4× 108 beam triggers. Thus, each spill contains

∼ 4 × 1012 POT on average. The spill has a micro structure of 81 bunches in 84 RF

buckets. Each bunch has ∼6 ns width with 19 ns separation, distributed over ∼ 1.6µs

in each spill (Fig. 7.3a). The MiniBooNE data acquisition system (DAQ) is synchronized

with the Booster cycle. Although the Booster is running at 15 Hz, typically the BNB runs

at 4 − 5 Hz, which means the DAQ window opens 4 − 5 times every second to cover the

1.6 µs spill. In practice, the DAQ window opens on a signal sent via the Fermilab ACNET

(Accelerator network) which proceeds the Booster extraction kick by 320 µs [111]. The

timing is adjusted to open the DAQ window approximately 4.5 µs before the neutrino beam
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Figure 7.3: The BNB micro and macro structure.

arrives at the detector, and it closes 19.2 µs later (Fig. 7.3b). The current from the beam

protons is measured independently by two toroids, and the difference of these measurement

indicates a 2% absolute error on the POT value. Also, the effects of uncertainty of the

beam focal point on the Be target have been simulated, resulting in a less than 1% absolute

POT error.

7.2.2 Secondary meson beam

The protons interact with the beryllium target in the magnetic focusing horn to produce

mesons. The decay of mesons create the neutrino beam. Uncertainties in this processes

result in the dominant errors on the neutrino flux:

π+ → µ+ + νµ , K
+ → µ+ + νµ · · ·

µ+ → e+ + ν̄µ + νe , K
+ → e+ + π◦ + νe , K

◦
L → e± + π∓+

(−)
νe · · ·
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The νµ is the dominant neutrino species produced in the BNB (93.5%). And, the νµ

are mainly produced via the π+ decay (96.7% of the 93.5%). Therefore, the uncertainty

in the π+ production model creates the largest systematic error in the neutrino beam

predictions [106, 112]. For the νe appearance search, νe intrinsic to the neutrino beam,

are the largest background. Although the dominant contribution in νe production is µ+

decay (51.6%), since µ+ decay is constrained by the νµ CCQE measurement in MiniBooNE

(Chapter 8), the next dominant channel for
(−)
νe production, namely K+/K◦ decays, were

carefully studied. To calculate the meson production rate for MiniBooNE, high quality

external data is required. For this we have used (in addition to other data) the results

from the hadron production (HARP) experiment [112, 120] at the European organization

for nuclear research (CERN).

For the primary protons and secondary mesons, the uncertainty due to hadronic inter-

actions have been calculated, are less important.

After the mesons are created, they are focused by the toroidal magnetic field created

by the magnetic focusing horn (Fig. 7.4), running at 4 − 5 Hz with a ∼174 kA current.

The horn is basically a pulsed coaxial cable, with current flowing from the inner to outer

conductors though the end cap, to create a toroidal field between the conductors. Through

this process, the neutrino flux is increased by roughly a factor of six over the case with no

focusing. The possible variation of the horn current is considered as a systematic error. The

more important error is the “skin effect” in the inner conductor. Some portion of the current

penetrates inside the conductor surface, creating a magnetic field in the inner conductor.

The simulation of this effect predicts a large uncertainty in the high-energy neutrino focusing

because small angle mesons (which are higher momentum mesons yielding higher energy

neutrinos) feel the magnetic field created inside of the inner conductor.
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Figure 7.4: The MiniBooNE magnetic horn.

7.2.3 Tertiary neutrino beam

After propagating through the 50 m decay pipe, almost all mesons decay-in-flight (DIF).

Figure 7.5 shows the predicted νµ flux as predicted by the MiniBooNE beam simulation. The

same νµ flux is used for the νe appearance analysis [67], the NCπ◦ rate measurement [121],

and the CCQE rate measurement [4], as well as all the analysis presented here. The flux

values as a function of neutrino energy are provided in Table D.1 of Appendix D. This table

can be used for analyzing the MiniBooNE CCQE measurement with interaction models

under consideration. The units are neutrinos/POT/50MeV and the integrated value over

the entire energy region is 5.167× 10−10 neutrinos/POT.
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Figure 7.5: Predicted νµ flux at the MiniBooNE detector location. Units are neutri-

nos/POT/50MeV and the integrated flux is 5.167 × 10−10 neutrinos/POT. The table is

prepared in Table D.1 of Appendix D.
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7.2.4 Neutrino flux error summary

In summary, we consider the following errors in the neutrino flux prediction:

• absolute POT error;

• meson production errors (π+, π−, K+, and Ko);

• hadronic interaction errors (protons and pions total, quasi-elastic, and inelastic scat-

tering with beryllium);

• horn current and skin effect.

Among these errors, the dominant for νµ flux is the π+ production uncertainty. This error

is estimated with two methods. First, the error is estimated from the Sanford-Wang fitting

model parameters [122] of the HARP and E910 [123] experimental π+ production data.

In this way, because of the correlation between seven fitting parameters (one of the eight

parameters is fixed), the estimated error from π+ production is around 15%. However most

of this error is in the normalization, so any data-MC comparison type analyses, for example

a data fit with relatively normalized MC, do not suffer much from this error. This error

estimation method was used for the result of Chapter 8

Recently, a second error estimation method was implemented. Since the HARP data

were collected with the same energy as the BNB and a replica of the MiniBooNE target

was used, one can extract the π+ production rate directly from the HARP result without

using a physical parametrization. A spline fit [91] is used to extract a smooth function for

the π+ kinetic space from the data. This new method dramatically reduces the error, and

estimated error for π+ is now around 5%. This error estimation method was used for the

result of Chapter 9 and 10.

The skin effect in the horn inner conductor is also important because of the effect on the

hight energy flux. This error dominates for the neutrino flux error above around 1.2 GeV.
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Figure 7.6: A schematic drawing of the MiniBooNE detector showing the signal and veto

regions.

Note that the absolute POT error (∼2%) is only assigned for an absolute measurement,

for example the absolute cross section measurement in Chapter 10

7.3 MiniBooNE detector

The MiniBooNE detector consists of a spherical 12.2 m diameter tank filled with mineral

oil. Figure 7.6 shows a schematic view. The inside of the tank is separated into two regions

via an optical barrier at a radius of 574.6 cm, into inner (signal), and outer (veto) regions.

Details of detector structure, simulation, and error analysis are available in [113, 116, 124].
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7.3.1 Photo multiplier tubes (PMTs)

A fiducial region is defined in the inner tank region, where an array of 1280 8” photo

multiplier tubes (PMTs) are mounted. The veto region contains an array of 240 8” PMTs. A

photo of the PMTs are shown in Fig. 7.7. MiniBooNE uses 1,198 Hamamatsu R1408 PMTs

recouped from the LSND experiment and 322 Hamamatsu R5912 PMTs newly purchased.

They have different properties (dark currents, timing resolutions, saturation points, etc)

and their differences are taken into account in the analysis of the data. The PMTs are low

threshold (∼ 0.2 photo electron (PE)) and high gain (∼ ×107). This is required for sufficient

sensitivity to low-light events. These properties were quantified [124] and in particular, the

angular dependence of the photon detection efficiency was measured and implemented in

the detector simulation.
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Figure 7.7: A photo showing the the inner (top) and outer (bottom) tank regions. Notice

that the inner tank is painted black to reduce reflections which may distort the timing

information used to reconstruct interaction vertices. The outer tank is painted white to

maximize light collection in the veto in order to reject the particles coming from outside of

the detector.
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7.3.2 Mineral oil

Čerenkov and scintillation light is emitted from charged particles traversing the detec-

tor volume. The optical photons travel through the Marcol 7 light mineral oil (from

Exxon/Mobil) Therefore, the properties of mineral oil, especially optical properties (at-

tenuation, Rayleigh/Raman scattering, re-emission spectrum and time constants, etc) are

very important to understand. In practice, the uncertainties in the optical properties of

mineral oil dominate the detector related errors. The optical properties were measured

using a number of methods, and are summarized in [116, 125].

7.3.3 Electronics

After traversing the mineral oil, photons impinge on the photo-cathode of the PMTs and

create photoelectrons (PEs). The resulting signals are routed to the electronics system

where they are amplified and digitized. The PMT signals above a set threshold are digitized

and recorded with an 8 bit flash analog-to-digital converter (FADC) sampling at 10 MHz

(100 ns). Both time and charge information are recorded within the 19.2 µs DAQ window.

Since a typical single PE signal results in ∼ 10 ADC counts, an ADC channel is saturated

by 20-30 PE signal. The thresholds of the discriminators are 0.1-0.2 PE, and the associated

uncertainty is propagated. Since a larger charge fires the discriminator earlier, the calculated

time depends on the charge. This slewing effect is corrected for, as well as an estimated

error in the process. The PMTs and electronics are calibrated continuously via a (3.33 Hz)

laser system in the detector tank.

7.3.4 Energy calibration

The absolute energy scale is determined from muon-decay (“Michel”) electrons, for which

decay spectrum is very well known. In addition, using a muon tracker system, consisting of
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an array of scintillator paddles above the detector combined with scintillation cubes hung

in the tank, the range of muons is made to correspond with the light seen in the detector.

7.3.5 Detector error summary

In summary, the following contributions are considered in the detector error analysis:

• PMT angular efficiency;

• old/new PMT relative efficiency;

• reflections in the tank;

• oil density and thermal expansion;

• oil chemical composition;

• oil optical properties, including extinction length, Rayleigh/Raman scattering, re-

fractive index, scintillation yields, fluorescence yields, UV fluorescence yields, time

constant of each fluor, scaling factor for Čerenkov light, Birks’ constants;

• discriminator threshold and slewing variation.

The optical properties of oil is the largest contribution to the detector error. Correlations are

accounted for in the error analysis and a multi-simulation method (“Multisim”) is employed

which is described in Sec. 10.6.

The uncertainties in oil density, thermal expansion, and chemical decomposition propa-

gates to an error in the absolute number of target particles, so these errors are applied for

the absolute cross section measurement (Chapter 10), however, the effect is small (∼0.4%).
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7.4 MiniBooNE cross section model

7.4.1 The nuance event generator

In order to model the neutrino signal of interest and to estimate backgrounds, a neutrino

event generator is required to estimate the event rates of each neutrino interaction type.

MiniBooNE uses the nuance event generator [126] which produces the interaction rates for

99 neutrino interaction types given an input neutrino flux. The original nuance code was

written for water Čerenkov detectors, such as Super-Kamiokande, so it has been necessary

to modify many parts of this code.

The following models are used for the neutrino interaction calculations in nuance:

• the relativistic Fermi gas (RFG) model by Smith and Moniz’s formalism for QE scat-

tering from nucleons [16] (Sec. 3.3),

• the Rein and Sehgal model for resonance interactions [127],

• the GRV98 based parton distribution functions (PDFs) for deep elastic scattering

(DIS) cross section [128, 129].

Figure 7.8 shows the breakdown of neutrino interaction types as predicted for MiniBooNE.

The major interactions are:

39% charged current quasi-elastic (CCQE), νµ + p→ µ− + n;

16% neutral current elastic (NCE), νµ + p(n)→ νµ + p(n);

25% charged current one π+ production (CC1π+), νµ + p(n)→ µ− + π+ + p(n);

4% charged current one π◦ production (CC1π◦), νµ + n→ µ− + π◦ + p;

4% neutral current one π± production (NC1π±), νµ + p(n)→ µ∓ + π± + n(p);
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Figure 7.8: Event fractions predicted by nuance for MiniBooNE.

8% neutral current one π◦ production (NC1π◦), νµ + p(n)→ µ− + π◦ + p(n);

4% others, multi pion production (multiπ), deep inelastic scattering (DIS), etc.

7.4.2 Charged Current Quasi-Elastic (CCQE) scattering

CCQE scattering is the dominant neutrino interaction type in MiniBooNE, and comprises

roughly 40% of the total events. The RFG model employed here uses BBA03 form fac-

tors [130] instead of simple dipole form for Dirac (Eq. 3.59) and Pauli (Eq. 3.60) form

factors. But the axial current form factor is assumed to be of dipole form (Eq. 3.61), with

axial mass MA = 1.234 GeV/c2. Although the contribution is small, the pseudo scalar form

factor, derived from PCAC (Sec. 3.2.5), is included. The scalar and axial tensor form factors

(second class) are set to zero as implied from G-parity conservation (Sec. 3.2.8). We use

220 MeV/c for the Fermi momentum and 34 MeV for the binding energy of carbon [131],
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as extracted from electron scattering experiments with associated errors of 30 MeV/c and

9 MeV, respectively. For free nucleon scattering, the RFG model is used but with the Fermi

momentum and binding energy set to zero, therefore, the RFG model employed consistently

describes both free and bound nucleon scattering.

The binding energy value of 34 MeV is modified from what is measured from electron

scattering (25 MeV), for the following reasons [132]. In electron scattering, the charge of

the target nucleon within carbon is not changed, so ∆T3 = 0, and the nuclear transition is

the combination of total isospin changes of 0 or 1. But in neutrino CCQE scattering the

transition occurs through the A=12 isotriplet:

12C (T = 0)
γ→ 12C∗ (∆T = 0, 1 ∆T3 = 0)

12C (T = 0) W→ 12B (∆T = 1, ∆T3 = −1)

12C (T = 0) Z→ 12C∗ (∆T = 1, ∆T3 = 0)

12C (T = 0) W→ 12N (∆T = 1, ∆T3 = +1)

CCQE scattering is a ∆T3 = +1 transition which means the total isospin changes by 1, and

this is a pure Gamov-Teller (GT) transition if all forbidden corrections are ignored [17].

Since the total isospin 1 state is more repulsive, the binding energy for neutrino CCQE

is larger than for electron scattering. The energy difference between T=0 and T=1 is

estimated from the symmetry energy. Including the Coulomb energy, we decided to use

34 MeV for the binding energy of Carbon. We have also introduced an empirical parameter

“κ”, to increase the effects of Pauli blocking in the model which suppresses low Q2 events.

More details are provided in Chapter 8.

Since MA and κ are measured in the CCQE analysis, errors in these parameters are

not included for the CCQE analysis. However, the resultant errors from the fit [4, 39] are

considered in other analyses, including the νe/ν̄e appearance oscillation analysis [67, 68, 133]

and the νµ/ν̄µ disappearance oscillation analysis [134].
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7.4.3 Neutral current elastic (NCE) scattering

NCE scattering is governed by identical expressions as for CCQE after the replacement

of appropriate form factors (Sec. 3.2.3). The notable difference is that NCE scattering is

sensitive to isoscalar form factors, as can be seen in Eq. 3.26 to 3.31. Especially, the Q2 → 0

limit of the isoscalar terms of axial form factors (Eq. 3.64 and 3.63) are proportional to the

strange quark contribution to the nucleon spin (∆s). This is discussed in Appendix A. The

error in ∆s is accounted for in this analysis. However, since contamination of NCE in the

CCQE sample is very small <1%, the error from ∆s is negligible.

7.4.4 Resonance interactions

The baryonic resonance interaction is the primary source of one pion production for Mini-

BooNE,

νµ + p→ ∆++ → µ− + π+ + p

νµ + n→ ∆+ → µ− + π+ + n , etc · · ·

The nuance model employs a relativistic harmonic oscillator quark model of Rein and Seh-

gal [127]. The original code of nuance was modified to take into account the pion angular

distribution due to the spin structure of the resonance states [121]. In total, 18 resonances

are used to contribute to the invariant mass W < 2 GeV, but the ∆(1232) resonance

dominates at this energy scale. For reactions with bound nucleons, a uniform Fermi mo-

mentum and constant binding energy are given. Therefore, Pauli blocking is implemented.

In-medium effects for the width of resonances are not taken into account. A different (from

CCQE) axial mass and error for one pion production are used, M1π
A = 1.10 GeV/c2. The

uncertainty on M1π
A is one of the dominant contributions to the cross section error for the

CCQE exclusive measurement (Chapter 8), because CC1π is the dominant background.

This problem has been (partially) surmounted with a simultaneous measurement of CCQE
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and CC1π (Chapter 9 and 10). A different axial mass is assumed for multi pion production

processes, MNπ
A = 1.30 GeV/c2, but the contribution from these channels are small.

7.4.5 Coherent pion production

Pions are also produced in the coherent interaction of neutrino with carbon nuclei,

νµ +X → µ− + π+ +X ′

νµ +X → νµ + πo +X ′.

Coherent scattering has a distinct features in the angular distribution of both muons and

pions. The KEK-to-Kamioka (K2K) experiment in Japan [135], and MiniBooNE [121]

have measured the fraction of pions produced coherently. K2K found zero contribution

for coherent CCπ◦ production. MiniBooNE found a non-zero value in coherent NCπ◦

production but ∼33% smaller than model prediction. The latest result from the SciBar

Booster Neutrino Experiment (SciBooNE) supports the non existence of CCπo coherent

production [32]. The original model of Rein and Sehgal predict a sizable amount of coherent

pion production, however some models predict much smaller cross sections, for example

Fig. 2 of Ref. [32]. Because of the current confusion of both theory and the experiment,

a large error is assumed for the coherent fraction. The coherent event fraction is tuned

from data (Sec. 9.6) by changing the axial mass parameter for coherent pion production,

M coh
A = 1.03 GeV/c2.

7.4.6 Final State Interactions (FSIs)

A neutrino interaction is modeled having instantaneous contact with an incoherent nu-

cleon (impulse approximation, or IA). Then the products of the interaction are propagated

through the nucleus in the event model. The starting point is based on the measured density

distribution of 12C [136], and the nucleons have a radially-dependent density distribution
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and Fermi momentum. Through this process, hadrons in the final state may re-interact

in the nucleus (FSI). To simulate this, nuance calculates the interaction probabilities for

various processes every 0.3 fm step until the particles leave the ∼2.5 fm radius spherical

carbon atom [136]. The interaction probabilities are based on external data of π −N and

N − N cross sections and angular distributions [137–139], as well as the carbon nuclear

density. To mimic ∆ de-excitation by ∆−N interactions,

∆ +N → N +N,

a constant probability of de-excitation is applied for every ∆−N interaction. We use 20%

for ∆+ +N and ∆◦+N , and 10% for ∆++ +N and ∆−+N . These values were chosen from

data-MC comparisons in the K2K experiment [140]. Thus there is no energy dependence

of the ∆ − N cross section for the de-excitation considered. After the re-interaction, the

first step is changed to 1.0 fm and the density distribution is modified to prevent too much

re-scatterings [141, 142].

Among all the FSI, pion absorption and pion charge exchange are the important pro-

cesses contributing to the uncertainty in the CCQE analysis:

π+ +X → X ′,

π+ +X → πo +X ′.

Because they result in the same final state as CCQE, CC1π interaction with pion absorption

and pion charge exchange are intrinsic backgrounds. Figures 7.9 show a comparison of data

and the MiniBooNE-tuned nuance model for pion absorption and charge exchange total

cross sections as a function of pion momentum. As is evident from the figure, nuance

describes data within its errors. These errors are taken into account for the all analysis.
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Figure 7.9: Data [143–146] and MiniBooNE-tuned nuance comparison for pion absorption

(left) and pion charge exchange (right) cross section as a function of the pion kinetic energy.

7.4.7 Re-interactions in the detector

Although nuance is used to quantify errors from pion absorption and charge exchange in

the nuclei, we need to take into account additional errors from these processes in the prop-

agation of pions in the detector media. Figure 7.10 shows a comparisons of data [143] with

results from two different hadronic interaction packages used in the GEANT3 [147] based

detector simulation. Although the default hadronic interaction package is GFLUKA [148],

we decided to use GCALOR [149], because it utilizes more realistic total cross sections for

these processes for almost all pion energies. The errors from pion absorption and charge

exchange uncertainties in the detector media were estimated from the difference of data and

the GCALOR model.
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  15   16

Figure 7.10: Data [143] compared to two hadronic interaction packages result for pion

absorption (left) and charge exchange (right) cross section.

7.4.8 Cross section error summary

In summary, the following parameters and processes were considered for cross section errors:

• CCQE axial mass (MA) and Pauli blocking parameter (κ);

• Fermi momentum (PF ) and binding energy (EB) of carbon;

• strange quark spin contribution in a nucleon (∆s);

• axial mass for one pion (M1π
A ) and multi pion (MNπ

A ) resonance production;

• CC1π shape error;

• pion absorption, charge exchange, and ∆ de-excitation in the carbon nuclei;

• pion absorption and charge exchange in the detector media;

• axial mass for CC and NC coherent pion production (M coh
A );

• DIS scale parameter;
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• νe flux estimation error from νµCCQE measurement;

• neutral current πo production related error (coherent fraction, ∆ radiative decay, etc).

The errors resulting from MA and κ are important for other analyses, but they do not

contribute here because they result from the measurements. The errors on PF and EB are

rather large, 14% and 26%, but the contribution is relatively small. The 25% error on M1π
A

gives large variation in the background of CCQE. This is the biggest cross section error for

CCQE analysis in Chapter 8, but was not applied for the analysis of Chapters 9 and 10.

Since the M1π
A error practically effects only normalization of pion production events, an

additional error for the shape of CC1π background to CCQE was applied in the analysis

of Chapter 8, but not in that of Chapters 9 and 10 since the background was determined

from the measurement.

We assume 25% and 30% error for pion absorption and charge exchange, as well as

100% for ∆ de-excitation in the carbon nuclei. Strictly speaking, some part of the error

of pion absorption and ∆ de-excitation are double-counted, the the conservative approach

was chosen. In addition, the error from pion absorption and charge exchange was included

in the detector simulation at 35% and 50% respectively.

The error on M coh
A is 14% for the methods of Chapter 8, but was increased to 100%

for Chapter 9 and 10 to take into account recent results from K2K, MiniBooNE and Sci-

BooNE [32, 121, 135]

MiniBooNE used a blind analysis for the νe appearance oscillation results. Therefore, the

error on νe was minimized as much as possible without using actual data. Since the νe flux

or νeCCQE measurement is constrained from the measurement of νµCCQE (Chapter 8), any

disconnection between those two channels must be accounted for with additional errors. An

energy-dependent difference error between νeCCQE and νµCCQE and an energy spectrum
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error for νeCCQE itself were employed. Of course, these errors are not applied to any cross

section analyses.

Since neutral current π◦ production (NCπ◦) events are the single biggest error for the

when identifying isolated electrons (the signal for νe appearance oscillation), errors on this

process must be carefully set. These are determined from the measured π◦ spectrum [121],

but again, these errors are not applied (and are negligible anyway) for the CCQE analysis.

7.5 Event reconstruction

The details of event reconstruction are available in [113].

7.5.1 Hits

Although the information about particle energies is conveyed by the charge measured by

each PMT, the number of PMT fired in each event, called hits, is a simple yet very powerful

proxy for the total energy deposited in the tank. For example, by requiring that the number

of hits in the veto region (veto hits) is less than 6 rejects 99.99% of the particles that leave

the fiducial volume for the CCQE analysis. And, since the end point of Michel spectrum

is ∼ 53 MeV corresponding to ∼ 100 hits in the signal region (tank hits), requiring tank

hits greater than 200 eliminates most of the Michel electrons and is a powerful cut to select

muons.

7.5.2 Subevent

One event in the data stream corresponds to one beam trigger, or the sequence of the

time and charge information from all PMTs in the 19.2 µs DAQ window. Since individual

particle events in the tank create a group of hits with clustered time values, it is convenient
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to define a “subevent”, or well-separated timing cluster, to sort out a particular data event.

Figure 7.11 shows an example where three subevents can be observed. This is a typical

charged current one pion production (CC1π) event candidate:

νµ + p(n)→
1

µ− +π+ + p(n)→ µ− + µ+ + νµ + p(n)→
2

e− +ν̄e + νµ+
3

e+ +νe + ν̄µ + νµ + p(n)

The first subevent corresponds to the primary µ− Čerenkov emission. Then there are two

subsequent subevents, corresponding to Čerenkov emission by either e− or e+ from a µ−

or µ+ decay. Also notice that the first subevent contains more than 200 tank hits – this

means this subevent is likely to be made by an energetic charged particle, like a muon. The

second and third subevents have less than 200 tank hits, likely to be made by low energy

charged particles, for example, Michel electrons. For the analysis of MiniBooNE data, the

total number of subevents is used to classify events into physics categories. For example,

an event with 3 subevents, like that shown in Fig. 7.11, is a CC1π event candidate. If

it contained 2 subevents, most likely, is was a charged current quasielastic (CCQE) event

candidate,

νµ + n→
1

µ− +p→
2

e− +ν̄e + νµ + p. (7.1)

Events are mis-classified when subevents are lost. For example, the µ− capture [150] process

reduces the total number of subevents in a particular event, because a captured muon decay-

in-orbit (DIO) does not emit a Michel electron. This process is well known and measured

to occur for approximately ∼8% of µ− stopping in mineral oil. Other example is the pion

absorption process. Again, the absorbed pion does not decay to a muon, and hence there

is no Michel electron emission. This process is also modeled in the detector simulation,

however large errors on pion absorption results in large errors on the estimated number of

2-and 3-subevent events. This problem is considered in Chapter 9.
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Figure 7.11: Number of tank hits as a function of time in a CC1π candidate event.

7.5.3 Particle track fitter

So far, the MiniBooNE detector has been explained as a calorimeter. However the charge

and time information as well as topological information from individual PMT hits provides

particle track information as well. Each PMT provides five quantities for each event which

can be used to find particle tracks,

{(xk, yk, zk), tk, qk}, k = 1, · · · , 1280 (number of PMTs).

To specify a single particle track, we need the following parameters,

• position(x, y, z);

• time (t);

• direction (ux, uy, uz);

• energy (E).
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Figure 7.12: An illustration of the particle track fitter. A particle is moving in direction

(ux,uy,uz). Čerenkov light emitted from the point (x,y,z) at time t, in direction θ, is

observed by kth PMT with angle η with respect to the normal vector. Under the point-like

approximation, this (x,y,z,t) can be regarded the track center. However, in the reality,

emission density ρ(s) is a function of s along the track.

We use the vector x to denote this parameter set. Since the charge and time information

predicted for the kth PMT is a function of x, one can form a likelihood function to find x

from PMT charge and time information. Figure 7.12 shows the situation for a simulated

track. Since Čerenkov emission is directional, we can use this information from all PMTs

to find a particle position, time, direction, and energy.

The surprising fact is that most of Čerenkov light goes into a limited solid angle with

respect to the particle track. Furthermore, the Čerenkov emission is an instantaneous

process, so most of emission goes into this narrow solid angle in a limited time period.

Figures 7.13 and 7.14 show the solid angle and time distributions of Čerenkov light. This

implies that one can approximate an event with all Čerenkov light emitted from single point,
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Figure 7.13: Emission power from an electron track as a function of the solid angle along

the track. The red curve shows the power of the strong directional Čerenkov emission, and

the blue curve shows the power of the isotropic scintillation emission.

represented by the track center. From this, the particle track position (called track center),

time, direction, and energy, may be determined ( after some corrections about delayed and

isotropic scintillation light).

Of course this point-like approximation is broken at some level, instead, we can introduce

the emission density ρ(s) as a function of s along the particle track. This track-based fitter

dramatically improves angular resolution [113].

The point-like approximation fitter was used in the analysis of Chapter 8, and track-

based fitter for that of Chapter 9 and 10.
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Figure 7.14: The corrected time for the emission of light from an electron track. The

corrected time tc is defined by measured time tk, emission time t, and photon propagation

time rk

cn
, (here cn is the speed of light in the oil (=19.5 cm/ns)). Then, tc = tk − t − rk

cn
.

The peak corresponds to the Čerenkov emission, and the tail is delayed scintillation light.
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7.5.4 Particle ID

The particle identification (PID) is done by using track features, which is the integrated

information from all PMTs (Fig. 7.15). Fig. 7.16 is an example of actual event display of a

stopping muon candidate event.

In particular, the likelihood ratio is simple, yet powerful estimator for particle ID under

a hypothesis. The electron-to-muon (L(e/µ)) and electron-to-π◦ (L(e/π◦)) likelihood ratio

are constructed [113] for νe appearance oscillation analysis to reject muon and π◦ like tracks.

In this thesis, we used the negative of log L(e/µ) to select muon like tracks (Chapter 9).

140



7.5. EVENT RECONSTRUCTION

Figure 7.15: A cartoon illustrating PID. PID is done utilizing the features of tracks,

originated in the charge, time, and the topological information from all PMTs.

141



CHAPTER 7. MINIBOONE

Figure 7.16: An event display for a muon candidate event. Each sphere represents a hit

from a PMT, and the size and the color show charge and time information. As described

in Fig. 7.15, a stopping muon is characterized with sharp edge and filled circle shape hits.
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CCQE measurement for

MiniBooNE oscillation physics

8.1 νe appearance oscillation analysis

The results from and the details of the oscillation analysis are available in [67, 112–114].

The goal of MiniBooNE experiment is to test the observed LSND ν̄e appearance sig-

nal [69]. However, because of the blind analysis constraint, νe appearance signal candidates

are forbidden to be analyzed. The muon neutrino charged current quasielastic (νµCCQE)

sample is a completely exclusive set from the electron neutrino CCQE (νeCCQE) sample,

which is the signal of νe appearance search. Thus, νµCCQE sample is very useful to check

our machinery under the the blindness constraint and, therefore it is important for the νe

appearance search.
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8.1.1 The blind analysis

MiniBooNE employed a blind analysis for the νe appearance oscillation analysis. Fig-

ure 8.1 shows schematically the concept of the blind analysis. The data are points in an

N -dimensional space. For example, each event has associated quantities for number of

veto hits, average time of hits, estimated particle energy, etc. Here, the data is shown in

3-dimensional space for the illustration. Then, the complete data set is divided into data

subsets with various cuts. Each subset is called a “box”. These boxes, specifically called

“open boxes” contain various event types (CCQE candidates, NCπ◦ candidates, cosmic

muons, etc.) and are designed to not contain oscillation candidate events. Then, the “open

box” data are analyzed to understand and to tune the simulation and analysis tools. These

results are then used for the analysis of the “closed box” events. This “closed box” uses cuts

to select oscillation candidates, and has been defined as a signal box from the beginning of

the experiment. This works well for MiniBooNE, because the definition of signal events are

single isolated electrons,

νµ
?→ νe + n→

1

e− +p.

So, the oscillation candidate events are exclusive and easily separated from other event

types. Note, the boxes are not exclusive in general, so open boxes often overlap each other,

but the closed signal box is completely exclusive. In the end, MiniBooNE used more than

99% of the data for these studies. In order to double-check the final results from the

blind analysis, two independent oscillation analyses were used based on different particle

reconstruction and identification algorithms. The closed box was finally opened in March,

2007 [67].
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Figure 8.1: A schematic figure illustrating the MiniBooNE blind oscillation analysis. Note,

the open boxes are not exclusive set in general, but the closed box is completely exclusive.

8.1.2 Flux normalization and error constraint by νµ CCQE

The νe oscillation signal was determined with a simultaneous fit of νe and νµ CCQE candi-

date events. This combined fit method [112–115] has great power for two reasons.

The first is flux normalization. Since MiniBooNE is single detector oscillation experi-

ment, unlike K2K [81] or MINOS [82], we have a large uncertainty in the beam neutrino

flux, large enough to hide at the ∼1% level any oscillation signal. This problem is solved by

using the high statistics sample of νµCCQE candidates to make an independent flux mea-

surement. Figure 8.2 shows the general scheme. Since the combined fit technique fits both

νeCCQE and νµCCQE simultaneously, νe oscillation candidate events (νµ → νe) cannot be

interpreted as an incorrect νµ flux prediction. If events were interpreted as νe oscillation

events but were due to an incorrect νµ flux prediction, we would not see a good fit for

νµCCQE events. Therefore, a measurement of the νµCCQE rate works as a flux monitor

for the oscillation analysis.

The second reason is that the fit constrains the number of intrinsic νe events. The
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possible νe backgrounds are either misidentification of events or an incorrect estimation of

(intrinsic) νe created in the beam. And, the majority (∼50%) of intrinsic νe arise in µ+

decay,

π+ → µ+ + νµ → e+ + νe + ν̄µ + νµ.

(8.1)

The fact that every νe is accompanies by a νµ connects the νµCCQE measurement to the

νe prediction. Again, an incorrect prediction of intrinsic νe would imply an incorrect νµ

flux prediction, or an incorrect prediction of the νµCCQE rate. Therefore, the intrinsic νe

flux from µ+ decay is measured via the high-statistics νµCCQE event sample. Then, the

intrinsic νe background with the largest uncertainty is that from K+ decay.

8.1.3 Kinematic reconstruction test by νµCCQE

To understand neutrino oscillations, it is necessary to know the energy of the candidate

neutrinos. Since νe are measured via νeCCQE, the neutrino energy must be reconstructed

from CCQE kinematics. However, because of the blindness procedure, it was not possible

to look at νeCCQE sample before the analysis was complete.

The νµCCQE sample is the most abundant sample ( 40% of total neutrino events)

and was used to understand various features of the data. For example, the kinematic

variables are important for the selection of νe candidate events, and so the validity of

kinematic reconstruction must be demonstrated using νµCCQE events. Especially, the

study of νµCCQE revealed a number of inadequacies in the nuclear model used, and the

relativistic Fermi gas (RFG) model was tuned using the νµCCQE box. This (tuned) model

was then used for νe oscillation search [67] for better νe kinematic reconstruction.
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Figure 8.2: An example plot from the combined fit. The top plot shows νµCCQE candidate

data and the prediction. The bottom plot shows the νeCCQE candidate data along with

signal and background predictions, including the oscillation hypothesis. A good fit with

high-statistics νµ candidates does not allow large variations in the νµ flux. Thus, (1) a

large variation of νe appearance from νµ variation (νµ → νe) is not allowed, and (2) a large

variation of intrinsic νe from µ+ decay is not allowed.
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8.2 νµ CCQE measurement and tuning of relativistic Fermi

gas (RFG) model

In this section, we present the details of νµCCQE box and the tuning of the RFG model

which took place before νe box opening.

8.2.1 CCQE event selection in MiniBooNE

The MiniBooNE detector, a spherical tank filled with mineral oil, detects Čerenkov light

from charged particles. The identification of νµCCQE interactions relies solely on the

detection of the primary muon Čerenkov light and the associated decay electron Čerenkov

light in these events (Fig. 8.3):

νµ + n→
1

µ− +p→
2

e− +νµ + ν̄e + p. (8.2)

By avoiding requirements on the outgoing proton kinematics, the selection is less dependent

on nuclear models. The scintillation light from the proton, although not used directly

in the νµCCQE analysis, was studied using neutral current elastic scattering events in

MiniBooNE [110].

To define CCQE candidates, we applied the following cuts:

1. (54.2%) 2 total subevents;

2. (52.9%) 1st subevent average time T is 4400<T(ns)<6400;

3. (46.4%) veto hits for both 1st and 2nd subevent <6;

4. (41.6%) tank hits for the 1st subevent >200, and the 2nd subevent <200;

5. (41.3%) reconstructed track center <500 cm;
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Figure 8.3: Schematic figure of a CCQE interaction. The primary Čerenkov light from the

muon (Čerenkov 1, first subevent) and subsequent Čerenkov light from the decayed electron

(Čerenkov 2, second subevent) are used to tag the CCQE event. For most events, protons

only emit scintillation light, and our selection is insensitive to this information.
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6. (35.0%) Michel distance ∆R<100 cm.

The numbers in parentheses are the calculated efficiency after each cut. Cut (1) selects

2 timing cluster as CCQE candidate, (2) is the beam window cut, (3) rejects incoming

particles, (4) requires the 1st subevent to be MIP-like and the 2nd subevent to be Michel

electron-like, (5) is the fiducial volume cut, and (6) requires the Michel electron to be near

the endpoint of the muon track.

The Michel distance ∆R is defined [115] by,

∆R =
√

(X1 −X2)2 + (Y1 − Y2)2 + (Z1 − Z2)2. (8.3)

Here, (X2,Y2,Z2) is the electron track center, and the muon track endpoint (X1,Y1,Z1) is

defined from the muon track center XR, and direction UXR, and the dE
dx measured from

polyethylene Range(ER),

X1 = XR + UXR × Range(ER)
2

, Y1 · · · (8.4)

A total of 193,709 events pass these cuts from 5.58 × 1020 protons on target collected

between August 2002 and December 2005. The cuts are estimated to be 35% efficient at

selecting νµ CCQE events in a 500 cm radius, with a CCQE purity of 74%. The predicted

backgrounds are: 74.8% CC 1π+, 15.0% CC 1π0, 4.0% NC 1π±, 2.6% CC multi-π, 0.9% NC

elastic, 0.8% νµ CC 1π−, 0.8% NC 1π0, 0.6% η/ρ/K production, and 0.5% deep inelastic

scattering and other events. Because pions can be absorbed via final state interactions in

the target nucleus, a large fraction of the background events look like CCQE events in the

MiniBooNE detector. “CCQE-like” events, all events with a muon and no pions in the final

state, are predicted to be 84% of the sample after cuts.

8.2.2 MiniBooNE CCQE events

Figure 8.4 shows the ratio of data to Monte Carlo (MC) CCQE events as a function of muon

kinetic energy Tµ(GeV) and muon scattering angle cosθµ. Note the muon energy and muon
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scattering angle are the observables and the basis of all reconstructed kinematic variables

in the νµCCQE channel. One can immediately see that the data-MC agreement is poor.

We can only measure the interaction rate, which is the convolution of flux and cross sec-

tion (R =
∫

Φ×σ). So, when data-MC agreement is poor, without knowing flux prediction

is perfect, one cannot tune the cross section model from the measured interaction rate. We

show our observed data-MC mismatching is not the effect of mismodeling of neutrino flux,

but is really a cross section model problem, by the following approach.

There are 6 auxiliary lines: (a), (b), and (c) are equal neutrino energy lines, 0.4, 0.8,

and 1.2 GeV respectively, while (d), (e), and (f) are equal Q2 lines of 0.2, 0.6, and 1.0 GeV2

each. The data-MC disagreement follows the lines of equal Q2, not equal neutrino energy.

This indicates that the data-MC disagreement is not due to the neutrino flux prediction,

but due to the neutrino interaction prediction, because the former is a function of neutrino

energy and the latter is a function of Q2.

R =
∫

Φ× σ → R[Eν , Q
2] =

∫
Φ[Eν ]× σ[Q2] (8.5)

So we assume that the data-MC disagreement comes from our neutrino interaction model

and we adjust the model to describe the data. This is a critical task for MiniBooNE since

the goal is to measure νeCCQE events, but the MC and all reconstruction tools must be

reliable and tested with the copious νµCCQE events due to the blind analysis constraint on

the νeCCQE channel.

The data-MC disagreement is classified in 2 regions in this plane (Fig. 8.4),

1. data deficit at low Q2 region, light gray band near the top left corner

2. data excess at high Q2 region, black band from the top right to the bottom left

Since we are employing the relativistic Fermi gas (RFG) model [16] in our MC, we wish

to fix these problems within the RFG model. The low Q2 physics is controlled by the
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nuclear model, so we decided to tune the model, especially the strength of Pauli blocking,

to fix region (1). This is justified because electron scattering data has not provided precise

information for Pauli blocking in the low Q2 region in terms of the RFG model [45]. For (2),

we need to increase axial mass MA, to increase the cross section at high Q2. Here, the axial

mass is understood to be an experimental parameter in the axial form factor (Eq. 3.61).

This treatment is also justified because elastic electron scattering cannot measure the axial

mass precisely. Interestingly, this higher axial mass than world average (=1.03 GeV/c2 [38])

is also observed by the K2K experiment in Japan [31, 37], as we see in Sec. 3.4.
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Figure 8.4: Ratio of MiniBooNE νµ CCQE data/simulation as a function of reconstructed

muon angle and kinetic energy. The prediction is prior to any CCQE model adjustments;

the χ2/dof = 79.5/53. The ratio forms a 2D surface whose values are represented by the

gray scale, shown on the right. If the simulation modeled the data perfectly, the ratio would

be unity everywhere. Contours of constant Eν and Q2 are overlaid.
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8.2.3 Pauli blocking parameter κ

Currently, MiniBooNE is using the nuance neutrino interaction generator [126]. In nuance,

CCQE interactions on carbon are modeled by the Relativistic Fermi Gas (RFG) model [16].

To achieve our goal within the RFG model, we introduced a new parameter, κ, in the phase

space integral of nucleon distribution (Eq. 3.72, 3.73, and 3.74),

Ehi =
√
k2

F +M2
n,

Elo = κ(
√
k2

F +M2
p − ω + EB),

where Mn is the target neutron mass, Mp is the outgoing proton mass, kF is Fermi mo-

mentum (=220 MeV), EB is binding energy (=34 MeV), and ω is the energy transfer. In

the RFG model, Ehi is the energy of an initial nucleon on the Fermi surface and Elo is

the lowest energy of an initial nucleon that leads to a final nucleon just above the Fermi

momentum. The function of parameter κ is to reduce the phase space of the nucleon Fermi

sea, especially when the energy transfer is small (Fig. 8.5).

Figure 8.5 shows how this works. Here, Ehi is the upper limit of Fermi sea, and Elo is

the bottom of Fermi sea relevant for a particular scattering event. Increasing κ reduces the

nucleon momentum space, and the scattering rate when Q2 is low (∼< 0.3 GeV2).

Figure 8.6, it can be seen that this parameter controls the Q2 distribution only in the

low Q2 region. This is complementary to the role of MA, since MA mainly controls the Q2

distribution in the high Q2 region.

We vary these 2 parameters in a grid search to find the values that minimize χ2. We

discuss the detail of fit procedure (Sec. 9.7) and error matrix construction (Sec. 10.6) in

later chapters.
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Figure 8.5: Schematic view of nucleon momentum space. In the RFG model, nucleon states

are filled from Elo to Ehi. The parameter κ reduces available momentum space to reduce

the interaction rate for low Q2 interactions.
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Figure 8.6: Effect of MA and κ variations on the MiniBooNE, flux integrated Q2 distribu-

tion. The top plot shows various MA with fixed κ, and bottom plot shows various κ with

fixed MA. Note, the MA variation has large impact at high Q2 while the κ variation has a

significant impact only for Q2 below ∼< 0.2 GeV2.
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8.2.4 Fit result

MA − κ fit

Finally, the parameters extracted from the MiniBooNE νµ CCQE data are:

MA = 1.23± 0.20 GeV/c2 ;

κ = 1.019± 0.011 ;

χ2/dof = 32.8/30 .

Table 8.1 shows the contributions to the systematic uncertainties on MA and κ. The

detector model uncertainties dominate the error in MA due to their impact on the energy

and angular reconstruction of CCQE events in the MiniBooNE detector. The dominant

error on κ is the uncertainty in the Q2 shape of background events.

The result of this fitting, including all sources of systematic uncertainty, is shown in

Fig. 8.7. Since the background error dominates at low Q2, and it drives the large error bars

at low Q2. Note that, the shape uncertainty of the background, namely the Q2 distribution

shape uncertainty of CC1π+ events, is included in these error bands not in the 1−σ contour.

From the data, we found the predicted Q2 shape of CC1π+ events has a large uncertainty.

To quantify this uncertainty, we extract a Q2 shape weighting function for CC1π+ events

(Fig. 8.8). The extracted shape information from the data is implemented in the MC, and

the fit is performed again. The result of those 2 fits, one using the MC predicted CC1π+

distribution, and the other using MC tuned on CC1π+ data, are shown with the star and

the triangle in the inset plot of Fig. 8.7. The difference is interpreted as the background

shape error and added to the error on the extracted parameters.

Figure 8.9 shows the agreement between data and simulation after incorporating the MA

and κ values from the Q2 fit to MiniBooNE νµCCQE data into the nuclear model. Compar-

ing to Fig. 8.4, the improvement is substantial and the data are well-described throughout
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Figure 8.7: Reconstructed Q2 for νµCCQE events including systematic errors. The simula-

tion, before (dashed) and after (solid) the fit, is normalized to data. The dotted (dot-dash)

curve shows backgrounds that are not CCQE (not “CCQE-like”). The inset shows the 1σ

CL contour for the best-fit parameters (star), along with the starting values (circle), and

fit results after varying the background shape (triangle).
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Figure 8.8: CC1π weighting function used for CC1π background tuning. The data-MC

ratio of CC1π event is used to extract the weighting function for correct the shape of CC1π

background for CCQE. Note, the extracted weighting function is normalized, so we only

take into account the shape of measured CC1π event.

error source δMA δκ

data statistics 0.03 0.003

neutrino flux 0.04 0.003

neutrino cross sections 0.06 0.004

detector model 0.10 0.003

CC π+ background shape 0.02 0.007

total error 0.20 0.011

Table 8.1: Uncertainties in MA and κ from the fit to MiniBooNE νµ CCQE data. The total

error is not a simple quadrature sum because of the correlation between the two parameters.
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Figure 8.9: Ratio of data/simulation as a function of muon kinetic energy and angle after

the CCQE model adjustments; the χ2/dof = 45.1/53. Compare to Figure 8.4.

the kinematic phase space. Since the whole kinematic space is fixed, not surprisingly, all of

the individual kinematic variables exhibit good data-MC agreement. Figures 8.10, 8.11, and

8.12 show that data and MC agree well within error bars for reconstructed muon neutrino

energy, muon kinetic energy and muon scattering angle.
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Figure 8.10: Reconstructed muon neutrino energy, line notations are the same as Fig 8.7.

Figure 8.11: Muon kinetic energy, line notations are the same as Fig 8.7.
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Figure 8.12: Measured muon angle, line notations are the same as Fig 8.7.

MA only fit

In general, varying MA allows us to reproduce the high Q2 behavior of the observed data

events. A fit for MA above Q2 > 0.25 GeV2 yields consistent results, MA = 1.25 ±

0.12 GeV/c2 (Figs. 8.13). However, fits varying only MA across the entire Q2 range leave

considerable disagreement at low Q2. This data-MC disagreement at low Q2 would even-

tually reflect in data-MC disagreement in reconstructed neutrino energy, because data-MC

disagreement in Q2 spreads out in the kinematic plane and would affect the energy re-

construction across a wide region. The Pauli-blocking parameter κ is instrumental here,

enabling this model to match the behavior of the data down to Q2 = 0.
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Figure 8.13: Reconstructed Q2 for νµ CCQE events and data-MC ratio in the kinematic

plane. The analogous plots with Fig. 8.7 and 8.9, but the fit is performed using MA only,

with fixed κ (=1.0, no enhanced Pauli blocking).

8.2.5 Conclusions

As described above, we tuned the RFG model to yield a good description of the MiniBooNE

νµCCQE data. This tuned RFG model was then used for the νeCCQE interaction in the

search for νµ → νe oscillation [67].
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Chapter 9

simultaneous CCQE and CC1π Q2

fit

Charged current quasielastic (CCQE) event candidates are charged current (CC) candidate

events with 2 subevents. Charged current one pion production (CC1π) candidates are CC

candidate events with 3 subevents. Since CC1π is the biggest background contribution to

the CCQE candidate sample, a simultaneous measurement of both CCQE and CC1π is

used to constrain the CC1π background in the CCQE sample.

The challenge is that nearly 90% of CC1π background events in the CCQE sample are

“CCQE-like” events for MiniBooNE. That is, the second Michel electron resulting from the

pion-decay muon are absent, mainly due to pion absorption (or pion charge exchange) in

the nuclei or in the detector media. Also, the uncertainty on the pion absorption is large

(∼20%), and hence it is not immediately clear how to apply the CC1π candidate information

measured in the 3-subevent sample to the 2-subevent sample.

The goal of this part of the CCQE analysis was to determine the CC1π background in

the CCQE sample via a measurement in four-momentum transfer, Q2. The basic principle
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is that the shape and normalization measurement of the 3-subevent sample in Q2 deter-

mines the background for 2 subevents. A measurement of the 1- and 2-subevent samples

determines the normalization for the CCQE sample, which has only a small impact for 3

subevents. The shape of CCQE events in Q2 is found in a later fit for MA and κ. In this

way, we maintain self-consistency.

The extracted CC1π Q2 distribution is used to re-weight all events to produce new

central value (cv) MC. This new cv MC is used to estimate background contents from all

kinetic measurements in CCQE sample. This new background prediction is used in the next

chapter, to measure the CCQE absolute cross sections in MiniBooNE.

9.1 Subevent correction

In this chapter, we are only interested in the muon kinematics, so when we say “2 subevents”,

we mean not the information from the second subevent, but the event information for the

muon when the total number of subevents is 2, which are CCQE candidates. Similarly,

“3 subevents” selects a muon with two additional Michel electrons, i.e., CC1π candidates.

However, when we say the ordinal number, for example the second subevent, it does means

the second subevent information, for example, the energy spectrum of Michel electron.

The total number of subevents is one plus the number of Michel electrons, and this is

the most crucial information for this analysis. Since we need good selection criteria for

the total number of subevent, or Michel electrons, we need to remove as many subevents

as possible that are caused not by Michel electrons but by other detector activities. In

general, there is much activity in the tank and sometimes this activity can exceed the time

and charge threshold for the default subevent algorithm to count these as subevents. To

eliminate these subevents, we apply a “subevent correction”. That is, when tank hits<20,

this subevent is eliminated as a candidate Michel electron and removed as a subevent. For
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data MC

before after change before after change

1st subevent 77470 82564 6.58% 96489 103531 7.30%

2nd subevent 217540 215908 -0.74% 408451 405098 -0.82%

3rd subevent 53748 50883 -5.33% 72158 68910 -4.50%

4th subevent 2036 1478 -27.41% 1283 951 -31.24%

Table 9.1: Data-MC comparison before and after the subevent correction.

example, 3-subevent candidates can become 2-subevent candidates. Table 9.1 shows the

number of events for the data and MC samples before and after the subevent correction.

The fraction of events migrated before and after the subevent correction are consistent

between data and MC. So we can validate that our MC correctly simulate low hits events.

9.2 CC cut

For this analysis, we used the track-based fitter for the reconstruction of the muon kine-

matics (Sec. 7.5.3). Then, we defined the following “CC cut” to select CC inclusive events

with 1, 2, and 3 subevents total:

1. (58.1%) number of veto hits for 1st, 2nd, and 3rd subevent <6;

2. (57.7%) 1st subevent average time T is 4400<T(ns)<6400;

3. (56.4%) reconstructed track center <500 cm for the 1st subevent;

4. (49.9%) kinetic energy of the 1st subevent particle (muon hypothesis) is >200 MeV;

5. (45.6%) −logL(e/µ) is >0.02 for 1 subevent, and >0.0 for 2 and 3 subevents.
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The numbers indicate the efficiency (as calculated by the simulation) after these cuts. Here,

(1) is a veto cut to reject incoming particles, (2) is the beam window cut, (3) is the fiducial

volume cut, (4) requires the 1st subevent particle to have enough energy, and (5) is the

likelihood cut to select muons (Sec. 7.5.3).

To avoid the region where data is poorly described and the background contribution

is expected to be large, the likelihood cut has different criteria when the subevent total

is 1 (Fig. 9.1). The red line is CCQE, blue line is CC1π, and other colors show other

background channels. Notice that this cut is not designed to remove CC1π events, since

we want to determine the CC1π background in the CCQE sample from the data. Instead,

this simultaneous fit assumes that we understand the other background channels, and it is

important to remove these.
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Figure 9.1: Data-MC comparison of muon likelihood function. The positive x direction is

the muon likelihood. From top left to bottom right, total events, 1 subevent, 2 subevents,

and 3 subevents. Notice all likelihood here is defined for the first subevent. The red line is

CCQE, blue lines are resonance CC1π with pion (solid), and without pion (dashed), green

lines are coherent CC1π with pion (solid), and without pion (dashed), turquoise line is for

NCπ and gray line is for other channels.
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9.3 CCQE cut

From the CC inclusive sample, one can find the background in the 2 subevent sample.

Then this background-subtracted 2 subevent sample is the final sample used for the CCQE

analysis. For this purpose, we apply further cuts (only) to the 2 subevent sample to define

CCQE sample:

6. (36.7%) 2 subevents total;

7. (33.5%) the distance between the first and second subevent vertices, d (cm), and

the muon kinetic energy E (MeV) satisfy the following relationship, d > 100.0 and

d > 0.5× E − 100.0.

This CCQE sample is a subset of the CC inclusive sample, and used in the simultaneous

fit (Sec. 9.6). The region selected by this cut is illustrated in Fig. 9.2. Again, this cut is

not designed to reject CC1π events. Instead, this cut removes other event types and CC1π

events where the muon reconstruction has failed.

After these cuts, 142948 events survived in the data corresponding to 5.58×1020 protons

on target collected between August 2002 and December 2005 within 0.0 < Q2(GeV2) < 2.0.

Table 9.2 shows a summary of event totals from the standard MC. The CCQE cut has an

82% purity and 33.5% efficiency at selecting νµ CCQE events in a 500 cm radius. The

events are classified for later use. Here, the CC1π events are split into “with π” and

“without π” samples based on the existence of a second Michel electron. CC1π events

with pion absorption by either the nuclei or by the detector are classified as “without π”.

“res” and “coh” indicate the the pion is created by the resonance reaction or by coherent

scattering. More specifically, resonance pion production occurs in nuance channels 3 and 5,

and coherent pion production from nuance channel 97. Other backgrounds, neutral current

elastic (NCE), CCπ◦, neutral current π+/π◦ productions are less important in this analysis.
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Figure 9.2: Distance-muon energy relationship. The x-axis is the muon kinetic energy

(GeV) and the y-axis is the distance between muon vertex and electron vertex. Red dots

are CCQE, blue dots are CC1π, pink dots are charged current π◦ (CCπ◦) events, and green

dots are other channels. The arrows show the region selected by this cut.
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total 1 subevent 2 subevents 3 subevents

data 204171 27959 142948 33264

MC total 516262 72338 365799 78125

CCQE 360544 54883 300076 5586

NCE 2833 2668 134 30

CC1π with π (res) 71391 659 6507 64225

CC1π without π (res) 50681 7332 43274 74

CC1π with π (coh) 6402 78 580 5744

CC1π without π (coh) 3307 502 2794 11

CCπ◦ 11683 1695 9045 943

NCπ+ 1632 1455 162 15

NCπ◦ 3820 2445 1311 64

others 3969 622 1915 1432

Table 9.2: Event totals summary after the CCQE cut as determined by the MC with an

arbitrary normalization

Here, we can see a clear dominance of the CCQE channel in 2 subevents and CC1π with

π (res) in 3 subevents. Next, we need to determine the amount of CC1π without π in 2

subevents sample, which is the biggest intrinsic background for MiniBooNE CCQE analysis.

9.4 The theoretical model

If good muon reconstruction is available in all 1, 2, and 3 subevent candidates, the difference

between the three samples is only the number of Michel electrons. The following argument

is applied to any given ith bin of muon kinematics, and we consider the connection of a

given bin beyond each subevent. Naively, this exercise precisely determines the background
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contribution to the 2 subevent sample from 1 and 3 subevent samples, and we can avoid all

errors from associated background. This is not completely true as we will see later.

In the perfect world (where all Michel electrons are detected with 100% efficiency – no

muon capture, no pion absorption, etc), 1, 2, and 3 subevent samples are described by the

CCQE, CC1π, and other channels. In a given bin of muon kinematics, we can apply the

following simultaneous equations,

S1 = G1,

S2 = A+G2,

S3 = B +G3.

Here, S1, S2, and S3 represent 1, 2, and 3 subevent CC data, A is CCQE prediction, B is

CC1π prediction, and G1, G2, and G3 are other (background) channels. Since we do not

have enough information to determine the number of events from other channels, we simply

use the MC predictions and subtract from the data with scaling factor (∼ 1.4, Sec. 9.5),

S1′ = 0,

S2′ = A, (9.1)

S3′ = B.

Now, in the real world, we have many processes that can cause the migration of events into

different subevent candidates. The key is that the probability for this to occur is either

known or small, excepting pion absorption and pion charge exchange.

We introduce the following five processes to migrate an event to different subevent

sample:

a muon capture (∼8%);

b Michel electron detection inefficiency (∼10%);
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c accidental electron from cosmic rays and other processes (small);

d pion absorption and pion charge exchange (large and not well known);

e pion production in the detector (small).

For two set s and t, we write union and intersection by s ∪ t and s ∩ t. Then, Eq. 9.1

becomes,

S1′ = (a ∪ b) ·A+ (a ∪ b) ∩ (b ∪ d) ·B,

S2′ = [1− (a ∪ b)− (c ∪ e)] ·A+ (a ∪ b ∪ d) ·B − (a ∪ b) ∩ (b ∪ d) ·B, (9.2)

S3′ = (c ∪ e) ·A+ [1− (a ∪ b ∪ d)] ·B.

We then assume all the physics processes resulting in the migration of CCQE are correctly

modeled with the MC,

A1 ≡ (a ∪ b) ·A,

A2 ≡ [1− (a ∪ b)− (c ∪ e)] ·A, (9.3)

A3 ≡ (c ∪ e) ·A.

We can check this a simple numerical check. From Tab. 9.2, A1 ∼ 55000, A2 ∼ 300000,

and A3 ∼ 5500. Since a ∪ b = a + b − a · b ∼ 17%, number of A1 is roughly correct. Also,

c ∪ e ∼ 2%, so c and e are both of order 1%.
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Next, we can rewrite the CC1π parts,

(a ∪ b) ∩ (b ∪ d) ·B = (a ∪ b) · (b+ d− bd) ·B = (a ∪ b)b ·B + (a ∪ b)(1− b) · dB,

≡ B1 + dD1

(a ∪ b ∪ d) ·B − (a ∪ b) ∩ (b ∪ d) ·B = [(a ∪ b) ∪ d] ·B −B1 − dD1,

= [(a ∪ b) + d− (a ∪ b)d] ·B −B1 − dD1

= (a ∪ b) ·B −B1 + [1− (a ∪ b)] · dB − dD1

≡ B2 + dD2 − dD1 (9.4)

[1− (a ∪ b ∪ d)] ·B = [1− (a ∪ b)] ·B − [1− (a ∪ b)] · dB

≡ B3 − dD2.

Then, combine Eqs. 9.3 and 9.4,

S1′ = A1 +B1 + dD1,

S2′ = A2 +B2 + dD2 − dD1, (9.5)

S3′ = A3 +B3 − dD2.

Thus, the contribution from CC1π can be split into two parts, the first part is independent

of pion absorption (B1, B2, and B3), and the second part is caused by pion absorption (D1

and D2).

Since we want to determine the shape (in Q2) of CCQE later, we introduce a scaling

factor α for CCQE events in order to take account the normalization without modifying

the shape. For CC1π, we scale and modify the shape with a 5th order polynomial function

β. Finally, we also let the pion absorption rate, d, vary:

A→ α[1]A , B → β[5]B , D → β[5]D , d→ δ[1].

The number in the bracket shows the number of parameters contained in each function.
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Then,

S1′ = αA1 + βB1 + δβD1,

S2′ = αA2 + βB2 + δβD2 − δβD1, (9.6)

S3′ = αA3 + βB3 − δβD2.

An additional complication is that the fraction of coherent events in CC1π is not well known.

Then coherent fraction changes the connection between the 1, 2, and 3 subevent samples

in a way we cannot achieve with only β and δ. To account for this, we separate coherent

fraction of CC1π from the resonance CC1π, and we introduce new parameter ε to change

the fraction of coherent event,

B → B + εE , D → D + εF.

Here, B and D are newly defined to be the resonance CC1π events with and without a

pion, and E and F represent the coherent CC1π events with and without a pion. Finally,

Eqs. 9.6 become,

S1′ = αA1 + βB1 + εβE1 + δβD1 + εδβF1,

S2′ = αA2 + βB2 + εβE2 + δβD2 + εδβF2 − δβD1 − εδβF1, (9.7)

S3′ = αA3 + βB3 + εβE3 − δβD2 − εδβF2.

Remember that these are simultaneous equations for a given bin of any muon kinematic

variables. There are four parameters among three coupled equations, so the solution is not

possible analytically. In fact, even if δ and ε are fixed, the ambiguities in the background

(denoted as, G1, G2, and G3) and shape uncertainty of CCQE (which we will measure

later) give additional freedom and the equations are not analytically solvable. Therefore,

instead of an analytical solution, a fitting technique is used that minimizes the data-MC

disagreement to find parameters α and β, with fixed δ and ε.
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9.5 simultaneous fitting of the 1,2,3 subevent samples

In this section, we describe the technique to find the CC1π background in the CCQE sample

via a simultaneous fit of the reconstructed Q2 distribution for the 1, 2, and 3 subevent

samples. The result of this fit is a CC1π weighting function in reconstructed Q2 and a new

cv MC sample is created by weighting the events with this function. This new cv MC may

be used to estimate background in other kinematic variables, for example, muon kinetic

energy, muon angle, etc. Finally, the background is subtracted properly to estimate the

absolute cross section. The cross section measurement is described in detail in Chapter 10.

Under the assumption that the muon kinematic reconstruction is perfect, all errors as-

sociated to CC1π event prediction for CCQE measurement are zero, except pion absorption

and pion charge exchange. The errors which disconnect the 1, 2, and 3 subevent samples

are the systematic errors which do not cancel. All errors are summarized in Chapter 10.

Here, we apply a normalization factor of 0.94 for neutral current elastic (NCE) events

extracted from NCE analysis in MiniBooNE [151], and 1.4 for other channels (which is

roughly the same normalization of CC1π ∼1.4 after the fit). We use the absolute normal-

ization measured from NCπ◦ sample to our NCπ◦ events which is based on the NCπ◦ rate

measurement in MiniBooNE [121].

Figs. 9.3 and 9.4 show the data-MC agreement before the simultaneous fit. Fig. 9.3

shows the Q2 distributions for data and MC broken into physics channels. Here we apply

a normalization factor of 1.3 for the CCQE and CC1π channels (Fig. 9.4), and obtain good

data-MC agreement for the 1 and 2 subevent samples, but not for 3 subevents.

Note that:

1. CCQE is dominant in the 1, 2 subevent samples;

2. CC1π resonance is dominant in 3 subevent sample;
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3. CC1π resonance without pion is the dominant CCQE background in 2 subevent sam-

ple;

4. CC1π coherent makes sharp peak at low Q2 in 3 subevent sample.

From bottom left plot in Fig. 9.3, we can determine the shape in Q2 of the correction needed

for CC1π resonance events. Then, under the assumption that our pion absorption rate and

Q2 reconstruction is correct, we can find the background to 2 subevent events, both in shape

and normalization, even though the dominant background CC1π events have undetected

pions.

Figs. 9.5 and 9.6 shows the situation after the fit. Now, all 1, 2, and 3 subevent samples

show good data-MC agreement except for the lowest Q2 bins. This can be interpreted that

our choice of kappa (=1.022) from the previous analysis is too large and we need to re-fit to

determine a new value. The shape of the CC1π weighting function (Fig. 9.6, top right plot)

extracted from the 3 subevent sample is similar to that used to determine the CC1π shape

uncertainty [4] (Fig. 8.8). However, the weighting function determined here also contains

normalization information that was ignored in the previous analysis. And hence, this fit

result changes the normalization for both CCQE and CC1π. This change increases the

CC1π fraction by about 15%, and it corresponds to a 3% increase in the background to the

CCQE sample. Therefore, the CCQE fraction decreases by 3% from our standard nuance

prediction (Sec. 7.4).

The fit is performed by minimizing χ2 considering statistical error only. The fit is per-

formed by considering the different subevent samples iteratively. Two iterations is sufficient

to find a solution. The first four Q2 bins are omitted (corresponding to Q2(GeV2) < 0.1)

to avoid the low Q2 data-MC disagreement as this will be rectified by determining the best

values for MA and κ with the new background contribution. So, effectively, the 3 subevent

sample is used to find the Q2 shape and normalization for CC1π events, and, the 1 and 2
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subevent samples are used to determine the CCQE normalization, which has a little impact

on the CC1π shape and normalization because of the small CCQE fraction in the 3 subevent

sample.
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Figure 9.3: Data-MC comparison for Q2 plots before fit. From top to bottom, 1, 2, and

3 subevents (left) and data to MC ratio (right). The red circles are data, and black dots

are MC after fit, and the black lines are MC before fit. For colored lines, red is CCQE,

blue is CC1π resonance, with pion (solid), and without pion (dashed), green lines are CC1π

coherent, with pion (solid), and without pion (dashed), and gray lines for for others. All

colored lines are after fit.
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Figure 9.4: Weighting function of each channel before fit. From top left to bottom right,

CCQE, CC1π, pion absorption, and coherent fraction of CC1π.
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Figure 9.5: Data-MC comparison for Q2 plots after fit. The notations are that same as

Fig. 9.3. Note χ2s shown here come from all Q2 bins, but for 1 and 2 subevents, the first

four bins are not used in fit.
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Figure 9.6: Weighting function of each channel after fit. The notations are the same as

Fig. 9.4.
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9.6 Pion absorption and coherent fraction tuning

Although the work of the previous section resulted in good data-MC agreement in Q2,

unfortunately that is not the end of story. Since different hypotheses for pion absorption and

pion coherent fraction also provide good fits, we need these uncertainties into account in the

errors. For example, if the pion absorption scaling factor is one of the fitting parameters, the

entire Q2 region may be well-fit by increasing pion absorption by ∼30%. Another example

is, if the fraction of coherent CC1π events is zero as suggested by results from K2K and

SciBooNE [32, 135], the fit then provides a different CC1π background shape for the 2

subevent sample.

Fig. 9.7 shows the data-MC ratio for the 3 subevent sample as a function of Q2 with

various cross section models. These plots correspond to bottom right plots of Fig. 9.5.

From top to bottom, pion absorption is increased 0%, 15%, and 30%, and from left to right,

the coherent fraction is decreased from default (100%), 50%, and 0%. Top left plot is our

default solution. As we see, any of these parameter combinations nicely reproduce data

in Q2. However, if data-MC agreement is examined in the two dimensional muon kinetic

energy (Tµ) and muon angle (cosθµ) plane (Fig. 9.8), the models may be differentiated.

This plot is analogous with Fig. 8.4, although Fig. 8.4 is the data-MC ratio, however here is

the distribution of pull (= data−MC
statistical error ) in all bins. Clearly, the χ2 value shows that some

of the parameter choices are better than others to reproduce data. The general trends are:

1. Larger pion absorption is preferred, but not too large;

2. Lower coherent fraction gives better fit.

We chose to use a compromise solution, that of the central plot in Figs. 9.7 and 9.8, where

the pion absorption is increased by 15% and coherent fraction decreased by 50%. This was

selected as our new central value (cv) MC, with the remaining parameter values as possible
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Figure 9.7: Data-MC ratio of Q2 (0 − 2 GeV2) in the 3 subevent sample with various

cross section models. Numbers in the plots show statistical error only data-MC reduced χ2.

From top to bottom, pion absorption is increased 0%, 15%, and 30%. From left to right,

coherent fraction is decreased from default (100%), 50%, and 0%. Top left plot is old cv,

and the middle plot is the new cv.
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Figure 9.8: Data-MC pull (= data−MC
statistical error ) distribution in two dimensional muon kine-

matics (0 < Tµ(GeV ) < 2 and −1 < cosθµ < 1) for 3 subevent sample for the various

cross section models. Numbers in the plots show statistical error only data-MC reduced χ2.

From top to bottom, pion absorption is increased 0%, 15%, and 30%. From left to right,

coherent fraction is decreased from default (100%), 50%, and 0%. Top left plot is old cv,

and the middle plot is our new cv.
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excursions accounted for in the error. Trend (1) above suggests the a 15% increase of pion

absorption is a reasonable choice. Also the magnitude of this change is within the range of

both nuclear pion absorption (25% error, Fig. 7.9) and detector pion absorption (35% error,

Fig. 7.10). Trend (2) suggests zero coherent fraction is the best choice, but to make a more

conservative choice, a 50% decrease of coherent fraction was selected with an error of 100%

on this value (Sec. 10.6). This value is rather close to the MiniBooNE-measured NCπ◦

coherent fraction (∼65% of the predicted value [121]). This democratic choice covers both

0% (the K2K/SciBooNE prefered value) and 100%(the MiniBooNE default value) coherent

fraction within the error.

With the pion absorption increased by 15%, the background in the 2 subevent sample

increases the signal in the 3 subevent sample decreases. This last change further increases

the CC1π fraction in the CCQE sample to around 21%, for a total increase of 39%. This

corresponds to 6% increase in the background of the CCQE sample and the CCQE fraction

decreases by 6% from our standard nuance prediction (Sec. 7.4).

Figs. 9.9 and 9.10 show the prediction of this new cv MC compared to data. The low

Q2 data-MC disagreement is left to be understood with the CCQE model (parameters MA

and κ).
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Figure 9.9: Data-MC comparison for Q2 plots after fit with new cv MC. The notations are

same with Fig. 9.3. Note χ2s shown here come from all Q2 bins, but for 1 and 2 subevents,

the first four bins are not used in fit.
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Figure 9.10: Weighting function of each channel after fit with new cv MC. The notations

are same with Fig. 9.4.
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9.7 MA − κ fit

9.7.1 the standard fit result

We vary two parameters, MA and κ in a grid search to find the values that minimize χ2

of data compared to the normalized model prediction as a function of Q2. This fit uses

the inverse of error matrix including all systematic errors. Here, we take into account all

possible correlations between systematics by using the inverse of the full error matrix, not

by adding systematics as pull terms. All fitting MC samples with different MA and κ are

normalized with data (shape-only fit). We use 40 bins, from 0 to 1 GeV2 (38 d.o.f.) for the

standard fit.

χ2 = (data−MC)TM−1
total(data−MC),

M total = Mpp +Mpm +Mkp +Mk0 +M be +Mxs +Mp0 +Mom +Mun +Mpi +Mdt +Mmc.

Where the M are the error matrices resulting from various sources of uncertainty,

Mpp (4.5%) π+ production spline fit,

Mpm (0.3%) π− production Sanford-Wang fit,

Mkp (0.2%) K+ production Feynman scaling fit,

Mk0 (0.0%) Ko production Feynman scaling fit,

M be (4.5%) beamline and horn models,

Mxs (3.1%) cross section models,

Mp0 (0.0%) π◦ yield,

Mom (3.3%) detector models,

Mun (2.5%) electronics models,
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Mpi (1.0%) pion absorption and coherent fraction model error,

Mdt (0.3%) data statistics,

Mmc (0.2%) MC statistics.

Each error matrix is created using either a multisim or unisim method, as described in

Sec. 10.6. The numbers in the parentheses show the resulting total normalization error,

also defined in Sec. 10.6.

The total normalization error is equivalent with the error on a single bin histogram.

Note that this number contains no information about the Q2 shape uncertainty, so a “big”

error matrix does not necessarily have to a large effect on the uncertainty in the fit. But,

nevertheless, it shows the rough size of each error matrix.

The result of the final fit is shown in Fig. 9.11. The best-fit values are:

MA = 1.32± 0.17 GeV/c2 ;

κ = 1.007± 0.009 ;

χ2/dof = 44.3/38 .

Fig. 9.12 shows in more detail the best fit point and associated contour. Since the new fit

result (solid star) is barely the outside of the 1 − σ contour of the old fit (olive contour).

We conclude the new fit value of MA and κ are consistent with our previous fit.
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Figure 9.11: The plots for MA−κ fit. Top left plot shows data-MC comparison before and

after the fit. Blue dots are data with total error (yellow) and shape only error (turquoise),

and red dashed line and solid lines shows before fit and after fit. Top right plot is correlation

matrix within fitting region of Q2 plot, bottom left plot shows χ2 surface in MA − κ space.

Bottom right plot shows the best fit point and 1−σ contour, defined χ2
min + 2.3, here “2.3”

is the χ2 value to have 68.3% cumlative probability for χ2 distribution with 2 d.o.f [89, 90].
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Figure 9.12: The detail of contour plot. Here the solid star marker represents the best fit

point and the green region is the 1−σ contour. There are nine open diamond markers, they

represent the best fit points of cv MC and other eight cross section models without pion

absorption model error (Mpi). The 1 − σ contour covers all these possible solutions. The

open circle marker indicates the original parameter set from nuance. The open star marker

and ocher contour is the best fit point and 1−σ contour from Chapter 8. In Chapter 8, the

CC1π background shape error was treated slightly differently from the other errors. The

result, open triangle marker, is added in quadrature for the final MA and κ errors. In this

plot, to indicate a contour that takes into account all errors, the 1 − σ contour has been

expanded such that κ error becomes the size of total error in our previous work. Then

this olive contour is better representative of 1 − σ contour with total systematic error in

Chapter 8. Right column shows the best fit χ2 and the best fit parameter values for MA

and κ, as well as systematic contributions (total normalization error) described in Sec. 9.7.

192



9.7. MA − κ FIT

9.7.2 The systematic errors

Figs. 9.13, 9.14, 9.15, and 9.16 show the fit results with (respectively) statistical error only,

flux error only, cross section only, and detector error only.

The statistical error only fit (Fig. 9.13) and flux error only fit (Fig. 9.14) plots have

a same structure, which means that, although the flux error contributes strongly to the

normalization error, its contribution to the shape, which is important for the shape-only

fit, is weak, and gives same result with statistical error only fit.

The cross section error only fit (Fig. 9.15) plot shows an elongated contour along the κ

direction. This is due to the ambiguity at low Q2, for example from the coherent fraction,

and yields a large error on κ. For practical reasons, we simulate the pion absorption and

the pion charge exchange in the nuclei within the detector model simulation, so they are

not included in this plot, however, the number shown in Tab. 9.3 includes all cross section

model errors.

Fig. 9.16 shows the error from the detector modeling. This plot has not only a large

contour, but also has a different best fit point from the others. Note that all of the optical

model multisim histograms and detector unisim histograms are numerically smoothed to

eliminate MC-statistics noise [112, 113]. To do this, we take a ratio of each histogram

with cv MC histogram, then this ratio is fit with 4th order polynomial function. The

products of this extracted function and cv MC histogram replaces each original histogram.

The large errors of both MA and κ are explained by the large background fractions. 1,2,3

subevent fitting (Sec. 9.5), together with the pion absorption correction (Sec. 9.6), increases

the background fraction by around 6%, or the CC1π fraction in the background channels

increases by nearly 40%. Since 90% are pion-absorbed events, the error on pion absorption

gives large uncertainties for both MA and κ. Note, because of a technical reason, we include

the nuclear pion absorption error in the detector model error.
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error source δMA δκ

data statistics 0.05 0.004

neutrino flux 0.04 0.003

neutrino cross sections 0.03 0.007

detector model 0.13 0.007

total error 0.17 0.009

Table 9.3: The systematic error summary for MA and κ. The total error is not a simple

quadrature sum because of the correlation between the two parameters.

Tab. 9.3 summarizes the contribution from each of the major systematic errors. As

expected, the detector model uncertainty is the largest contribution to the MA error, and

the cross section model and the detector model give the largest error on κ.
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Figure 9.13: The plots for statistical error only MA − κ fit. The notations are same with

Fig. 9.11.

Figure 9.14: The plots for flux error only MA−κ fit. The notations are same with Fig. 9.11.
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Figure 9.15: The plots for cross section error only MA−κ fit. The notations are same with

Fig. 9.11.

Figure 9.16: The plots for detector error only MA − κ fit. The notations are same with

Fig. 9.11.

196



9.7. MA − κ FIT

9.7.3 The MA-only fit

Table 9.4 shows the fit result with MA as the only free parameter. Unlike the fit from

Chapter 8 (Fig. 8.13), the fit is reasonable over 0.0 < Q2(GeV2) < 1.0 without κ. Also, the

change of reduced χ2 from the fit with κ is very small. This is due to the new background

measurement (as compared to that used in Chapter 8). The shape modification of the CC1π

measured background to the 2 subevent sample better fits the data in the low Q2 region.

9.7.4 Q2 distributions with the fit MA and κ

Figure 9.17 is the analog Fig. 9.9 but with the fit MA (=1.32 GeV) and κ (=1.007) from

the procedure described in this chapter. As expected, all of 1, 2, and 3 subevent sample Q2

plots show good data-MC agreement.

9.7.5 Conclusion

In this chapter, we measured the CC1π background in CCQE sample using data. The

majority of the background events are CC1π events without pions. We determined their Q2

behavior using a CC1π sample with pions and applied to CCQE sample. This background-

Q2 (GeV2) d.o.f χ2 MA (GeV/c2)

0.00 < Q2 < 1.00 39 45.2 1.32± 0.12

0.05 < Q2 < 1.00 37 43.5 1.26± 0.13

0.10 < Q2 < 1.00 35 40.8 1.31± 0.14

0.15 < Q2 < 1.00 33 38.6 1.31± 0.14

0.20 < Q2 < 1.00 31 36.7 1.31± 0.14

Table 9.4: MA only fit results with limited Q2.
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Figure 9.17: Data-MC comparison for Q2 plots after fit with new MA and κ. The notations

are same with Fig. 9.3.
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subtracted CCQE sample is used to measure the absolute cross section, as described in the

next chapter.
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Chapter 10

CCQE double differential cross

section measurement

In this chapter, we present the absolute CCQE cross section measurement in MiniBooNE.

First, we define our cross section formula and all systematic errors carefully. Then, using

the result from Chapter 9, the backgrounds are subtracted from the data. This background-

subtracted data is unfolded by the direct transformation matrix from reconstructed variables

to true variables. We use iteration to improve our result. Finally, efficiency and target

numbers are corrected.

The cross sections are shown in three ways, (1) flux-folded double differential cross sec-

tion ( d2σ
dTµdcosθµ

(cm2/0.1/0.1GeV)), (2) flux-folded differential cross section ( dσ
dQ2 (cm2/0.1GeV2)),

and (3) flux-unfolded total cross section (σ (cm2)). The measured total cross section at flux

peak is, σCCQE
700−800 MeV bin = 1.058 ± 0.111 × 10−38 cm2. The error is dominated by the

systematic error. The measured error is ∼20 % higher than the original nuance prediction,

however, it agrees with the new MA (1.32 GeV/c2) and κ (1.007) found in Chapter 9.
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10.1 Introduction of cross section measurement

Theoretical physicists want experimental data to test theories. Since the effects of experi-

mental smearing are not easily calculable by the theorists, they need data after experimental

effects are removed. We formulate the cross section formula rigorously in next section, in-

stead, here, we want to show how experimental effects are unfolded to produce the final

results. We call D our measurement, namely all experimental-effect-corrected data, and

this is binned with variable T (muon energy, neutrino energy, interaction vertex, etc), then

ith bin of data
(

dD
dT

)
i

is written,∫ (
dσ(Eν)
dT

)
i

· φ(Eν)dEν =
(
dD

dT

)
i

± δ
(
dD

dT

)
i

. (10.1)

The left side is calculated by theorists, and they compare their calculation with the right

side, that is the result from the experimentalists. The data points have an associated error

for each bin, and there are correlations between bins. These errors include all experimental

effects such as uncertainties in flux, background cross section model, detector effects, etc.

The various source of errors contribute to both shape and normalization errors.

Traditionally, experimentalists provide their results in the form of a so called “flux-

folded differential cross section”. The flux-folded cross section is defined as a cross section

averaged over the neutrino flux (Eν ≡ Ec
ν : const), then,(

dσ(Ec
ν)

dT

)
i

=
1

Φ(Ec
ν)
·
(
dD

dT

)
i

. (10.2)

Here, Φ(Ec
ν) =

∫∞
0 φ(Eν)dEν is the integral of neutrino flux with mean energy Ec

ν . The

special case is considered when the experimental measurement is a function of neutrino

energy. Then we can calculate the total cross section for each neutrino energy bin,

σ(Eν)i =
(

D

φ(Eν)

)
i

. (10.3)

We call this the “flux-unfolded total cross section”. As we see in Sec. 10.3, this expression

depends on nuclear models and reconstruction method. We provide our data in a nuclear
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model independent way, however it still suffers dependence on the energy reconstruction

(Fig. 10.12).

10.2 Neutrino energy and Q2 reconstruction

Throughout this chapter, the neutrino energy, Eν , and the 4-momentum transfer, Q2, are

always defined as ”reconstructed” Eν and Q2. For example, for the unfolding process, we

defined true neutrino energy as, not MC true information neutrino energy, but the neutrino

energy reconstructed from MC true muon energy and MC true muon angle. In this way,

true neutrino energy is nuclear model independent. Reconstructed neutrino energy Eν and

Q2 are defined as followings,

Eν(recon) =
1
2
·

2(Mn −B)Eµ − ((Mn −B)2 +m2
µ −M2

p )

(Mn −B)− Eµ +
√
E2

µ −m2
µcosθµ

, (10.4)

Q2(recon) = −m2
µ + 2Eν(Eµ −

√
E2

µ −m2
µcosθµ). (10.5)

And, we use = 34 MeV as a binding energy (Sec. 7.4).

10.3 Absolute cross section formula

10.3.1 The absolute cross section formula

For a given data set, the amount of background is estimated using MC. Using the central

value (cv) MC background prediction, one can subtract background content from the jth

bin of data,

dj − bcvj .

Here, the central value (cv) MC is the our standard MC used to compare with data. d

and bcv are data and cv MC background histograms (in bin j) and are, generally, functions
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of reconstructed variables, for example visible energy, measured angle, etc. Since the data

are always a function of reconstructed variables, which is the experimentalist’s language,

we need to transform to function of physical true variables. This process is generally called

unfolding. Unfolding has two parts, unsmearing, and efficiency correction. For unsmearing,

our standard method is to use the normalized reconstructed to true transformation matrix,

instead of inverting the smearing matrix, which is true-to-reconstructed transformation.

The corrected data are calculated with

n∑
j

ucv
ij · (dj − bcvj ).

For a given reconstructed to true transformation matrix U cv
ij , the normalized matrix uij is

defined by normalizing in true index i,

ucv
ij =

U cv
ij∑

k U
cv
kj

,

then, ucv
ij is the probability of events in the jth reconstructed bin to come from ith true bin

and,

n∑
i

ucv
ij = 1.

After this procedure, the data may be binned using the ”true” variables. However, unfolding

is not finished. Since the detector efficiency biases the data, we need a correction for that.

The meaning of this process is to “recover” the events eliminated by series of cuts using the

MC generated event information. The efficiency is corrected by the number of events after

cut (accepted) divided by the number before the cut (generated). Then,∑n
j u

cv
ij · (dj − bcvj )
Nacc,cv

i

Ngen,cv
i

.

Finally we need to correct for flux, the number of protons on target (POT), and the target

number by dividing by the flux factor Φ, the POT delivered in data taking period P , and
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the number of target nucleon in the fiducial volume T , Therefore,

σflux−folded
i =

∑n
j u

cv
ij · (dj − bcvj )

Nacc,cv
i

Ngen,cv
i

· Φcv · P cv · T cv
. (10.6)

This is the standard flux-folded differential cross section formula as function of some true

variables.

The special case is considered when the cross section is written as a function of neutrino

energy. First of all, neutrino energy is a reconstructed variable. For the unfolding process,

we defined the true neutrino energy as, not the MC true information neutrino energy, but

the neutrino energy reconstructed from MC true muon energy and MC true muon angle.

In this way, the true neutrino energy is nuclear model independent.

Unfortunately this choice is not perfect neither. As can be seen from Fig. 10.1, recon-

structed neutrino energy is never the same (with scattering from carbon) with the true

neutrino energy across the entire energy region. True neutrino energy defined from true

muon energy and true muon angle suffers (1) a bias from the nuclear binding, and (2) a

smearing due to Fermi motion. To take account the bias of neutrino energy reconstruction,

we measured systematic shift and smearing from the difference between MC true neutrino

energy and reconstructed true neutrino energy for each 0.1GeV energy bin. Then, we assign

horizontal error bars for each flux-unfolded total cross section bin. We can divide this by

predicted neutrino flux histogram φcv
i to remove neutrino flux shape, bin by bin of neutrino

energy, and the difference of reconstructed true neutrino energy and MC true neutrino en-

ergy are within vertical and horizontal error bars. Finally, the flux-unfolded total cross

section formula is,

σflux−unfolded
i =

∑n
j u

cv
ij · (dj − bcvj )

Nacc,cv
i

Ngen,cv
i

· φcv
i · P cv · T cv

. (10.7)

For our case, the effect of neutrino energy reconstruction bias is within the error (Fig. 10.12),

so it is not a big problem.
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Figure 10.1: Plot of MC true neutrino energy and reconstructed true neutrino energy. The

top plot shows MC true neutrino energy (solid) and reconstructed true neutrino energy

(dashed) from Eq. 10.4 with B = 34 MeV, with MiniBooNE flux prediction. The bottom

plot shows their ratio. The ratio is flat in the region our data is presented (0.1 to 1.4 GeV,

see Fig. 10.12).
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10.3.2 Three normalization factors

The cross section formulas (Eq. 10.6 and 10.7) have the following three normalization terms:

• Φ = 5.167× 10−10(neutrinos/POT), POT normalized integrated νµ flux;

• P = 5.58× 1020 (POT), POT collected between August 2002 and December 2005

• T = 1.5134× 1032 (nucleon), 4
3π(550cm)3 · 0.845g/cm3 · 6.02214× 1023 · 6.0

14.06 .

The Φ error is accounted for in the fluctuations on number of generated events (Sec. 10.7).

The error on P is 2% from the absolute POT number and 1% from the beam optics [117].

Finally, the error on T is calculated from its components; volume, density, Avogadro’s

number, and chemical composition. The error associated with volume is important to

correctly estimate the uncertainty in target number. The relevant considerations are:

1. error on the reconstructed data vertex and the reconstructed MC vertex;

2. error on the reconstructed MC vertex and the true MC vertex;

3. error on the true MC vertex and absolute calibration.

Here, we do not quantify (1), because this is the topic of reconstruction performance dif-

ference between data and MC, and that is taken care by the detector simulation error in

Sec. 10.9.

For (2), the inherent difference between reconstructed MC vertex and true MC vertex

is corrected for in the efficiency correction, so we do not assign any additional errors.

Number (3) depends on the choice of target region. We decided to use a 550 cm sphere

as a target volume. Since we use 550 cm radius sphere to generate MC event, there is no

uncertainty related with the detector edge effect (optical separation, PMT configuration,
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eccentricity of the tank, etc), and we can safely trust that the 550 cm sphere in MC is 550 cm

in the real world. For example, a 2 cm uncertainty of the wall location (610.6 cm→608.6 cm)

results in a 1% uncertainty in volume, so it is better to avoid this kind of error. Also, events

with MC true vertex >550 cm make 0% contribution to reconstructed events within the

500 cm fiducial volume, so limiting the region to generate MC events to <550 cm removes

no events and results in no change of efficiency. So, no additional errors are assigned for

this consideration.

The density error (±0.001g/cm3) is around 0.1%. The thermal expansion (∼ 10−5/K) is

negligible [116], and the error on Avogadro’s number is also negligible [8]. For the chemical

composition of the mineral oil, we used (CH2.06)n as a model of oil [152], another model

is (CnH2n+2) with n ∼ 30 [153]. They are consistent and the difference with simple model

(CH2)n is 0.3%.

From these studies, we decided to assign 2.26% total error matrix on top of all other

errors (2%+1%+0.1%+0.3% in quadrature sum). This error is only applicable for the

absolute cross section measurement, thus we did not use this error contribution for the

MA − κ fit (Chapter 9).

10.4 Background accounting

Given data and MC, one can estimate the number of background and signal events. How-

ever, the MC prediction always has some discrepancies with data, and so, ideally speaking,

our prediction for background should not be sensitive to the details of the background

subtraction process. However this must be checked.

Let’s assume that our background prediction is perfect, for example when some reli-

able external measurements are available. This is true for the CCQE interaction, because

the background to CCQE is almost all charged current one pion production (CC1π) with
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pion absorption (and pion charge exchange), and this is measured from CC1π data sample

(Chapter 9).

Then, there are two ways to remove background from jth bin of data: a background

subtraction method, Eq. 10.8, and a signal fraction method, Eq. 10.9,

σsub
i =

∑n
j u

cv
ij · (dj − bcvj )

Nacc,cv
i

Ngen,cv
i

· Φcv · P cv · T cv
, (10.8)

σfrac
i =

∑n
j u

cv
ij ·
(
dj ·

scv
j

scv
j +bcv

j

)
Nacc,cv

i

Ngen,cv
i

· Φcv · P cv · T cv
. (10.9)

Notice that the background subtraction method is independent of cv MC signal histogram

scv
j , and only depends on cv MC background histogram bcvj .

To compare the difference of these two methods, we define the difference of data and

MC prediction, both for signal and background [151],

dj = strue
j + btrue

j ,

strue
j = scv

j + δsj ,

btrue
j = bcvj + δbj .

Here, the data histogram d is split into a true signal histogram strue and a true background

histogram btrue. Then, the discrepancy between the jth bin of the true signal histogram and

the cv MC signal histogram is defined to be δsj . For background, the similar discrepancy

is defined to be δbj .

Now, Eq. 10.8 is rewritten,

σsub
i =

∑n
j u

cv
ij · (dj − bcvj )

Nacc,cv
i

Ngen,cv
i

· Φcv · P cv · T cv
=

∑n
j u

cv
ij · (strue

j )
Nacc,cv

i

Ngen,cv
i

· Φcv · P cv · T cv
+

∑n
j u

cv
ij · δbj

Nacc,cv
i

Ngen,cv
i

· Φcv · P cv · T cv

= σtrue
i +

∑n
j u

cv
ij · δbj

Nacc,cv
i

Ngen,cv
i

· Φcv · P cv · T cv
. (10.10)
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Similarly, Eq. 10.9 is rewritten,

σfrac
i =

∑n
j u

cv
ij ·
(
dj ·

scv
j

scv
j +bcv

j

)
Nacc,cv

i

Ngen,cv
i

· Φcv · P cv · T cv

=

∑n
j u

cv
ij · (scv

j )
Nacc,cv

i

Ngen,cv
i

· Φcv · P cv · T cv
+

∑n
j u

cv
ij ·
(

scv
j ·(δsj+δbj)

scv
j +bcv

j

)
Nacc,cv

i

Ngen,cv
i

· Φcv · P cv · T cv

=

∑n
j u

cv
ij · (strue

j )
Nacc,cv

i

Ngen,cv
i

· Φcv · P cv · T cv
+

∑n
j u

cv
ij ·
(

scv
j ·(δsj+δbj)−δsj(s

cv
j +bcv

j )

scv
j +bcv

j

)
Nacc,cv

i

Ngen,cv
i

· Φcv · P cv · T cv

= σtrue
i +

∑n
j u

cv
ij ·
(

scv
j ·δbj−bcv

j ·δsj

scv
j +bcv

j

)
Nacc,cv

i

Ngen,cv
i

· Φcv · P cv · T cv
. (10.11)

Note that Eq. 10.10 has no bias from cv MC signal prediction, while Eq. 10.11 does depend

on cv MC signal prediction. Clearly, Eq. 10.10 gives less biased result when we are confident

with our background prediction, but not for our signal prediction.

From Fig. 10.2, you can see the differences of these two methods applied to that CCQE

data are largest at low Q2 or high UZ, where the cv MC signal prediction is poor. Here, red

lines are for background subtraction method and blue lines are for signal fraction method.

For the CCQE sample, since our Pauli blocking parameter κ in the default MC (=1.022) is

stronger than the new preferred value (=1.007), found after CC1π background correction

(Chapter 9), we expect that our cv MC signal has lower values than data at high UZ and

low Q2. As you can see from Fig. 10.2, blue lines have lower values for high UZ and low Q2

than the red lines, which is an indication that signal fraction method biases data to agree

with cv MC signal. Since data-MC disagreement may be a discovery, it shouldn’t be biased.

However, if one is not confident with the background prediction, the situation is different.

In this case, Eq. 10.8 may make negative values in some bins, which is obviously unphysical.

On the other hand, Eq. 10.9 is positively defined for all bins. Therefore, the choice of

background accounting is based on our knowledge of signal and background channels.
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Figure 10.2: The background-removed data comparison for CCQE kinematics. The red

lines are for background subtraction method, and the blue lines are for signal fraction

method. From top left to bottom right plot, muon kinetic energy, muon angle, reconstructed

Eν , and reconstructed Q2.

For our CCQE case, since we have reliable background prediction based on our mea-

surement (Chapter 9), we use the background subtraction method in order to keep the

background subtracted data independent from the signal prediction as much as is possible.

10.5 Unfolding error

Unfolding is based on a given cv MC signal. By construction, the transformation from

reconstructed variables to true variables is perfect for cv MC signal histograms. However,

in any realistic situation, unfolding process suffers from bias, because background removed

210



10.5. UNFOLDING ERROR

data are never exactly equal with cv MC signal. In such case, the unfolded result can be

improved in an iterative process.

The unfolding process is based on the G-matrix,

G0th
ij =

ucv
ij

Nacc,cv
i

Ngen,cv
i

=
U0th

ij∑
k U

0th
kj ·

Nacc,cv
i

Ngen,cv
i

.

Here we explicitly write the transformation matrix and we define this as the 0th iteration

of G-matrix.

This G-matrix transforms background subtracted data histogram dj − bj to the 0th

iterated background subtracted data (di − bi)0th,

(di − bi)0th =
∑

j

G0th
ij (dj − bj).

Here, our unfolding process ”restores” the background subtracted data dj − bj to the

unknown true distribution. If we assume that our unfolded background subtracted data

(di−bi)0th is closer to the unknown true distribution more than the generated cv MC signal

prediction Ngen,cv
i , we can correct the G-matrix so that it transforms the reconstructed

distribution of MC to (di − bi)0th where the reconstructed MC was originally transformed

back to generated cv MC signal Ngen,cv
i . After this correction, the background subtracted

data dj − bj will be unfolded to a distribution closer to the unknown true distribution. The

corrected transformation matrix is defined,

U1st
ij =

(
d0th

i

Ngen,cv
i

)−1

U0th
ij ,

then, the 1st iterated G-matrix, G1st
ij is defined,

G1st
ij =

U1st
ij∑

k U
1st
kj ·

Nacc,cv
i

Ngen,cv
i

.

And then, the 1st iterated unfolded background subtracted data is,

(di − bi)1st =
∑

j

G1st
ij (dj − bj).
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Figure 10.3: The unfolded background removed data for CCQE kinematics (same with

Fig. 10.2). The black lines are for 0th iteration, the red lines are for 8th iteration, and

the blue lines show cv MC signal generated. The 8th iterated data is our result, and the

difference of these two histograms gives the unfolding error.

The iteration process for G-matrix is based on the assumption that the solution is converging

to the true distribution. However, there is some uncertainty in this and we introduce an

unfolding error to quantify. It is estimated from the difference between the 0th and the nth

iterated background subtracted data.

Fig. 10.3 shows unfolded kinematic distributions for 0th(black) and 8th (red) iteration,

with cv MC signal generated (blue). Although higher order iterations were considered, it

was determined that the 8th iteration has converged. Thus, we chose the 8th iterated data

as our official central values and the difference of 0th and 8th iterated data as the unfolding

error.
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10.6 The error matrix formation and error bars

Before explaining each source of systematic error, our method to calculate the error matrices

and the error bars is presented.

10.6.1 The unisim method

In MiniBooNE, a systematic error for a given uncertainty is calculated with either a

unisim or a multisim method [112–114]. For the unisim method, a new set of MC events

“MCunisim” for particular systematic is created by changing a particular parameter to a

1−σ excursion value, and an error matrix may be constructed by combining with the central

value MC data set, “MCcv”,

Munisim
ij = (Nunisim

i −N cv
i )(Nunisim

j −N cv
j ).

Here, Nunisim
i and N cv

i are number of events in the ith bin of a given histogram from

the unisim MC (MCunisim) and cv MC (MCcv), respectively. All unisim parameters are

assumed independent, so the total error matrix considering all unisim parameters is the

simple sum of all unisim error matrices.

10.6.2 The multisim method

The unisim method cannot estimate the systematic error correctly if there are correlations

between different parameters. Some systematic errors are highly correlated, for example,

the errors of MA and κ are negatively correlated. So when MA is fluctuated to larger value

within its error, κ needs to be changed to a smaller value within its error, to be consistent

with what the data tells us.

The multisim method correctly handles this effect. First, we classify parameters into

G groups. The gth group consists of u parameters. These parameters are dependent upon
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each other, but independent from the parameters in other groups. So, in the end, we can

form G independent multisim error matrices and the final total error matrix will be the

simple sum of all matrices. For our case, first eight error matrices in Sec. 9.7 are based on

multisim (G=8).

We will use the cross section error matrix for an example of one of G groups. To

simplify the explanation, we assume only three systematic parameters, MA, κ, and ∆s

(Sec. 7.4). Since MA and κ are simultaneously extracted by fit, they have covariance values

(actually negative correlations), not only variances. However, the error of ∆s is assumed

to be uncorrelated with the other two parameters. Then, we can define the following cross

section input error matrix,

M input
xsec =


var(MA) cov(MA, κ) 0

cov(MA, κ) var(κ) 0

0 0 var(∆s)

 . (10.12)

Fig. 10.4 illustrates the parameter space defined by this cross section input error matrix.

Since parameter distributions are assumed Gaussian, the parameter space has an ellipsoid

shape with a fuzzy edge. If there were no correlations, ellipsoid aligns symmetrically on

the three axes. Here, since MA and κ are correlated, the ellipsoid is tilted in the MA − κ

plane. Then, we randomly pick a point from this parameter space, for example MA =

1.1 GeV/c2, κ = 1.001, ∆s = 0.01, etc. Then, a new MC data set is created with this

parameter set. We do this ∼100 times. If we then want to form the error matrix for the

reconstructed neutrino energy, EQE
ν , we make ∼100 histograms from each MC set, each

made with a specific set of input parameters. (Fig. 10.5, left plot, black lines). They are

distributed around the histogram made by cv MC (Fig. 10.5, left plot, red lines). Finally,

the average of all histograms create the cross section output error matrix,

Mmultisim
ij =

1
100

100∑
s=1

(N s
i −N cv

i )(N s
j −N cv

j ).
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Figure 10.4: An illustration of the multisim input parameter space.

Here, N s
i is the number of ith bin of sth histogram from the sth MC run from within the set

of multisims (100 total MCs).

In Fig. 10.5, the right plot shows the error bars resulting from an example multisim.

The turquoise and red error bars are called the total and shape-only error bars, defined in

next section.

Practically it is very difficult to create hundreds of MCs with adequate statistics. In-

stead, we utilize an event weight method, namely we only apply the ratio of parameter

change (weight) to each event, so that we do not have to regenerate new MC data sets for

every multisim. Also, in this method, because we re-weight the same event many times, we

do not have to worry about MC statistics in forming an error matrix. However, the detec-

tor model multisims must be made by generating entirely new MC sets, because systematic

parameters for the detector simulation affect the nature of events rather than the likelihood

of their occurring which we can control by weight the events [113].
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Figure 10.5: An example of the multisim error process. The left plot shows the cv MC

(red) and each histogram made by a different parameter set (black). The right plot shows

the resulting bands for the total (turquoise) and shape-only (red) errors.

10.6.3 Total and shape-only error bars

For a given histogram, Ni , i = 1, · · · , n, we can form the n × n error matrix Mij . The

diagonal element of the error matrix, Mii, is called the variance of Ni, var(Ni), and an

off-diagonal element, Mij(i 6= j), is called the covariance of Ni and Nj , cov(Ni, Nj). Then,

the total error for the ith bin δNi is,

δNi =
√
Mii.

Notice that if the histogram is combined into only one bin, NT = N1 + · · ·+Nn, total error

for the total number of events, NT , becomes,

δNT =
√
var(N1 + · · ·Nn) =

√∑
ij

Mij ,

where we have used the sum rule of variance and covariance, var(N1 + N2) = var(N1) +

var(N2)+2cov(N1, N2). We call δNT
NT

the “total normalization error”, because this is handy

expression to show the size of error matrix in single number, as we have seen in Sec. 9.7.
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Since the total error does not quantify the correlations between bins, people are often

interested in a shape-only error, which includes information about not only the variance

but also covariance (Fig. 2 in [4]).

Consider a new histogram, Vi, with

Vi = {V1, · · · , Vn, Vn+1} = { N1
NT
, · · · , Nn

NT
, NT }.

The error matrix, Ukl, for this histogram, is defined via the Jacobian Ski,

U(V )kl =
n∑
ij

SkiM(N)ijSlj ,

Ski ≡
∂Vk

∂Ni
=


∂

∂Ni

(
Nk
NT

)
= 1

NT

(
δik − Nk

NT

)
for 1 < k < n

∂
∂Ni

(NT ) for k = n+ 1
.

Then the variance extracted from the new error matrix is,

Ukk =


1
N2

T

Mkk − 2
Nk

NT

n∑
i

Mki +
N2

k

N2
T

n∑
ij

Mij

 for 1 < k < n

n∑
ij

Mij for k = n+ 1

.

Notice the variation of total number mentioned above is contained in the (n+ 1)th diagonal

element. Finally, the shape-only error for the kth bin is defined,

δN shape
k ≡

√√√√Mkk − 2
Nk

NT

n∑
i

Mki +
N2

k

N2
T

n∑
ij

Mij . (10.13)

A more complete analysis shows that any arbitrary error matrix can be separated into three

terms [154], M shape, Mmixed, and Mnorm.

Mij =

[
Mij −

Ni

NT

n∑
k

Mkj −
Nj

NT

n∑
k

Mik +
NiNj

N2
T

n∑
kl

Mkl

]
→M shape

+

[
Ni

(
1
NT

n∑
k

Mkj −
Nj

N2
T

n∑
kl

Mkl

)
+Nj

(
1
NT

n∑
k

Mik −
Ni

N2
T

n∑
kl

Mkl

)]
→Mmixed

+

[
NiNj

N2
T

∑
kl

Mkl

]
→Mnorm
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However, this subtlety is not used for the analysis presented here.

We now proceed to a description of the of the error calculations for the cross section

analysis.

10.7 Flux error estimation

The error on the neutrino flux includes the following five type of errors calculated from

event weight multisims:

Mpp (6.1%) π+ production spline fit;

Mpm (0.3%) π− production Sanford-Wang fit;

Mkp (0.2%) K+ production Feynman scaling fit;

Mk0 (0.0%) Ko production Feynman scaling fit;

M be (5.1%) beamline and horn models.

The numbers in the parentheses show the contributions to the normalization error of the

flux-unfolded total cross section in the 700-800 MeV bin. Of course, they are related with

the total normalization error, shown in Sec. 9.7. For a given multisim, the cross section

formula of the sth flux excursion is used to create the sth cross section histogram. Then,

the ith bin of this histogram is given by,

σs
i =

∑n
j u

s
ij · (dj − bsj)

Nacc,s
i

Ngen,s
i

· Φs · P s · T s
.

To take account of the error correctly, we consider the multisim variation before flux-folded

cross section approximation (Eq. 10.1). Since the generated number of events is proportional
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to the flux times cross section, the denominator in the above expression is subject to the

following approximations,(∫
σ(Eν) · φs

)
· P s

Ngen,s
i

∼
(∫
σ(Eν) · φcv

)
· P cv

Ngen,cv
i

.

Then we define the flux-folded cross section (Eq. 10.2),(∫
σ(Eν) · φcv

)
· P cv

Ngen,cv
i

≡ σ(Ec
ν) · Φcv · P cv

Ngen,cv
i

.

For the flux multisims, the target number is not fluctuated, so,

T s = T cv.

These imply that we do not have to fluctuate flux factor Φ, which is not currently possible

with our simulation machinery, instead, we can use same flux factor Φcv and the same

generated number of event Ngen,cv, for all σs. This approximation states all flux systematic

error comes from Nacc,cv
i . This is somewhat strange comparing with the naive multisim

variation Nacc,s
i

Nacc,s
i Φs . But this term cancels most of flux shape variation in the ratio, and net

effect ends up as a normalization variation Φs. But since our measurement is not σ ·
(∫

Φ
)
,

but
(∫
σ · Φ

)
, it is more appropriate that the final flux systematic error includes flux shape

variation.

Thus, the cross section formula for the sth flux multisim is,

σs,flux−folded
i =

∑n
j u

s
ij · (dj − bsj)

Nacc,s
i

Ngen,cv
i

· Φcv · P cv · T cv
. (10.14)

The neutrino flux error contributes via this formula in two ways. First, the number

of background events bsj fluctuate, and then second, the number of accepted signal events

Nacc,s
i fluctuate. Although these two fluctuations of background and signal are correlated,

this formula does not account for the correlation. For example, if the sth flux model increases
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the jth bin background δbj , and increase ith bin accepted signal δNi,

σcv
i → σs

i =

∑n
j u

s
ij · (dj − bsj)

Nacc,s
i

Ngen,cv
i

· Φcv · P cv · T cv

=

∑n
j u

s
ij · (dj − bcvj − δbj)

Nacc,cv
i +δNi

Ngen,cv
i

· Φcv · P cv · T cv
.

Then data is further subtracted by δbj , and divided by a larger number Nacc,cv
i + δNi, thus

the data receives twice flux normalization effect. It may cause a significant over counting

of flux error if data have a large background.

One way to avoid this problem is to use the signal fraction method to calculate flux

error. Then, fluctuation of signal and background cancel in the numerator and the only

contribution of error is from the fluctuation of accepted signal events. This cancellation is

true up to shape error contribution from flux error, and it prevents a double counting of

normalization error:

σcv
i → σs

i =

∑n
j u

s
ij ·
(
dj ·

ss
j

ss
j+bs

j

)
Nacc,s

i

Ngen,cv
i

· Φcv · P cv · T cv

=

∑n
j u

s
ij ·
(
dj ·

ss
j+δsj

ss
j+δsj+bs

j+δbj

)
Nacc,s

i +δNi

Ngen,cv
i

· Φcv · P cv · T cv

∼

∑n
j u

s
ij ·
(
dj ·

ss
j

ss
j+bs

j

)
Nacc,s

i +δNi

Ngen,cv
i

· Φcv · P cv · T cv
. (10.15)

There is another way to avoid double counting of flux normalization error. One can nor-

malize background variations to cv MC background, then the contribution for background

subtraction method is due to shape variations of background,

σcv
i → σs

i =

∑n
j u

s
ij · (dj − bs,shape

j )
Nacc,s

i

Ngen,cv
i

· Φcv · P cv · T cv

=

∑n
j u

s
ij · (dj − bcvj − δb

shape
j )

Nacc,cv
i +δNi

Ngen,cv
i

· Φcv · P cv · T cv
. (10.16)
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Now, σs contains the background variation bs,shape
j , that is due to shape variation, and the

contribution to the normalization is very small.

These three methods are illustrated in Fig. 10.6. They show π+ production multisim

draws and cv MC. The top row shows that the background subtraction method creates a

large variation in the multisim draws due to the normalization variation, which is absent

in the signal fraction and shape-only background subtraction methods. However, as you

can see from middle row, since CCQE is not a background-dominated sample, this back-

ground variation is totally overwhelmed by the signal variation that enters via the efficiency

correction. As a result, error bar for these three methods are very similar. Therefore, for

simplicity, we decided to use the background subtraction method for the flux error calcula-

tion.
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Figure 10.6: π+ production multisim draws and cv MC for reconstructed neutrino energy.

From left to right, background subtraction method, signal fraction method, shape-only

background subtraction method, and from top to bottom, after removing background, after

unfolding, and after all calculated errors. All three methods yield similar error bars.
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10.8 Cross section error estimation

The cross section errors include the following three type of errors calculated from the event

weight multisims:

Mxs (3.9%) cross section models;

Mp0 (0.0%) π◦ yield;

Mpi (1.2%) pion absorption and coherent fraction model error.

These errors only effect the background channels and so they do not change the number of

generated (signal) events. And, of course, they do not vary the flux factor or the POT and

target numbers,

Ngen,s
i = Ngen,cv

i , Φs = Φcv , P s = P cv , T s = T cv

Therefore, the cross section formula for sth cross section multisim is,

σs,xs
i =

∑n
j u

s
ij · (dj − bsj)

Nacc,s
i

Ngen,cv
i

· Φcv · P cv · T cv
. (10.17)

Notice that this is the same formula as that for the flux variations, Eq. (10.14).

Basically, the cross section error is the error on the prediction of background. Since we

are using the straight prediction for interactions other than the CCQE and CC1π channels,

we keep all errors in cross section input error matrix in multisim for the “other” channels.

For CCQE, since this is the channel to be measured, we do not need any errors except

those on pion absorption and pion charge exchange that change the CCQE detection ef-

ficiency. We define our signal to be CCQE interaction per nucleon, so the pion-absorbed

CC1π channel is not signal but background.

For CC1π, we need to take care because we measure it from data (Chapter 9). There

are two types of cross section errors, the first type is the cross section error in 2 subevent
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sample, and the second type is the error associated with the measurement in 3 subevents

and the subtraction from the 2 subevents sample.

For the first type of error, since background measurement corresponds to both CC1π

shape and normalization, we only need the errors from pion absorption and pion charge

exchange.

The second type of error is the error about the background subtraction. Since we

measured the background from the 3 subevents sample and applied it to 2 subevents, We

need to take account the error associated with this process. In Chapter 9, we found that

the there are multiple choices for pion absorption and coherent fraction that satisfy the

data-MC agreement in 3 subevents sample. To take account this as an error, we measured

CC1π from the 3 subevents sample data with different hypothesis on pion absorption and

coherent fraction. The excursion of these variations are chosen from the data for pion

absorption (Sec. 9.5). We used three different values, default, 15% increase, and 30%

increase. For coherent fraction, we used three different values, default (100%), 50% and

0%. In the meantime, we chose a new central value, 15% increase pion absorption and 50%

decrease coherent fraction. This new central value MC and eight other combinations of

pion absorption and coherent fraction make an error matrix. Fig. 10.7, right column plots

shows this error.

10.9 Detector error estimation

The detector error calculation includes the following errors, one type are from generated

multisims and the type are from generated unisim:

Mom (4.4%) optical model;

Mun (2.1%) detector unisims.
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Again, like the cross section error, the detector error has no variations in flux factor, POT,

generated number of events, or target number.

Ngen,s
i = Ngen,cv , Φs = Φcv , P s = P cv , T s = T cv,

and the cross section formula for the sth detector errors is the same as Eqs. (10.14) and (10.17),

σs,detec
i =

∑n
j u

s
ij · (dj − bsj)

Nacc,s
i

Ngen,cv
i

· Φcv · P cv · T cv
. (10.18)

The detector errors are shown in Fig. 10.7 (left and middle columns). Since the statistical

noise in the detector simulation has a significant effect for the covariance terms in the error

matrix, we used 4th order polynomial smoothing to the detector model error matrix for

MA − κ fit (Sec. ??). However, this smoothing has very small impact for the variance

terms. So, we do not use smoothing for any cross section measurement results.
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Figure 10.7: Detector errors for the reconstructed neutrino energy. From left to right:

optical model, detector unisim, and pion absorption unisim (which is not detector error

but listed here for convention). From top to bottom: after removing background, after

unfolding, and calculated error bar plot.
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10.10 The CCQE absolute cross section with total error

In this section, the muon neutrino CCQE absolute cross sections are presented. The cross

sections are measured on carbon and presented as “per nucleon” values.

10.10.1 The CCQE double differential cross section

The flux-folded double-differential cross section and the flux-unfolded total cross section

are summarized in Fig. 10.8. The top left plot is the total error of the flux-folded double

differential cross section in the Tµ − cosθµ two-dimensional plane. The flux-folded total

cross section and the number of events after cuts are indicated as well. Fig. 10.9 shows the

value of the flux-folded double differential cross section as a function of Tµ and cosθµ.

The top right plot of Fig. 10.8 shows the double differential cross section values (red)

in Tµ − cosθµ with total error bar (yellow). Figures 10.10 and 10.11 offer larger plots and

multiple views from different angles.

The bottom left plot of Fig. 10.8 displays the flux-unfolded total cross section as a

function of true neutrino energy. In this plot, turquoise error boxes show total error, the

error bars show the shape error (vertical) and the true neutrino energy reconstruction model

dependence error (horizontal). The flux-unfolded total cross section at Eν = 700−800 MeV

and its error are printed on the plot.

Finally, the bottom right plot of Fig. 10.8 shows the flux-folded differential cross section

as function of Q2. Here, Q2 is unfolded not by the true MC (nuclear) Q2, but by the

reconstructed true Q2 with same sense of true Eν to avoid model dependencies (Sec. 10.3).

The turquoise error boxes show total error, and error bars show shape error. The integral

of the flux-folded total cross section with averaged neutrino energy (Eν ∼ 700 MeV) and

its error are printed.
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Figure 10.8: Total error plots for the flux-unfolded double differential cross section and

flux-folded total cross section. The notation of plots is found in Sec. 10.10.1.

The measurement of flux-unfolded CCQE cross section in the 700-800 MeV bin in Mini-

BooNE is,

σCCQE
700−800 MeV bin = 1.058± 0.111× 10−38cm2 . (10.19)

Note, the error is dominated by systematics.
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Figure 10.9: The flux-folded double differential cross section.
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Figure 10.10: The flux-folded double differential cross section with total error.

230



10.10. THE CCQE ABSOLUTE CROSS SECTION WITH TOTAL ERROR

Figure 10.11: The flux-folded double differential cross section with total error from different

angles.
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10.10.2 The CCQE total cross section

Fig. 10.12 is the same as the bottom left plot of Fig. 10.8, namely the flux-unfolded total

cross section with total error bars (turquoise), shape only error bars (vertical on mark-

ers), and the energy reconstruction model dependence error bars (horizontal on marker).

Fig. 10.12 shows the comparison with relativistic Fermi gas (RFG) model based on Smith

and Moniz [16]. Three lines show nuance predictions, red (MA = 1.03 GeV/c2, κ = 1.000),

green (MA = 1.23 GeV/c2, κ = 1.022), and blue (MA = 1.32 GeV/c2, κ = 1.007) with

Fermi momentum = 220 MeV/c and binding energy = 34 MeV (Sec. 7.4.2). Note, our flux-

unfolded total cross section is a function of reconstructed true neutrino energy, whereas

both neutrino flux and theoretical curves are plotted as a function of MC true neutrino

energy (Sec. 10.3). To describe the effect of this, we also show the blue and magenta his-

togram (scaled to data). The blue histogram is the cv MC signal generated events, as a

function of reconstructed true neutrino energy, and then divided by neutrino flux. On the

other hand, the magenta histogram is the cv MC signal generated events, as a function of

MC true neutrino energy, and then divided by neutrino flux. Notice that the neutrino flux

is a function of MC true neutrino energy. If the neutrino energy reconstruction is perfect

and the smearing by the Fermi motion is negligible, then blue and magenta histograms

would be identical. The difference of blue and magenta histograms are the effect of energy

reconstruction between reconstructed true neutrino energy and MC true neutrino energy.

We find both magenta and blue histograms agree with data, so the bias from the energy

reconstruction is not significant with binding energy of 34 MeV in 0.1 to 1.4 GeV.

Comparing with the theoretical value (∼ 0.9× 10−38cm2, from red line), the measured

cross section is almost ∼20 % higher in the flux peak region (Eν = 700−800 MeV). However,

rather surprisingly, the measured cross section agrees with new cross section model found

in Chapter 9 (MA = 1.32 GeV/c2, κ = 1.007).
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Figure 10.12: The flux-unfolded total cross section with theoretical prediction. The nota-

tions are given in the text, Sec. 10.10.2.
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10.10.3 The CCQE differential cross section in Q2

Fig. 10.13 shows a comparison of the Q2 distribution of counts and flux-unfolded differential

cross section with reconstructed true Q2. Top plot shows number of events and total

normalization error. This plot is used for MA − κ fit (Chapter 9). The bottom plot is

identical with the bottom right plot of Fig 10.8.

In Chapter 9, we found a new CCQE cross section model via a measurement of the dis-

tribution of events in Q2. In principle, we should find the same solution from the differential

cross section, dσ
dQ2 . In Fig. 10.14, we compare our dσ

dQ2 from the data (Fig. 10.8, bottom

right) and the nuance prediction for CCQE RFG model with new parameters integrated

with MiniBooNE flux. As should be, they agree well.

Finally, Fig. 10.15 shows the flux-folded differential cross section of Q2 with recon-

structed true neutrino energy in the range 700-800 MeV. This corresponds to the differen-

tial cross section for a slice of reconstructed true neutrino energy of 700-800 MeV, and the

integral corresponds to 7th bin of Fig. 10.12.
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Figure 10.13: The comparison of Q2 distribution of counts and flux-unfolded differential

cross section. The notations are given in the text, Sec. 10.10.1.
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Figure 10.14: The comparison of new cross section model (solid line) and flux-unfolded

differential cross section (dots) from the bottom right plot of Fig. 10.8 or the bottom plot

of Fig. 10.13.
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Figure 10.15: The flux-unfolded differential cross section with Q2 with reconstructed true

neutrino energy 700-800 MeV. The notations are given in the text, Sec. 10.10.1.

10.10.4 The energy reconstruction

As discussed in Sec. 10.3, if we try to avoid nuclear model dependency, the true neutrino

energy needs to be defined from true muon energy and true muon angle. Then, the flux-

unfolded total cross section suffers reconstruction biases. We use the standard quasielastic

formula to reconstruct neutrino energy (Eq. 10.4) and Q2 (Eq. 10.5), however the choice of

binding energy is a visible effect.

In Fig. 10.16 a plot identical to Fig. 10.12 with the exception of the binding energy

changed to B = 0 MeV is shown. Now, the magenta and blue histograms defined in

Sec. 10.10.2 do not agree. Notice, however, that the data and blue histogram agrees, as

long as the neutrino energy is reconstructed with the same binding energy. Therefore we can

conclude that the choice of 34 MeV for the binding energy is less biased. This study clearly

shows that the data is best (least model dependent) presented as a double differential cross

section (in Tµ − cosθµ) when only the muon kinematic reconstruction is available.
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Figure 10.16: The flux-unfolded total cross section with theoretical prediction. The neu-

trino energy is reconstructed with binding energy = 0 MeV. The notations are given in the

text, Sec. 10.10.3.
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10.10.5 The systematic errors

The breakdown of systematic errors are shown in Table 10.1. Figures 10.17, 10.18, 10.19,

and 10.20, show each of the systematic errors on the differential cross section individually.

Figure 10.17 shows the flux error. The flux error results in the largest normalization

error. The increase of flux error at high energy results from the horn skin effect (Sec. 7.2).

The uncertainty in π+ production results in the biggest normalization error contribution

among all the systematics, and it is relatively uniform across the entire energy region.

Figure 10.18 shows the cross section model error. It is large at where background

contamination is large, as can be seen from top left plot. Therefore, it is also large in the

low neutrino-energy region (bottom left) where background channels are a big contribution

and where pion absorption and pion charge exchange uncertainties are important.

Figure 10.19 shows the detector uncertainty error. Since this error causes a shift of

energy spectrum, it is large at both low and high energy regions. The large shape errors

show that the correlations are also large (bottom left).

Finally, the unfolding error is shown in Fig. 10.20.
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Figure 10.17: Flux error only plots for the flux-unfolded double differential cross section

and flux-folded total cross section. The notation of plots are found in Sec. 10.10.1.
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Figure 10.18: Cross section model error only plots for the flux-unfolded double differen-

tial cross section and flux-folded total cross section. The notation of plots are found in

Sec. 10.10.1.
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Figure 10.19: Detector model uncertainty only plots for the flux-unfolded double differ-

ential cross section and flux-folded total cross section. The notation of plots are found in

Sec. 10.10.1.
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Figure 10.20: Unfolding error only plots for the flux-unfolded double differential cross

section and flux-folded total cross section. The notation of plots are found in Sec. 10.10.1.
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cross section error

statistics and unfolding 0.3%

flux 7.9%

cross section 4.1%

detector 4.9%

POT and target normalization 2.3%

total 10.5%

Table 10.1: The systematic error summary for flux-unfolded total cross section at 700-

800 MeV bin.
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Chapter 11

Summary and outlook for CCQE

scattering measurements in

MiniBooNE

In Part III of this thesis, we have presented a measurement of the charged current quasielas-

tic (CCQE) interaction in MiniBooNE. The CCQE interaction is the most abundant neu-

trino interaction (∼40% of the sample) in the MiniBooNE energy range (∼700 MeV), there-

fore, this reaction channel has high statistical precision. The required cuts to isolate the

CCQE sample are relatively model independent yet of high efficiency (∼35%), and high

purity (∼75%). This channel was used for various checks of the MiniBooNE experiment. In

particular, MiniBooNE relies on the CCQE measurement in the neutrino oscillation search

for two reasons: to constrain the νµ flux normalization and the intrinsic νe background; and

to test the kinematic energy reconstruction of νe [67].

The combined fit method employed for the neutrino oscillation search successfully used

the νµCCQE data. The details of this technique are discussed in other theses [112–115],
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and the results were published [67].

An initial disagreement between data and MC in the muon kinematic variables was

determined to be caused by incorrect parameters used in the relativistic Fermi gas (RFG)

model. After further investigation, we performed a shape-only fit with two parameters of

the RFG model, and we found that the data was better described with an adjustment of

two parameters,

MA = 1.23± 0.20 GeV/c2 ;

κ = 1.019± 0.011 ,

and these results were published [4].

Then, we proceeded with a measurement of the absolute cross section of the CCQE

interaction. First, we subtracted the background based on a measurement of that back-

ground, instead of using the predictions from an event generator. The in situ measurement

of the background is more reliable than predictions for the background. As a consequence,

we successfully removed the (best estimate of the) background from the data, although the

size of the uncertainties on background remains approximately the same as in the previ-

ous analysis [4], due to ambiguities in pion absorption and pion coherent scattering. At

this stage, we have extracted new values for the RFG parameters through a two-parameter

shape-only fit. We found,

MA = 1.32± 0.17 GeV/c2 ;

κ = 1.007± 0.009 .

The extracted value for MA is approximately 30% higher than the world average value

(=1.03 GeV/c2). The extracted MA is inconsistent with the world-averaged value and the

new value for κ is consistent with zero. The change in the value for κ is because of the

change in the CC1π background, especially in the low Q2 region.
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We have carefully examined all systematic errors and have obtained the flux-folded (or

“flux-averaged”) double differential cross section for the muon neutrino CCQE interaction.

This is a model-independent result based only upon the measured kinematics of the final-

state muon. This is an important experimental result that may be used to develop and tune

theoretical models of nuclear structure relevant for neutrino-nuclei scattering.

Further, we have calculated a flux-unfolded total cross section as a function of recon-

structed neutrino energy. We have carefully defined this measurement, so that it is as model-

independent as possible in the extraction of a reconstructed neutrino energy. However, there

are inevitable limitations in the muon-based kinematic reconstruction of neutrino energy

and special care is needed to compare this data with that of others, for example [155]. The

resulting cross section at the peak energy of the MiniBooNE neutrino flux (700-800 MeV)

is

σCCQE
700−800 MeV bin = 1.058± 0.111× 10−38cm2.

This agrees with the prediction of the RFG model with new MA (= 1.32 GeV/c2) and κ

(= 1.007). However, this agreement is with an MA in the RFG that is ∼30% higher than

the world average. The total cross section in the 700-800 MeV bin is ∼20% higher than the

RFG model prediction using the world-average MA.

The MiniBooNE data points for total cross section are rather high compared to pre-

vious measurements. For example, recently the NOMAD experiment [35, 155] extracted

MA ∼ 1.05 GeV/c2, consistent with the world-average value. In the NOMAD analysis,

the interaction rate is normalized with the well-known rate for deep-inelastic scattering

and so, it may be argued that the flux normalization is well-known. Since NOMAD shows

excellent agreement with the world average above ∼4 GeV, the value where the neutrino-

nucleon CCQE scattering total cross section “plateaus” seems well-known. Although the

plateau of the total cross section starts at about 2 GeV and the MiniBooNE data span
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0.1 < Eν(GeV) < 1.4, it still seems evident that the MiniBooNE data disagree with the

world average data.

It is generally thought that the discrepancy in MA as measured by K2K, MiniBooNE,

and SciBooNE compared to the world average may be explained by nuclear effects of car-

bon [156] because the world average is set by old bubble chamber experiments using mainly

deuteron targets where nuclear effects are small. And, modern oscillation experiments

use heavier targets, such as carbon or water. However, NOMAD, using a active carbon

nuclear target in their drift chambers, measured a MA consistent with the world aver-

age. Also, recent studies show nuclear effects are negligible in a limited Q2 region (for

example 0.5 < Q2(GeV2) < 1.0) [27]. A fit within 0.5 < Q2(GeV2) < 1.0 using Mini-

BooNE data was performed (Sec. 9.7.3), but a similar MA value resulted (as compared to

0.0 < Q2(GeV2) < 1.0). This indicates that the origin of the high MA value is not likely a

nuclear effect.

Nevertheless, the MA extracted from a (Q2) shape-only fit, predicts about the correct

overall rate for the CCQE interaction, as seen in Fig. 10.12. These disparate results for MA

between low and high energy regions must be understood in further work. For example,

the newly-proposed liquid Argon time projection chamber experiment, MicroBooNE [157],

will use Ar for an active nuclear target. And this detector technology provides excellent

tracking and will allow the reconstruction of the recoil proton in CCQE neutrino energy

reconstruction. These two features will provide additional information to resolve some of

these exciting mysteries in CCQE cross section measurements.
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Appendix A

R&D and pilot detector beam test

for FINeSSE

A.1 Neutrino Neutral current elastic (NCE) scattering

Neutrino neutral current elastic (NCE) scattering is identical with charged-current quasielas-

tic (CCQE) scattering in the cross section formulas, by replacing the CCQE form factors

with those for NCE (see Sec. 3.2.3). The notable difference is that NCE is sensitive to

isoscalar form factors in addition to isovector form factors. Since the dominant contribution

expected for the isoscalar term is that from any strange quarks present in the nucleus, the

measurement of isoscalar Dirac and Pauli form factors are active field for modern electron

scattering experiments, such as SAMPLE [158], PVA4 [159], G0 [23], and HAPPEX [160].

Of course, these strange form factors are zero in the constituent quark model [18]. However,

some measurements indicate small but non-zero contributions [23] and we are waiting for

further experiments. However, a small coupling and large radiative correction makes very

difficult to measure isoscalar axial form factor in electron scattering experiments [161].

The zero-Q2 limit of the isoscalar axial form factor F s
A(Q2) is related to the spin con-
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tribution of the strange quark in a nucleon, and is called ∆s (Eqs. 3.63 and 3.64), and may

be connected with longitudinally polarized PDFs of strange quarks ∆s(x),

∆s(x) ≡ s++(x)− s+−(x)− (s̄++(x)− s̄+−(x)). (A.1)

Here, ∆s(x) is defined from the difference of longitudinally polarized (denoted upper

“+”) strange quark PDF, helicity + and − (lower “+” and “−”), from quarks and anti

quarks. Then, ∆s connects the elastic nucleon form factor and longitudinally polarized

PDF,

F s
A(Q2 → 0) ≡ ∆s ≡

∫ 1

0
∆s(x)dx. (A.2)

It is an important check to verify the connection between low-Q2 elastic world and

high -Q2 DIS world. Currently, there is a disagreement known between HERMES Semi-

inclusive DIS measurement [162] at Deutsches Elektronen-Synchrotron (DESY) and BNL

E734 NCE measurement [163] at Brookhaven National Laboratory (BNL) which is not

yet understood. To better understand the right side of the equation, a new semi-inclusive

DIS analysis using only kaons is performed [164]. This result is consistent with previous

HERMES result, which implies that the inconsistency with BNL734 remains. However, the

extraction of ∆s from inclusive DIS measurement, such as SMC [165], under the assumption

of SU(3) flavor symmetry, does agree with BNL734. So the situation is rather confused and

we also need to test the left side of this equation. For this purpose, a new NCE scattering

experiment, FINeSSE [24], is planned. The NCE analysis from MiniBooNE [110, 151, 166]

and SciBooNE [167] are also awaited.

A.2 The scibath pilot detector beam test

The Fermilab Intense Neutrino Scintillator Scattering Experiment, FINeSSE [24], is a pro-

posed experiment to focus on the NCE measurement. FINeSSE is planned to use the
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Figure A.1: The FINeSSE detector and the inside of the scibath detector.

detector called “scibath”, which consists of an array of wave length shifting (WLS) fibers

immersed in liquid scintillator. With this detector, it is possible to reconstruct charged

particle tracks three-dimensionally. Figure A.1 shows cartoons of FINeSSE detector. The

left figure shows FINeSSE vertex and tracking detector “scibath”, which has (2.5 m)3 active

liquid scintillator volume with over 10,000 WLS fibers, with muon range stack behind to

measure muon energies. The right figure is a cartoon of the inside of scibath detector.

To test the principle of scibath detector, we performed beam tests with a scibath pilot

detector. Figure A.2 shows the inside of the scibath pilot detector. The pilot detector

consists with 30 of blue-to-green WLS fibers in the liquid scintillator. The pilot detector

of scibath was built and beam test was perform at Indiana University Cyclotron Facility

(IUCF). The detail of this beam test is available in [5].

Figure A.3 shows the picture of experimental setup. Figure A.4 shows the electronics

diagram for scibath prototype beam test. The test was done at radiation effects research

program (RERP) at IUCF. using a 200 MeV kinetic energy proton beam.

Figure A.5 shows the principle of this detector and the beam test. Fig. A.5.a) shows the
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Figure A.2: The scibath pilot detector. 30 WLS fibers in the liquid scintillator make

one-dimensional array to reconstruct charged particle tracks.

Figure A.3: The scibath pilot detector beam test setup at RERP at IUCF. The detector

is sandwiched by three trigger paddles although we used only two of them.
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situation for one arbitrary fiber. When a charged particle passes the detector, a fiber sees

the integrated charge information from the scintillation emission in the track of a charged

particle. For this beam test, Fig. A.5.b), a particle track is defined from two trigger paddles,

and 200 MeV protons penetrate the detector from the side. From the nearest fiber to a

track, we found 17 ± 2 photoelectrons (PEs). This number is different depending on the

combination of different types of fibers and liquid scintillators [5]. We also tried to tilt

or rotate the detector to simulate angled tracks [5]. Fig. A.5.c) shows a realistic situation

of this experiment. Light from a track can be collected by all fibers in the detector. In

other word, track information are shared by all fibers, unlike typical tracking detector where

particle information exist only where particle passes in the detector. However, Fig. A.5.d),

collected charges are different from each fiber depending on their distance. This information

allow us to reconstruct particle tracks with the coordinate resolution smaller than the fiber

separations.

Figure A.6 shows the result of the proton track measurement. Tracks are found by least

square fit with the straight lines. We found,

coordinate resolution = 0.50 cm,

angular resolution = 6.2◦,

after removing the width contribution of a trigger paddle (0.5 in). Notably, we achieved a

better resolution than the fiber separation (2 cm). The resolution is even better to use UV-

to-blue fibers and non WLS liquid scintillator, instead of using typical blue-to-green fibers

and liquid scintillator (Fig. A.7). Because short attenuation of non WLS liquid scintillator

helps to localize light and sending blue light by UV-to-blue fibers has advantage for the

quantum efficiency of typical bi-alkali photo-cathode PMTs. In this case, we found,

coordinate resolution = 0.28 cm,

angular resolution = 3.5◦.
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Figure A.5: The scibath pilot detector beam test principle cartoon. They are explained in

the text.
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Figure A.6: The scibath pilot detector coordinate and angular resolutions. Note, measure-

ment smearing by the trigger width (0.5in) is subtracted from the measured RMS.
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Figure A.7: The left cartoon illustrates two experimental settings, (a) blue-to-green WLS

fiber with liquid scintillator, and (b) UV-to-blue WLS fiber with non WLS liquid scintillator.

In the case of (b), the short attenuation of non WLS liquid scintillator localizes scintillation

emission and improve the coordinate resolution. On top of that, the sending blue light

to PMT has advantage for the quantum efficiency of typical bi-alkali photo-cathode. The

right plot shows the result. for scibath pilot detector coordinate and angular resolutions

for various fibers and liquid scintillator combinations. Top two plots are for UV-to-green

fibers and non WLS liquid scintillator. Bottom two plots are for UV-to-blue fibers and non

WLS liquid scintillator. The later combination has better coordinate resolution than the

standard blue-to-green fibers and liquid scintillator.
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We also considered a signal transformation method for finding particle tracks. Say, light

generated at jth location in the detector is seen by ith fiber. Then we can form a response

matrix Rij , because total light seen by ith fiber is an integral of all light generated at all

locations in the detector. Once you make such response matrix, then the inverse of that

unveils a particle track from integrated light information from all fibers. The response

matrix has a special shape,

Rij =



R0 R1 R2 · · ·

R1 R0 R1 · · ·

R2 R1 R0 · · ·
...

...
...

. . .


, Rij

0 =



a b c · · ·

b a b · · ·

c b a · · ·
...

...
...

. . .


, Rij

1 =



d e f · · ·

e d e · · ·

f e d · · ·
...

...
...

. . .


, · · ·

and it turns out this is the special case of so called block Toeplitz matrix, which has known

fast inversion algorithm [168]. Since full scale of scibath detector has over 10,000 fibers,

this kind of special algorithm may help the CPU time. Figure A.8 shows the result. Before

the transformation, a track is already visible as ADC count maximum, but we can find the

accurate track by a fit. However, after the transformation, there is a sharper peak on the

track and we know the location of track without fit. Therefore, this method can be used

for the cross check of track finding fit.
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Figure A.8: The scibath pilot detector signal transformation. Top plot shows ADC count

for all fibers when a proton track is on the 4th fiber array. Bottom plot shows after the

transformation using the inverse of response matrix. Now, track is visible without any

fitting procedures.
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Appendix B

Gamma matrix algebra

Following relationships are often found in literatures, for example p.123 and p.261 of [18].

tr(1) = 4

tr(odd number of γµ) = 0

tr(/a/b/c/d) = 4[(a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)]

tr(γ5) = 0

tr(γ5/a/b) = 0

tr(γ5/a/b/c/d) = 4iεµνλσa
µbνcλdσ

γµγ
µ = 4

γµ/aγ
µ = −2/a

γµ/a/bγ
µ = 4a · b

γµ/a/b/cγ
µ = −2/c/b/a
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tr(γµ/p1γ
ν/p2) = 4[pµ

1p
ν
2 + pν

1p
µ
2 − (p1 · p2)gµν ]

tr[γµ(1− γ5)/p1γ
ν(1− γ5)/p2] = 2tr(γµ/p1γ

ν/p2)− 8iεµνλσp1λp2σ

tr(γµ/p1γ
ν/p2)tr(γµ/p3γν/p4) = 32[(p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3)]

tr(γµ/p1γ
νγ5/p2)tr(γµ/p3γνγ5/p4) = 32[(p1 · p3)(p2 · p4)− (p1 · p4)(p2 · p3)]

tr[γµ(1− γ5)/p1γ
ν(1− γ5)/p2)tr(γµ(1− γ5)/p3γν(1− γ5)/p4] = 256(p1 · p3)(p2 · p4)
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Appendix C

The detail of cross section

calculations

This Appendix describes the further details of the calculation of neutrino-nucleon scattering

(Sec. 3.2) and neutrino-nuclei scattering (Sec. 3.3).

C.1 Neutrino-Nucleon scattering

C.1.1 Kinematics and cross section formula

The scattering process under consideration are the following 2 reactions,

νl + n→ l− + p, (C.1)

ν̄l + p→ l+ + n. (C.2)
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Figure C.1: Scattering under consideration, from top to bottom, (1) lab frame, (2) center-

of-mass frame, and (3) Feynman diagram (t-channel). νl stands for (anti)neutrino, l stands

for (positively) negatively charged lepton and N1 and N2 stands for proton or neutron. The

charged lepton has mass m and both initial and final state nucleon have equal mass M .
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In Fig C.1, ν, l, N1 and N2 have 4-momentum q1, q2, p1 and p2 respectively. The charged

lepton l has mass m, and nucleon N1 and N2 have equal mass M . These 4-momenta are,

q1 = (Eν , ~pν),

q2 = (El, ~pl), (C.3)

p1 = (M, 0),

p2 = (E, ~p).

In this Appendix, we don’t write the index of 4-momentum explicitly.

These momenta satisfy the following relations,

P = p1 + p2,

q = p2 − p1 = q1 − q2,

n = q1 + q2,

s = (p1 + q1)2 = (p2 + q2)2 = M2 + 2MEν , (C.4)

u = (q2 − p1)2 = (p2 − q1)2 = M2 +m2 − 2MEl,

t = q2 =
∑
all

(mass)2 − (s+ u) = 2M2 +m2 − (s+ u) = 2M(El − Eν),

ν =
q · p1

M
=
MEν −MEl

M
= Eν − El,
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further more,

q2 = (p2 − p1)2 = 2M2 − 2p1 · p2 = (q1 − q2)2 = m2 − 2q1 · q2,

P 2 = (p1 + p2)2 = 2M2 + 2p1 · p2 = 4M2 − q2,

n2 = (q1 + q2)2 = m2 + 2q1 · q2 = 2m2 − q2,

s− u = 4MEν + q2 −m2 = P · n,

P · n = (p1 + p2) · (q1 + q2) = (p2 − p1) · (q1 − q2) + 2p1 · q1 + 2p2 · q2 (C.5)

= q2 + 2MEν + (2MEν −m2) = q2 −m2 + 4MEν = −m2 + 2M(Eν + El)

= −2Mν −m2 + 4MEν ,

q · n = (q1 − q2) · (q1 + q2) = (q1 − q2) · (q1 − q2) + 2q1 · q2 − 2q22 = −m2,

q · P = (p2 − p1) · (p2 + p1) = (p2 − p1) · (p2 − p1) + 2p1 · p2 − 2p1
2 = 0.

In Llewellyn Smith’s paper [15], the general nucleon weak interaction current operator is

defined,

< p|J+
µ |n > = cosθc(p̄(p2)Γµn(p1)) (C.6)

Γµ = γµ(F1 + FAγ5) + 1
2M iσµνq

νξF2 + 1
MPµFA

3γ5 + qµ

M (FV
3 + FPγ5), (C.7)

here ξ is defined as a difference of the relative anomalous magnetic moment,

ξ = κp − κn =
(
µp

µN
− 1
)
−
(
µn

µN
− 0
)

= 1.793− (−1.913) = 3.706.

On the other hand, in Pais’s paper [169], the general nucleon weak current is defined,

Γµ = γµ(gV − gAγ5)− Pµ(fV − fAγ5) + qµ(hV − hAγ5), (C.8)

note, hV and fA are G-parity violating second class currents (Sec. 3.2.8). Using Gordon’s

decomposition,

u(p2)γµu(p1) =
1

2M
u(p2)[(p2 + p1)µ + iσµν(p2 − p1)ν ]u(p1), (C.9)
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one can see the relationship of these 2 definitions.

Pais ↔ Llewellyn Smith

gV ↔ F1 + ξF2

fV ↔ 1
2M ξF2

hV ↔ 1
MFV

3 (C.10)

gA ↔ −FA

fA ↔ 1
MFA

3

hA ↔ − 1
MFP

In the following, We will use Pais’s notation of general nucleon weak form factors.

The differential Lorentz-invariant phase space (dLips) is,

dLips =
p2

l dpld(cosθ)
8πElE

δ(El + E − Eν −M) =
plEldEldq

2

8πElE · 2plEν
δ(El + E − Eν −M)

=
dq2

16πMEν
. (C.11)

Here, we use dq2 = 2plEνd(cosθ) and pldpl = EldEl. Then, we have the following differential

cross section is,

dσ

dQ2
=

1
64πEν

2M2

GF
2

2
1

(2sp + 1)(2sν + 1)

×
∑
spin

[cosθc(p̄Γµn)][cosθc(p̄Γνn)]†[l̄γµ(1− γ5)ν][l̄γν(1− γ5)ν]†

=
1

64πEν
2M2

GF
2cosθc

2

2
1
2
wµντ

µν . (C.12)

Here, wµν and τµν are the hadronic and leptonic tensors. We would especially like to

calculate Eq. C.12 for neutrino-neutron charge current reaction (Eq. C.1), then other results

are straight forward from there. Let us start from the easiest part, the leptonic tensor term

calculation.
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C.1.2 Leptonic tensor term

The leptonic tensor is defined with the Dirac spinors ν(p1) and l(p2), and using gamma

matrix algebra (Appendix B),

τµν = Tr[lγµ(1− γ5)ν][νγν(1− γ5)l]

= Tr[γµ(1− γ5)/q1γν(1− γ5)(/q2 +m)]

= Tr[{γµ(1− γ5)/q1γν(1− γ5)/q2}+mγµ(1− γ5)/q1γν(1− γ5)]

= 2Tr[γµ/q1γν/q2] + 8iεµανβq1αq2β

= 8[q1µq2ν − (q1 · q2)gµν + q2µq1ν ] + 8iεµανβq1αq2β, (C.13)

where we have following relations,

nµnν = (q1 + q2)µ(q1 + q2)ν = q1µq1ν + q1µq2ν + q2µq1ν + q2µq2ν , (C.14)

qµqν = (q1 − q2)µ(q1 − q2)ν = q1µq1ν − q1µq2ν − q2µq1ν + q2µq2ν , (C.15)

nµqν = (q1 + q2)µ(q1 − q2)ν = q1µq1ν − q1µq2ν + q2µq1ν − q2µq2ν . (C.16)

Using Eq. C.16 and anti-symmetric property of εµανβ ,

8iεµανβq1αq2β = 4iεµανβq1αq2β + 4iεµανβq1αq2β

= 4iεµανβq1αq2β − 4iεµανβq2αq1β

= −4iεµανβ(q1αq1β − q1αq2β + q2αq1β − q2αq2β)

= −4iεµανβnαqβ. (C.17)

Finally From Eq. C.14 and C.15, the leptonic tensor term becomes,

τµν = 4[nµnν − qµqν + (q2 −m2)gµν + iεµναβnαqβ] (C.18)
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C.1.3 Hadronic tensor term

Hadronic tensor is, using Dirac spinors n(p1) and p(p2),

wµν = Tr[p{γµ(gV − gAγ5)− Pµ(fV − fAγ5) + qµ(hV − hAγ5)}n]×

[n{γν(gV
∗ − gA

∗γ5)− Pν(fV
∗ + fA

∗γ5) + qν(hV
∗ + hA

∗γ5)}p]

= Tr[(/p2 +M){γµ(gV − gAγ5)− Pµ(fV − fAγ5) + qµ(hV − hAγ5)}]×

[(/p1 +M){γν(gV
∗ − gA

∗γ5)− Pν(fV
∗ + fA

∗γ5) + qν(hV
∗ + hA

∗γ5)}]

= Tr[/p2{γν(gV − gAγ5)− Pµ(fV − fAγ5) + qµ(hV − hAγ5)}]×

[/p1{γν(gV
∗ − gA

∗γ5)− Pν(fV
∗ + fA

∗γ5) + qν(hV
∗ + hA

∗γ5)}] (C.19)

+ MTr[{γµ(gV − gAγ5)− Pµ(fV − fAγ5) + qµ(hV − hAγ5)}]×

[/p1{γν(gV
∗ − gA

∗γ5)− Pν(fV
∗ + fA

∗γ5) + qν(hV
∗ + hA

∗γ5)}] (C.20)

+ MTr[/p2{γµ(gV − gAγ5)− Pµ(fV − fAγ5) + qµ(hV − hAγ5)}]×

[{γν(gV
∗ − gA

∗γ5)− Pν(fV
∗ + fA

∗γ5) + qν(hV
∗ + hA

∗γ5)}] (C.21)

+ M2Tr[γµ(gV − gAγ5)− Pµ(fV − fAγ5) + qµ(hV − hAγ5)]×

[γν(gV
∗ − gA

∗γ5)− Pν(fV
∗ + fA

∗γ5) + qν(hV
∗ + hA

∗γ5)]. (C.22)
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1st term

The 1st term in Eq. C.19 is,

Tr[/p2{γµ(gV − gAγ5)− Pµ(fV − fAγ5) + qµ(hV − hAγ5)}]×

[/p1{γν(gV
∗ − gA

∗γ5)− Pν(fV
∗ + fA

∗γ5) + qν(hV
∗ + hA

∗γ5)}]

= Tr[/p2γµ(gV − gAγ5)/p1γν(gV
∗ − gA

∗γ5)]

+Tr[/p2Pµ(fV − fAγ5)/p1Pν(fV
∗ + fA

∗γ5)] + Tr[/p2qµ(hV − hAγ5)/p1qν(hV
∗ + hA

∗γ5)]

−Tr[/p2Pµ(fV − fAγ5)/p1qν(hV
∗ + hA

∗γ5)]− Tr[/p2qµ(hV − hAγ5)/p1Pν(fV
∗ + fA

∗γ5)]

= (gV
2 + gA

2)Tr[/p2γµ/p1γν ]− (gV gA
∗ + gAgV

∗)Tr[γ5/p2γµ/p1γν ]

+PµPν(fV
2 + fA

2)Tr[/p2/p1] + qµqν(hV
2 + hA

2)Tr[/p2/p1]

−Pµqν(fV hV
∗ + fAhA

∗)Tr[/p2/p1]− qµPν(hV fV
∗ + hAfA

∗)Tr[/p2/p1],

then,

= 4(gV
2 + gA

2)[p1µp2ν + p1νp2µ − (p1 · p2)gµν ]− 4i(gV gA
∗ + gAgV

∗)εµανβp2αp1β

+4(fV
2 + fA

2)(p1 · p2)PµPν + 4(hV
2 + hA

2)(p1 · p2)qµqν

−4(fV hV
∗ + fAhA

∗)(p1 · p2)Pµqν − 4(hV fV
∗ + hAfA

∗)(p1 · p2)qµPν

= 2(gV
2 + gA

2)(PµPν − qµqν)− 2(gV
2 + gA

2)(2M2 − q2)gµν + 2i(gV gA
∗ + gAgV

∗)εµανβPαqβ

+2(2M2 − q2){(fV
2 + fA

2)PµPν + (hV
2 + hA

2)qµqν

−(fV hV
∗ + fAhA

∗)Pµqν − (hV fV
∗ + hAfA

∗)qµPν},

269



APPENDIX C. THE DETAIL OF CROSS SECTION CALCULATIONS

and finally,

= −2(gV
2 + gA

2)(2M2 − q2)gµν + 2[(gV
2 + gA

2) + (2M2 − q2)(fV
2 + fA

2)]PµPν

−4iRe(gA
∗gV )εµναβqαPβ

+2[−(gV
2 + gA

2) + (2M2 − q2)(hV
2 + hA

2)]qµqν

−2(2M2 − q2){[Re(fV hV
∗) + iIm(fV hV

∗) +Re(fAhA
∗) + iIm(fAhA

∗)]Pµqν

+[Re(fV hV
∗)− iIm(fV hV

∗) +Re(fAhA
∗)− iIm(fAhA

∗)]qµPν}

= −2(gV
2 + gA

2)(2M2 − q2)gµν + 2[(gV
2 + gA

2) + (2M2 − q2)(fV
2 + fA

2)]PµPν

−4iRe(gA
∗gV )εµναβqαPβ + 2[−(gV

2 + gA
2) + (2M2 − q2)(hV

2 + hA
2)]qµqν − 2(2M2 − q2)

×{[Re(fV hV
∗) +Re(fAhA

∗)](Pµqν + qµPν)

+i[Im(fV hV
∗) + Im(fAhA

∗)](Pµqν − qµPν)}. (C.23)

2nd and 3rd term

The 2nd term in Eq. C.20 and 3rd term in Eq. C.21 have symmetric forms. The 2nd term

is,

MTr[{γµ(gV − gAγ5)− Pµ(fV − fAγ5) + qµ(hV − hAγ5)}]×

[/p1{γν(gV
∗ − gA

∗γ5)− Pν(fV
∗ + fA

∗γ5) + qν(hV
∗ + hA

∗γ5)}]

= MTr[γµ(gV − gAγ5)/p1(−Pν)(fV
∗ + fA

∗γ5)] +MTr[γµ(gV − gAγ5)/p1qν(hV
∗ + hA

∗γ5)]

−MTr[Pµ(fV − fAγ5)/p1γν(gV
∗ − gA

∗γ5)] +MTr[qµ(hV − hAγ5)/p1γν(gV
∗ − gA

∗γ5)]

= −MPν(gV fV
∗ + gAfA

∗)Tr[γµ/p1] +Mqν(gV hV
∗ + gAhA

∗)Tr[γµ/p1]

−MPµ(fV gV
∗ + fAgA

∗)Tr[/p1γν ] +Mqµ(hV gV
∗ + hAgA

∗)Tr[/p1γν ]

= −MPν(gV fV
∗ + gAfA

∗) · 4p1µ +Mqν(gV hV
∗ + gAhA

∗) · 4p1µ

−MPµ(fV gV
∗ + fAgA

∗) · 4p1ν +Mqµ(hV gV
∗ + hAgA

∗) · 4p1ν . (C.24)
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Next, the 3rd term Eq. C.21,

MTr[/p2{γµ(gV − gAγ5)− Pµ(fV − fAγ5) + qµ(hV − hAγ5)}]×

[{γν(gV
∗ − gA

∗γ5)− Pν(fV
∗ + fA

∗γ5) + qν(hV
∗ + hA

∗γ5)}]

= MTr[/p2γµ(gV − gAγ5)(−Pν)(fV
∗ + fA

∗γ5)] +MTr[/p2γµ(gV − gAγ5)qν(hV
∗ + hA

∗γ5)]

−MTr[/p2Pµ(fV − fAγ5)γν(gV
∗ − gA

∗γ5)] +MTr[/p2qµ(hV − hAγ5)γν(gV
∗ − gA

∗γ5)]

= −MPν(gV fV
∗ − gAfA

∗) · 4p2µ +Mqν(gV hV
∗ − gAhA

∗) · 4p2µ

−MPµ(fV gV
∗ − fAgA

∗) · 4p2ν +Mqµ(hV gV
∗ − hAgA

∗) · 4p2ν . (C.25)

If we combine both results Eq. C.24 and Eq.C.25,

−4MPνPµ(gV fV
∗) + 4MPνqµ(gAfA

∗) + 4MqνPµ(gV hV
∗)− 4Mqνqµ(gAhA

∗)

−4MPµPν(fV gV
∗) + 4MPµqν(fAgA

∗) + 4MqµPν(hV gV
∗)− 4Mqµqν(hAgA

∗)

= −4MPµPν(gV fV
∗ + fV gV

∗)− 4Mqµqν(gAhA
∗ + hAgA

∗)

+4M{Pνqµ[Re(fAgA
∗)− iIm(fAgA

∗)] + qνPµ[Re(gV hV
∗) + iIm(gV hV

∗)]

+Pµqν [Re(fAgA
∗) + iIm(fAgA

∗)] + qµPν [Re(gV hV
∗)− iIm(gV hV

∗)]}

= −4MPµPν(gV fV
∗ + fV gV

∗)− 4Mqµqν(gAhA
∗ + hAgA

∗)

+4M(Pµqν + Pνqµ)[Re(fAgA
∗) +Re(gV hV

∗)]

+4M(Pµqν − Pνqµ)[iIm(fAgA
∗) + iIm(gV hV

∗)]. (C.26)
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4th term

Finally, the 4th term in Eq. (C.22),

M2Tr[γµ(gV − gAγ5)− Pµ(fV − fAγ5) + qµ(hV − hAγ5)]×

[γν(gV
∗ − gA

∗γ5)− Pν(fV
∗ + fA

∗γ5) + qν(hV
∗ + hA

∗γ5)]

= M2Tr[γµ(gV − gAγ5)γν(gV
∗ − gA

∗γ5)]

−M2PµPνTr[(fV − fAγ5)(fV
∗ + fA

∗γ5)] +M2qµqνTr[(hV − hAγ5)(hV
∗ + hA

∗γ5)]

−M2PµqνTr[(fV − fAγ5)(hV
∗ + hA

∗γ5)]−M2qµPνTr[(hV − hAγ5)(fV
∗ + fA

∗γ5)]

= 4M2(gV
2 − gA

2)Tr[γµγν ] + 4M2PµPν(fV
2 − fA

2) + 4M2qµqν(hV
2 − hA

2)

−4M2Pµqν(fV hV
∗ − fAhA

∗)− 4M2qµPν(hV fV
∗ − hAfA

∗)

= 4M2{(gV
2 − gA

2)gµν + (fV
2 − fA

2)PµPν + (hV
2 − hA

2)qµqν

−(Pµqν + Pνqµ)[Re(fV hV
∗)−Re(fAhA

∗)]

−(Pµqν − Pνqµ)[iIm(fV hV
∗)− iIm(fAhA

∗)]}. (C.27)

Now, we check our result with Pais’s paper[169]. If we add all terms Eq. C.23, C.26 and C.27,

the hadronic tensor can be written,

wµν = w1gµν + w2PµPν + w3iεµναβqαPβ + w4qµqν

+w5(Pµqν + Pνqµ) + w6(Pµqν − Pνqµ), (C.28)

with,

w1 = −2(gV
2 + gA

2)(2M2 − q2) + 4M2(gV
2 − gA

2)

= −4M2gV
2 + 2gV

2q2 − 4M2gA
2 + 2gA

2q2 + 4M2gV
2 − 4M2gA

2

= −8M2gA
2 + 2q2(gV

2 + gA
2), (C.29)

w2 = 2[(gV
2 + gA

2) + (2M2 − q2)(fV
2 + fA

2)]− 4M(gV fV
∗ + fV gV

∗) + 4M2(fV
2 − fA

2)

= 2(gV − 2MfV )(gV
∗ − 2MfV

∗) + 2gA
2 − 2q2(fV

2 + fA
2)

= 2gA
2 + 2 | gV − 2MfV |2 − 2q2(fV

2 + fA
2), (C.30)
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w3 = −4Re(gA
∗gV ), (C.31)

w4 = 2[−(gV
2 + gA

2) + (2M2 − q2)(hV
2 + hA

2)]− 4M(gAhA
∗ + hAgA

∗) + 4M2(hV
2 − hA

2)

= −2gV
2 − 2(gA + 2MhA)(gA

∗ + 2MhA
∗)− 2q2(hV

2 + hA
2) + 8M2hV

2 + 8M2hA
2

= −2gV
2 − 2 | gA + 2MhA|2 + 2(−q2 + 4M2)(hV

2 + hA
2), (C.32)

w5 = −2(2M2 − q2)[Re(fV hV
∗) +Re(fAhA

∗)]

+4M [Re(fAgA
∗) +Re(gV hV

∗)]− 4M2[Re(fV hV
∗)−Re(fAhA

∗)]

= 2Re{2M [(fAgA
∗ + gV hV

∗)−M(fV hV
∗ + fAhA

∗)

+ q2

2M (fV hV
∗ + fAhA

∗)−M(fV hV
∗ − fAhA

∗)]}

= 2Re{2M [(gV − 2MfV (1− q2

4M2 ))hV
∗ + (gA

∗ + q2

2M hA
∗)fA]}, (C.33)

w6 = −2(2M2 − q2)[iIm(fV hV
∗) + iIm(fAhA

∗)] + 4M [iIm(fAgA
∗) + iIm(gV hV

∗)]

−4M2[iIm(fV hV
∗)− iIm(fAhA

∗)]

= 2iIm{2M [(fAgA
∗ + hV

∗gV )−M(fV hV
∗ + fAhA

∗)

+ q2

2M (fV hV
∗ + fAhA

∗)−M(fV hV
∗ − fAhA

∗)]}

= 2iIm{2M [(gV − 2MfV (1− q2

4M2 ))hV
∗ + (gA

∗ + q2

2M hA
∗)fA]}. (C.34)

These results agree with [169] except some definition differences and typos. Note that all

interference with second class currents is contained in w5 and w6. Also note that w6 is purely

imaginary and it is responsible for T-violation for neutrino-nucleon elastic scattering.
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C.1.4 Llewellyn Smith formalism

Finally, we get the following equation from Eq. C.18 and Eq. C.28,

1
4wµντµν = [w1gµν + w2PµPν + w3iεµναβqαPβ + w4qµqν + w5(Pµqν + Pνqµ) + w6(Pµqν − Pνqµ)]

×[nµnν − qµqν + (q2 −m2)gµν + iεµναβnαqβ]

= w1n
2 − w1q

2 + 4w1(q2 −m2) + w2(P · n)2 − w2(P · q)2 + w2(q2 −m2)P 2

+2w3(δαγδβδ − δαδδγβ)qαPβnγqδ + w4(q · n)2 − w4q
4 + w4(q2 −m2)q2

2w5(P · n)(q · n)− 2w5(P · q)q2 + 2w5(q2 −m2)(P · q). (C.35)

Notice that the w6 term disappears by symmetry, which means differential cross section of

elastic neutrino-nucleon scattering is T-invariance, and therefore no CP violating physics.

Using Eq. C.6 to organize the formula in (s− u),

1
4wµντµν = w1(2m2 − q2 − q2 + 4q2 − 4m2) + w2(P · n)2 + w2(q2 −m2)(4M2 − q2) + 2w3(−q2P · n)

+w4(m4 − q4 + q4 −m2q2)− 2m2w5(P · n)

= (P · n)2w2 + (P · n)(−2q2w3 − 2m2w5) + 2w1(q2 −m2)

+w2(q2 −m2)(4M2 − q2)−m2w4(q2 −m2)

= (s− u)2w2 − (s− u)(2q2w3 + 2m2w5) + (q2 −m2)[2w1 + (4M2 − q2)w2 −m2w4]. (C.36)

Thus, the differential cross section Eq. C.12 becomes,

dσ

dQ2
=

GF
2cosθc

2

64πEν
2M2

1
4
wµντ

µν

=
M2GF

2cos2θc

8πEν
2

{
A(Q2) +B(Q2)

(s− u)
M2

+ C(Q2)
(s− u)2

M4

}
, (C.37)
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here, with a substitution of Pais to Llewellyn Smith form factors (Eq. C.10), A(Q2), B(Q2)

and C(Q2) are written,

A(Q2) = (q2−m2)
8M4 {2[−8M2gA

2 + 2q2(gV
2 + gA

2)]

+2(4M2 − q2)[gA
2+ | gV − 2MfV |2 − q2(fV

2 + fA
2)]

+2m2[gV
2+ | gA + 2MhA|2 − (−q2 + 4M2)(hV

2 + hA
2)]}

= (q2−m2)
M2

{
−2gA

2 + q2

2M2 (gV
2 + gA

2)

+
(

1− q2

4M2

)
[gA

2 + gV
2 + 4M2fV

2 − 4MRe(gV
∗fV )

−q2(fV
2 + fA

2)] + m2

4M2 [gV
2+ | gA + 2MhA|2 − (4M2 − q2)(hV

2 + hA
2)]
}
,

using Eq. C.10 to rewrite all form factors with Llewellyn Smith’s notation,

= (q2−m2)
M2

{
−2FA

2 + q2

2M2 (F 2
A + (F1 + ξF2)2) +

(
1− q2

4M2

)
×[

FA
2 + (F1 + ξF2)2 + (ξF2)2 − 4MRe

(
(F1

∗ + ξF2
∗) ξF2

2M

)
− q2

(
1

4M2 (ξF2
2)2 + 1

M2 (FA
3)2
)]

+ m2

4M2

[
(F1 + ξF2)2+ | −FA − 2FP |2 − (4M2 − q2)

(
(FV

3)2

M2 + FP
2

M2

)]}
= (q2−m2)

M2

{
−
(

1− q2

4M2

)
F 2

A +
(

1 + q2

4M2

)
(F1)2 +

[
q2

2M2 +
(

1− q2

4M2

)(
2− 2− q2

4M2

)]
(ξF2)2

+
[
2 q2

2M2 +
(

1− q2

4M2

)
(2− 2)

]
Re(F1

∗ξF2)− q2

M2

(
1− q2

4M2

)
(FA

3)2

+ m2

4M2

[
| F1 + ξF2|2+ | FA + 2FP |2 − 4

(
1− q2

4M2

)
((FV

3)2 + FP
2)
]}

,

and finally,

= (m2−q2)
M2

{(
1− q2

4M2

)
F 2

A −
(

1 + q2

4M2

)
(F1)2

− q2

4M2

(
1 + q2

4M2

)
(ξF2)2 − q2

M2Re(F1
∗ξF2) + q2

M2

(
1− q2

4M2

)
(FA

3)2

− m2

4M2

[
| F1 + ξF2|2+ | FA + 2FP |2 − 4

(
1− q2

4M2

)
((FV

3)2 + FP
2)
]}

= (m2+Q2)
M2

{(
1 + Q2

4M2

)
F 2

A −
(

1− Q2

4M2

)
(F1)2

+ Q2

4M2

(
1− Q2

4M2

)
(ξF2)2 + Q2

M2Re(F1
∗ξF2)− Q2

M2

(
1 + Q2

4M2

)
(FA

3)2

− m2

4M2

[
| F1 + ξF2|2+ | FA + 2FP |2 − 4

(
1 + Q2

4M2

)
((FV

3)2 + FP
2)
]}

. (C.38)
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Similarly, B(Q2) term and C(Q2) term are,

B(Q2) = 1
8M2

{
−2q2(−4Re(gA

∗gV ))− 2m2

·4ReM
[
(gV − 2MfV

(
1− q2

4M2

)
)hV

∗ + (gA
∗ + q2

2M hA
∗)fA

]}
= q2

M2Re[−FA
∗(F1 + ξF2)]− m2

M Re
[(
F1 + q2

4M2 ξF2

)
FV

3∗

M +
(
−FA

∗ − q2

2M2FP

)
FA

3

M

]
= −

{
q2

M2Re[FA
∗(F1 + ξF2)] + m2

M2Re
[(
F1 + q2

4M2 ξF2

)
FV

3∗

−
(
FA

∗ + q2

2M2FP

)
FA

3
]}

=
{

Q2

M2Re[FA
∗(F1 + ξF2)]− m2

M2Re
[(
F1 − Q2

4M2 ξF2

)
FV

3∗

−
(
FA

∗ − Q2

2M2FP

)
FA

3
]}

. (C.39)

C(Q2) = 1
8 · 2[gA

2+ | gV − 2MfV |2 − q2(fV
2 + fA

2)]

= 1
4

{
FA

2+ | F1 + ξF2 − ξF2|2 − q2
[(

1
2M ξF2

)2 +
(

1
MFA

3
)2]}

= 1
4

{
FA

2 + F1
2 − q2

4M2 (ξF2)2 − q2

M2 (FA
3)2
}

= 1
4

{
FA

2 + F1
2 + Q2

4M2 (ξF2)2 + Q2

M2 (FA
3)2
}
. (C.40)

These results agree with [15] except the location of “∗” in
(
F1 − Q2

4M2 ξF2

)
FV

3∗ at B-term.

Note here that contribution from FP and FV
3 are very small since they always couple with

m2

M2 � 1.

Now, the expression for Eq. C.2 is easily deduced from the crossing diagram with re-

placing q2 → −q1 and q1 → −q2 (Fig. C.2). This replacement corresponds to exchange s

and u.

dσ

dQ2
(s, t, u) → dσ

dQ2
(u, t, s)

B(Q2) → −B(Q2)
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Therefore,

dσ

dQ2

 νl + n→ l− + p

ν̄l + p→ l+ + n


=
M2GF

2cos2θc

8πEν
2

{
A(Q2)±B(Q2)

(s− u)
M2

+ C(Q2)
(s− u)2

M4

}
(C.41)
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Figure C.2: (a) is the Feynman diagram of Eq. C.1, after the time reversal operation, one

can get (b), then exchange of neutrino and lepton gives (3), which is the Feynman diagram

of Eq. C.2.
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C.2 Neutrino-Nuclei lepton scattering

C.2.1 Kinematics and cross section formula

Now, we want to consider charge current quasi elastic scattering with bound nucleon.

νl +A→ l− +A′, (C.42)

ν̄l +A→ l+ +A′. (C.43)

In Fig C.3, initial and final lepton ν and l, initial and final nuclei A and A′, initial and

final nucleon N and N ′ have 4-momentum k1, k2, p, p′, k, and k′ respectively. The charged

lepton l has mass m, and nuclear target A has mass mT , also we define nucleons N and N ′

to have mass M .

In modern notation, lab frame kinematics are defined in the following way.

k1 = (ε1, 0, 0, ε1)

k2 = (ε2, ~k2)

p = (mT , 0, 0, 0)

k2 = ε2 − |~k|2 ≡ ε2 − k2 (C.44)

q2 = w2 − |~q|2 ≡ w2 − q2 < 0

k · q = wε− ~k · ~q = wε− kqcosτ

Here, we use k and q as the abbreviations of |~k| and |~q|, and τ is the angle defined between

~k and ~q. These expressions are used for modern papers, for example [155].

279



APPENDIX C. THE DETAIL OF CROSS SECTION CALCULATIONS
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Figure C.3: The neutrino-nuclei scattering diagram.
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For old papers, including the original Smith-Moniz paper [16], use different notations.

k1 = (ε1, 0, 0, iε1)

k2 = ( ~k2, iε2)

p = (0, 0, 0, imT )

k2 = −ε2 + |k|2 ≡ k2 − ε2 (C.45)

q2 = −w2 + |q|2 ≡ q2 − w2 > 0

k · q = −wε+ ~k · ~q = −wε+ kqcosτ

One needs a special care for the original paper written by Smith and Moniz, because they

define q = k2 − k1, then,

k · q = −wε+ ~k · ~q = −wε− kqcosτ, (C.46)

these are the expressions used in the original paper [16].

For neutrino-bound nucleon weak interaction, the cross section is,

dσ =
| M |2
flux

dLips =
| M |2
4|k1 · p|

d3k2

(2π)3 · 2ε2
d3p′

(2π)3 · 2Ep
(2π)4δ4(p′ − p− q)

=
| M |2
4|k1 · p|

d3k2

(2π)2 · 2ε2
d3p′

2Ep
δ4(p′ − p− q)︸ ︷︷ ︸

put into hadronic tensor

=
1

4ε1 ·mT

k2
2dk2dΩ

(2π)2 · 2ε2
(GF cosθc)2

2
1
2
τµνW

µν ,

therefore, double differential cross section for neutrino-bound nucleon scattering can be

written,

dσ2

dk2dΩ
=

(GF cosθc)2k2
2

2π2mT

(
1

16ε1ε2

)(
1
4

)
τµνW

µν . (C.47)

This expression looks similar with Eq. (3) of the original paper [16], excepting many coef-

ficient differences. We will see later, that factor 1
16ε1ε2

cancels with τµνW
µν , and factor 1

4

cancels with the nucleon tensor definition difference between Smith-Moniz and Llewellyn-

Smith.
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C.2.2 Leptonic and hadronic tensor term

The leptonic tensor is of the usual form (Eq. C.13),

τµν = 8[k1µk2ν + k2µk1ν − (q1 · q2)gµν + q2µ − iεµναβk1αk2β].

The hadronic tensor is defined in the original paper (Eq. (2) of Ref. [16]),

Wµν = W1δµν +
W2

m2
T

pµpν +
Wα

m2
T

qµqν +
Wβ

m2
T

(pµqν + pνqµ) +
W8

m2
T

εµναβpαqβ , (C.48)

and we re-write this in modern notation,

Wµν = −W1gµν +
W2

m2
T

pµpν +
Wα

m2
T

qµqν +
Wβ

m2
T

(pµqν + pνqµ) + i
W8

m2
T

εµναβpαqβ . (C.49)

This is more standard expression in modern articles, for example [45, 155]. We ignore W6

term because it will disappear if one takes contraction with leptonic tensor as we see in

Eq. C.35. Although Eq. C.48 and C.49 are quite similar, they show more difference with

their lab frame expression.

In the Lab frame, the old notation is,

Wµν = W1δµν −W2δµ4δν4 +
Wα

m2
T

qµqν + i
Wβ

mT
(δµ4qν + δν4qµ)− iW8

mT
εµνα4qα.(C.50)

On the other hand, modern notation,

Wµν = −W1gµν +W2gµ0gν0 +
Wα

m2
T

qµqν +
Wβ

mT
(gµ0qν + gν0qµ)− iW8

mT
εµνα0qα.(C.51)

We adopt Eq. C.51 for later calculations. If we take the contraction with Leptonic tensor,

using k2
ε2
cosθ ≡ cosχ, the coefficient for Wi term becomes,

W1 → −[2(k1 · k2)− 4(k1 · k2)] = 2



ε1

0

0

ε1


·



ε2

~k2


= 2ε1ε2

(
1− k2

ε2
cosθ

)

= 2ε1ε2(1− cosχ) = 4ε1ε2sin2

(
1
2
χ

)
, (C.52)
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W2 → 2ε1ε2 − (k1 · k2) = ε1(ε2 + k2cosθ) = ε1ε2(1 + cosχ)

= 2ε1ε2cos2
(

1
2
χ

)
, (C.53)

Wα → 1
m2

T

[2(k1 · q)(k2 · q)− (k1 · k2)q2]

=
1
m2

T

[2(k2
2 − k1 · k2)(k1 · k2 − k2

1)− (k1 · k2)(k2 − k1)2]

=
1
m2

T

[2k2
2(k1 · k2)− 2(k1 · k2)2 − (k1 · k2)(k2

2 − 2k1 · k2)]

=
1
m2

T

k2
2(k1 · k2) =

m2

m2
T

· 2ε1ε2sin2

(
1
2
χ

)
, (C.54)

Wβ → 1
mT

[2ε1(k2 · q) + 2ε2(k1 · q)− 2(k1 · k2)(ε2 − ε1)]

=
1
mT

[2ε1(k2
2 − k1 · k2) + 2ε2(k1 · k2 − k2

1)− 2(k1 · k2)(ε2 − ε1)]

=
1
mT

2ε1k2
2 =

m2

mT
2ε1, (C.55)

W8 → − 1
mT

εµνσ 0qσεµναβk
α
1 k

β
2 = − 1

mT

∣∣∣∣∣∣∣∣∣∣∣∣∣

δµ
µ δν

µ δσ
µ δ0µ

δµ
ν δν

ν δσ
ν δ0ν

δµ
α δν

α δσ
α δ0α

δµ
β δν

β δσ
β δ0β

∣∣∣∣∣∣∣∣∣∣∣∣∣
qσk

α
1 k

β
2 = − 2

mT
(δσ

αδ
0
β − δ0αδσ

β )qσkα
1 k

β
2

= − 2
mT

[ε2(k1 · q)− ε1(k2 · q)] = − 2
mT

[ε2(k1 · k2 − k2
1)− ε1(k2

2 − k1 · k2)]

= − 2
mT

[(k1 · k2)(ε1 + ε2)−m2ε1] =
2
mT

[
−2ε1ε2(ε1 + ε2)sin2

(
1
2
χ

)
+m2ε1

]
. (C.56)

In total,

τµνWµν = 16ε1ε2

{
2sin2

(
1
2
χ

)
W1 + cos2

(
1
2
χ

)
W2 +

m2

m2
T

sin2

(
1
2
χ

)
Wα +

m2

mT ε2
(Wβ +W8)

− 2
mT

W8(ε1 + ε2)sin2

(
1
2
χ

)}
. (C.57)
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We use the following transformation for the second line of Eq. C.57.

sin

(
1
2
χ

)
(ε1 + ε2) =

√
sin2

(
1
2
χ

)
(ε1 + ε2)2 =

√
1
2

(ε21 + 2ε1ε2 + ε22)
(

1− k2

ε2
cosθ

)

=

√
1
2

[
ε21

(
1− k2

ε2
cosθ

)
+ ε22

(
1− k2

ε2
cosθ

)
+ 2ε1ε2 − 2ε1ε2cosθ

]

=

√
ε21sin

2

(
1
2
χ

)
+ ε22cos

2

(
1
2
χ

)
+

1
2

(q2 +m2)

=

√
(−q2 + |q|2 + 2ε1ε2)sin2

(
1
2
χ

)
+

1
2

(q2 +m2)

=

√
q2cos2

(
1
2
χ

)
+ |q|2sin2

(
1
2
χ

)
+ ε1ε2

(
1− k2

ε2
cosθ

)
+

1
2

(−q2 +m2)

=

√
q2cos2

(
1
2
χ

)
+ |q|2sin2

(
1
2
χ

)
+

1
2

(q2 +m2) +
1
2

(−q2 +m2)

=

√
q2cos2

(
1
2
χ

)
+ |q|2sin2

(
1
2
χ

)
+m2. (C.58)

Putting Eq. C.58 together into Eq. C.57,

τµνWµν = 16ε1ε2

{
2W1sin

2

(
1
2
χ

)
+W2cos

2

(
1
2
χ

)
+ sin2

(
1
2
χ

)
m2

m2
T

Wα +
m2(Wβ +W8)

mT ε2

−2W8

mT
sin

(
1
2
χ

)√
q2cos2

(
1
2
χ

)
+ |q|2sin2

(
1
2
χ

)
+m2

}
. (C.59)

Finally combining Eq. C.47 and Eq. C.59, we can get Eq. (3) from Smith and Moniz

paper [16] except for a factor of 1
4 . We will see this factor 1

4 cancels with the definition of

Wi. The lab frame expression for double differential cross section,

dσ2

dk2dΩ
=

G2
V k

2
2

2π2mT

(
1
4

){
2W1sin

2

(
1
2
χ

)
+W2cos

2

(
1
2
χ

)
+ sin2

(
1
2
χ

)
m2

m2
T

Wα +
m2(Wβ +W8)

mT ε2

−2W8

mT
sin

(
1
2
χ

)√
q2cos2

(
1
2
χ

)
+ |q|2sin2

(
1
2
χ

)
+m2

}
. (C.60)
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C.2.3 Hadronic nuclei functions, definitions

The Llewellyn-Smith formalism uses hadronic nucleon tensor to contract with leptonic ten-

sor. Since the Smith and Moniz formalism describes the interaction of nuclei and lepton, it

uses hadronic nuclei tensor to contract with leptonic tensor. Each nuclei tensor has hadronic

nuclei function, and it is described by the combination of hadronic nucleon functions.

For the lab frame nuclei hadronic tensor, we have Eq. C.51. For nucleon tensor, again,

we modified to modern notation,

Tµν = −T1gµν +
T2

M2
pµpν +

Tα

M2
qµqν +

Tβ

M2
(pµqν + pνqµ) + i

T8

M2
εµναβpαqβ, (C.61)

and they are related with the integral of nucleon phase space,

Wµν =
∫
d~kf(~k, ~q, ω)Tµν . (C.62)

Here f(~k, ~q, ω) is a function describing how nucleons distribute in momentum space,

f(~k, ~q, ω) =
mT Ω
(2π)3

δ(εk − εk−q + ω)
εkεk−q

· ni(|~k|)(1− nf (|~k − ~q|)), (C.63)

• Ω= quantization volume, for RFG model, Ω = 3π2N
p3

F
, where N is the number of

neutrons in the nucleus,

• εk= nucleon energy before the scattering, using the initial binding energy ε1 (=EB

for our case), εk =
√
|~k|2 +m2 − ε1 = ε− ε1,

• εk−q= nucleon energy after the scattering, using the final binding energy ε2 (=0 for our

case) and the effective energy transfer ωeff = ω+ε2−ε1, εk−q =
√
|~k − ~q|2 +m2−ε2 =

ε+ ωeff − ε2 = ε+ ω − ε1,

• δ(ε− εk−q + ω)= energy conservation,

• ni(|~k|) = a function describes the Fermi momentum distribution for the target nucleon

in the nuclei. For RFG model, ni(|~k|) = θ(pF − |~k|),
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• nf (|~k − ~q|)= a function describes the final nucleon states after scattering, When the

states are already occupied, interactions do not happen (called Pauli blocking). For

RFG model, nf (|~k − ~q|) = θ(pF − |~k − ~q|).

We will consider all integrals in the next subsection, now, we define the following 7 functions.

a1 =
∫
d~kf(~k, ~q, ω) (C.64)

a2 =
∫
d~kf(~k, ~q, ω)

k2

M2
(C.65)

a3 =
∫
d~kf(~k, ~q, ω)

k2cos2τ

M2
(C.66)

a4 =
∫
d~kf(~k, ~q, ω)

ε2k
M2

(C.67)

a5 =
∫
d~kf(~k, ~q, ω)

εkkcosτ

M2
(C.68)

a6 =
∫
d~kf(~k, ~q, ω)

kcosτ

M
(C.69)

a7 =
∫
d~kf(~k, ~q, ω)

εk
M

(C.70)

For the RFG model, these integrals, taken within the momentum space of target nucleon

available for the interaction, can be re-written by the integral of target nucleon energy.

Then, the highest energy nucleons available for the scattering are ones located on the Fermi

surface, and the lowest energy nucleons join the scattering are ones who can escape from

Fermi surface by adding energy transfer,∫
d~kf(~k, ~q, ω) ∼

∫ kmax

kmin

kdk ∼
∫ Ehi

Elo

εdε,

here, Elo and Ehi are written,

Ehi =
√
p2

F +M2
n,

Elo =
√
p2

F +M2
p − ω + EB.

Then, we want to find the expressions for nuclei hadronic tensors in terms of nucleon

hadronic tensors. Let’s contract both hadronic tensors by 4 tensors, (1) gµν , (2) qµqν , (3)
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gµ4gν4, and (4) gµ4qν .

gµνT
µν = −4T1 +

k2

M2
T2 +

q2

M2
Tα +

2k · q
M2

Tβ (C.71)

qµqνT
µν = −q2T1 +

(k · q)2

M2
T2 +

q4

M2
Tα +

2q2(k · q)
M2

Tβ (C.72)

gµ0gν0T
µν = −T1 +

ε2k
M2

T2 +
ω2

M2
Tα +

2εkω
M2

Tβ (C.73)

gµ0qνT
µν = −ωT1 +

εk(k · q)
M2

T2 +
ωq2

M2
Tα +

εkq
2 + ω(k · q)
M2

Tβ (C.74)

gµνW
µν = −4W1 +W2 +

q2

m2
T

Wα +
2ω
mT

Wβ (C.75)

qµqνW
µν = −q2W1 + ω2W2 +

q4

m2
T

Wα +
2ωq2

mT
Wβ (C.76)

gµ0gν0W
µν = −W1 +W2 +

ω2

m2
T

Wα +
2ω
mT

Wβ (C.77)

gµ0qνW
µν = −ωW1 + ωW2 +

ωq2

m2
T

Wα +
(q2 + ω2)
mT

Wβ (C.78)

Eqs. C.71 to C.74 and Eqs. C.75 to C.78 are related through Eq. C.62, thus,

−4W1 +W2 +
q2

m2
T

Wα +
2ω
mT

Wβ

=
∫
fd~k

[
−4T1 +

k2

M2
T2 +

q2

M2
Tα +

2k · q
M2

Tβ

]
, (C.79)

−q2W1 + ω2W2 +
q4

m2
T

Wα −
2ωq2

mT
Wβ

=
∫
fd~k

[
−q2T1 +

(k · q)2

M2
T2 +

q4

M2
Tα +

2q2(k · q)
M2

Tβ

]
, (C.80)

−W1 +W2 +
ω2

m2
T

Wα +
2ω
mT

Wβ

=
∫
fd~k

[
−T1 +

ε2k
M2

T2 +
ω2

M2
Tα +

2εkω
M2

Tβ

]
, (C.81)

−W1 +W2 +
q2

m2
T

Wα +
(
q2 + ω2

ωmT

)
Wβ

=
∫
fd~k

[
−T1 +

εk(k · q)
ωM2

T2 +
q2

M2
Tα +

(
εkq

2

ωM2
+

(k · q)
M2

)
Tβ

]
. (C.82)
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Then we calculate the following 4 combinations, (i) (Eq. C.79) − (Eq. C.80), (ii) (Eq. C.79)

− (Eq. C.81), (iii) (Eq. C.79) − (Eq. C.82), and (iv) q2

ω2 × (Eq. C.80) + (Eq. C.81).

(i) −3W1 +
(

1− ω2

q2

)
W2 =

∫
fd~k

[
−3T1 +

(
k2

M2
− (k · q)2

q2M2

)
T2

]
(ii) −3W1 +

q2 − ω2

m2
T

Wα =
∫
fd~k

[
−3T1 +

k2 − ε2k
M2

T2 +
q2 − ω2

M2
Tα + 2

(k · q)− εkω
M2

Tβ

]
(iii) −3W1 +

(
2ω
mT
− q2 + ω2

ωmT

)
Wβ

=
∫
fd~k

[
−3T1 +

(
k2

M2
− εk(k · q)

ωM2

)
T2 +

(
(k · q)
M2

− εkq
2

ωM2

)
Tβ

]
(iv)

(
1− q2

ω2

)
W1 +

q4 − ω4

m2
Tω

2
Wα + 2

q2 − ω2

mTω
Wβ

=
∫
fd~k

[(
1− q2

ω2

)
T1 +

(
(k · q)2

M2ω2
−

ε2k
M2

)
T2 +

q4 − ω4

M2ω2
Tα + 2

(
q2(k · q)
M2ω2

− εkω

M2

)
Tβ

]

Using Eq. C.44, (i), (ii), (iii), and (iv) can be re-written as the following.

(i) −3W1 −
|q|2

q2
W2 =

∫
d~k

[
−3T1 +

1
M2q2

[|k|2|q|2 − ε2k|q|2 − ω2|k|2 + 2εkω(~k · ~q)− (~k · ~q)2]T2

]
(ii) 3W1 +

|q|2

m2
T

Wα =
∫
d~k

[
3T1 +

|k|2

M2
T2 +

|q|2

M2
Tα + 2

(~k · ~q)
M2

Tβ

]

(iii) 3W1 −
|q|2

mTω
Wβ =

∫
d~k

[
3T1 +

(
|k|2

M2
− εk(~k · ~q)

ωM2

)
T2 +

(
(~k · ~q)
M2

− εk|q|2

ωM2

)
Tβ

]

(iv)
|q|2

ω2
W1 +

|q|2

m2
T

(
|q|2

ω2
− 2
)
Wα − 2

|q|2

mTω
Wβ

=
∫
d~k

[
|q|2

ω2
T1 +

(~k · ~q)
M2

(
(~k · ~q)
ω2

− 2εk
ω

)
T2 +

|q|2

M2

(
|q|2

ω2
− 2
)
Tα

+
2
M2

(
−εk|q|

2

ω
+
|q|2(~k · ~q)

ω2
− (~k · ~q)

)
Tβ

]
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Then, calculate the combination, 2×(iii)+(iv)−
(
|q|2
ω2 − 2

)
×(ii),

2
(
−3W1 +

|q|2

mTω
Wβ

)
+
(
|q|2

ω2
W1 +

|q|2

m2
T

(
|q|2

ω2
− 2
)
Wα − 2

|q|2

mTω
Wβ

)
−
(
|q|2

ω2
− 2
)(

3W1 +
|q|2

m2
T

Wα

)
=

∫
d~k

[
2

(
−3T1 +

(
−|k|

2

M2
+
εk(~k · ~q)
ωM2

)
T2 +

(
−(~k · ~q)

M2
+
εk|q|2

ωM2

)
Tβ

)

+

(
|q|2

ω2
T1 +

(~k · ~q)
M2

(
(~k · ~q)
ω2

− 2εk
ω

)
T2 +

|q|2

M2

(
|q|2

ω2
− 2
)
Tα

+
2
M2

(
−εk|q|

2

ω
+
|q|2(~k · ~q)

ω2
− (~k · ~q)

)
Tβ

)
−
(
|q|2

ω2
− 2
)
· (ii)

]
,

then,

→ −2
|q|2

ω2
W1 =

∫
d~k

[(
−6 +

|q|2

ω2

)
T1 +

(
−2|k|2

M2
+

(~k · ~q)
M2ω2

)
T2 +

|q|2

M2

(
|q|2

ω2
− 2
)
Tα

+
2(~k · ~q)
M2

(
|q|2

ω2
− 2
)
Tβ

−
(
|q|2

ω2
− 2
)
·

{
3T1 +

|k|2

M2
T2 +

|q|2

M2
Tα + 2

(~k · ~q)
M2

Tβ

}]

→ 2
|q|2

ω2
W1 =

∫
d~k

[
2
|q|2

ω2
T1 +

1
M2

(
|k|2|q|2

ω2
− (~k · ~q)

ω2

)
T2

]

→ W1 =
∫
d~k

[
T1 +

1
2M2

(
|k|2 − (−|k||q|cosτ)2

|q|2

)
T2

]
→ W1 = T1 +

1
2

(a2 − a3)T2. (C.83)
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W2 can be found from (i) and Eq. C.83,

W2 = − 3q2

2|q|2
(a2 − a3)T2

−
∫
d~k

[
1

M2|q|2
(|k|2|q|2 − ε2k|q|2 − ω2|k|2 − 2εkω|k||q|cosτ − |k|2|q|2cos2τ)T2

]
=

3
2

(
− ω2

|q|2
+ 1
)

(a2 − a3)T2

−
∫
d~k

[
1
M2

(|k|2 − ε2k −
ω2|k|2

|q|2
− 2

εkω|k|
|q|

cosτ − |k|2cos2τ)T2

]
=

[
3
2

(
− ω2

|q|2
+ 1
)

(a2 − a3)− a2 + a4 +
ω2

|q|2
a2 +

2ω
|q|
a5 − a3)

]
T2

=
[
a4 +

2ω
|q|
a5 +

ω2

|q|2
a3 −

q2

2|q|2
(a2 − a3)

]
T2

q2→−q2

→
[
a4 +

2ω
|q|
a5 +

ω2

|q|2
a3 +

q2

2|q|2
(a2 − a3)

]
T2. (C.84)

The last step comes from the fact that q2 is positive defined in old, including Smith and

Moniz’s, papers.

From (ii),

Wα = −
3m2

T

2|q|2
(a2 − a3)T2 + frm2

T |q|2
∫
d~k

[
|k|2

M2
T2 +

|q|2

M2
Tα − 2

|k||q|cosτ
M2

Tβ

]
=

m2
T

|q|2

[
3
2

(a3 − a2)T2 + a2T2 +
|q|2a1

M2
Tα − 2

a6|q|
M

Tβ

]
=

m2
T

|q|2

(
3
2
a3 −

1
2
a2

)
T2 +

m2
Ta1

M2
Tα − 2

a6m
2
T

M |q|
Tβ . (C.85)

Notice sign in front of a6 term is minus. This sign is plus in original Smith and Moniz’s

paper [27].
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Finally from (iii),

Wβ = −3mTω

2|q|2
(a3 − a2)T2

+
mTω

|q|2

∫
d~k

[(
−|k|

2

M2
− εk|k||q|cosτ

ωM2

)
T2 +

(
|k||q|cosτ
M2

+
εk|q|2

ωM2

)
Tβ

]
= −3mTω

2|q|2
(a3 − a2)T2

+
∫
d~k

[(
−mTω|k|2

|q|2M2
− mT εk|k|cosτ

|q|M2

)
T2 +

(
mTω|k|cosτ
|q|M2

+
mT εk
M2

)
Tβ

]
= −3mTω

2|q|2
(a3 − a2)T2 +

(
−mTω

|q|2
a2 −

mTa5

|q|

)
T2 +

mT

M

(
a7 +

ω

|q|
a6

)
Tβ

=
mT

M

(
a7 +

ω

|q|
a6

)
Tβ −

mT

|q|

[
a5 +

ω

|q|

(
3
2
a3 −

1
2
a2

)]
T2. (C.86)

Notice, the sign in front of T2 is minus. This sign is plus in original Smith and Moniz’s

paper [27].

The last term, W8, is antisymmetric and disappears for all contractions with the sym-

metric tensor. Now we go back to Eq. C.62, and take the contraction with the antisymmetric

tensor εµναβ , then take contraction with gα4qβ ,

− 1
mT

εµναβεµνσ0q
σW8 =

1
M2

∫
d~k
[
εµναβεµνστk

σqτT8

]
→ − 1

mT
(gσαg4β − gσβg4α)qσW8 =

1
M2

∫
d~k
[
(δα

σ δ
β
τ − δβ

σδ
α
τ )kσqτT8

]
→ − i

mT
(ω2 − q2)W8 =

1
M2

∫
d~k
[
(εkq2 − (k · q)ω)T8

]
→ W8 =

mT

|q|2M2

∫
d~k
[
(εk|q|2 + |k||q|cosτ)T8

]
→ W8 =

mT

M

(
a7 +

ω

|q|
a6

)
. (C.87)

Therefore, Eq. C.83, C.84, C.85, C.86, and C.87 are the expressions of hadronic nuclei

functions, W1, W2, Wα, Wβ , and W8 in terms of hadronic nucleon functions, T1, T2, Tα, Tβ ,

and T8.
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C.2.4 Analytic solutions for the phase space integrals

For RFG model, Eqs. C.64 to C.70 have analytic solutions. To calculate them, we first

define the following.

q2eff = |~q|2 − ω2
eff

a = ε1

(
1 +

ep2

ω

)
b = ε2

(
1− ep1

ω

)
c = −

ωeff

|~q|

d =
q2eff

2|~q|M

bj =
∫
d~kf(~k, ~q, ω)

( ε

M

)j

=
∫
d~k
mT Ω
(2π)3

δ(εk − εk−q + ω)
εεk−q

· ni(|~k|)[1− nf (|~k − ~q|)] ·
( ε

M

)j

=
∫ kmax

kmin

k2dkdcosτ
mT Ω
(2π)2

δ(εk − εk−q + ω)
εεk−q

cdot
( ε

M

)j

Since εk−q =
√
|~k − ~q|+M2−ε2 =

√
|~k|2 + |~q|2 − 2|~k||~q|cosτ +M2−ε2, we can re-write en-

ergy conservation with function of cosτ , by using a standard formula, δ(f(x)) =
∑

i
δ(x−xi)
f ′(xi)

.

For our case,

f(cosτ) = ε−
√
|~k|2 + |~q|2 − 2|~k||~q|cosτ +M2 + ωeff , (C.88)

f(cosτ0) = ε−
√
|~k|2 + |~q|2 − 2|~k||~q|cosτ0 +M2 + ωeff = 0

→ cosτ0 =
|~q|2 − ω2

eff − 2εωeff

2|~k||~q|
, (C.89)

f ′(cosτ) =
|~k||~q|√

ε2 + |~q|2 − 2|~k||~q|cosτ
, (C.90)

f ′(cosτ0) =
|~k||~q|

(ε+ ωeff )
. (C.91)
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then,

δ(εk − εk−q + ω) = δ(ε− ε1 −
√
|~k − ~q|+M2 + ε2 + ω)

= δ(ε−
√
|~k|2 + |~q|2 − 2|~k||~q|cosτ +M2 + ωeff )

=
ε+ ωeff

|~k||~q|
δ

[
cosτ +

2εωeff + ω2
eff − |~q|2

2|~k||~q|

]
. (C.92)

And b0 becomes,

b0 =
∫ kmax

kmin

k2dkdcosτ
mT Ω
(2π)2

1
εkεk−q

·
ε+ ωeff

|~k||~q|
δ

[
cosτ +

2εωeff + ω2
eff − |~q|2

2|~k||~q|

]

=
mT Ω

(2π)2|~q|

∫ kmax

kmin

kdk
ε+ ωeff

εkεk−q

=
mT Ω

(2π)2|~q|

∫ Ehi

Elo

εdε
ε+ ωeff

(ε− ε1)(ε− ε1 + ω)
.

Let’s focus on the inside of this integral,

ε(ε+ ωeff )
epkεk−q

=
ε(ε+ ω − ε1 + ε2)

(ε− ε1)(ε− ε1 + ω)

=
(ε− ε1)(ε− ε1 + ω) + εε1 − ε21 + ε1ω + εε2

(ε− ε1)(ε− ε1 + ω)

= 1 +
ωεε1 − ωε21 + ε1ω

2 + ωεε2 + ωε1ε2(1− 1) + εε1ε2(1− 1) + ε21ε2(1− 1)
ω(ε− ε1)(ε− ε1 + ω)

= 1 +
ε1(ωε− ωε1 + ω2 + ε2ε− ε1ε2 + ωε2) + ε2(ωε− ωε1εε1 + ε21)

(ε− ε1)(ε− ε1 + ω)

= 1 +
ε1(ω + ε2)(ε− ε1 + ω) + ε2(ω − ε1)(ε− ε1)

(ε− ε1)(ε− ε1 + ω)

= 1 +
a

ε− ε1
+

b

ε− ε1 + ω
.

Therefore,

b0 =
mT Ω

(2π)2|~q|
[ε+ aln(ε− ε1) + bln(ε− ε1 + ω)]|Ehi

Elo
. (C.93)
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Similarly, we can get expressions for b1 and b2.

ε2(ε+ ωeff )
epkεk−q

= ε

(
1 +

a

ε− ε1
+

b

ε− ε1 + ω

)
= ε+ a

(
1 +

ε1
ε− ε1

)
+ b

(
1 +

ε1 − ω
ε− ε1 + ω

)
→ b1 =

mT Ω
(2π)2|~q|M

[
ε2

2 + a {ε+ ε1ln(ε− ε1)}

+b {ε+ (ε1 − ω)ln(ε− ε1 + ω)}] |Ehi
Elo

(C.94)

ε3(ε+ ωeff )
epkεk−q

= ε2
(

1 +
a

ε− ε1
+

b

ε− ε1 + ω

)
= ε2 + a

ε2 − ε21 + ε21
ε− ε1

+ b
ε2 − (ε1 − ω)2 + (ε1 − ω)2

ε− ε1 + ω

= ε2 + a

(
ε+ ε1 +

ε21
ε− ε1

)
+ b

(
ε+ (ε1 − ω) +

(ε1 − ω)2

ε− ε1 + ω

)
→ b2 =

mT Ω
(2π)2|~q|M

[
ε3

3 + a
{

ε2

2 + εε1 + ε21ln(ε− ε1)
}

+b
{

ε2

2 + ε(ε1 − ω) + (ε1 − ω)2ln(ε− ε1 + ω)
}]
|Ehi
Elo

(C.95)

Now, we go back to Eq. C.64 to C.70, using Eq. C.89,

a1 =
∫
d~kf = b0, (C.96)

a2 =
∫
d~kf

k2

M2
=
∫
d~kf

(
ε2

M2
− 1
)

= b2 − b0, (C.97)

a3 =
∫
d~kf

k2cos2τ

M2
=
∫
d~kf

4ω2
eff ε

2 − 4εωeff (|~q|2 − ω2
eff ) + |~q|4 + ω4

eff − 2|~q|2ω2
eff

4M2|~q|2

=
∫
d~kf

[
ω2

eff

|~q|2
( ε

M

)2
−
ωeff (|~q|2 − ω2

eff )
|~q|2M

( ε

M

)
+

(|~q|2 − ω2
eff )2

4M2|~q|2

]
= c2b0 + 2cdb1 + d2b0, (C.98)

a4 =
∫
d~kf

ε2k
M2

=
∫
d~kf

(
ε2

M2
− 2εε1
M2

+
ε21
M2

)
= b22 − 2

ε1
M
b1 +

ε21
M2

b0, (C.99)
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a5 =
∫
d~kf

εkkcosτ

M2
=
∫
d~kf(ε− ε1)

(
|~q|2 − ω2

eff − 2εωeff

2|~k||~q|

)

=
∫
d~kf

[
−
ωeff

|~q|

( ε

M

)2
+

(
q2eff

2|~q|m
+
ε1ωeff

m|~q|

)( ε

M

)
−

ε1q
2
eff

2M2|~q|

]

= cb2 +
(
d− ε1c

M

)
b1 −

ε1d

M
b0, (C.100)

a6 =
∫
d~kf

kcosτ

M
=
∫
d~kf

k

M

(
fr|~q|2 − ω2

eff − 2εωeff2|~k||~q|
)

= cb1 + db0, (C.101)

a7 =
∫
d~kf

εk
M

=
∫
d~kf

(
ε− ε1
M

)
= b1 −

ε1
M
b0. (C.102)

C.2.5 Hadronic nucleon functions, definitions

All hadronic nucleon functions are described with combinations of nucleon form factors. We

can find hadronic nucleon functions in Smith Moniz formula from Llewellyn-Smith formula.

We found the following Pais’s nucleon functions (Eq. C.29, C.30, C.31, C.32, and C.33),

wµν = w1gµν + w2PµPν + w3iεµναβqαPβ + w4qµqν + w5(Pµqν + Pνqµ)

w1 = −8M2gA
2 + 2q2(gV

2 + gA
2)

w2 = 2gA
2 + 2 | gV − 2MfV |2 − 2q2(fV

2 + fA
2)

w3 = −4Re(gA
∗gV )

w4 = −2gV
2 − 2 | gA + 2MhA|2 + 2(−q2 + 4M2)(hV

2 + hA
2)

w5 = 2Re{2M [(gV − 2MfV (1− q2

4M2
))hV

∗ + (gA
∗ +

q2

2M
hA

∗)fA]}

Since we already know that w6 gives zero contribution to the cross section after taking

contraction with leptonic tensor (Sec. C.1.4), we ignore it. Here nucleon functions wi are

written as functions of P = (p1 + p2) and q. On the other hand, in Smith and Moniz use
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p(= p1) and q for nucleon functions Ti (Eq. C.61). Thus,

wµν = w1gµν + w2(2p+ q)µ(2p+ q)ν + w3iεµναβqα(2p+ q)β

+w4qµqν + w5[(2p+ q)µqν + (2p+ q)νqµ]

= w1gµν + 4w2pµpν − 2iw3εµναβpαqβ + (w2 + w4 + 2w5)qµqν

+2(w2 + w5)(pµqν + pνqµ). (C.103)

Compare Eq. C.61 with Eq. C.103, one can get the relationships between Llewellyn-Smith

and Smith Moniz nucleon tensors.

Smith Moniz ↔ Pais

T1 = −w1

T2 = 4M2w2

Tα = M2(w2 + w4 + 2w5)

Tβ = 2M2(w2 + w5)

T8 = −2M2w3

The definition of nucleon current is secondary once you get nucleon tensors. Since we

accept Pais’s definitions for nucleon tensors, we can adjust Smith-Moniz’s nucleon current

definition to be consistent with Pais. In Smith-Moniz paper [16], the definition of nucleon

current is given in Eq. (8). Comparing with the current definition by Pais (Eq. C.8), using

Gordon’s decomposition (Eq. C.9), we can modify Eq. (8) for our purpose.

Γµ = γµF1 + σµνq
νF2 + iFV

3qµτz + γµγ5FA − iFPγ5qµ + FA
3γ5σµνq

ν

→ γµF1 − iσµνq
νF2 + FV

3qµτz − γµγ5FA − FPγ5qµ + FA
3γ5Pµ

= γµ[(F1 + 2MF2)− FAγ5]− Pµ(F2 − FA
3γ5τz) + qµ(FV

3τz − FP ) (C.104)
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Now, Smith-Moniz’s form factors and Pais’s form factor are related.

Smith Moniz ↔ Pais

F1 + 2MF2 = gV

F2 = fV

FV
3 = hV

FA = gA

FA
3 = fA

FP = hA

Thus, with a little care about the expressions for each nucleon tensor in Smith Moniz papers,

the expressions are the following,

T1 = = −w1 = 8M2g2
A − 2q2(g2

V + g2
A) = 8M2F 2

A − 2q2[(F1 + 2MF2)2 + F 2
A]

= 4
[

1
2
Q2(F1 + 2MF2)2 +

(
2M2 +

1
2
Q2

)
F 2

A

]
, (C.105)

T2 = 4M2w2 = 4M2[2gA
2 + 2 | gV − 2MfV |2 − 2q2(fV

2 + fA
2]

= 4
[
2M2[F 2

1 +Q2F 2
2 + F 2

A +Q2FA
32]
]
, (C.106)

T8 = −2M2[−4Re(gA · gV )] = 4
[
2M2FA(F1 + 2MF2)

]
, (C.107)

Tβ = 2M2[w2 + w5] =
1
2
T2 + 2M2w5

=
1
2
T2 + 2M2 · 2Re{2M [(gV − 2MfV (1− q2

4M2
))hV

∗ + (gA
∗ +

q2

2M
hA

∗)fA]}

=
1
2
T2 + 8M3

[(
F1 +

F2q
2

2M

)
FV

3 +
(
FA +

FP q
2

2M

)
FA

3

]
=

1
2
T2 + 4

[
(2MF1 − F2Q

2)M2FV
3 + (2MFA − FPQ

2)M2FA
3]
]
, (C.108)
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Tα = M2(w2 + w4 + 2w5) =
1
4
T2 +M2(w4 + 2w5)

=
1
4
T2 +M2

{
−2gV

2 − 2 | gA + 2MhA|2 + 2(−q2 + 4M2)(hV
2 + hA

2)

+ 8MRe{[(gV − 2MfV (1− q2

4M2
))hV

∗ + (gA
∗ +

q2

2M
hA

∗)fA]}
}

=
1
4
T2 +M2

{
−2(F1 + 2MF2)2 − 2(FA + 2MFP )2 + 2(−q2 + 4M2)(FV

32 + F 2
P )

+ 8M
[(
F1 +

F2q
2

2M

)
FV

3 +
(
FA +

FP q
2

2M

)
FA

3

]}
=

1
4
T2 −

M2

q2
T1 −

8M4

q2
F 2

A − 8M3FAFP − 8M4F 2
P + 2M2(−q2 + 4M2)(FV

32 + F 2
P )

+4M2FV
3(F1 + F2q

2) + 4M2FA
3(2MFA + FP q

2)

=
1
4
T2 −

M2

q2
T1 −

8M4

q2
F 2

A − 8M3FAFP − 8M4F 2
P + 2M2(−q2 + 4M2)(FV

32 + F 2
P )

+4M2FV
3(F1 + F2q

2) + 4M2FA
3(2MFA + FP q

2),

using T1 (Eq. C.105),

= −M
2

q2
T1 +

1
4
T2 + 4M2FV

3

[
2MF1 + F2q

2 +
(

2M2 − 1
2
q2
)
FV

3

]
+4M2(2MFA + FP q

2)
[
FA

3 − 1
2q2

(2MFA + FP q
2)
]

=
M2

Q2
T1 +

1
4
T2 + 4M2FV

3

[
2MF1 − F2Q

2 +
(

2M2 +
1
2
Q2

)
FV

3

]
+4M2(2MFA − FPQ

2)
[
FA

3 +
1

2Q2
(2MFA − FPQ

2)
]
. (C.109)

All terms are consistent with Smith and Moniz’s paper except for a factor of 4, but this

factor cancels with the factor 1
4 which we see in Eq. C.47 and C.60. Therefore, we finally

find the double differential cross section for RFG model,

dσ2

dk2dΩ
=

G2
V k

2
2

2π2mT

{
2W1sin

2

(
1
2
χ

)
+W2cos

2

(
1
2
χ

)
+ sin2

(
1
2
χ

)
m2

m2
T

Wα +
m2(Wβ +W8)

mT ε2

−2W8

mT
sin

(
1
2
χ

)√
q2cos2

(
1
2
χ

)
+ |q|2sin2

(
1
2
χ

)
+m2

}
. (C.110)
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Appendix D

Table for Predicted νµ flux for

MiniBooNE

Tab. D.1 shows νµ flux (Fig. 7.5) for each bin. The unit is neutrinos/POT/50MeV and the

integrated number of all energy region is 5.167× 10−10 neutrinos/POT.
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bin νµ flux bin νµ flux bin νµ flux

0- 50MeV 2.276× 1012 1000-1050MeV 1.681× 1011 2000-2050MeV 9.607× 1013

50- 100MeV 8.583× 1012 1050-1100MeV 1.561× 1011 2050-2100MeV 8.166× 1013

100- 150MeV 1.114× 1011 1100-1150MeV 1.442× 1011 2100-2150MeV 6.942× 1013

150- 200MeV 1.337× 1011 1150-1200MeV 1.321× 1011 2150-2200MeV 5.949× 1013

200- 250MeV 1.661× 1011 1200-1250MeV 1.195× 1011 2200-2250MeV 5.157× 1013

250- 300MeV 1.823× 1011 1250-1300MeV 1.071× 1011 2250-2300MeV 4.487× 1013

300- 350MeV 1.950× 1011 1300-1350MeV 9.522× 1012 2300-2350MeV 3.942× 1013

350- 400MeV 2.049× 1011 1350-1400MeV 8.372× 1012 2350-2400MeV 3.507× 1013

400- 450MeV 2.165× 1011 1400-1450MeV 7.292× 1012 2400-2450MeV 3.156× 1013

450- 500MeV 2.245× 1011 1450-1500MeV 6.304× 1012 2450-2500MeV 2.872× 1013

500- 550MeV 2.284× 1011 1500-1550MeV 5.407× 1012 2500-2550MeV 2.620× 1013

550- 600MeV 2.296× 1011 1550-1600MeV 4.610× 1012 2550-2600MeV 2.414× 1013

600- 650MeV 2.279× 1011 1600-1650MeV 3.909× 1012 2600-2650MeV 2.278× 1013

650- 700MeV 2.258× 1011 1650-1700MeV 3.292× 1012 2650-2700MeV 2.114× 1013

700- 750MeV 2.218× 1011 1700-1750MeV 2.765× 1012 2700-2750MeV 1.999× 1013

750- 800MeV 2.160× 1011 1750-1800MeV 2.316× 1012 2750-2800MeV 1.923× 1013

800- 850MeV 2.082× 1011 1800-1850MeV 1.936× 1012 2800-2850MeV 1.819× 1013

850- 900MeV 1.996× 1011 1850-1900MeV 1.619× 1012 2850-2900MeV 1.730× 1013

900- 950MeV 1.898× 1011 1900-1950MeV 1.358× 1012 2900-2950MeV 1.669× 1013

950-1000MeV 1.793× 1011 1950-2000MeV 1.141× 1012 2950-3000MeV 1.604× 1013

Table D.1: Predicted νµ flux in MiniBooNE. The unit is neutrinos/POT/50MeV and

integrated value for all energy region is 5.167× 10−10 neutrinos/POT.
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[61] A. de Gouvêa and C. Pena-Garay, Phys. Rev. D 71:093002 (2005).

[62] M. D. Messier p. 84, in CPT and Lorentz symmetry III, World Scientific (2005).

[63] [MINOS collaboration], P. Adamson et al., Phys. Rev. Lett. 101:151601 (2008).

[64] J. Ahrens and J. L. Kelley p. 234, in CPT and Lorentz symmetry III, World Scientific

(2008).

304



BIBLIOGRAPHY
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